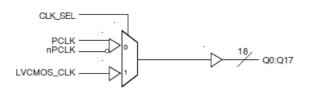
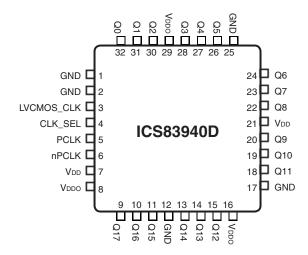
# LVPECL-TO-LVCMOS / LVTTL Fanout Buffer

DATASHEET

# GENERAL DESCRIPTION


The 83940D is a low skew, 1-to-18 LVPECL-to-LVC-MOS/LVTTL Fanout Buffer. The 83940D has two selectable clock inputs. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The LVCMOS\_ CLK can accept LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive  $50\Omega$ series or parallel terminated transmission lines.

The 83940D is characterized at full 3.3V and 2.5V or mixed3.3V core, 2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the 83940D ideal for those clock distribution applications demanding well defined performance and repeatability.


### **F**EATURES

- 18 LVCMOS/LVTTL outputs
- Selectable LVCMOS\_CLK or LVPECL clock inputs
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- LVCMOS\_CLK accepts the following input levels: LVCMOS or LVTTL
- · Maximum output frequency: 250MHz
- Output skew: 150ps (maximum)
- Part to part skew: 750ps (maximum)
- Additive phase jitter, RMS: < 0.03ps (typical)
- Full 3.3V and 2.5V or mixed 3.3V core, 2.5V output supply modes
- 0°C to 70°C ambient operating temperature
- · Lead-Free package available

# **BLOCK DIAGRAM**



# PIN ASSIGNMENT



32-Lead LQFP 7mm x 7mm x 1.4mm package body Y Pacakge Top View



TABLE 1. PIN DESCRIPTIONS

| Number                                                                         | Name                                                                                    | Т      | уре                 | Description                                                                                                                             |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 12, 17, 25                                                               | GND                                                                                     | Power  |                     | Power supply ground.                                                                                                                    |
| 3                                                                              | LVCMOS_CLK                                                                              | Input  | Pulldown            | Clock input. LVCMOS / LVTTL interface levels.                                                                                           |
| 4                                                                              | CLK_SEL                                                                                 | Input  | Pulldown            | Clock select input. Selects LVCMOS / LVTTL clock input when HIGH. Selects PCLK, nPCLK inputs when LOW. LVCMOS / LVTTL interface levels. |
| 5                                                                              | PCLK                                                                                    | Input  | Pulldown            | Non-inverting differential LVPECL clock input.                                                                                          |
| 6                                                                              | nPCLK                                                                                   | Input  | Pullup/<br>Pulldown | Inverting differential LVPECL clock input. $V_{\rm DD}/2$ default when left floating.                                                   |
| 7, 21                                                                          | $V_{_{\mathrm{DD}}}$                                                                    | Power  |                     | Core supply pins.                                                                                                                       |
| 8, 16, 29                                                                      | $V_{\scriptscriptstyle DDO}$                                                            | Power  |                     | Output supply pins.                                                                                                                     |
| 9, 10, 11, 13, 14,<br>15, 18, 19, 20, 22,<br>23, 24, 26, 27, 28,<br>30, 31, 32 | Q17, Q16, Q15, Q14, Q13,<br>Q12, Q11, Q10, Q9, Q8,<br>Q7, Q6, Q5, Q4, Q3,<br>Q2, Q1, Q0 | Output |                     | Clock outputs. LVCMOS / LVTTL interface levels.                                                                                         |

NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

| Symbol                | Parameter                                  | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|--------------------------------------------|-----------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance                          |                 |         | 4       |         | pF    |
| C <sub>PD</sub>       | Power Dissipation Capacitance (per output) |                 |         | 6       |         | pF    |
| R <sub>PULLup</sub>   | Input Pullup Resistor                      |                 |         | 51      |         | ΚΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor                    |                 |         | 51      |         | ΚΩ    |
| R <sub>OUT</sub>      | Output Impedance                           |                 | 18      |         | 28      | Ω     |

TABLE 3A. CLOCK SELECT FUNCTION TABLE

| Control Input | Clock       |             |  |  |  |
|---------------|-------------|-------------|--|--|--|
| CLK_SEL       | PCLK, nPCLK | LVCMOS_CLK  |  |  |  |
| 0             | Selected    | De-selected |  |  |  |
| 1             | De-selected | Selected    |  |  |  |

TABLE 3B. CLOCK INPUT FUNCTION TABLE

|         | Inj        | outs           |                   | Outputs | Input to Output Mode Pola    |               |
|---------|------------|----------------|-------------------|---------|------------------------------|---------------|
| CLK_SEL | LVCMOS_CLK | PCLK           | nPCLK             | Q0:Q17  | Input to Output Mode         | Polarity      |
| 0       | _          | 0              | 1                 | LOW     | Differential to Single Ended | Non Inverting |
| 0       | _          | 1              | 0                 | HIGH    | Differential to Single Ended | Non Inverting |
| 0       | _          | 0              | Biased;<br>NOTE 1 | LOW     | Single Ended to Single Ended | Non Inverting |
| 0       | _          | 1              | Biased;<br>NOTE 1 | HIGH    | Single Ended to Single Ended | Non Inverting |
| 0       | _          | Biased; NOTE 1 | 0                 | HIGH    | Single Ended to Single Ended | Inverting     |
| 0       | _          | Biased; NOTE 1 | 1                 | LOW     | Single Ended to Single Ended | Inverting     |
| 1       | 0          | _              | _                 | LOW     | Single Ended to Single Ended | Non Inverting |
| 1       | 1          | _              | _                 | HIGH    | Single Ended to Single Ended | Non Inverting |

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".



#### **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage, V<sub>DD</sub> 3.6V

Inputs,  $V_{l}$  -0.3V to  $V_{DD}$  + 0.3V

Outputs,  $V_{O}$  -0.3V to  $V_{DDO}$  + 0.3V

Input Current, I<sub>IN</sub> ±20mA

Storage Temperature,  $T_{STG}$  -40°C to 125°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.



Table 4A. DC Characteristics,  $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ , Ta = 0° to 70°

| Symbol           | Parameter                               |             | Test Conditions         | Minimum               | Typical | Maximum               | Units |
|------------------|-----------------------------------------|-------------|-------------------------|-----------------------|---------|-----------------------|-------|
| V <sub>IH</sub>  | Input High Voltage                      | LVCMOS_CLK  |                         | 2.4                   |         | $V_{_{\mathrm{DD}}}$  | V     |
| V <sub>IL</sub>  | Input Low Voltage                       | LVCMOS_CLK  |                         |                       |         | 0.8                   | V     |
| $V_{PP}$         | Peak-to-Peak Input Voltage              | PCLK, nPCLK |                         | 500                   |         | 1000                  | mV    |
| V <sub>CMR</sub> | Input Common Mode Voltage;<br>NOTE 1, 2 |             |                         | V <sub>DD</sub> - 1.4 |         | V <sub>DD</sub> - 0.6 | V     |
| I <sub>IN</sub>  | Input Current                           |             |                         |                       |         | ±200                  | μA    |
| V <sub>OH</sub>  | Output High Voltage                     |             | I <sub>OH</sub> = -20mA | 2.4                   |         |                       | V     |
| V <sub>OL</sub>  | Output Low Voltage                      |             | I <sub>OL</sub> = 20mA  |                       |         | 0.5                   | V     |
| I <sub>DD</sub>  | Core Supply Current                     |             |                         |                       |         | 25                    | mA    |

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is  $V_{\rm DD}$  + 0.3V.

NOTE 2: Common mode voltage is defined as  $V_{\rm IH}$ .

Table 5A. AC Characteristics,  $V^{}_{DD} = V^{}_{DDO} = 3.3 V \pm 5\%, \, Ta = 0^{\circ}$  to  $70^{\circ}$ 

| Symbol                         | Parameter                                               |                                  | Test Conditions                  | Minimum | Typical | Maximum | Units |
|--------------------------------|---------------------------------------------------------|----------------------------------|----------------------------------|---------|---------|---------|-------|
| f <sub>MAX</sub>               | Output Frequency                                        |                                  |                                  |         |         | 250     | MHz   |
| +                              | Propagation Delay                                       | PCLK, nPCLK;<br>NOTE 1, 5        | f ≤ 150MHz                       | 1.6     |         | 3.0     | ns    |
| t <sub>pLH</sub>               | Propagation Delay                                       | LVCMOS_CLK;<br>NOTE 2, 5         | f ≤ 150MHz                       | 1.8     |         | 3.0     | ns    |
| +                              | Dranagation Dalay                                       | PCLK, nPCLK;<br>NOTE 1, 5        | f > 150MHz                       | 1.6     |         | 3.3     | ns    |
| t <sub>pLH</sub>               | Propagation Delay                                       | LVCMOS_CLK;<br>NOTE 2, 5         | f > 150MHz                       | 1.8     |         | 3.2     | ns    |
| tol(a)                         | Output Skew;                                            | PCLK, nPCLK                      | Measured on                      |         |         | 150     | ps    |
| tsk(o) NOTE 3, 5               | LVCMOS_CLK                                              | rising edge @V <sub>DDO</sub> /2 |                                  |         | 150     | ps      |       |
| +=1:/:=:=)                     | Part-to-Part Skew;                                      | PCLK, nPCLK                      | f ≤ 150MHz                       |         |         | 1.4     | ns    |
| tsk(pp)                        | NOTE 6                                                  | LVCMOS_CLK                       | f ≤ 150MHz                       |         |         | 1.2     | ns    |
| +=1:/:=:=)                     | Part-to-Part Skew;                                      | PCLK, nPCLK                      | f > 150MHz                       |         |         | 1.7     | ns    |
| tsk(pp)                        | NOTE 6                                                  | LVCMOS_CLK                       | f > 150MHz                       |         |         | 1.4     | ns    |
| +=1:/:=:=)                     | Part-to-Part Skew;                                      | PCLK, nPCLK                      | Measured on                      |         |         | 850     | ps    |
| tsk(pp)                        | NOTE 4, 5                                               | LVCMOS_CLK                       | rising edge @V <sub>DDO</sub> /2 |         |         | 750     | ps    |
| tjit                           | Buffer Additive Phas<br>refer to Additive Pha<br>NOTE 7 |                                  |                                  |         | 0.03    |         | ps    |
| t <sub>R</sub> /t <sub>F</sub> | Output Rise/Fall Tim                                    | ne                               | 0.5 to 2.4V                      | 0.3     |         | 1.1     | ns    |
|                                | Output Duty Cycle                                       |                                  | f < 134MHz                       | 45      | 50      | 55      | %     |
| odc                            | Output Duty Cycle                                       |                                  | 134MHz ≤ f ≤ 250MHz              | 40      | 50      | 60      | %     |

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output V<sub>ppo</sub>/2.

NOTE 2: Measured from  $V_{\rm DD}/2$  to  $V_{\rm DDO}/2$ .

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V<sub>DDO</sub>/2.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature,

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V<sub>DDO</sub>/2.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at  $V_{DDO}/2$ .

NOTE 7: Driving only one input clock.



Table 4B. DC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ ,  $V_{DDO} = 2.5V \pm 5\%$ , Ta =  $0^{\circ}$  to  $70^{\circ}$ 

| Symbol           | Parameter                               | Parameter   |                         | Minimum               | Typical | Maximum               | Units |
|------------------|-----------------------------------------|-------------|-------------------------|-----------------------|---------|-----------------------|-------|
| V <sub>IH</sub>  | Input High Voltage                      | LVCMOS_CLK  |                         | 2.4                   |         | $V_{_{ m DD}}$        | V     |
| $V_{_{\rm IL}}$  | Input Low Voltage                       | LVCMOS_CLK  |                         |                       |         | 0.8                   | V     |
| V <sub>PP</sub>  | Peak-to-Peak Input Voltage              | PCLK, nPCLK |                         | 300                   |         | 1000                  | mV    |
| V <sub>CMR</sub> | Input Common Mode Voltage;<br>NOTE 1, 2 | PCLK, nPCLK |                         | V <sub>DD</sub> - 1.4 |         | V <sub>DD</sub> - 0.6 | V     |
| I <sub>IN</sub>  | Input Current                           |             |                         |                       |         | ±200                  | μA    |
| $V_{OH}$         | Output High Voltage                     |             | I <sub>OH</sub> = -20mA | 1.8                   |         |                       | V     |
| V <sub>OL</sub>  | Output Low Voltage                      |             | I <sub>OL</sub> = 20mA  |                       |         | 0.5                   | V     |
| I <sub>DD</sub>  | Core Supply Current                     |             |                         |                       |         | 25                    | mA    |

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is  $V_{\rm DD}$  + 0.3V.

NOTE 2: Common mode voltage is defined as V<sub>IH</sub>.

Table 5B. AC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ ,  $V_{DDO} = 2.5V \pm 5\%$ , Ta =  $0^{\circ}$  to  $70^{\circ}$ 

| Symbol            | Parameter                                            |                                      | Test Conditions                  | Minimum | Typical | Maximum | Units |
|-------------------|------------------------------------------------------|--------------------------------------|----------------------------------|---------|---------|---------|-------|
| f <sub>MAX</sub>  | Output Frequency                                     |                                      |                                  |         |         | 250     | MHz   |
| _                 | Propagation Delay                                    | PCLK, nPCLK;<br>NOTE 1, 5            | f ≤ 150MHz                       | 1.7     |         | 3.2     | ns    |
| t <sub>pLH</sub>  | FTOpagation Delay                                    | LVCMOS_CLK;<br>NOTE 2, 5             | f ≤ 150MHz                       | 1.7     |         | 3.0     | ns    |
|                   | Propagation Dalay                                    | PCLK, nPCLK;<br>NOTE 1, 5 f > 150MHz |                                  | 1.6     |         | 3.4     | ns    |
| t <sub>pLH</sub>  | Propagation Delay                                    | LVCMOS_CLK;<br>NOTE 2, 5             | f > 150MHz                       | 1.8     |         | 3.3     | ns    |
| tal(a)            | Output Skew;                                         | PCLK, nPCLK                          | Measured on                      |         |         | 150     | ps    |
| tsk(o)            | NOTE 3, 5                                            | LVCMOS_CLK                           | rising edge @V <sub>DDO</sub> /2 |         |         | 150     | ps    |
| +=ls/==)          | Part-to-Part Skew;                                   | PCLK, nPCLK                          | f ≤ 150MHz                       |         |         | 1.5     | ns    |
| tsk(pp)           | NOTE 6                                               | LVCMOS_CLK                           | f ≤ 150MHz                       |         |         | 1.3     | ns    |
| t-1-/\            | Part-to-Part Skew;                                   | PCLK, nPCLK                          | f > 150MHz                       |         |         | 1.8     | ns    |
| tsk(pp)           | NOTE 6                                               | LVCMOS_CLK                           | f > 150MHz                       |         |         | 1.5     | ns    |
| ± = 1 = / -= -= \ | Part-to-Part Skew;                                   | PCLK, nPCLK                          | Measured on                      |         |         | 850     | ps    |
| tsk(pp)           | NOTE 4, 5                                            | LVCMOS_CLK                           | rising edge @V <sub>DDO</sub> /2 |         |         | 750     | ps    |
| tjit              | Buffer Additive Phase refer to Additive Phase NOTE 7 |                                      |                                  |         | 0.03    |         | ps    |
| $t_R/t_F$         | Output Rise/Fall Tim                                 | ne                                   | 0.5 to 1.8V                      | 0.3     |         | 1.2     | ns    |
| odc               | Output Duty Cycle                                    |                                      | f < 134MHz                       | 45      | 50      | 55      | %     |

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output V<sub>DDO</sub>/2.

NOTE 2: Measured from  $V_{DD}/2$  to  $V_{DDO}/2$ .

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V<sub>DDO</sub>/2.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at  $V_{ppo}/2$ .

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at  $V_{\text{DDO}}/2$ .

NOTE 7: Driving only one input clock.



Table 4C. DC Characteristics,  $V_{DD} = V_{DDO} = 2.5V \pm 5\%$ , Ta = 0° to 70°

| Symbol           | Parameter                               |             | Test Conditions         | Minimum               | Typical | Maximum               | Units |
|------------------|-----------------------------------------|-------------|-------------------------|-----------------------|---------|-----------------------|-------|
| V <sub>IH</sub>  | Input High Voltage                      | LVCMOS_CLK  |                         | 2                     |         | V <sub>DD</sub>       | V     |
| V <sub>IL</sub>  | Input Low Voltage                       | LVCMOS_CLK  |                         |                       |         | 0.8                   | V     |
| V <sub>PP</sub>  | Peak-to-Peak<br>Input Voltage           | PCLK, nPCLK |                         | 300                   |         | 1000                  | mV    |
| V <sub>CMR</sub> | Input Common Mode Voltage;<br>NOTE 1, 2 | PCLK, nPCLK |                         | V <sub>DD</sub> - 1.4 |         | V <sub>DD</sub> - 0.6 | V     |
| I <sub>IN</sub>  | Input Current                           | ·           |                         |                       |         | ±200                  | μA    |
| V <sub>OH</sub>  | Output High Voltage                     |             | I <sub>OH</sub> = -12mA | 1.8                   |         |                       | V     |
| $V_{OL}$         | Output Low Voltage                      |             | I <sub>OL</sub> = 12mA  |                       |         | 0.5                   | V     |
| I <sub>DD</sub>  | Core Supply Current                     |             |                         |                       |         | 25                    | mA    |

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is  $V_{DD}$  + 0.3V.

NOTE 2: Common mode voltage is defined as  $V_{\rm in}$ .

Table 5C. AC Characteristics,  $V_{DD} = V_{DDO} = 2.5V \pm 5\%$ , Ta = 0° to 70°

| Symbol                         | Parameter                                               |                           | Test Conditions                  | Minimum | Typical | Maximum | Units |
|--------------------------------|---------------------------------------------------------|---------------------------|----------------------------------|---------|---------|---------|-------|
| f <sub>MAX</sub>               | Output Frequency                                        |                           |                                  |         |         | 200     | MHz   |
| +                              | Propagation Delay;                                      | PCLK, nPCLK;<br>NOTE 1, 5 | f ≤ 150MHz                       | 1.2     |         | 3.8     | ns    |
| <sup>L</sup> pLH               | Propagation Delay,                                      | LVCMOS_CLK;<br>NOTE 2, 5  | f ≤ 150MHz                       | 1.5     |         | 3.2     | ns    |
| +                              | Propagation Delay:                                      | PCLK, nPCLK;<br>NOTE 1, 5 | f > 150MHz                       | 1.5     |         | 3.7     | ns    |
| <sup>L</sup> pLH               | Propagation Delay;                                      | LVCMOS_CLK;<br>NOTE 2, 5  | f > 150MHz                       | 2       |         | 3.6     | ns    |
| tal(a)                         | Output Skew;                                            | PCLK, nPCLK               | Measured on                      |         |         | 200     | ps    |
| tsk(o)                         | NOTE 3, 5                                               | LVCMOS_CLK                | rising edge @V <sub>DDO</sub> /2 |         |         | 200     | ps    |
| t = l = ( = = = \              | Part-to-Part Skew;                                      | PCLK, nPCLK               | f ≤ 150MHz                       |         |         | 2.6     | ns    |
| tsk(pp)                        | NOTE 6                                                  | LVCMOS_CLK                | f ≤ 150MHz                       |         |         | 1.7     | ns    |
|                                | Part-to-Part Skew;                                      | PCLK, nPCLK               | f > 150MHz                       |         |         | 2.2     | ns    |
| tsk(pp)                        | NOTE 6                                                  | LVCMOS_CLK                | f > 150MHz                       |         |         | 1.7     | ns    |
| t = l = / \                    | Part-to-Part Skew;                                      | PCLK, nPCLK               | Measured on                      |         |         | 1.2     | ns    |
| tsk(pp)                        | NOTE 4, 5                                               | LVCMOS_CLK                | rising edge @V <sub>DDO</sub> /2 |         |         | 1.0     | ns    |
| tjit                           | Buffer Additive Phas<br>refer to Additive Pha<br>NOTE 7 |                           |                                  |         | 0.03    |         | ps    |
| t <sub>R</sub> /t <sub>F</sub> | Output Rise/Fall Tim                                    | е                         | 0.5 to 1.8V                      | 0.3     |         | 1.2     | ns    |
| odc                            | Output Duty Cycle                                       |                           | f < 134MHz                       | 45      |         | 55      | %     |

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output  $V_{DDO}/2$ .

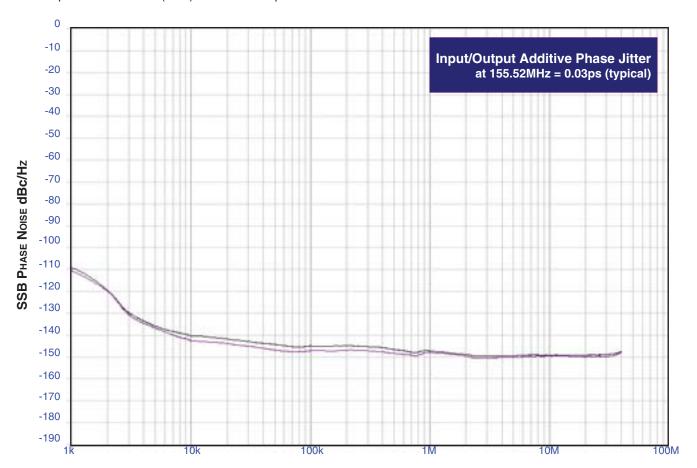
NOTE 2: Measured from  $V_{DD}/2$  to  $V_{DDO}/2$ . NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at  $V_{DDO}/2$ .

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V<sub>npq</sub>/2.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges,

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V\_DDG/2.


NOTE 7 Driving only one input clock.

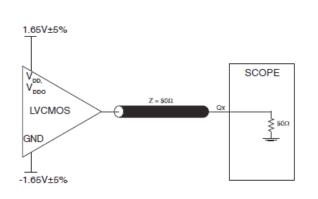


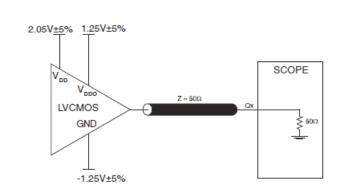
### ADDITIVE PHASE JITTER

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the

1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

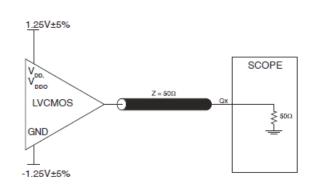


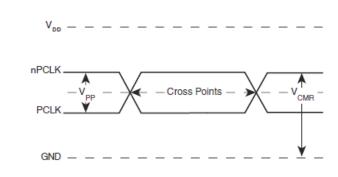

OFFSET FROM CARRIER FREQUENCY (Hz)


As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The

device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment.

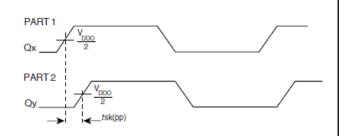


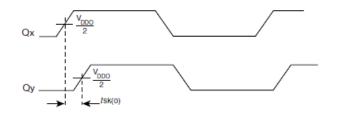

# PARAMETER MEASUREMENT INFORMATION






### 3.3V Core/3.3V OUTPUT LOAD AC TEST CIRCUIT

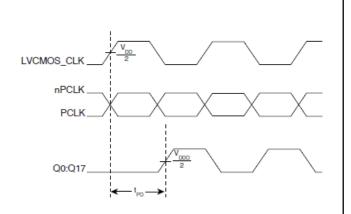

## 3.3V Core/2.5V OUTPUT LOAD AC TEST CIRCUIT

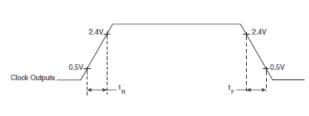





### 2.5V OUTPUT LOAD AC TEST CIRCUIT

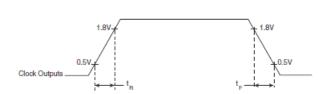
### DIFFERENTIAL INPUT LEVEL




PART-TO-PART SKEW

**OUTPUT SKEW** 





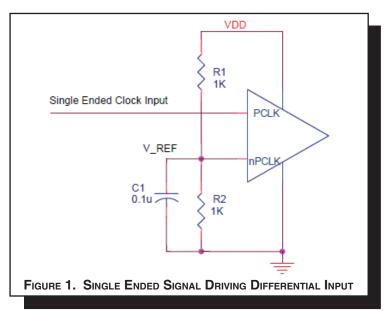



# PROPAGATION DELAY

# 3.3V OUTPUT RISE/FALL TIME



# 2.5V OUTPUT RISE/FALL TIME




# **APPLICATION INFORMATION**

### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage  $V_REF = V_{DD}/2$  is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V\_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and  $V_{DD}\!=\!3.3V,$  V\_REF should be 1.25V and R2/R1 = 0.609.





### LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V<sub>SWING</sub> and V<sub>OH</sub> must meet the V<sub>PP</sub> and V<sub>CMR</sub> input requirements. *Figures 2A to 2F* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested here are examples

only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

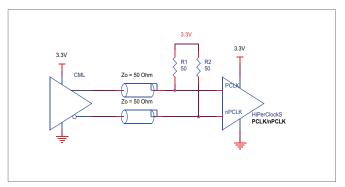



FIGURE 2A. PCLK/nPCLK INPUT DRIVEN
BY AN OPEN COLLECTOR CML DRIVER

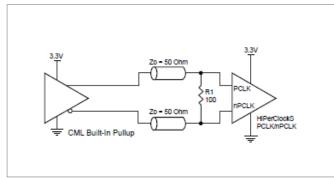



FIGURE 2B. PCLK/nPCLK INPUT DRIVEN
BY A BUILT-IN PULLUP CML DRIVER

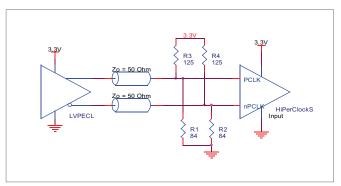



FIGURE 2C. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER

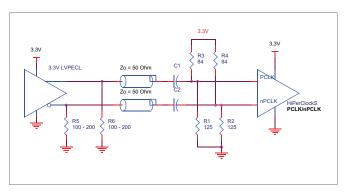



FIGURE 2D. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVPECL DRIVER WITH AC COUPLE

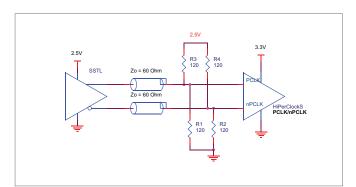



FIGURE 2E. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

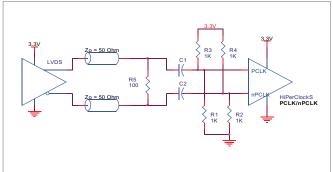



FIGURE 2F. PCLK/nPCLK INPUT DRIVEN
BY A 3.3V LVDS DRIVER



# **RELIABILITY INFORMATION**

Table 6.  $\theta_{\text{JA}} \text{vs. Air Flow Table for 32 Lead LQFP}$ 

# $\theta_{\text{JA}}$ by Velocity (Linear Feet per Minute)

|                                              | 0        | 200      | 500      |
|----------------------------------------------|----------|----------|----------|
| Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W |
| Multi-Layer PCB, JEDEC Standard Test Boards  | 47.9°C/W | 42.1°C/W | 39.4°C/W |

**NOTE:** Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

#### TRANSISTOR COUNT

The transistor count for 83940D is: 820



### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

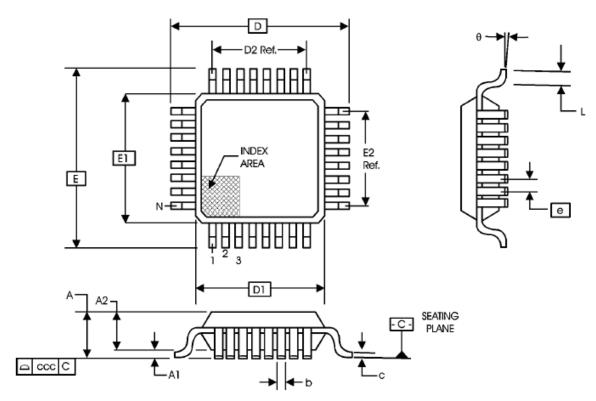



TABLE 7. PACKAGE DIMENSIONS

|            | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS |                 |      |  |  |  |  |
|------------|-----------------------------------------------|-----------------|------|--|--|--|--|
| CVMDOL     | ВВА                                           |                 |      |  |  |  |  |
| SYMBOL     | MINIMUM                                       | MINIMUM NOMINAL |      |  |  |  |  |
| N          |                                               | 32              |      |  |  |  |  |
| Α          |                                               |                 | 1.60 |  |  |  |  |
| <b>A</b> 1 | 0.05                                          |                 | 0.15 |  |  |  |  |
| A2         | 1.35                                          | 1.40            | 1.45 |  |  |  |  |
| b          | 0.30                                          | 0.37            | 0.45 |  |  |  |  |
| С          | 0.09                                          |                 | 0.20 |  |  |  |  |
| D          |                                               | 9.00 BASIC      |      |  |  |  |  |
| D1         |                                               | 7.00 BASIC      |      |  |  |  |  |
| D2         |                                               | 5.60 Ref.       |      |  |  |  |  |
| E          |                                               | 9.00 BASIC      |      |  |  |  |  |
| E1         |                                               | 7.00 BASIC      |      |  |  |  |  |
| E2         |                                               | 5.60 Ref.       |      |  |  |  |  |
| е          |                                               | 0.80 BASIC      |      |  |  |  |  |
| L          | 0.45                                          | 0.60            | 0.75 |  |  |  |  |
| θ          | 0°                                            | 0° 7°           |      |  |  |  |  |
| ссс        |                                               |                 | 0.10 |  |  |  |  |

Reference Document: JEDEC Publication 95, MS-026



### Table 8. Ordering Information

| Part/Order Number | Marking      | Package                  | Shipping Pack-<br>aging | Temperature |
|-------------------|--------------|--------------------------|-------------------------|-------------|
| 83940DYLF         | ICS83940DYLF | 32 Lead "Lead Free" LQFP | Tray                    | 0°C to 70°C |
| 83940DYLFT        | ICS83940DYLF | 32 Lead "Lead Free" LQFP | Tape and Reel           | 0°C to 70°C |



|     | REVISION HISTORY SHEET     |                             |                                                                                                                                                                                                                                                                                                                          |          |  |  |
|-----|----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Rev | Table                      | Page                        | Description of Change                                                                                                                                                                                                                                                                                                    | Date     |  |  |
|     | T5A                        | 4                           | <ul> <li>3.3V AC Characteristics table -</li> <li>tsk(pp) Test Conditions, replaced "&lt;" with "≤"; corrected Units to "ns" from "ps".</li> <li>odc - corrected Test Conditions to read "134MHz ≤ f ≤ 250MHz", from "f ≤ 250MHz".</li> </ul>                                                                            |          |  |  |
| A   | T5B                        | 5                           | 3.3V/2.5V AC Characteristics table - tsk(pp) Test Conditions, replaced "<" with " $\leq$ "; corrected Units to read "ns" from "ps".                                                                                                                                                                                      | 10/11/02 |  |  |
|     | T5C                        | 6                           | 2.5V AC Characteristics table - tsk(pp) Test Conditions, replaced "<" with " $\leq$ "; corrected Units to "ns" from "ps".                                                                                                                                                                                                |          |  |  |
|     |                            | 2                           | Pin Characteristics table - changed R <sub>OUT</sub> 25Ω maximum to 28Ω maximum.  Delete R <sub>PULLUP</sub> row.  3.3V Output Load AC Test Circuit diagram - corrected GND equation to read                                                                                                                             |          |  |  |
| A   | T2                         | 7                           | -1.65V from -1.165V Added LVTTL to title. Updated format.                                                                                                                                                                                                                                                                | 12/12/02 |  |  |
| В   | T1<br>T2<br>T5A<br>T5B T5C | 2<br>4<br>5<br>6<br>7<br>10 | Pin Description Table - added Pullup and Pulldown to Pin 6, nPCLK. Pin Characteristics Table - added R <sub>PULLUP</sub> row. Added tjit row. Added tjit row. Added tjit row. Added Additive Phase Jitter section. Updated Single Ended Signal Driving Differential Input diagram. Added LVPECL Clock Interface section. | 10/9/03  |  |  |
| В   | T5A - T5C                  | 1<br>4 - 6<br>11<br>14      | Added "Lead-Free" bullet to Features section.  Added NOTE 7.  Updated LVPECL Clock Input Interface section.  Ordering Information table - added "Lead-Free" part number.                                                                                                                                                 |          |  |  |
| В   | Т8                         | 14<br>16                    | Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column.  Added Contact Page.  8/9                                                                                                                                                                                         |          |  |  |
| В   | T8                         | 14                          | Ordering Information - Removed leaded devices. Updated data sheet format.                                                                                                                                                                                                                                                | 3/25/15  |  |  |



#### **IMPORTANT NOTICE AND DISCLAIMER**

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <a href="https://www.renesas.com/contact-us/">www.renesas.com/contact-us/</a>.