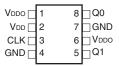

GENERAL DESCRIPTION

The 8302l is a low skew, 1-to-2 LVCMOS Fanout Buffer. The 8302l has a single ended clock input. The single ended clock input accepts LVCMOS or LVTTL input levels. The 8302l features a pair of LVCMOS outputs. The 8302l is characterized at full 3.3V for input $\rm V_{\rm DD}$, and mixed 3.3V and 2.5V for output operating supply modes ($\rm V_{\rm DDO}$). Guaranteedoutput and part-to-part skew characteristics make the 8302l ideal for clock distribution applications demanding well defined performance and repeatibility.


FEATURES

- 2 LVCMOS / LVTTL outputs
- LVCMOS / LVTTL clock input accepts LVCMOS or LVTTL input levels
- · Maximum output frequency: 200MHz
- · Output skew: 40ps (typical)
- Part-to-part skew: 250ps (typical)
- · Small 8 lead SOIC package saves board space
- Full 3.3V or 3.3V core, 2.5V supply modes
- -40°C to 85°C ambient operating temperature
- · Lead-Free package fully RoHS compliant

BLOCK DIAGRAM

PIN ASSIGNMENT

8302I 8-Lead SOIC 3.8mm x 4.8mm, x 1.47mm package body M Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 6	$V_{\scriptscriptstyle DDO}$	Power		Output supply pins.
2	$V_{_{\mathrm{DD}}}$	Power		Core supply pin.
3	CLK	Input	Pulldown	LVCMOS / LVTTL clock input.
4,7	GND	Power		Power supply ground.
5	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance	wer Dissipation Capacitance V_{DD} , $V_{DDO} = 3.465V$		22		pF
	(per output)	$V_{DD} = 3.465V, V_{DDO} = 2.625V$		16		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{out}	Output Impedance			7		Ω

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{I} -0.5 V to V_{DD} + 0.5 V

Outputs, V_O -0.5V to V_{DDO} + 0.5V

Package Thermal Impedance, θ_{JA} 112.7°C/W (0 lfpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Power Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				14	mA
I _{DDO}	Output Supply Current				5	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$V_{_{\mathrm{DD}}}$	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				14	mA
I _{DDO}	Output Supply Current				5	mA

Table 3C. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		1.3	V
I _{IH}	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
I	Input Low Current	CLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
	Output High Voltage		50Ω to $V_{DDO}/2$	2.6			V
V _{OH}			I _{OH} = -100μA	2.9			V
V	Outrout Law Valtage		50Ω to $V_{DDO}/2$			0.5	V
V _{OL} Output Low Voltage		I _{OL} = 100μA			0.2	V	

 $\textbf{TABLE 3D. LVCMOS / LVTTL DC Characteristics, V}_{DD} = 3.3 \text{V} \pm 5\%, \text{ V}_{DDO} = 2.5 \text{V} \pm 5\%, \text{ Ta} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		1.3	V
I _{IH}	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
I	Input Low Current	CLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μΑ
\/	V _{OH} Output High Voltage		50Ω to $V_{DDO}/2$	1.8			٧
V _{OH}			I _{OH} = -100μA	2.2			V
V	Output Low Voltage		50Ω to $V_{DDO}/2$			0.5	V
V _{OL}			I _{OL} = 100μA			0.2	V

Table 4A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

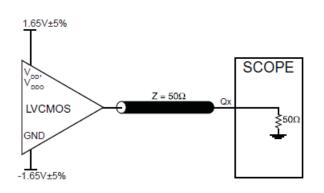
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	<i>f</i> ≤ 200MHz	1.9	2.35	2.8	ns
tsk(o)	Output Skew; NOTE 2, 4			40	105	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4			250	800	ps
t _R	Output Rise Time	20% to 80%	300		800	ps
t _F	Output Fall Time	20% to 80%	300		800	ps
odo	Output Duty Cycle	<i>f</i> ≤ 133MHz	45		55	%
odc	Output Duty Cycle	133MHz < <i>f</i> ≤ 200MHz	40		60	%

Parameters measured at f_{MAX} unless otherwise noted. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

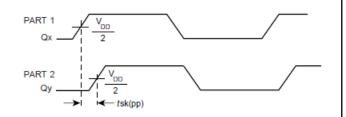
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\rm DDO}/2$.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

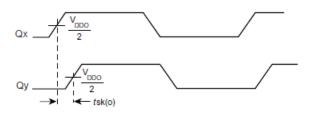

Table 4B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

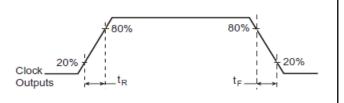
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1	<i>f</i> ≤ 200MHz	2.3		3.3	ns
tsk(o)	Output Skew; NOTE 2, 4				110	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4			250	800	ps
t _R	Output Rise Time	20% to 80%	250		650	ps
t _F	Output Fall Time	20% to 80%	250		650	ps
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	45		55	%
louc	Output Duty Cycle	133MHz < <i>f</i> ≤ 200MHz	40		60	%

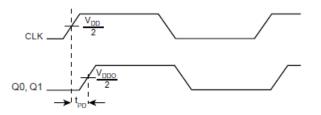
See Table 4A above for notes.

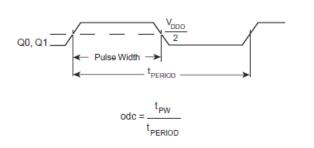


PARAMETER MEASUREMENT INFORMATION




3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT




PART-TO-PART SKEW

OUTPUT SKEW

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

RELIABILITY INFORMATION

Table 5. $\theta_{\rm JA}{\rm vs.}$ Air Flow Table for 8 Lead SOIC

θ_{JA} by Velocity (Linear Feet per Minute)

O200500Single-Layer PCB, JEDEC Standard Test Boards153.3°C/W128.5°C/W115.5°C/WMulti-Layer PCB, JEDEC Standard Test Boards112.7°C/W103.3°C/W97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 8302l is: 322

PACKAGE OUTLINE - SUFFIX M FOR 8 LEAD SOIC

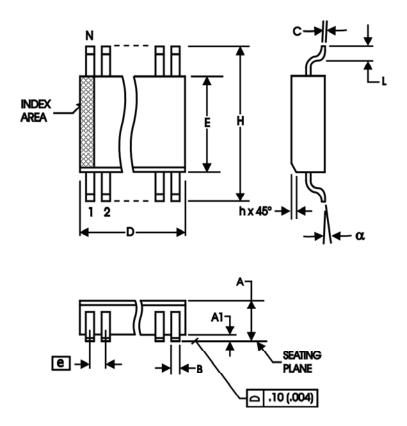


TABLE 6. PACKAGE DIMENSIONS

CVMPOL	Millin	neters
SYMBOL	MINIMUN	MAXIMUM
N	8	8
Α	1.35	1.75
A1	0.10	0.25
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
E	3.80	4.00
е	1.27 E	BASIC
Н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

Table 7. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8302AMILF	8302AMIL	8 lead "Lead Free" SOIC	Tube	-40°C to +85°C
8302AMILFT	8302AMIL	8 lead "Lead Free" SOIC	Tape and Reel	-40°C to +85°C

	REVISION HISTORY SHEET							
Rev	Table	Page	Description of Change	Date				
Α	T7	1 8	Features Section - added Lead-Free bullet. Ordering Information Table - added Lead-Free part number.	3/24/05				
А	T7	8 10	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/29/10				
А	T7	8	Removed ICS from the part numbers where needed. Ordering Information - removed quantity from tape and reel. Deleted LF note below table. Updated data sheet header and footer.	3/4/16				

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales **Tech Support**

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners.

For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.

Copyright ©2016 Integrated Device Technology, Inc. All rights reserved

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.