

PCIE GEN 2/3 & QPI CLOCK FOR ROMLEY-BASED SERVERS

932SQ428

General Description

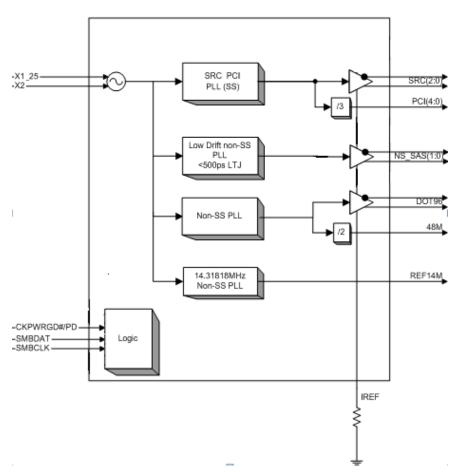
The 932SQ428 is a main clock synthesizer for Romley-generation Intel based server platforms. The 932SQ428 is driven with a 25 MHz crystal for maximum performance. It generates CPU outputs of 100MHz.

Recommended Application

CK420BQ

Output Features

- 2 HCSL Non-Spread SAS outputs
- 3 HCSL SRC outputs can be used as CPU@100M
- 1 HCSL DOT96 output
- 1 3.3V 48M output
- 5 3.3V PCI outputs
- 1 3.3V 14.318M output


Features/Benefits

- 0.5% down spread capable on SRC/PCI outputs; Lower EMI
- 48-pin MLF package; Space Savings

Key Specifications

- Cycle to cycle jitter: SRC/NS_SAS < 50ps
- Phase jitter: PCle Gen2 <3ps rms
- Phase jitter: PCle Gen3 <1ps rms
- Phase jitter: QPI 9.6GB/s <0.2ps rms
- Phase jitter: NS-SAS <0.4ps rms using raw phase data
- Phase jitter: NS-SAS <1.3ps rms using Clk Jit Tool 1.6.3

Block Diagram

Pin Configuration

48-Pin MLF (6x6mm 0.4mm pitch)

Pins with ^ prefix have internal 120K pullup Pins with v prefix have internal 120K pulldown

932SQ428 Functionality

SF	RC	PCI	REF	NS_SAS	DOT96	USB	Unit
10	00	33.33	14.318	100.00	96.00	48.00	MHz

Spread Spectrum Control

SS_Enable (B1b0)	SRC & PCI
0	OFF
1	ON

Power Group Table

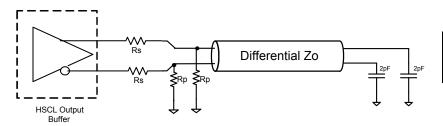
MLF		Description
VDD	GND	Description
42	41	14MHz PLL Analog
43	45	REF14M Output and Logic
1	46	25MHz XTAL
8	2	PCI Outputs and Logic
9	11	48MHz Output and Logic
15	12	96MHz PLL Analog, Output and Logic
17, 25	20	SRC Outputs and Logic
26	27	SRC PLL Analog
31	32	Non-Spreading Differential Outputs & Logic
35	36	NS-SAS PLL Analog
37	38	Core Logic

932SQ428 Power Down Functionality

CKPWRGD#/PD	Differential Outputs	Single-ended Outputs	Single ended Outputs w/Latch	
1	HI-Z ¹	Low	Low ²	
0		Running		

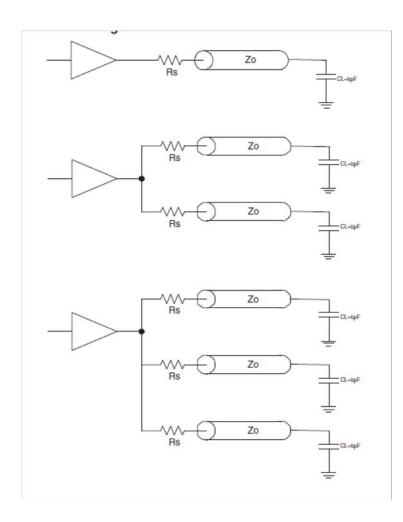
- 1. Hi-Z on the differential outputs will result in both True and Complement being low due to the termination network
- 2. These outputs are Hi-Z after VDD is applied and before the first assertion of CKPWRGD#.

Pin Descriptions


PIN#	PIN NAME	TYPE	DESCRIPTION
1	VDDXTAL	PWR	3.3V power for the crystal oscillator.
2	GNDPCI	PWR	Ground pin for PCI outputs and logic.
3	PCI4_2x	OUT	3.3V PCI clock output
4	PCI3_2x	OUT	3.3V PCI clock output
5	PCI2 2x	OUT	3.3V PCI clock output
6	PCI1_2x	OUT	3.3V PCI clock output
7	PCI0 2x	OUT	3.3V PCI clock output
8	VDDPCI	PWR	3.3V power for the PCI outputs and logic
9	VDD48	PWR	3.3V power for the 48MHz output and logic
10	48M_2x	OUT	3.3V 48MHz output
11	GND48	PWR	Ground pin for 48MHz output and logic.
12	GND96	PWR	Ground pin for DOT96 output and logic.
12	GIVESO	1 7711	True clock of differential 96MHz output. These are current mode outputs. These are current mode
13	DOT96T	OUT	outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for
	13 DOT96T		termination.
14	DOT96C	OUT	Complementary clock of differential 96MHz output. These are current mode outputs and external
15	VDD96	PWR	33 ohm series resistors and 49.9 ohm shunt resistors are required for termination. 3.3V power for the 48/96MHz PLL and the 96MHz output and logic
13	I ADDA0	FVVN	CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power Up.
16	CKPWRGD#/PD	IN	
16	CKPWRGD#/PD	IIN	PD is an asynchronous active high input pin used to put the device into a low power state. The internal clocks and PLLs are stopped.
17	VDDSRC	PWR	3.3V power for the SRC outputs and logic
17	VDDShC	FVVN	
10	CDCOT	OUT	True clock of differential SRC output. These are current mode outputs. These are current mode
18	SRC0T	OUT	outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for
			termination.
19	SRC0C	OUT	Complementary clock of differential SRC output. These are current mode outputs and external 33
	O UD O D O		ohm series resistors and 49.9 ohm shunt resistors are required for termination.
20	GNDSRC	PWR	Ground pin for SRC outputs and logic.
21	SRCC1	OUT	Complementary clock of differential SRC output. These are current mode outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for termination.
			True clock of differential SRC output. These are current mode outputs. These are current mode
22	SRCT1	OUT	outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for
	511011	001	termination.
			Complementary clock of differential SRC output. These are current mode outputs and external 33
23	SRCC2	OUT	ohm series resistors and 49.9 ohm shunt resistors are required for termination.
			True clock of differential SRC output. These are current mode outputs. These are current mode
24	SRCT2	OUT	outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for
24	511012	001	termination.
25	VDDSRC	PWR	3.3V power for the SRC outputs and logic
26	AVDDSRC	PWR	3.3V power for the SRC PLL analog circuits
27	GNDSRC	PWR	Ground pin for SRC outputs and logic.
	GIVEOITO	1 7711	This pin establishes the reference current for the differential current-mode output pairs. This pin
28	IREF	OUT	requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475
		001	ohms is the standard value.
			Complementary clock of differential non-spreading SAS output. These are current mode outputs
29	NS_SAS0C	OUT	and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for termination.
			True clock of differential non-spreading SAS output. These are current mode outputs. These are
30	NS_SAS0T	OUT	current mode outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are
	1.10_0/1001		required for termination.
31	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic
32	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
			Complementary clock of differential non-spreading SAS output. These are current mode outputs
33	NS_SAS1C	OUT	and external 33 ohm series resistors and 49.9 ohm shunt resistors are required for termination.
			True clock of differential non-spreading SAS output. These are current mode outputs. These are
34	NS_SAS1T	OUT	current mode outputs and external 33 ohm series resistors and 49.9 ohm shunt resistors are
"			required for termination.
L	I .	1	response for terrimonium

Pin Descriptions (cont.)

35	AVDDNS	PWR	3.3V power for the non-spreading SAS PLL analog circuits.
36	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
37	VDD	PWR	3.3V power for core logic
38	GND	PWR	Ground pin for core logic.
39	SMBDATA	I/O	Data pin of SMBUS circuitry, 5V tolerant
40	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
41	GND14	PWR	Ground pin for 14MHz output and logic.
42	AVDD14	PWR	Analog power pin for 14MHz PLL
43	VDD14	PWR	Power pin for 14MHz output and logic, nominal 3.3V
44	REF14_3x	OUT	14.318 MHz reference clock. 3X drive strength as default
45	GND14	PWR	Ground pin for 14MHz output and logic.
46	GNDXTAL	PWR	Ground pin for Crystal Oscillator.
47	X1_25	IN	Crystal input, Nominally 25.00MHz.
48	X2_25	OUT	Crystal output, Nominally 25.00MHz.


Test Loads and Recommended Terminations

932SQ428 Differential Test Loads

Different	ial	Out	put	Te	rmina	ation	Table
	Š					(0)	

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	42.2 or 43.2

Single-ended Output Termination Table

		Rs Value (for each load)			
Output	Loads	$Zo = 50\Omega$	Zo =60Ω		
PCI/USB	1	36	43		
PCI/USB	2	22	33		
REF	1	39	47		
REF	2	27	36		
REF	3	10	20		

932SQ428

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	٧	1,2
3.3V Logic Supply Voltage	VDD				4.6	٧	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	٧	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Current Consumption

TA = T_{COM}; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, C _L = Full load;		250	300	mA	1
Powerdown Current	I _{DD3.3PDZ}	All differential pairs tri-stated		12	20	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

DC Electrical Characteristics - Differential Current Mode Outputs

 $T_A = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2.4	4	V/ns	1, 2, 3
Claw rata matabina	ΔTrf	Slew rate matching, Scope		9	20	0/	104
Slew rate matching	ΔΠ	averaging on		Э	20		1, 2, 4
Rise/Fall Time Variation	ΔTrf	Rise/fall variation, Scope		18	125	V/ns % ps mV mV mV	170
Rise/Faii Time Variation	ΔΠ	averaging off		10	125		1, 7, 8
Voltage High	VHigh	Statistical measurement on	660	772	850	m\/	1
Voltage Low	VLow	single-ended signal using	-150	9	150	111 V	1
Max Voltage	Vmax	Measurement on single ended		810	1150	m\/	1, 7
Min Voltage	Vmin	signal using absolute value.	-300	-17		111 V	1, 7
Vswing	Vswing	Scope averaging off	300	1446		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	351	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		24	140	mV	1, 6

Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH}

²Operation under these conditions is neither implied nor guaranteed.

^{= 6} x I_{REF} and V_{OH} = 0.7V @ Z_{O} =50 Ω (100 Ω differential impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

⁷ Includes overshoot and undershoot.

Electrical Characteristics - Input/Supply/Common Parameters

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	T _{COM}	Commmercial range	0		70	ů	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	2		V _{DD} + 0.3	V	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	GND - 0.3		0.8	٧	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs. V _{IN} = 0 V; Inputs with internal pullup resistors V _{IN} = VDD; Inputs with internal pull-down resistors	-200		200	uA	1
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	V	1
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3		0.35	V	1
Input Frequency	Fi			25.00		MHz	2
Pin Inductance	L_pin				7	nΗ	1
	C_{IN}	Logic Inputs			5	pF	1
Capacitance	C_{OUT}	Output pin capacitance			5	pF	1
	C_{INX}	X1 & X2 pins			5	рF	1
Clk Stabilization	T_{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock			1.8	ms	1,2
SS Modulation Frequency	f _{M OD IN}	Allowable Frequency (Triangular Modulation)	30	31.500	33	kHz	1
Tdrive_PD#	t _{DRVPD}	Differential output enable after PD# de-assertion		200.000	300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				0.8	٧	1
SMBus Input High Voltage	V_{IHSMB}		2.1		V _{DDSMB}	٧	1
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2 \}text{Control}$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

AC Electrical Characteristics - Differential Current Mode Outputs

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50.1	55	%	1
Skew, Output to Output	t _{sk3 SRC}	Across all SRC outputs,		13.5	50	ps	1
Jitter, Cycle to cycle	t.	SRC, NS_SAS outputs		35	50	ps	1,3
ortier, Cycle to cycle	'jcyc-cyc	DOT96 output		75	250	ps	1,3

Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Phase Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V +/-5}\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		28	86	ps (p-p)	1,2,3,6
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.9	3	ps (rms)	1,2,6
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.7	3.1	ps (rms)	1,2,6
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.4	1	ps (rms)	1,2,4,6
Phase Jitter	t _{jphQPI_SMI}	QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.15	0.5	ps (rms)	1,5,6
		QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.13	0.3	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.11	0.2	ps (rms)	1,5,6
	t _{jphSAS12G}	SAS12G (Filtered REFCLK Jitter 20KHz to 20MHz.)		0.34	0.4	ps (rms)	1,7,8
	t _{jphSAS12} G	SAS 12G		0.70	1.3	ps (rms)	1,5,7

¹ Guaranteed by design and characterization, not 100% tested in production.

 $^{^{2}}I_{REF} = V_{DD}/(3xR_{B})$. For $R_{B} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6$ x I_{REF} and $V_{OH} = 0.7V$ @ $Z_{O} = 50\Omega$.

³ Measured from differential waveform

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.6

⁶ Applies to SRC outputs

⁷ Applies to NS_SAS, NS_SRC outputs, Spread Off

⁸ Intel calculation from raw phase noise data

Electrical Characteristics - PCI

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V +/-5\%}$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R_{DSP}	$V_O = V_{DD}^*(0.5)$	12		55	Ω	1
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	1
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	1
Output High Current	1	MIN $@V_{OH} = 1.0 \text{ V}$	-33			mA	1
Output High Curient	I _{ОН}	MAX $@V_{OH} = 3.135 \text{ V}$			-33	mΑ	1
Output Low Current	1	MIN $@V_{OL} = 1.95 \text{ V}$	30			mΑ	1
Output Low Guiterit	I _{OL}	MAX @ $V_{OL} = 0.4 V$			38	mA	1
Clock High Time	T _{HIGH}	1.5V	12			ns	1
Clock Low Time	T_LOW	1.5V	12			ns	1
Edge Rate	t _{sle wr/f}	Rising/Falling edge rate	1	1.8	4	V/ns	1,2
Duty Cycle	d _{t1}	$V_{T} = 1.5 V$	45	50.5	55	%	1
Group Skew	t _{skew}	$V_T = 1.5 V$		294	500	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 V$		108	500	ps	1

See "Single-ended Test Loads Page" for termination circuits

Electrical Characteristics - 48MHz

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V +/-5\%}$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_O = V_{DD}^*(0.5)$	20		60	Ω	1
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	1
Output High Current	ı	MIN $@V_{OH} = 1.0 \text{ V}$	-29			mA	1
Output High Current	I _{ОН}	MAX $@V_{OH} = 3.135 \text{ V}$			-33	mΑ	1
Output Low Current	1	MIN $@V_{OL} = 1.95 \text{ V}$	29			mΑ	1
Output Low Guiterit	I _{OL}	MAX @ $V_{OL} = 0.4 V$			27	mA	1
Clock High Time	T _{HIGH}	1.5V	8.094		10.036	ns	1
Clock Low Time	T_LOW	1.5V	7.694		9.836	ns	1
Edge Rate	t _{slewr/f_USB}	Rising/Falling edge rate	1	1.5	2	V/ns	1,2
Duty Cycle	d _{t1}	$V_T = 1.5 V$	45	51	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 \text{ V}$		109	350	ps	1

See "Single-ended Test Loads Page" for termination circuits

932SQ428

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Electrical Characteristics - REF

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD}/V_{DDA} = 3.3 \text{ V } +/-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Output Impedance	R_{DSP}	$V_O = V_{DD}^*(0.5)$	12		55	Ω	1
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	1
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	1
Output High Current	ı	MIN $@V_{OH} = 1.0 \text{ V}$	-33			mA	1
Output High Current	I _{ОН}	MAX $@V_{OH} = 3.135 \text{ V}$			-33	mA	1
Output Low Current		MIN $@V_{OL} = 1.95 \text{ V}$	30			mA	1
Output Low Guiterit	I _{OL}	MAX @ $V_{OL} = 0.4 V$			38	mA	1
Clock High Time	T_{HIGH}	1.5V	27.5			ns	1
Clock Low Time	T_LOW	1.5V	27.5			ns	1
Edge Rate	t _{sle wr/f}	Rising/Falling edge rate	1	1.9	4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45	50.5	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V		75	1000	ps	1

See "Single-ended Test Loads Page" for termination circuits

¹Guaranteed by design and characterization, not 100% tested in production.

²Measured between 0.8V and 2.0V

Clock AC Tolerances

	SRC, NS_SAS	PCI	DOT96	48MHz	REF	
PPM tolerance	100	100	100	100	100	ppm
Cycle to Cycle Jitter	50	500	250	350	1000	ps
Spread	-0.50%	-0.50%	0	0.00%	0.00%	%

Clock Periods - Outputs with Spread Spectrum Disabled

				M	easurement Wi	ndow				
	Center	1 Clock	1 us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Freq. MHz	-	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units I	Notes
SRC, NS_SAS	100.00000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
PCI	33.33333	29.49700		29.99700	30.00000	30.00300		30.50300	ns	1,2
DOT96	96.00000	10.16563		10.41563	10.41667	10.41771		10.66771	ns	1,2
48MHz	48.00000	20.48125		20.83125	20.83333	20.83542		21.18542	ns	1,2
REF	14.31818	69.78429		69.83429	69.84128	69.84826		69.89826	ns	1,2

Clock Periods – Outputs with Spread Spectrum Enabled

				М	easurement Wi	ndow				
	Center	1 Clock	1 us	0.1s	0.1s	0.1 s	1us	1 Clock		
SSC ON	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
PCI	33.25	29.49718	29.99718	30.07218	30.07519	30.07820	30.15320	30.65320	ns	1,2
SRC	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the REF output is tuned to exactly 14.31818MHz.

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Bl	ock \	Write Operation
Control	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnir	ng Byte N		
			ACK
0		×	
0		X Byte	0
0		е	0
			0
Byte N	I + X - 1		
			ACK
Р	stoP bit		

SMBus write address = D2 hex

SMBus read address = D3 hex

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		ē	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register

Byte	0 Pin	#	Name	Control Function	Type	0	1	Default
Bit 7	-		DOT96 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 6	-		NS_SAS1 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 5				RESERVED				1
Bit 4	-		NS_SAS0 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 3				RESERVED				1
Bit 2	-		SRC2 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 1	-		SRC1 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1
Bit 0	-		SRC0 Enable	Output Enable	RW	Disable-Hi-Z	Enable	1

SMBus Table: Output Enable Register

Byte	e 1 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	REF14_3x Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 6		RESERVED				0	
Bit 5			RESERVED				0
Bit 4			RESERVED				1
Bit 3			RESERVED				1
Bit 2			RESERVED				1
Bit 1			RESERVED				1
Bit 0	SRC/PCI	Spread Spectrum Enable	Spread Off/On	RW	Spread Off	Spread On	0

SMB us Table: Output Enable Register

Byte	2 Pin #	Name	Control Function	Type	0	1	Default		
Bit 7			RESERVED				0		
Bit 6			RESERVED						
Bit 5	•	PCI4 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 4	•	PCI3 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 3	1	PCI2 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 2	-	PCI1 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 1	-	PCI0 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 0	1	48MHz Enable	Output Enable	RW	Disable-Low	Enable	1		

Byte 3 ~ Byte 4 Reserved Register

SMB us Table: NS_SAS Frequency Margining Table

Byte	5 Pin #	Name	Control Function	Type	0	1	Default
Bit 7			RESERVED				0
Bit 6			RESERVED				0
Bit 5			RESERVED				0
Bit 4	1	FS4	Freq. Sel 4	RW			0
Bit 3	1	FS3	Freq. Sel 3	RW			1
Bit 2	1	FS2	Freq. Sel 2	RW	See NS_SAS F	Frequency Table	1
Bit 1	-	FS1	Freq. Sel 1	RW			1
Bit 0	1	FS0	Freq. Sel 0	RW			1

SMBus Table: SRC/PCI Frequency Select Register

Byte	e 6 Pin #	Name	Control Function	Type	0	1	Default	
Bit 7	-		RESERVED				0	
Bit 6	-		RESERVED				0	
Bit 5	-		RESERVED				0	
Bit 4	-		RESERVED					
Bit 3	-	FS3	Freq. Sel 3	RW			1	
Bit 2	-	FS2	Freq. Sel 2	RW	See SRC/P	CI Frequency	0	
Bit 1	-	FS1	Freq. Sel 1	RW	Selec	t Table	0	
Bit 0	-	FS0	Freq. Sel 0	RW			0	

SMB us Table: Vendor & Revision ID Register

Byte 7	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3		R			0
Bit 6	-	RID2	REVISION ID	R	0011 for A rev		0
Bit 5	-	RID1	HEVIOION ID	R			1
Bit 4	-	RID0		R			1
Bit 3	-	VID3		R			0
Bit 2	-	VID2	VENDOR ID	R	0001 for ICS/IDT		0
Bit 1	-	VID1	VENDORID	R	0001101103/101	0	
Bit 0	-	VID0		R			1

SMB us Table: Byte Count Register

Byte 8	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	BC7		RW			0
Bit 6	-	BC6		RW	1		0
Bit 5	-	BC5		RW	Writing to this register will		0
Bit 4	-	BC4	Byte Count	RW	configure how many bytes will		0
Bit 3	-	BC3	Programming b(7:0)	RW	be read bac	k, default is A	1
Bit 2	-	BC2		RW	bytes	(0 to 9)	0
Bit 1	-	BC1		RW]		1
Bit 0	-	BC0		RW			0

SMBus Table: Device ID Register

Byte 9	Pin #	Name	Control Function	Type	0	1	Default
Bit 7		DID7		R	-	-	0
Bit 6		DID6		R	-	-	0
Bit 5		DID5	1	R	-	-	0
Bit 4		DID4	Device ID	R	-	-	1
Bit 3		DID3	(17 hex)	R	-	-	0
Bit 2		DID2		R	-	-	1
Bit 1		DID1		R	-	-	1
Bit 0		DID0]	R	-	-	1

SMBus Table: M/N Programming & Control Register

Byte	10 Pin	#	Name	Control Function	Type	0	1	Default
Bit 7	-		M/N_EN	SRC M/N Programming Enable	RW	Disable	Enable	0
Bit 6	-			RESERVED				0
Bit 5	-			RESERVED				0
Bit 4	•			RESERVED				0
Bit 3	-			RESERVED				0
Bit 2	-		RESERVED				0	
Bit 1			RESERVED				0	
Bit 0	-		RESERVED					0

SMB us Table: SRC/PCI Frequency Control Register

Byte	11 Pin	#	Name	Control Function	Type	0	1	Default
Bit 7	-		SRC N Div8	N Divider Prog bit 8	RW	The decimal re		Χ
Bit 6	-		SRC N Div9	N Divider Prog bit 9	RW	M and N Divider in Byte 11		Χ
Bit 5	-		SRC M Div5		RW	and 12 will con	figure the SRC	Χ
Bit 4	ı		SRC M Div4		RW	VCO frequen	cy. Default at	Χ
Bit 3	ı		SRC M Div3	M Divider Programming	RW	power up = lat	ch-in or Byte 6	Χ
Bit 2	-		SRC M Div2	bit (5:0)	RW	Rom table. VC	O Frequency =	Χ
Bit 1	-		SRC M Div1		RW	25 x [NDiv	/(9:0)+8]/	Χ
Bit 0	-		SRC M Div0		RW	[MDiv(5:0)+2]	Χ

SMBus Table: SRC Frequency Control Register

Byte	12 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	SRC N Div7		RW	The decimal representation of		Х
Bit 6	-	SRC N Div6	1	RW	M and N Divider in Byte 11		Х
Bit 5	-	SRC N Div5	N Divider Programming	RW	and 12 will configure the SRC		Χ
Bit 4	-	SRC N Div4	Byte12 bit(7:0) and	RW	VCO frequency. Default at		Χ
Bit 3	-	SRC N Div3	Byte11 bit(7:6)	RW	power up = lat	ch-in or Byte 6	Χ
Bit 2	i	SRC N Div2	Byterr bit(7.6)	RW	Rom table. VC	O Frequency =	Χ
Bit 1	i	SRC N Div1		RW	25 x [NDiv	/(9:0)+8]/	Χ
Bit 0	-	SRC N Div0		RW	[MDiv(5:0)+2]	Х

SMBus Table: SRC Spread Spectrum Control Register

Byte	13 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	SRC SSP7		RW	These Spread Spectrum bits in Byte 13 and 14 will program		Χ
Bit 6	•	SRC SSP6		RW			Χ
Bit 5	-	SRC SSP5		RW			Χ
Bit 4	-	SRC SSP4	Spread Spectrum	RW			Χ
Bit 3	-	SRC SSP3	Programming bit(7:0)	RW	,	entage of SRC	Χ
Bit 2	•	SRC SSP2		RW	trie spread ped	entage of Sho	Χ
Bit 1	-	SRC SSP1		RW			Χ
Bit 0	-	SRC SSP0		RW			Χ

SMB us Table: SRC Spread Spectrum Control Register

OIIID GO	rabioi erre e	produ opcotram control no	910101				
Byte 1	4 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-		Reserved				0
Bit 6	-	SRC SSP14		RW			Χ
Bit 5	-	SRC SSP13		RW			Χ
Bit 4	-	SRC SSP12	Spread Spectrum	RW	These Spread	Spectrum bits in	Χ
Bit 3	-	SRC SSP11	Programming bit(14:8)	RW	Byte 13 and 1	4 will program	Χ
Bit 2	-	SRC SSP10	Flogramming bit (14.8)	RW	the spread peo	entage of SRC	Χ
Bit 1	-	SRC SSP9		RW]	-	Χ
Bit 0	-	SRC SSP8		RW			Χ

SMBus Table: NS_SAS Frequency Control Register

Byte	15 Pin # Name		n # Name Control Function		Type	0	1	Default
Bit 7		-	NS_SAS N Div8	N Divider Prog bit 8	RW		presentation of	Х
Bit 6		-	NS_SAS N Div9	N Divider Prog bit 9	RW	M and N Divid	derin Byte 15	Χ
Bit 5		-	NS_SAS M Div5		RW	and 16 will d	•	Χ
Bit 4		-	NS_SAS M Div4	M Divider Programming	RW	NS_SAS VCO frequency.		Х
Bit 3		-	NS_SAS M Div3	bits (Fixed at 1 for Rev	RW	Default at pow	er up = latch-in	Χ
Bit 2		-	NS_SAS M Div2	DIS (I Ked at 1 lol Nev	RW	or Byte 0 Ror	n table. VCO	Χ
Bit 1		-	NS_SAS M Div1	D)	RW	Frequen	cy = 25 x	Χ
Bit 0		-	NS_SAS M Div0		RW	[NDiv(9:0)+8] / [MDiv(5:0)+2]		Χ

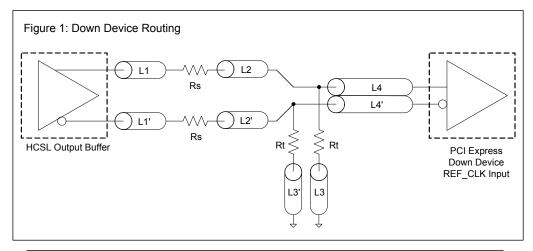
SMB us Table: NS_SAS Frequency Control Register

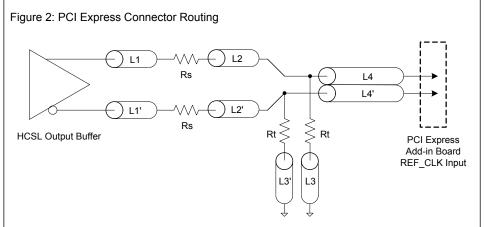
Byte	16 Pin #	# Name Control Function		Type	0	1	Default
Bit 7	-	NS_SAS N Div7		RW		presentation of	Χ
Bit 6	-	NS_SAS N Div6		RW	M and N Divi	derin Byte 15	Χ
Bit 5	-	NS_SAS N Div5		RW	and 16 will o	onfigure the	Χ
Bit 4	-	NS_SAS N Div4	N Divider Programming	RW	NS_SAS VC	O frequency.	Χ
Bit 3	-	NS_SAS N Div3	b(7:0)	RW	Default at pow	er up = latch-in	Χ
Bit 2	-	NS_SAS N Div2		RW	or Byte 0 Ro	m table. VCO	Χ
Bit 1	-	NS_SAS N Div1		RW	Frequen	cy = 25 x	Χ
Bit 0	-	NS_SAS N Div0		RW	[NDiv(9:0)+8]/	[MDiv(5:0)+2]	Χ

SRC/PCI Frequency Selection Table

Line	Byte 1, Bit 0 Spread Enable	Byte6 Bit3 FS3	Byte6 Bit2 FS2	Byte6 Bit1 FS1	Byte6 Bit0 FS0	SRC (MHz)	PCI (MHz)	Spread %
0	0	0	0	0	0	89.97	29.99	
1	0	0	0	0	1	91.28	30.43	
2	0	0	0	1	0	92.58	30.86	
3	0	0	0	1	1	93.75	31.25	
4	0	0	1	0	0	95.05	31.68	
5	0	0	1	0	1	96.22	32.07	
6	0	0	1	1	0	97.53	32.51	
7	0	0	1	1	1	98.83	32.94	0%
8	0	1	0	0	0	100.00	33.33	0 /0
9	0	1	0	0	1	101.30	33.77	
10	0	1	0	1	0	102.47	34.16	
11	0	1	0	1	1	103.78	34.59	
12	0	1	1	0	0	105.08	35.03	
13	0	1	1	0	1	106.25	35.42	
14	0	1	1	1	0	107.55	35.85	
15	0	1	1	1	1	110.03	36.68	
16	1	0	0	0	0	89.97	29.99	
17	1	0	0	0	1	91.28	30.43	
18	1	0	0	1	0	92.58	30.86	
19	1	0	0	1	1	93.75	31.25	
20	1	0	1	0	0	95.05	31.68	
21	1	0	1	0	1	96.22	32.07	
22	1	0	1	1	0	97.53	32.51	
23	1	0	1	1	1	98.83	32.94	-0.5%
24	1	1	0	0	0	100.00	33.33	-0.576
25	1	1	0	0	1	101.30	33.77	
26	1	1	0	1	0	102.47	34.16	
27	1	1	0	1	1	103.78	34.59	
28	1	1	1	0	0	105.08	35.03	
29	1	1	1	0	1	106.25	35.42	
30	1	1	1	1	0	107.55	35.85	
31	1	1	1	1	1	110.03	36.68	

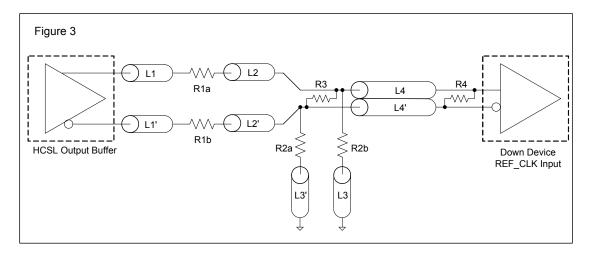
NS_SAS Margining Table

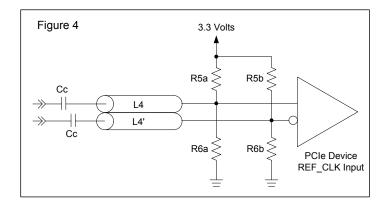

	Byte5	Byte5	Byte5	Byte5	Byte5	
	Bit4	Bit3	Bit2	Bit1	Bit0	NS_xxx
Line	FS4	FS3	FS2	FS1	FS0	(MHz)
0	0	0	0	0	0	58.33
1	0	0	0	0	1	61.11
2	0	0	0	1	0	63.89
3	0	0	0	1	1	66.67
4	0	0	1	0	0	69.44
5	0	0	1	0	1	72.22
6	0	0	1	1	0	75.00
7	0	0	1	1	1	77.78
8	0	1	0	0	0	80.56
9	0	1	0	0	1	83.33
10	0	1	0	1	0	86.11
11	0	1	0	1	1	88.89
12	0	1	1	0	0	91.67
13	0	1	1	0	1	94.44
14	0	1	1	1	0	97.22
15	0	1	1	1	1	100.00
16	1	0	0	0	0	102.78
17	1	0	0	0	1	105.56
18	1	0	0	1	0	108.33
19	1	0	0	1	1	111.11
20	1	0	1	0	0	113.89
21	1	0	1	0	1	116.67
22	1	0	1	1	0	119.44
23	1	0	1	1	1	122.22
24	1	1	0	0	0	125.00
25	1	1	0	0	1	127.78
26	1	1	0	1	0	130.56
27	1	1	0	1	1	133.33
28	1	1	1	0	0	136.11
29	1	1	1	0	1	138.89
30	1	1	1	1	0	141.67
31	1	1	1	1	1	144.44


NOTE: Operation at other than the default entry is not guaranteed. These values are for margining purposes only.

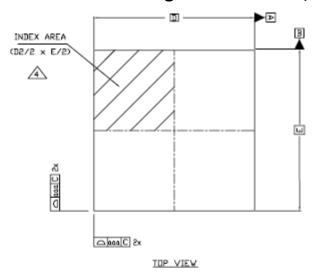
DIF Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1				
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
Rs	33	ohm	1				
Rt	49.9	ohm	1				

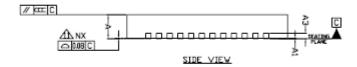
Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

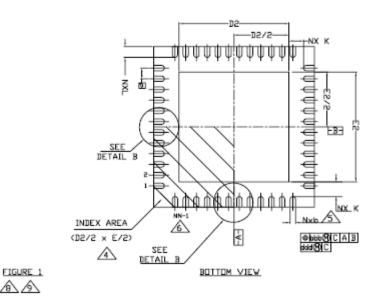

Differential Routing to PCI Express Connector		
L4 length, route as coupled microstrip 100ohm differential trace 0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace 0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)								
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note		
0.45v	0.22v	1.08	33	150	100	100			
0.58	0.28	0.6	33	78.7	137	100			
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible		
0.60	0.3	1.2	33	174	140	100	Standard LVDS		


R1a = R1b = R1 R2a = R2b = R2


Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Сс	0.1 μF						
Vcm	0.350 volts						



Package Outline and Package Dimensions (48-pin MLF)

SYMBOL	DIMENSION				
은	MIN	NOM	MAX		
D2	3.95	4.10	4.20		
E2	3.95	4.10	4.20		
L	0.30	0.40	0.50		
D	6.00 BSC				
E	6.00 BSC				
е	C).40 BSC			
Α	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A3		0.20 ref			
N		48			
ND	12				
NE	12				
Ь	.15	.20	.25		

 \triangle

- ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. N REFERS TO THE NUMBER OF LEADS.
- ND AND NE REFER TO THE NUMBER OF LEADS PER SIDE.

Marking Diagram

Notes:

- 1. 'L' denotes RoHS compliant package.
- 2. 'YYWW' is the date code.
- 3. 'COO' is the country of origin.
- 4. 'LOT' is the lot number.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
932SQ428AKLF	Tray	48-pin MLF	0 to +70° C
932SQ428AKLFT	Tape and Reel	48-pin MLF	0 to +70° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Who	Description	Page #
Α	4/15/2011	RDW	Updated Idd, phase jitter, minor typo corrections; released to final	
			Updated Power Down Functionality table to clarify functionality of single-	
В	7/26/2011	RDW	ended outputs in power down.	
			1. Updated Phase Jitter Table to correct typo in "Conditions" column for	
С	12/8/2011	RDW	SAS.	8, 21
			2. Mark spec added.	
D	4/13/2012	AT	Typo on pin 40 description. Pin type states OUT; should be IN	4
			Updated Rp values on Output Terminations Table from 43.2 ohms to	
Е	4/23/2012	RDW	42.2 or 43.2 ohms to be consistent with Intel.	5

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.