RENESAS FEMTOCLOCKSTM Crystal-to-LVCMOS/ LVTTL Frequency Synthesizer

DATASHEET

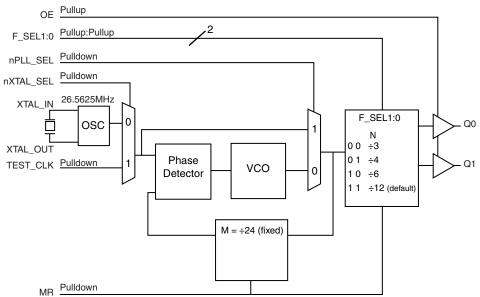
GENERAL DESCRIPTION

The 840002 is a 2 output LVCMOS/LVTTL Synthesizer optimized to generate Fibre Channel reference clock frequencies. Using a 26.5625MHz, 18pF parallel resonant crystal, the following frequencies can be generated based on the 2 frequency select pins (F_SEL1:0): 212.5MHz, 159.375MHz, 156.25MHz, 106.25MHz, and 53.125MHz. The 840002 uses low phase noise VCO technology and can achieve 1ps or lower typical rms phase jitter, easily meeting Fibre Channel jitter requirements. The 840002 is packaged in a 16-pin TSSOP package.

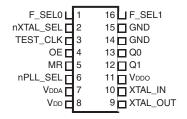
FEATURES

- Two LVCMOS outputs @ 3.3V, 17Ω typical output imped-
- · Selectable crystal oscillator interface or LVCMOS single-ended input
- Output frequency range: 46.66MHz 233.33MHz
- VCO range: 560MHz 700MHz
- Supports the following output frequencies: 212.5MHz, 159.375MHz, 156.25MHz, 106.25MHz and 53.125MHz
- RMS phase jitter @ 212.5MHz (637kHz 10MHz): 0.83ps (typical)

Typical phase noise at 212.5MHz:


Offset	Noise Power
100Hz	91.3 dBc/Hz
1kHz	114.3 dBc/Hz
10kHz	120.7 dBc/Hz
100kHz	120.2 dBc/Hz

- Full 3.3V or 3.3V core/2.5V output supply modes
- 0°C to 70°C ambient operating temperature
- · Available in lead-free RoHS compliant package


FREQUENCY SELECT FUNCTION TABLE FOR FIBRE CHANNEL APPLICATIONS

Input Frequency	Inputs					Output Frequency
(MHz)	F_SEL1	F_SEL0	M Divider Value	N Divider Value	M/N Ratio Value	(MHz)
26.5625	0	0	24	3	8	212.5
26.5625	0	1	24	4	6	159.375
26.5625	1	0	24	6	4	106.25
26.5625	1	1	24	12	2	53.125
26.04166	0	1	24	4	6	156.25

BLOCK DIAGRAM

PIN ASSIGNMENT

840002

16-Lead TSSOP 4.4mm x 5.0mm x 0.92mm package body **G** Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	/pe	Description
1	F_SEL0	Input	Pullup	Frequency select pin. LVCMOS/LVTTL interface levels.
2	nXTAL_SEL	Input	Pulldown	Selects between the crystal or TEST_CLK inputs as the PLL reference source. When HIGH, selects TEST_CLK. When LOW, selects XTAL inputs. LVCMOS/LVTTL interface levels.
3	TEST_CLK	Input	Pulldown	Single-ended LVCMOS/LVTTL clock input.
4	OE	Input	Pullup	Output enable pin. When HIGH, the outputs are active. When LOW, the outputs are in a high impedance state. LVCMOS/LVTTL interface levels.
5	MR	Input	Pulldown	Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing active outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels.
6	nPLL_SEL	Input	Pulldown	PLL Bypass. When LOW, the output is driven from the VCO output. When HIGH, the PLL is bypassed and the output frequency = reference clock frequency/n output divider. LVCMOS/LVTTL interface levels.
7	V _{DDA}	Power		Analog supply pin.
8	V _{DD}	Power		Core supply pin.
9, 10	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface.
11	V _{DDO}	Power		Output supply pin.
12, 13	Q1, Q0	Output		Single-ended clock outputs. LVCMOS/LVTTL interface levels.
14, 15	GND	Power		Power supply ground.
16	F_SEL1	Input	Pullup	Frequency select pin. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance			8		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
	Output Impedance	3.3V±5%	14	17	21	Ω
		2.5V±5%	16	21	25	Ω

TABLE 3. FREQUENCY SELECT FUNCTION TABLE

Input Frequency	Inputs					Output Frequency
(MHz)	F_SEL1	F_SEL0	M Divider Value	N Divider Value	M/N Divider Value	(MHz)
26.5625	0	0	24	3	8	212.5
26.5625	0	1	24	4	6	159.375
26.5625	1	0	24	6	4	106.25
26.5625	1	1	24	12	2	53.125
26.04166	0	1	24	4	6	156.25

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{I} -0.5V to V_{DD} + 0.5 V

Outputs, V_{O} -0.5V to V_{DD} + 0.5V

Package Thermal Impedance, θ_{JA} 89°C/W (0 Ifpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

 $\textbf{TABLE 4A. Power Supply DC Characteristics, } V_{\text{DD}} = V_{\text{DDA}} = 3.3 \text{V} \pm 5\%, V_{\text{DDO}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, T_{\text{A}} = 0^{\circ}\text{C to } 70^{\circ}\text{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$V_{_{ m DD}}$	Core Supply Voltage		3.135	3.3	3.465	V
$V_{\scriptscriptstyle DDA}$	Analog Supply Voltage		3.135	3.3	3.465	V
	Outrout Complet Valtages		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				100	mA
I _{DDA}	Analog Supply Current				12	mA
I _{DDO}	Output Supply Current				5	mA

 $\textbf{TABLE 4B. LVCMOS/LVTTL DC Characteristics, V}_{DD} = V_{DDA} = 3.3V \pm 5\%, V_{DDO} = 3.3V \pm 5\% \text{ or } 2.5V \pm 5\%, TA = 0^{\circ}\text{C to } 70^{\circ}\text{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	V. Input	F_SEL1:0, nPLL_SEL, nXTAL_SEL, OE, MR		2		V _{DD} + 0.3	٧
""	High Voltage	TEST_CLK		2		V _{DD} + 0.3	V
V _{IL}	Input	F_SEL1:0, nPLL_SEL, nXTAL_SEL, OE, MR		-0.3		0.8	V
	Low Voltage	TEST_CLK		-0.3		1.3	V
	Input	OE, F_SEL0, F_SEL1	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
I _{IH}	High Current	nPLL_SEL, MR, nXTAL_ SEL, TEST_CLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
	Input	OE, F_SEL0, F_SEL1	$V_{DD} = 3.465V, V_{IN} = 0V$	-150			μΑ
Low Current	l '	nPLL_SEL, MR, nXTAL_ SEL, TEST_CLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μA
V	Output High Voltage; NOTE 1		$V_{DDO} = 3.3V \pm 5\%$	2.6			V
V _{OH}			$V_{DDO} = 2.5V \pm 5\%$	1.8			V
V _{OL}	Output Low Voltage; NOTE 1		$V_{DDO} = 3.3 \text{V or } 2.5 \text{V} \pm 5\%$			0.5	٧

NOTE 1: Outputs terminated with 50W to $V_{\tiny DDO}/2$. See Parameter Measurement Information, Output Load Test Circuit.

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			26.5625		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

NOTE: Characterized using an 18pf parallel resonant crystal.

Table 6A. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

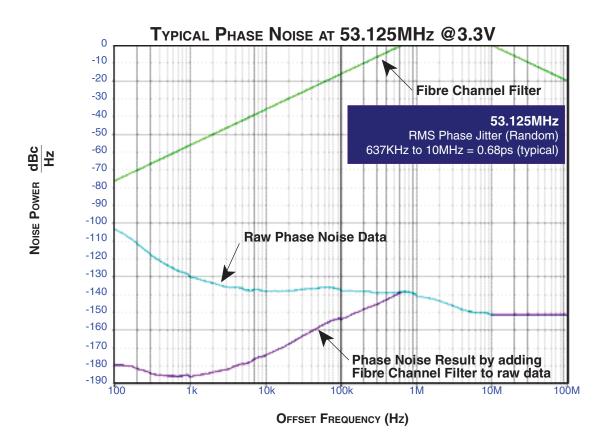
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
		F_SEL[1:0] = 00	186.67		226.67	MHz
f	Output Frequency Range	F_SEL[1:0] = 01	140		170	MHz
f _{out}	Output Frequency hange	F_SEL[1:0] = 10	93.33		113.33	MHz
		F_SEL[1:0] = 11	46.67		56.67	MHz
tsk(o)	Output Skew; NOTE 1, 3				12	ps
		212.5MHz @ Integration Range: 637kHz - 10MHz		0.83		ps
	RMS Phase Jitter (Random); NOTE 2	159.375MHz @ Integration Range: 637kHz - 10MHz		0.62		ps
<i>t</i> jit(Ø)		156.25MHz @ Integration Range: 1.875MHz - 20MHz		0.59		ps
		106.25MHz @ Integration Range: 637kHz - 10MHz		0.80		ps
		53.125MHz @ Integration Range: 637kHz - 10MHz		0.68		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		700	ps
odo	Output Duty Cycle	F_SEL[1:0] 1 00	46		54	%
odc	Output Duty Cycle	F_SEL[1:0] = 00	42		58	%

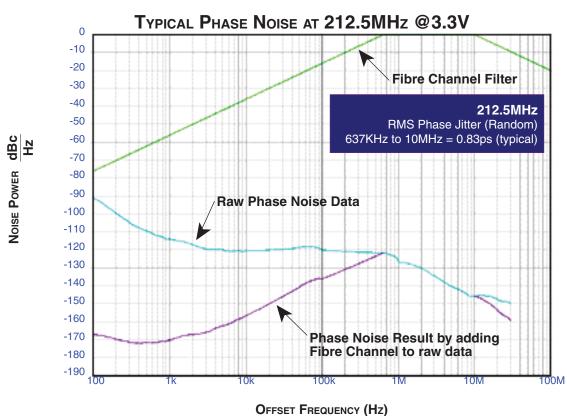
NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions.

Measured at $\rm V_{\rm DDO}/2.$ NOTE 2: Please refer to the Phase Noise Plot.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

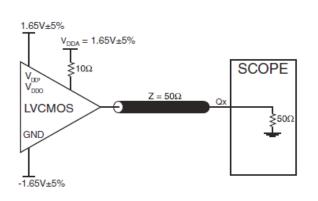
Table 6B. AC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

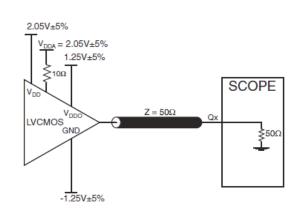

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
		F_SEL[1:0] = 00	186.67		226.67	MHz
l _f	Output Frequency Range	F_SEL[1:0] = 01	140		170	MHz
I _{OUT}	Output Frequency Hange	F_SEL[1:0] = 10	93.33		113.33	MHz
		F_SEL[1:0] = 11	46.67		56.67	MHz
tsk(o)	Output Skew; NOTE 1, 3				12	ps
		212.5MHz @ Integration Range: 637kHz - 10MHz		0.73		ps
	RMS Phase Jitter (Random); NOTE 2	159.375MHz @ Integration Range: 637kHz - 10MHz		0.62		ps
<i>t</i> jit(Ø)		156.25MHz @ Integration Range: 1.875MHz - 20MHz		0.56		ps
		106.25MHz @ Integration Range: 637kHz - 10MHz		0.76		ps
		53.125MHz @ Integration Range: 637kHz - 10MHz		0.72		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle	F_SEL[1:0] 1 00	46		54	%
Jude	Output Duty Cycle	F_SEL[1:0] = 00	42		58	%

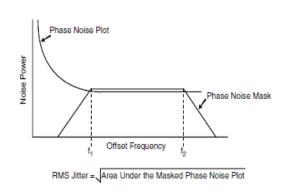

NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions.

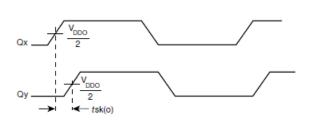
Measured at $V_{\rm DDO}/2$.

NOTE 2: Please refer to the Phase Noise Plot.

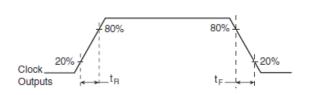

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

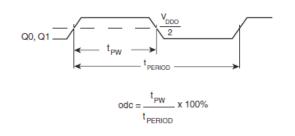



PARAMETER MEASUREMENT INFORMATION



3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT


3.3V Core/2.5V OUTPUT LOAD AC TEST CIRCUIT



RMS PHASE JITTER

OUTPUT SKEW

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

APPLICATION INFORMATION

Power Supply Filtering Techniques
As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 840002 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm DD}$, $V_{\rm DDA}$, and $V_{\rm DDO}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\tiny DDA}$.

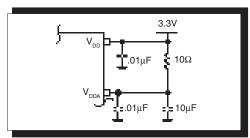
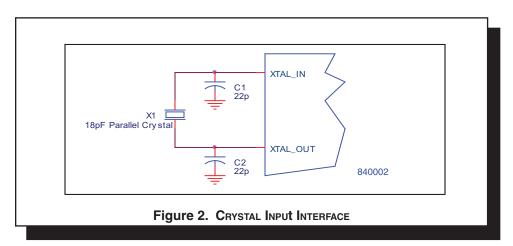



FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The 840002 has been characterized with 18pF parallel resonant crystals. The capacitor values shown in Figure 2 below were

determined using a 26.5625MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CRYSTAL INPUT:

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

TEST_CLK INPUT:

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the TEST_CLK to ground.

LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS: LVCMOS OUTPUT:

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

LAYOUT GUIDELINE

Figure 3 shows a schematic example of the 840002. An example of LVCMOS termination is shown in this schematic. Additional LVCMOS termination approaches are shown in the LVCMOS Termination Application Note. In this example, an 18 pF parallel resonant 26.5625MHz crystal is used. The C1=22pF and

C2=22pF are recommended for frequency accuracy. For different board layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. $1K\Omega$ pullup or pulldown resistors can be used for the logic control input pins.

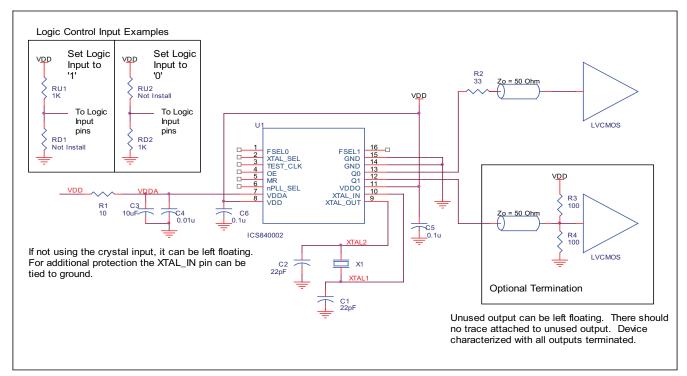


FIGURE 3. 840002 SCHEMATIC EXAMPLE

RELIABILITY INFORMATION

Table 7. $\theta_{\text{JA}} \text{vs. Air Flow Table for 16 Lead TSSOP}$

θJA by Velocity (Linear Feet per Minute)

O200500Single-Layer PCB, JEDEC Standard Test Boards137.1°C/W118.2°C/W106.8°C/WMulti-Layer PCB, JEDEC Standard Test Boards89.0°C/W81.8°C/W78.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 840002 is: 3085

PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP

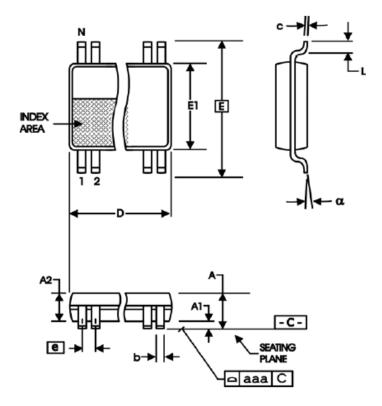


TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millim	neters
STINIBOL	Minimum	Maximum
N	1	6
Α		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
С	0.09	0.20
D	4.90	5.10
E	6.40 E	BASIC
E1	4.30	4.50
е	0.65 E	BASIC
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Table 9. Ordering Information

Part/Order Number	Marking	Package Shipping Packaging		Temperature
ICS840002AGLF	840002AL	16 Lead "Lead-Free" TSSOP	tube	0°C to 70°C
ICS840002AGLFT	840002AL	16 Lead "Lead-Free" TSSOP	tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
	T5	3	Crystal Characteristics Table - added Drive Level.	
	Т9	6	Updated Output Load AC Test Circuit diagrams.	
В		8	Added Recommendations for Unused Input and Output Pins.	2/17/06
		11	Ordering Information Table - corrected standard marking and added lead-free marking and note.	
С	Т9	11	Ordering information - removed leaded devices - PDN CQ-13-02 expired. Updated Datasheet format.	11/10/14

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.