Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD16443B

192-OUTPUT TFT-LCD SOURCE DRIVER (8 gray scales)

DESCRIPTION

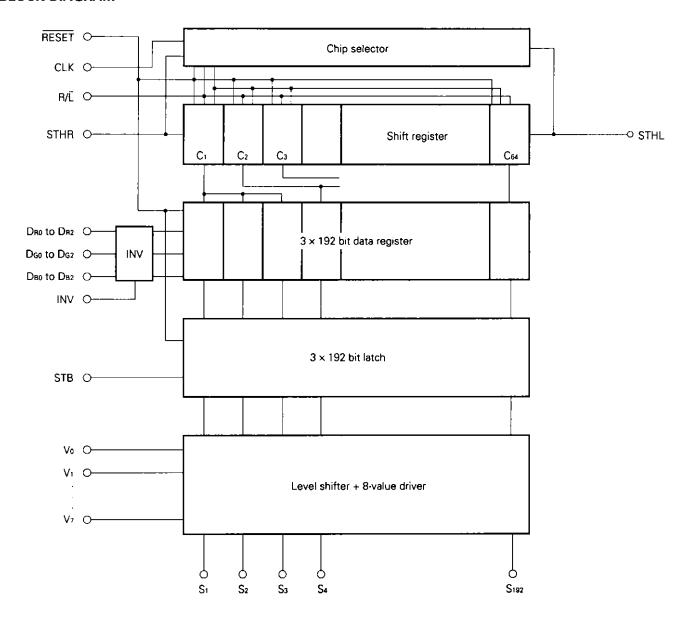
The μ PD16443B is a TFT-LCD source driver that can display eight gray scales. Digital data of 3 × 3 bits is input to this source driver, which is ideal for the displays of office machines. The μ PD16443B internally consists of a 64 × 9 bit data register, 192 × 3 bit latch, and 192 8-value driver circuits. The output driver selects one of eight external power sources for output, according to the input data. With a panel having a color filter consisting of RGB vertical stripes, the μ PD16443B can display as many as 512 colors.

FEATURES

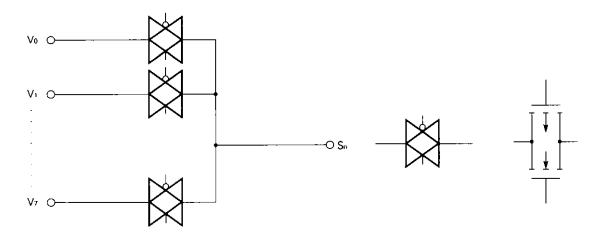
- High-speed data transfer (fclk = 15 MHz MAX.)
- 3 bit (tone data) × 3 dot (RGB) input
- · 8-value output function selecting one of eight external power sources
- · Bidirectional data store function
- · High output voltage: 20 V MAX.
- Suitable for high-density mounting (TCP)

Differences from the μ PD16423:

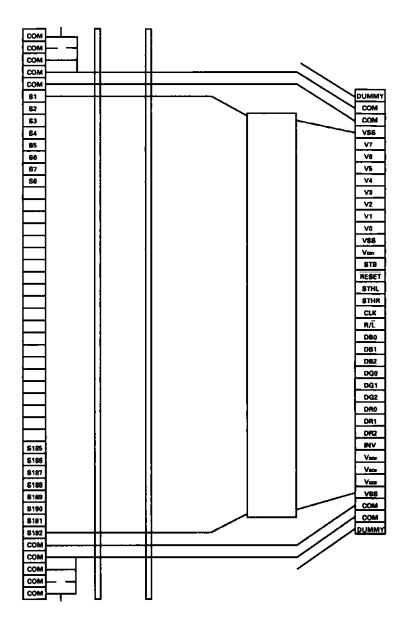
- · Shift register auto clear function added (Refer to description of CLK function in PIN FUNCTION.)
- Active edge of RESET changed (high → low active)


ORDERING INFORMATION

Part number	Package
μPD16443BN-×××	TCP (TAB package)
μPD16443BN-051	Standard TCP (180 µm pitch)


The TCP package is a custom model. For details, consult NEC.

The information in this document is subject to change without notice.


BLOCK DIAGRAM

EQUIVALENT CIRCUIT OF 8-VALUE DRIVER

STANDARD TCP PIN CONFGURATION (µPD16443BN-051)

Top view of copper foil

Caution: This figure does not specify the dimensions of TCP.

PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S1 to S192	Driver output	Output one of the Vo to V7 levels
Dro to Drz	R data input	Input 9-bit data consisting of gray scale data (3 bits) × 3
Dgo to Dg2	G data input	(pixels RGB)
D _{B0} to D _{B2}	B data input	
INV	Positive polarity inverting input	Input data is inverted and stored in data register when INV = H. However, data already stored is not affected.
R/L	Shift direction select input	R/\overline{L} = H: STHR input, S ₁ \rightarrow S ₁₉₂ , STHL output R/\overline{L} = L: STHL input, S ₁₉₂ \rightarrow S ₁ , STHR output
CLK	Clock input	Data input clock. Data is read to data register at falling edge of this clock. When start pulse is not input, contents of shift register are automatically cleared at rising edge of the 64th pulse after input of latch pulse. Start pulse output goes high at rising edge of 64th pulse, serving as start pulse for next stage. Output of start pulse goes low at rising edge of 65th pulse.
STHR	Right shift start pulse I/O	$R/\overline{L} = H$: start pulse input pin $R/\overline{L} = L$: start pulse output pin
STHL	Left shift start pulse I/O	R/\overline{L} = H: start pulse output pin R/\overline{L} = L: start pulse input pin
STB	Latch pulse input	Contents of data register are transferred to latch when STB = H, and tone level selected by gray scale data is output from driver output
RESET	Reset input	Shift register, chip select circuit, and latch circuit are reset when this pin goes low. Be sure to reset the μ PD16443B once when power is applied.
Vo to V7	Tone level power	$Vss_2 \le Vo to V_7 \le Vdo2 - 1 V$
V _{DD1}	Logic power	5 V ± 5 %
V _{DD2}	Driver power	18 V MAX (operating)
Vssı	Logic ground	Connected to system ground
Vss2	Driver ground	Connected to system ground

CORRESPONDENCE BETWEEN DATA INPUT AND DATA OUTPUT

Data format: 1 pixel data (3 bits) × RGB (3 bits) Input width: 9 bits

(1) $R/\bar{L} = H$ (right shift)

Output	S ₁	S ₂	S₃	 S19:
Data	De D	D60 D61 D62	Dec Det Dez	 Dec De 1 De 2

(2) $R/\bar{L} = L$ (left shift)

Output	S192	S191	S190	 Sı
Data	DRO DR1 DR2	De De Dez	D80 D81 D82	 Dao Da1 Da2

TONE LEVEL POWER SELECTION

	Data			Output
Dxo	Dx1	Dx2	INV = L	INV = H
0	0	0	V ₀	V7
1	0	0	V ₁	Ve .
0	1	0	V2	Vē
1	1	0	V3	V4
0	0	1	V4	V٤
1	0	1	V ₅	V ₂
0	1	1	Ve	V ₁
1	1	1	Vı	Vo

 $\label{eq:caution} \textbf{ Caution } \ \ \, \textbf{The driver output is fixed to V}_7 \ \textbf{at reset, regardless of the level of the INV pin and data}.$

5

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	VDD1	-0.5 to +7.0	V
Logic Input Voltage	Vin	-0.5 to Vpp1+0.5	V
Logic Output Voltage	V ₀₁	-0.5 to Vpp1+0.5	V
Driver Supply Voltage	Vooz	-0.5 to +20	V
Driver Input Voltage	Vo to V7	-0.5 to VDD2+0.5	V
Driver Output Voltage	Voz	-0.5 to Vooz+0.5	V
Driver Output Current	loz	±10	mA
Operating Temperature Range	TA	-20 to +70	°C
Storage Temperature Range	Telg	-40 to +125	°c

RECOMMENDED OPERATING RANGE (TA = -20 to +70 °C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Supply Voltage	VDD1	4.75	5.0	5.25	V
High-Level Input Voltage	ViH	0.7·V _{DD1}		V _{DD1}	٧
Low-Level Input Voltage	VıL	0		0.2·VDD1	٧
Driver Supply Voltage	VDDZ			18	ν
Driver Input Voltage	Vo to V7	Vss		Vodz -1	V
Driver Output Voltage	Voz	Vss		Vooz -1	٧

Caution 1. Be sure to satisfy the following condition: $Vss \le V_0$ to $V_7 \le V_{DD2} - 1$

2. Turn on power to V_{DD1}, logic signal, V_{DD2}, and V₀ to V₇ in this order. Turn off power in the reverse order.

ELECTRICAL CHARACTERISTICS (TA = -20 to +70 °C, $VDD1 = 5 V \pm 5 \%$, VDD2 = 18 V, VSS1 = VSS2 = 0 V)

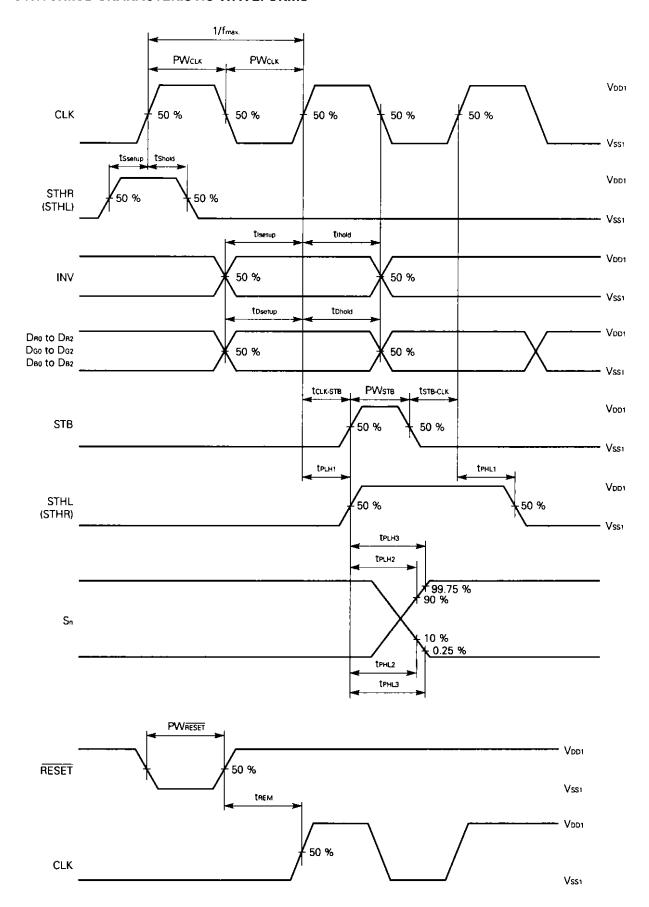
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-Level Output Voltage	Vон1	Logic IoH1 = -1 mA	0.9·VDD		1	V
Low-Level Output Voltage	Vol1	Logic lou = 1 mA		-	0.1-V _{DD1}	V
Driver Output ON Resistance	Ron	i loz i = 100 μA			5.0	kΩ
Logic Input Current	liet	VIN = VDD1 OF VSS			±1	μА
High-Level Input Voltage	ViH		0.7·VDD1			٧
Low-Level Input Voltage	VIL				0.2·Voo1	V
Static Current Consumption	I DD1	V _{DD1} pin, no load		_	40	μА
	IDD2	Vpbz pîn, no load			100	μА

SWITCHING CHARACTERISTICS

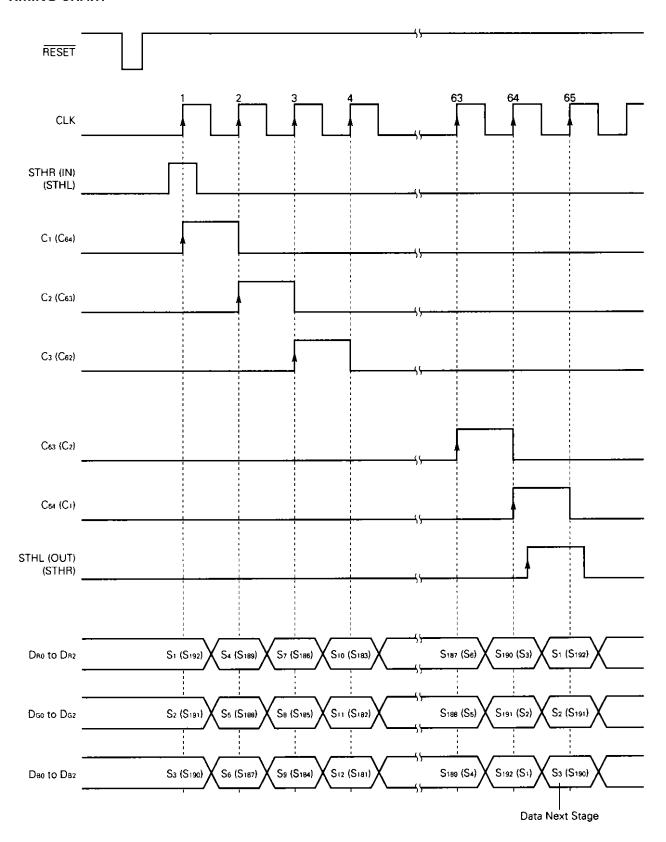
(TA = -20 to +70 °C, VDD1 = 5 V ± 5 %, VDD2 = 18 V, Vss1 = Vss2 = 0 V, tr = tr = 6 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Output Delay Time	TPHL1	Ct = 20 pF	10		30	ns
	tPLH1	CL = 20 pF	10		30	ns
Driver Output Delay Time	tPHL2	C _L = 300 pF			3	μs
	tPLH2				3	μs
	tрнцз	C _L = 300 pF			8	μs
	TPLH3				8	μS
Maximum Clock Frequency	fmax.	Duty = 50 %, in cascade connection	15			MHz
Input Capacitance	C ₁₁	Logic other than STRH, STRL			15	ρF
	C12	STRH, STRL			20	pF

TIMING REQUIREMENTS


 $(T_A = -20 \text{ to } +70 ^{\circ}\text{C}, V_{DD1} = 5 \text{ V } \pm 5 ^{\circ}\text{M}, V_{DD2} = 18 \text{ V}, V_{SS1} = V_{SS2} = 0 \text{ V}, t_r = t_f = 6 \text{ ns})$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk	30			ns
Strobe Pulse Width	PWsтв	30			ns
Reset Pulse Width	PWRESET	100			ns
Start Pulse Setup Time	İ Ssetup	30			ns
Start Pulse Hold Time	tShoid	10			ns
Data Setup Time	t Dsetup	30			ns
Data Hold Time	tonold	30			ns
INV Setup Time	tisetup	30			ns
INV Hold Time	Tihold	30			ns
Reset Removal Time	TREM	50			ns
Clock Strobe Time Interval	tclk-stb	30			ns
Strobe Clock Time Interval	tste-clk	0			ns


Remark For the specifications of tr and tr, refer to SWITCHING CHARACTERISTIC WAVEFORMS.

7

SWITCHING CHARACTERISTIC WAVEFORMS

TIMING CHART

Caution Be sure to input one reset pulse when power is applied. When data is not stored for all outputs (there are some extra outputs), reset the μ PD16443B before data transfer.

RECOMMENDED MOUNTING CONDITIONS

The following mounting conditions for the $\mu PD16443B$ are recommended. For any other mounting conditions, consult NEC.

Mounting Conditions	Mounting Method	Conditions
Thermocompression	Soldering	Heating tool: 300 to 350 °C, Time: 2 to 3 seconds, Pressure: 100 g (per piece)
	ACF (sheet adhesive agent)	Preliminary adhesion: 70 to 100 °C, Pressure: 3 to 8 kg/cm ² , Time: 3 to 5 seconds Actual adhesion: 165 to 180 °C, Pressure: 25 to 45 kg/cm ² , Time: 30 to 40 seconds (with Sumitomo Bakelite's anisotropic film SUMIZAC1003)

- Caution 1. For the mounting conditions for the ACF, consult the ACF manufacturer before using the ACF.
 - 2. Do not use two or more mounting methods in combination.

REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system.	IEI-1212
Quality grade on NEC semiconductor devices.	IEI-1209
Semiconductor device mounting technology manual.	IEI-1207

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11