

VOLTAGE CONTROLLED SAW OSCILLATOR

M675

GENERAL DESCRIPTION

The M675 is a VCSO (Voltage Controlled SAW

Oscillator) frequency source for low-jitter clock generation. An integrated SAW (surface acoustic wave) delay line implements the high-Q VCO (voltage controlled oscillator) function, which

results in low output phase noise and very low jitter. The M675-01 is available in a range of center frequencies from 125 to 175 MHz. The M675-02 provides 500 to 700 MHz. Guaranteed minimum pull-range of ±100 ppm meets GbE requirements. (It also fully satisfies ±50 ppm minimum pull-range specification commonly required.) Industry-standard Kvco (VCO Gain) provides full replacement compatibility. The M675 is well suited for phase-locked loop implementations, clock and data recovery circuits, and other timing applications in telecom and optical fiber networking systems (e.g., SONET/SDH).

FEATURES

- ◆ Integrated SAW device
- ♦ M675-01 output frequencies from 125 to 175 MHz M675-02 output frequencies from 500 to 700 MHz (Specify center frequency at time of order)
- Industry-standard Kvco for full compatibility
- Low phase jitter 0.2ps rms typical for the M675-02 (50kHz to 80MHz)
- Differential 3.3V LVPECL output
- Single 3.3V power supply
- Small 5 x 7.5mm SMT (surface mount) package

BLOCK DIAGRAM

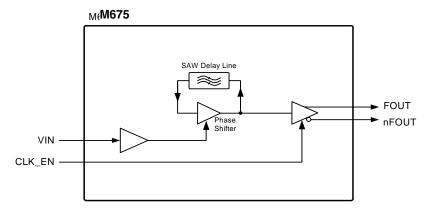


Figure 2: Block Diagram

PIN ASSIGNMENT (5 x 7.5mm SMT)

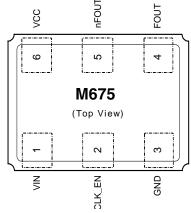


Figure 1: Pin Assignment

Sample of Available Output Frequencies

VCSO Center Fre M675-01	Applications	
155.5200	622.0800	SONET/SDH
156.2500	625.0000	Gigabit Ethernet
161.1328	644.5313	Gigabit Ethernet FEC
167.3316	669.3266	SONET/SDH FEC

Table 1: Sample of Available Output Frequencies

Note 1: Specify VCSO center frequencies at time of order

Number	Name	I/O	Configuration	Description
1	VIN	Input		Frequency control input.
2	CLK_EN	Input	Internal pull-up resistor ¹	Clock enable: Logic 1 enables normal operation. Logic 0 stops the output clock; nFOUT is held high, FOUT is held low.
3	GND	Ground		Power supply ground connection.
4 5	FOUT nFOUT	Output	No internal terminator	Clock output pair. Differential LVPECL.
6	VCC	Power		Power supply connection, connect to +3.3V. Table 2: Pin Descriptions

PIN DESCRIPTIONS

Note 1: See "Clock Enable Pull-up" in Table 5 (DC Characteristics for M675-01 on pg. 3) and Table 7 (DC Characteristics for M675-02 on pg. 4).

ABSOLUTE MAXIMUM RATINGS¹

Symbol	Parameter	Rating	Unit
V	Inputs	-0.5 to V _{CC} +0.5	V
Vo	Outputs	-0.5 to V _{CC} +0.5	V
V _{cc}	Power Supply Voltage	4.6	V
Ts	Storage Temperature	-55 to +125	°C
		Table 3: Absolute Maxi	mum Ratings

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in Recommended Conditions of Operation, DC Characteristics, or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

RECOMMENDED CONDITIONS OF OPERATION

Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Positive Supply Voltage	2.97	3.3	3.63	V
T _A	Ambient Operating Temperature	-40	25	+85	Oo

Table 4: Recommended Conditions of Operation

ELECTRICAL SPECIFICATIONS FOR M675-01 DC Characteristics for M675-01

Unless stated otherwise, $V_{CC} = 3.3$ Volts $\pm 10\%$, $T_A = 0$ to 85 °C, VCSO Freq.s = 155.52 MHz, Outputs terminated into 180 Ω to ground

Symbol	Parameter	Pin	Min	Тур	Max	Unit
V _{cc}	Positive Supply Voltage	VCC	2.97	3.3	3.63	V
I _{cc}	Power Supply Current	VCC		85	125	mA
V _{IN}	Input Control Voltage Range	VIN	0		3.3	V
	V _{IN} Input Impedence	VIIN		100		kΩ
V _{IH}	Input High Voltage		2		$V_{cc} + 0.3$	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
I	Input High Current	CLK_EN			5	μА
IL	Input Low Current		-150			μΑ
R _{pullup}	Internal Pull-up Resistor			51		kΩ
V _{OH}	Output High Voltage		V _{cc} - 0.98		V _{cc} - 0.75	V
V _{OL}	Output Low Voltage		V _{cc} - 1.95		V _{cc} - 1.63	V
V _{P-P}	Peak to Peak Output Voltage ²	1001, 115001	0.450	0.625	0.85	V _{P-P}
I _{OUT}	Output Current				20	mA
	$\begin{array}{c} V_{CC} \\ \hline V_{CC} \\ \hline V_{IC} \\ \hline V_{IN} \\ \hline \\ \hline \\ V_{IL} \\ \hline \\ \hline \\ I_{IL} \\ \hline \\ R_{pullup} \\ \hline \\ V_{OH} \\ \hline \\ V_{OL} \\ \hline \\ \hline \\ V_{P-P} \\ \hline \\ $	$\label{eq:loss} \begin{array}{ c c c c }\hline I_{CC} & Power Supply Current \\\hline V_{IN} & Input Control Voltage Range \\\hline V_{IN} & Input Impedence \\\hline V_{IH} & Input High Voltage \\\hline V_{IL} & Input Low Voltage \\\hline I_{IH} & Input High Current \\\hline I_{IL} & Input Low Current \\\hline R_{pullup} & Internal Pull-up Resistor \\\hline V_{OH} & Output High Voltage \\\hline V_{OL} & Output Low Voltage \\\hline V_{P-P} & Peak to Peak Output Voltage^2 \\\hline \end{array}$	$\begin{tabular}{ c c c c c c }\hline V_{CC} & Positive Supply Voltage & VCC \\ \hline \hline I_{CC} & Power Supply Current & VIN \\ \hline \hline V_{IN} & Input Control Voltage Range & VIN \\ \hline \hline V_{IN} & Input Impedence & VIN \\ \hline \hline V_{IH} & Input High Voltage & \\ \hline V_{IL} & Input Low Voltage & \\ \hline I_{IH} & Input High Current & \\ \hline I_{IL} & Input Low Current & \\ \hline \hline R_{pullup} & Internal Pull-up Resistor & \\ \hline \hline V_{OH} & Output High Voltage & \\ \hline \hline V_{OL} & Output Low Voltage & \\ \hline \hline V_{P-P} & Peak to Peak Output Voltage^2 & \\ \hline FOUT, nFOUT & \\ \hline \end{tabular}$	$ \begin{array}{c c c c c c c } \hline V_{CC} & Positive Supply Voltage \\ \hline V_{CC} & Power Supply Current \\ \hline \hline V_{IC} & Power Supply Current \\ \hline \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Impedence \\ \hline \hline V_{IH} & Input High Voltage \\ \hline \hline V_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline \hline V_{OH} & Output High Voltage \\ \hline \hline V_{OL} & Output High Voltage \\ \hline \hline V_{P-P} & Peak to Peak Output Voltage^2 \\ \hline \hline POUT, nFOUT \\ \hline \hline \hline 0.450 \\ \hline \end{array} $	$ \begin{array}{c c c c c c c c } \hline V_{CC} & Positive Supply Voltage \\ \hline V_{CC} & Power Supply Current \\ \hline V_{IC} & Power Supply Current \\ \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Impedence \\ \hline V_{IN} & Input High Voltage \\ \hline V_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline R_{pullup} & Internal Pull-up Resistor \\ \hline V_{OH} & Output High Voltage \\ \hline V_{OL} & Output Low Voltage \\ \hline V_{P-P} & Peak to Peak Output Voltage^2 \\ \hline V_{P-P} & Peak to Peak Output Voltage^2 \\ \hline \end{array} \begin{array}{c} VCC & 2.97 & 3.3 \\ \hline VCC & 85 \\ \hline VCC & - 0.98 \\ \hline VCC & - 0.98 \\ \hline VCC & - 1.95 \\ \hline 0.450 & 0.625 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c } \hline V_{CC} & Positive Supply Voltage \\ \hline I_{CC} & Power Supply Current \\ \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Control Voltage Range \\ \hline V_{IN} & Input Impedence \\ \hline V_{IH} & Input High Voltage \\ \hline V_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Voltage \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline I_{IL} & Input Low Current \\ \hline R_{pullup} & Internal Pull-up Resistor \\ \hline V_{OL} & Output High Voltage \\ \hline V_{P-P} & Peak to Peak Output Voltage^2 \\ \hline V_{DL} & O.450 & 0.625 & 0.85 \\ \hline \end{array} $

Note 1: Internally pulled up to Logic 1 (normal operation) if left unselected. Note 2: Single-ended measurement. See Figure 3, Output Rise and Fall Time, on pg. 5.

AC Characteristics for M675-01

Unless stated otherwise, V_{CC} = 3.3 Volts \pm 10%, T_A = 0 to 85 °C, VCSO Freq. = 155.52 MHz, Outputs terminated into 180 Ω to ground

	Symbol	Parameter		Min	Тур	Max	Unit	Notes
Control Volt	age V _{IN}	Modulation Bandwidth	VIN		500		kHz	
Dutput	F _{OUT}	Output Center Frequence	cy Range M675-01	125		175	MHz	
	APR	Absolute (Guaranteed)	Pull-Range ¹	±100			ppm	
	f _{STAB}	Frequency Stability	Frequency Stability				ррт р-р	At any givin V _{IN}
	L _{IN}	Tuning Linearity	Tuning Linearity		6		%	$V_{IN} = 0.3$ to 3.0V Best fit straight line
	K _{VCO}	VCO Gain			400		ppm/V	$V_{IN} = 0.3 \text{ to } 3.0 \text{V}$
		Non-harmonic Spurious	;	-50	-77		dBc	
	Φn	Phase Noise, offset from carrier	100Hz Offset		-52		dBc/Hz	
			1kHz Offset		-80		dBc/Hz	_
			10kHz Offset		-112		dBc/Hz	_
			100kHz Offset		-136		dBc/Hz	_
			1MHz Offset		-146		dBc/Hz	_
	J(t)	Jitter (rms)	12kHz to 20MHz		0.36		ps rms	
			50kHz to 80MHz		0.50		ps rms	
	odc	Output Duty Cycle ²		45		55	%	
	t _R	Output Rise Time ² for	FOUT, nFOUT		275	425	ps	20% to 80%
	t _F	Output Fall Time ² for F	OUT, nFOUT		275	425	ps	20% to 80%

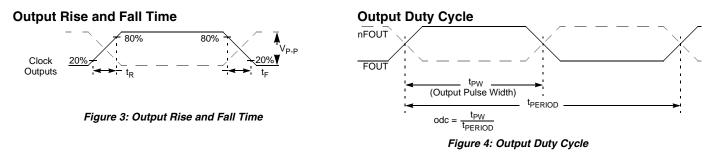
Note 1: Also fully meets ±50 ppm minimum pull-range specification that is commonly required. Table 6: AC Char Note 2: See Parameter Measurement Information on pg. 5.

ELECTRICAL SPECIFICATIONS FOR M675-02 DC Characteristics for M675-02

Unless stated otherwise, $V_{CC} = 3.3$ Volts $\pm 10\%$, $T_A = 0$ to 85 °C, VCSO Freq. = 622.08 MHz, Outputs terminated into 180 Ω to ground

ļ	Symbol	Parameter	Pin	Min	Тур	Max	Unit
Power Supply	V _{cc}	Positive Supply Voltage	VCC	2.97	3.3	3.63	V
	I _{cc}	Power Supply Current	100		85	125	mA
Control	V _{IN}	Input Control Voltage Range	VIN	0		3.3	V
Voltage		V _{IN} Input Impedence			100		kΩ
Clock Enable	V _{IH}	Input High Voltage		2		$V_{cc} + 0.3$	V
Pull-up ¹	V _{IL}	Input Low Voltage		-0.3		0.8	V
	I _{IH}	Input High Current	CLK_EN			5	μА
	IL	Input Low Current	-	-150			μΑ
	R _{pullup}	Internal Pull-up Resistor	-		51		kΩ
Differential	V _{OH}	Output High Voltage		V _{cc} - 0.98		V _{cc} - 0.75	V
Outputs	V _{OL}	Output Low Voltage	FOUT, nFOUT	V _{cc} - 1.95		V _{cc} - 1.63	V
	V _{P-P}	Peak to Peak Output Voltage ²	1001,111001	0.450	0.625	0.85	V _{P-P}
	I _{OUT}	Output Current				20	mA

Note 1: Internally pulled up to Logic 1 (normal operation) if left unselected. Note 2: Single-ended measurement. See Figure 3, Output Rise and Fall Time, on pg. 5. Table 7: DC Characteristics for M675-02


AC Characteristics for M675-02

Unless stated otherwise, V_{CC} = 3.3 Volts ± 10%, T_A = 0 to 85 °C, VCSO Freq. = 622.08 MHz, Outputs terminated into 180 Ω to ground

	Symbol	Parameter		Min	Тур	Max	Unit	Notes
Control Volta	ge V _{IN}	Modulation Bandwidth	VIN		500		kHz	
Output	F _{OUT}	Output Center Frequence	cy Range M675-02	500		700	MHz	
	APR	Absolute (Guaranteed)	Pull-Range ¹	±100			ppm	
	f _{STAB}	Frequency Stability			100		ррт р-р	At any givin V _{IN}
	L _{IN}	Tuning Linearity	Tuning Linearity		6		%	$V_{IN} = 0.3$ to 3.0V Best fit straight line
	K _{VCO}	VCO Gain			400		ppm/V	$V_{IN} = 0.3$ to $3.0V$
		Non-harmonic Spurious	i	-50	-77		dBc	
	Φ n	SSB (single sideband)	100Hz Offset		-48		dBc/Hz	
		Phase Noise, offset	1kHz Offset		-75		dBc/Hz	_
		from carrier	10kHz Offset		-99		dBc/Hz	_
			100kHz Offset		-124		dBc/Hz	_
			1MHz Offset		-142		dBc/Hz	_
	J(t)	Jitter (rms)	12kHz to 20MHz		0.30		ps rms	
			50kHz to 80MHz		0.18		ps rms	
	odc	Output Duty Cycle ²		45		55	%	
	t _R	Output Rise Time ² for	FOUT, nFOUT		275	400	ps	20% to 80%
	t _F	Output Fall Time ² for F	OUT, nFOUT		275	400	ps	20% to 80%

Note 1: Also fully meets ±50 ppm minimum pull-range specification that is commonly required. Note 2: See Parameter Measurement Information on pg. 5. **Table 8: AC Characteristics for M675-02**

PARAMETER MEASUREMENT INFORMATION

DEVICE PACKAGE - 5 x 7.5mm SMT (Surface Mount) Package

Mechanical Dimensions:

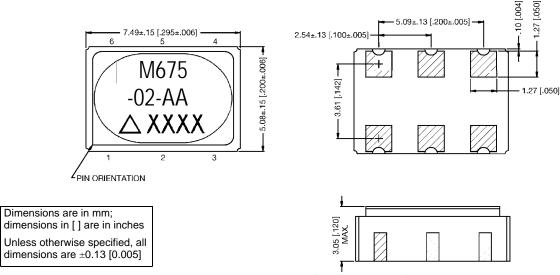


Figure 5: Device Package - 5 x 7.5mm SMT (Surface Mount) Package

ORDERING INFORMATION

Part Numbering Scheme

Part Number: M675 -Oy - xx Device Number				
Variant -01 = Output Frequencies 125 - 175 MHz -02 = Output Frequencies 500 - 700 MHz				
Output Frequency Order Code				
See Tables 10 and 11 at right for frequency order codes. Consult ICS for other frequencies and order codes.				
Figure 6: Part Numbering Scheme				

Example Order Numbers

	Hambero		
For Output Frequencies	Order Part # M675-01- B x	For Output Frequencies	Order Part # M675-02- A x
155.5200	M675-01-BA	622.0800	M675-02-AA
156.2500	M675-01-BB	625.0000	M675-02-AB
161.1328	M675-01-BD	644.5313	M675-02-AD
167.3316	M675-01-BH	669.3266	M675-02-AH
		Table A. Freedowick	• • • • • • • • • • • • • • • • • • •

Table 9: Example Order Numbers

M675-01 Standard Output Frequencies & Order Codes

125.0000 da	168.0407 в ј
155.5200 ва	172.6423 вк
156.2500 вв	173.3708 в L
156.8324 вс	164.3555 вм
161.1328 вр	153.6000 во
166.6286 ве	118.7500 вр
167.2820 вғ	176.8382 во
167.3280 вс	156.1762 в г
167.3316 вн	174.1537 в и
167.7097 ві	174.7031 ви
Table 10. MC75 01 Otendard Or	stars at Evenues a los 9 Ouden Oadaa

Table 10: M675-01 Standard Output Frequencies & Order Codes

M675-02 Standard Output Frequencies & Order Codes

500.0000 CA	672.1627 A J
622.0800 AA	690.5692 AK
625.0000 AB	693.4830 al
627.3296 AC	657.4219 ам
644.5313 AD	614.4000 AO
666.5143 AE	475.0000 AP
669.1281 AF	707.3527 AQ
669.3120 AG	624.7048 AR
669.3266 AH	696.6149 AU
670.8386 AI	698.8123 AV
666.5143 AE 669.1281 AF 669.3120 AG 669.3266 AH	475.0000 AP 707.3527 AQ 624.7048 AR 696.6149 AU

Table 11: M675-02 Standard Output Frequencies & Order Codes

Consult IDT for the availability of other frequencies

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.