

# Four Output Differential Buffer for PCle Gen 2 with Spread

## **ICS9DS400**

### **General Description**

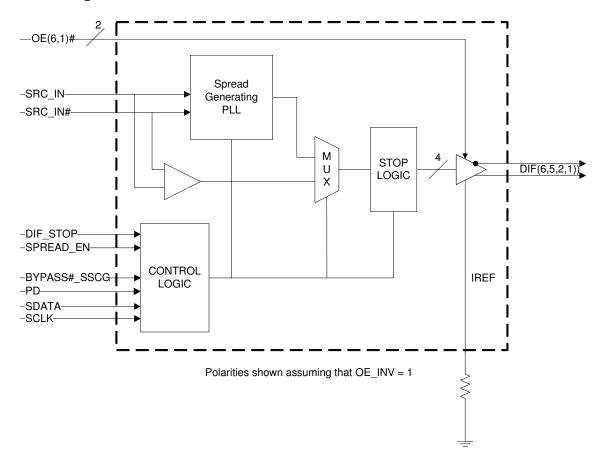
The 9DS400 is pin compatible to the 9DB403, but adds the ability to inject spread spectrum onto the incoming differential clock, while maintaining good phase noise.

### **Recommended Application**

DB400 where spread spectrum needs to be added to the incoming clock.

## **Key Specifications**

- Output cycle-cycle jitter < 50ps</li>
- Output to Output skew <50ps</li>
- Phase jitter: PCle Gen1 < 86ps peak to peak
- Phase jitter: PCle Gen2 < 3.0/3.1ps rms


#### Features/Benefits

- Bypass mode
- Supports undriven differential outputs in PD# and SRC\_STOP# modes for power management.

## **Output Features**

- 4 0.7V current-mode differential output pairs.
- · Supports Spread Injection mode and fanout mode.
- Two pin selectable down spread amounts: 0.5% and 0.25%.
- 50-110 MHz operation in PLL mode
- 50-400 MHz operation in Bypass mode

### **Functional Block Diagram**



# **Pin Configuration**

| VDD          | 1  | 28          | NDDA      | VDD          | 1  | 28                               | VDDA      |
|--------------|----|-------------|-----------|--------------|----|----------------------------------|-----------|
| SRC_IN       | 2  | 2           | 7 GNDA    | SRC_IN       | 2  | 27                               | GNDA      |
| SRC_IN#      | 3  | 20          | REF       | SRC_IN#      | 3  | 26                               | IREF      |
| GND          | 4  | 2           | OE_INV    | GND          | 4  | _ 25                             | OE_INV    |
| VDD          | 5  | 2           | 1 VDD     | VDD          | 5  | <b>S</b> 24                      | VDD       |
| DIF_1        | 6  | CS9DS400    | B DIF_6   | DIF_1        | 6  | 24<br>23<br>22<br>21<br>20<br>19 | DIF_6     |
| DIF_1#       | 7  | <b>S</b> 22 | 2 DIF_6#  | DIF_1#       | 7  | <b>9</b> 22                      | DIF_6#    |
| OE_1         | 8  | <b>6</b> 2  | 1 OE_6    | OE1#         | 8  | <b>6</b> 21                      | OE6#      |
| DIF_2        | 9  | <b>ග</b> 20 | DIF_5     | DIF_2        | 9  | <b>(</b> ) 20                    | DIF_5     |
| DIF_2#       | 10 | <u>O</u> 19 | DIF_5#    | DIF_2#       | 10 | <b>O</b> 19                      | DIF_5#    |
| VDD          | 11 | 18          | VDD       | VDD          | 11 | 18                               | VDD       |
| BYPASS#_SSCG | 12 | 1           | SPREAD_EN | BYPASS#_SSCG | 12 | 17                               | SPREAD_EN |
| SCLK         | 13 | 10          | DIF_STOP# | SCLK         | 13 | 16                               | DIF_STOP  |
| SDATA        | 14 | 1           | PD#       | SDATA        | 14 | 15                               | PD        |
|              | 0  | E_INV = 0   |           |              |    | OE_INV = 1                       |           |

See Pin Description Table for pins w/internal pull up or pull down

See Pin Description Table for pins w/internal pull up or pull down

# **Power Groups**

| Pin N       | umber | Description      |  |  |
|-------------|-------|------------------|--|--|
| VDD         | GND   |                  |  |  |
| 1           | 4     | SRC_IN/SRC_IN#   |  |  |
| 5,11,18, 24 | 4     | DIF(1,2,5,6)     |  |  |
| N/A         | 27    | IREF             |  |  |
| 00          | 07    | Analog VDD &     |  |  |
| 28          | 27    | GND for PLL core |  |  |

# Pin Description for OE\_INV = 0

| PIN# | PIN NAME     | PIN<br>TYPE | DESCRIPTION                                                                                                                                                                                                                           | INTERNAL<br>PULL UP<br>OR PULL<br>DOWN? |
|------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1    | VDD          | PWR         | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 2    | SRC_IN       | IN          | 0.7 V Differential SRC TRUE input                                                                                                                                                                                                     | N/A                                     |
| 3    | SRC_IN#      | IN          | 0.7 V Differential SRC COMPLEMENTARY input                                                                                                                                                                                            | N/A                                     |
| 4    | GND          | PWR         | Ground pin.                                                                                                                                                                                                                           | N/A                                     |
| 5    | VDD          | PWR         | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 6    | DIF_1        | OUT         | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 7    | DIF_1#       | OUT         | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 8    | OE_1         | IN          | Active high input for enabling output 1.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                    | PULL UP                                 |
| 9    | DIF_2        | OUT         | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 10   | DIF_2#       | OUT         | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 11   | VDD          | PWR         | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 12   | BYPASS#_SSCG | IN          | Input to select Bypass(fan-out) or SSCG (PLL) mode  0 = Bypass mode, 1= SSCG mode                                                                                                                                                     | PULL UP                                 |
| 13   | SCLK         | IN          | Clock pin of SMBus circuitry, 5V tolerant.                                                                                                                                                                                            | N/A                                     |
| 14   | SDATA        | I/O         | Data pin for SMBus circuitry, 3.3V tolerant.                                                                                                                                                                                          | N/A                                     |
| 15   | PD#          | IN          | Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal osc. (if any) are stopped.                                                                              | PULL UP                                 |
| 16   | DIF_STOP#    | IN          | Active low input to stop differential output clocks.                                                                                                                                                                                  | PULL UP                                 |
| 17   | SPREAD EN    | IN          | Asynchronous, active high input to enable spread spectrum functionality.                                                                                                                                                              | PULL UP                                 |
| 18   | VDD          | PWR         | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 19   | DIF 5#       | OUT         | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 20   | DIF_5        | OUT         | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 21   | OE_6         | IN          | Active high input for enabling output 6.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                    | PULL UP                                 |
| 22   | DIF_6#       | OUT         | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 23   | DIF_6        | OUT         | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 24   | VDD          | PWR         | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 25   | OE_INV       | IN          | This latched input selects the polarity of the OE pins.  0 = OE pins active high, 1 = OE pins active low (OE#)                                                                                                                        | N/A                                     |
| 26   | IREF         | OUT         | This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value. | N/A                                     |
| 27   | GNDA         | PWR         | Ground pin for the PLL core.                                                                                                                                                                                                          | N/A                                     |
| 28   | VDDA         | PWR         | 3.3V power for the PLL core.                                                                                                                                                                                                          | N/A                                     |

# Pin Description for OE\_INV = 1

| PIN# | PIN NAME         | PIN TYPE | DESCRIPTION                                                                                                                                                                                                                           | INTERNAL<br>PULL UP<br>OR PULL<br>DOWN? |
|------|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1    | VDD              | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 2    | SRC_IN           | IN       | 0.7 V Differential SRC TRUE input                                                                                                                                                                                                     | N/A                                     |
| 3    | SRC_IN#          | IN       | 0.7 V Differential SRC COMPLEMENTARY input                                                                                                                                                                                            | N/A                                     |
| 4    | GND              | PWR      | Ground pin.                                                                                                                                                                                                                           | N/A                                     |
| 5    | VDD              | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 6    | DIF_1            | OUT      | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 7    | DIF_1#           | OUT      | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 8    | OE1#             | IN       | Active low input for enabling DIF pair 1.<br>1 = tri-state outputs, 0 = enable outputs                                                                                                                                                | PULL UP                                 |
| 9    | DIF_2            | OUT      | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 10   | DIF_2#           | OUT      | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 11   | VDD              | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 12   | BYPASS#_SS<br>CG | IN       | Input to select Bypass(fan-out) or SSCG (PLL) mode  0 = Bypass mode, 1= SSCG mode                                                                                                                                                     | PULL UP                                 |
| 13   | SCLK             | IN       | Clock pin of SMBus circuitry, 5V tolerant.                                                                                                                                                                                            | N/A                                     |
| 14   | SDATA            | I/O      | Data pin for SMBus circuitry, 3.3V tolerant.                                                                                                                                                                                          | N/A                                     |
| 15   | PD               | IN       | Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.                                                                                                            | PULL UP                                 |
| 16   | DIF_STOP         | IN       | Active High input to stop differential output clocks.                                                                                                                                                                                 | PULL UP                                 |
| 17   | SPREAD_EN        | IN       | Asynchronous, active high input to enable spread spectrum functionality.                                                                                                                                                              | PULL UP                                 |
| 18   | VDD              | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 19   | DIF_5#           | OUT      | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 20   | DIF_5            | OUT      | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 21   | OE6#             | IN       | Active low input for enabling DIF pair 6.  1 = tri-state outputs, 0 = enable outputs                                                                                                                                                  | PULL UP                                 |
| 22   | DIF_6#           | OUT      | 0.7V differential Complementary clock output                                                                                                                                                                                          | N/A                                     |
| 23   | DIF_6            | OUT      | 0.7V differential true clock output                                                                                                                                                                                                   | N/A                                     |
| 24   | VDD              | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            | N/A                                     |
| 25   | OE_INV           | IN       | This latched input selects the polarity of the OE pins.  0 = OE pins active high, 1 = OE pins active low (OE#)                                                                                                                        | N/A                                     |
| 26   | IREF             | OUT      | This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value. | N/A                                     |
| 27   | GNDA             | PWR      | Ground pin for the PLL core.                                                                                                                                                                                                          | N/A                                     |
| 28   | VDDA             | PWR      | 3.3V power for the PLL core.                                                                                                                                                                                                          | N/A                                     |

## **Absolute Max**

| Symbol   | Parameter            | Min     | Max                   | Units |
|----------|----------------------|---------|-----------------------|-------|
| VDD      | 3.3V Supply Voltage  |         | 4.6                   | V     |
| $V_{IL}$ | Input Low Voltage    | GND-0.5 |                       | V     |
| $V_{IH}$ | Input High Voltage   |         | V <sub>DD</sub> +0.5V | ٧     |
| Ts       | Storage Temperature  | -65     | 150                   | °C    |
| Tcase    | Case Temperature     |         | 115                   | Ŝ     |
|          | Input ESD protection |         |                       |       |
| ESD prot | human body model     | 2000    |                       | V     |

### Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A$  =Over the Specified Operating Range;  $V_{DD} = 3.3 \text{ V} + /-5\%$ 

| I <sub>A</sub> =Over the Specified O | perating Rar          | $1ge; V_{DD} = 3.3 V + -5\%$                                                                          |                                       |          |                | / / /    |       |
|--------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|----------|----------------|----------|-------|
| PARAMETER                            | SYMBOL                | CONDITIONS                                                                                            | MIN                                   | TYP      | MAX            | UNITS    | NOTES |
| Input High Voltage                   | $V_{IH}$              | 3.3 V +/-5%                                                                                           | 2                                     |          | $V_{DD} + 0.3$ | V        | 1     |
| Input Low Voltage                    | $V_{IL}$              | 3.3 V +/-5%                                                                                           | GND - 0.3                             | \ \ \    | 0.8            | V        | 1     |
| Input High Current                   | I <sub>IH</sub>       | $V_{IN} = V_{DD}$                                                                                     | -5                                    |          | 5              | uA       | 1     |
| Input Low Current                    | I <sub>IL1</sub>      | V <sub>IN</sub> = 0 V; Inputs with no pull-up resistors                                               | -5 <                                  |          | >              | uA       | 1     |
| ·                                    | I <sub>IL2</sub>      | V <sub>IN</sub> = 0 V; Inputs with pull-up resistors                                                  | -200                                  |          |                | uA       | 1     |
| Operating Supply Current             | I <sub>DD3.3OP</sub>  | Full Active, C <sub>L</sub> = Full load;                                                              |                                       | >        | 125            | mA       | 1     |
| Powerdown Current                    | I <sub>DD3.3PD</sub>  | all diff pairs driven all differential pairs tri-stated                                               |                                       |          | 30<br>6        | mA<br>mA | 1     |
|                                      | F <sub>iPLL</sub>     | PCIe Mode (Bypass#/PLL= 1)                                                                            | 90                                    | 100.00   | 110            | MHz      | 1     |
| Input Frequency                      | F <sub>iBYPASS</sub>  | Bypass Mode ((Bypass#/PLL= 0)                                                                         | 33 🔍                                  | $\wedge$ | 400            | MHz      | 1     |
| Pin Inductance                       | L <sub>pin</sub>      |                                                                                                       |                                       |          | 7              | ⊳nH      | 1     |
|                                      | C <sub>IN</sub>       | Logic Inputs, except SRC IN                                                                           | 1.5                                   |          | 5              | pF       | 1     |
| Capacitance                          | C <sub>INSRC IN</sub> | SRC_IN differential clock inputs                                                                      | 1.5                                   |          | 2.7            | pF       | 1,4   |
|                                      | C <sub>OUT</sub>      | Output pin capacitance                                                                                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |          | 6              | pF       | 1     |
| Clk Stabilization                    | TSTAB                 | From V <sub>DD</sub> Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock |                                       |          | 1              | ms       | 1,2   |
| SS Modulation<br>Frequency           | f <sub>MOD</sub>      | Assuming 100 MHz input<br>(Triangular Modulation)                                                     | 30                                    | 32.000   | 33             | kHz      | 1     |
| OE# Latency                          | t <sub>LATOE#</sub>   | DIF start after OE# assertion DIF stop after OE# deassertion                                          |                                       |          | 3              | cycles   | 1,3   |
| Tdrive_PD#                           | t <sub>DRVPD</sub>    | DIF output enable after PD# de-assertion                                                              |                                       |          | 300            | us       | 1,3   |
| Tfall                                | t <sub>E</sub>        | Fall time of PD# and SRC_STOP#                                                                        |                                       |          | 5              | ns       | 1     |
| Trise                                | (t <sub>B</sub> )     | Rise time of PD# and SRC_STOP#                                                                        |                                       |          | 5              | ns       | 2     |
| SMBus Voltage                        | $V_{MAX}$             | Maximum input voltage                                                                                 |                                       |          | 5.5            | V        | 1     |
| Low-level Output Voltage             | $)$ $V_{OL}$          | @ I <sub>PULLUP</sub>                                                                                 |                                       |          | 0.4            | V        | 1     |
| Current sinking at V <sub>OL</sub>   | I <sub>PULLUP</sub>   |                                                                                                       | 4                                     |          |                | mA       | 1     |
| SCLK/SDATA<br>Clock/Data Rise Time   | t <sub>RSMB</sub>     | (Max VIL - 0.15) to<br>(Min VIH + 0.15)                                                               |                                       |          | 1000           | ns       | 1     |
| SCLK/SDATA<br>Clock/Data Fall Time   | t <sub>FSMB</sub>     | (Min VIH + 0.15) to<br>(Max VIL - 0.15)                                                               |                                       |          | 300            | ns       | 1     |
| SMBus Operating<br>Frequency         | f <sub>MAXSMB</sub>   | Maximum SMBus operating frequency                                                                     |                                       |          | 100            | kHz      | 1,5   |

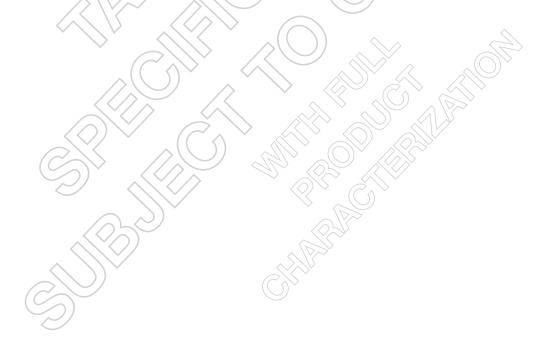
<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup>See timing diagrams for timing requirements.

<sup>&</sup>lt;sup>3</sup>Time from deassertion until outputs are >200 mV

<sup>&</sup>lt;sup>4</sup>SRC\_IN input

<sup>&</sup>lt;sup>5</sup>The differential input clock must be running for the SMBus to be active IDT™/ICS™ Four Output Differential Buffer for PCle Gen 2 with Spread


### **Electrical Characteristics - Differential Clock Input Parameters**

TA =Over the Specified Operating Range: VDD = 3.3 V +/-5%

| 0.0 0.000                             | porating ria       | ngc, VDD = 0:0 V +/ 0/0                        |                       |     |      |       |       |
|---------------------------------------|--------------------|------------------------------------------------|-----------------------|-----|------|-------|-------|
| PARAMETER                             | SYMBOL             | CONDITIONS                                     | MIN                   | TYP | MAX  | UNITS | NOTES |
| Input High Voltage -<br>DIF_IN        | V <sub>IHDIF</sub> | Differential inputs (single-ended measurement) | 600                   | 800 | 1150 | mV    | 1     |
| Input Low Voltage -<br>DIF_IN         | $V_{ILDIF}$        | Differential inputs (single-ended measurement) | V <sub>SS</sub> - 300 | 0   | 300  | mV    | 1     |
| Input Common Mode<br>Voltage - DIF_IN | $V_{COM}$          | Common Mode Input Voltage                      | 300                   |     | 1000 | mV    | 1     |
| Input Amplitude - DIF_IN              | $V_{SWING}$        | Peak to Peak value                             | 300                   |     | 1450 | mV    | 1     |
| Input Slew Rate - DIF_IN              | dv/dt              | Measured differentially                        | 0.4                   |     | 8    | V/ns  | 1,2   |
| Input Leakage Current                 | I <sub>IN</sub>    | $V_{IN} = V_{DD}, V_{IN} = GND$                | -5                    |     | 5    | uA    | 1     |
| Input Duty Cycle                      | $d_{tin}$          | Measurement from differential wavefrom         | 45                    |     | 55   | %     | 1     |
| Input Jitter - Cycle to<br>Cycle      | $J_{DIFIn}$        | Differential Measurement                       | 0                     |     | 125  | ps    | 1     |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup>Slew rate measured through Vswing min centered around differential zero



### **Electrical Characteristics - DIF 0.7V Current Mode Differential Pair**

TA =Over the Specified Operating Range; VDD = 3.3 V +/-5%;  $C_L$  =2pF,  $R_S$ =33 $\Omega$ ,  $R_P$ =49.9 $\Omega$ ,  $R_{REF}$ =475 $\Omega$ 

| PARAMETER                          | SYMBOL                 | CONDITIONS                                                     | MIN  | TYP                                    | MAX   | UNITS         | NOTES |
|------------------------------------|------------------------|----------------------------------------------------------------|------|----------------------------------------|-------|---------------|-------|
| Current Source Output<br>Impedance | Zo <sup>1</sup>        |                                                                | 3000 |                                        |       | Ω             | 1     |
| Voltage High                       | VHigh                  | Statistical measurement on single ended                        | 660  |                                        | 850   | mV            | 1,2   |
| Voltage Low                        | VLow                   | signal using oscilloscope math function.                       | -150 |                                        | 150   | > _           | 1,2   |
| Max Voltage                        | Vovs                   | Measurement on single ended signal                             |      |                                        | 1150  | mV            | 1     |
| Min Voltage                        | Vuds                   | using absolute value.                                          | -300 |                                        |       | IIIV          | 1     |
| Crossing Voltage (abs)             | Vcross(ab s)           |                                                                | 250  |                                        | 550   | mV            | 1     |
| Crossing Voltage (var)             | d-Vcross               | Variation of crossing over all edges                           |      | 1                                      | 140   | mV            | 1     |
| Rise Time                          | t <sub>r</sub>         | $V_{OL} = 0.175V, V_{OH} = 0.525V$                             | 175  |                                        | > 700 | ps            | 1     |
| Fall Time                          | t <sub>f</sub>         | $V_{OH} = 0.525V V_{OL} = 0.175V$                              | 175  |                                        | 700   | ps            | 1     |
| Rise Time Variation                | d-t <sub>r</sub>       |                                                                | _ \  |                                        | 125   | ps            | 1     |
| Fall Time Variation                | d-t <sub>f</sub>       |                                                                |      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 125   | ps            | 1     |
| Duty Cycle                         | d <sub>t3</sub>        | Measurement from differential wavefrom                         | 45   |                                        | 55    | %             | 1     |
| Okani laanit ta Outanit            | t <sub>pdBYP</sub>     | Bypass Mode, V <sub>T</sub> = 50%                              | 2500 |                                        | 4500  | ps            | 1     |
| Skew, Input to Output              | tpdPLL                 | PLL Mode $V_T = 50\%$ , Spread Off                             | -250 |                                        | 250   | ps            | 1     |
| Skew, Output to Output             | t <sub>sk3</sub>       | V <sub>T</sub> = 50%                                           | ^    |                                        | 50 <  | ps            | 1     |
| Jitter, Cycle to cycle             | t.                     | RLL mode                                                       |      | >                                      | 50    | ps            | 1,3   |
| onter, Cycle to Cycle              | t <sub>jcyc-cyc</sub>  | Additive Jitter in Bypass Mode                                 |      | $\wedge$                               | (50)  | ps            | 1,3   |
|                                    |                        | PCle Gen1 phase jitter<br>(Additive in Bypass Mode)            |      |                                        | 10    | ps<br>(pk2pk) | 1,4,5 |
|                                    | t <sub>jphaseBYP</sub> | PCle Gen 2 Low Band phase jitter<br>(Additive in Bypass Mode)  |      |                                        | 0.1   | ps<br>(rms)   | 1,4,5 |
| Jitter, Phase                      |                        | PCIe Gen 2 High Band phase jitter<br>(Additive in Bypass Mode) |      |                                        | 0.5   | ps<br>(rms)   | 1,4,5 |
| Jiller, Fridse                     |                        | PCle Gen 1 phase jitter                                        |      |                                        | 86    | ps<br>(pk2pk) | 1,4,5 |
|                                    | t <sub>jphasePLL</sub> | PCIe Gen 2 Low Band phase jitter                               |      |                                        | 3     | ps<br>(rms)   | 1,4,5 |
|                                    |                        | PCIe Gen 2 High Band phase jitter                              | ~    |                                        | 3.1   | ps<br>(rms)   | 1,4,5 |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

 $<sup>^{2}</sup>$  I<sub>REF</sub> = V<sub>DD</sub>/(3xR<sub>R</sub>). For R<sub>R</sub> = 475 $\Omega$  (1%), I<sub>REF</sub> = 2.32mA. I<sub>OH</sub> = 6 x I<sub>REF</sub> and V<sub>OH</sub> = 0.7V @ Z<sub>O</sub>=50 $\Omega$ .

<sup>3</sup> Measured from differential waveform

<sup>&</sup>lt;sup>4</sup> See http://www.pcisig.com for complete specs

<sup>&</sup>lt;sup>5</sup> Device driven by 932S421C or equivalent.

**Clock Periods Differential Outputs with Spread Spectrum Enabled** 

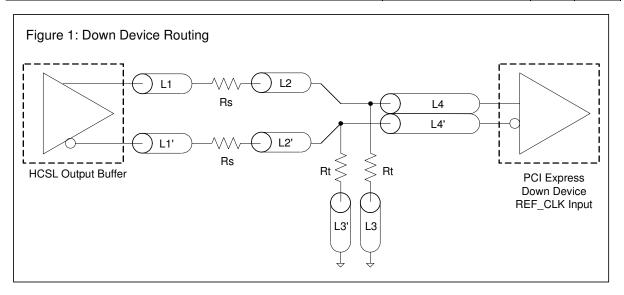
|                                                  | urement<br>indow | 1 Clock             | 1us                   | 0.1s                 | 0.1s     | 0.1s                 | 1us                   | 1 Clock  |       |       |
|--------------------------------------------------|------------------|---------------------|-----------------------|----------------------|----------|----------------------|-----------------------|----------|-------|-------|
| Sy                                               | mbol             | Lg-                 | -SSC                  | -ppm error           | 0ppm     | + ppm error          | +SSC                  | Lg+      |       |       |
|                                                  |                  | Absolute<br>Period  | Short-term<br>Average | Long-Term<br>Average | Period   | Long-Term<br>Average | Short-term<br>Average | Period   |       |       |
| Def                                              | finition         | Minimum<br>Absolute | Minimum<br>Absolute   | Minimum<br>Absolute  | Nominal  | Maximum              | Maximum               | Maximum  |       |       |
|                                                  |                  | Period              | Period                | Period               |          |                      |                       |          | Units | Notes |
|                                                  | <b>DIF 100</b>   | 9.87400             | 9.99900               | 9.99900              | 10.00000 | 10.00100             | 10.05130              | 10.17630 | ns    | 1,2,3 |
| ခု                                               | <b>DIF 133</b>   | 7.41425             | 7.49925               | 7.49925              | 7.50000  | 7.50075              | 7.53845               | 7.62345  | ns    | 1,2,4 |
| Name                                             | <b>DIF 166</b>   | 5.91440             | 5.99940               | 5.99940              | 6.00000  | 6.00060              | 6.03076               | 6.11576  | ns    | 1,2,4 |
| \ <del>\</del> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | DIF 200          | 4.91450             | 4.99950               | 4.99950              | 5.00000  | 5.00050              | 5.02563               | 5.11063  | ns    | 1,2,4 |
| Signal                                           | <b>DIF 266</b>   | 3.66463             | 3.74963               | 3.74963              | 3.75000  | 3.75038              | 3.76922               | 3.85422  | ns    | 1,2,4 |
| S                                                | DIF 333          | 2.91470             | 2.99970               | 2.99970              | 3.00000  | 3.00030              | 3.01538               | 3.10038  | ns    | 1,2,4 |
|                                                  | DIF 400          | 2.41475             | 2.49975               | 2.49975              | 2.50000  | 2.50025              | 2.51282               | 2.59782  | ns    | 1,2,4 |

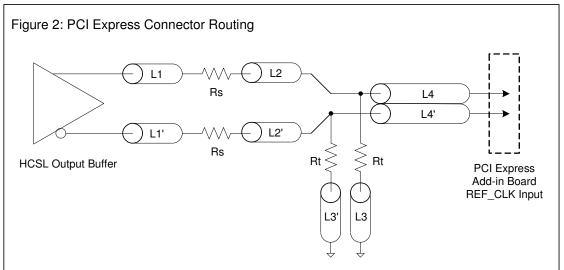
**Clock Periods Differential Outputs with Spread Spectrum Disabled** 

| Meas         | urement        |                     |                       |                      | •        |                      |                       |          |       |       |
|--------------|----------------|---------------------|-----------------------|----------------------|----------|----------------------|-----------------------|----------|-------|-------|
| Wi           | ndow           | 1 Clock             | 1us                   | 0.1s                 | 0.1s     | 0.1s                 | 1us                   | 1 Clock  |       |       |
| Sy           | mbol           | Lg-                 | -SSC                  | -ppm error           | 0ppm     | + ppm error          | +SSC                  | Lg+      |       |       |
|              |                | Absolute<br>Period  | Short-term<br>Average | Long-Term<br>Average | Period   | Long-Term<br>Average | Short-term<br>Average | Period   |       |       |
| Def          | finition       | Minimum<br>Absolute | Minimum<br>Absolute   | Minimum<br>Absolute  | Nominal  | Maximum              | Maximum               | Maximum  |       |       |
|              |                | Period              | Period                | Period               |          |                      |                       |          | Units | Notes |
|              | DIF 100        | 9.87400             |                       | 9.99900              | 10.00000 | 10.00100             |                       | 10.17630 | ns    | 1,2,3 |
| e e          | DIF 133        | 7.41425             |                       | 7.49925              | 7.50000  | 7.50075              |                       | 7.62345  | ns    | 1,2,4 |
| Name         | <b>DIF 166</b> | 5.91440             |                       | 5.99940              | 6.00000  | 6.00060              |                       | 6.11576  | ns    | 1,2,4 |
| <del> </del> | DIF 200        | 4.91450             |                       | 4.99950              | 5.00000  | 5.00050              |                       | 5.11063  | ns    | 1,2,4 |
| Signal       | <b>DIF 266</b> | 3.66463             |                       | 3.74963              | 3.75000  | 3.75038              |                       | 3.85422  | ns    | 1,2,4 |
| ισ           | DIF 333        | 2.91470             |                       | 2.99970              | 3.00000  | 3.00030              |                       | 3.10038  | ns    | 1,2,4 |
|              | DIF 400        | 2.41475             |                       | 2.49975              | 2.50000  | 2.50025              |                       | 2.59782  | ns    | 1,2,4 |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

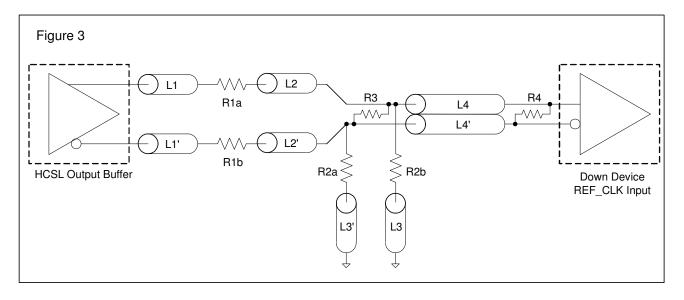
<sup>&</sup>lt;sup>2</sup> All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK409/CK410B/CK505 accuracy requirements. The 9DS400/800 itself does not contribute to ppm error.


<sup>&</sup>lt;sup>3</sup> Driven by SRC output of main clock, PLL or Bypass mode

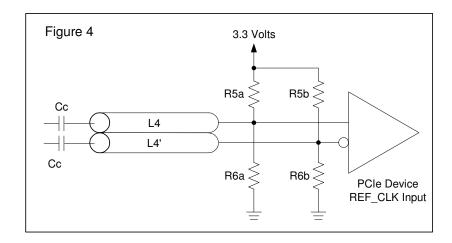

<sup>&</sup>lt;sup>4</sup> Driven by CPU output of CK410B/CK505 main clock, **Bypass mode only** 

| SRC Reference Clock                             |                    |      |        |  |  |  |  |
|-------------------------------------------------|--------------------|------|--------|--|--|--|--|
| Common Recommendations for Differential Routing | Dimension or Value | Unit | Figure |  |  |  |  |
| L1 length, route as non-coupled 50ohm trace     | 0.5 max            | inch | 1      |  |  |  |  |
| L2 length, route as non-coupled 50ohm trace     | 0.2 max            | inch | 1      |  |  |  |  |
| L3 length, route as non-coupled 50ohm trace     | 0.2 max            | inch | 1      |  |  |  |  |
| Rs                                              | 33                 | ohm  | 1      |  |  |  |  |
| Rt                                              | 49.9               | ohm  | 1      |  |  |  |  |

| Down Device Differential Routing                                 |                     |      |   |
|------------------------------------------------------------------|---------------------|------|---|
| L4 length, route as coupled microstrip 100ohm differential trace | 2 min to 16 max     | inch | 1 |
| L4 length, route as coupled stripline 100ohm differential trace  | 1.8 min to 14.4 max | inch | 1 |


| Differential Routing to PCI Express Connector                    |                       |      |   |
|------------------------------------------------------------------|-----------------------|------|---|
| L4 length, route as coupled microstrip 100ohm differential trace | 0.25 to 14 max        | inch | 2 |
| L4 length, route as coupled stripline 100ohm differential trace  | 0.225 min to 12.6 max | inch | 2 |






|       | Alternative Termination for LVDS and other Common Differential Signals (figure 3) |      |    |      |      |     |                                |  |  |  |
|-------|-----------------------------------------------------------------------------------|------|----|------|------|-----|--------------------------------|--|--|--|
| Vdiff | Vp-p                                                                              | Vcm  | R1 | R2   | R3   | R4  | Note                           |  |  |  |
| 0.45v | 0.22v                                                                             | 1.08 | 33 | 150  | 100  | 100 |                                |  |  |  |
| 0.58  | 0.28                                                                              | 0.6  | 33 | 78.7 | 137  | 100 |                                |  |  |  |
| 0.80  | 0.40                                                                              | 0.6  | 33 | 78.7 | none | 100 | ICS874003i-02 input compatible |  |  |  |
| 0.60  | 0.3                                                                               | 1.2  | 33 | 174  | 140  | 100 | Standard LVDS                  |  |  |  |

R1a = R1b = R1 R2a = R2b = R2



| Cable Connected AC Coupled Application (figure 4) |             |      |  |  |  |  |  |
|---------------------------------------------------|-------------|------|--|--|--|--|--|
| Component                                         | Value       | Note |  |  |  |  |  |
| R5a, R5b                                          | 8.2K 5%     |      |  |  |  |  |  |
| R6a, R6b                                          | 1K 5%       |      |  |  |  |  |  |
| Cc                                                | 0.1 μF      |      |  |  |  |  |  |
| Vcm                                               | 0.350 volts |      |  |  |  |  |  |



## General SMBus serial interface information for the ICS9DS400

## How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D8 (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- · ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

| Ind   | ex Block V                  | Vrit | te Operation         |
|-------|-----------------------------|------|----------------------|
| Cor   | ntroller (Host)             |      | ICS (Slave/Receiver) |
| Т     | starT bit                   |      |                      |
| Slav  | e Address D8 <sub>(h)</sub> |      |                      |
| WR    | WRite                       |      |                      |
|       |                             |      | ACK                  |
| Begi  | nning Byte = N              |      |                      |
|       |                             | ACK  |                      |
| Data  | Byte Count = X              |      |                      |
|       |                             |      | ACK                  |
| Begir | nning Byte N                |      |                      |
|       |                             | Ī    | ACK                  |
|       | <b>\Q</b>                   | ţe   |                      |
|       | <b>\Q</b>                   | Byte | <b>\Q</b>            |
|       | <b>\Q</b>                   | ×    | <b>\Q</b>            |
|       |                             | Ī    | <b>\Q</b>            |
| Byt   | e N + X - 1                 |      |                      |
|       |                             | •    | ACK                  |
| Р     | stoP bit                    |      |                      |

### How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D8 (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D9 (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(h)</sub> was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

| Ind   | ex Block Rea                |                     | -                  |  |  |
|-------|-----------------------------|---------------------|--------------------|--|--|
| Con   | troller (Host)              | IC                  | S (Slave/Receiver) |  |  |
| T     | starT bit                   |                     |                    |  |  |
| Slave | e Address D8 <sub>(h)</sub> |                     |                    |  |  |
| WR    | WRite                       |                     |                    |  |  |
|       |                             |                     | ACK                |  |  |
| Begir | nning Byte = N              |                     |                    |  |  |
|       |                             |                     | ACK                |  |  |
| RT    | Repeat starT                |                     |                    |  |  |
| Slave | e Address D9 <sub>(h)</sub> |                     |                    |  |  |
| RD    | ReaD                        |                     |                    |  |  |
|       |                             |                     | ACK                |  |  |
|       |                             |                     |                    |  |  |
|       |                             | Data Byte Count = X |                    |  |  |
|       | ACK                         |                     |                    |  |  |
|       |                             |                     | Beginning Byte N   |  |  |
|       | ACK                         |                     |                    |  |  |
|       |                             | X Byte              | <b>\Q</b>          |  |  |
|       | <b>\rightarrow</b>          | B                   | <b>\Q</b>          |  |  |
|       | <b>♦</b>                    | ×                   | <b>\Q</b>          |  |  |
|       | <b>\Q</b>                   |                     |                    |  |  |
|       |                             |                     | Byte N + X - 1     |  |  |
| N     | Not acknowledge             |                     |                    |  |  |
| Р     | stoP bit                    |                     |                    |  |  |

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (D8/D9)

| Byt   | te 0 | Pin# | Name          | Control Function                 | Type | 0       | 1                           | Default |
|-------|------|------|---------------|----------------------------------|------|---------|-----------------------------|---------|
| Bit 7 | Ī    |      | PD_Mode       | PD# drive mode                   | RW   | driven  | Hi-Z                        | 0       |
| Bit 6 | ı    |      | STOP_Mode     | SRC_Stop# drive mode             | RW   | driven  | Hi-Z                        | 0       |
| Bit 5 | İ    |      |               | Reserved                         |      |         |                             | 0       |
| Bit 4 | 1    |      | SPREAD_AMT(1) | Spread % MSB                     | RW   |         | 0.125%<br>0.25%             | Latch   |
| Bit 3 | -    |      | SPREAD_AMT(0) | Spread % LSB                     | RW   |         | 10 = -0.375%<br>11 = -0.50% |         |
| Bit 2 | 28   | 3    | SPREAD_EN     | Turns on spread                  | RW   | SS Off  | SS On                       | Latch   |
| Bit 1 | 22   | 2    | BYPASS#       | BYPASS#_SSCG                     | RW   | fan-out | SSCG                        | Latch   |
| Bit 0 | -    | ·    | Byte0 CONTROL | Selects control source of Byte 0 | RW   | Smbus   | Input Pins                  | 1       |

Notes: Pins 1, 22 and 28 are latched into Byte 0 on the first power up of the device. Bits [4:1] will NOT reflect changes in these pin states after power up, even though the pins are controlling the function of the part. Setting Byte 0 bit 0 to 0 allows the SMBus to write Bits [4:1] and transfers control of the functions from the pins to SMBus. Once Byte 0 bit 0 is set to 0, the pins no longer impact Byte 0, bits [4:1] or the device function.

**SMBus Table: Output Control Register** 

| By    | te 1 | Pin # | Name     | Control Function | Type | 0       | 1      | Default |
|-------|------|-------|----------|------------------|------|---------|--------|---------|
| Bit 7 |      | -     | Reserved | Reserved         | RW   | Rese    | erved  | 1       |
| Bit 6 | 22   | ,23   | DIF_6    | Output Enable    | RW   | Disable | Enable | 1       |
| Bit 5 | 19   | ,20   | DIF_5    | Output Enable    | RW   | Disable | Enable | 1       |
| Bit 4 |      | -     | Reserved | Reserved         | RW   | Rese    | erved  | 1       |
| Bit 3 |      | -     | Reserved | Reserved         | RW   | Rese    | erved  | 1       |
| Bit 2 | 9,   | 10    | DIF_2    | Output Enable    | RW   | Disable | Enable | 1       |
| Bit 1 | 6    | ,7    | DIF_1    | Output Enable    | RW   | Disable | Enable | 1       |
| Bit 0 |      | -     | Reserved | Reserved         | RW   | Rese    | erved  | 1       |

NOTE: The SMBus Output Enable Bit must be '1' AND the respective OE pin must be active for the output to run!

SMBus Table: OE Pin Control Register

| Byt   | te 2       | Pin#                            | Name     | Control Function         | Type                 | 0        | 1         | Default |
|-------|------------|---------------------------------|----------|--------------------------|----------------------|----------|-----------|---------|
| Bit 7 |            | -                               | Reserved | Reserved                 | Reserved RW Reserved |          | 0         |         |
| Bit 6 | 22,        | ,23                             | DIF_6    | DIF_6 Stoppable with OE6 | RW                   | Free-run | Stoppable | 0       |
| Bit 5 |            | - Reserved Reserved RW Reserved |          | erved                    | 0                    |          |           |         |
| Bit 4 | - Reserved |                                 | Reserved | Reserved                 |                      | Rese     | erved     | 0       |
| Bit 3 |            | -                               | Reserved | Reserved                 | RW                   | Rese     | erved     | 0       |
| Bit 2 |            |                                 | Reserved | Reserved                 | RW                   | Reserved |           | 0       |
| Bit 1 | 6          | ,7                              | DIF_1    | DIF_1 Stoppable with OE1 | RW                   | Free-run | Stoppable | 0       |
| Bit 0 |            | -                               | Reserved | Reserved                 | RW                   | Rese     | erved     | 0       |

**SMBus Table: Reserved Register** 

| Byte  | e 3 | Pin# | Name | Control Function | Type | 0 | 1 | Default |
|-------|-----|------|------|------------------|------|---|---|---------|
| Bit 7 |     |      |      | Reserved         |      |   |   | X       |
| Bit 6 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 5 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 4 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 3 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 2 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 1 |     |      |      | Reserved         |      |   |   | Χ       |
| Bit 0 |     |      |      | Reserved         |      |   |   | Χ       |

SMBus Table: Vendor & Revision ID Register

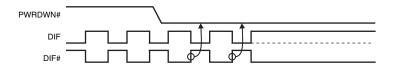
| Byt   | te 4 | Pin # | Name | Control Function | Type | 0 | 1 | Default |
|-------|------|-------|------|------------------|------|---|---|---------|
| Bit 7 |      |       | RID3 |                  | R    | - | - | 0       |
| Bit 6 |      | -     | RID2 | REVISION ID      | R    | - | - | 0       |
| Bit 5 |      | -     | RID1 |                  | R    | - | - | 0       |
| Bit 4 |      | -     | RID0 |                  | R    | 1 | - | 0       |
| Bit 3 |      | -     | VID3 |                  | R    | ı | - | 0       |
| Bit 2 |      |       | VID2 | VENDOR ID        | R    | - | - | 0       |
| Bit 1 |      | -     | VID1 | V ENDOR ID       | R    | - | - | 0       |
| Bit 0 |      | -     | VID0 |                  | R    | - | - | 1       |

**SMBus Table: DEVICE ID** 

| Byt   | e 5 | Pin # | Name | Control Function  | 1 | Гуре | 0         | 1              | Default |  |
|-------|-----|-------|------|-------------------|---|------|-----------|----------------|---------|--|
| Bit 7 |     | -     |      | Device ID 7 (MSB) |   |      |           |                | Χ       |  |
| Bit 6 |     | -     |      | Device ID 6       |   | R    |           |                | Χ       |  |
| Bit 5 |     | -     |      | Device ID 5       |   | R    | Dovice ID | is 80 Hex      | 0       |  |
| Bit 4 |     | _     |      | Device ID 4       |   | R    | for 9DS80 | 0              |         |  |
| Bit 3 |     | -     |      | Device ID 3       |   | R    |           |                | 0       |  |
| Bit 2 |     | -     |      | Device ID 2       |   | R    | nex ioi   | Hex for 9DS400 |         |  |
| Bit 1 |     | -     |      | Device ID 1       |   | R    | ]         |                | 0       |  |
| Bit 0 |     | -     |      | Device ID 0       |   | R    |           |                | 0       |  |

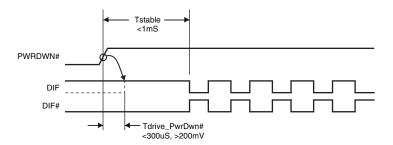
**SMBus Table: Byte Count Register** 

| Ву    | te 6 | Pin # | Name | Control<br>Function                     | Туре | 0 | 1 | Default |
|-------|------|-------|------|-----------------------------------------|------|---|---|---------|
| Bit 7 | -    | -     | BC7  |                                         | RW   | - | - | 0       |
| Bit 6 | _    | -     | BC6  |                                         | RW   | - | - | 0       |
| Bit 5 | _    | -     | BC5  |                                         | RW   | - | - | 0       |
| Bit 4 | _    | -     | BC4  | Writing to this register configures how | RW   | ı | - | 0       |
| Bit 3 | _    | -     | BC3  | many bytes will be read back.           | RW   | - | - | 0       |
| Bit 2 | -    | -     | BC2  |                                         | RW   | 1 | - | 1       |
| Bit 1 | _    | -     | BC1  |                                         | RW   | - | - | 1       |
| Bit 0 | _    | -     | BC0  |                                         | RW   | - | - | 1       |


Note: Polarities in timing diagrams are shown OE INV = 0. They are similar to OE INV = 1.

#### PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


### **PD# Assertion**

When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I<sub>REF</sub> and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.



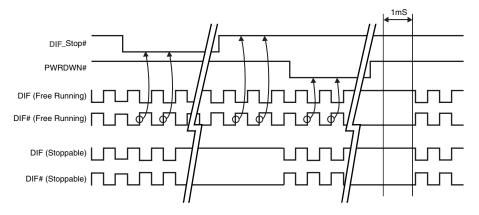
#### PD# De-assertion

Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC\_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

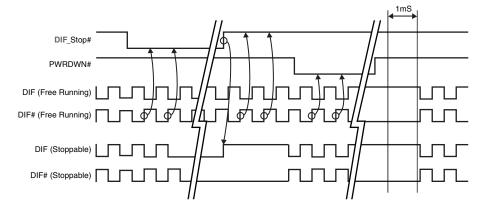


### DIF\_STOP#

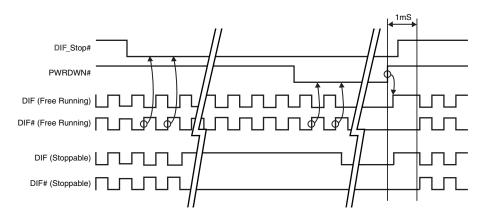
The DIF\_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on DIF\_IN for this input to work properly. The DIF\_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.


### **DIF STOP# - Assertion**

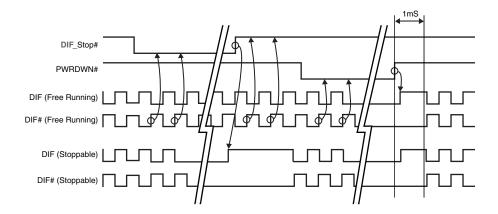
Asserting DIF\_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the DIF\_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI<sub>REF</sub> DIF# is not driven, but pulled low by the termination. When the DIF\_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.


### DIF\_STOP# - De-assertion (transition from '0' to '1')

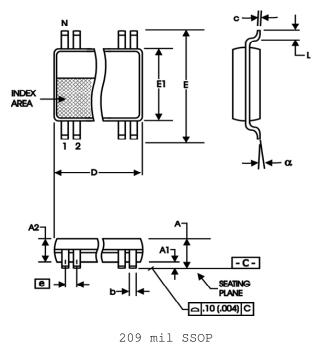
All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the DIF\_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


### DIF\_STOP\_1 (DIF\_Stop = Driven, PD = Driven)




### DIF STOP 2 (DIF Stop =Tristate, PD = Driven)




# **DIF\_STOP\_3** (**DIF\_Stop** = **Driven**, **PD** = **Tristate**)



# **DIF\_STOP\_4** (**DIF\_Stop** = **Tristate**, **PD** = **Tristate**)

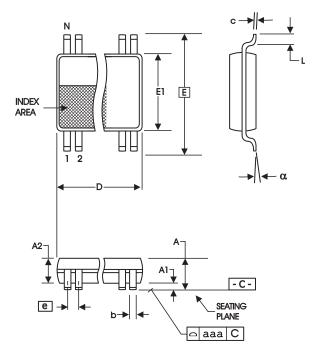


# 28-pin SSOP Package Dimensions



209 mil SSOP

| SYMBOL | In Millimeters COMMON DIMENSIONS |      | In Inches COMMON DIMENSIONS |              |  |
|--------|----------------------------------|------|-----------------------------|--------------|--|
|        | MIN                              | MAX  | MIN                         | MAX          |  |
| Α      |                                  | 2.00 |                             | .079         |  |
| A1     | 0.05                             | -    | .002                        | -            |  |
| A2     | 1.65                             | 1.85 | .065                        | .073         |  |
| b      | 0.22                             | 0.38 | .009                        | .015         |  |
| С      | 0.09                             | 0.25 | .0035                       | .010         |  |
| D      | SEE VARIATIONS                   |      | SEE VARIATIONS              |              |  |
| Е      | 7.40                             | 8.20 | .291                        | .323         |  |
| E1     | 5.00                             | 5.60 | .197                        | .220         |  |
| е      | 0.65 BASIC                       |      | 0.0256                      | 0.0256 BASIC |  |
| L      | 0.55                             | 0.95 | .022                        | .037         |  |
| N      | SEE VARIATIONS                   |      | SEE VARIATIONS              |              |  |
| α      | 0°                               | 8°   | 0°                          | 8°           |  |


#### **VARIATIONS**

| N  | D mm. |       | D (inch) |      |
|----|-------|-------|----------|------|
|    | MIN   | MAX   | MIN      | MAX  |
| 28 | 9.90  | 10.50 | .390     | .413 |

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

# 28-pin TSSOP Package Dimensions



4.40 mm. Body, 0.65 mm. Pitch TSSOP

|        | (173 mi           | il) (25.6 n | nil)              |          |
|--------|-------------------|-------------|-------------------|----------|
|        | In Millimeters    |             | In Inches         |          |
| SYMBOL | COMMON DIMENSIONS |             | COMMON DIMENSIONS |          |
|        | MIN               | MAX         | MIN               | MAX      |
| Α      |                   | 1.20        |                   | .047     |
| A1     | 0.05              | 0.15        | .002              | .006     |
| A2     | 0.80              | 1.05        | .032              | .041     |
| b      | 0.19              | 0.30        | .007              | .012     |
| С      | 0.09              | 0.20        | .0035             | .008     |
| D      | SEE VARIATIONS    |             | SEE VARIATIONS    |          |
| E      | 6.40 BASIC        |             | 0.252 BASIC       |          |
| E1     | 4.30              | 4.50        | .169              | .177     |
| е      | 0.65 BASIC        |             | 0.0256 BASIC      |          |
| L      | 0.45              | 0.75        | .018              | .030     |
| N      | SEE VARIATIONS    |             | SEE VAF           | RIATIONS |
| α      | 0°                | 8°          | 0°                | 8°       |
| aaa    |                   | 0.10        |                   | .004     |

#### **VARIATIONS**

| N  | D mm. |      | D (inch) |      |
|----|-------|------|----------|------|
|    | MIN   | MAX  | MIN      | MAX  |
| 28 | 9.60  | 9.80 | .378     | .386 |

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

### 9DS400 Ordering Information

| Part / Order Number | Marking     | Shipping Packaging | Package      | Ambient<br>Operating<br>Temperature |
|---------------------|-------------|--------------------|--------------|-------------------------------------|
| 9DS400AGLF          | 9DS400AGLF  | Tubes              | 28-pin TSSOP | 0 to +70° C                         |
| 9DS400AGLFT         | 9DS400AGLF  | Tape and Reel      | 28-pin TSSOP | 0 to +70° C                         |
| 9DS400AGILF         | 9DS400AGILF | Tubes              | 28-pin TSSOP | -40 to +85° C                       |
| 9DS400AGILFT        | 9DS400AGILF | Tape and Reel      | 28-pin TSSOP | -40 to +85° C                       |
| 9DS400AFLF          | 9DS400AFLF  | Tubes              | 28-pin SSOP  | 0 to +70° C                         |
| 9DS400AFLFT         | 9DS400AFLF  | Tape and Reel      | 28-pin SSOP  | 0 to +70° C                         |
| 9DS400AFILF         | 9DS400AFILF | Tubes              | 28-pin SSOP  | -40 to +85° C                       |
| 9DS400AFILFT        | 9DS400AFILF | Tape and Reel      | 28-pin SSOP  | -40 to +85° C                       |

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

**Revision History** 

| Rev. | Issue Date | Description                                                      | Page # |
|------|------------|------------------------------------------------------------------|--------|
| 0.1  | 9/16/2009  | Initial release.                                                 |        |
| 0.2  | 9/17/2009  | Updated IDD specs in Input/Supply/Common Output Parameters table | 5      |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |
|      |            |                                                                  |        |

#### **IMPORTANT NOTICE AND DISCLAIMER**

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <a href="https://www.renesas.com/contact-us/">www.renesas.com/contact-us/</a>.