

CK420BQ DERIVATIVE SUPPORTING SRNS PCIE CLOCKING

932SQ426

General Description

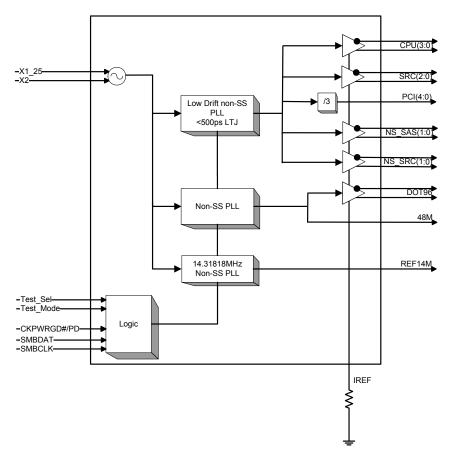
The 932SQ426 is a CK420BQ derivative supporting Separate Reference no Spread (SRnS) PCIe clocking architectures. It uses a 25MHz crystal for maximum performance and has 100MHz outputs tuned for non-spreading applications to provide the most open eye diagram on PCIe links.

Recommended Application

CK420BQ for SRnS applications

Output Features

- 11 HCSL 100MHz outputs for SRnS
- 4 NS_SAS/SRC outputs
- 4 CPU outputs
- 3 SRC outputs
- 1 HCSL DOT96 output
- 1 3.3V 48M output
- 5 3.3V PCI outputs
- 1 3.3V 14.318M output


Features/Benefits

- Non-spread 100MHz outputs/ Supports SRnS PCIe architectures
- 64-pin TSSOP and VFQFPN packages; maximum space savings

Key Specifications

- Cycle to cycle jitter: CPU/SRC/NS_SRC/NS_SAS < 50ps
- Phase jitter: PCle Gen2 <3ps rms
- Phase jitter: PCle Gen3 <1ps rms
- Phase jitter: QPI 9.6GB/s <0.2ps rms
- Phase jitter: NS-SAS <0.4ps rms using raw phase data
- Phase jitter: NS-SAS <1.3ps rms using Clk Jit Tool 1.6.4

Block Diagram

Pin Configuration (TSSOP)

SMBCLK GND14			64 SMBDAT 63 VDDCPU
AVDD14	3		62 CPU3T
VDD14	4		61 CPU3C
VREF14 3x/TEST SEL	5		60 CPU2T
GND14	6		59 CPU2C
GNDXTAL	7		58 GNDCPU
X1_25	8		57 VDDCPU
X2_25	9		56 CPU1T
VDDXTAL	10		55 CPU1C
GNDPCI	11		54 CPU0T
VDDPCI	12		53 CPU0C
PCI4_2x	13		52 GNDNS
PCI3_2x	14	ဖွ	51 AVDD_NS_SAS
PCI2_2x	15	5	50 NS_SAS1T
PCI1_2x	16	932SQ426	49 NS_SAS1C
PCI0_2x	17	တ္	48 NS_SAS0T
GNDPCI	18	32	47 NS_SAS0C
VDDPCI	19	o	46 GNDNS
VDD48	20		45 VDDNS
48M_2x	21		44 NS_SRC1T
GND48	22		43 NS_SRC1C
GND96	23		42 NS_SRC0T
DOT96T	24		41 NS_SRC0C
DOT96C	25		40 IREF
AVDD96	26		39 GNDSRC
TEST_MODE	27		38 AVDD_SRC
CKPWRGD#/PD	28		37 VDDSRC
VDDSRC	29		36 SRC2T
SRC0T	30		35 SRC2C
SRC0C	31		34 SRC1T
GNDSRC	32		33 SRC1C
		64-TSSOP	

Note: Pins with ^ prefix have internal 120K pullup Pins with v prefix have internal 120K pulldown

932SQ426 Functionality

CPU, SRC,					
NS_SAS,					
NS_SRC	PCI	REF	DOT96	USB	
100	33.33	14.318	96.00	48.00	MHz

Power Group Pin Numbers

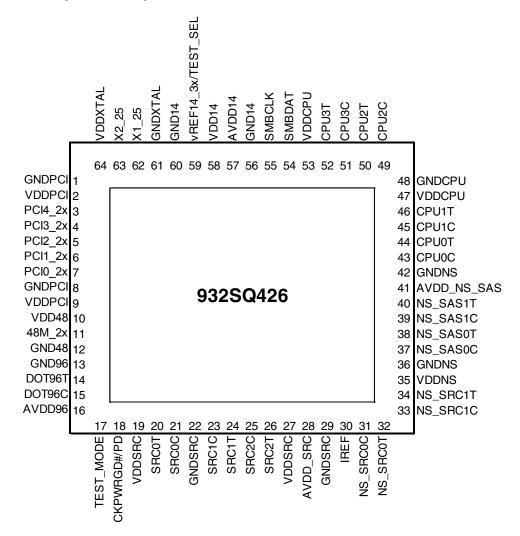
QFN	I	TSS	OP	
\/DD	O.I.D	VDD	O.I.D	Description
VDD	GND	VDD	GND	
57	56	3	2	14MHz PLL Analog
58	60	4	6	REF14M Output and Logic
64	61	10	7	25MHz XTAL
2,9	1,8	12, 19	11,18	PCI Outputs and Logic
10	12	20	22	48MHz Output and Logic
16	13	26	23	96MHz PLL Analog, Output and Logic
19,27,28	22	29,37,38	32,39	SRC Outputs and Logic
35	36	45	46	Non-Spreading Differential Outputs & Logic
41	42	51	52	NS-SAS/SRC PLL Analog
47.53	48	57.63	58	CPU Outputs and Logic

932SQ426 Power Down Functionality

CKPWRGD#/PD	Differential Outputs	Single- ended Outputs	Single ended Outputs w/Latch		
1	HI-Z ¹	Low	Low ²		
0	Running				

- Hi-Z on the differential outputs will result in both True and Complement being low due to the termination
 Those outputs are Hi-Z after VDD is applied and before the complement of the complement of the complement.
- 2. These outputs are Hi-Z after VDD is applied and before the first assertion of CKPWRGD#.

Pin Descriptions (TSSOP)


PIN#	PIN NAME	TYPE	
1	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
2	GND14	PWR	Ground pin for 14MHz output and logic.
3	AVDD14	PWR	Analog power pin for 14MHz PLL
4	VDD14		Power pin for 14MHz output and logic
			14.318 MHz reference clock. 3X drive strength as default / TEST_SEL latched input to enable test mode.
5	vREF14_3x/TEST_SEL	I/O	Refer to Test Clarification Table. This pin has a weak (~120Kohm) internal pull down.
6	GND14		
6			Ground pin for 14MHz output and logic.
7	GNDXTAL		Ground pin for Crystal Oscillator.
8	X1_25		Crystal input, Nominally 25.00MHz.
9	X2_25		Crystal output, Nominally 25.00MHz.
10	VDDXTAL	PWR	3.3V power for the crystal oscillator.
11	GNDPCI	PWR	Ground pin for PCI outputs and logic.
12	VDDPCI	PWR	3.3V power for the PCI outputs and logic
13	PCI4_2x	OUT	3.3V PCI clock output
14	PCI3_2x		3.3V PCI clock output
15	PCI2_2x		3.3V PCI clock output
16	PCI1_2x		3.3V PCI clock output
17	PCI0_2x		3.3V PCI clock output
	GNDPCI		
18			Ground pin for PCI outputs and logic.
19	VDDPCI		3.3V power for the PCI outputs and logic
20	VDD48		3.3V power for the 48MHz output and logic
21	48M_2x		3.3V 48MHz output
22	GND48	PWR	Ground pin for 48MHz output and logic.
23	GND96	PWR	Ground pin for DOT96 output and logic.
			True clock of differential 96MHz output. These are current mode outputs and external series resistors
24	DOT96T	OUT	and shunt resistors are required for termination. See Test Loads and Recommended Terminations for
	20.00.		specific values.
			Complementary clock of differential 96MHz output. These are current mode outputs and external series
25	DOT96C		
25	DO196C	001	resistors and shunt resistors are required for termination. See Test Loads and Recommended
			Terminations for specific values.
26	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
27	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test mode.
	1201052		Refer to Test Clarification Table.
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power Up. PD is
28	CKPWRGD#/PD	IN	an asynchronous active high input pin used to put the device into a low power state. The internal clocks
			and PLLs are stopped.
29	VDDSRC	PWR	3.3V power for the SRC outputs and logic
			True clock of differential SRC output. These are current mode outputs and external series resistors and
30	SRC0T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
50	311301	001	values.
0.4	0000	O. 17	Complementary clock of differential SRC output. These are current mode outputs and external series
31	SRC0C	001	resistors and shunt resistors are required for termination. See Test Loads and Recommended
			Terminations for specific values.
32	GNDSRC	PWR	Ground pin for SRC outputs and logic.
			Complementary clock of differential SRC output. These are current mode outputs and external series
33	SRC1C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended
			Terminations for specific values.
			True clock of differential SRC output. These are current mode outputs and external series resistors and
34	SRC1T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
0.	01.011	00.	values.
0.5	00000	OL IT	Complementary clock of differential SRC output. These are current mode outputs and external series
35	SRC2C	001	resistors and shunt resistors are required for termination. See Test Loads and Recommended
\vdash		1	Terminations for specific values.
			True clock of differential SRC output. These are current mode outputs and external series resistors and
36	SRC2T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
			values.
37	VDDSRC	PWR	3.3V power for the SRC outputs and logic
38	AVDD_SRC		3.3V power for the SRC PLL analog circuits
39	GNDSRC		Ground pin for SRC outputs and logic.
- 55	G. NDOTTO		This pin establishes the reference current for the differential current-mode output pairs. This pin requires a
40	IDEE	OUT	
40	IREF	001	fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the
		<u> </u>	standard value.

3

Pin Descriptions (TSSOP, cont.)

PIN#	PIN NAME	TYPE	DESCRIPTION
			Complementary clock of differential non-spreading SRC output. These are current mode outputs and
41	NS_SRC0C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
''			Recommended Terminations for specific values.
			True clock of differential non-spreading SRC output. These are current mode outputs and external
42	NS_SRC0T	OUT	series resistors and shunt resistors are required for termination. See Test Loads and Recommended
72	140_011001	001	Terminations for specific values.
			Complementary clock of differential non-spreading SRC output. These are current mode outputs and
43	NS_SRC1C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
40	140_011010	001	Recommended Terminations for specific values.
			True clock of differential non-spreading SRC output. These are current mode outputs and external
44	NS_SRC1T	OUT	series resistors and shunt resistors are required for termination. See Test Loads and Recommended
	140_011011	001	Terminations for specific values.
45	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic
46	GNDNS		Ground pin for non-spreading differential outputs and logic.
40	GINDING	I VVII	Complementary clock of differentia non-spreading SAS output. These are current mode outputs and
47	NS_SAS0C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
47	110_0A000	001	Recommended Terminations for specific values.
			True clock of differential non-spreading SAS output. These are current mode outputs and external series
48	NS SASOT	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended
40	110_0A001	001	Terminations for specific values.
			Complementary clock of differentia non-spreading SAS output. These are current mode outputs and
49	NS_SAS1C	OLIT	external series resistors and shunt resistors are required for termination. See Test Loads and
73	110_07010	001	Recommended Terminations for specific values.
-			True clock of differential non-spreading SAS output. These are current mode outputs and external series
50	NS_SAS1T	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended
30	110_0A011	001	Terminations for specific values.
51	AVDD_NS_SAS	DWB	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
52	GNDNS		Ground pin for non-spreading differential outputs and logic.
32	GINDING	I VVII	Complementary clock of differential CPU output. These are current mode outputs and external series
53	CPU0C	OLIT	resistors and shunt resistors are required for termination. See Test Loads and Recommended
33	01 000	001	Terminations for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
54	CPU0T	OLIT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
54	01 001	001	values.
			Complementary clock of differential CPU output. These are current mode outputs and external series
55	CPU1C		resistors and shunt resistors are required for termination. See Test Loads and Recommended
33	01 010	001	Terminations for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
56	CPU1T	OLIT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
50	01 011	001	values.
57	VDDCPU	PWR	3.3V power for the CPU outputs and logic
58	GNDCPU		Ground pin for CPU outputs and logic.
- 00	GREET C		Complementary clock of differential CPU output. These are current mode outputs and external series
59			resistors and shunt resistors are required for termination. See Test Loads and Recommended
	CPU2C	00.	Terminations for specific values.
	0.020		True clock of differential CPU output. These are current mode outputs and external series resistors and
60	CPU2T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
	01 021	001	values.
			Complementary clock of differential CPU output. These are current mode outputs and external series
61	CPU3C	OLIT	resistors and shunt resistors are required for termination. See Test Loads and Recommended
01	01 000	001	Terminations for specific values.
 			True clock of differential CPU output. These are current mode outputs and external series resistors and
62	CPU3T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
02	01 001	001	values.
63	VDDCPU	D/V/D	3.3V power for the CPU outputs and logic
64	SMBDAT		Data pin of SMBUS circuitry, 5V tolerant
04	OMIDDA I	1/0	Data pin of Olinboo Gliculty, ov tolerant

Pin Configuration (VFQFPN)

64-pin VFQFPN

Note: Pins with ^ prefix have internal 120K pullup
Pins with v prefix have internal 120K pulldowm

5

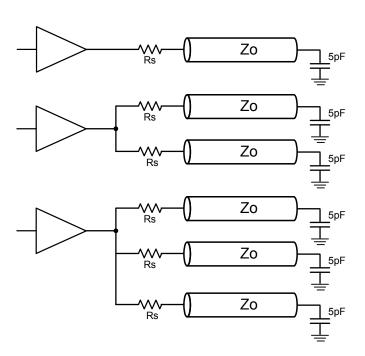
Pin Descriptions (VFQFPN)

PIN#	PIN NAME	TYPE	DESCRIPTION
1	GNDPCI	Q426	Ground pin for PCI outputs and logic.
2	VDDPCI	PWR	
3	PCI4_2x	OUT	3.3V PCI clock output
4	PCI3_2x		3.3V PCI clock output
5	PCI2_2x	OUT	3.3V PCI clock output
6	PCI1_2x	OUT	3.3V PCI clock output
7	PCI0_2x	OUT	3.3V PCI clock output
8	GNDPCI	PWR	Ground pin for PCI outputs and logic.
9	VDDPCI	PWR	3.3V power for the PCI outputs and logic
10	VDD48	PWR	3.3V power for the 48MHz output and logic
11	48M_2x	OUT	3.3V 48MHz output
12	GND48	PWR	Ground pin for 48MHz output and logic.
13	GND96	PWR	Ground pin for DOT96 output and logic.
			True clock of differential 96MHz output. These are current mode outputs and external series resistors and
14	DOT96T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
			values.
			Complementary clock of differential 96MHz output. These are current mode outputs and external series
15	DOT96C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
			for specific values.
16	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
17	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test mode. Refer
17	TEST_WODE	IIN	to Test Clarification Table.
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power Up. PD is
18	CKPWRGD#/PD	IN	an asynchronous active high input pin used to put the device into a low power state. The internal clocks
			and PLLs are stopped.
19	VDDSRC	PWR	3.3V power for the SRC outputs and logic
			True clock of differential SRC output. These are current mode outputs and external series resistors and
20	SRC0T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
			values.
			Complementary clock of differential SRC output. These are current mode outputs and external series
21	SRC0C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
			for specific values.
22	GNDSRC	PWR	Ground pin for SRC outputs and logic.
			Complementary clock of differential SRC output. These are current mode outputs and external series
23	SRC1C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
			for specific values.
			True clock of differential SRC output. These are current mode outputs and external series resistors and
24	SRC1T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
			values.
			Complementary clock of differential SRC output. These are current mode outputs and external series
25	SRC2C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
			for specific values.
			True clock of differential SRC output. These are current mode outputs and external series resistors and
26	SRC2T	OUT	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
			values.
27	VDDSRC		3.3V power for the SRC outputs and logic
28	AVDD_SRC	PWR	3.3V power for the SRC PLL analog circuits
29	GNDSRC	PWR	Ground pin for SRC outputs and logic.
			This pin establishes the reference current for the differential current-mode output pairs. This pin requires a
30	IREF	OUT	fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the
			standard value.
			Complementary clock of differential non-spreading SRC output. These are current mode outputs and
31	NS_SRC0C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
			Recommended Terminations for specific values.
			True clock of differential non-spreading SRC output. These are current mode outputs and external series
32	NS_SRC0T		resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
			for specific values.


Pin Descriptions (VFQFPN, cont.)

PIN#	PIN NAME	TYPE	DESCRIPTION
	1 114 10/4112		Complementary clock of differential non-spreading SRC output. These are current mode outputs and
33	NS_SRC1C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
00	110_01010	001	Recommended Terminations for specific values.
			True clock of differential non-spreading SRC output. These are current mode outputs and external series
34	NS_SRC1T	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
04	110_011011	001	for specific values.
35	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic
36	GNDNS		Ground pin for non-spreading differential outputs and logic.
- 00	GINDING	1 7711	Complementary clock of differentia non-spreading SAS output. These are current mode outputs and
37	NS_SAS0C	OUT	external series resistors and shunt resistors are required for termination. See Test Loads and
01	110_0/1000	"	Recommended Terminations for specific values.
			True clock of differential non-spreading SAS output. These are current mode outputs and external series
38	NS_SAS0T	ОПТ	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
00	110_0/1001	"	for specific values.
			Complementary clock of differentia non-spreading SAS output. These are current mode outputs and
39	NS_SAS1C	ОПТ	external series resistors and shunt resistors are required for termination. See Test Loads and
		"	Recommended Terminations for specific values.
			True clock of differential non-spreading SAS output. These are current mode outputs and external series
40	NS_SAS1T	ОПТ	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
.0	110_0/1011	"	for specific values.
41	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
42	GNDNS		Ground pin for non-spreading differential outputs and logic.
	G. 12.10		Complementary clock of differential CPU output. These are current mode outputs and external series
43	CPU0C	ОПТ	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
	0. 000	"	for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
44	CPU0T	ОПТ	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
• •	0. 00.	"	values.
			Complementary clock of differential CPU output. These are current mode outputs and external series
45	CPU1C	ОПТ	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
.0	0.010	"	for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
46	CPU1T	ОПТ	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
	0.011	"	values.
47	VDDCPU	PWR	3.3V power for the CPU outputs and logic
48	GNDCPU		Ground pin for CPU outputs and logic.
-10	GIVE O		Complementary clock of differential CPU output. These are current mode outputs and external series
49	CPU2C	ОПТ	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
40	01 020	~ .	for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
50	CPU2T	ОПТ	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
00	01 021	~ .	values.
			Complementary clock of differential CPU output. These are current mode outputs and external series
51	CPU3C	OUT	resistors and shunt resistors are required for termination. See Test Loads and Recommended Terminations
01	01 000	~ .	for specific values.
			True clock of differential CPU output. These are current mode outputs and external series resistors and
52	CPU3T	ОПТ	shunt resistors are required for termination. See Test Loads and Recommended Terminations for specific
02	01 001	~ .	values.
53	VDDCPU	PWR	3.3V power for the CPU outputs and logic
54	SMBDAT		Data pin of SMBUS circuitry, 5V tolerant
	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
56	GND14		Ground pin for 14MHz output and logic.
57	AVDD14		Analog power pin for 14MHz PLL
58	VDD14		Power pin for 14MHz output and logic
	vREF14_3x/TEST_SE		14.318 MHz reference clock. 3X drive strength as default / TEST_SEL latched input to enable test mode.
59	VIILI 17_0X/1L31_3E	I/O	Refer to Test Clarification Table. This pin has a weak (~120Kohm) internal pull down.
60	GND14	PWR	Ground pin for 14MHz output and logic.
61	GND14 GNDXTAL		Ground pin for Crystal Oscillator.
62	X1_25	IN	Crystal input, Nominally 25.00MHz.
63	X2_25		Crystal output, Nominally 25.00MHz.
64	VDDXTAL		3.3V power for the crystal oscillator.
04	A DDV I VE	TI AALI	power for the drystal oscillator.

7


Test Loads and Recommended Terminations

932SQ426 Differential Test Loads

Differential Output Termination Table

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	43.2

Single-ended Output Termination Table

		Rs Value			
		(for each load)			
Output	Loads	$Zo = 50\Omega$	Zo =60Ω		
PCI/USB	1	36	43		
PCI/USB	2	22	33		
REF	1	39	47		
REF	2	27	36		
REF	3	10	20		

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
.3V Core Supply Voltag	VDDA	932SQ426AKLF			4.6	٧	1,2
3V Logic Supply Voltag	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Current Consumption

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, $C_L = Full$ load;		370	400	mA	
Powerdown Current	I _{DD3.3PDZ}	All differential pairs tri-stated		17	20	mA	

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

DC Electrical Characteristics - Differential Current Mode Outputs

 $T_A = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

A CON, Cappay	A - 1 COM, Cappiy Voltage VBB - 0.0 V 17 070									
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES			
Slew rate	dV/dt	Scope averaging on	1	2.3	4	V/ns	1, 2, 3			
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on		10	20	%	1, 2, 4			
Rise/Fall Time Matching	ΔTrf	Rise/fall matching, Scope averaging off		17	125	ps	1, 8, 9			
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function.	660	716	850	mV				
Voltage Low	VLow	(Scope averaging on)	-150	20	150	IIIV				
Max Voltage	Vmax	Measurement on single ended signal using		757	1150	mV	1, 7			
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-9		IIIV	1, 7			
Vswing	Vswing	Scope averaging off	300	1393		mV	1, 2			
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	338	550	mV	1, 5			
Crossing Voltage (var) Δ-Vcross		Scope averaging off		32	140	mV	1, 6			

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R =412Ω (1%), I_{REF} = 2.67mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O= 85Ω differential impedance.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

⁷ Includes overshoot and undershoot.

⁸ Measured from single-ended waveform

⁹ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

Electrical Characteristics - Input/Supply/Common Parameters

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	ТСОМ	Commmercial range	0	25	70	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2.2	2.4	V _{DD} + 0.3	٧	
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3	0.4	0.8	٧	
	I _{IN}	Single-ended inputs, $V_{IN} = GND, V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs. $V_{\text{IN}} = 0 \text{ V; Inputs with internal pull-up} \\ \text{resistors} \\ V_{\text{IN}} = \text{VDD; Inputs with internal pull-down} \\ \text{resistors}$	-200		200	uA	
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	٧	
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3		0.35	V	
Input Frequency	Fi			25.00		MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs			5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			5	pF	1
·	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		1.3	1.8	ms	2
Tdrive_PD#	t _{DRVPD}	Differential output enable after PD# de-assertion		200	300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V _{ILSMB}				0.8	V	
SMBus Input High Voltage	V _{IHSMB}		2.1		V_{DDSMB}	V	1
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	<u> </u>
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	

¹Guaranteed by design and characterization, not 100% tested in production.

11

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

AC Electrical Characteristics - Differential Current Mode Outputs

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	52	55	%	1
Skew, Output to Output	t _{sk3SRC}	Across all SRC, NS-SAS outputs, $V_T = 50\%$		12	50	ps	1
Skew, Output to Output	t _{sk3CPU}	Across all CPU outputs, V _T = 50%		35	50	ps	1
Jitter, Cycle to cycle	+	CPU, SRC, NS_SAS outputs @100M		34	50	ps	1,3
Jiller, Cycle to Cycle	t _{jcyc-cyc}	DOT96 output		75	250	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Phase Jitter Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V} + /-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		16	86	ps (p-p)	1,2,3,6
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.37	3	ps (rms)	1,2,6
	^t jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.45	3.1	ps (rms)	1,2,6
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.35	1	ps (rms)	1,2,4,6
Phase Jitter	t _{jphQPI_SMI}	QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.29	0.5	ps (rms)	1,5,6
		QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.15	0.3	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.13	0.2	ps (rms)	1,5,6
	t _{jphSAS12G}	SAS12G (Filtered REFCLK Jitter 20KHz to 20MHz.)		0.30	0.4	ps (rms)	1,7,8
	t _{jphSAS12G}	SAS 12G		0.54	1.3	ps (rms)	1,5,8

¹ Guaranteed by design and characterization, not 100% tested in production.

 $^{^2}$ I_{REF} = VDD/(3xRR). For RR =412 Ω (1%), IREF = 2.67mA. IOH = 6 x IREF and VOH = 0.7V @ ZO= 85 Ω differential impedance.

³ Measured from differential waveform

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.4

⁶ Applies to CPU, SRC and NS_SAS outputs

⁷ Intel calculation from raw phase noise data

⁸ Applies to NS_SAS and NS_SRC outputs only.

Electrical Characteristics - PCI

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + /-5$ %,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	12			ns	1
Clock Low Time	T _{LOW}	1.5V	12			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.7	4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45	51.3	55	%	1
Group Skew	t _{skew}	V _T = 1.5 V		279	500	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_T = 1.5 \text{ V}$		96	500	ps	1

See "Single-ended Test Loads Page" for termination circuits

Electrical Characteristics - 48MHz

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + /-5$ %,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	20		60	Ω	1
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	8.094		10.036	ns	1
Clock Low Time	T_{LOW}	1.5V	7.694		9.836	ns	1
Edge Rate	t _{slewr/f_USB}	Rising/Falling edge rate	1	1.8	2	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45	51	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V		122	350	ps	1

See "Single-ended Test Loads Page" for termination circuits

 $^{^{1}\}mbox{Guaranteed}$ by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Electrical Characteristics - REF

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V } +/-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	27.5			ns	1
Clock Low Time	T _{LOW}	1.5V	27.5			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.5	4	V/ns	1,2
Duty Cycle	d _{t1}	$V_T = 1.5 \text{ V}$	45	50.5	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 \text{ V}$		89	1000	ps	1

See "Single-ended Test Loads Page" for termination circuits

Clock AC Tolerances

	CPU	SRC, NS_SAS, NS_SRC	PCI	DOT96	48MHz	REF	
PPM tolerance	100	100	100	100	100	100	ppm
Cycle to Cycle Jitter	50	50	500	250	350	1000	ps

Clock Periods – Outputs without Spread Spectrum

				Meas	urement Wind	dow				
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
CPU	100.00000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
SRC, NS_SAS, NS_SRC	100.00000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
PCI	33.33333	29.49700		29.99700	30.00000	30.00300		30.50300	ns	1,2
DOT96	96.00000	10.16563		10.41563	10.41667	10.41771		10.66771	ns	1,2
48MHz	48.00000	20.48125		20.83125	20.83333	20.83542		21.18542	ns	1,2
REF	14.31818	69.78429		69.83429	69.84128	69.84826		69.89826	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

² All Long Term Accuracy specifications are guaranteed with the assumption that the REF output is tuned to exactly 14.31818MHz.

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index BI	ock W	rite Operation
Control	ler (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginnin	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnii	ng Byte N		
			ACK
0		$]_{\times}[$	
0		X Byte	0
0		e	0
			0
Byte N	I + X - 1		
			ACK
Р	stoP bit		

SMBus write address = D2 hex

SMBus read address = D3 hex

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- · Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	troller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		<u>e</u>	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register

Byte	0	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	2	24/25	DOT96 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 6	5	50/49	NS_SAS1 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 5	4	18/47	NS_SAS0 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 4	4	14/43	NS_SRC1 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 3	4	12/41	NS_SRC0 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 2	3	36/35	SRC2 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 1	3	34/33	SRC1 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 0	3	30/31	SRC0 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1

SMBus Table: Output Enable Register

Byte	1 Pin#	Name	Control Function	Type	0	1	Default	
Bit 7	5	REF14_3x Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 6			RESERVED					
Bit 5			RESERVED					
Bit 4	62/61	CPU3	Output Enable	RW	Disable-Hi-Z	Enable	1	
Bit 3	60/59	CPU2	Output Enable	RW	Disable-Hi-Z	Enable	1	
Bit 2	56/55	CPU1	Output Enable	RW	Disable-Hi-Z	Enable	1	
Bit 1	54/53	CPU0	Output Enable	RW	Disable-Hi-Z	Enable	1	
Bit 0			RESERVED					

SMBus Table: Output Enable Register

01111111	rabioi Gatpt	at Enable Hogietei						
Byte	2 Pin #	Name	Control Function	Type	0	1	Default	
Bit 7			RESERVED					
Bit 6			RESERVED					
Bit 5	13	PCI4 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 4	14	PCI3 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 3	15	PCI2 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 2	16	PCI1 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 1	17	PCI0 Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 0	21	48MHz Enable	Output Enable	RW	Disable-Low	Enable	1	

SMBus Table: Reserved Register

Byte	3	Pin #	Name	Control Function	Type	0	1	Default
Bit 7				RESERVED			•	0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBus Table: Reserved Register

Byte 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7			RESERVED				0
Bit 6			RESERVED				0
Bit 5			RESERVED				0
Bit 4			RESERVED				0
Bit 3			RESERVED				0
Bit 2			RESERVED				0
Bit 1			RESERVED				0
Bit 0			RESERVED				0

SMBus Table: Reserved Register

Byte	5 Pir	า #	Name	Control Function	Type	0	1	Default	
Bit 7				RESERVED					
Bit 6				RESERVED				0	
Bit 5				RESERVED				0	
Bit 4				RESERVED				0	
Bit 3				RESERVED				1	
Bit 2				RESERVED				1	
Bit 1				RESERVED				1	
Bit 0				RESERVED				1	

SMBus Table: Test Mode Register

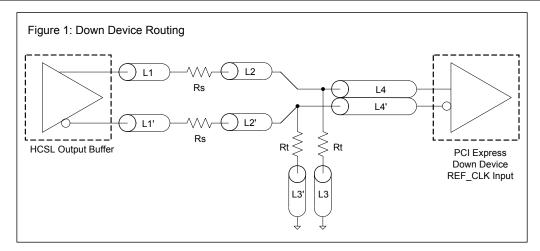
Byte	6 Pin#	Name	Control Function	Type	0	1	Default	
Bit 7	•	Test Mode	Test Mode Type	RW	Hi-Z	REF/N	0	
Bit 6	-	Test Select	Select Test Mode	RW	Disable	Enable	0	
Bit 5	-		RESERVED					
Bit 4	-		RESERVED					
Bit 3	-		RESERVED				1	
Bit 2	-		RESERVED				0	
Bit 1	-	RESERVED						
Bit 0	-		RESERVED				0	

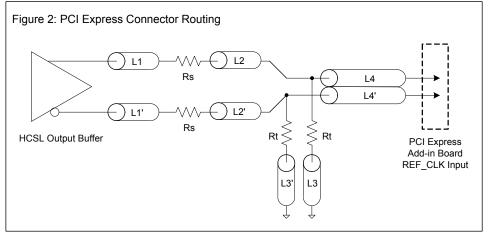
SMBus Table: Vendor & Revision ID Register

		<u> </u>					
Byte 7	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3		R		0	
Bit 6	-	RID2	REVISION ID	R	0000 for A rev	0	
Bit 5	-	RID1] REVISION ID	R	0000 for A rev		0
Bit 4	-	RID0		R			0
Bit 3	-	VID3		R			0
Bit 2	-	VID2	VENDOD ID	R	0001 for	0001 for ICS/IDT	
Bit 1	-	VID1	VENDOR ID	R	0001101	105/101	0
Bit 0	-	VID0]	R	ĺ		1

SMBus Table: Byte Count Register

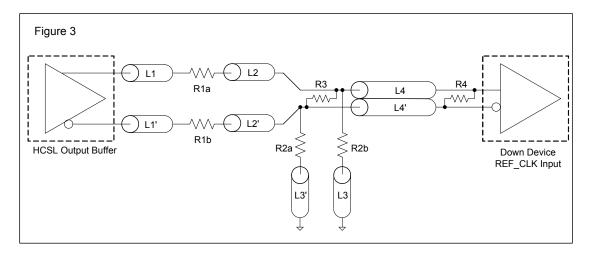
Byte	8 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	-	BC7		RW	Writing to this register will configure how many bytes will be read back, default is Abytes. (0 to 9		0
Bit 6	-	BC6		RW			0
Bit 5	-	BC5		RW			0
Bit 4	-	BC4	Byte Count	RW			0
Bit 3	-	BC3	Programming b(7:0)	RW			1
Bit 2	-	BC2		RW			0
Bit 1	-	BC1		RW			1
Bit 0	-	BC0		RW			0

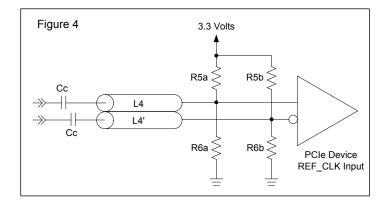

SMBus Table: Device ID Register


Byte 9	Pin #	Name	Control Function	Type	0	1	Default
Bit 7		DID7		R	-	-	0
Bit 6		DID6		R	-	-	0
Bit 5		DID5		R	-	-	0
Bit 4		DID4	Device ID	R	-	-	1
Bit 3		DID3	(1A hex)	R	-	-	1
Bit 2		DID2		R	-	-	0
Bit 1		DID1		R	-	-	1
Bit 0		DID0		R	-	-	0

DIF Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1			
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
Rs	33	ohm	1			
Rt	49.9	ohm	1			

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)						
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45v	0.22v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS

R1a = R1b = R1 R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)				
Component	Value	Note		
R5a, R5b	8.2K 5%			
R6a, R6b	1K 5%			
Сс	0.1 μF			
Vcm	0.350 volts			

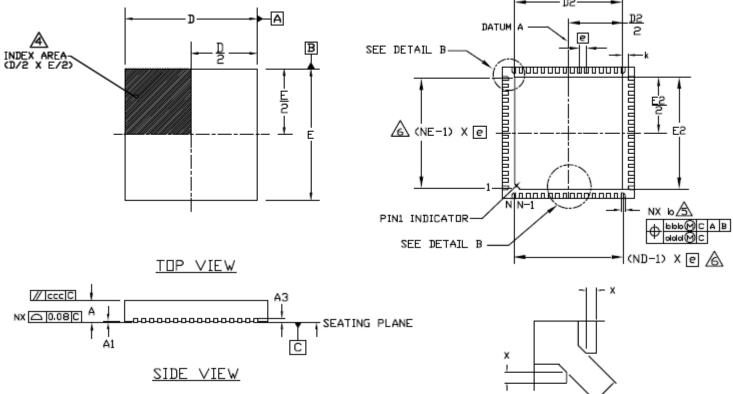
Test Clarification Table

Comments	H	łW	S	W	
	TEST_SEL HW PIN	932SQ426A KLF	ENTRY BIT B6b6	HI-Z B6b7	OUTPUT
	0	Х	0	Χ	NORMAL
Power up w/ TEST SEL = 1 (> 2.0\/) to enter test	1	0	Χ	0	HI-Z
Power-up w/ TEST_SEL = 1 (>2.0V) to enter test mode. Cycle power to disable test mode.	1	0	Χ	1	REF/N
Imode. Cycle power to disable test mode.	1	1	Χ	0	REF/N
	1	1	Χ	1	REF/N
If TEST_SEL HW pin is 0 during power-up,	0	X	1	0	HI-Z
test mode can be selected through B6b6. If test mode is selected by B6b6, then B6b7 is used to select HI-Z or REF/N. TEST_Mode pin is not used. Cycle power to disable test mode.	0	х	1	1	REF/N

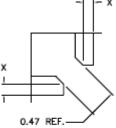
B6b6: 1= ENTER TEST MODE, Default = 0 (NORMAL OPERATION)

B6b7: 1= REF/N, Default = 0 (HI-Z)

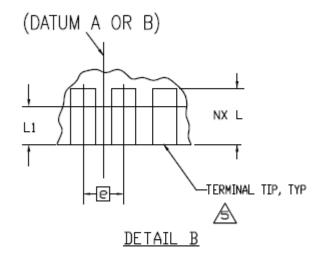
Marking Diagrams



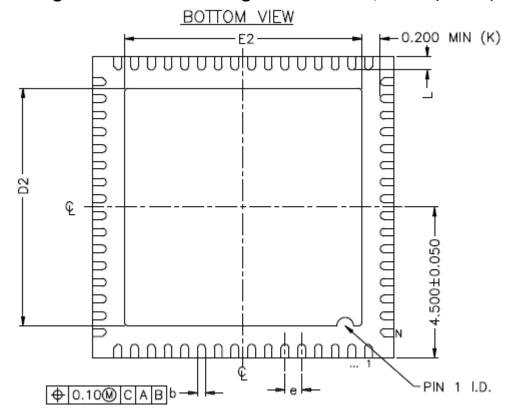
Notes:

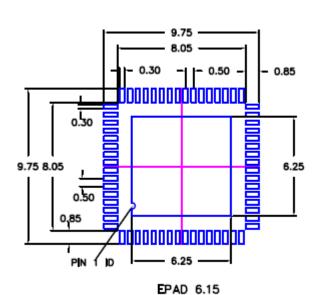

- 1. "LOT" denotes lot number.
- 2. "YYWW" is the date code.
- 3. "COO" denotes country of origin.
- 4. "L" or "LF" denotes RoHS compliant package.

Package Outline and Package Dimensions (NLG64)



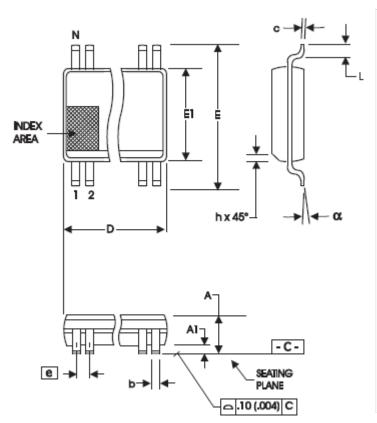
NOTES:


- DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC PUBLICATION 95 SPP-002. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ⚠ DIMENSION 5 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP.
- AND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- 8 CORNER LEAD CHAMFERS ARE APPLIED TO MAINTAIN MINIMUM CORNER LEAD SPACING (8 PLACES).


DETAIL B CORNER LEAD CHAMFER DETAILS Æ

Package Outline and Package Dimensions, cont. (NLG64)

DIMENSIONS					
PACKAGE	64L 9.0×9.0 - 0.50				
REF.	MIN.	NDM.	MAX.		
Α	0.80	0.90	1.00		
b	0.18	0.25	0.30		
D		9.00 BSC			
D2	6.0	6.15	6.25		
E	9.00 BSC				
E2	6.0	6.15	6.25		
6		0.50 BSC.			
L	0.30	0.40	0.50		
N		64			
ND		16	·		
NE		16			
k	0.20				



S M B	СПММП	N DIME	SIONS	N O T E	
L	MIN.	NDM.	MAX.	E	
A1	0	0.02	0.05		
АЗ	-	0.20 REF.	-		
×	b/2	-	-		
TDL	ERANCES I	OF FORM A	AND POSIT	ION	
bbb		0.10			
ccc	0.10				
dold		0.05			

NOTES:

- 1, ALL DIMENSION ARE IN mm, ANGLES IN DEGREES,
- 2, TOP DOWN VIEW, AS VIEWED ON PCB,
- LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
- 4. LAND PATTERN RECOMMENDATION PER IPC-7351B LP CALCULATOR.

Package Outline and Package Dimensions (64-pin TSSOP)

	In Milli	meters	In Ir	nches	
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A	-	1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS SEE V		SEE VAI	/ARIATIONS	
E	8.10 BASIC 0.319 BASI		BASIC		
E1	6.00	6.20	.236 .244		
е	0.50 BASIC		0.020	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VAF	SEE VARIATIONS		RIATIONS	
α	0°	8°	0°	8°	
aaa	-	0.10		.004	

M	Dr	nm.	D (inch)	
IN	MIN	MAX	MIN	MAX
64	16.90	17.10	.665	.673

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

Part / Order Number	Shipping Pacakging	Package	Temperature
932SQ426AGLF	Tubes	64-pin TSSOP	0 to +70° C
932SQ426AGLFT	Tape and Reel	64-pin TSSOP	0 to +70° C
932SQ426AKLF	Tray	64-pin VFQFPN	0 to +70° C
932SQ426AKLFT	Tape and Reel	64-pin VFQFPN	0 to +70° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Who	Description	Page #
А	10/14/2011	RDW	Updated Electrical Tables with typical values Updated Pin Descriptions on Differential outputs to refer to "Test Loads and Recommended Termiations" table for Rs and Rp values. Updated Byte 5 to Reserved Updated Byte 6 Default value to 18hex from 00hex Removed Non-Spread Output Margining Table on page 15 Add Mark Spec Move to Final	Various
В	7/8/2015	RDW	 Updated front page text Added 64-QFN power groupings to power grouping table. Added 64-QFN pin out, pin description Updated marking info for 64-QFN Added 64-QFN ordering info 	1- 5,17,18
С	2/26/2016	RDW	1.Minor grammatical corrections to electrical tables	9-14

932SQ426 CK420BQ DERIVATIVE SUPPORTING SRNS PCIE CLOCKING

SYNTHESIZERS

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.