

This product is subject to EU export restrictions according to
Council Regulation (EC) No. 428/2009, dual-use control
category 5D002.

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

 I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

 I
D

. DemoKey
2.4

Doc version 1.1

Status Approved

Reference IID-DK2-4-DS

For internal use by Customer only

Confidential

Data Sheet

www.intrinsic-id.com

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

2 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

This product is subject to EU export restrictions according to Council Regulation (EC) No. 428/2009, dual-use control category
5D002.

This document contains information which is proprietary and confidential to Intrinsic ID B.V. and is intended for internal use only.
The document is provided with the express understanding that the recipient will not divulge its content to other parties or otherwise
misappropriate the information contained herein. Please destroy this document if you are not the intended recipient. Thank you.

Copyright in this document rests with Intrinsic ID B.V. Reproduction or publication in any medium of this document, in whole or
in part, is expressly prohibited without the prior written permission of Intrinsic ID. Intrinsic ID reserves the right to make any
changes to this document without prior notice. The contents of this document is provided AS-IS and without any warranties or
guarantees as to accuracy or completeness. Receipt or possession of this document conveys no license under any patent or
other intellectual property right of Intrinsic ID.

Intrinsic ID®, QuiddiKey®, QuiddiCard®, BroadKey™, DemoKey™, Citadel™, Spartan™, Confidentio™, Fuzzy ID™ and other
designated brands included herein are trademarks of Intrinsic ID B.V. All other trademarks are the property of their respective
owners.

This product contains code which is copyright 2014 Kenneth MacKay and licensed under the BSD license:

Copyright (c) 2014, Kenneth MacKay
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

3 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

History Information

Version Date Change Description Modified

by:

Reviewed

by:

1.0 2018-07-17 Initial version for DemoKey 2.4 RS DA, AS,

PB

1.1 2018-09-04 Minor update AC RS

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

4 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Table of Contents
History Information 3

Table of Contents 4

1. Introduction 7
1.1. Document Objective 7
1.2. Definitions, Acronyms and Abbreviations 7
1.3. Product Brief 8

1.3.1. DemoKey 8
1.3.2. BroadKey 8

1.4. Product Use 9

2. BroadKey Configurations and Function Sets 12
2.1. Configurations 12
2.2. Base Function Set 14

2.2.1. Product Information Function 14

2.2.2. State Management Functions 15
2.2.2.1. Device Power-up/Reset and Initializing BroadKey 15

2.2.2.2. Enrolling BroadKey with Activation Code Output 15

2.2.2.3. Starting BroadKey with Activation Code Input 16

2.2.2.4. Stopping BroadKey 16
2.3. Unique Device Key and Random Value Generation Function Set 16

2.3.1. Unique Device Key Generation 17

2.3.1.1. Generating Device-Unique Symmetric Keys 17
2.3.1.2. Generating Device-Unique and Random Elliptic Curve Private Keys 17

2.3.2. Random Value Generation Function 18
2.4. Wrap and Unwrap Application Keys Function Set 18

2.4.1. Key Wrapping Functions 19
2.5. Public Key Management and Crypto Function Set 19

2.5.1. ECC Key Management Functions 20
2.5.1.1. Managing ECC Private Keys as Private Key Codes 20

2.5.1.2. Managing ECC Public Keys as Public Key Codes 21
2.5.2. ECC Signing Functions 22
2.5.3. ECC Key Agreement and Encryption Functions 22

2.5.3.1. ECDH Key Agreement 23
2.5.3.2. ECDH-based Cryptogram Generation and Processing 23

2.6. Profiling Information 24
2.6.1. BroadKey Performance and Stack Usage 24
2.6.2. BroadKey Memory Requirements 28

3. BroadKey Module 30
3.1. Library Files 30

3.2. States and State Transitions 30
3.3. BroadKey API Function Return Codes 31

3.4. BroadKey API Defines and Type Definitions 34

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

5 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.4.1. Defines 34

3.4.2. Type Definitions of the Unique Device Key and Random Value Generation

Function Set 37
3.4.2.1. bk_sym_key_type_t 37

3.4.3. Type Definitions of the Public Key Management and Crypto Function Set 38
3.4.3.1. bk_ecc_curve_t 38

3.4.3.2. bk_ecc_key_source_t 39
3.4.3.3. bk_ecc_key_purpose_t 40

3.4.3.4. bk_ecc_cryptogram_type_t 41
3.4.3.5. bk_ecc_private_key_code_t and bk_ecc_public_key_code_t 42

3.5. BroadKey API Function Definitions 42
3.5.1. Functions of the Base Function Set 43

3.5.1.1. bk_get_product_info 43

3.5.1.2. bk_init 45
3.5.1.3. bk_enroll 46
3.5.1.4. bk_start 47
3.5.1.5. bk_stop 48

3.5.2. Functions of the Unique Device Key and Random Value Generation Function Set

 49

3.5.2.1. bk_generate_random 49

3.5.2.2. bk_get_key 50

3.5.2.3. bk_get_private_key 51
3.5.3. Functions of the Wrap and Unwrap Application Keys Function Set 53

3.5.3.1. bk_wrap 53
3.5.3.2. bk_unwrap 55

3.5.4. Functions of the Public Key Management and Crypto Function Set 57

3.5.4.1. bk_create_private_key 57
3.5.4.2. bk_compute_public_from_private_key 61

3.5.4.3. bk_derive_public_key 62

3.5.4.4. bk_import_public_key 64
3.5.4.5. bk_export_public_key 66
3.5.4.6. bk_ecdsa_sign 68
3.5.4.7. bk_ecdsa_verify 71

3.5.4.8. bk_ecdh_shared_secret 73
3.5.4.9. bk_generate_cryptogram 75
3.5.4.10. bk_process_cryptogram 79
3.5.4.11. bk_get_public_key_from_cryptogram 84

4. Integration Guidelines 86

4.1. Integration Considerations 86
4.2. Reliability Optimizations 86
4.3. Power-up Recommendations 87

Appendix A. Example Code for Software Development 88
A.1. Includes and Defines for Example Code 89

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

6 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.2. Example Code for BroadKey Initialization 90

A.3. Example Code for BroadKey Enroll and Stop 91
A.4. Example Code for BroadKey Start and Stop 92
A.5. Example Code for BroadKey Get Key 93
A.6. Example Code for BroadKey Get Private Key 94
A.7. Example Code for BroadKey Generate Random 95

A.8. Example Code for BroadKey Wrap and Unwrap 96
A.9. Example Code for BroadKey Private and Public Key Computation, and

Reconstruction without Storage 97
A.10. Example Code for BroadKey Public Key Import 100
A.11. Example Code for BroadKey Derive Public Key 101
A.12. Example Code for BroadKey ECDSA Sign and Verify 102
A.13. Example Code for BroadKey ECDH 103

A.14. Example Code for BroadKey Cryptogram Generation and Processing 104
A.15. Example Code for BroadKey Get Public Key From Cryptogram and Multiple

Sender Authentication 108

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

7 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

1. Introduction

1.1. Document Objective

BroadKey is a software IP solution representing Intrinsic ID’s flagship product line for secret

key storage and cryptographic operations. DemoKey is a demo version of BroadKey. It has the

same functionality and API’s as BroadKey, but is intended for demonstration purposes only.

Its security properties have been modified, to prevent it from being used in a actual product.

See paragraph 1.3.1 for details.

This document explains the use and interface of the BroadKey software library and is mainly

intended for SW developers deploying BroadKey in their application project. Targeted readers

are expected to understand the basics of embedded SW programming.

This data sheet subsequently presents: the available configurations of BroadKey, and a

description of the functionality which they offer (Section 2), the SW programming interface

of the BroadKey module (Section 3), and some brief guidelines for integrating BroadKey in a

product (Section 4). As a reference, Appendix A presents some code examples demonstrating

typical deployments of BroadKey.

This data sheet is valid for the following product version: DemoKey 2.4, i.e. a call to the

bk_get_product_info function (See Section 3.5.1.1) should return:

• product_id = 0x44 (character ‘D’ indicating DemoKey)

• major_version = 0x02

• minor_version = 0x04

NOTICE: This data sheet describes BroadKey in the sections without colored background.

The sections with this gray colored background, describes the changes made for DemoKey.

1.2. Definitions, Acronyms and Abbreviations

AC Activation Code

API Application Programming Interface

bk_ BroadKey (as prefix in function/variable names)

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECDH Elliptic Curve Diffie-Hellman

EEPROM Electrically Erasable Programmable Read-Only Memory

IID_ Intrinsic ID (as prefix in return codes)

IP Intellectual Property

k x1,000

M x1,000,000

MCU MicroController Unit

N.A. Not Available

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

8 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

NIST National Institute of Standards and Technology (US agency)

NVM Non-Volatile Memory

PUF Physical Unclonable Function

SD Start-up Data (of uninitialized SRAM)

SRAM Static Random Access Memory

Vdd Supply Voltage

1.3. Product Brief

1.3.1. DemoKey

DemoKey is a software demonstration library, demonstrating the capabilities and interfaces of

BroadKey (section 1.3.2). The goal of DemoKey is specifically for purposes of demonstration,

pre-integration, functionality testing, etc.

DemoKey is explicitly not intended to be used for the following purposes:

• Deployment in actual products, security.

• Use for security purposes, even outside a deployed product. Please take care that,

even in demonstration or testing scenarios, DemoKey is not (inadvertently) used to

process actual secrets used in real-life applications.

• Profiling of operations in terms of performance, memory use, code size, etc.

• Reliability assessments.

• Security assessments.

Notice: If you want to do one of the above, please contact Intrinsic ID, BroadKey should

be used.

In terms of configurations and functional interfaces, DemoKey is completely compatible with

BroadKey, so an application developed against DemoKey’s API can effortlessly be switched

to BroadKey. On the other hand, in terms of security strength, DemoKey is severely crippled

compared to BroadKey, to the extent that it cannot be used as a secure root of trust.

1.3.2. BroadKey

The product brief of BroadKey is provided in this section. Please note that this description only

matches DemoKey in terms of functional interfaces, certainly not in terms of security strength.

Furthermore, there are some limitations in functional execution which are detailed in Section

2.

BroadKey is a software IP solution representing Intrinsic ID’s flagship product line for secret

key generation and storage. It offers the full benefits of an SRAM Physical Unclonable

Function or SRAM PUF in an optimized and configurable module.

Depending on its configuration, BroadKey comes with the following functional features:

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

9 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

• Generation, storage and reconstruction of device-unique keys (128, 192 and 256 bit

symmetric keys and NIST P-192/224/256 elliptic curve key pairs)

• Generation of random numbers seeded by device noise

• Secure key storage based on device-unique wrapping keys

• Generation and reconstruction of device-specific or random elliptic curve key pairs

• Importing of external elliptic curve key pairs as device-protected key code formats

• Exporting of elliptic curve public keys, e.g. for certification

• Elliptic-curve signature generation and verification based on protected key codes

• Elliptic-curve key agreement function based on device-protected key codes

• Elliptic-curve-based secure cryptogram generation and processing based on device-

protected key codes, for secure and authenticated messaging

Its main benefits are:

• Protects your data with the electronic fingerprint of the chip:

o no need to store secrets in NVM;

o the calling application does not have to handle unprotected private keys

o keys and secrets are not present in the system when powered off

• Cryptographically secure RNG based on chip power-up noise

• SW-only solution1 with HW security based on standard SRAM available on target

• Cost efficient; small footprint for the specified key strength

• Easy to use and easily scalable to billions of devices

• Overall security strength up to 256 bits for the root secrets of BroadKey.2

• Applies improved countermeasures against side-channel attacks

BroadKey’s SRAM PUF works reliably under a wide range of operating conditions:

• Temperatures ranging from -55°C to +150°C

• Supply voltage variation of ±20%

• Qualified on semiconductor nodes ranging from 350nm to 7nm, including low power,

high speed and high density processes

• Guaranteed lifetime >25 years, or limited by microcontroller’s lifetime

1.4. Product Use

Figure 1 shows, very basically, the block diagram of a microcontroller unit (MCU). BroadKey

is an (embedded) software module which is loaded from memory (e.g. NVM) and executed by

the microcontroller. Typically, the BroadKey library is integrated into the customer’s SW

project.

1 BroadKey SW is being developed to meet FIPS 140-2 Appendix B “Recommended Software Development

Practices”. (FIPS PUB 140-2 “Security Requirement for Cryptographic Modules”,

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf) Please contact Intrinsic ID sales support for a

compliance overview and list of deviations.
2 The security strength of individual functions can be lower, depending on their cryptographic properties; e.g.,

the security strength of the elliptic curve cryptographic functions is limited to 128 bits, when the NIST P-256

curve is used.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

10 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Figure 1: Basic MCU block diagram.

BroadKey allows for secure key extraction from unique physical properties of the underlying

hardware (in particular the embedded SRAM block), instead of storing keys in tamper resistant

NVM (e.g. secure EEPROM) or even hard-wiring it into the encryption core. This approach is

based on the concept of Physical Unclonable Functions (PUFs). BroadKey generates an

Activation Code (AC) which, in combination with SRAM start-up behavior, is used to

reconstruct device-unique secrets for use by the system, without these secrets ever having to

leave the device:

• The key storage functionality (both generation and protection) can be called via the

commands of the BroadKey SW API.

• The key generation commands provide access to the device key generation functionality

(both symmetric and elliptic curve). When a device key is not needed anymore by the

software it can be removed from memory. When it is needed later it can be

reconstructed again.

• The key protection commands provide access to the functionality for protecting the use

of keys:

o A user key protected by BroadKey can only be retrieved at a later time on the

same device and will be meaningless on other devices.

o BroadKey’s elliptic-curve functionality is only called with device-protected

keys. This avoids the calling application to have to handle sensitive key

material. The key values themselves are only present internally to BroadKey.

The BroadKey security IP is a stateful software module, which entails that its available

functionality is dependent on the state it is in. In addition, compatibility between BroadKey

function calls at different points in time also depends on the Activation Code which is used to

put BroadKey in its operational state.

BroadKey relies on and/or integrates with the standard building blocks of an MCU system

(Figure 1) in the following way:

• Microcontroller:

o Loads the BroadKey machine code and executes it.

• NVM:

o Typically stores the BroadKey machine code (e.g. in Flash, or ROM).

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

11 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

o Typically used to store the generated Activation Code (e.g. in Flash) in between

generation and reconstruction.

o Could be used to persistently store keys in the form of key codes which are

protected with device-unique secrets.

o For the storage of activation codes and key codes, no security assumptions about

the NVM need to be made, since they are only intelligible to BroadKey running

on the same device.

o Optionally used for the storage of monotonic counters for particular

cryptographic operations.

• SRAM/Working Memory:

o BroadKey requires dedicated access to a block of uninitialized embedded

SRAM which is used as SRAM PUF.

o SRAM (or other embedded memory) is also used as regular working memory

(stack and heap) in the conventional way.

• Peripherals:

o BroadKey has no reliance on any peripherals.

• Crypto Accelerators:

o BroadKey embeds all cryptographic components it needs internally in SW. In

that sense, it has no reliance on the availability of dedicated crypto accelerators

on the MCU.

o However, if crypto accelerators are available on the MCU, BroadKey could

leverage them to improve performance, given that they can be accessed by

BroadKey’s custom hardware abstraction layer.3 BroadKey can benefit from

access to accelerators for the following cryptographic operations:

▪ SHA256 and/or HMAC-SHA256

▪ AES

3 Please contact Intrinsic ID sales support for questions related to integrating BroadKey with on-board crypto

accelerators.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

12 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

2. BroadKey Configurations and Function Sets

2.1. Configurations

Table 1: Standard Configurations of BroadKey

Function Sets

Configurations

[Security Strength 128 or 256]

BroadKey-

Safe

BroadKey-

Plus

BroadKey-

Pro

Base

(see Section2.2)

Product information

(see Section 2.2.1)
Y Y Y

State management

(see Section 2.2.2)
Y Y Y

Unique device key

and random value

generation

(see Section 2.3)

Unique device key

generation

(see Section 2.3.1)

Y Y Y

Random value

generation

(see Section 2.3.2)

Y Y Y

Wrap and unwrap

application keys

(see Section 2.4)

Key wrapping

(see Section 2.4.1)
 Y Y

Public key

management and

crypto

(see Section 2.5)

ECC key

management

(see Section 2.5.1)

 Y

ECC signing

(see Section 2.5.2)
 Y

ECC key agreement

and encryption

(see Section 2.5.3)

 Y

The BroadKey software module can be delivered in one of a number of standard configurations,

as listed in Table 1. A standard BroadKey configuration is differentiated by the function sets

which it supports, where a function set is a collection of software functions which naturally

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

13 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

belong together. Table 1 lists the different function sets which can be implemented by

BroadKey:

• The Base function set, containing functions related to product information and

BroadKey state management. The functions of this set are always implemented by

BroadKey, regardless of its configuration.

• The Unique device key and random value generation function set, containing functions

related to generating device-unique keys (symmetric as well as ECC private keys) and

fully random bits.

• The Wrap and unwrap application keys function set, containing functions related to

protecting and retrieving external application keys.

• The Public key management and crypto function set, containing functions related to

managing device-unique as well as external private/public key pairs, and functions for

performing public-key crypto operations based on these managed keys.

Table 1 shows how these function sets are implemented by three possible BroadKey standard

configurations in an incremental manner:

1. BK-Safe, implementing the Base and the Unique device key and random value

generation function sets. This configuration is indicated by the

BK_CONFIGURATION_SAFE_ENABLED macro being defined (see Section 3.4.1).

2. BK-Plus, implementing the Base, the Unique device key and random value generation,

and the Wrap and unwrap application keys function sets. This configuration is indicated

by the BK_CONFIGURATION_PLUS_ENABLED macro being defined (see Section

3.4.1).

3. BK-Pro, implementing the Base, the Unique device key and random value generation,

the Wrap and unwrap application keys, and the Public key management and crypto

function sets. This configuration is indicated by the

BK_CONFIGURATION_PRO_ENABLED macro being defined (see Section 3.4.1).

Only one of the BK_CONFIGURATION_... macros will be defined for a particular

configuration.

Each of these three standard configurations is available in two variants with different security

strengths, being 128-bit and 256-bit. This value is specified by the

BK_SECURITY_SIZE_BITS constant (see Section 3.4.1) and indicates the highest security

level which any of BroadKey’s cryptographic functions can offer. Moreover, this value will

also determine the size of some other product parameters for the given configuration, including

the required SRAM PUF size and the size of the activation code.

As a reference and overview, Figure 2 visually shows the different function sets defined for

BroadKey, and which functions they list. The next sections (Sections 2.2, 2.3, 2.4, and 2.5)

respectively describe the functions contained in each function set. The API of these functions

is defined in respectively Sections 3.5.1, 3.5.2, 3.5.3, and 3.5.4.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

14 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Figure 2: Functions listed in each function set, and function sets supported by each

configuration of BroadKey

The available product configurations, and the function sets they comprise, are precisely the

same for DemoKey as for BroadKey. One important side note is that, while DemoKey is also

available in 128- and 256-bit variants, this metric does not reflect DemoKey’s effective

security strength. The effective security strength of DemoKey is virtually zero towards a

knowledgeable attacker.

2.2. Base Function Set

The Base function set contains a number of functions which are always available in BroadKey,

regardless of which configuration it is in. These Base functions do not provide any

cryptographic functionality but are solely intended for inspecting and controlling the BroadKey

module.

2.2.1. Product Information Function

BroadKey has a function which can be used to determine the exact version of the software

library which is being used (bk_get_product_info, see Section 3.5.1.1 for the API). The

version information is important to verify what the available functionality of the product is,

and which product documentation applies to it.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

15 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

 For DemoKey the returned product_id parameter is different, to make explicitly clear

that the product at hand is DemoKey, and not BroadKey. For DemoKey, the product_id is

0x44 (ASCII “D”) while for BroadKey it is 0x42 (ASCII “B”).

2.2.2. State Management Functions

The BroadKey security IP is a stateful software module, which entails that its available

functionality is dependent on the state it is in. In addition, compatibility between BroadKey

function calls at different points in time also depends on the Activation Code which is used to

put BroadKey in its operational state. This subsection provides more information on the

functional states of BroadKey, and the function calls for managing them. The full state-

transition flow, and how to control it, is explained in Section 3.2.

2.2.2.1. Device Power-up/Reset and Initializing BroadKey

The security of BroadKey is built upon an SRAM PUF, which consists of the start-up data (SD)

of an SRAM range. After a cold reset (device power-up) or a warm reset (software/hardware

reset), BroadKey always needs to condition and/or verify the SRAM SD for consistency and

security. For this reason, after a cold or warm reset, the BroadKey module will be in an

Uninitialized state. Before any other operation, one should first call bk_init (see Section 3.5.1.2

for the API) to bring BroadKey to the Initialized state.

2.2.2.2. Enrolling BroadKey with Activation Code Output

After successful initialization, BroadKey can be Enrolled by calling bk_enroll (see Section

3.5.1.3 for the API). Enrollment instantiates a new cryptographic context4 from the secret

SRAM SD, and produces an AC which it outputs to the calling software. The cryptographic

functionality offered by the BroadKey API (as specified by the function sets detailed in

Sections 2.3, 2.4 and 2.5) only becomes available after a cryptographic context is instantiated

(either through enrolling or starting BroadKey).

It is important to note that the combination of SRAM SD and AC defines the instantiated

cryptographic context. If, at a later point, the same context is required in order to perform

compatible operations, the same AC needs to be provided to the BroadKey module on the same

physical device (in a bk_start call, see Section 2.2.2.3). This entails that the AC needs to be

stored in between usages of BroadKey, and it is the responsibility of the calling software to

take care of this. The AC does not contain any confidential information and can therefore be

stored publicly in a non-volatile memory, on- or off-chip, without additional protection.

Evidently, the AC is also device-specific and using it on another device will result in an error.

This results from the fact that the SRAM SD of every device is unique and does not match with

an AC of another device. It is one of the core security features of BroadKey which protects the

system against cloning and counterfeiting.

Over the lifetime of a device, bk_enroll needs to be called at least once to be able to use

BroadKey’s functions. After that, the same cryptographic context can always be re-instantiated

4 A cryptographic context is BroadKey’s internal representation of the device-unique cryptographic data that is

derived from the SRAM start-up data (i.e. the PUF), and which is used as the root secret of BroadKey’s

cryptographic functionality.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

16 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

using bk_start. Technically, bk_enroll can be called multiple times, but note that this will

result in different ACs and contexts which are separated and hence incompatible with each

other. Multiple calls to bk_enroll over a device’s lifetime are only meaningful if the above is

desired behavior.

2.2.2.3. Starting BroadKey with Activation Code Input

After successful initialization, BroadKey can be Started by calling bk_start (see Section

3.5.1.4 for the API). Starting re-instantiates a cryptographic context which was previously

generated with bk_enroll, from the secret SRAM SD and the AC output by by bk_enroll.

After the cryptographic context is re-instantiated, BroadKey’s cryptographic functionality (as

specified by the function sets detailed in Sections 2.3, 2.4 and 2.5) becomes available.

Over the lifetime of a device, bk_start needs to be called every time BroadKey’s

cryptographic functionality is needed, after each device power-up or reset and bk_init, or after

each call to bk_stop (see Section 2.2.2.4). It is the responsibility of the calling software to

retrieve the correct AC from storage and provide it as an input to bk_start.

For BroadKey, the reliability of bk_start on a correct device is extremely high, with a failure

rate under normal circumstances << 10-9, and even under extreme circumstances still < 10-9.

For DemoKey, the reliability is somewhat reduced to a failure rate < 10-4 under normal

circumstances. This level of reliability is totally sufficient for demonstration purposes.

Likewise, for BroadKey the false acceptance rate of bk_start is extremely low, i.e. the

probability of bk_start succeeding on a wrong device is negligibly small. For DemoKey, this

probability is somewhat elevated, but still < 10-4 under normal circumstances. Again, for

demonstration purposes this more than suffices.

2.2.2.4. Stopping BroadKey

BroadKey also provides a bk_stop function (see Section 3.5.1.5 for the API) which has the

opposite effect of bk_start and bk_enroll; i.e. it un-instantiates the cryptographic context and

removes (zeroizes) all internal secrets related to it from its internal memory. Hence, after

bk_stop BroadKey’s cryptographic functionality is effectively Stopped. To make it available

again, bk_start can be called again. After a call to bk_stop, bk_enroll is no longer available

(see Section 3.2 for the full state transition diagram).

2.3. Unique Device Key and Random Value Generation Function Set

The Unique device key and random value generation function set contains a number of

functions for generating symmetric device keys and random numbers. Device keys are random

and device-unique, but can be regenerated at a later time since they are derived from the

reproducible secret extracted from the SRAM PUF, whereas random values are completely

unpredictable and irreproducible over time. This function set constitutes the most basic

cryptographic functionality which can be expected from a PUF-based security module.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

17 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

2.3.1. Unique Device Key Generation

2.3.1.1. Generating Device-Unique Symmetric Keys

BroadKey can output a range of symmetric device keys by calling the bk_get_key function

(see Section 3.5.2.2 for the API). Based on the provided key_type parameter, bk_get_key will

generate keys with different lengths for symmetric cryptographic primitives (supported lengths

are 128, 192 and 256 bits, where the latter two are only available in configurations with security

strength 256). For each key length, up to 256 different and independent device keys can be

produced with the same length, by changing the provided index parameter.

A device key is unpredictable and unique per device and per instantiated cryptographic

context, and moreover cryptographically separated from other keys and secrets used by

BroadKey. This entails that re-enrolling the same device (by calling bk_enroll more than

once), or starting BroadKey with different activation codes, will result in different device keys

which are unrelated and incompatible. On the other hand, when the same cryptographic context

is instantiated on the same device, device keys are perfectly reconstructible, i.e. in that situation

calling bk_get_key with the same parameters will always return the same key value.

Contrarily to BroadKey, for DemoKey device-unique symmetric keys are neither strongly

cryptographically separated, nor fully unpredictably random. Nonetheless, even for DemoKey,

device-unique symmetric keys are at first sight seemingly random and with high probability

unique.

2.3.1.2. Generating Device-Unique and Random Elliptic Curve Private Keys

The bk_get_private_key function (see Section 3.5.2.3 for the API) generates elliptic curve

private keys. These private keys can come from two different sources:

1. Device-unique keys, generated from the device’s secret fingerprint, which are always

reconstructible on the same device in the same cryptographic context. This is similar to

symmetric device keys as generated by bk_get_key (see Section 3.5.2.2), but with the

right mathematical properties to be an elliptic curve private key.

2. Random keys, generated randomly from BroadKey’s internal random number generator.

This is similar to a call to bk_generate_random (see Section 3.5.2.1), but with the right

mathematical properties to be an elliptic curve private key.

The calling application can optionally include external information in the private key derivation

by providing it through a usage_context input. For both device-unique and random private

keys, a calling application can use this usage context input to contribute additional context

information or entropy to the key generation process. Moreover, for device private keys this

usage context allows the calling application to generate multiple different private keys over the

same elliptic curve.

It is important to note that all derived private keys are cryptographically separated, e.g. two

derived device keys over the same curve with different usage context will be completely

different, also two derived device keys with the same usage context over consecutive curves

will be completely unrelated.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

18 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

If bk_get_private_key is called twice within the same cryptographic context to generate two

private key codes for device-unique private keys, and if all input parameters (curve, usage

context) are equal for both calls, the same device-unique private key will be returned. With that

in mind, a calling application does not need to store device-unique private keys, since they can

always be recreated from the same inputs. For random private keys this will not be the case.

Similarly, as for device-unique symmetric keys, device unique and random elliptic curve

private keys are neither strongly cryptographically separated, nor fully unpredictably random

in DemoKey as compare to BroadKey.

In addition, in relation to its low overall security strength, DemoKey will only generate

elliptic curve private keys from a severely limited subset of all possible private keys for a given

curve. This is reflected by the following fixed structure of all private keys generated by

DemoKey: regardless of the curve choice,

• the least significant byte of a private key will always be 0xFF,

• the second to fifth least significant bytes of a private key will be seemingly random, and

• all other (most-significant) bytes of a private key will always be 0x00.

This structure ensures that the generated private key will always be valid for the supported

curves.

2.3.2. Random Value Generation Function

BroadKey can generate arrays of random bytes by calling the bk_generate_random function

(see Section 3.5.2.1 for the API). Random bytes are generated internally using a

cryptographically secure pseudorandom number generator which is seeded with entropy

originating from random power-up noise on the device. Arbitrary length random arrays can be

generated.

This functionality can also be used to generate random symmetric keys (as opposed to device

symmetric keys). Note that, contrary to device keys, random keys generated in this way can

never be reconstructed by BroadKey, and need to be stored by the calling application if they

are needed at a later time.

Contrarily to BroadKey, DemoKey does not generate random bytes with a cryptographically

secure pseudorandom number generator. The bytes are seemingly random, but not necessarily

fully unpredictably random.

2.4. Wrap and Unwrap Application Keys Function Set

The Wrap and unwrap application keys function set contains a number of functions for

protecting (wrapping) and retrieving (unwrapping) external application keys based on a device-

unique PUF-derived secret. Keys in their wrapped form are referred to as key codes. This

function set is a natural extension to BroadKey’s cryptographic functionality, which allows an

application to work with externally generated keys, yet benefit fully from the protection offered

by the device-unique PUF secret.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

19 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

2.4.1. Key Wrapping Functions

BroadKey’s functions for protecting and retrieving provided application keys are respectively

bk_wrap and bk_unwrap (see Sections 3.5.3.1 and 3.5.3.2 for the API). A call to bk_wrap

securely wraps a provided application key value into a key code. The key code fully protects

the wrapped key value (both in confidentiality and integrity), and can hence be treated without

any further protection, e.g. can be stored in a non-volatile memory, on- or off-chip, without

additional protection. A call to bk_unwrap on the same device instantiated with the same

cryptographic context will successfully retrieve the originally wrapped key value from the key

code. It is the responsibility of the calling software to store and retrieve key codes in between

bk_wrap and bk_unwrap.

Since bk_wrap and bk_unwrap internally operate with device-unique secrets, key codes are

only intelligible to BroadKey running on the same device and in the same cryptographic

context, and completely unintelligible and meaningless otherwise. This entails that re-enrolling

the same device (by calling bk_enroll more than once), or starting BroadKey with different

activation codes, will result in the inability to retrieve keys from key codes which were

produced with a different cryptographic context.

In addition, bk_unwrap can only unwrap key codes which were successfully wrapped by a

call to bk_wrap. BroadKey can have other cryptographic functions which output key codes

(e.g. bk_create_private_key, bk_compute_public_from_private_key and

bk_import_public_key), but these cannot be unwrapped by bk_unwrap. Instead, these

special-purpose key codes should be used as inputs to the dedicated public-key cryptographic

functions.

The functionality of the key wrapping functions is the same for DemoKey as it is for BroadKey.

However, note that the effective security provided by a DemoKey key code is limited by the

effective overall security strength of DemoKey, which is very low.

Don’t rely on DemoKey’s wrapping functionality to protect secrets used in real-life

applications!

2.5. Public Key Management and Crypto Function Set

The Public key management and crypto function set contains a number of functions for

combining the strength of PUF-derived device-unique secrets with public-key cryptography,

in particular elliptic-curve cryptography (ECC). This function set allows an application to:

• Derive device-unique ECC private keys

• Protect and manage ECC private and/or public keys based on device-unique secrets

• Call basic ECC crypto functions (ECDSA, ECDH, en/decrypt) with protected private

and/or public key codes, such that no sensitive information needs to be passed as a

parameter in a function call.

This function set constitutes a more advanced extension of BroadKey’s cryptographic

functionality.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

20 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

2.5.1. ECC Key Management Functions

BroadKey has a set of functions for dealing with public/private key pairs based on elliptic curve

cryptography. The basic functionality of these key management functions is the transformation

of private and/or public keys from different sources (device keys, random keys or external

keys) into dedicated key codes which can be used for the elliptic curve cryptography functions

described in Sections 2.5.2 and 2.5.3. These key codes are secure and device-bound

representations of the actual key values and associated data. As a result, applications calling

the elliptic curve cryptography functions do not need to handle or pass sensitive data.

2.5.1.1. Managing ECC Private Keys as Private Key Codes

The bk_create_private_key function (see Section 3.5.4.1 for the API) generates private key

codes containing elliptic curve private keys. These private keys can come from three different

sources:

1. Device keys which are always reconstructible on the same device in the same

cryptographic context, similarly to symmetric device keys as generated by bk_get__key

(see Section 3.5.2.2), but with the right mathematical properties to be an elliptic curve

private key.

2. Random keys, generated randomly from BroadKey’s internal random number generator

similar to a call to bk_generate_random (see Section 3.5.2.1), but with the right

mathematical properties to be an elliptic curve private key.

3. External private keys which are provided as an input in the API call. Private key codes for

different elliptic curves are supported (supported curves are NIST/SEC P-192, P-224 and

P-256).

In addition to the private key values, private key codes generated by bk_create_private_key

also contain additional input information related to the private key:

• The elliptic curve over which the contained private key is defined.

• Purpose flags which indicate the allowed usage of the contained private key.

These two fields will determine the allowed use of the private key code. A private key code

can only be used in an elliptic curve crypto function if its purpose flag allows it (e.g. a private

key which is only purposed for decryption/key agreement cannot be used for signing, and vice

versa), and only for operations over the same elliptic curve it was defined on.

Device private keys and random private keys are derived internally by

bk_create_private_key, respectively from the device fingerprint or from the device noise

entropy, and from the provided curve and purpose inputs. It is important to note that all derived

private keys are cryptographically separated, e.g. two derived device keys over the same curve

with different purpose flags will be completely different, also two derived device keys with the

same purpose flags over consecutive curves will be completely unrelated.

In addition, the calling application can optionally include external information in the private

key derivation by providing it through a usage_context input. For both device and random

private keys, a calling application can use this usage context input to contribute additional

context information or entropy to the key generation process. Moreover, for device private keys

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

21 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

this usage context allows the calling application to generate multiple different private keys for

which all other parameters (curve, purpose) are equal. For externally provided private keys, the

usage context input is not used, since the private key is not derived internally.

If bk_create_private_key is called twice within the same cryptographic context to generate

two private key codes for device private keys, and if all input parameters (curve, purpose flags,

usage context) are equal for both calls, both returned private key codes will contain the same

device private key. With that in mind, a calling application does not need to store device private

key codes, since they can always be recreated from the same inputs. For random private keys

this will not be the case.

Similarly, as for the plain generation of elliptic curve private keys (see Section 2.3.1.2) the

management of private keys as private key codes is restricted:

• The generation of private key codes from device-unique and random sources, has the same

structure for its generated private keys as bk_get_private_key (see Section 2.3.1.2); i.e.,

they are always of the form {0x00, 0x00, …, 0x00, 0xX1, 0xX2, 0xX3, 0xX4, 0xFF},

where 0xX1-4 represent four seemingly random bytes which are derived from respectively

a device-unique secret or a random source.

• The generation of private key codes from externally provided private keys puts a similar

format restriction on the provided private key; i.e. only external private keys of the form

{0x00, 0x00, …, 0x00, 0xX1, 0xX2, 0xX3, 0xX4, 0xX5} are accepted, where 0xX1-5

represent five arbitrary bytes. Presenting an external private key which does not meet this

format will result in the function failing to succeed.

Similarly, as for bk_get_key and bk_get_private_key, keys generated by this function are not

strongly cryptographically separated, nor fully unpredictably random.

2.5.1.2. Managing ECC Public Keys as Public Key Codes

The bk_compute_public_from_private_key function (see Section 3.5.4.2 for the API) takes

as input a private key code and generates the corresponding public key code; i.e. a key code

which contains the elliptic curve public key counterpart to the private key contained in the

private key code. The additional information (curve, purpose) contained in the private key code

will be copied to the public key code.

The bk_derive_public_key function (see Section 3.5.4.3 for the API) directly derives the

public key value corresponding to a provided private key. This provides the same functionality

as bk_compute_public_from_private_key, but avoids the need to present private and public

keys as key codes. This is convenient for applications which do not need to/want to work with

BroadKey’s key code formats. On the other hand, this function requires private and public keys

to be presented on the API in an unprotected format. When using this function, it is hence up

to the calling application to ensure the protection of these values.

The bk_import_public_key function (see Section 3.5.4.4 for the API) imports an external

elliptic-curve public key value to a public key code format which can be used with the elliptic

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

22 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

curve cryptography functions described in Sections 2.5.2 and 2.5.3. This function is needed,

e.g. when a public key value from an external certificate is needed as an input for BroadKey’s

elliptic curve cryptography functions described in Sections 2.5.2 and 2.5.3.

The bk_export_public_key function (see Section 3.5.4.5 for the API) exports an elliptic curve

public key value from its public key code container, for use by operations external to

BroadKey. This function is needed, e.g. when a device public key needs to be output for

certification by an external party.

For the bk_derive_public_key function, the same restrictions on the format of provided

private keys apply as for bk_create_private_key with an externally provided private key (see

Section 2.5.1.1).

2.5.2. ECC Signing Functions

BroadKey has a set of functions for performing basic ECDSA signature generation and

verification (respectively bk_ecdsa_sign and bk_ecdsa_verify, see Sections 3.5.4.6 and

3.5.4.7 for the API). The bk_ecdsa_sign function takes as input a message string, or a message

hash, and computes an ECDSA signature on it based on a provided private key (code). The

bk_ecdsa_verify function takes as input a message string, or a message hash, a signature value,

and a public key code, and verifies whether the provided signature matches the message under

the given public key.

These functions take private and/or public key codes as inputs, instead of key values directly.

This entails that an application calling these functions never needs to pass possibly sensitive

key data, only key codes which are protected both in confidentiality (important for private

keys) and integrity (important for public keys). An important consideration is that the key codes

will also contain purpose flags which indicate whether they are allowed to be used for ECDSA-

based operations, or not.

For bk_ecdsa_sign and bk_ecdsa_verify, the maximum length of a message which can be

signed or verified by DemoKey is limited to 64 bytes. DemoKey will not accept longer

messages.

2.5.3. ECC Key Agreement and Encryption Functions

BroadKey has a set of functions for performing basic ECDH-based key agreement between

two parties, and in extension for setting up a secure messaging protocol between a sender and

a receiver, based on cryptograms that are protected with an ECDH-derived shared secret.

These functions take private and public key codes as inputs, instead of key values directly. This

entails that an application calling these functions never needs to pass possibly sensitive key

data, only key codes which are protected both in confidentiality (important for private keys)

and integrity (important for public keys). An important consideration is that the key codes will

also contain purpose flags which indicate whether they are allowed to be used for ECDH-based

operations, or not.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

23 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

2.5.3.1. ECDH Key Agreement

BroadKey has a function (bk_ecdh_shared_secret, see Section 3.5.4.8 for the API) for

generating a shared secret value from a private key code and a public key code based on the

ECDH algorithm. The returned shared secret can be processed into one or more shared secret

keys by the calling application, using the proper key derivation functions.

2.5.3.2. ECDH-based Cryptogram Generation and Processing

BroadKey has a set of functions for enabling a secure one-pass messaging protocol based on

hybrid elliptic curve cryptography. The conceptual idea is that a sending system, embedding

BroadKey (or a compatible implementation), can transform a plaintext message into a secure

cryptogram using its own elliptic curve private key and a receiver’s elliptic curve public key.

The corresponding receiving system can use BroadKey (or a compatible implementation) to

unpack the message from the cryptogram using its own elliptic curve private key

(corresponding to the public key used by the sender), and the sender’s public key

(corresponding to the private key used by the sender). When used correctly, the basic properties

achieved by this one-pass protocol are:

• The message contained in a cryptogram is confidential, i.e. the message is

unintelligible except to the sender and the intended receiver.

• The cryptogram is integrity-protected, i.e. the receiver can verify that cryptogram is

exactly like the sender created it.

• The receiver can authenticate the sender of the message in the cryptogram, i.e. the

receiver can obtain proof that the message originated from the sender.

• In addition, given proper use of the functions, it can be verified that cryptograms are

non-replayable, i.e. the receiver can detect whether a cryptogram has been received

before, or whether it is replayed or received out-of-order.

The fact that these cryptogram functions constitute a one-pass secure protocol with these

security properties, makes them well suited for use as import/export functions of external

secrets (e.g. in a key provisioning scheme) or as a payload protection mechanism (e.g. in a

secure update flow).

The bk_generate_cryptogram function (see Section 3.5.4.9 for the API) takes as input a

message plaintext, the sender’s private key code and the receiver’s public key code, and creates

a cryptogram from it. Two additional inputs are:

• A message counter value, needed for keeping track of the order of produced

cryptograms. The bk_generate_cryptogram function updates this counter and returns

the new counter as an output. It is up to the calling application to provide reliable

storage and update mechanisms for this counter value.

• The cryptogram type to be used. BroadKey provides two different cryptogram types

with slightly different efficiency and security properties.

o Cryptogram type = “BK_ECC_CRYPTOGRAM_TYPE_ECDH_STATIC”

This is the baseline cryptogram type which achieves the basic security

properties listed above. Since it is solely based on static key pairs on both

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

24 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

sending and receiving side, this cryptogram type cannot achieve non-

repudiation, nor forward secrecy.

o Cryptogram type =

“BK_ECC_CRYPTOGRAM_TYPE_ECDH_EPHEMERAL”

This is an extension on the baseline type in which the sending side uses an

ephemeral key pair. It achieves the basic security properties listed above, and in

addition it achieves forward secrecy with respect to loss of the sender’s long-

term private key. It does not achieve forward secrecy with respect to the

receiver’s private key, this cannot be accomplished in a one-pass protocol. It

also still does not achieve non-repudiation. If non-repudiation is required, the

cryptogram functionality can be combined with the ECDSA signing

functionality.

The bk_process_cryptogram function (see Section 3.5.4.10 for the API) performs the

opposite operation of bk_generate_cryptogram. It takes as input an earlier produced

cryptogram, the receiver’s private key code and the sender’s public key code, and returns the

contained plaintext message. Additionally:

• The bk_process_cryptogram function takes as input the last received message counter

value. If the message counter of the received cryptogram does not exceed this counter

input, it means that the cryptogram has been received out of order (e.g. replayed) and it

will not be accepted. If the cryptogram is accepted and successfully processed, the

bk_process_cryptogram updates this counter and returns the new counter as an output.

It is up to the calling application to provide reliable storage and update mechanisms for

this counter value.

• The bk_process_cryptogram function outputs the type of a successfully processed

cryptogram (see above). Based on this type, the calling application knows which

security properties are obtained by the cryptogram.

The bk_get_public_key_from_cryptogram helper function (see Section 3.5.4.11 for the API)

optionally aids a receiver of a BroadKey cryptogram in obtaining the public key used by the

sender, for further verification.

The functionality of the cryptogram functions is the same for DemoKey as it is for BroadKey.

However, note that the effective security provided by a DemoKey cryptogram is limited by the

effective overall security strength of DemoKey, which is very low.

Don’t rely on DemoKey’s cryptogram functionality to protect secrets used in real-life

applications!

2.6. Profiling Information

2.6.1. BroadKey Performance and Stack Usage

Table 2 and Table 3 show the performance and memory use of BroadKey’s functions when

profiled on respectively an ARM Cortex-M4 CPU and an ARM Cortex-M0 CPU. A relevant

subset of all possible function options was profiled: curve P-256 for the ECC functions, and

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

25 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

32 bytes for all variable-length inputs and/or outputs. The configuration of BroadKey that

was used for this profiling was BroadKey-Pro with both 128-bit and 256-bit security

strengths.

Table 2: Profiling of BroadKey functions on an ARM Cortex-M4 CPU5

Configuration Security Strength: 128 bit 256 bit

Function Call

Clock

Cycles

Stack

Usage

(bytes)

Clock

Cycles

Stack

Usage

(bytes)

Base function set

bk_init

~ 75k ~ 0.80k ~ 125k ~ 0.80k

bk_enroll

~ 405k ~ 1.5k ~ 620k ~ 1.9k

bk_stop

~ 3k 8 ~ 6k 8

bk_start

(12.5% SRAM PUF bit errors)

~ 695k ~ 2.2k ~ 1.1M ~ 2.8k

Unique device key and random value generation function set

bk_generate_random

(32 bytes)

~ 115k ~ 0.90k ~ 115k ~ 0.95k

bk_get_key

(128-bit key)

~ 35k ~ 0.99k ~ 40k ~ 1.0k

bk_get_key

(256-bit key)

(Not available for

128-bit security

strength)

~ 40k ~ 1.0k

bk_get_private_key

(curve P-256, PUF-derived key)

~ 215k ~ 1.3k ~ 225k ~ 1.3k

bk_get_private_key

(curve P-256, randomly generated key)

~ 270k ~ 1.4k ~ 275k ~ 1.4k

Wrap and unwrap application keys function set

bk_wrap

(32 bytes)

~ 185k ~ 1.8k ~ 195k ~ 1.9k

bk_unwrap

(32 bytes)

~ 185k ~ 1.8k ~ 195k ~ 1.8k

Public key management and crypto function set

bk_create_private_key

(curve P-256, PUF-derived key)

~ 395k ~ 2.0k ~ 415k ~ 2.1k

5 These performance results are measured on a platform with an ARM Cortex-M4F CPU (STM32L476RG)

running at 80MHz. BroadKey was compiled with GCC 5.2 with the following compiler options: Defined

symbols: -DNDEBUG, Debug level: Off and Optimization level: Os. These results were obtained with assembly

code optimizations which are specific to the MCU architecture used for profiling. For profiling results on other

architectures, please contact Intrinsic ID sales support.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

26 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Configuration Security Strength: 128 bit 256 bit

Function Call

Clock

Cycles

Stack

Usage

(bytes)

Clock

Cycles

Stack

Usage

(bytes)

bk_create_private_key

(curve P-256, randomly generated key)

~ 395k ~ 2.0k ~ 415k ~ 2.1k

bk_create_private_key

(curve P-256, user-provided key)

~ 185k ~ 2.0k ~ 195k ~ 2.1k

bk_compute_public_from_private_key

(curve P-256)

~ 6.6M ~ 1.9k ~ 6.6M ~ 2.0k

bk_import_public_key

(curve P-256)

~ 200k ~ 2.1k ~ 215k ~ 2.1k

bk_export_public_key

(curve P-256)

~ 195k ~ 1.9k ~ 205k ~ 1.9k

bk_derive_public_key

(curve P-256)

~ 6.3M ~ 0.85k ~ 6.3M ~ 0.85k

bk_ecdsa_sign

(curve P-256, 32 bytes)

~ 7.3M ~ 2.2k ~ 7.4M ~ 2.3k

bk_ecdsa_verify

(curve P-256, 32 bytes)

~ 7.8M ~ 2.5k ~ 7.9M ~ 2.6k

bk_ecdh_shared_secret

(curve P-256)

~ 6.6M ~ 1.9k ~ 6.7M ~ 2.0k

bk_generate_cryptogram

(curve P-256, static type, 32 bytes)

~ 13.1M ~ 2.9k ~ 13.1M ~ 3.0k

bk_process_cryptogram

(curve P-256, static type, 32 bytes)

~ 6.8M ~ 2.8k ~ 6.9M ~ 2.9k

bk_generate_cryptogram

(curve P-256, ephemeral type, 32 bytes)

~ 25.8M ~ 2.9k ~ 25.9M ~ 3.0k

bk_process_cryptogram

(curve P-256, ephemeral type, 32 bytes)

~ 13.1M ~ 2.8k ~ 13.1M ~ 2.9k

bk_get_public_key_from_cryptogram

(curve P-256, 32 bytes)

~ 0.55k 32 ~ 0.55k 32

Table 3: Profiling of BroadKey functions on an ARM Cortex-M0 CPU6

Configuration Security Strength: 128 bit 256 bit

Function Call

Clock

Cycles

Stack

Usage

(bytes)

Clock

Cycles

Stack

Usage

(bytes)

Base function set

6 These performance results are measured on a platform with an ARM Cortex-M0 CPU (NXP-

LPCXpresso11U37H) running at 48MHz. BroadKey was compiled with GCC 5.2 with the following compiler

options: Defined symbols: -DNDEBUG, Debug level: Off and Optimization level: Os. These results were

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

27 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Configuration Security Strength: 128 bit 256 bit

Function Call

Clock

Cycles

Stack

Usage

(bytes)

Clock

Cycles

Stack

Usage

(bytes)

bk_init

~ 185k ~ 0.85k ~ 325k ~ 0.85k

bk_enroll

~ 975k ~ 1.5k ~ 1.4M ~ 1.8k

bk_stop

~ 7k 16 ~ 9k 16

bk_start

(12.5% SRAM PUF bit errors)

~ 1.7M ~ 2.2k ~ 2.4M ~ 2.8k

Unique device key and random value generation function set

bk_generate_random

(32 bytes)

~ 275k ~ 0.95k ~ 275k ~ 0.95k

bk_get_key

(128-bit key)

~ 80k ~ 1.0k ~ 85k ~ 1.0k

bk_get_key

(256-bit key)

(Not available for

128-bit security

strength)

~ 85k ~ 1.0k

bk_get_private_key

(curve P-256, PUF-derived key)

~ 405k ~ 1.3k ~ 415k ~ 1.4k

bk_get_private_key

(curve P-256, randomly generated key)

~ 535k ~ 1.4k ~ 540k ~ 1.4k

Wrap and unwrap application keys function set

bk_wrap

(32 bytes)

~ 460k ~ 1.8k ~ 480k ~ 1.9k

bk_unwrap

(32 bytes)

~ 460k ~ 1.8k ~ 480k ~ 1.9k

Public key management and crypto function set

bk_create_private_key

(curve P-256, PUF-derived key)

~ 865k ~ 2.1k ~ 895k ~ 2.1k

bk_create_private_key

(curve P-256, randomly generated key)

~ 865k ~ 2.1k ~ 895k ~ 2.1k

bk_create_private_key

(curve P-256, user-provided key)

~ 460k ~ 2.1k ~ 485k ~ 2.1k

bk_compute_public_from_private_key

(curve P-256)

~ 22.4M ~ 2.0k ~ 22.4M ~ 2.0k

bk_import_public_key

(curve P-256)

~ 495k ~ 2.1k ~ 525k ~ 2.1k

obtained with assembly code optimizations which are specific to the MCU architecture used for profiling. For

profiling results on other architectures, please contact Intrinsic ID sales support.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

28 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Configuration Security Strength: 128 bit 256 bit

Function Call

Clock

Cycles

Stack

Usage

(bytes)

Clock

Cycles

Stack

Usage

(bytes)

bk_export_public_key

(curve P-256)

~ 475k ~ 1.9k ~ 500k ~ 1.9k

bk_derive_public_key

(curve P-256)

~ 21.5M ~ 0.85k ~ 21.4M ~ 0.85k

bk_ecdsa_sign

(curve P-256, 32 bytes)

~ 23.6M ~ 2.3k ~ 23.7M ~ 2.3k

bk_ecdsa_verify

(curve P-256, 32 bytes)

~ 26.9M ~ 2.5k ~ 25.9M ~ 2.5k

bk_ecdh_shared_secret

(curve P-256)

~ 22.5M ~ 2.0k ~ 22.6M ~ 2.0k

bk_generate_cryptogram

(curve P-256, static type, 32 bytes)

~ 44.3M ~ 3.0k ~ 44.3M ~ 3.0k

bk_process_cryptogram

(curve P-256, static type, 32 bytes)

~ 22.9M ~ 2.9k ~ 23.0M ~ 2.9k

bk_generate_cryptogram

(curve P-256, ephemeral type, 32 bytes)

~ 87.8M ~ 3.0k ~ 87.8M ~ 3.0k

bk_process_cryptogram

(curve P-256, ephemeral type, 32 bytes)

~ 44.5M ~ 2.9k ~ 44.5M ~ 2.9k

bk_get_public_key_from_cryptogram

(curve P-256, 32 bytes)

~ 1.1k 40 ~ 1.1k 40

The performance and stack usage results provided for BroadKey are not applicable for

DemoKey. In general, DemoKey is a bit faster and uses less memory than BroadKey, but no

strong guarantees can be given. The exact profiling results of DemoKey are not important for

demonstration purposes.

2.6.2. BroadKey Memory Requirements

Table 4 shows the static memory requirements for the different BroadKey configurations (as

defined in Table 1) when targeted to an ARM Cortex-M4 CPU. This table lists consecutively

the requirements for:

• The SRAM needed as PUF: this needs to be a block of uninitialized SRAM which is

(preferably) dedicated to be solely accessed by the BroadKey library.

• The base working memory needed by the BroadKey library in its specified

configuration.

• The code size of the BroadKey library in its specified configuration and security

strength, both for the ARM Cortex M4 and M0 platforms as specified in Section

2.6.1.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

29 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Table 4: Memory requirements of different BroadKey configurations

Security

Strength

Configuration PUF SRAM

Size (bytes)

Static

Memory

Usage (bytes)

Cortex-M4

Code Size

(bytes)

Cortex-M0

Code Size

(bytes)

128 BroadKey-Safe 512 552 8,082 8,140

BroadKey-Plus 512 568 10,426 10,576

BroadKey-Pro 512 568 21,806 20,956

256 BroadKey-Safe 1024 1,096 8,198 8,284

BroadKey-Plus 1024 1,128 10,530 10,724

BroadKey-Pro 1024 1,128 21,950 21,150

The memory requirements provided for BroadKey are not applicable for DemoKey. In general,

DemoKey is a bit smaller than BroadKey, but no strong guarantees can be given. The exact

profiling results of DemoKey are not important for demonstration purposes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

30 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3. BroadKey Module

3.1. Library Files

The BroadKey library software IP is delivered as a collection of four C code header files

(iidbroadkey.h, iidreturn_codes.h, iid_configuration.h and iid_platform.h) and an object

file containing the compiled binary.

The programming interface is entirely defined in iidbroadkey.h and iidreturn_codes.h:

• iidreturn_codes.h defines the possible return codes of the callable functions, as

described in Section 3.3.

• iidbroadkey.h (which internally includes iid_configuration.h and iid_platform.h)

defines the function API as described in Section 3.5.

To enable easy switching between DemoKey and BroadKey, the C code header files delivered

with DemoKey have exactly the same names as for BroadKey. However, the binary object file

will be named differently to avoid confusion.

3.2. States and State Transitions

Figure 3 BroadKey state diagram.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

31 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Figure 3 BroadKey state diagram. depicts the state diagram of BroadKey. It shows the five

different functional states which can be assumed by the BroadKey module, which are:

Uninitialized, Initialized, Enrolled, Started and Stopped.

Figure 3 BroadKey state diagram.only shows the allowed functions/function sets7 for each

state, i.e. the function calls which can be successfully called from each state.8 Calling a function

which is not allowed by the current state (i.e. any function/function set which is not shown in

Figure 3 BroadKey state diagram.) will return the return code IID_NOT_ALLOWED and

BroadKey will stay in the state it is in. Calling an allowed function which for some other reason

does not return IID_SUCCESS will also cause BroadKey to remain in its current state.

Finally, Figure 3 BroadKey state diagram.also shows all possible state transitions following a

successfully invoked function call (unsuccessful calls never change the state). Summarized,

there are four BroadKey API function calls which are mainly intended for changing the state

of BroadKey, which are bk_init, bk_enroll, bk_start and bk_stop, and no other functions of

BroadKey can change its state under any circumstance. The other API function calls are

intended for performing the cryptographic functionality which is available to BroadKey’s

configuration, as described in Sections 2.3, 2.4 and 2.5. It is clear from Figure 3 BroadKey

state diagram. that the cryptographic functionality is only available if a cryptographic context

is instantiated, i.e. when BroadKey is in the Enrolled or in the Started state.

A device power-up or reset will result in BroadKey going to the Uninitialized state, regardless

of which state it was in before the power-up or reset.

Since BroadKey is a stateful software module, its functional interface is not thread-safe nor

reentrant.

3.3. BroadKey API Function Return Codes

All BroadKey API function calls will have as a return value a specified return code indicating

whether the function ended successfully, or if not, what went wrong. Data results are always

passed through pointers in the argument list of the function call. The following return codes

are defined for BroadKey in iidreturn_codes.h. Depending on the function sets implemented

by the current configuration of BroadKey (see Section 2.1), subsets of these return codes are

implemented in the delivered BroadKey software module.

7 The functions implemented by the different function sets, Unique device key and random value generation,

Wrap and unwrap application keys, and Public key management and crypto, are respectively described in

Sections 2.3, 2.4 and 2.5.
8 For a function call to return IID_SUCCESS, more conditions may have to be met than just being in an allowed

state, e.g. providing the correct parameters in the API call.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

32 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Return Code Description

Generic return codes

IID_SUCCESS Indicating the successful execution of the

called function.

IID_NOT_ALLOWED Indicating that the given function call is not

allowed in the current state. See the state

transition description in Section 3.2 for

resolving this.

IID_INVALID_PARAMETERS Indicating that at least one of the parameters

passed as argument with this function call has

an invalid form and/or content. This also

occurs when one of the required output

buffers contains a NULL pointer, or when one

of the provided length parameters is not long

enough. See the API function definitions in

Section 3.5 for resolving this.

Return codes specific to the Base function set

IID_ERROR_STARTUP_DATA Indicating that the appointed SRAM array

does not contain qualitative start-up data

which can be used as an SRAM PUF by

BroadKey. See the integration guidelines in

Section 4 for resolving this.

Note that this return value indicates a blocking

error, since one is not able to get out of the

Uninitialized state (recalling bk_init will just

return the same error code). A device repower

is anyway required to get out of this, in

combination with a resolution of the cause of

this problem.

IID_INVALID_AC Indicating that the activation code provided to

bk_start is not a valid activation code for this

device, i.e. it was not generated by a

successful bk_enroll call on the same device.

See the information on activation codes and

cryptographic contexts in Section 2.2.2 for

resolving this.

Return codes specific to the Wrap and unwrap application keys function set

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

33 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Return Code Description

IID_INVALID_KEY_CODE Indicating that the key code provided to

bk_unwrap is not a valid key code for this

device, i.e. it was not generated by a successful

bk_wrap call on the same device in the same

cryptographic context.

Return codes specific to the Public key management and crypto function set

IID_ECC_NOT_ALLOWED Indicating that the provided private and/or

public key code inputs do not have the right

purpose flags for being used by the called

function. See Section 3.4.3.3 for the

description of key purposes, and see Sections

3.5.4.1 and 3.5.4.3 for information on how to

set key purposes.

IID_INVALID_PRIVATE_KEY Indicating that an externally provided private

key input value (to bk_create_private_key or

bk_derive_public_key) is an invalid private

key for the specified elliptic curve.

IID_INVALID_PUBLIC_KEY Indicating that the provided public key input

value (to bk_import_public_key) is an

invalid public key for the specified elliptic

curve.

IID_INVALID_PRIVATE_KEY_CODE Indicating that the provided private key code

input is not a valid private key code for the

called function on this device.

IID_INVALID_PUBLIC_KEY_CODE Indicating that the provided public key code

input is not a valid public key code for the

called function on this device.

IID_CURVE_MISMATCH Indicating that the simultaneously provided

private and public key code to a function (to

bk_generate_cryptogram,

bk_process_cryptogram or

bk_ecdh_shared_secret) do not match the

same elliptic curve.

IID_INVALID_SIGNATURE Indicating that the signature input provided to

bk_ecdsa_verify is not a valid signature for

the provided message under the provided

public key.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

34 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Return Code Description

IID_INVALID_COUNTER Indicating that the counter input provided to

bk_generate_cryptogram results in a counter

overflow, or that the counter input provided to

bk_process_cryptogram is not smaller than

or equal to the counter value contained in the

received cryptogram. The latter indicates that

there is an attempt to process a cryptogram

that is the same or older than a previously

processed one.

IID_INVALID_CRYPTOGRAM Indicating that the provided cryptogram input

to bk_process_cryptogram or

bk_get_public_key_from_cryptogram is

not a valid cryptogram, e.g. it has the wrong

type, format, or its integrity was

compromised.

IID_INVALID_SENDER Indicating that the provided public key code to

bk_process_cryptogram does not match the

public key of the cryptogram’s sender; i.e. the

cryptogram did not originate from the

expected source.

DemoKey will also return IID_INVALID_PRIVATE_KEY if the provided private key does

not match the additional format restrictions put forward in Section 2.5.1.1.

3.4. BroadKey API Defines and Type Definitions

3.4.1. Defines

The following constant values are defined in a hard-coded manner for BroadKey. They

determine the setup and configuration of the delivered BroadKey module, and aid the developer

in specifying lengths for various functional parameters. Depending on the configuration of

BroadKey (see Section 2.1), subsets of these defines are implemented in the delivered

BroadKey software module.

BroadKey Define Value Description

Generic defines

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

35 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BroadKey Define Value Description

BK_SECURITY_SIZE_BITS

(This value depends on the

security strength of the BroadKey

configuration.)

128 or

256

Defines the root security strength of the delivered

BroadKey module, in number of bits. The security

strength indicates the difficulty of a brute-force

attack on BroadKey’s internal secrets. The scale of

this security strength is equivalent to the key length

of a symmetric block cipher (e.g. AES).9

BK_CONFIGURATION_

SAFE_ENABLED

/ This macro is defined if, and only if, the

configuration of the delivered BroadKey module is

BK-Safe (see also Section 2.1)

BK_CONFIGURATION_

PLUS_ENABLED

/ This macro is defined if, and only if, the

configuration of the delivered BroadKey module is

BK-Plus (see also Section 2.1)

BK_CONFIGURATION_

PRO_ENABLED

/ This macro is defined if, and only if, the

configuration of the delivered BroadKey module is

BK-Pro (see also Section 2.1)

Defines specific to the Base function set

BK_SRAM_PUF_SIZE_BYTES

(This value depends on the

security strength of the BroadKey

configuration.)

512 or

1024

Defines the size, in bytes, of the SRAM range

containing the start-up data used in bk_init.

BK_AC_SIZE_BYTES

(This value depends on the

security strength of the BroadKey

configuration.)

480 or

788

Defines the size, in bytes, of the activation code as

produced by bk_enroll and as input to bk_start.

9 This security strength reflects the strength of BroadKey’s internal secrets, and hence determines the highest

level of cryptographic security any of BroadKey’s cryptographic functions can offer. The effective security

strength of individual function calls can be lower, depending on the called function and the provided parameters.

In particular for elliptic-curve cryptography, security strength cannot be higher than ½ of the private key length

over the used curve (e.g. the NIST P-256 curve has 256-bit private keys and hence provides at most 128-bit of

security strength).

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

36 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BroadKey Define Value Description

Defines specific to the Wrap and unwrap application keys function set

BK_KEY_CODE_

HEADER_SIZE_BYTES

44 Defines the size, in bytes, of the header of a key code

as produced by bk_wrap and as input to

bk_unwrap. The key code header contains the

additional data of a key code, incremental to the

actual wrapped key. The total size of a key code will

always be the size of the key, in bytes, incremented

with the header size, in bytes.

Defines specific to the Public key management and crypto function set

BK_ECC_CRYPTOGRAM_

HEADER_SIZE_BYTES

80 Defines the size, in bytes, of the header of a

cryptogram as produced by

bk_generate_cryptogram and as input to

bk_process_cryptogram. The cryptogram header

contains the additional data of a cryptogram,

incremental to the contained plaintext and public

key(s).

BK_ECC_MAX_CURVE_

SIZE_BYTES

32 Defines the maximal size, in bytes, of the

representation of a field element over which an

elliptic curve is defined. The maximum is taken over

all elliptic curves supported by BroadKey.

BK_ECC_KEY_CODE_

HEADER_SIZE_BYTES

48 Defines the size, in bytes, of the header of an elliptic

curve private or public key code as produced by

bk_create_private_key,

bk_compute_public_from_private_key and

bk_import_public_key, and as input to various

BroadKey elliptic curve cryptography functions.

The elliptic curve key code header contains the

additional data of an elliptic curve key code,

incremental to the actual wrapped elliptic curve

private or public key.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

37 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BroadKey Define Value Description

BK_ECC_PRIVATE_

KEY_CODE_SIZE_BYTES

((BK_ECC_KEY_CODE_HEADER_SIZE_BYTES) +

(BK_ECC_MAX_CURVE_SIZE))

 Defines the size, in bytes, of a private key code as

produced by bk_create_private_key. This size is

independent of the elliptic curve over which the

contained private key is defined.

BK_ECC_PUBLIC_

KEY_CODE_SIZE_BYTES

((BK_ECC_KEY_CODE_HEADER_SIZE_BYTES) + (2

* (BK_ECC_MAX_CURVE_SIZE)))

 Defines the size, in bytes, of a public key code as

produced by

bk_compute_public_from_private_key and

bk_import_public_key. This size is independent of

the elliptic curve over which the contained public

key is defined.

BK_SECURITY_SIZE_BITS is defined for DemoKey, but it does not reflect the effective

security strength of DemoKey (see also Section 2.1).

3.4.2. Type Definitions of the Unique Device Key and Random Value
Generation Function Set

3.4.2.1. bk_sym_key_type_t

The bk_sym_key_type_t type definition defines the key types which can be generated by the

bk_get_key function (see Section 3.5.2.2). This key type also implies the length of the

referred key, as indicated in the table below.

bk_sym_key_type_t Key

Length

(bytes)

Description

BK_SYM_KEY_TYPE_128 16 A fully random 128-bit key, e.g.

to be used for symmetric AES-

128-based encryption.

The security strength of a key of

this type is 128-bit.

BK_SYM_KEY_TYPE_192

(This type is only available in BroadKey

configurations with security strength 256.)

24 A fully random 192-bit key, e.g.

to be used for symmetric AES-

192-based encryption.

The security strength of a key of

this type is 192-bit.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

38 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BK_SYM_KEY_TYPE_256

(This type is only available in BroadKey

configurations with security strength 256.)

32 A fully random 256-bit key, e.g.

to be used for symmetric AES-

256-based encryption.

The security strength of a key of

this type is 256-bit.

The security strength of the respective symmetric key types generated by DemoKey does not

match with equivalent keys generated by BroadKey. The security strength of any key generated

by DemoKey is upper bounded by the overall effective security strength of DemoKey, which

is very low (see also Section 2.1).

3.4.3. Type Definitions of the Public Key Management and Crypto Function Set

3.4.3.1. bk_ecc_curve_t

The bk_ecc_curve_t type definition defines the named elliptic curves which can be

recognized by the bk_create_private_key function (see Section 3.5.4.1) and the

bk_import_public_key function (see Section 3.5.4.4). This curve type also implies the

length of private keys, public keys, shared secrets and signatures computed over these curves,

as indicated in the table below.

bk_ecc_curve_t Description

BK_ECC_CURVE_NIST_P192 The elliptic-curve cryptosystem specified by the

NIST P-192/secp192r1 domain parameters.10

Functional operations over this elliptic curve expect

parameters of the following sizes, in bytes:

• private keys: 24

• public keys: 49

• ECDSA signatures: 48

• ECDH shared secrets: 24

The maximal security strength for operations over this

curve is 96-bit.

10 The domain parameters for the NIST prime-field curves are specified in NIST FIPS Pub 186-4 “Digital

Signature Standard (DSS)” (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf), appendix D. These are

the same prime-field curves as recommended in “SEC 2: Recommended Elliptic Curve Domain Parameters”,

v2.0, 2010 (http://www.secg.org/sec2-v2.pdf).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.secg.org/sec2-v2.pdf

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

39 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

bk_ecc_curve_t Description

BK_ECC_CURVE_NIST_P224 The elliptic-curve cryptosystem specified by the

NIST P-224/secp224r1 domain parameters.10

Functional operations over this elliptic curve expect

parameters of the following sizes, in bytes:

• private keys: 28

• public keys: 57

• ECDSA signatures: 56

• ECDH shared secrets: 28

The maximal security strength for operations over this

curve is 112-bit.

BK_ECC_CURVE_NIST_P256 The elliptic-curve cryptosystem specified by the

NIST P-256/secp256r1 domain parameters.10

Functional operations over this elliptic curve expect

parameters of the following sizes, in bytes:

• private keys: 32

• public keys: 65

• ECDSA signatures: 64

• ECDH shared secrets: 32

The maximal security strength for operations over this

curve is 128-bit.

The security strength of the respective elliptic curve keys and operations over the different

curves for DemoKey does not match with equivalent elliptic curve keys and operations for

BroadKey. The security strength of any elliptic curve key or operation for DemoKey is upper

bounded by the overall effective security strength of DemoKey, which is very low (see also

Section 2.1).

3.4.3.2. bk_ecc_key_source_t

The bk_ecc_key_source_t type definition defines the allowed sources from which an elliptic

curve private key (code) can be generated using the bk_get_private_key (see Section

3.5.2.3) and bk_create_private_key functions (see Section 3.5.4.1), as indicated in the table

below. This source type also partly determines other input parameters to this function.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

40 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

bk_ecc_key_source_t Description

BK_ECC_KEY_SOURCE_

PUF_DERIVED

The private key is derived in a direct line from the SRAM PUF’s

device-unique start-up data. Private keys derived in this way can

always be exactly rederived by calling the generating function

with the same arguments in the same cryptographic context, and

on the same device.

BK_ECC_KEY_SOURCE_

RANDOM

The private key is randomly generated using BroadKey’s

internal cryptographically secure random number generator

which is seeded by entropy coming from the device noise.

Private keys generated in this way cannot be rederived by the

generating function, so if they are needed at a later time, the

corresponding key code needs to be stored.

BK_ECC_KEY_SOURCE_

USER_PROVIDED

The private key is an external value which is provided by the

calling application to the bk_create_private_key function;

bk_get_private_key does not accept this key source

See the DemoKey-specific limitations on elliptic curve keys from the respective sources as

detailed in Sections 2.3.1.2 and 2.5.1.1).

3.4.3.3. bk_ecc_key_purpose_t

The bk_ecc_key_purpose_t type definition defines the allowed purposes which can be assigned

to an elliptic curve private or public key, it is stored alongside the key in the corresponding key

code. The purpose flag of a public or private key code determines whether other BroadKey

elliptic curve crypto functions accept or reject the key contained in this key code, as indicated

in the table below.

bk_ecc_key_purpose_t Description Accepted by functions

BK_ECC_KEY_

PURPOSE_ECDH

Key (code)s marked with this

purpose flag can be used for

elliptic curve key agreement and

en/decryption functions.

bk_ecdh_shared_secret

bk_generate_cryptogram

bk_process_cryptogram

BK_ECC_KEY_

PURPOSE_ECDSA

Key (code)s marked with this

purpose flag can be used for

elliptic curve signature

generation and verification

functions.

bk_ecdsa_sign

bk_ecdsa_verify

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

41 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BK_ECC_KEY_

PURPOSE_ECDH_

AND_ECDSA

This is the combination of the

ECDH and ECDSA flags. Key

(code)s marked with this

purpose flag can be used for

everything allowed by the

ECDH and the ECDSA flags.

Union of the accepted functions

for the

BK_ECC_KEY_PURPOSE

_ECDH and

BK_ECC_KEY_PURPOSE

_ECDSA purpose flags

3.4.3.4. bk_ecc_cryptogram_type_t

The bk_ecc_cryptogram_type_t type definition defines the cryptogram type to be used in the

bk_generate_cryptogram function (see Section 3.5.4.9), and correspondingly the cryptogram

type which was received by the bk_process_cryptogram function (see Section 3.5.4.10). The

cryptogram type determines the exact security properties of the cryptogram, but also has an

impact on performance, as indicated in the table below.

bk_ecc_cryptogram_type_t Description Cryptogram-Plaintext size

relation (in bytes)

BK_ECC_

CRYPTOGRAM_TYPE_

ECDH_STATIC

Cryptogram type using static

elliptic curve key pairs on both

sending and receiving side.

All the basic security

properties (confidentiality,

integrity, source

authentication, non-

replayable), but no forward

secrecy and no non-

repudiation

This cryptogram type achieves

the highest performance, both

in sending and receiving.

sizeof(cryptogram) =

sizeof(plaintext) +

BK_ECC_CRYPTOGRAM_

HEADER_SIZE_BYTES +

sizeof(public_key) – 1

(See Section 3.4.3.1 for size

of public keys for different

supported curves.)

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

42 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

BK_ECC_

CRYPTOGRAM_TYPE_

ECDH_EPHEMERAL

Cryptogram type using an

ephemeral key pair on the

sending side, and a static key

pair on the receiving side.

All the basic security

properties as above, and in

addition forward secrecy w.r.t.

loss of the sender’s private

key. Still no non-repudiation.

The performance of this

cryptogram type is lower than

BK_ECC_CRYPTOGRAM

_TYPE_ECDH_STATIC for

both sending and receiving.

sizeof(cryptogram) =

sizeof(plaintext) +

BK_ECC_CRYPTOGRAM_

HEADER_SIZE_BYTES +

2*sizeof(public_key) – 2

(See Section 3.4.3.1 for size

of public keys for different

supported curves.)

3.4.3.5. bk_ecc_private_key_code_t and bk_ecc_public_key_code_t

The bk_ecc_private_key_code_t type definition defines the representation of private key codes,

used by the elliptic curve cryptographic functions of BroadKey. It is defined as a byte array of

size BK_ECC_PRIVATE_KEY_CODE_SIZE_BYTES.

The bk_ecc_public_key_code_t type definition defines the representation of public key codes,

used by the elliptic curve cryptographic functions of BroadKey. It is defined as a byte array of

size BK_ECC_PUBLIC_KEY_CODE_SIZE_BYTES.

3.5. BroadKey API Function Definitions

This section describes the BroadKey module functions, organized in subsections according to

their respective function sets. These functional interfaces are declared in iidbroadkey.h. Also

see Section 2.6.1 for profiling information of these functions on a reference platform.

Note: in the API function description, the in and/or out indication for the arguments reflects

the direction of the actual data. When an argument is a pointer, the pointer, and the allocated

memory it points to, must be defined by the calling software.

Note: the functions described in this API are in general neither thread-safe nor reentrant.

The functional programming interface of DemoKey’s functions is completely equivalent with

BroadKey. However, please note that there are some important differences in functional

execution, mainly:

• The security strength of DemoKey’s operations is significantly lower than that of

BroadKey.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

43 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

• DemoKey has some additional restrictions on the format or length of certain functional

parameters.

• The profiling results (speed, memory, etc.) of DemoKey’s operations do not match those

of BroadKey.

These differences are discussed in sufficient detail in Section 2. These differences are not

repeated in the API descriptions below, since technically they do not affect the interface itself.

The reader is strongly recommended to read Section 2 as well, in addition to the API

descriptions below.

3.5.1. Functions of the Base Function Set

3.5.1.1. bk_get_product_info

This function can be used to get the exact name, version and patch number of the software

module.

A call to bk_get_product_info is always allowed in all states.

bk_get_product_info can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_get_product_info(

 uint8_t * const product_id,

 uint8_t * const major_version,

 uint8_t * const minor_version,

 uint8_t * const patch,

 uint8_t * const build_number);

Parameters

product_name out Pointer to a byte buffer which will hold a product identifier.

Note: the size of the buffer must be 1 byte.

major_version

out Pointer to a byte buffer which will hold the major software version.

Note: the size of the buffer must be 1 byte.

minor_version out Pointer to a byte buffer which will hold the minor software version.

Note: the size of the buffer must be 1 byte.

patch out Pointer to a byte buffer which will hold the software patch number.

Note: the size of the buffer must be 1 byte.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

44 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

build_number out Pointer to a byte buffer which will hold the build number

Note: the size of the buffer must be 1 byte.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

45 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.1.2. bk_init

This function is used to initialize the BroadKey software module before use, after each device

power-up or reset. It points the BroadKey module to the system’s SRAM range which is

reserved as SRAM PUF (also see Section 2.2.2.1).

A call to bk_init is only allowed when BroadKey is in the Uninitialized state; a call from any

other state will return IID_NOT_ALLOWED. When bk_init returns IID_SUCCESS,

BroadKey moves from the Uninitialized to the Initialized state.

bk_init can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_ERROR_STARTUP_DATA

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_init(

 uint8_t * const sram_puf,

 const uint16_t sram_puf_size);

Parameters

sram_puf in/out Pointer to physical SRAM PUF used by the module. The physical

SRAM pointed to is both read (the start-up data it contains is used as a

PUF), and written (amongst other things to condition it against silicon

aging).

Note: the address must be at a 32-bit boundary, so the lowest two

bits of the address must be 0.

sram_puf_size in The size in bytes of available SRAM PUF that can be used by the

software.

Note: the size of the SRAM must be (at least)

BK_SRAM_PUF_SIZE_BYTES bytes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

46 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.1.3. bk_enroll

This function is used to instantiate a cryptographic context of BroadKey for the first time. It

returns an activation code which, at a later time, can be used to re-instantiate the same context

using bk_start. Once a cryptographic context is instantiated, BroadKey’s cryptographic

functionality becomes available (also see Section 2.2.2.2).

A call to bk_enroll is only allowed when BroadKey is in the Initialized state; a call from any

other state will return IID_NOT_ALLOWED. When bk_enroll returns IID_SUCCESS,

BroadKey moves from the Initialized to the Enrolled state.

bk_enroll can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_enroll(

 uint8_t * const activation_code);

Parameters

activation_code out Pointer to a buffer that will hold the generated activation code.

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

Note: the size of the activation_code output buffer must be at least

BK_AC_SIZE_BYTES bytes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

47 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.1.4. bk_start

This function is used to re-instantiate a cryptographic context of BroadKey based on a provided

activation code which was earlier generated by bk_enroll. It is the responsibility of the calling

software to reliably store an activation code after bk_enroll, and retrieve it before bk_start.

Once a cryptographic context is instantiated, BroadKey’s cryptographic functionality becomes

available (also see Section 2.2.2.3).

A call to bk_start is allowed when BroadKey is in the Initialized state or in the Stopped state;

a call from any other state will return IID_NOT_ALLOWED. When bk_start returns

IID_SUCCESS, BroadKey moves to the Started state.

bk_start can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_AC

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_start(

 const uint8_t * const activation_code);

Parameters

activation_code in Pointer to a buffer that holds the retrieved activation code.

Note: the address must be at a 32-bit boundary, so the lowest two bits of

the address must be 0.

Note: the size of the buffer must be at least BK_AC_SIZE_BYTES

bytes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

48 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.1.5. bk_stop

This function will uninstantiate a cryptographic context of BroadKey which was earlier

instantiated by bk_enroll or bk_start. Once a cryptographic context is uninstantiated,

BroadKey’s cryptographic functionality becomes unavailable (also see Section 2.2.2.4).

Moreover, bk_stop also ensures that all internal secrets related to the cryptographic context

are effectively deleted (zeroized), which can be used as an additional security measure against

attacks.

A call to bk_stop is always allowed, except when BroadKey is in the Uninitialized state, in

which case it will return IID_NOT_ALLOWED. When bk_stop returns IID_SUCCESS,

BroadKey moves to the Stopped state. Note that:

• bk_stop will always return IID_SUCCESS (when not called from the Uninitialized

state), hence the calling software can be assured that a call to bk_stop will always

uninstantiate the cryptographic context.

• it is allowed to call bk_stop even from the Initialized and Stopped states, when there

are no cryptographic contexts initialized. Calling bk_stop when already in the Stopped

state has no effect. Calling bk_stop from the Initialized state has as effect that

BroadKey moves to the Stopped state; as a result, bk_enroll becomes unavailable until

the device is repowered or reset.

bk_stop can exit with one of the following return codes:

• IID_SUCCESS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_stop(

 void);

Parameters

(none)

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

49 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.2. Functions of the Unique Device Key and Random Value Generation
Function Set

3.5.2.1. bk_generate_random

This function will generate a sequence of random bytes using a cryptographically secure

random number generator which is seeded with unpredictable noise entropy from the device.

A call to bk_generate_random is only allowed when BroadKey is either in the Enrolled or in

the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_generate_random, successful or not, will not change the state of BroadKey.

bk_generate_random can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_generate_random(

 const uint16_t number_of_bytes,

 uint8_t * const data_buffer);

Parameters

number_of_bytes in Positive integer in the range [1:65535] which specifies the number of

random bytes that will be returned. The size, in bytes, of the allocated

output buffer pointed to by data_buffer needs to be at least equal to

this value.

data_buffer out Pointer to a byte array buffer which will hold the requested random

bytes.

Note: the size of the data_buffer output buffer must be at least

number_of_bytes bytes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

50 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.2.2. bk_get_key

This function will (re)generate a device-unique symmetric key for the cryptographic context

which was earlier instantiated by bk_enroll or re-instantiated by bk_start (also see Sections

2.2.2.2 and 2.2.2.3). The length of the generated key depends on the specified key type. For

each key type, bk_get_key can (re)generate up to 256 independent device key values,

controlled by the key index input parameter. A call to bk_get_key with the same input

parameter values (key_type and index) on the same device instantiated with the same

cryptographic context, will always return the same key value.

A call to bk_get_key is only allowed when BroadKey is either in the Enrolled or in the Started

state; a call from any other state will return IID_NOT_ALLOWED. A call to bk_get_key,

successful or not, will not change the state of BroadKey.

bk_get_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_get_key(

 const bk_sym_key_type_t key_type,

 const uint8_t index,

 uint8_t * const key);

Parameters

key_type in The type of the device key that will be generated. This must be a value of

the enumeration type bk_sym_key_type_t which is declared in

iidbroadkey.h. The allowed key types, and their meaning, are explained in

Section 3.4.2.1.

index in An integer value in the range [0:255] indicating the index of the device key

that will be generated for the specified key type. For each index value, a

key is generated which is completely independent from keys generated by

other key index values.

key out Pointer to a byte array buffer that will hold the generated device key.

Note: the size of the key buffer must be at least long enough to hold the

generated key type, as specified by the key_type input parameter (see

Section 3.4.2.1).

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

51 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.2.3. bk_get_private_key

This function will generate a random or a device-unique elliptic curve private key for the

cryptographic context which was earlier instantiated by bk_enroll or re-instantiated by

bk_start (also see Sections 2.2.2.2 and 2.2.2.3). The length of the generated private key

depends on the specified elliptic curve (also see Section 3.4.3.1). For each curve option,

bk_get_private_key can (re)generate multiple device-unique key values by altering the usage

context input parameter. The usage context input can be used for key diversification in the

application, and/or to include application-provided key information or entropy into the key

generation process.

bk_get_private_key can generate elliptic curve private keys from two possible sources:

• device-unique private keys derived from the device’s secret fingerprint. In this case,

providing the same input parameter values (curve and usage context) on the same

device instantiated with the same cryptographic context, will always return the same

private key value.

• randomly generated private keys derived from the device’s power-up noise. In this case,

always a fresh and unpredictably random private key value is returned.

A call to bk_get_private_key is only allowed when BroadKey is either in the Enrolled or in

the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_get_private_key, successful or not, will not change the state of BroadKey.

bk_get_private_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_get_private_key(

 const bk_ecc_curve_t curve,

 const uint8_t * const usage_context,

 const uint32_t usage_context_length,

 const bk_ecc_key_source_t key_source,

 uint8_t * const private_key);

Parameters

curve in Specifies the named elliptic curve on which the considered private

key is defined. It must be a valid curve type of the bk_ecc_curve_t

enumeration which is declared in iidbroadkey.h.The allowed

curves, and their meaning, are explained in Section 3.4.3.1.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

52 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

usage_context in Pointer to a byte array buffer which holds an (optional) usage

context. When used, the entropy of this buffer is included in the

private key derivation for private keys derived from the device

fingerprint

(key_source=BK_ECC_KEY_SOURCE_PUF_DERIVED) or

from the device’s random number generator

(key_source=BK_ECC_KEY_SOURCE_RANDOM).

Note: the size of the buffer must be at least usage_context_length

bytes.

Note: providing a usage context is optional, if the specified

usage_context_length is 0, no usage context is taken into account.

usage_context_length in Value which specifies the length in bytes of the usage_context

buffer. If this length is set to 0, no usage context is taken into

account.

key_source in Specifies the source of the elliptic curve private key. It must be a

valid source of the bk_ecc_key_source_t enumeration which is

declared in iidbroadkey.h. The allowed private key sources, and

their meaning, are explained in Section 3.4.3.2. The allowed key

sources for bk_get_private_key are:

− BK_ECC_KEY_SOURCE_PUF_DERIVED: the private

key is derived from the device fingerprint and (optionally)

the provided usage context.

− BK_ECC_KEY_SOURCE_RANDOM: the private key is

uniformly randomly generated from BroadKey’s internal

random number generator and (optionally) the provided

usage context.

private_key out Pointer to a byte array buffer that will hold the generated elliptic

curve private key. The private key value is provided in binary

format, in network byte order representation.

Note: the size of the private key buffer must be at least long

enough to hold a private key for the provided curve type, as

specified by the curve input parameter (see Section 3.4.3.1).

Note: the address must be at a 32-bit boundary, so the lowest two

bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

53 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.3. Functions of the Wrap and Unwrap Application Keys Function Set

3.5.3.1. bk_wrap

This function will securely wrap (authenticated encrypt) an externally provided application key

into a key code. The length of the provided key must be a multiple of 4 bytes, with a minimum

of 4 bytes and maximum of 1024 bytes. The length of the generated key code will be the length

of the provided key incremented with the constant size of the key code header

(BK_KEY_CODE_HEADER_SIZE_BYTES). In addition to a variable-length key, the

application can provide an index value which gets wrapped alongside the key. The application

can assign a custom meaning to this index which relates to the context of the key. When the

key code is unwrapped again with bk_unwrap, the index will also be returned.

A call to bk_wrap is only allowed when BroadKey is either in the Enrolled or in the Started

state; a call from any other state will return IID_NOT_ALLOWED. A call to bk_wrap,

successful or not, will not change the state of BroadKey.

bk_wrap can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_wrap(

 const uint8_t index,

 const uint8_t * const key,

 const uint16_t key_length,

 uint8_t * const key_code);

Parameters

index in An integer value in the range [0:255] indicating the index of the key-to-be-

wrapped. For bk_wrap/unwrap, the index is an application-defined value

that gets wrapped (in bk_wrap) and unwrapped (in bk_unwrap) alongside

the actual key value. The application using BroadKey can use it, e.g. to

specify context-information associated to the key.

key in Pointer to a byte array buffer that holds the plain key-to-be-wrapped.

Note: the address must be at a 32-bit boundary, so the lowest two bits of

the address must be 0.

Note: the size of the buffer must be equal to key_length bytes.

key_length in The length, in bytes, of the key-to-be-wrapped. This must be an integer

value in the range [4:4:1024], i.e. the smallest allowed value is 4, the largest

is 1024, and only values that are a multiple of 4 are allowed.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

54 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

key_code out Pointer to a byte array buffer that will hold the generated key code.

Note: the address must be at a 32-bit boundary, so the lowest two bits of

the address must be 0.

Note: the size of the key_code buffer must be at least (key_length +

BK_KEY_CODE_HEADER_SIZE_BYTES) bytes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

55 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.3.2. bk_unwrap

This function will successfully unwrap (decrypt and authenticate) a provided key code, given

that it is called on the same device and in the same cryptographic context that was used to

produce the key code with bk_wrap. In addition to the originally wrapped key, bk_unwrap

will also return the index value that got wrapped alongside the key. The application can parse

this index value to determine the context of the key.

bk_unwrap can determine the exact length of the key code automatically by parsing the key

code header, so the application does not need to provide the key code length. However, the

calling software does need to assure that the allocated key code buffer is large enough to hold

the complete key code string.

A call to bk_unwrap is only allowed when BroadKey is either in the Enrolled or in the Started

state; a call from any other state will return IID_NOT_ALLOWED. A call to bk_unwrap,

successful or not, will not change the state of BroadKey.

bk_unwrap can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_KEY_CODE

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_unwrap(

 const uint8_t * const key_code,

 uint8_t * const key,

 uint16_t * const key_length,

 uint8_t * const index);

Parameters

key_code in Pointer to a byte array buffer that holds the retrieved key code.

Note: the address must be at a 32-bit boundary, so the lowest two bits of

the address must be 0.

Note: the size of the buffer must be sufficient to contain the full key code as

was produced by a call to bk_wrap.

key out Pointer to a byte array buffer that will hold the unwrapped key.

key_length out Pointer to a byte buffer which will contain the size in bytes of key. Its value

will be in the [4, 1024] range and a multiple of 4.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

56 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

index out An integer value in the range [0:255] indicating the index of the unwrapped

key. For bk_wrap/unwrap, the index is an application-defined value that

gets wrapped (in bk_wrap) and unwrapped (in bk_unwrap) alongside the

actual key value. The application using BroadKey can use it, e.g. to specify

context-information associated to the key.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

57 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4. Functions of the Public Key Management and Crypto Function Set

3.5.4.1. bk_create_private_key

This function transforms an elliptic curve private key into a protected private key code which

is only usable within the same cryptographic context, and on the same unique device, it was

created on.

This function can take private keys from three possible sources:

• device-unique private keys derived from the device’s secret fingerprint

• randomly generated private keys derived from the device power-up noise

• user-provided private keys

Alongside the private key values, this function also stores the curve and key purpose flags in

the private key code format. This makes the future use of a generated private key code self-

contained, i.e. a consuming function knows on which curve the contained private key is

defined, and for which purposes it is allowed to be used.

Note: the generation mechanisms for creating device-unique and random private keys are

similar as for the bk_get_private_key function (see Section 3.5.2.3), but private keys generated

by bk_get_private_key and bk_create_private_key are strongly cryptographically separated.

This entails that calling bk_get_private_key and bk_create_private_key with equal parameters

will always result in completely different private key values.

Note: the protection mechanisms for transforming private keys into private key codes are

similar as for the bk_wrap function (see Section 3.5.3.1), but private key codes cannot be

unwrapped by bk_unwrap. The underlying internal keys used by bk_create_private_key for

protecting private key codes are also different as for key codes generated by bk_wrap. Once

packed into a private key code, the actual private key values can no longer be publicly retrieved

by BroadKey.

A call to bk_create_private_key is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_create_private_key, successful or not, will not change the state of BroadKey.

bk_create_private_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PRIVATE_KEY

See Section 3.3 for the meaning of the return codes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

58 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

iid_return_t bk_create_private_key(

 const bk_ecc_curve_t curve,

 const bk_ecc_key_purpose_t purpose_flags,

 const uint8_t * const usage_context,

 const uint32_t usage_context_length,

 const bk_ecc_key_source_t key_source,

 const uint8_t * const private_key,

 bk_ecc_private_key_code_t * const private_key_code);

Parameters

curve in Specifies the named elliptic curve on which the considered private

key is defined. It must be a valid curve type of the bk_ecc_curve_t

enumeration which is declared in iidbroadkey.h.The allowed

curves, and their meaning, are explained in Section 3.4.3.1.

purpose_flags in Flag which specifies the usage purpose of the private key. It must

be a valid flag of the bk_ecc_key_purpose_t enumeration which

is declared in iidbroadkey.h. The allowed key purposes, and their

meaning, are explained in Section 3.4.3.3.

usage_context in Pointer to a byte array buffer which holds an (optional) usage

context. When used, the entropy of this buffer is included in the

private key derivation for private keys derived from the device

fingerprint

(key_source=BK_ECC_KEY_SOURCE_PUF_DERIVED) or

from the device’s random number generator

(key_source=BK_ECC_KEY_SOURCE_RANDOM).

Note: the size of the buffer must be at least usage_context_length

bytes.

Note: providing a usage context is optional, if the specified

usage_context_length is 0, no usage context is taken into account.

usage_context_length in Value which specifies the length in bytes of the usage_context

buffer. If this length is set to 0, no usage context is taken into

account.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

59 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

key_source in Specifies the source of the elliptic curve private key. It must be a

valid source of the bk_ecc_key_source_t enumeration which is

declared in iidbroadkey.h. The allowed private key sources, and

their meaning, are explained in Section 3.4.3.2. In summary:

− BK_ECC_KEY_SOURCE_PUF_DERIVED: the private

key is derived from the device fingerprint and (optionally)

the provided usage context.

− BK_ECC_KEY_SOURCE_RANDOM: the private key is

uniformly randomly generated from BroadKey’s internal

random number generator and (optionally) the provided

usage context.

− BK_ECC_KEY_SOURCE_USER_PROVIDED: the

private key is provided externally. When this key source

is selected, usage_context is not used and private_key is

used directly with only a check that it is a well-formed

private key for the specified curve.

The resulting private key will be wrapped by a device-unique PUF

key; hence the resulting private key code can only be used within

the same cryptographic context on the same device.

Note: for BK_ECC_KEY_SOURCE_PUF_DERIVED and

BK_ECC_KEY_SOURCE_RANDOM the usage_context entropy,

if present, is added to the key derivation process to provide a

secure fallback in case of entropy shortage, or to allow for key

diversification.

private_key in Pointer to a byte array buffer which holds the private key used

when key_source is

BK_ECC_KEY_SOURCE_USER_PROVIDED. The expected

input is binary in network byte order representation. Its size in

bytes is determined by the specified curve, as detailed in Section

3.4.3.1.

Note: for key sources other than

BK_ECC_KEY_SOURCE_USER_PROVIDED, this input is not

used.

Note: the address must be at a 32-bit boundary, so the lowest two

bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

60 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

private_key_code out Pointer to a private key code type buffer which will hold the

created elliptic curve private key. The private key code type is

detailed in Section 3.4.3.5.

Note: the address must be at a 32-bit boundary, so the lowest two

bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

61 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.2. bk_compute_public_from_private_key

This function computes the elliptic curve public key corresponding to a private key code

created with bk_create_private_key, and outputs the public key in a corresponding public key

code format. The curve and purpose flags of the public key (code) will be the same as the one

of the provided private key (code).

Note: the protection mechanisms for storing public keys as public key codes are similar as for

the bk_wrap function (see Section 3.5.3.1), but public key codes cannot be unwrapped by

bk_unwrap. The underlying internal keys used by bk_compute_public_from_private_key for

protecting public key codes are also different as for key codes generated by bk_wrap. If needed,

the function bk_export_public_key (see Section 3.5.4.5) can be used to retrieve the public key

value contained in a public key code.

A call to bk_compute_public_from_private_key is only allowed when BroadKey is either in

the Enrolled or in the Started state; a call from any other state will return

IID_NOT_ALLOWED. A call to bk_compute_public_from_private_key, successful or not,

will not change the state of BroadKey.

bk_compute_public_from_private_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PRIVATE_KEY_CODE

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_compute_public_from_private_key(

 const bk_ecc_private_key_code_t * const private_key_code,

 bk_ecc_public_key_code_t * const public_key_code);

Parameters

private_key_code in Pointer to a private key code type buffer which holds the elliptic curve

private key, and was created by bk_create_private_key. The private

key code type is detailed in Section 3.4.3.5.

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

public_key_code out Pointer to a public key code type buffer which will hold the elliptic

curve public key computed from the provided private key (code)

input. The public key code type is detailed in Section 3.4.3.5.

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

62 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.3. bk_derive_public_key

This function computes the elliptic curve public key corresponding to a private key, e.g. created

with bk_get_private_key (see Section 3.5.2.3) and outputs the public key.

A call to bk_derive_public_key is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_derive_public_key, successful or not, will not change the state of BroadKey.

bk_derive_public_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PRIVATE_KEY

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_derive_public_key(

 const bool use_point_compression,

 const bk_ecc_curve_t curve,

 const uint8_t * const private_key,

 uint8_t * const public_key);

Parameters

use_point_compression in Note: this flag is present for future use compatibility, but is not

used for this product version of BroadKey. For this product

version, this value has to be set to False (no point

compression), any other value will result in the return code

IID_INVALID_PARAMETERS.

curve in Specifies the named elliptic curve on which the considered

private key is defined. It must be a valid curve type of the

bk_ecc_curve_t enumeration which is declared in

iidbroadkey.h.The allowed curves, and their meaning, are

explained in Section 3.4.3.1.

private_key in Pointer to a byte array buffer which holds the elliptic curve

private key. The expected input is binary in network byte order

representation. Its size in bytes is determined by the specified

curve, as detailed in Section 3.4.3.1.

Note: the address must be at a 32-bit boundary, so the lowest

two bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

63 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

public_key out Pointer to a byte array buffer which will hold the elliptic curve

public key computed from the provided private key input. The

output is in X9.62 binary format. Its size in bytes is determined

by the specified curve, as detailed in Section 3.4.3.1.

Note: the address must be at a 32-bit boundary, so the lowest

two bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

64 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.4. bk_import_public_key

This function imports an elliptic curve public key from a provided X9.62 binary format

(uncompressed) to a corresponding public key code format.11 The curve and purpose flags of

the public key (code) are also provided as inputs and stored in the public key code.

Note: the protection mechanisms for storing public keys as public key codes are similar as for

the bk_wrap function (see Section 3.5.3), but public key codes cannot be unwrapped by

bk_unwrap. The underlying internal keys used by bk_import_public_key for protecting public

key codes are also different as for key codes generated by bk_wrap. If needed, the function

bk_export_public_key (see Section 3.5.4.5) can be used to retrieve the public key value

contained in a public key code.

A call to bk_import_public_key is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_import_public_key, successful or not, will not change the state of BroadKey.

bk_import_public_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PUBLIC_KEY

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_import_public_key(

 const bk_ecc_curve_t curve,

 const bk_ecc_key_purpose_t purpose_flags,

 const uint8_t * const public_key,

 bk_ecc_public_key_code_t * const public_key_code);

Parameters

curve in Specifies the named elliptic curve on which the imported public key is

defined. It must be a valid curve type of the bk_ecc_curve_t

enumeration which is declared in iidbroadkey.h. The allowed curves,

and their meaning, are explained in Section 3.4.3.1.

purpose_flags in Flag which specifies the usage purpose of the public key. It must be a

valid flag of the bk_ecc_key_purpose_t enumeration which is declared

in iidbroadkey.h. The allowed key purposes, and their meaning, are

explained in Section 3.4.3.3.

public_key in Pointer to a byte array buffer which holds the public key to be

imported. The expected input is in X9.62 uncompressed binary format.

Its size in bytes is determined by the specified curve as detailed in

Section 3.4.3.1.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

65 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

public_key_code out Pointer to a public key code type buffer which will hold the imported

elliptic curve public key. The public key code type is detailed in

Section 3.4.3.5.

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

66 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.5. bk_export_public_key

This function exports a public key from BroadKey’s public key code format to an X9.62

(uncompressed) binary elliptic curve public key format.11 The curve on which the public key

is defined, as well as the purpose flags stored alongside the key in the public key code, are

returned as well.

A call to bk_export_public_key is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_export_public_key, successful or not, will not change the state of BroadKey.

bk_export_public_key can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PUBLIC_KEY_CODE

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_export_public_key(

 const bool use_point_compression,

 const bk_ecc_public_key_code_t * const public_key_code,

 uint8_t * const public_key,

 bk_ecc_curve_t * const curve,

 bk_ecc_key_purpose_t * const purpose_flags);

Parameters

use_point_compression in Note: this flag is present for future use compatibility, but is not

used for this product version of BroadKey. For this product

version, this value has to be set to False (no point

compression), any other value will result in the return code

IID_INVALID_PARAMETERS.

public_key_code in Pointer to a public key code type buffer which holds the elliptic

curve public key to be exported. The public key code type is

detailed in Section 3.4.3.5.

Note: the address must be at a 32-bit boundary, so the lowest

two bits of the address must be 0.

11 “Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature

Algorithm (ECDSA)”, ANSI X9.62, 2005. (http://webstore.ansi.org/ansidocstore)

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

67 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

public_key out Pointer to a byte array buffer which will hold the exported public

key. The output is in X9.62 binary format. Its exact size in bytes

is determined by the specified curve as detailed in Section

3.4.3.1.

curve out Specifies the named elliptic curve on which the exported public

key is defined. It will be a curve type of the bk_ecc_curve_t

enumeration which is declared in iidbroadkey.h. The possible

curves, and their meaning, are explained in Section 3.4.3.1.

purpose_flags out Flag which indicates the stored usage purpose of the public key.

It will be a valid flag of the bk_ecc_key_purpose_t enumeration

which is declared in iidbroadkey.h. The possible key purposes,

and their meaning, are explained in Section 3.4.3.3.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

68 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.6. bk_ecdsa_sign

This function signs a message or a hash of message using ECDSA with an elliptic curve private

key in the internal private key code format. Signing can be done with either a random seed or

a deterministically derived seed as indicated by the calling application.

A call to bk_ecdsa_sign is only allowed when BroadKey is either in the Enrolled or in the

Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_ecdsa_sign, successful or not, will not change the state of BroadKey.

bk_ecdsa_sign can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PRIVATE_KEY_CODE

• IID_ECC_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_ecdsa_sign(

 const bk_ecc_private_key_code_t * const private_key_code,

 const bool deterministic_signature,

 const uint8_t * const message,

 const uint32_t message_length,

 const bool message_is_hash,

 uint8_t * const signature,

 uint16_t * const signature_length);

Parameters

private_key_code in Pointer to a private key code type buffer which holds the

elliptic curve private key to be used for signing, and as was

created by bk_create_private_key. The private key code

type is detailed in Section 3.4.3.5.

Note: a private key code used for signing shall have been

created with purpose flags allowing its use for signing (see

Section 3.4.3.3).

Note: the address must be at a 32-bit boundary, so the lowest

two bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

69 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

deterministic_signature in Value which specifies if deterministic or non-deterministic

signing will be used. If this value equals False, message will

be signed using the standard ECDSA non-deterministic

algorithm. Otherwise, the message will be signed using a

deterministic algorithm.12

message in Pointer to a byte array buffer which holds the message or the

message hash that will be signed.

message_length in Value which specifies the size in bytes of the message buffer.

If message_is_hash True (i.e. the provided message is

actually a message hash), the size must be equal to the size in

bytes of the used private key, as determined by the used curve,

and as specified in Section 3.4.3.1.

Otherwise (i.e. the provided message is a raw message byte

array), the size in bytes must be equal to the raw message

length. In this case, message_length could also be zero in

which case an empty message will be signed.

message_is_hash in Value which specifies if the provided message buffer contains

an already hashed message, or a raw message byte array.

If this value equals False, bk_ecdsa_sign will treat the

message buffer as a raw message, and will hash it first using

SHA-256 and the trailing bytes will be truncated to equal the

size of the used elliptic curve private key (see Section 3.4.3.1)

before signing the resulting hash.

Otherwise, bk_ecdsa_sign will treat the message buffer as an

already hashed message, and it will be signed directly.

signature out Pointer to a byte array buffer which will hold the computed

ECDSA signature. Its exact size in bytes depends on the used

curve, as contained in the private key code. Section 3.4.3.1

specifies the byte lengths for signatures over all supported

curves.

12 Deterministic ECDSA signing is not a widely approved standard, but it can have certain security and/or

usability benefits in particular situations. The algorithm used for deterministic ECDSA signing by BroadKey is

compliant with the description in RFC-6979, “Deterministic Usage of the Digital Signature Algorithm (DSA)

and Elliptic Curve Digital Signature Algorithm (ECDSA)”, T. Pornin, (https://tools.ietf.org/html/rfc6979).

https://tools.ietf.org/html/rfc6979

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

70 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

signature_length in/out As input, this is the length in bytes of the allocated output

buffer pointed to by signature. This value is used to check for

buffer overflow.

Note: the size of the signature buffer must be at least long

enough to hold a signature value for the used curve, as

specified in Section 3.4.3.1.

As output, this is the actual size in bytes of the returned

signature value, as specified in Section 3.4.3.1.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

71 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.7. bk_ecdsa_verify

This function verifies the ECDSA signature of a message or a hash of message with an elliptic

curve public key in the internal public key code format.13

Note: bk_ecdsa_verify has no explicit output parameters, only inputs. Its result is contained in

its return code. If IID_SUCCESS is returned, the signature on the message is successfully

verified. If IID_INVALID_SIGNATURE is returned, the signature on the message is invalid.

For other return codes bk_ecdsa_verify failed to complete (see Section 3.3 for more

information).

A call to bk_ecdsa_verify is only allowed when BroadKey is either in the Enrolled or in the

Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_ecdsa_verify, successful or not, will not change the state of BroadKey.

bk_ecdsa_verify can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PUBLIC_KEY_CODE

• IID_ECC_NOT_ALLOWED

• IID_INVALID_SIGNATURE

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_ecdsa_verify(

 const bk_ecc_public_key_code_t * const public_key_code,

 const uint8_t * const message,

 const uint32_t message_length,

 const bool message_is_hash,

 const uint8_t * const signature,

 const uint16_t signature_length);

13 ECDSA signature verification is indifferent to whether deterministic or non-deterministic ECDSA signing

was used.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

72 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

public_key_code in Pointer to a public key code type buffer which holds the elliptic curve

public key to be used for signature verification. The public key code

type is detailed in Section 3.4.3.5.

Note: a public key code used for signature verification shall have been

computed or imported with purpose flags allowing its use for signing

(see Section 3.4.3.3).

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

message in Pointer to a byte array buffer which holds the message or the message

hash on which a signature will be verified.

message_length in Value which specifies the size in bytes of the message buffer.

If message_is_hash is True (i.e. the provided message is actually a

message hash), the size must be equal to the size in bytes of the used

private key, as determined by the used curve, and as specified in Section

3.4.3.1.

Otherwise (i.e. the provided message is a raw message byte array), the

size in bytes must be equal to the raw message length. In this case,

message_length could also be zero in which case the signature on an

empty message will be verified.

message_is_hash in Value which specifies if the provided message buffer contains an

already hashed message, or a raw message byte array.

If this value equals False, bk_ecdsa_verify will treat the message buffer

as a raw message, and will hash it first using SHA-256 and the trailing

bytes will be truncated to equal the size of the used elliptic curve private

key (see Section 3.4.3.1) before verifying the signature on the resulting

hash.

Otherwise, bk_ecdsa_verify will treat the message buffer as an already

hashed message, and it will be verified directly.

signature in Pointer to a byte array buffer which holds the to-be-verified ECDSA

signature.

signature_length in This is the length in bytes of the provided signature.

Note: the size of the signature must be exactly the right value as

specified for the used curve (see Section 3.4.3.1).

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

73 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.8. bk_ecdh_shared_secret

This function computes a shared secret value using the ECDH algorithm on the provided

private and public key (codes). The returned shared secret comprises the X-coordinate of the

mutual curve point computed with the elliptic curve Diffie-Hellman method.

A call to bk_ecdh_shared_secret is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_ecdh_shared_secret, successful or not, will not change the state of BroadKey.

bk_ecdh_shared_secret can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_PRIVATE_KEY_CODE

• IID_INVALID_PUBLIC_KEY_CODE

• IID_ECC_NOT_ALLOWED

• IID_CURVE_MISMATCH

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_ecdh_shared_secret(

 const bk_ecc_private_key_code_t * const private_key_code,

 const bk_ecc_public_key_code_t * const public_key_code,

 uint8_t * const shared_secret);

Parameters

private_key_code in Pointer to a private key code type buffer which holds the elliptic curve

private key to be used for computing the shared secret, and as was

created by bk_create_private_key. The private key code type is

detailed in Section 3.4.3.5.

Note: a private key code used for shared secret computation shall

have been created with purpose flags allowing its use for ECDH (see

Section 3.4.3.3).

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

74 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

public_key_code in Pointer to a public key code type buffer which holds the elliptic curve

public key to be used for computing the shared secret. The public key

code type is detailed in Section 3.4.3.5.

Note: a public key code used for shared secret computation shall have

been computed or imported with purpose flags allowing its use for

ECDH (see Section 3.4.3.3).

Note: a public key code used for shared secret computation shall

contain a public key defined over the same curve as the simultaneously

provided private key code (see Section 3.4.3.1).

Note: the address must be at a 32-bit boundary, so the lowest two bits

of the address must be 0.

shared_secret out Pointer to a byte array buffer which will hold the computed shared

secret. The shared secret will be equal to the X-coordinate of the

commonly derived point on the elliptic curve. The exact size in bytes

of the shared secret depends on the used curve, as contained in the

private key code (see Section 3.4.3.1).

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

75 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.9. bk_generate_cryptogram

This function packs a provided plaintext in a protected cryptogram format using an elliptic

curve hybrid encryption scheme. The cryptogram format offers protection for confidentiality,

integrity, sender authentication and replay. See Sections 2.5.3.2 and 3.4.3.4 for more

background on the security properties depending on the used cryptogram type.

A cryptogram is the single message in a one-pass protocol from a sender to a receiver. The

cryptogram generation is based simultaneously on the sender’s private key and the receiver’s

public key. Both private and public key are provided as key codes which have to be defined

over the same elliptic curve, and both keycodes must have their purpose flags set to allow the

keys being used for encryption.

A call to bk_generate_cryptogram is only allowed when BroadKey is either in the Enrolled

or in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_generate_cryptogram, successful or not, will not change the state of BroadKey.

bk_generate_cryptogram can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_COUNTER

• IID_INVALID_PRIVATE_KEY_CODE

• IID_INVALID_PUBLIC_KEY_CODE

• IID_ECC_NOT_ALLOWED

• IID_CURVE_MISMATCH

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_generate_cryptogram(

 const bk_ecc_public_key_code_t * const receiver_public_key_code,

 const bk_ecc_private_key_code_t * const sender_private_key_code,

 const bk_ecc_cryptogram_type_t cryptogram_type,

 uint8_t * const counter64,

 const uint8_t * const plaintext,

 const uint32_t plaintext_length,

 uint8_t * const cryptogram,

 uint32_t * const cryptogram_length);

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

76 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

receiver_public_key_code in Pointer to a public key code type buffer which holds the

elliptic curve public key of the receiver to whom the

generated cryptogram will be sent. The public key code

type is detailed in Section 3.4.3.5.

Note: in order to have secure receiver authentication (i.e.

assurance to the sender that only the intended receiver will

be able to unpack the cryptogram), the public key

contained in receiver_public_key_code shall have been

verified in an independent manner (e.g. through certificate

validation), or it shall come from an independent trusted

source.

Note: a public key code used for cryptogram generation

shall have been computed or imported with purpose flags

allowing its use for ECDH/encryption (see Section

3.4.3.3).

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

sender_private_key_code in Pointer to a private key code type buffer which holds the

elliptic curve private key of the sender whom will send the

generated cryptogram. The private key code type is

detailed in Section 3.4.3.5.

Note: a private key code used for cryptogram generation

shall have been created with purpose flags allowing its use

for ECDH/encryption (see Section 3.4.3.3).

Note: a private key code used for cryptogram generation

shall contain a private key defined over the same curve as

the simultaneously provided public key code (see Section

3.4.3).

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

cryptogram_type in Flag which specifies the cryptogram type to be generated.

It must be a valid flag of the bk_ecc_cryptogram_type_t

enumeration which is declared in iidbroadkey.h. The

supported cryptogram types, and their meaning, are

explained in Section 3.4.3.4.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

77 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

counter64 in/out Pointer to a byte array buffer which holds the current 64-

bit monotonic counter used for cryptogram replay

protection, and will hold the new counter value after

successful function completion. Its size in bytes is 8.

Note: the counter value is represented in the byte array as

a 64-bit unsigned integer in big-endian format (counter[0]

contains the most-significant byte).

Note: a separate counter byte array shall be used for each

distinct sender-receiver key pair. The calling application

needs to retrieve this array from persistent storage before

each call to bk_generate_cryptogram, and store back its

updated value in persistent storage after the function

completes successfully (return code is IID_SUCCESS).

Upon first use of a counter array for a sender-receiver

pair, the counter array needs to be initialized to all-zero

bytes, after the initial validation of the receiver’s public

key.

plaintext in Pointer to a byte array buffer which holds the plaintext

which will be encrypted in the cryptogram.

plaintext_length in Value which specifies the size in bytes of the plaintext

buffer. Its value must be positive (>0) and a multiple of 4.

cryptogram out Pointer to a byte array buffer which will hold the generated

cryptogram. Its exact size in bytes depends on the used

curve, as contained in the private key code, on the specified

cryptogram_type, and on the length of the provided

plaintext, as specified in Section 3.4.3.4.

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

78 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

cryptogram_length in/out As input, this is the length in bytes of the allocated output

buffer pointed to by cryptogram. This value is used to

check for buffer overflow.

Note: the size of the cryptogram buffer must be at least

long enough to hold a cryptogram for the provided

plaintext length, and the used curve and cryptogram type,

as specified in Section 3.4.3.4.

As output, this is the actual size in bytes of the returned

cryptogram, as specified in Section 3.4.3.4.

Note: if the size provided by this parameter as input is

smaller than the minimum required size, the function

returns with IID_INVALID_PARAMETERS, but still sets

the output value of this parameter to the actual required

size.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

79 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.10. bk_process_cryptogram

This function processes a received cryptogram in a protected cryptogram format, to retrieve

the contained plaintext, using an elliptic curve hybrid decryption scheme. The cryptogram

format offers protection for confidentiality, integrity, sender authentication and replay. See

Sections 2.5.3.2 and 3.4.3.4 for more background on the security properties depending on the

used cryptogram type.

A cryptogram is the single message in a one-pass protocol from a sender to a receiver. The

cryptogram processing is based simultaneously on the receiver’s private key and the sender’s

public key. Both private and public key are provided as key codes which shall have been

defined over the same elliptic curve, and which shall both have their purpose flags set to allow

their use for encryption.

A received cryptogram can only be correctly processed (decrypted and authenticated) if the

provided receiver private key and sender public key correspond respectively to the receiver

public key and sender private key used to create the cryptogram, e.g. using

bk_generate_cryptogram.

A call to bk_process_cryptogram is only allowed when BroadKey is either in the Enrolled or

in the Started state; a call from any other state will return IID_NOT_ALLOWED. A call to

bk_process_cryptogram, successful or not, will not change the state of BroadKey.

bk_process_cryptogram can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

• IID_INVALID_COUNTER

• IID_INVALID_PRIVATE_KEY_CODE

• IID_INVALID_PUBLIC_KEY_CODE

• IID_ECC_NOT_ALLOWED

• IID_CURVE_MISMATCH

• IID_INVALID_SENDER

• IID_INVALID_CRYPTOGRAM

See Section 3.3 for the meaning of the return codes.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

80 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

iid_return_t bk_process_cryptogram(

 const bk_ecc_private_key_code_t * const receiver_private_key_code,

 const bk_ecc_public_key_code_t * const sender_public_key_code,

 bk_ecc_cryptogram_type_t * const cryptogram_type,

 uint8_t * const counter64,

 const uint8_t * const cryptogram,

 const uint32_t cryptogram_length,

 uint8_t * const plaintext,

 uint32_t * const plaintext_length);

Parameters

receiver_private_key_code in Pointer to a private key code type buffer which holds the

elliptic curve private key of the receiver by whom the

cryptogram is processed. The private key code type is

detailed in Section 3.4.3.5.

Note: a private key code used for cryptogram processing

shall have been created with purpose flags allowing its

use for ECDH/encryption (see Section 3.4.3.3).

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

81 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

sender_public_key_code in Pointer to a public key code type buffer which holds the

elliptic curve public key of the sender from whom the to-

be-processed cryptogram was received. The public key

code type is detailed in Section 3.4.3.5.

Note: in order to have secure sender authentication (i.e.

assurance to the receiver that the cryptogram comes from

the expected sender), the public key contained in

sender_public_key_code shall have been verified in an

independent manner (e.g. through certificate validation),

or it shall come from an independent trusted source.

Note: a public key code used for cryptogram processing

shall have been computed or imported with purpose flags

allowing its use for ECDH/encryption (see Section

3.4.3.3).

Note: a public key code used for cryptogram processing

shall contain a public key defined over the same curve as

the simultaneously provided private key code (see Section

3.4.3.1).

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

cryptogram_type out Pointer to a cryptogram type buffer which will hold the

cryptogram type which was used to generate the

cryptogram. It will contain a valid flag of the

bk_ecc_cryptogram_type_t enumeration which is

declared in iidbroadkey.h. The supported cryptogram

types, and their meaning, are explained in Section 3.4.3.4.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

82 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

counter64 in/out Pointer to a byte array buffer which holds a 64-bit

monotonic counter used for cryptogram replay protection,

and will hold the new counter value after successful

function completion. Its size in bytes is 8.

Note: the counter value is represented in the byte array as

a 64-bit unsigned integer in big-endian format

(counter[0] contains the most-significant byte).

Note: a separate counter byte array shall be used for each

distinct receiver-sender key pair. The calling application

needs to retrieve this array from persistent storage before

each call to bk_process_cryptogram, and store back its

updated value in persistent storage after the function

completes successfully (return code is IID_SUCCESS).

Upon first use of a counter array for a receiver-sender

pair, the counter array needs to be initialized to all-zero

bytes, after the initial validation of the sender’s public

key.

Note: bk_process_cryptogram will only be able to

successfully process cryptograms which have been

generated with a corresponding counter value which is

strictly larger than the integer value provided in

counter64. This prevents replay of old cryptograms, but

also obstructs the ability to receive multiple consecutive

cryptograms out of order.

cryptogram in Pointer to a byte array buffer which holds the full

cryptogram to be processed.

Note: the address must be at a 32-bit boundary, so the

lowest two bits of the address must be 0.

cryptogram_length in Value which specifies the size in bytes of the cryptogram

buffer.

Note: this value must be the exact size of the cryptogram

to-be-processed, as specified in Section 3.4.3.4.

plaintext out Pointer to a byte array buffer which will hold the

decrypted plaintext. The exact size in bytes of the

plaintext depends on the cryptogram length, the used

elliptic curve, and the used cryptogram type, as specified

in Section 3.4.3.4.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

83 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

plaintext_length in/out As input, this is the length in bytes of the allocated output

buffer pointed to by plaintext. This value is used to check

for buffer overflow.

Note: the size of the plaintext buffer must be at least long

enough to hold a plaintext for the provided cryptogram

length, and the used curve and cryptogram type, as

specified in Section 3.4.3.4.

As output, this is the actual size in bytes of the returned

plaintext, as specified in Section 3.4.3.4.

Note: if the size provided by this parameter as input is

smaller than the minimum required size, the function

returns with IID_INVALID_PARAMETERS, but still sets

the output value of this parameter to the actual required

size.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

84 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

3.5.4.11. bk_get_public_key_from_cryptogram

This helper function extracts the sender’s public key from a received cryptogram. This function

is (optionally) used, prior to cryptogram processing with bk_process_cryptogram, to facilitate

the validation of the sender’s public key. In particular, this function is needed when then

receiver upfront has no knowledge of which public key was used by the sender.

Note: this is an optional helper function. Preferably, a receiver already possesses a trusted

copy of the public key used by the expected sender, in which case it is not necessary to use this

function.

Note: this helper function solely attempts to extract the sender’s public key value from a

provided cryptogram. The outcome of this function provides no guarantees whatsoever about

the correctness/validity/authenticity of the provided cryptogram or the extracted public key.

Note: if this function is used to extract a sender’s public key, it is extremely important that the

retrieved public key is independently validated before calling bk_process_cryptogram with it.

This can be done, e.g. by looking up and verifying the certificate corresponding to the public

key, or by verifying that the public key matches a trusted copy of that key, e.g. in a local

database. Calling bk_process_cryptogram with an unvalidated sender public key voids the

sender authentication property of the cryptogram functionality.

A call to bk_get_public_key_from_cryptogram is only allowed when BroadKey is either in

the Enrolled or in the Started state; a call from any other state will return

IID_NOT_ALLOWED. A call to bk_get_public_key_from_cryptogram, successful or not,

will not change the state of BroadKey.

bk_get_public_key_from_cryptogram can exit with one of the following return codes:

• IID_SUCCESS

• IID_INVALID_CRYPTOGRAM

• IID_INVALID_PARAMETERS

• IID_NOT_ALLOWED

See Section 3.3 for the meaning of the return codes.

iid_return_t bk_get_public_key_from_cryptogram(

 const bool use_point_compression,

 const bk_ecc_curve_t curve,

 const uint8_t * const cryptogram,

 const uint32_t cryptogram_length,

 uint8_t * const public_key);

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

85 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Parameters

use_point_compression in Note: this flag is present for future use compatibility, but is not

used for this product version of BroadKey. For this product

version, this value has to be set to False (no point

compression), any other value will result in the return code

IID_INVALID_PARAMETERS.

curve in Specifies the named elliptic curve on which the provided

cryptogram is defined. It will be a curve type of the

bk_ecc_curve_t enumeration which is declared in

iidbroadkey.h. The possible curves, and their meaning, are

explained in Section 3.4.3.1.

cryptogram in Pointer to a byte array buffer which holds the full cryptogram

from which the sender’s public key will be extracted.

Note: the address must be at a 32-bit boundary, so the lowest

two bits of the address must be 0.

cryptogram_length in Value which specifies the size in bytes of the cryptogram

buffer.

Note: this value must be the exact size of the cryptogram to-be-

processed, as specified in Section 3.4.3.4.

public_key out Pointer to a byte array buffer which will hold the extracted

public key. The output is in X9.62 binary format. Its exact size

in bytes is determined by the specified curve as detailed in

Section 3.4.3.1.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

86 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

4. Integration Guidelines

4.1. Integration Considerations

The following needs to be taken into account when using the BroadKey module:

• The PUF SRAM location and size are fixed over the lifetime of the device.

• The PUF SRAM may not be manipulated outside of the control of BroadKey.

• BroadKey does not allocate any memory: it is the responsibility of the caller to allocate

all required buffers with the correct sizes.

• The activation code generated during enrollment must be stored by the caller. The

availability and integrity of the activation code is a requirement for the use of

BroadKey. Loss or corruption of an activation code inevitably leads to the inability to

ever re-instantiate the cryptographic context associated to it, potentially resulting in loss

of data protected under that context.

• Since the activation code does not contain any sensitive information, further protection

(confidentiality, authenticity) is not required.

• Re-enrollment of a device will generate a new activation code and instantiate a new

cryptographic context which is incompatible with earlier contexts instantiated on the

same device. As a result, device keys will be different from those generated in earlier

contexts, and key codes generated in earlier contexts cannot be unwrapped or used in

the new context.

4.2. Reliability Optimizations

While a chip is in use (meaning powered on) the physical parameters of the device will change

slightly over the course of years. The speed of the changes depends heavily on the conditions

under which the chip is used (temperature, power supply voltage level, etc.). This process is

called (silicon) aging, and it potentially also affects the SRAM start-up behavior.

To improve long-term reliability, anti-aging measures are taken during bk_init, and during a

successful bk_start operation. These measures put the SRAM used by BroadKey in an

optimized state such that it can remain powered on for a long time without being degraded by

the aging process. While in this state, it is still possible to use BroadKey’s function in the

regular way. It is recommended to not leave BroadKey for a long time in the Uninitialized

state, but call bk_init at the earliest possible convenient time. The optimal anti-aging measures

are only completely taken when a correct AC is provided during bk_start.

Contrarily to BroadKey, DemoKey does not implement anti-aging measures for the used

SRAM. As a result, it is not recommended to use DemoKey on devices which are powered-on

for significant amounts of time, as this might degrade its reliability. Given that DemoKey is

intended to be used for demonstration purposes only, this should pose no problem.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

87 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Please note that DemoKey is also not to be used in experiments validating the reliability

of BroadKey. Please contact Intrinsic ID for more information regarding reliability

testing.

4.3. Power-up Recommendations

To get good SRAM start-up behavior, it is recommended that the voltage power-up

curve of the SRAM power supply meets the following guidelines:

• Power supply voltage must be monotonously increasing (no power dips during voltage

ramp-up).

• Power supply voltage rise time from 0V to 90% of Vdd must be less than 0.5 ms.

• Before power-on, the power supply must have been at 0V for a sufficiently long time

in order to guarantee fresh startup values in the SRAM memory. Typically, a power-

off time of 100 ms is enough. For extreme low temperatures (-40oC and below) the

required power-off time may need to be extended to around 500 ms.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

88 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

Appendix A. Example Code for Software
Development

The example code (of BroadKey) provided below here is fully applicable on DemoKey as

well, taking into account the functional limitations as detailed in Section 2.

To help software development, this section provides example code (C-style) that shows how

to call the functions of the library. It is not intended to be optimal code for the target processor,

nor is it intended to be a meaningful order of operations, e.g. for a particular use case. None of

the examples contain error handling. This must be added by the programmer.

The code is based on the functional interfaces described in Section 3.5.

Note: Because reading and/or writing to NVM typically require specific control sequences, it

is assumed they are handled respectively by read_from_nvm() and write_to_nvm(), which the

customer needs to map on the respective NVM I/O functions on his system

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

89 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.1. Includes and Defines for Example Code

/* Includes for BroadKey */
#include "iidreturn_codes.h"
#include "iidbroadkey.h"

/* Define the start address of the SRAM that is used for BroadKey */
#define SRAM_PUF_ADDRESS 0xMMMMMMMM

/* Define the start address of the AC in NVM */
#define AC_NVM_ADDRESS 0xNNNNNNNN

/* Define a variable for functions’ return value */
iid_return_t return_value;

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

90 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.2. Example Code for BroadKey Initialization

/* ... includes and defines of A.1. section ... */

...

/***********************
 * Initialize BroadKey *
 ***********************/
return_value = bk_init((uint8_t * const)SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

91 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.3. Example Code for BroadKey Enroll and Stop

/* ... includes and defines of A.1. section ... */

...

/***********************
 * Initialize BroadKey *
 ***********************/
return_value = bk_init((uint8_t * const)SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN uint8_t activation_code[BK_AC_SIZE_BYTES] POST_HIS_ALIGN;

/*********************
 * Enroll the Device *
 *********************/
return_value = bk_enroll(activation_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/*****************
 * Stop BroadKey *
 *****************/
return_value = bk_stop();

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/* Store the AC in NVM */
write_to_nvm(AC_NVM_ADDRESS, activation_code, BK_AC_SIZE_BYTES);

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

92 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.4. Example Code for BroadKey Start and Stop

/* ... includes and defines of A.1. section ... */

/* Enrollment must have been performed before the following code, as shown in
the previous example */

...

/***********************
 * Initialize BroadKey *
 ***********************/
return_value = bk_init((uint8_t * const)SRAM_PUF_ADDRESS,
BK_SRAM_PUF_SIZE_BYTES);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/******************
 * Start BroadKey *
 ******************/
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN uint8_t ac[BK_AC_SIZE_BYTES] POST_HIS_ALIGN;
read_from_nvm(AC_NVM_ADDRESS, ac, BK_AC_SIZE_BYTES);
return_value = bk_start(ac);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/*****************
 * Stop BroadKey *
 *****************/
return_value = bk_stop();

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

93 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.5. Example Code for BroadKey Get Key

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/************
 * Get Key *
 ************/
uint8_t key_type = BK_SYM_KEY_TYPE_256;
uint8_t index = 0;
uint8_t key[32];

return_value = bk_get_key(key_type, index, key);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

94 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.6. Example Code for BroadKey Get Private Key

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/*******************
 * Get Private Key *
 *******************/
bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN uint8_t private_key[32] POST_HIS_ALIGN;

return_value = bk_get_private_key(curve,
 NULL, /* no usage_context is used */
 0, /* no usage context is used */
 BK_ECC_KEY_SOURCE_PUF_DERIVED,
 private_key);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

95 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.7. Example Code for BroadKey Generate Random

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/*******************
 * Generate Random *
 *******************/
uint8_t data_buffer[32];

return_value = bk_generate_random(32, data_buffer);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

96 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.8. Example Code for BroadKey Wrap and Unwrap

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/************
 * Wrap Key *
 ************/
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN uint8_t key[32] POST_HIS_ALIGN = { 0x01, 0x02, ... };
PRE_HIS_ALIGN uint8_t key_code[BK_KEY_CODE_HEADER_LENGTH + sizeof(key)]
POST_HIS_ALIGN;
uint8_t index = 0;

return_value = bk_wrap(index,
 key,
 sizeof(key),
 key_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/**************
 * Unwrap Key *
 **************/
PRE_HIS_ALIGN uint8_t key_unwrapped[32] POST_HIS_ALIGN;
uint16_t key_unwrapped_length;
uint8_t index_unwrapped;
return_value = bk_unwrap(key_code,
 key_unwrapped,
 &key_unwrapped_length,
 &index_unwrapped);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

97 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.9. Example Code for BroadKey Private and Public Key
Computation, and Reconstruction without Storage

BroadKey can create and reconstruct PUF-derived private keys without storing them. This

section first describes how to create a private key, and compute and export its public key, and

then how to rederive the same private key on a subsequent power cycle, without the need to

save it.

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/**********************
 * Create Private Key *
 **********************/
bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
bk_ecc_key_purpose_t purpose_flags = BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA;
bk_ecc_key_source_t key_source = BK_ECC_KEY_SOURCE_PUF_DERIVED;
uint8_t usage_context[] = {'M', 'y', ' ', 'U', 's', 'a', 'g', 'e', ' ',
 'C', 'o', 'n', 't', 'e', 'x', 't'};

/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_private_key_code_t private_key_code POST_HIS_ALIGN;

return_value = bk_create_private_key(curve,
 purpose_flags,
 usage_context,
 sizeof(usage_context),
 key_source,
 NULL, /* no external private key is used */
 &private_key_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/***************************
 * Compute Public Key Code *
 ***************************/
PRE_HIS_ALIGN bk_ecc_public_key_code_t public_key_code POST_HIS_ALIGN;

return_value = bk_compute_public_from_private_key(&private_key_code,
 &public_key_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

98 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

}

/*********************
 * Export Public Key *
 *********************/
uint8_t public_key[65]; /* BK_ECC_CURVE_NIST_P256 public key computed above */
bk_ecc_curve_t curve_out;
bk_ecc_key_purpose_t purpose_flags_out;

return_value = bk_export_public_key(false, /* point compression is disabled */
 &public_key_code,
 public_key,
 &curve_out,
 &purpose_flags_out);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

To re-derive the same private key after a power cycle, without storing the key, perform the

following sequence.

/* ... includes and defines of A.1. section ... */

/* Initialization and Start have to be performed before the following code, as
shown in previous examples. Also, BroadKey must not be in the stopped state. */

...

/**********************
 * Create Private Key *
 **********************/

bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
bk_ecc_key_purpose_t purpose_flags = BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA;
bk_ecc_key_source_t key_source = BK_ECC_KEY_SOURCE_PUF_DERIVED;
uint8_t usage_context[] = {'M', 'y', ' ', 'U', 's', 'a', 'g', 'e', ' ',
 'C', 'o', 'n', 't', 'e', 'x', 't'};

/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_private_key_code_t private_key_code POST_HIS_ALIGN;

return_value = bk_create_private_key(curve,
 purpose_flags,
 usage_context,
 sizeof(usage_context),
 key_source,
 NULL, /* no external private key is used */

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

99 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

 &private_key_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

The following items need to be the same in order for the private key to reconstruct to the

same value:

• same chip and SRAM buffer address as during enrollment

• same Activation Code used for calling bk_start

• same usage_context

• same curve and purpose_flags

• key source needs to be set to BK_ECC_KEY_SOURCE_PUF_DERIVED

If public_key_code and/or public_key are also not stored locally they can be recomputed as

needed using the respective “Compute Public Key Code” and the “Export Public Key”

sequences from above.

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

100 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.10. Example Code for BroadKey Public Key Import

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/**********************
 * Import Public Key *
 **********************/
bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
bk_ecc_key_purpose_t purpose_flags = BK_ECC_KEY_PURPOSE_ECDH_AND_ECDSA;
uint8_t public_key[65] = {
 0x04, ...
};
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_public_key_code_t public_key_code POST_HIS_ALIGN;

return_value = bk_import_public_key(curve,
 purpose_flags,
 public_key,
 &public_key_code);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

101 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.11. Example Code for BroadKey Derive Public Key

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/*********************
 * Derive Public Key *
 *********************/
bk_ecc_curve_t curve = BK_ECC_CURVE_NIST_P256;
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN uint8_t private_key[32] POST_HIS_ALIGN = {
 ...
};
uint8_t public_key[65];

return_value = bk_derive_public_key(false, /* point compression is disabled */
 curve,
 private_key,
 public_key);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

102 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.12. Example Code for BroadKey ECDSA Sign and Verify

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/****************
 * Sign Message *
 ****************/
uint8_t message[32] = { ... };
uint8_t signature[64]; /* size = 64, assuming that the private key of 0. is
 * used, which belongs to BK_ECC_CURVE_NIST_P256.
 */
uint16_t signature_length = sizeof(signature);

return_value = bk_ecdsa_sign(&private_key_code, /* generated in 0. */
 false, /* non-deterministic signing algorithm */
 message,
 sizeof(message),
 false, /* message is not hashed */
 signature,
 &signature_length);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

/*************************
 * Verify Signed Message *
 *************************/
return_value = bk_ecdsa_verify(&public_key_code, /* generated in 0. */
 message,
 sizeof(message),
 false, /* message is not hashed */
 signature,
 sizeof(signature));

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

103 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.13. Example Code for BroadKey ECDH

/* ... includes and defines of A.1. section ... */

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/********
 * ECDH *
 ********/
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_private_key_code_t private_key_code1 POST_HIS_ALIGN;
PRE_HIS_ALIGN bk_ecc_public_key_code_t public_key_code2 POST_HIS_ALIGN;
uint8_t shared_secret[32]; /* size = 32, assuming that the key pairs have been
 * generated with BK_ECC_CURVE_NIST_P256.
 */

/* private_key_code1 belongs to key pair 1, while public_key_code2 belongs
 * to key pair 2.
 * public_key_code2 cannot be derived from private_key_code1.
 * Generation of the 2 different key pairs is omitted. An example can be
 * found in A.9.
 */

return_value = bk_ecdh_shared_secret(&private_key_code1,
 &public_key_code2,
 shared_secret);

if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

104 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.14. Example Code for BroadKey Cryptogram Generation and
Processing

Among other things, BroadKey’s cryptogram functionality features an anti-rollback option:

bk_generate_cryptogram and bk_process_cryptogram can protect messages against

replay attacks (rejecting repeat cryptograms and old cryptograms). Such an anti-rollback

feature typically uses monotonic counters or timestamps in order achieve that. In the case of

BroadKey, monotonic counters are used. This section describes:

• how to use the cryptogram functions

• how to initialize the counters on both sides (generate and process counters set in

NVM to 0)

• when not to save the counters to NVM (upon error)

• how to bypass anti-rollback (by always passing 0 to _process, rather than using

NVM).

When the rollback protection functionality is not needed, it can be disabled by passing 0 for

the counter64 value to bk_process_cryptogram. This will result in all cryptograms being

processed successfully, including old or repeat messages. Similarly, when anti-rollback is not

needed the sender side can simply use 0 as the value of counter64 for simplicity. There is no

need to store counter64 to NVM when the anti-rollback functionality is not used.

When anti-rollback is used the sender sequence is as follows:

Before the very first cryptogram to a given receiver is generated, as indicated by the first use

of the receiver’s public key:
/* Define the size (in bytes) of a cryptogram counter */
#define COUNTER64_SIZE_BYTES (64 / 8)

/* Define the address of the sender’s cryptogram counter in NVM */
#define COUNTER64_SENDER_ADDRESS 0xNNNNNNNN

uint8_t counter64_sender[COUNTER64_SIZE_BYTES];
memset(counter64_sender, 0, sizeof(counter64_sender));
write_to_nvm(COUNTER64_SENDER_ADDRESS, counter64_sender, COUNTER64_SIZE_BYTES);

And then, for sending messages as cryptograms:
/* ... includes and defines of A.1. section ... */

/* Define the address of the sender’s cryptogram counter in NVM */
#define COUNTER64_SENDER_ADDRESS 0xNNNNNNNN

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

105 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

/***********************
 * Generate Cryptogram *
 ***********************/
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_private_key_code_t sender_private_key_code POST_HIS_ALIGN;
PRE_HIS_ALIGN bk_ecc_public_key_code_t receiver_public_key_code POST_HIS_ALIGN;
PRE_HIS_ALIGN uint8_t plaintext[32] POST_HIS_ALIGN = { ... };
PRE_HIS_ALIGN uint8_t cryptogram[BK_CRYPTOGRAM_HEADER_SIZE_BYTES +
 64 +
 sizeof(plaintext)]
 POST_HIS_ALIGN; /* 64 is added to the length,
 * assuming that the key pairs
 * have been generated with
 * BK_ECC_CURVE_NIST_P256.
 */
uint32_t cryptogram_length = sizeof(cryptogram);
uint8_t counter64_sender[COUNTER64_SIZE_BYTES];

/* Generation of private and public key codes is omitted. An example
 * can be be found inA.9.
 */

read_from_nvm(COUNTER64_SENDER_ADDRESS, counter64_sender, COUNTER64_SIZE_BYTES);

return_value = bk_generate_cryptogram(&receiver_public_key_code,
 &sender_private_key_code,
 BK_ECC_CRYPTOGRAM_TYPE_ECDH_STATIC,
 counter64_sender,
 plaintext,
 sizeof(plaintext),
 cryptogram,
 &cryptogram_length);

if (IID_SUCCESS == return_value) {
 write_to_nvm(COUNTER64_SENDER_ADDRESS, counter64_sender,
COUNTER64_SIZE_BYTES);
 send_or_store(cryptogram, &cryptogram_length);}
else {
 /* ... handle error ... */
}

When anti-rollback is used the receiver sequence is as follows:

Before the very first cryptogram from a given sender is processed, as indicated by the first

use of the sender’s public key:

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

106 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

/* Define the address of the receiver’s cryptogram counter in NVM */
#define COUNTER64_RECEIVER_ADDRESS 0xNNNNNNNN

uint8_t counter64_receiver[COUNTER64_SIZE_BYTES];
memset(counter64_receiver, 0, sizeof(counter64_receiver));
write_to_nvm(COUNTER64_RECEIVER_ADDRESS, counter64_receiver,
COUNTER64_SIZE_BYTES);

And then, for processing messages inside received cryptograms:

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

107 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

/* ... includes and defines of A.1. section ... */

/* Define the address of the receiver’s cryptogram counter in NVM */
#define COUNTER64_RECEIVER_ADDRESS 0xNNNNNNNN

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...

/**********************
 * Process Cryptogram *
 **********************/
PRE_HIS_ALIGN bk_ecc_private_key_code_t receiver_private_key_code
POST_HIS_ALIGN;
PRE_HIS_ALIGN bk_ecc_public_key_code_t sender_public_key_code POST_HIS_ALIGN;
PRE_HIS_ALIGN uint8_t plaintext_decrypted[32] POST_HIS_ALIGN;
bk_ecc_cryptogram_type_t cryptogram_type;

uint8_t counter64_receiver[COUNTER64_SIZE_BYTES];

uint32_t plaintext_decrypted_length = sizeof(plaintext_decrypted);

/* Generation of private and public key codes is omitted. An example can be
found
 * in A.9. */

read_from_nvm(COUNTER64_RECEIVER_ADDRESS, counter64_receiver,
 COUNTER64_SIZE_BYTES);

return_value = bk_process_cryptogram(&receiver_private_key_code,
 &sender_public_key_code,
 &cryptogram_type,
 counter64_receiver,
 cryptogram,
 sizeof(cryptogram),
 plaintext_decrypted,
 &plaintext_decrypted_length);

if (IID_SUCCESS == return_value) {
 write_to_nvm(COUNTER64_RECEIVER_ADDRESS, counter64_receiver,
 COUNTER64_SIZE_BYTES);
 use(plaintext_decrypted, &plaintext_decrypted_length);
}
else {
 /* ... handle error ... */
}

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

108 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

A.15. Example Code for BroadKey Get Public Key From Cryptogram
and Multiple Sender Authentication

This section describes how to correctly do sender authentication for received cryptograms. It

details how to extract the sender’s public key from a cryptogram and check it against a list of

trusted sender public keys, before conditionally invoking bk_process_cryptogram only

when the extracted key is found in the list. Verifying a public key against a trusted list is one

possible way of authenticating the sender, another option would be validating the certificate

chain belonging to that public key (if any) with a trusted PKI root key.

/* ... includes and defines of A.1. section ... */

/* Define the size (in bytes) of a cryptogram counter */
#define COUNTER64_SIZE_BYTES (64 / 8)

/* Define the address of the receiver’s cryptogram counter in NVM, for a given
sender index */
#define COUNTER64_RECEIVER_ADDRESS(i) (0xNNNNNNNN + COUNTER64_SIZE_BYTES*(i))

/* Define the number of public keys in the trusted sender list */
#define N_PUB_KEYS 5

/* Initialization and Enrollment/Start have to be performed before the following
code, as shown in previous examples. Also, BroadKey must not be in the stopped
state. */

...
/* PRE_HIS_ALIGN and POST_HIS_ALIGN macros can be used to align a variable
address to 32 bits */
PRE_HIS_ALIGN bk_ecc_private_key_code_t receiver_private_key_code
POST_HIS_ALIGN;
PRE_HIS_ALIGN bk_ecc_public_key_code_t sender_public_key_code POST_HIS_ALIGN;
PRE_HIS_ALIGN uint8_t plaintext_decrypted[32] POST_HIS_ALIGN;
bk_ecc_cryptogram_type_t cryptogram_type;

uint8_t counter64_receiver[COUNTER64_SIZE_BYTES];

uint32_t plaintext_decrypted_length = sizeof(plaintext_decrypted);

/* Generation of private and public key codes is omitted. An example can be
found in A.9. */

/**********************************
 * Get Public Key From Cryptogram *
 **********************************/
bk_ecc_curve_t = BK_ECC_CURVE_NIST_P256;
PRE_HIS_ALIGN uint8_t cryptogram[...] POST_HIS_ALIGN;
uint32_t cryptogram_length = sizeof(cryptogram);
typedef uint8_t pub_key_256_t[65];
pub_key_256_t public_key;
pub_key_256_t trusted_public_keys[N_PUB_KEYS] = { {1}, {2}, {3}, {4}, {5} };

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

109 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

int i, j;

/* cryptogram[...] is loaded with received cryptogram array */
return_value = bk_get_public_key_from_cryptogram(false,
 curve,
 cryptogram,
 cryptogram_length,
 public_key);

if (IID_SUCCESS != return_value) {
/* ... handle error ... */
}

/**
 * Search the list of trusted Public Keys *
 **/
i = -1;
for(j = 0; j<N_PUB_KEYS; j++) {
 if(0 == memcmp(public_key, trusted_public_keys[j], sizeof(public_key))) {
 i = j;
 break;
 }
}

/**
 * Process for trusted sender public key #i *
 **/
if (0 <= i) {
 /**********************
 * Import Public Key *
 **********************/
 return_value = bk_import_public_key(curve,
 purpose_flags,
 public_key,
 &sender_public_key_code);

 if (IID_SUCCESS != return_value) {
 /* ... handle error ... */
 }
 else {
 /**********************
 * Process Cryptogram *
 **********************/
read_from_nvm(COUNTER64_RECEIVER_ADDRESS(i), counter64_receiver,
 COUNTER64_SIZE_BYTES);

 return_value = bk_process_cryptogram(&receiver_private_key_code,
 &sender_public_key_code,
 &cryptogram_type,
 counter64_receiver,
 cryptogram,
 sizeof(cryptogram),

DemoKey 2.4

Confidential

For internal use by Customer only Data Sheet

IID-DK2-4-DS

Version 1.1, Approved

For internal use by Customer only

Confidential

110 / 110

©
 2

0
1
8
 I

n
tr

in
s
ic

 I
D

 B
.V

.
–
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
.

T
h
e
 i
n
fo

rm
a
ti
o
n
 c

o
n
ta

in
e
d
 h

e
re

in
 i
s
 p

ro
p
ri
e
ta

ry
 t

o
 I
n
tr

in
s
ic

-I
D

 B
.V

.
a
n
d
 i
s
 m

a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r

a
n
 o

b
lig

a
ti
o
n
 o

f
c
o
n
fi
d
e
n
ti
a
lit

y
.

R
e
c
e
ip

t
o
f

th
is

 d
o
c
u
m

e
n
t
d
o
e
s
 n

o
t

im
p
ly

 a
n
y
 l
ic

e
n
s
e
 u

n
d
e
r

a
n
y
 i
n
te

lle
c
tu

a
l
p
ro

p
e
rt

y
 r

ig
h
ts

 o
f
In

tr
in

s
ic

-I
D

.

 plaintext_decrypted,
 &plaintext_decrypted_length);

 if (IID_SUCCESS == return_value) {
 /* save counter to sender index i */
 write_to_nvm(COUNTER64_RECEIVER_ADDRESS(i), counter64_receiver,
 COUNTER64_SIZE_BYTES);

 /* use plaintext_decrypted in sender secure key/code slot #i */
 use(i, plaintext_decrypted, &plaintext_decrypted_length);
 }
 else {
 /* ... handle error ... */
 }
 }
}

