Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT

μ PD70108H, 70116H

V20HL™, V30HL™ 16/8, 16-BIT MICROPROCESSOR

DESCRIPTION

The μ PD70108H (V20HL) and μ PD70116H (V30HL) are CMOS 16-bit microprocessors developed from the μ PD70108 (V20TM) and μ PD70116 (V30TM). It offers higher processing speed and lower power consumption than the μ PD70108 and μ PD70116.

The μ PD70108H and μ PD70116H are capable of operating at 16 MHz. In addition to the conventional standby function, fully static internal circuits are employed in the μ PD70108H and μ PD70116H. This allows the μ PD70108H and μ PD70116H to have the clock stop function. Therefore, power consumption is significantly reduced in the μ PD70108H and μ PD70116H. Additionally, the μ PD70108H and μ PD70116H can operate at 5 V. However, the μ PD70108H and μ PD70116H are designed to also operate at 3 V.

FEATURES

- High-speed, low-power consumption version of μPD70108 and μPD70116
- Single power supply (5 V or 3 V)
- 125-ns minimum instruction execution time at 16 MHz (5 V)
 250-ns minimum instruction execution time at 8 MHz (3 V)
- High-speed multiplication/division instructions:

1.2 to 3.6 µs (at 16 MHz, 5 V)

2.4 to 7.1 μ s (at 8 MHz, 3 V)

High-speed block transfer instructions:

μPD70108H: 2M bytes/second (at 16 MHz, 5 V)

1M bytes/second (at 8 MHz, 3 V)

μPD70116H: 2M words/second (at 16 MHz, 5 V)

1M words/second (at 8 MHz, 3 V)

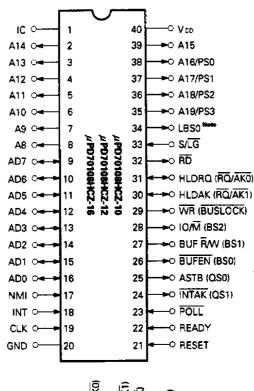
The information in this document is subject to change without notice.

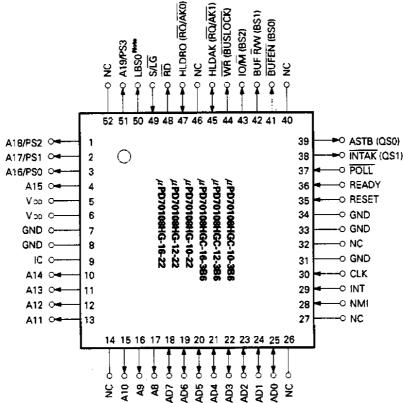
ORDERING INFORMATION

(1) μ PD70108H

Part number	Package Max	dimum operating fre	equency (MHz)
μPD70108HCZ-10	40-pin plastic DIP (600 mil)		10
μPD70108HCZ-12	40-pin plastic DIP (600 mil)		12.5
μPD70108HCZ-16	40-pin plastic DIP (600 mil)		16
μPD70108HGC-10-3B6	52-pin plastic QFP (114 mm) (resin thickness: 2	.70 mm)	10
μPD70108HGC-12-3B6	52-pin plastic QFP (14 mm) (resin thickness: 2	.70 mm)	12.5
μPD70108HGC-16-3B6	52-pin plastic QFP (14 mm) (resin thickness: 2	.70 mm)	16
μPD70108HG-10-22	52-pin plastic QFP (114 mm) (resin thickness: 1	.50 mm)	10
μPD70108HG-12-22	52-pin plastic QFP (14 mm) (resin thickness: 1	.50 mm)	12.5
μPD70108HG-16-22	52-pin plastic QFP (14 mm) (resin thickness: 1		16
μPD70108HLM-10	44-pin plastic QFJ (650 mil)		10
μPD70108HLM-12	44-pin plastic QFJ (650 mil)		12.5
μPD70108HLM-16	44-pin plastic QFJ (650 mil)		16

Remark Plastic QFJ is a new name for PLCC.

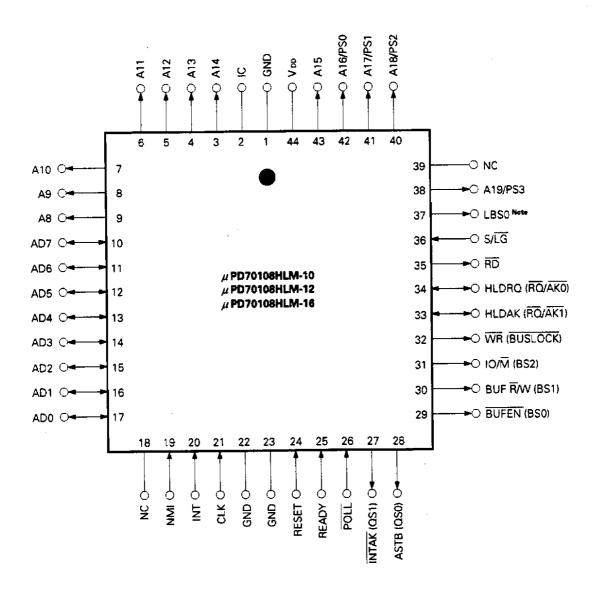

(2) µPD70116H


Part number	Package Maximum o	perating frequency (MHz)
μPD70116HCZ-10	40-pin plastic DIP (600 mil)	10
μPD70116HCZ-12	40-pin plastic DIP (600 mil)	12.5
μPD70116HCZ-16	40-pin plastic DIP (600 mil)	16
μPD70116HGC-10-3B6	52-pin plastic QFP (14 mm) (resin thickness: 2.70 mm)	10
μPD70116HGC-12-3B6	52-pin plastic QFP (14 mm) (resin thickness: 2.70 mm)	12.5
μPD70116HGC-16-3B6	52-pin plastic QFP (14 mm) (resin thickness: 2.70 mm)	
μPD70116HG-10-22	52-pin plastic QFP (14 mm) (resin thickness: 1.50 mm)	
μPD70116HG-12-22	52-pin plastic QFP (14 mm) (resin thickness: 1.50 mm)	12.5
μPD70116HG-16-22	52-pin plastic QFP (14 mm) (resin thickness: 1.50 mm)) 16
μPD70116HLM-10	44-pin plastic QFJ (☐650 mil)	10
μPD70116HLM-12	44-pin plastic QFJ (650 mil)	12.5
μPD70116HLM-16	44-pin plastic QFJ (650 mil)	16

Remark Plastic QFJ is a new name for PLCC.

PIN CONFIGURATIONS (Top View)

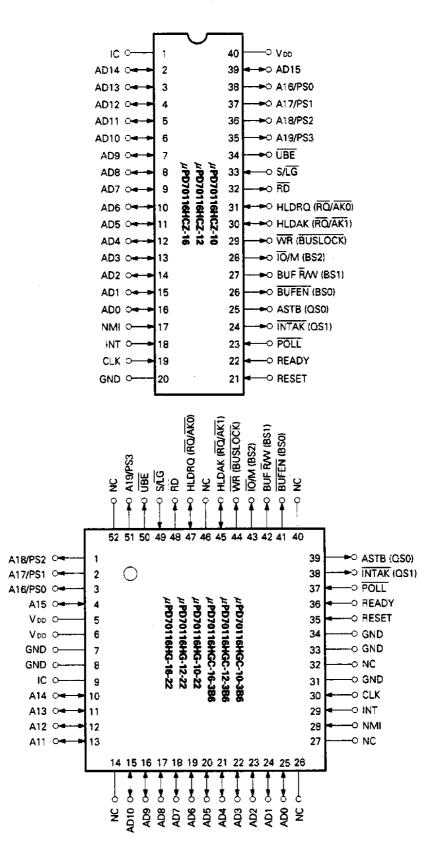
(1) µPD70108H



Note Outputs high level in large-scale mode.

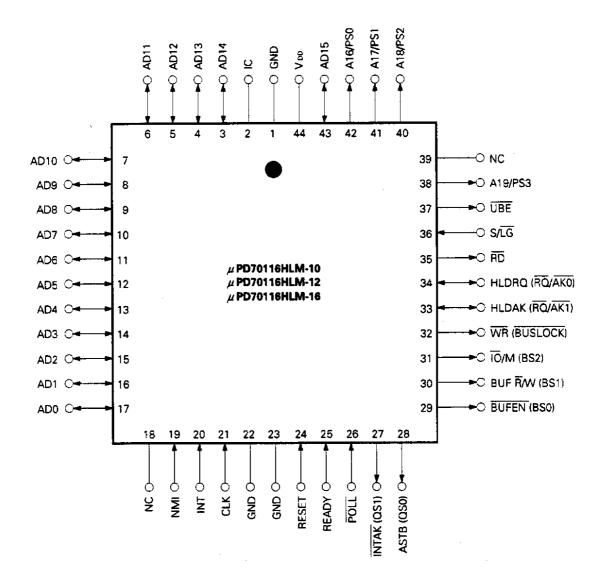
NC: No connection

IC: Internally connected to GND.



Note Outputs high level in large-scale mode.

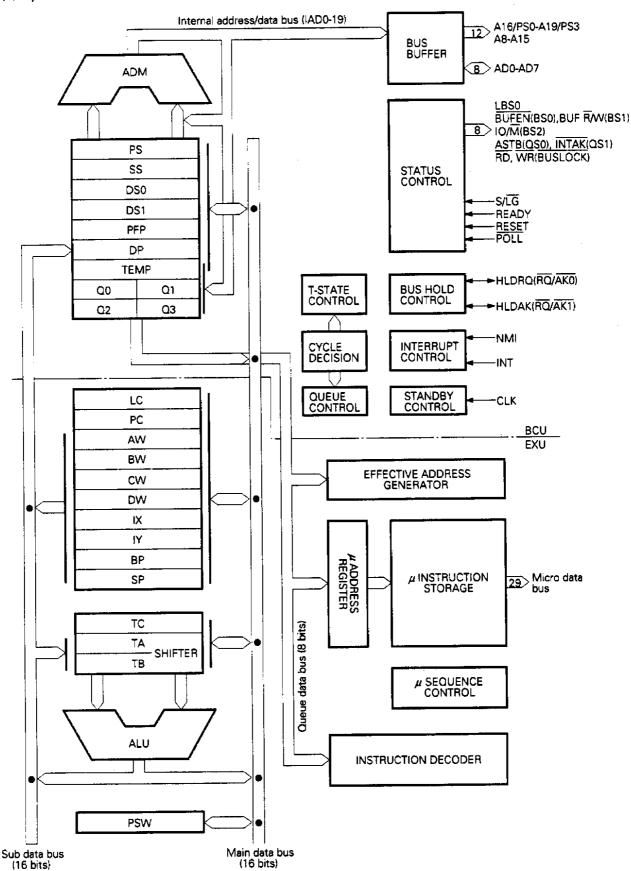
NC: No connection


IC: Internally connected to GND.

(2) µPD70116H

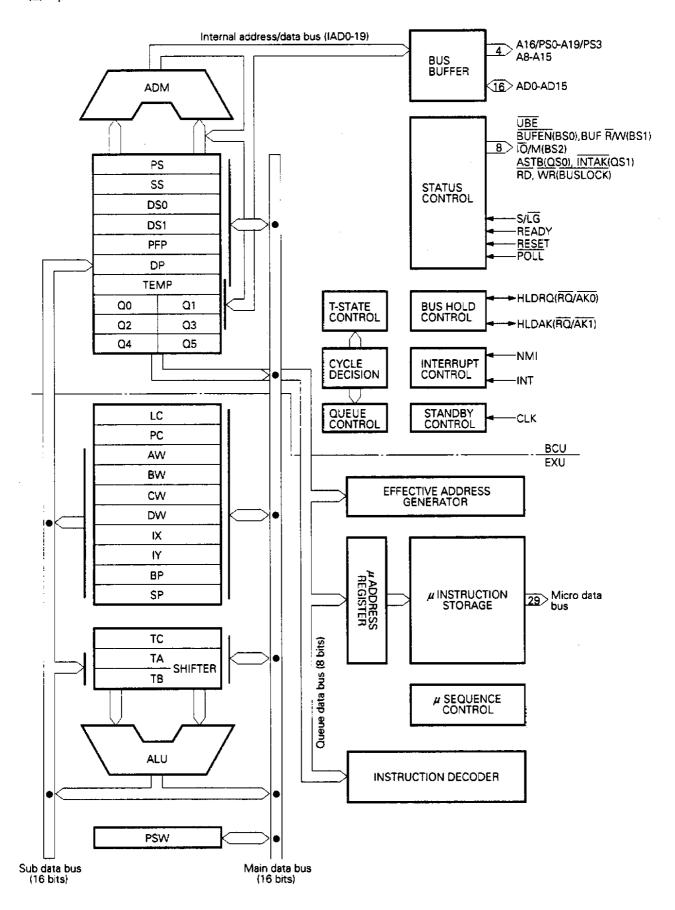
NC: No connection

IC: Internally connected to GND.



NC: No connection

IC: Internally connected to GND.


INTERNAL BLOCK DIAGRAM

(1) μ PD70108H

μPD70116H

Differences between μ PD70108H and μ PD70116H, and μ PD70108 and μ PD70116

ltem	Product Name	JED70108H, 70118H	μPD70108, 70116
Op	erating Voltage	5 V, 3 V	5 V
Operating	At VDD=5 V	MAX.: 10, 12.5, 16 MHz MIN. : DC	MAX.: 5, 8, 10 MHz MIN. : 2 MHz
Frequency	At VDD=3 V	MAX.: 5, 6, 8 MHz MIN. : DC	Does not operate
	esistor of RQ/AK Pin Scale Mode)	Not provided	Provided
	BUFEN (BS0)Note1	н	Hi-Z
	BUFR/W (BS1)Note1	н	Hi-Z
On Reset	IO/M ^{Note2} (BS2) ^{Note1}	Н	Hi-Z
	IO/M ^{Note3} (BS2) ^{Note1}		
	WR (BUSLOCK)Note1	Н	Hi-Z
	RD	Н	Hi-Z
52-Pin Plastic	: QTF (Resin Thick 1.50 mm)	Provided	Not provided

Note 1. (): In large-scale mode.

2. μPD70108, 70108H

3. μPD70116, 70116H

CONTENTS

1.	PIN I	FUNCTIONS	13
	1.1	LIST OF PIN FUNCTIONS	13
	1.2	PIN STATUS UNDER SPECIFIC CONDITIONS	15
	1.3	FUNCTIONAL DESCRIPTION	18
2.	REGI	STER CONFIGURATION	25
	2.1	PFP (PREFETCH POINTER)	25
	2.2	Q0-Q3, Q0-Q5 (PREFETCH QUEUES)	25
	2.3	DP (DATA POINTER)	25
	2.4	TEMP (TEMPORARY COMMUNICATION REGISTER)	25
	2.5	SEGMENT REGISTERS (PS, SS, DS0, DS1)	25
	2.6	ADM (ADDRESS MODIFIER)	26
	2.7	GENERAL-PURPOSE REGISTERS (AW, BW, CW, DW)	26
	2.8	POINTERS (SP, BP) AND INDEX REGISTER (IX, IY)	27
	2.9	TA/TB (TEMPORARY REGISTER/SHIFTER A/B)	27
	2.10	TC (TEMPORARY REGISTER C)	27
	2.11	ALU (ARITHMETIC & LOGIC UNIT)	27
	2.12	PSW (PROGRAM STATUS WORD)	27
	2.13	LC (LOOP COUNTER)	28
	2.14	PC (PROGRAM COUNTER)	28
	2.15	EAG (EFFECTIVE ADDRESS GENERATOR)	29
	2.16	INSTRUCTION DECODER	29
	2.17	MICROADDRESS REGISTER	29
	2.18	MICROINSTRUCTION ROM	29
	2.19	MICROINSTRUCTION SEQUENCE CIRCUIT	29
3.	INCF	EASING INSTRUCTION EXECUTION SPEED	30
	3.1	DUAL DATA BUS METHOD	30
	3.2	EFFECTIVE ADDRESS GENERATOR	31
	3.3	16/32-BIT TEMPORARY REGISTER/SHIFTER (TA, TB)	31
	3.4	LOOP COUNTER (LC)	31

4.	UNIC	QUE µPD70108H INSTRUCTIONS	32
	4.1	VARIABLE BIT FIELD MANIPULATION INSTRUCTIONS	32
	4.2	PACKED BCD OPERATION INSTRUCTIONS	
	4.3	STACK MANIPULATION INSTRUCTIONS	35
	4.4	CHECK ARRAY BOUNDARY INSTRUCTION	40
	4.5	MODE MANIPULATION INSTRUCTIONS	41
	4.6	FLOATING-POINT OPERATION COPROCESSOR CONTROL INSTRUCTIONS	43
5.	INTE	RRUPT OPERATION	44
6.	STAI	NDBY FUNCTION	46
7.	I/O <i>A</i>	ADDRESS RESERVE	46
8.	INST	RUCTION SET	47
9.	ELEC	TRICAL SPECIFICATIONS	81
	9.1	WHEN VDD = 5 V ± 10%	81
	9.2	WHEN Vod = 3 V ± 10%	85
10.	PAC	KAGE DRAWINGS	99
11.	REC	DMMENDED SOLDERING CONDITIONS	103

1. PIN FUNCTIONS

1.1 LIST OF PIN FUNCTIONS

(1) Small-scale mode (S/LG = H)

Pin Name	input/Output	Function
A16/PS0-A19/PS3	Tri-state output	Address bus/processor status
A8-A15 (μPD70108H)	Tri-state output	Address bus
AD0-AD7 (μPD70108H)	Tri-state output	Address/data bus
AD0-AD15 (μPD70116H)	Tri-state input/output	Address/data bus
ASTB	Output	Address strobe
INTAK	Output	Interrupt acknowledge display
BUFEN	Tri-state output	External data buffer enable
BUFR/W	Tri-state output	External data buffer read/write selection
IO/M (μPD70108H)	Tri-state output	I/O, memory selection
ΙΟ/Μ (μPD70116H)		
LSB0 (μPD70108H)	Tri-state output	Bus status
UBE (μPD70116H)	Tri-state output	Data bus upper byte enable
RD	Tri-state output	Read strobe
WR	Tri-state output	Write strobe
HLDRQ	Input	Bus hold request
HLDAK	Output	Bus hold enable
S/LG	Input	Small-scale/large-scale mode selection (=H)
NMI	Input	Non-maskable interrupt request
INT	Input	Maskable interupt request
CLK	Input	System clock
READY	Input	External ready display
POLL	input	External polling display
RESET	Ínput	System reset

(2) Large-scale mode $(S/\overline{LG} = L)$

Pin Name	Input/Output	Function
A16/PS0-A19/PS3	Tri-state output	Address bus/processor status
A8-A15 (μPD70108H)	Tri-state output	Address bus
AD0-AD7 (μPD70108H)	Tri-state input/output	Address/data bus
AD0-AD15 (µPD70116H)	Tri-state input/output	Address/data bus
QS0, QS1	Output	Queue status
BS0-BS2	Tri-state output	Bus status
LSB0 (µPD70108H) (pin for small-scale mode)	Output	Outputs high level
ÜBE (μPD70116H)	Tri-state output	Data bus upper byte enable
RD	Tri-state output	Read strobe
BUSLOCK	Tri-state output	Write strobe
RQ/AKO, RQ/AK1	Tri-state input/output	Bus hold request/enable
S/LG	Input	Small-scale/large-scale mode selection (=L)
NMI	Input	Non-maskable interrupt request
INT	Input	Maskable interupt request
CLK	Input	System clock
READY	Input	External ready display
POLL	Input	External polling display
RESET	Input	System reset

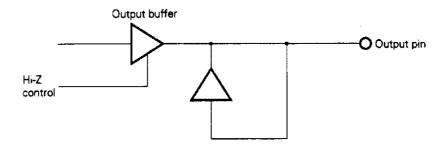
1.2 PIN STATUS UNDER SPECIFIC CONDITIONS

(1) Small-scale mode

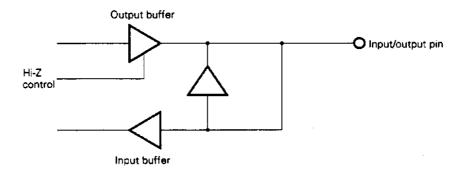
		Conditions	
Pin Name	Hold	Halt	Reset
A8-A15 ^{Note1} (μPD70108H)	Hi-Z	HorL	Hi-Z
AD0-AD7 ^{Note1} (μPD70108H)	Hi-Z	H or L	Hi-Z
AD0-AD15 ^{Note1} (μPD70116H)	Hi-Z	HorL	Hi-Z
A16/PS0-A19/PS3Note1	Hi-Z	HorL	Hi-Z
ASTB	L	Note2	L
INTAK	Н	Н	н
BUFEN Note1	Hi-Z	Н	Note3
BUFR/W ^{Mote1}	Hi-Z	H or L	Nate3
IO/M ^{Note1} (μPD70108H)	Hi-Z	H or L	Note3
IO/M ^{Note1} (μPD70116H)	Hi-Z	H or L	Note3
LSB0 ^{Note1} (μPD70108H)	Hi-Z	Н	Hi-Z
ÜBE ^{Note1} (μPD70116H)	HI-Z	Н	Hi-Z
RDNo1e1	Hi-Z	н	Note3
WR ^{Note1}	Hi-Z	н	Note3
HLDAK	Н	i L	L

- Note 1. An internal latch is provided, so that the status before this pin goes into a high-impedance (Hi-Z) state is retained, until the pin is driven by an external source.
 - 2. High level only once (for about half a clock cycle) during the halt acknowledge cycle, otherwise low level.
 - 3. Outputs the high level as long as the reset signal is active, and goes into a Hi-Z state after the reset signal has become inactive and until the first bus cycle is started. Therefore, if the pin is not driven by an external source, the high level is retained by a latch.

(2) Large-scale mode


	,	Conditions	
Pin Name	Hold	Halt	Reset
A8-A15 ^{Note1} (μPD70108H)	Hi-Z	H or L	Hi-Z
AD0-AD7 ^{Note1} (μPD70108H)	Hi-Z	H or L	Hi-Z
AD0-AD15 ^{Note1} (μPD70116H)	Hi-Z	H or L	Hi-Z
A16/PS0-A19/PS3 ^{Note1}	Hi-Z	H or L	Hi-Z
QS0	Note 2	L	L
QS1	L	L	L
BS0 ^{Note1}	Hi-Z	н	Note 3
BS1 ^{Note1}	Hi-Z	н	Note 3
BS2 ^{Note1}	Hi-Z	Н	Note 3
ÜBE ^{Note1} (μPD70116H)	Hi-Z	н	Hi-Z
RD ^{Note1}	Hi-Z	Н	Note 3
BUSLOCK ^{Note1}	Hi-Z	H or L	Note 3
RQ/AK0 ^{Note4}	Н	Н	Н
RQ/AK1 Note4	н	н	Н
LS80 ^{Note2} (µPD70108H) (pin for small-scale mode)	Hi-Z	н	Hi-Z

- Note 1. An internal latch is provided, so that the status before this pin goes into a high-impedance (Hi-Z) state is retained, until the pin is driven by an external source.
 - 2. High level only once (for about half a clock cycle) during the halt acknowledge cycle, otherwise low level.
 - 3. Outputs the high level as long as the reset signal is active, and goes into a Hi-Z state after the reset signal has become inactive and until the first bus cycle is started. Therefore, if the pin is not driven by an external source, the high level is retained by a latch.
 - 4. The RO/AK pin is connected with a pull-up resistor in the large-scale mode.



Remark The circuit configuration of the latch is as shown below. To invert the status of the pin with a latch, a drive current higher than the latch inverting current (ILE, ILL) is required.

Output pin

Input/output pin

1.3 FUNCTIONAL DESCRIPTION

Some pins have meaning only for small-scale systems or large-scale systems, while others are used for both small- and large-scale systems.

- (1) A8-A15 (Address Bus) ... Small/Large Scale (µPD70108H)
 - A8-A15 output the middle 8 bits of the 20-bit address information.
 - A8-A15 are 3-state output pins and become high impedance during hold acknowledge cycles.
- (2) AD0-AD7 (Address/Data Bus) ... Small/Large Scale (μPD70108H)

AD0-AD7 serve as the time-multiplexed address/data bus. The lower 8-bit output of the 20-bit address information and data input/output are multiplexed.

16-bit data is input/output in two operations, the lower byte is the first byte, and the upper byte is the second.

These pins are 3-state input/output pins and become high impedance during hold acknowledge cycles and interrupt acknowledge cycles.

(3) AD0 - AD15 (Address/Data Bus)... Small/Large Scale (μPD70116H)

This bus, which is for both addresses and data, performs the low 16-bit output of the 20-bit address information. The byte/word data input/output are performed as well in the time-sharing method.

 μ PD70116H accesses memory or I/O operands, in terms of two separate areas, i.e., the byte data bank which is accessed with an even-numbered address (AD0=0) and the byte data bank which is accessed with an odd-number address (AD0=1). The least significant bit (AD0) does not have a meaning of its own as the address information word data; however, it is used to distinguish the byte bank of the odd-number address from that of the even-number address.

In addition to AD0, there are also the UBE signals available for the purpose of accessing byte/word data. The UBE signals are used in a combination as shown in the table below.

Operand Even-number Address Word		UBE	AD0	Bus Cycle Count
		0	C C	1
Odd-number Address Word	First bus cycle	0	1	2
	Second bus cycle	1	0	
Even-number Address Byte		1	0	1
Odd-number Address Byte		0	1	1

The word operand of an odd-number address is accessed twice, i.e., in terms of the odd-number byte bank and the even-number byte bank. In the course of the access, "AD0=1" which indicates the odd-number address bank is output in the first bus cycle; and in the second bus cycle, "AD0=0" is automatically output in order to indicate the continuing even-number address bank. Each of the pins for 3-stated output. During hold acknowledge or interrupt acknowledge, they become high-impedance. In standby mode, they are fixed to either a high or low level.

(4) NMI (Non-Maskable Interrupt) ... Small/Large Scale

NMI is a non-maskable interrupt request signal input, which cannot be masked by software.

This signal is rising edge active, and is sampled in any clock cycle. However, interrupt processing is initiated after completing the current instruction execution.

The interrupt start address for this interrupt is determined by interrupt vector 2.

The NMI signal must be held at high level, at least for five clock periods, after the rising edge.

The priority order for the NMI interrupt is as indicated below. The hold request is accepted during NMI

acknowledge cycles.

INT < NMI < HLDRQ (small scale) or RQ (large scale)

This interrupt is also used to release the standby mode.

(5) INT (Maskable Interrupt) Small/Large Scale

INT is a maskable interrupt request signal input, which can be masked by software.

This input is high level active and is sampled in the last clock period of an instruction. It is accepted, when interrupt is enabled (the interrupt enable flag (IE) is set). The external device checks whether or not the interrupt is accepted by the INTAK signal output from the CPU.

The INT signal must be held at high level at least until the first INTAK signal is output.

The priority order is as shown below. If NMI is simultaneously generated, the priority is given to the NMI, and INT will not be accepted. The hold request can be accepted during INT acknowledge cycles.

INT < NMI < HLDRQ (small scale) or RQ (large scale)

This interrupt is also used to release the standby mode.

(6) CLK (Clock) ... Small/Large Scale

CLK is the external clock input. The power supply current can be significantly reduced by stopping this CLK input (DC level). However, if the CLK input is halted while the RESET input is active (high level), the source current specifications are not satisfied.

(7) RESET (Reset) ... Small/Large Scale

RESET is the high level active CPU reset input. This input has priority over any other operation.

After reset, the CPU starts program execution from address FFFF0H.

The RESET input is used for normal CPU start. In addition, the RESET input is also used for releasing the standby mode.

Do not stop the clock input when making the RESET input active.

(8) READY (Ready) ... Small/Large Scale

When the memory or I/O cannot complete read/write operation within the basic CPU access time, this signal can be set to inactive (low level) to request the CPU to generate wait state (TW), in order to extend the read/write cycle.

The CPU will not generate wait state, if the READY signal is active (high level) during T3 or TW states.

The setup/hold time for this signal must be satisfied; otherwise, no correct operation can be guaranteed.

Therefore, external synchronization is necessary.

(9) POLL (Poll) ... Small/Large Scale

The POLL input is sampled by the POLL instruction. If this signal is low when checked, the processing moves to the next instruction execution. If it is high, the POLL input is sampled every 5 clock periods, until it becomes low.

This function is used to synchronize the CPU program with the external device operation.

(10) INTAK (Interrupt Acknowledge) ... Small Scale

INTAK signal is output, when an INT signal is accepted. The external device inputs the interrupt vector to the CPU through the data bus (AD7-AD0) in synchronization with this signal.

This output is fixed to high level in the standby mode.

(11) ASTB (Address Strobe) ... Small Scale

ASTB is the address strobe signal, used to latch the address information into the external latch. In standby mode, fix this pin to low level after setting it to a high level (for about 1/2 of a clock cycle).

(12) BUFEN (Buffer Enable) ... Small Scale

BUFEN signal is used as the external bi-directional buffer output enable signal. This signal is output, when transferring data between the memory and I/O or when inputting interrupt vector.

The BUFEN output is fixed to high during the standby mode.

This pin is a 3-state output, and becomes high impedance during hold acknowledge cycles.

(13) BUF R/W (Buffer Read/Write) ... Small Scale

BUF R/W signal is output to determine the data transfer direction for the external bi-directional buffer. High indicates CPU-to-external device transfer. Low indicates data transfer from the external device to the CPU.

The BUF R/W output is fixed to high or low during the standby mode.

This pin is a 3-state output, and becomes high impedance during hold acknowledge cycles.

(14) IO/M (IO/Memory) ... Small Scale (μPD70108H)

IO/M signal distinguishes between I/O access and memory access. Low indicates I/O access, and high indicates memory access.

The IO/M output is fixed to high or low during the standby mode.

This pin is a 3-state output. It becomes high impedance during hold acknowledge cycles.

(15) IO/M (IO/Memory) ... Small Scale (μPD70116H)

The signal for distinguishing the I/O access from the memory access is output. I/O is displayed at low; memory is displayed at high.

In standby mode, this output is fixed either to a high or low level.

This pin is for tri-state output. During hold acknowledge, it becomes high-impedance.

(16) WR (Write Strobe) ... Small Scale

 $\overline{\text{WR}}$ signal is output, when writing to I/O or memory. Whether write operation is performed to the I/O or memory is determined by the IO/ $\overline{\text{M}}$ signal (μ PD70108H) or $\overline{\text{IO}}/\text{M}$ signal (μ PD70116H).

The WR output is fixed to high, during the standby mode.

This pin is a 3-state output, and becomes high impedance during hold acknowledge cycles.

(17) HLDAK (Hold Acknowledge) ... Small Scale

HLDAK is the hold acknowledge signal, which indicates that the CPU has accepted the hold request (HLDRQ).

The address bus, address/data bus, and 3-state output control bus become high impedance when this pin is active.

(18) HLDRQ (Hold Request) ... Small Scale

HLDRQ signal is used by an external device to request the CPU for the release of the address bus, address/data bus, and the control bus.

The setup time for this signal must be satisfied; otherwise, no correct operation can be guaranteed. Therefore, external synchronization is necessary.

(19) RD (Read Strobe) ... Small/Large Scale

RD signal is output when reading from I/O or memory. Whether read operation is performed with the I/O or memory is determined by the IO/M signal (μ PD70108H) or IO/M signal (μ PD70116H).

RD signal is provided basically for the small scale mode. However, this signal is output in the same timing in the large scale mode.

The RD output is fixed to high, during the standby mode.

This pin is a 3-state output, and becomes high impedance during hold acknowledge cycles.

(20) S/LG (Small/Large) ... Small/Large Scale

S/LG signal is used to determine the CPU operation mode. S/LG signal must be fixed to high or low. When set to high, the CPU operates in the small scale mode. When set to low, the CPU operates in the large scale mode.

Functions of pins listed below change, depending on the mode selected. These individual pins are assigned with different names as follows:

Pin No.		•	Pin Name		
DIP	QFP	QFJ	In small-scale mode (S/LG=High level)	in large-scale mode (S/LG=Low level)	
24	38	27	INTAK	QS1	
25	39	28	ASTB	QSO	
26	41	29	BUFEN	BS0	
27	42	30	BUFR/W	BS1	
28	43	31	IO/M (μPD70108H)	BS2	
			ĪŌ/M (μPD70116H)		
29	44	32	WR	BUSLOCK	
30	45	33	HLDAK	RQ/AK1	
31	47	34	HLDRQ	RQ/AKO	
34	50	37	LBS0 (μPD70108H)	(Outputs high level)	

(21) LBS0 (Latched Bus Status 0) ... Small Scale (µPD70108H)

This signal is used in conjunction with the IO/\overline{M} and BUFR/W signal to externally indicate the type of the current bus cycle.

IO/M	BUFR/W	LBS0	Type of Bus Cycle
0	0	0	Program fetch
0	0	1	Memory read
0	1	0	Memory write
o	1	1	Passive state
1	0	0	Interrupt acknowledge
1	0	1	I/O read
1	1	0	I/O write
1	1	1	Halt

Remark Outputs high level in large-scale mode.

(22) UBE (Upper Byte Enable) ... Small/Large Scale (μPD70116H)

This pin outputs the signal which indicates that the upper 8 bits (AD8 to AD15) of AD0 to AD15 are used in bus cycles T2 to T4.

The UBE signal becomes active (low level) during bus cycles T1 to T4. The bus cycles in which this signal becomes active include the following:

- · Bus cycle by the byte access to an odd-number address
- . Bus cycle by the first byte access to an odd-number address for the purpose of word data
- · Bus cycle by the access to an even-number address for the purpose of word data

Each cycle can be identified based on a combination of the address information and the UBE signal which are output during bus cycle T1 by the AD0 pin.

Operand	i	UBE	AD0	Bus Cycle Count		
Even-number Address Word		0	0	1		
Odd-number Address Word	First bus cycle	0	1	2		
	Second bus cycle	1	0			
Even-number Address Byte		1	0	1		
Odd-number Address Byte	0	1	1			

The UBE signal continues to be at a low level during interrupt acknowledge (word access of an evennumber address is required due to vector reading).

This pin is for tri-stated output. During hold acknowledge. It becomes high-impedance. In standby mode, it is fixed to a high level.

(23) A16/PS0-A19/PS3 (Address Bus/Processor Status) ... Small/Large Scale

A16/PS0-A19/PS3 serve as bits 16 to 19 of the address bus. They also serve as the processor status signal. These contents are output in multiplexed mode.

The upper 4 bits in the 20-bit memory address are output. During I/O access, all bits output 0.

The processor status signal is output for both memory and I/O accesses. PS3 is always set to 0 in the native mode, and 1 in the emulation mode. PS2 outputs the contents of the interrupt enable flag (IE). PS1 and PS0 indicate which segment is currently used.

A17/PS1	A16/PS0	Segment
0	0	Data segment 1
0	1	Stack segment
1	0	Program segment
.1	1	Data segment 0

These outputs are fixed to high during the standby mode.

The A16/PS0-A19/PS3 pins are 3-state outputs, and become high impedance during hold acknowledge cycles.

(24) QS0, QS1 (Queue Status) ... Large Scale

QS0 and QS1 inform the external device (floating-point operation coprocessor) of the internal instruction queue status for the CPU.

QS1	QS0	Instruction Queue Status
0	٥	No operation (no change in queue status)
0	1	First byte of instruction
1	0	Empty
1	1	After first byte of instruction

"Instruction queue status" indicates the status, when the EXU accesses the instruction queue. The contents output to QS0 and QS1 are effective only in the first clock period, immediately after the instruction queue is accessed.

This status signal is provided for the floating-point operation coprocessor to monitor the CPU's program execution status, so that the coprocessor can perform processing in synchronization with the CPU when the control is transferred (by FPO: Floating-Point Operation instruction).

These outputs are fixed to low in the standby mode.

(25) BS0-BS2 (Bus Status) ... Large Scale

BS0-BS2 are encoded to indicate the current bus cycle category to the external bus controller.

The external bus controller decodes these signals and generates a control signal for accessing the memory or I/O.

BS2	B\$1	BS0	Type of Bus Cycle
0	0	0	Interrupt acknowledge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	HALT
1	0	0	Program fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive state

These outputs are fixed to high in the standby mode.

These pins are 3-state outputs. They become high impedance during hold acknowledge cycles.

These signals are high during the period from the rising edge of the clock immediately after RESET becomes active to the next rising edge of the clock. After the one clock cycle, these signals become high impedance.

(26) BUSLOCK (Bus Lock) ... Large Scale

BUSLOCK is used to request other master CPUs in a multi-processor system not to use the system bus, when executing one instruction which follows the BUSLOCK prefixed instruction.

This output is fixed to high during the standby mode. (However, if the BUSLOCK instruction is placed before the HALT instruction, this signal is fixed to low during the standby mode.)

This pin is a 3-state output, and becomes high impedance during hold acknowledge cycles.

(27) RQ/AK1, RQ/AK0 (Hold Request/Acknowledge) ... Large Scale

 $\overline{RQ}/\overline{AK1}$ and $\overline{RQ}/\overline{AK0}$ serve as the bus hold request input pins (\overline{RQ}) and the bus hold acknowledge signal output pins (\overline{AK}). The priority is as indicated below:

RQ/AK1 < RQ/AK0

These pins are 3-state inputs/outputs, and are provided with internal pull-up resistors. These pins are set to inactive state (high level) when open (float).

When used for bus hold request input (RQ), the setup/hold time for this signal must be satisfied; otherwise, no correct operation can be guaranteed. Therefore, external synchronization is necessary.

- (28) Vpb (Power Supply) ... Small/Large Scale Positive voltage power supply pins.
- (29) GND (Ground) ... Small/Large Scale GND.
- (30) IC (internally Connected)
 IC must be set to GND potential level.

2. REGISTER CONFIGURATION

2.1 PFP (PREFETCH POINTER)

The prefetch pointer is a 16-bit binary counter, which retains the program memory address offset information for the instruction to be prefetched to the instruction queue by the BCU.

The PFP is incremented each time an instruction byte is prefetched from the program memory by the BCU. When branch, call, return, or break instruction is executed, a new location is loaded into the PFP. In this case, the PFP contents become the same as those for the PC (Program Counter).

The PFP is always used, together with PS (Program Segment) register.

2.2 Q0-Q3, Q0-Q5 (PREFETCH QUEUES)

The μ PD70108H contains a 4-byte instruction queue (FIFO), which can store up to 4 bytes of instruction code prefetched by the BCU. The μ PD70116H is equipped with a 6-byte instruction queue (FIFO) and thus capable of storing up to 6 bytes of instruction codes prefetched by BCU.

The instructions stored in the queue are executed by the EXU.

The queue contents are cleared, when a branch, call, return, or break instruction is executed or external interrupt is processed, and an instruction at a new location will be prefetched.

Normally, the μ PD70108H performs prefetching if there is an unused space of at least 1 byte available in the queue; and the μ PD70116H does so if at least 1 word (2 bytes) is available.

When successively executing a number of instructions, if the average instruction execution time is faster than the number of clock periods necessary to prefetch each instruction code, when an instruction execution is completed, the next instruction code to be executed by the EXU is already provided in the queue. Therefore, the time necessary to fetch an instruction from the external memory can be excluded from the instruction execution time. As a result, the processing speed can be improved, compared to a CPU which fetches and executes instructions one at a time.

The queue effectiveness decreases as the number of instructions, which clear the queue, increases or the number of instructions, having shorter instruction execution time, increases.

2.3 DP (DATA POINTER)

The data pointer is a 16-bit register, which specifies the variable read/write address.

The effective address, generated by the EAG, and the contents of the register, including the memory address offset, are transferred to the data pointer.

2.4 TEMP (TEMPORARY COMMUNICATION REGISTER)

TEMP is a 16-bit temporary register used for communication between the external data bus and the EXU. The TEMP can be accessed in byte units. Therefore, the upper byte and the lower byte can be independently read/written.

Basically, the EXU completes write operation when data is transferred to the TEMP; it completes read operation when confirming that data is transferred from an external data bus to TEMP.

2.5 SEGMENT REGISTERS (PS, SS, DS0, DS1)

In the μ PD70108H and μ PD70116H, memory addresses are divided into logical segments, which are 64K bytes each. The start address for each segment register is specified by the corresponding segment register. The offset from the start address is specified by a different register or by the effective address.

The μ PD70108H contains the following four kinds of segment registers.

Segment Register	Default Offset					
PS (Program Segment)	PFP					
SS (Stack Segment)	SP, Effective address					
DS0 (Data Segment 0)	IX, Effective address					
DS1 (Data Segment 1)	IY					

The PS and the PFP (Prefetch Pointer), and the DS1 and the IY registers are always paired.

The SS is normally paired with the SP. However, when the BP register is selected as the base register, effective address is used as the offset.

The DS0 is used together with the IX register for block transfer processing. However, for other general processing, the effective address is used as the offset.

In addressing using the BP register as the base register and the SS register as the segment register, any one of three other registers can be selected as the segment selection, using the the segment override prefix instruction (PS:, DS0:, DS1:). However, eight or more prefix instructions cannot be attached to other than prefix instructions.

2.6 ADM (ADDRESS MODIFIER)

ADM (Address Modifier) is used for generating a physical address (addition of segment register and PFP or DP), and increments the PFP (Prefetch Pointer).

2.7 GENERAL-PURPOSE REGISTERS (AW, BW, CW, DW)

The μ PD70108H contains four 16-bit registers. Each of these 16-bit registers can be used as a 16-bit register. In addition, each of these 16-bit registers can be divided into upper and lower 8 bits, so that each can be accessed as an 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL).

Therefore, these registers can be used as 8-bit or 16-bit registers for various instructions, such as transfer, arithmetic operation, logical operation instruction, etc.

These registers are used as default registers for certain instruction processings as follows:

AW: Word multiplication/division, word input/output, BCD rotation, data conversion

AL : Byte multiplication/division, byte input/output, BCD rotation, data conversion

AH: Byte multiplication/division

BW: Data conversion

CW: Loop control branch, repeat prefix

CL: Shift instruction, rotate instruction, BCD operation

DW: Word multiplication/division, indirect addressing input/output

2.8 POINTERS (SP, BP) AND INDEX REGISTER (IX, IY)

SP and BP, and IX and IY are used as the base pointers or index registers, when accessing the memory in the based addressing mode, indexed addressing mode, etc.

In the same way as for general-purpose registers, these pointers and index registers are used for transfer, arithmetic, or logical operation instructions. However, in this case, these pointers and index registers cannot be used as 8-bit registers.

These registers are used as default registers for certain instruction processing, as follows:

SP: Stack manipulation

IX : Block transfer (source side), BCD string operation

IY: Block transfer (destination side), BCD string operation

2.9 TA/TB (TEMPORARY REGISTER/SHIFTER A/B)

TA/TB is a 16-bit temporary register/shifter used for multiplication/division, and shift/rotate (including BCD rotate) instructions.

When executing a multiplication/division instruction, TA and TB are paired to form a 32-bit temporary register/shifter. When executing a shift/rotate instruction, only the TB serves as the 16-bit temporary register/shifter.

The upper and lower bytes individually for TA and TB can be independently read/written through the internal bus.

TA/TB becomes the ALU input.

2.10 TC (TEMPORARY REGISTER C)

TC is a 16-bit temporary register, used for multiplication, division, and other internal processings.

The TC becomes the ALU input.

2.11 ALU (ARITHMETIC & LOGIC UNIT)

ALU (Arithmetic Logic Unit) consists of the full adder and the logic operation circuit, and performs arithmetic operations (addition, subtraction, increment, decrement, and complement operations) and logical operations (test, AND, OR, XOR, and test, set, clear, and invert in bit units).

2.12 PSW (PROGRAM STATUS WORD)

The program status word consists of six status flags and four control flags.

Status flags

- V (Overflow)
- · S (Sign)
- Z (Zero)
- AC (Auxiliary Carry)
- P (Parity)
- · CY (Carry)

Control flags

- · MD (Mode)
- · DIR (Direction)
- IE (Interrupt Enable)
- · BRK (Break)

These flags are manipulated in the stack in the following word image:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	•
M D	1	1	1	٧	D R	E	*XB	s	z	0	Ĉ	0	Р	1	C	PSW

Status flags are automatically set or reset, according to instruction execution results (data value).

The CY flag can be directly set, reset, or inverted by an instruction.

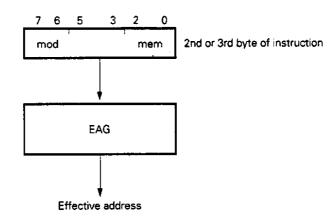
The control flags are set or reset by an instruction, in order to control the CPU operation.

The MD flag can be modified only from the BRKEM instruction execution to the RETEM instruction. In other locations, the MD flag cannot be restored by executing the RETI or POP PSW instruction.

2.13 LC (LOOP COUNTER)

LC (Loop Counter) is a 16-bit register, which counts the number of loops for primitive block transfer, input/output instructions (MOVBK, OUTM, etc.) controlled by repeat prefix instructions (REP, REPC, etc.), or the number of shifts for multiple bit shift/rotate instructions.

2.14 PC (PROGRAM COUNTER)


PC (Program Counter) is a 16-bit binary counter, which retains the offset information for the program memory address in the instruction to be executed next by the EXU.

The PC is incremented each time the decoder fetches an instruction byte from the instruction queue. When a branch, call, return, or break instruction is executed, a new address location is loaded into the PC, in this case, the PC contents become the same as those for the PFP (Prefetch Pointer).

2.15 EAG (EFFECTIVE ADDRESS GENERATOR)

EAG (Effective Address Generator) logic computes an effective address necessary for accessing the memory at high speed. An address computation is completed in two clock period in any addressing mode.

The byte (2nd or 3rd byte) in which the instruction operand is specified is clocked in. If memory accessing is necessary, the EAG generates a control signal necessary for manipulating the ALU and related register, computes the effective address, and transfers it to the data pointer (DP).

In addition, the EAG requests a bus cycle (memor read) to the BCU as necessary.

2.16 INSTRUCTION DECODER

The instruction decoder classifies the first byte in the instruction code into a group by function, and retains it during macro execution.

2.17 MICROADDRESS REGISTER

The microaddress register specifies the microinstruction ROM address to be executed next.

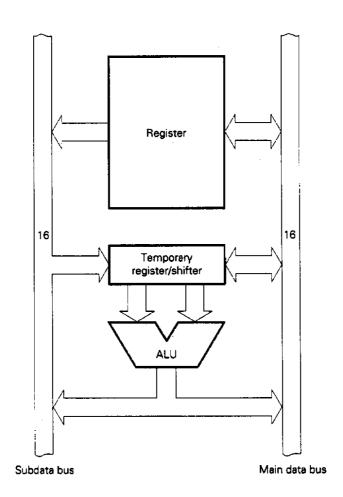
The first byte for the instruction stored in the queue is clocked into this register as the start address to indicate the specified microinstruction sequence start address, when starting the microinstruction execution.

2.18 MICROINSTRUCTION ROM

The microinstruction ROM contains 1024 words of 29-bit wide microinstructions.

2.19 MICROINSTRUCTION SEQUENCE CIRCUIT

This circuit manages microaddress register control, microinstruction ROM output control, and EXU and BCU synchronization.


INCREASING INSTRUCTION EXECUTION SPEED

The μ PD70108H and μ PD70116H are provided with the following hardware functions in order to reduce the instruction execution time:

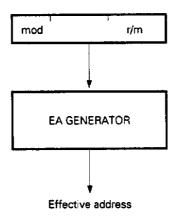
- · EXU internal dual data bus
- · Effective address generator
- 16/32-bit temporary register/shifter (TA, TB)
- 16-bit loop counter (LC)
- PC (Program Counter) and PFP (Prefetch Pointer)

3.1 DUAL DATA BUS METHOD

In order to reduce the number of processing steps necessary for instruction execution, a dual data bus concept, with the main data bus (16 bits) and the sub data bus (16 bits), is employed. With this concept, the processing time is reduced approximately 30%, compared to the processing time for a single bus system in implementing addition, subtraction, logic operation, and compare instructions.

Example: ADD AW, BW; AW ← AW+BW

3


Dual bus Single bus ALU ← AW ALU ← AW, BW Step 1 2 ALU ← BW AW ← ALU AW ← ALU

3.2 EFFECTIVE ADDRESS GENERATOR

The effective address generator computes at a high speed an effective address necessary for accessing the memory.

In the microprogram method, it took 5 to 12 clock periods to compute an effective address. However, with this sole use hardware, an effective address can be computed in two clock period for any addressing mode.

3.3 16/32-BIT TEMPORARY REGISTER/SHIFTER (TA, TB)

The temporary register/shifter (TA, TB) are provided for multiplication, division, shift, and rotate instructions. With this circuit, especially, multiplication and division instruction execution speed is increased to approximately 4 time faster than a method using the microprogram.

TA+TB: 32-bit temporary register/shifter

- For multiplication/division instructions

TB: 16-bit temporary register/shifter

- For shift/rotate instructions

3.4 LOOP COUNTER (LC)

The loop counter (LC) counts the number of loops for primitive block transfer, and input/output instructions controlled by the repeat prefix instruction, or counts the number of shifts for the multiple-bit shift/rotate instructions.

For example, register multiple-bit rotation will be performed as shown below, and the processing speed is increased approximately 2 time faster than that of microprogram method.

RORC AW, CL; CL = 5

Microprogram method

LC method

 $8 + 4 \times 5 = 28$ clocks

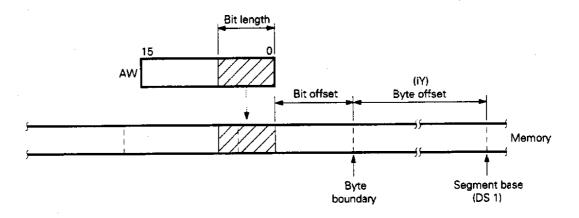
7 + 5 = 12 clocks

3.5 PC AND PFP

With the prefetch pointer (PFP), which addresses the program memory when prefetching an instruction, and the program counter (PC), which addresses the program memory for the current instruction execution, provided by hardware, the instruction execution time is reduced by several clock periods for branch, call, return, and break instructions, compared to that for the PFP only.

4. UNIQUE μ PD70108H INSTRUCTIONS

4.1 VARIABLE BIT FIELD MANIPULATION INSTRUCTIONS

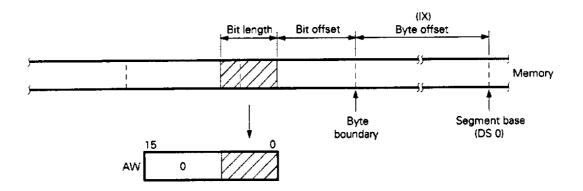

The INS (Insert Bit Field) and EXT (Extract Bit Field) instructions are provided as variable bit field manipulation instructions. These instructions are very effective for computer graphics and high level language. For example, these instructions are effective for Pascal packed array and record type data structure.

(1) INS reg8, reg8'/INS reg8, imm4

Of the 16 bits of data contained in the AW register, the data for the lower bits, specified by the second operand, is transferred to the memory area determined by the byte offset addressed by the DS1 segment register and IY indexed register plus the bit offset specified by the value (0-15) for the first operand.

After the transfer, the IY register and the register, specified by the first operand, are automatically updated to indicate the next bit field.

Only 0-15 (0 specifies 1-bit length, 15 specifies 16-bit length) are effective as the value for the second operand.


Bit field data can cross memory byte boundaries.

(2) EXT reg8, reg8'/EXT reg8, imm4

Data for the bit field, whose length is specified by the second operand, is loaded from the memory area determined by the byte offset addressed by the DS0 segment register and IX indexed register, plus the bit offset specified by the value (0-15) for the first operand to the AW register.

After the transfer, the IX register and the register specified by the first operand are automatically updated to indicate the next bit field.

Only 0-15 (0 specifies 1 bit length, 15 specifies 16 bit length) are effective as the value for the second operand.

Bit-field data can cross memory byte boundaries.

4.2 PACKED BCD OPERATION INSTRUCTIONS

The ADD4S, SUB4S, and CMP4S instructions process packed BCD as strings. The ROR4 and ROL4 instructions process packed BCD as byte or word format operands.

(1) ADD4S

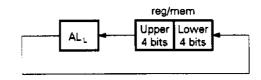
This instruction adds the packed BCD string, addressed by the IX index register, to the packed BCD string, addressed by the IY index register, and stores the result in the string, addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the operation result will affect the zero (Z) and carry (CY) flags.

BCD string (IY,CL) ← BCD string (IY,CL) + BCD string (IX,CL)

(2) SUB4S

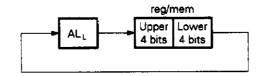
This instruction subtracts the packed BCD string, addressed by the IX index register, from the packed BCD string, addressed by the IY index register, and stores the result in the string, addressed by the IY register. The length of the string (number of BCD digits) is specified by the CL register, and the operation result will affect the zero (Z) and carry (CY) flags.

BCD string (IY,CL) ← BCD string (IY,CL) – BCD string (IX,CL)


(3) CMP4S

This instruction performs the same operation as SUB4S, except that the result is not stored and only the zero flag (Z) and carry flag (CY) are affected.

BCD string (IY,CL) - BCD string (IX,CL)


(4) ROL4

This instruction treats the byte data for the register or memory operand specified by the instruction as BCD data and uses the lower 4 bits of the AL register (ALL) to rotate that data one BCD digit to the left.

(5) ROR4

This instruction treats the byte data for the register or memory operand specified by the instruction as BCD data and uses the lower 4 bits of the AL register (ALL) to rotate that data one BCD digit to the right.

4.3 STACK MANIPULATION INSTRUCTIONS

(1) PREPARE imm16.imm8

This instruction is used to generate a "stack frame" necessary for a block structure high level language (such as Pascal and Ada). The stack frame contains the pointers to point frames of variables that can be referenced from the procedure, and local variable area.

The following explanation uses the following program example written in a Pascal style language.

```
program EXAMPLE;
    procedure P;
     var a,b,c;
     procedure Q;
       var d,e;
       procedure R;
          var f,g;
          begin
            d:=a+f+g;
          end:
       begin
          R:
          b:=d+e;
       end;
     begin
       a:=b+c;
       Q;
     end;
    (*main program*)
     begin
       P;
     end.
```

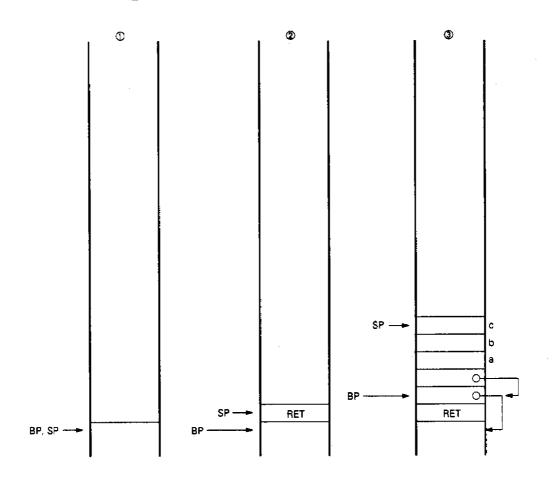
Remark All variables are word variables.

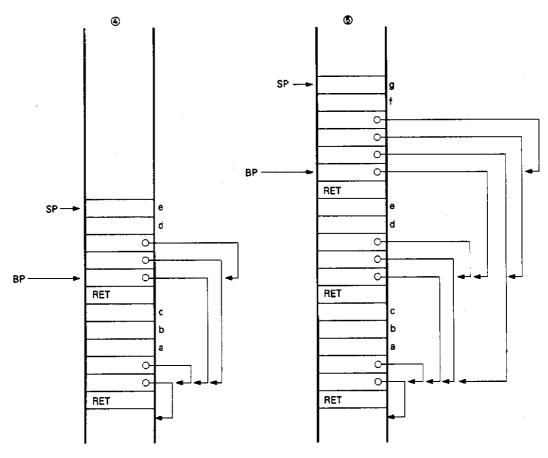
In this program, procedure blocks are nested in three levels. Procedure P defines variables a, b, and c, procedure Q defines variables d and e, and procedure R defines variables f and g. Therefore, a, b, and c are referenced from procedure Q, and d and e in addition to a, b, and c, are referenced from procedure R as global variables.

The PREPARE instruction copies the frame pointer, in order to assure local variable area and enable referencing to global variables. The first operand specifies the size (bytes) of the area assured for the local variables. The second operand indicates the depth of the procedure block (this depth is referred to as lexical level).

The base address for the frame generated by the PREPARE instruction is set into the base pointer BP. When the above EXAMPLE program is compiled, the assembler program, shown on the next page will be created (the DISPOSE instruction used in the assembler program returns the stack pointer SP and the base pointer BP to the condition which existed before the PREPARE instruction was executed. Refer to (2)).

:ASSEMBLER PROGRAM


START	: MOV MOV	SP, SPTOP BP, SP ; ①
	CALL	P ; ②
	BR	SYSTEM
P:	PREPARE	6, 1 ; ③
	MOV	AW, [BP] [B+BLEVEL*2]
	ADD	AW, [BP] [C+CLEVEL*2]
	MOV	[BP] [A+ALEVEL*2], AW
	CALL	Q
	DISPOSE	
	RET	
Q:	PREPARE	4, 2 ; ④
	CALL	R
	MOV	AW, [BP] [D+DLEVEL*2]
	ADD	AW, [BP] [E+ELEVEL*2]
	MOV	IY, [BP] [BLEVEL*2]
	MOV	SS:[IY] [B+BLEVEL*2], AW
	DISPOSE	
,	RET	
R:	PREPARE	4, 3 ; (5)
	MOV	AW, [BP] [F+FLEVEL*2]
	ADD	AW, [BP] [G+GLEVEL*2]
	MOV	IY, [BP] [ALEVEL*2]
	ADD	AW,.SS:[IY] [A+ALEVEL*2], AW
	MOV	IY, [BP] [DLEVEL*2]
	MOV	SS:[IY] (D+DLEVEL*2), AW
	DISPOSE	
	RET	
; /	4 = -2 ALE	/EL = -1
; 6	B = -4 BLE\	/EL = -1
; (/EL = -1
-	D = -2 DEL\	/EL = -1 /EL = -2 /EL = -2


; F = -2 FLEVEL = -3

GLEVEL = -3

; G = -4

The following shows the process in which stack frames are generated according to the program execution progress. The numbers correspond to the numbers written in the comment fields.

The PREPARE instruction first stores the BP into the stack. This is to restore the BP for the procedure which made the call, when the procedure is completed. The frame pointers (stored BP) in the range that can be referenced from the called procedure are then loaded into the stack. The range that can be referenced means a value which is the lexical level of the procedure minus 1.

If the lexical level is 1 or greater, the own frame pointer is also loaded into the stack. This is to copy the frame pointer for the procedure, which made the call, when copying the frame pointer in the procedure called from this procedure.

The value for the new frame pointer is then set into the BP, and the local variable area to be used by the procedure is assured in the stack. That is, the SP is decremented by the number of local variables.

```
display = 2nd operand
  dynamics = 1st operand
SP = SP-2;
(SP) = BP;
temp = SP;
if display > 0 then begin
      repeat display-1 times
         begin
           SP = SP-2;
           BP = BP-2:
           (SP) = (BP);
         end
      SP = SP-2;
      (SP) = temp;
      end
BP = temp;
SP = SP-dynamics
```


Data Access Method

(a) Accessing local variable

A local variable is allocated in the procedure's own frame. Therefore, the effective address for the local variable EA.L can be computed as follows:

EA.L = SS:(BP+offset)

Where, offset value is the result of addition of the frame size (base value for the frame that can be referenced) loaded in the flame, with the offset value from the base value of the local variable area to the variable.

(b) Accessing global variable

A global variable accesses the base pointer to be referenced from the old base pointers loaded in the stack frame, then add the offset value to the variable to be referenced to that value. This value is the address at which the global variable is located. Therefore, the the effective address for the global variable EA.G can be computed as follows:

EA.G = SS:((SS:(BP+offset1))+offset2)

Where, offset1 is the offset value from the base value (BP value) for the current frame to the address, in which the base address for frame containing the global variable is stored.

Offset2 is the offset value from the base value for the frame containing the variable to be referenced to that variable.

(2) DISPOSE

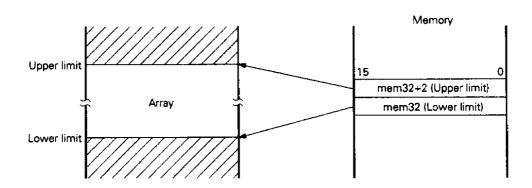
The DISPOSE instruction releases one frame from stack frames generated by the PREPARE instruction. The point value, indicating the previous frame, is loaded into the BP, and the point value, indicating the bottom position of the frame, is loaded into the SP.

SP = BP;

BP = (SP);

SP = SP+2

4.4 CHECK ARRAY BOUNDARY INSTRUCTION


This instruction is used to verify that index values, pointing to the elements of an array data structure, are within the defined range. If the index value is not between these defined ranges when CHKIND is executed, a BRK5 will occur.

When using the CHKIND instruction, the defined value must be set into 2 words (the 1st word defines the lower limit, the second word specifies the upper limit) in the memory in advance. The index value should be a register (an arbitrary 16-bit register) used by the array manipulation program.

CHKIND, reg 16, mem 32

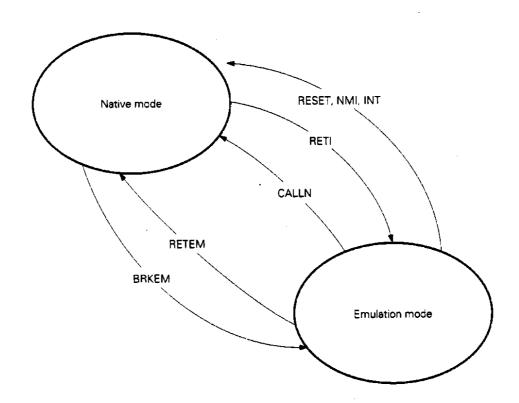
PC ← TA

When (mem32) > reg16 or (mem 32+2) < reg16 $TA \leftarrow (015H, 014H)$ $TC \leftarrow (017H, 016H)$ $SP \leftarrow SP-2, (SP+1, SP) \leftarrow PSW$ $IE \leftarrow 0, BRK \leftarrow 0$ $SP \leftarrow SP-2, (SP+1, SP) \leftarrow PS$ $PS \leftarrow TC$ $SP \leftarrow SP-2, (SP+1, SP), \leftarrow PC$ $SP \leftarrow SP-2, (SP+1, SP), \leftarrow PC$

4.5 MODE MANIPULATION INSTRUCTIONS

The μ PD70108H and 70116H has two operation modes: native mode (normal operation mode) and emulation mode (emulates μ PD8080AF instruction set). Bit 15 is provided as the mode flag to select these modes. Setting MD to 1 specifies the native mode, and 0 specifies the emulation mode.

The MD is directly or indirectly set/reset by the mode manipulation instruction.


The following instructions change the mode from the native mode to the emulation mode:

BRKEM (Break for Emulation) RETI (Return from Interrupt)

The following instructions change the mode from the emulation mode to the native mode:

RETEM (Return from Emulation)
CALLN (Call Native routine)

In addition, the mode returns from the emulation mode to the native mode, when a RESET is input or when an external interrupt is input (NMI, INT).

(1) BRKEM imm8

BRKEM is the basic instruction to initiate the emulation mode. This instruction stores the PSW, PS, and PC, resets the MD flag to 0, and loads the interrupt vector specified by the operand to the PS and PC. The interrupt enable flag (IE) and the break flag (BRK) are not affected by this instruction.

When an instruction code for interrupt service routine (for emulation) jumped in this manner is fetched, the CPU interprets and executes the instruction as an instruction of the μ PD8080AF.

The CPU treats the emulation mode as an interrupt service.

In the emulation mode, the μ PD8080AF registers and flags are substituted for by the following registers and flags:

μPD70108H, 70116H
AL
СН
CL
DH
DL
ВН
BL
ВР
PC

μPD8080AF	μPD70108H, 70116H
С	CY
Z	z
s	s
Р	Р
AC	AC

For stack manipulation, SP serves as the stack pointer in the native mode. However, in the emulation mode, BP serves as the stack pointer. By employing an independent stack pointer, the stack area is assured independently for both modes, in order to prevent destroying the stack for some other mode by erroneous stack manipulation.

The SP, IX, IY, AH and four segment registers (PS, SS, DS0, DS1) used in the native mode are not affected by the emulation mode.

In the emulation mode, the segment base for the instruction is determined by the PS register (automatically determined by the interrupt vector), and the segment base of data is determined by the DS0 register (the programmer determines before entering the emulation mode).

(2) RETEM (no operand)

When the RETEM instruction is executed in the emulation mode (the instruction is interpreted as the μ PD8080AF instruction), the CPU restores the PS, PC, and PSW in the same way as when returning from an interrupt service, then returns to the native mode. In this case, the contents for the native mode (that is 1), stored in the stack by the BRKEM instruction, is restored. This sets the CPU to the native mode.

(3) CALLN imm8

When this instruction is executed in the emulation mode (the instruction is interpreted as the μ PD8080AF instruction), the CPU stores the PS, PC, and PSW into the stack (MD=0 is stored here), sets the mode flag (MD) to 1, and loads the interrupt vector specified by the operand to the PS and PC.

The interrupt enable flag (IE) and the break flag (BRK) are not affected by this instruction. In this manner, the interrupt routine in the native mode can be called from the emulation mode. Use RETI instruction to return to the emulation mode from this interrupt routine.

(4) RETI (no operand)

The RETI instruction is generally used to return from an interrupt routine initiated by the BRK instruction or external interrupt in the native mode. However, if this instruction is executed at the end of the interrupt routine initiated by the CALLN instruction, PS, PC, and PSW are restored in the same way as normal. However, when the PSW is restored, the value (=0) for the mode flag (MD) for the emulation mode is restored to the MD. For this reason, the CPU is set to the emulation mode. Afterwards, instructions will be interpreted and executed as μ PD8080AD instructions.

In the same manner, the RETI instruction is used to return from an interrupt routine for the native mode, initiated by NMI, or INT interrupt request, generated in the emulation mode.

4.6 FLOATING-POINT OPERATION COPROCESSOR CONTROL INSTRUCTIONS

FPO1 fp-op/FPO1 fp-op, mem FPO2 fp-op/FPO2 fp-op, mem

These instructions are used to control the external floating-point operation coprocessor. When the CPU fetches this instruction, the CPU outputs instructions for coprocessor to perform operations. The CPU only performs supportive processing (effective address computation, physical address generation, and memory read cycle initiation) necessary for the coprocessor to perform operations.

When the coprocessor monitors this instruction, the coprocessor interprets the instruction as its own instruction and executes the instruction. In this case, the coprocessor uses the address information for the memory read cycle initiated by the CPU only, or both the address and read data, depending on the type of instruction involved.

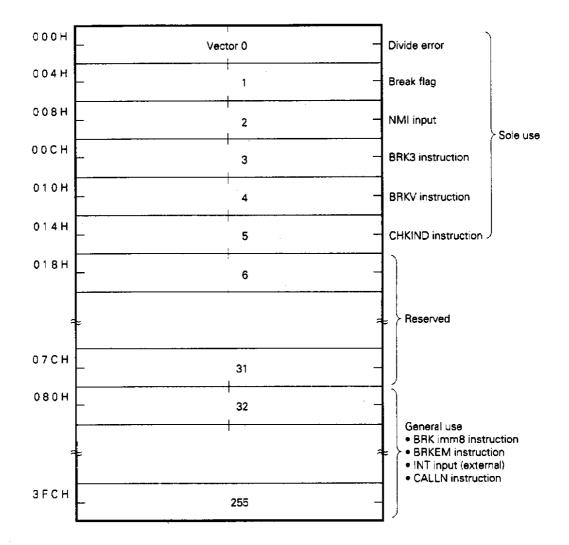
In terms of function, FPO1 and FPO2 are identical, except the type of code is different.

In general, when writing in an assembler language, mnemonics, corresponding to each instruction for the coprocessor, are used rather than FPO1 and FPO2 mnemonics.

When the FPO1 or FPO2 instruction is fetched, the CPU initiates memory read cycle, if the instruction is requesting memory accessing. However, the data read out by this operation is to be used by the coprocessor, so that the CPU will not clock in this data.

When the coprocessor needs memory write cycle, the CPU initiates memory write cycle for the coprocessor. The data, read out as a result, will be ignored by the floating-point operation coprocessor only latches the memory address information, and use it to execute memory write cycle.

5. INTERRUPT OPERATION


The interrupts supported by the μ PD70108H, 70116H can be divided into two types; interrupts generated by external interrupt requests and traps generated by software processing. They are:

- (1) External interrupts
 - (a) NMI input (nonmaskable)
 - (b) INT input (maskable)
- (2) Software traps
 - (a) By instruction execution result
 - Divide error during DIV or DIVU instruction
 - Array bound error during CHKIND
 - (b) Conditional break instruction
 - When V = 1 when BRKV instruction is executed
 - (c) Unconditional break instruction
 - · 1-byte break instruction BRK 3
 - · 2-byte break instruction BRK imm8
 - (d) Flag processing (single step)
 - Sets the BRK flag by stack manipulation
 - (e) Emulation related instructions
 - BRKEM imm8
 - CALLN imm8

For any interrupt, one location of the provided interrupt vector table is automatically selected, or is selected each time by specification, to determine the interrupt routine start address.

Figure 5-1 shows the interrupt vector table. This table is allocated to the 1K-byte area for memory addresses 000H to 3FFH, and can contain interrupt routine start addresses for 256 vectors (4 bytes for each vector)

Fig. 5-1 Interrupt Vector Table

Vectors 0-5 are specified for sole uses. Vectors 6-31 are reserved and cannot be used for general purposes. Vectors 32-255 can be used for general purposes, and the 2-byte break instruction, BRKEM instruction, INT input, and CALLN instruction (in the emulation mode) can be used.

Each interrupt vector consists of 4 bytes, and the lower 2 bytes are loaded into the PC as offset, and the upper 2 bytes are loaded into the PS as base.

Example: Vector 0

000H	001H
002H	003Н

PS ← (003H, 002H) PC ← (001H, 000H) The programmer must initialize the contents of each vector in the beginning of a program according to this format.

The following is the basic step used to jump to an interrupt service routine.

TA \leftarrow Lower bytes in vector (offset) TC \leftarrow Upper bytes in vector (base) SP \leftarrow SP-2, (SP+1,SP) \leftarrow PSW IE \leftarrow 0, BRK \leftarrow 0, MD \leftarrow 0 SP \leftarrow SP-2,(SP+1,SP) \leftarrow PS PS \leftarrow TC SP \leftarrow SP-2,(SP+1,SP) \leftarrow PC PC \leftarrow TA

6. STANDBY FUNCTION

The μ PD70108H and 70116H offer two standby modes to reduce power consumption. The standby mode is entered after the HALT instruction in the native mode or the HLT instruction in the emulation mode.

In the standby mode, the internal clock is supplied only to those circuits related to functions required to exit this mode and bus hold control functions. As a result, power consumption is reduced by about ten times the normal operation.

Standby mode is canceled by the RESET input or external interrupt input (NMI, INT).

The BUS HOLD function is still valid even during standby mode. If the request for BUS HOLD is withdrawn, the μ PD70108H or 70116H is placed back in standby mode.

7. I/O ADDRESS RESERVE

The upper 256 bytes (FF00H-FFFFH) in I/O address space are reserved for future use. Therefore, use of these addresses is not recommended.

8. INSTRUCTION SET

Table 8-1 Operand Types

Symbol	Meaning	
reg	8/16-bit general-purpose register	
	(Destination register, when instruction uses two 8/16-bit registers)	
reg'	Source register, when instruction uses two 8/16-bit registers	
reg 8	8-bit general-purpose register	
	(Destination register, when instruction uses two 8-bit registers)	
reg 8'	Source register, when instruction uses two 8-bit registers	
reg 16	16-bit general-purpose register (Destination register, when instruction uses two 16-bit registers)	
reg 16'	Source register, when instruction uses two 16-bit registers	
dmem	8/16-bit memory location	
mem	8/16-bit memory location	
mem 8	8-bit memory location	
mem 16	16-bit memory location	
mem 32	32-bit memory location	
imm	Constant (0-FFFFH)	
imm 3	Constant (0-7)	
imm 4	Constant (0-FH)	
imm 8	Constant (0-FFH)	
imm 16	Constant (0-FFFFH)	
acc	Register AW or AL	
sreg	Segment register	
src-table	256-byte conversion table	
src-block	Block name addressed by register IX	
dst-block	Block name addressed by register IY	
near-proc	Procedure within the current segment	
far-proc	Procedure within a different program segment	
near-label	Label within the current segment	
short-label	Label between -128 and +127 bytes from the end of the current instruction	
far-label	Label within a different program segment	
memptr 16	Word containing the destination offset address in the current segment	
memptr 32	Double word containing the destination offset address and segment base addre in another segment	
regptr 16	16-bit general-purpose register containing the destination offset address in another segment	
pop-value	Number of bytes to discard from the stack (0-64K, normally an even number)	
fp-op	Immediate value which determins the operation code of an external floating-pol coprocessor	
R	Register set	

Table 8-2 Operation Codes

Symbol	Meaning
W	Byte/word specification bit (0: byte, 1: word). However, when $S=1$, byte date with extended sign is used as an 16-bit operand even if $W=1$.
reg	Register field (000-111)
reg'	Register field (000-111) (Source register, when two registers are used)
mem	Memory field (000-111)
mod	Mode field (00-10)
s	Sign extension specification bit (0: sign not extended, 1: sign extended)
X,XXX,YYY,ZZZ	Data to identify the instruction code of the external floating-point coprocessor

Table 8-3 Operand Types

Symbol	Meaning
AW Accumulator (16 bits)	
AH	Accumulator (high byte)
AL	Accumulator (low byte)
BW	Register BW (16 bits)
cw	Register CW (16 bits)
CL	Register CW (low byte)
DW	Register DW (16 bits)
ВР	Base pointer (16 bits)
SP	Stack pointer (16 bits)
PC	Program counter (16 bits)
PSW	Program status word (16 bits)
IX	Index register (source) (16 bits)
IY	Index register (destination) (16 bits)
PS	Program segment register (16 bits)
SS	Stack segment register (16 bits)
DS0	Data segment 0 register (16 bits)
DS1	Data segment 1 register (16 bits)
AC	Auxiliary carry flag
CY	Carry flag
P	Parity flag
S	Sign flag
Z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
()	Memory contents indicated by parentheses
disp	Displacement (8/16 bits)
ext-disp8	8-bit displacement sign expanded to 16-bit
temp	Temporary register (8/16/32 bits)
TA	Temporary register A (16 bits)
ТВ	Temporary register B (16 bits)
TĊ	Temporary register C (16 bits)
tmpcy	Temporary carry flag (1 bit)
seg	Immediate segment data (16 bits)
offset	Immediate offset data (16 bits)
←	Transfer direction
+	Addition
_	Subtraction
×	Multiplication
+	Division
%	Modulo
^	AND
V	OR
\forall	XOR
xxH	Two-digit hexadecimal value
xxxxH	Four-digit hexadecimal value

Table 8-4 Fiag Operation

Symbol	Meaning	
(blank)	No change	
0	Cleared to 0	
1	Set to 1	
×	Set or cleared, according to result.	
U	Undefined	
R	Value saved earlier is restored	

Table 8-5 Memory Addressing Mode

mod	00	01	10
000	BW+IX	BW+IX+disp 8	BW+IX+disp 16
001	BW+IY	BW+IY+disp 8	BW+IY+disp 16
010	BP+IX	BP+IX+disp 8	BP+IX+disp 16
011	BP+IY	BP+IY+disp 8	BP+IY+disp 16
100	IX	IX+disp 8	IX+disp 16
101	IY	IY+disp 8	IY+disp 16
110	Direct address	BP+disp 8	BP+disp 16
111	BW	BW+disp 8	BW+disp 16

Table 8-6 8- and 16-Bit General Register Selection

reg, reg'	W = 0	W = 1
000	AL	AW
001	CL	cw
010	DL	DW
011	BL	BW
100	АН	SP
101	СН	ВР
110	DH	IX
111	ВН	ΙΥ

Table 8-7 Segment Register Selection

sreg	
00	DS1
01	PS
10	ss
11	DS0

On the following pages, the instruction set is shown in table form.

The number of clocks shown in the table is the time required for the execution unit to execute an instruction and is under the following conditions:

- . Does not include prefetch time and wait time for bus
- . Memory access is assumed to have 0 wait cycle. Therefore, the number of clocks for 1 bus cycle is 4.
- I/O access is assumed to have 0 wait cycle.
- The primitive block transfer instruction and primitive I/O instruction include the repeat prefix.

The number of clocks of an instruction that can execute byte and word processing (that has W bit) is indicated as follows:

(1) µPD70108H

Left to / : Value for byte processing (W = 0)
Right to /: Value for word processing (W = 1)

For details of the clock count of the instructions related to block transfer of μ PD70108H, refer to Table 8-8.

Table 8-8 Clock Count of Block-Transfer-Related Instructions (μPD70108H)

Instruction	Clock Count		
	Byte operation (W=0)	Word operation (W=1)	
MOVBK	11 + 8 × rep	11 + 16 × rep	
	(11)	(19)	
СМРВК	7 + 14 × rep	7 + 22 × rep	
	(13)	(21)	
СМРМ	7 + 10 × rep	7 + 14 × rep	
,	(7)	(11)	
LDM	7 + 9 × rep	7 + 13 × rep	
	(7)	(11)	
STM	7 + 4 × rep	7 + 8 × rep	
	(7)	(11)	
INM	9 + 8 × rep	9 + 16 × rep	
	(10)	(18)	
OUTM	9 + 8 × rep	9 + 16 × rep	
	(10)	(18)	

Remark The values in the brackets are applicable if the operation was performed only a single time.

(2) µPD70116H

Left to /: Value for byte operation (W=0), or for word operation (W=1) of an even-number address Right to /: Value for word operation (W=1) of an odd-number

For details of the clock count of instructions related to block transfer of μ PD70116H, refer to Table 8-9.

Table 8-9 Clock Count of Block-Transfer-Related Instructions (µPD70116H) (1/2)

		Clock	Count	
	Byte operation (W=0)		Word operation (W=1)	
Instruction		Odd- & odd-number address	Odd-& even-number address	Even- & even-number address
MOVBK	11 + 8 × rep	11 + 16 × rep	11 + 12 × rep	11 + 8 × rep
	(11)	(19)	(15)	(11)
СМРВК	7 + 14 × rep	7 + 22 × rep	7 + 18 × rep	7 + 14 × rep
	(13)	(21)	(17)	(13)
INM	9 + 8 × rep	9 + 16 × rep	9 + 12 × rep	9 + 8 × rep
	(10)	(18)	(14)	(10)
OUTM	9 + 8 × rep	9 + 16 × rep	9 + 12 × rep	9 + 8 × rep
	(10)	(18)	(14)	(10)

Remark The values in the brackets are applicable if the operation was performed only a signle time.

Table 8-9 Clock Count of Block-Transfer-Related Instructions (µPD70116H) (2/2)

		Clock Count	
Instruction	Byte operation (W=0)	Word oper	ation (W=1)
		Odd-number address	Even-number address
СМРМ	7 + 10 × rep	7 + 14 × rep	7 + 10 × rep
	(7)	(11)	(7)
LDM	7 + 9 × rep	7 + 13 × rep	7 + 9 × rep
	(7)	(11)	(7)
STM	7 + 4 × rep	7 + 8 × rep	7 + 4 × rep
	(7)	(11)	(7)

Remark The values in the brackets are applicable if the operation was performed only a signle time.

Instruction Group							Ope	rati	on Co				Number	Number o		ued			Fla	ıgs		
Gro	Mnemonic	Operand											of Bytes			Operation		-T	,	,	_ 	
									-		4 3	2 1 0	+	<u> </u>	μPD70116H		AC	: CY	<u> </u>	P	s	Z
	MOV	reg, reg'	1 0	0	0	1	0 1	W	1 1	r	eg	reg'	2	2	2	reg←reg′		1	ļ.		\square	
		mem, reg	1 (0	0	1	0 0	W	mod	f	eg	mem	2-4	9/13	9/13	(mem)←reg			\downarrow		Ш	
		reg, mem	1 0	0	0	1	0 1	W	mod	f	eg	mem	2-4	11/15	11/15	reg←(mem)			_		Ш	
		mem, imm	1 1	0	0	0	1 1	W	mod	0	0 0	mem	3-6	11/15	11/15	(mem)←imm						
		reg, imm	1 0	1	1	W	re	3					2-3	4	4	reg←imm						
		acc, dmem	1 0	1	0	0	0 0	W					3	10/14	10/14	When W = 0, AL←(dmem)						
_	!															When W ≠ 1, AH←(dmem+1), AL←(dmem)	·					
ctio		dmem,acc	1 0	1	0	0	0 1	W					3	9/13	9/13	When W = 0, (dmem)←AL						
etru																When W = 1, (dmem+1)←AH, (dmem)←AL						
Data transfer instruction		sreg, reg16	1 (0	0	1	1 1	Ō	1 1	0 :	sreg	reg	2	2	2	sreg←reg16 sreg: SS, DS0, DS1					П	
ansi		sreg,mem16	1 (0	0	1	1 1	0	mod	0 :	sreg	mem	2-4	11/15	11/15	sreg←(mem16) sreg: SS, DS0, DS1						
ita t		reg16, sreg	1 (0	0	1	1 0	0	1 1	0 :	sreg	reg	2	2	2	reg16←sreg			T			
۵		mem 16, sreg	1 (0	1	1 0	0	mod	0:	sreg	mem	2-4	10/14	10/14	(mem16)←sreg						_
		DS0, reg16.	1 1	0	0	0	1 0	1	mod		reg	mem	2-4	26	18/26	reg16←(mem32),						
		mem32														 DS0←(mem32+2)						
		DS1, reg16,	1 1	0	0	0	1 0	0	mod	l r	eg	mem	2-4	26	18/26	reg16←(mem32),		T	T			
		mem32									_					DS1←(mem32+2)						
		AH, PSW	1 (0	1	1	1 1	1				4	1	2	2	AH←S, Z, x, AC, x, P, x, CY		†	1	\vdash	H	_
		PSW, AH	<u> </u>				1 1		-				1	3	3	S, Z, x, AC, x, P, x, CY←AH	×	×	+	×	×	_ ×
	LDEA	reg16,							mod	س ا	eg	mem	2-4	4	4	reg16←mem16		+	\dagger	1	\vdash	_
		mem 16	l' `	. •	•	•		•			~ y						•					

Instruction Group

Data transfer instruction

Repeat prefix

REPE

REPZ

REPNE

REPNZ

1 1 1 1 0 0 1 0

Mnemonic	Operand						Op	er	atic	n	Cod	e					Number of Bytes	Number o	of Clocks	Operation			Fla	gs	
		7	6	5	4	3	2	1	0	7	6	5	4 :	3	2 1	0		µ₽D70108H	μPD70116H		AC	CY	٧	Р	S
TRANS	src-table	1	1	0	1	0	1	1	1								1	9	9	AL←(BW+AL)					
хсн		1	0	0	0	0	1	1	w	1	1	r	eg	-	reg'		2	3	3	reg⇔reg'					
		1	0	0	0	0	1	1	w	m	od	r	eg	ſ	nem	ו	2-4	16/24	16/24	(mem)↔reg					
į	AW, reg16 reg16, AW	1	0	0	1	0	(reg)								1	3	3	AW⇔reg16					
REPC		0	1	1	0	0	1	0	1						•		1	2	2	While CW ≠ 0, executes the primitive block transfer of the successive bytes, and decrements (–1) CW. If any interrupt has been on hold, the interrupt is processed. Exits from loop, when CY ≠ 1.					
REPNC		0	1	1	0	0	1	0	0								1	2	2	Same as above. Exits from loop, when CY ≠ 0.					
REP		1	1	1	1	0	0	1	1								1	2	2	While CW ≠ 0, executes the primitive block transfer of the successive bytes, and decrements					

1

2

(-1) CW. If any interrupt has been on hold, the

CMPM and Z ≠ 1.

Same as above.

Exits from loop, when $Z \neq 0$.

interrupt is processed. Exits from loop, when the primitive block transfer instruction is CMPBK or

_	 		1										h		SE		outi	DISE		nued	1					_
Instruction Group	Mnemonic	Operand					C)pe	rati	on	Cod	е					Number of Bytes	Number (of Clocks	Operation			FI	ag	S	
eul (7	6 5	4	ı 3	2	1	0	7	6	5	4 3	3 :	2 1	0	Dytos	μPD70108H	μPD70116H		AC	c c	ΥV	<u></u>		s [
	MOVBK	dst-block, src-block	1	0 1	0	0	1	0	W								1	Refer to Table 8-8.	Refer to Table 8-9.	When W = 0, (IY)←(IX) DIR = 0: IX←IX+1, IY←IY+1 DIR ± 1: IX←IX-1, IY←IY-1						
																				When W = 1, (IY+1,IY)←(IX+1,IX) DIR = 0: IX←IX+2, IY←IY+2 DIR = 1: IX←IX-2, IY←IY-2						
nsfer instruction	СМРВК	sre-block, dst-block	1	0 1	0	0	1	1	W								1	Refer to Table 8-8.	Refer to	, , , , , , , , , , , , , , , , , , , ,	*	×	x			
Primitive block transfer instruction	СМРМ	dst-block	1	0 1	0	1	1	1	W				-				1	Refer to Table 8-8.	Refer to Table 8-9.	When W = 0, AL-(iY)	×	*	×	•	();	()
	LDM	sre-block	1	0 1	0	1	1	0	W								1	Refer to Table 8-8.	Refer to Table 8-9.							
	STM	dst-block	1	0 1	0	1	0	1	W								1	Refer to Table 8-8.	Refer to Table 8-9.							

		,	Pha	:e-out	/Disc	onti	nued					
Instruction Group	Mnemonic	Operand	Operation Code		er Number				ı	Flaç	33	
تق ا			7 6 5 4 3 2 1 0 7 6 5 4 3 2	1 0	μPD70108H	μ P D70116H		AC	CY	٧	P !	s z
<u>_</u>	INS	reg8,reg8'	0 0 0 0 1 1 1 1 0 0 1 1 0 0	0 1 3	35-133	31-117/	16 bit field←AW					
iğ			1 1 reg' reg			35-133						
nstr		reg8,imm4	0 0 0 0 1 1 1 1 0 0 1 1 1 0	0 1 4	35-133	31-117/	16-bit field←AW			-		
<u>.</u>			1 1 0 0 0 reg			35-133				l		
erat	EXT	reg8,reg8'	0 0 0 0 1 1 1 1 0 0 1 1 0 0	1 1 3	34-59	26-55/	AW←16 bit field					
l o			1 1 reg' reg		İ	34-59						
Bit field operation instruction		reg8,imm4	0 0 0 0 1 1 1 1 0 0 1 1 1 0	1 1 4	34-59	26-55/	AW←16 bit field					
ä			1 1 0 0 0 reg			34-59						
	iN	acc,imm8	1 1 1 0 0 1 0 W	2	9/13	9/13	When W = 0, AL←(imm8)			Ì	T	
							When W = 1, AH←(imm8+1), AL←(imm8)			-		
۾		acc,DW	1 1 1 0 1 1 0 W	1	8/12	8/12	When W = 0, AL←-{DW}			7	\dagger	
I/O instruction							When W = 1, AH←(DW+1), AL←(DW)					
inst	OUT	imm8,acc	1 1 1 0 0 1 1 W	2	8/12	8/12	When W = 0, (imm8)←AL			1	T	
2							When W = 1, (imm8+1)←AH,(imm8)←AL					
		DW,acc	1 1 1 0 1 1 1 W	1	8/12	8/12	When W = 0, (DW)←AL					
							When W = 1, (DW+1)←AH,(DW)←AL					
	INM	dst-block,	0 1 1 0 1 1 0 W	1	Refer to	Refer to	When W = 0, (IY)←(DW)				T	
6		DW			Table 8-8.	Table 8-9.	DIR = 0: IY←IY+1; DIR = 1: IY←IY−1					
rucți							When W = 1, (IY+1, IY)←(DW+1, DW)				T	
inst							DIR = 0: IY←IY+2; DIR = 1: IY←IY-2					
Primitive I/O instruction	OUTM	DW,	0 1 1 0 1 1 1 W	1	Refer to	Refer to	When W = 0, (DW)←(IX)			1	1	\dashv
itiv		src-block			Table 8-8.	Table 8-9.	DIR = 0: IX←IX+1; DIR = 1: IX←IX-1					
Prin							When W = 1, (DW+1,DW)←(IX+1,IX)			\dashv	\top	_
							DIR = 0: IXIX+2; DIR = 1: IXIX-2					

				Phase-		Disc	ontin	nued						
Group	Mnemonic	Operand	Operation Code			Number o		Operation			Fla	gs		
<u> </u>			7 6 5 4 3 2 1 0 7 6 5	4 3 2 1 0	bytes	<i>μ</i> PD70108H	μPD70116H		AC	СУ	٧	Р	S	Z
	ADD	reg,reg'	0 0 0 0 0 0 1 W 1 1	reg reg'	2	2	2	reg←reg+reg'	×	×	×	×	x	x
		mem,reg	0 0 0 0 0 0 W mod	reg mem	2-4	16/24	16/24	(mem)←(mem)+reg	×	×	×	×	×	×
		reg,mem	0 0 0 0 0 0 1 W mod	reg mem	2-4	11/15	11/15	reg←reg+(mem)	×	×	×	×	×	×
		reg,imm	1 0 0 0 0 0 s W 1 1 0	0 0 reg	3-4	4	4	reg←reg+imm	×	×	×	×	×	x
		mem,imm	1 0 0 0 0 0 s W mod 0	0 0 mem	3-6	18/26	18/26	(mem)←(mem)+imm	×	×	×	×	×	×
		acc,imm	0 0 0 0 0 1 0 W		2-3	4	4	When W = 0, AL←AL+imm When W = 1, AW←AW+imm	×	×	×	×	×	×
	ADDC	reg,reg'	0 0 0 1 0 0 1 W 1 1	reg regʻ	2	2	2	reg←reg+reg′+CY	×	×	×	×	×	×
		mem,reg	0 0 0 1 0 0 0 W mod	reg mem	2-4	16/24	16/24	(mem)←(mem)+reg+CY	×	×	×	x	×	x
Ē		reg,mem	0 0 0 1 0 0 1 W mod	reg mem	2-4	11/15	11/15	reg←reg+(mem)+CY	×	×	×	×	×	×
		reg,imm	1 0 0 0 0 0 s W 1 1 0	1 0 reg	3-4	4	4	reg←reg+imm+CY	×	×	×	×	×	×
		mem,imm	1 0 0 0 0 0 s W mod 0	1 0 mem	3-6	18/26	18/26	(mem)←(mem)+imm+CY			Ī	×		
Addition/Subtraction instruction		acc,imm	0 0 0 1 0 1 0 W		2-3	4	4	When W = 0, AL←AL+imm+CY When W = 1, AW←AW+imm+CY		Г		×	\Box	Г
ΣŢ	SUB	reg,reg'	0 0 1 0 1 0 1 W 1 1	reg regʻ	2	2	2	reg←reg-reg′	×	×	×	×	×	×
202		mem,reg	0 0 1 0 1 0 0 W mod	reg mem	2-4	16/24	16/24	(mem)←(mem)–reg	×	×	×	×	×	×
		reg,mem	0 0 1 0 1 0 1 W mod	reg mem	2-4	11/15	11/15	reg←reg-(mem)	×	×	×	×	×	×
Ď		reg,imm	1 0 0 0 0 0 s W 1 1 1	0 1 reg	3-4	4	4	reg-reg-imm	×	×	×	×	×	x
		mem,imm	1 0 0 0 0 0 s W mod 1	0 1 mem	3-6	18/26	18/26	(mem)←(mem)–imm	×	×	×	×	×	x
		acc,imm	0 0 1 0 1 1 0 W		2-3	4	4	When W = 0, AL←AL-imm When W = 1, AW←AW-imm	×	×	×	×	×	×
	SUBC	reg,reg'	0 0 0 1 1 0 1 W 1 1	reg reg'	2	2	2	reg←reg-reg'-CY	×	×	×	×	×	×
		mem,reg	0 0 0 1 1 0 0 W mod	reg mem	2-4	16/24	16/24	(mem)←(mem)–reg–CY	×	×	×	×	×	×
		reg,mem	0 0 0 1 1 0 1 W mod	reg mem	2-4	11/15	11/15	reg←reg–(mem)–CY	×	×	x	×	x	×
		reg,imm	1 0 0 0 0 0 s W 1 1 0	1 1 reg	3-4	4	4	reg←reg–imm–CY	×	×	x	×	×	×
		mem,imm	1 0 0 0 0 0 s W mod 0	1 1 mem	3-6	18/26	18/26	(mem)←(mem)–imm-CY	×	×	x	×	×	×
		acc,imm	0 0 0 1 1 1 0 W		2-3	4	4	When W = 0, AL←AL-imm-CY When W = 1, AW←AW-imm-CY	×	×	×	×	×	×

	1	·	Phase-out/Discontinued				7
Instruction Group	Mnemonic	Operand	Operation Code Number of Clocks Operation Bytes Operation	Flag	ļS		
<u>=</u>			7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 PD70108H PD70116H AC CY	٧	P S	s i	z
	ADD4S		0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 2 19×n+7 19×n+7 dst BCD string←dst BCD string + src BCD string* U x	ייט	ᅶ	<u>ر</u>	×
	SUB4S		0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 2 19×n+7 19×n+7 dst BCD string←dst BCD string - src BCD string* U x	יש	J	J	×
	CMP4S		0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 2 19×n+7 19×n+7 dst BCD string – src BCD string*	U	J	ار	×
ruction	ROL4	reg8	0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 3 13 13 ALL Upper Lower				
BCD operation instruction		mem8	0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 3-5 28 28				_
BCD op	ROR4	reg8	0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 3 17 17				
		mem8	0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 3-5 32 32 Memod 0 0 0 mem				_
	INC	reg8	1 1 1 1 1 1 0 1 1 0 0 0 reg 2 2 2 reg8←reg8+1 ×	×	×	×	×
nction		mem	1 1 1 1 1 1 W mod 0 0 0 mem 2-4 16/24 16/24 (mem)←(mem)+1 ×	×	×	×	_ *
ent instru		reg16	0 1 0 0 0 reg 1 2 2 reg16←reg16+1 ×	×	×	×	×
nt/decrement instruction	DEC	reg8	1 1 1 1 1 1 0 1 1 0 0 1 reg 2 2 2 reg8←reg8–1	×	×	×	×
Incremen		mem	1 1 1 1 1 1 W mod 0 0 1 mem 2-4 16/24 16/24 (mem)←(mem)–1	×	×	×	×
		reg16	0 1 0 0 1 reg 1 1 2 2 reg16←reg16–1 x	×	×	×	×

n : Half of the number of digits of BCD

* : The number of digits in BCD is specified using the CL register. Its value can range from 1 to 254.

		.										_[P	h		e -(Disc	ontin	nued							7
Instruction Group	Mnemonic	Operand						Op	er	atio	n C	•					}	Number (Operation			F	lag	3		
lns.			7	6	5	4	3	2	1	0	7 (3 5	4	3	2	1 0	Dytes	µ₽D70108H	μPD70116H		AC	: C	YV	/ F	9 9	s Z	,
	MULU	reg8	1	1	1	1	0	1	1	0	1 1	1	0	0	r	eg	2	21-22	21-22	AW←ALxreg8	U	×	×	: L	ľ	ט	
																				AH = 0: CY←0,V←0							
																				AH ≠ 0: CY←1,V←1		\downarrow	\perp	\downarrow	1	\perp	
		mem8	1	1	1	1	0	1	1	0	mo	od 1	0	0	m	em	2-4	27-28	27-28	AW←ALx(mem8)	U	>	×ا،	: L	ľ	ט	1
																				AH = 0: CY←0,V←0							
																				AH ≠ 0: CY←1,V←1				_		_	
		reg16	1	1	1	1	0	1	1	1	1 1	1	0	0	•	eg	2	29-30	29-30	DW, AW←AWxreg16	U	 	۲ x	د ال	Įι	ח ר	1
																				DW = 0: CY←0,V←0							
										. 1										DW ≠ 0: CY←1,V←1			_	\downarrow	1	\perp	_
ç		mem16	1	1	1	1	0	1	1	1	me	od 1	0	0	m	em	2-4	39-40	35-36/	DW,AW←AWx(mem16)	Ų	· >	۲þ	٠ļ١	1	սխ	1
uctio																			39-40	DW = 0: CY←0,V←0							
nstri																				DW ≠ 0: CY←1,V←1							
Multiplication instruction	MUL	reg8	1	1	1	1	0	1	1	0	1 1	1	0	1	r	eg	2	33-39	33-39	AW←ALxreg8	U	,	()×	ı	١Į١	υ	J
licat																				AH = Sign extension for AL: CY←0,V←0						}	
ultip	1																			AH ≠ Sign extension for AL: CY←1,V←1		1			\downarrow	\perp	
Σ		mem8	1	1	1	1	0	1	1	0	m	od 1	0	1	m	em	2-4	39-45	39-45	AW←ALx(mem8)	U	٠ ,	< >	١	J	ט ע	,
																				AH = Sign extension for AL: CY←0,V←0							
																				AH ≠ Sign extension for AL: CY←1,V←1		1	1	_	\perp	\perp	_
1		reg16	1	1	1	1	0	1	1	1	1 .	1	0	1	•	eg	2	41-47	41-47	DW,AW←AWxreg16	υ	۱ ،	< >	cا	γþ	սխ	,
										1										DW = Sign extension for AW: CY←0,V←0							ļ
										Ì										DW ≠ Sign extension for AW: CY←1,V←1		1	_				
		mem16	1	1	1	 1	0	1	1	1	m	od 1	0	1	n	nem	2-4	51-57	47-53/	DW,AW←AWx(mem16)	U	,	k þ	cا	J L	J U	;
										Ì									51-57	DW = Sign extension for AW: CY←0,V←0							
																				DW ≠ Sign extension for AW: CY←1,V←1							

											\int	Ph		<u>e</u>	out/	Disc	onti	nued				-			_
Instruction Group	Mnemonic	Operand					Op	erat	ion	Cod					Number of	Number						Fla	gs		
inst			7	6 5	4	3	2	1 0	7	6	5	4 3	2	1 0	Bytes	μ PD70108H	μ P D70116H		A	c	CY	٧	Р	s	Z
	MUL	reg16,	0	1. 1	0	1	0	1 1	1	1	ľ	вġ	r	eg′	3	28-34	28-34	reg16←reg16′ximm8	L	از	×	×	U	U	U
	(cont'd)	(reg16',)*																Product ≤ 16 bits: CY←0,V←0							
		imm8																Product > 16 bits: CY←1,V←1							
ion		reg16,	0	1 1	0	1	0	1 1	,	mod	r	eg	m	em	3-5	38-44	34-40/	reg16←(mem16)ximm8	ļ	ار	×	×	U	U	U
ruct		mem 16,															38-44	Product ≤ 16 bits: CY←0,V←0		1					
Multiplication instruction		imm8																Product > 16 bits: CY←1,V←1					. 1		
ation		reg16,	0	1 1	Q	1	0	0 1	1	1	r	eg	r	eg'	4	36-42	36-42	reg16←reg16′ximm16	Ų	ار	×	×	υ	U	U
iplic		(reg16',)*																Product ≤ 16 bits: CY←0,V←0		-					
Ĭ		imm16																Product > 16 bits: CY←1,V←1							
		reg16,	0	1 1	0	1	0	0 1	,	mod	r	eg	m	em	4-6	46-52	42-48/	reg16←(mem16)ximm16	Į.	ار	×	×	υ	υ	U
		mem 16,															46-52	Product ≤ 16 bits: CY←0,V←0		ŀ					
		imm16																Product > 16 bits: CY←1,V←1							

^{*:} The second operand can be omitted. When omitted, the same register, specified for the first operand, is assumed to be specified.

	,													h		50 -	out/	Disc		nued						
Instruction Group	Mnemonic	Operand						0	pe	rati	on (od	В				Number of Bytes	Number	of Clocks	Operation			F	laç	js	
ig (7	•	5	4	3	2	1	0	7	6	5 4	1 3	3 2	1 0	Dytes	μPD70108	µ ₽D70116Н		A	Ç	Υ	7	P	s z
	DIVU	reg8	1	1	1	1	0	1	1	0	1	1 1	1	O		reg	2	19	19	temp←AW When temp+reg8 ≤ FFH, AH←temp%reg8, AL←temp+reg8 When temp+reg8 > FFH, TA←(001H,000H), TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC	U		J () 	ار	יוני
nstruction		mem8	1	1	1	1	0	1	1	0	m	od	1 1	0	•	mem	2-4	25	25	SP←SP-2,(SP+1,SP)←PC,PC←TA temp←AW When temp+(mem8) ≤ FFH, AH←temp%(mem8), AL←temp+(mem8) When temp+(mem8) > FFH, TA←(001H,000H), TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC	u		J (ונ	U	U
Unsigned division instruction		reg16	1	1	1	1	0	1	1	1	1	1 .	1 1	0)	reg	2	25	25	SP←SP-2,(SP+1,SP)←PC,PC←TA temp←DW,AW When temp+reg16 ≤ FFFFH, DW←temp%reg16, AW←temp+reg16 When temp+reg16 > FFFFH, TA←(001H,000H), TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC SP←SP-2,(SP+1,SP)←PC,PC←TA	Ų	J (ا ر		Ų	UI
		mem16	1	1	1	1	0	1	1	1	m	od	1 1	1 0		mem	2-4	34	30/34	temp←DW, AW When temp+(mem16) ≤ FFFFH, DW←temp%(mem16), AW←temp+(mem16) When temp+(mem16) > FFFFH, TA←(001H,000H), TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC SP←SP-2,(SP+1,SP)←PC,PC←TA		ויייייייייייייייייייייייייייייייייייייי	U	U	U	U

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												Se	out/	Disc	<u>onti</u>	<u>nued</u>	1					_
Instruction Group	Mnemonic	Operand					O	perat	ion	Cod	8				Number of Bytes	Number o	f Clocks	Operation			Fl	ags	;	
<u> </u>			7	6	5 4	1 3	2	1 () 7	6	5 4	3	2	1 0		µPD70108Hµ	μ P D70116H		A(<u> ၂</u> ၀	/ v	P	s	Z
	DIV	reg8	1	1	1 1	0	1	1 0	1	1	1 1	1		reg	2	29-34	29-34	temp \leftarrow AW When temp+reg8 > 0 and temp+reg8 \leq 7FH or when temp+reg8 < 0 and temp+reg8 > 0-7FH-1, AH \leftarrow temp%reg8, AL \leftarrow temp+reg8 When temp+reg8 > 0 and temp+reg8 > 7FH or when temp+reg8 < 0 and temp+reg8 \leq 0-7FH-1, TA \leftarrow (001H,000H), TC \leftarrow (003H,002H) SP \leftarrow SP-2,(SP+1,SP) \leftarrow PSW,IE \leftarrow 0,BRK \leftarrow 0 SP \leftarrow SP-2,(SP+1,SP) \leftarrow PS,PS \leftarrow TC SP \leftarrow SP-2,(SP+1,SP) \leftarrow PC,PC \leftarrow TA			u	U	U	U
instruction		mem8	1	1	3 1	i 0	1	1 0) r	nod	1 1	1	п	nem	2-4	34-39	34-39	temp←AW When temp+(mem8) > 0 and temp+(mem8) ≤ 7FH or when temp+(mem8) < 0 and temp+(mem8) > 0-7FH-1, AH←temp*(mem8), AL←temp+(mem8) > 7FH or when temp+(mem8) > 0 and temp+(mem8) > 7FH or when temp+(mem8) < 0 and temp+(mem8) ≤ 0-7FH-1, TA←(001H,000H), TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC SP←SP-2,(SP+1,SP)←PC,PC←TA		U	U	U	U	L
Signed division instruction		reg16	1	1	1	1 0	1	1 1	1	1	1 1	1 1	!	reg	2	38-43	38-43	temp←DW,AW When temp+reg16 > 0 and temp+reg16 ≤ 7FFFH or when temp+reg16 < 0 and temp+reg16 > 0-7FFFH-1, DW←temp%reg16,AW←temp+reg16 > 7FFFH or when temp+reg16 > 0 and temp+reg16 > 7FFFH or when temp+reg16 < 0 and temp+reg16 ≤ 0-7FFFH-1, TA←(001H,000H),TC←(003H,002H) SP←SP-2,(SP+1,SP)←PSW,IE←0,BRK←0 SP←SP-2,(SP+1,SP)←PS,PS←TC SP←SP-2,(SP+1,SP)←PC,PC←TA	l			U	U	
		mem16	1	1	1	1 (1	1 1		mod	1	ī <u>1</u>	n	nem	2-4	47-52	43-48/ 47-52	temp \leftarrow DW,AW When temp+{mem16} > 0 and temp+{mem16} \leq 7FFFH or when temp+{mem16} < 0 and temp+{mem16} > 0-7FFFH-1, DW \leftarrow temp*{mem16},AW \leftarrow temp+{mem16} > 7FFFH or when temp+{mem16} > 0 and temp+{mem16} > 7FFFH or when temp+{mem16} < 0 and temp+{mem16} \leq 0-7FFFH-1, TA \leftarrow (001H,000H),TC \leftarrow (003H,002H) SP \leftarrow SP-2,(SP+1,SP) \leftarrow PSW,IE \leftarrow 0,BRK \leftarrow 0 SP \leftarrow SP-2,(SP+1,SP) \leftarrow PS,PS \leftarrow TC SP \leftarrow SP-2,(SP+1,SP) \leftarrow PC,PC \leftarrow TA		וע		U	U	

A	I nemonic	Operand					Op	era	tion C					Numl	ber	Number o		Operation			Fla	gs	
			7	6 !	5 4	3	2	1 (7	6	5 4	3	2 1	Byte	8	<u>и</u> РD70108Н	μPD70116H		AC	CY	v	Р	s
Al	DJBA		0) 1	1	0	1	1 1						1		7	7	When AL ∧ 0FH > 9 or AC = 1, AL←AL+6 AH←AH+1, AC←1, CY←AC, AL←AL ∧ 0FH		×	_	_	_
AI	DJ4A		0) 1	0	0	1	1 1		-				1		3	3	When AL ↑ 0FH > 9 or AC = 1, AL←AL+6, AC←1 When AL > 9FH or CY = 1, AL←AL+60H, CY←1	×	×	U	×	×
Al	DJBS		0) 1	1	1	1	1 1						1		7	7	When AL ∧ 0FH > 9 or AC = 1, AL←AL-6, AC←1 CY←AC, AL←AL ∧ 0FH	×	×	U	υ	L
AI	DJ4S		0) 1	0	1	1	1 1			_			1		3	3	When AL ∧ 0FH > 9 or AC = 1, AL←AL-6, AC←1 When AL > 9FH or CY = 1, AL←AL-60H, CY←1	×	×	U	×	×
C	VTBD		1	1 () 1	0	1	0 0	0	0 () 0	1	0 1	0 2		15	15	AH←AL+0AH, AL←AL%0AH	U	U	U	×	,
CI	VTDB		1	1 () 1	0	1	0 1	0	0 0	0	1	0 1	0 2		7	7	AL←AHx0AH+AL, AH←0	U	U	U	×	,
C١	VTBW		1 1	0 C) 1	1	0	0 0	,					1		2	2	When AL < 80H, AH←0. Otherwise, AH←FFH	-	†	T		t
Ċ١	VTWL		1	D C) 1	1	0	0 1						1		4-5	4-5	When AW < 8000H, DW←0. Otherwise, DW←FFFFH	1				İ
CI	MP	reg,reg'	0	0 1	1	1	0	1 V	/ 1	1	reg)	reg	2		2	2	reg-reg'	×	×	×	×	Ì
		mem,reg	0	0 1	1	1	0	0 V	/ mo	d	reg)	men	1 2-4		11/15	11/15	(mem)-reg	×	×	×	×	Ī
		reg.mem	0	0 1	1	1	0	1 V	/ mo	d	reg	<u> </u>	men	1 2-4		11/15	· 11/15	reg-(mem)	×	×	x	×	Ī
		reg,imm	1	0 0	0	0	0	s V	/ 1	1	1 1	1	reg	3-4		4	4	reg-imm	×	×	×	×	
		mem,imm	1	D C	0	0	0	s V	/ mo	d ´	1 1	1	men	3-6		13/17	13/17	(mem)-imm	×	×	×	×	
		acc,imm	0) 1	1	1	1	0 V	<u>'</u>					2-3		4	4	When W = 0, AL-imm When W = 1, AW-imm	×	×	×	×	

														P	þ		3 Q =		Dise	onti	nued						
Instruction Group	Mnemonic	Operand						,	Оре	era	tior	Co							Number o		Operation			FI	ags	ı	
) suj			7	6	5	. 4	١ ;	3 :	2 '	1 (o 7	6	5	4	3	2	1 0	Dytes	µPD70108H	µ₽D70116H		AC	C.	<u>/</u> v	P	s	Z
ıts	NOT	reg	1	1	1	1	1 ()	1	1 \	V 1	1	0	1	0	r	eg	2	2	2	reg←reg						
me		mem	1	1	1	1	1 ()	1	۱ ۷	٧	nod	0	1	0	m	em	2-4	16/24	16/24	(mem)←(mem)						Ш
Complements	NEG	reg	1	1	1	1	()	1	۱ ۱	N 1	1	0	1	1	r	eg	2	2	2	reg←reg+1	×	×	×	×	×	×
ខិ		mem	1	1	1	1	1 ()	1	1 \	V n	od	0	1	1	m	em	2-4	16/24	16/24	(mem)←(mem)+1	×	×	×	×	×	×
	TEST	reg,reg'	1	C	C) () ()	1 (١ (N 1	1		reg'	,	r	eg	2	2	2	reg∧reg′	υ	C	c	×	×	×
		mem,reg	1	C) () () ()	1 (۱ (N n	nod		reg		m	em	2-4	10/14	10/14	(mem) ∧ reg	U	C	C	×	×	x
		reg,mem	+	_							۸,		_	0	_			3-4	4	4	reg ∧ imm	11	1			\ \ \	×
		reg,imm	+-								+						eg	-		ļ	(mem) ^ imm		╨	-		٠	×
		mem,imm acc,imm							0 (nod	U			m	iem	3-6 2-3	11/15	11/15	When W = 0, AL^ imm8		+		X	+	+
		acc,min	'		,	•	•	•		,	"										When W = 1, AW \(^1\) imm16	0	<u>ין</u>	<u>ין</u> י	א ' 	×	×
ion	AND	reg,reg'	(· () 1	. () ()	0	1 \	N :	1		reg		r	eg′	2	2	2	reg←reg √ reg′	U	0	C) ×	×	×
ract		mem,reg	7	(1	() ()	0 (٥ ١	N n	nod		reg		m	em	2-4	16/24	16/24	(mem)←(mem) ^ reg	u		Ç	×	×	×
		reg,mem	1	· () 1	() ()	0	1 \	N n	nod		reg		m	em	2-4	11/15	11/15	reg←reg ^ (mem)	U	0	C) ×	×	×
tion		reg,imm	1	. () () () ()	0 (٥ ١	N ·	1	1	0	0	ſ	eg	3-4	4	4	reg←reg ^ imm	U	C	C	×	×	×
per		mem,imm	1	C) () () ()	D () (N r	nod	1	0	0	m	em	3-6	18/26	18/26	(mem)←(mem) ^ imm	U	C	C	×	×	×
Cal		acc,imm	1) (1	1) ()	1 (۱ (N							2-3	4	4 "	When W = 0, AL←AL^ imm8	U	C	C) ×	×	×
Logical operation instruction																					When W = 1, AW←AW ^ imm16						
	OR	reg,reg'	() () ()	1	0	1 \	N ·	1		reg			eg′	2	2	2	reg←reg ^V reg'	υ	1	C	×	x	×
		mem,reg	(() () ()	1	0	0 1	N	nod	•	reg		п	em	2-4	16/24	16/24	(mcm)←(mem) ^V reg	U	ı		×	×	×
		reg,mem	1) () ()	1	Ç	1 \	N r	nod		reg		m	ıem	2-4	11/15	11/15	reg←reg ^V (mem)	U	1		×	×	×
		reg,imm	1	() () () ()	0	D \	N.	1	0	0	1		reg	3-4	4	4	reg←reg ^V imm	U		C	×	×	×
		mem,imm	1	() () () ()	0	0 1	N r	nod	0	0	1	n	nem	3-6	18/26	18/26	(mem)←(mem) ^V imm	U	י[כ	C	×	×	×
		acc,imm	1) () () (D .	1	1	0 1	N							2-3	4	4	When W = 0, AL←AL V imm8 When W = 1, AW←AW V imm16	U	י ר	0	×	×	×

										_			P			Disc	<u>ontir</u>	nued						
nstruction Group	Mnemonic	Operand						Op	era	tio	n Co	de			Number of Bytes	Number (of Clocks	Operation			F	lag	S	
			7	6	5	4	3	2	1	0	7 6	<u>_</u>	4	3 2 1 0		µ₽D70108H	μPD70116H		AC	cc	γ ν	/ F	9	şΤ
uo	XOR	reg,reg'	0	0	1	1	0	0	1 V	V 1	1 1	,	reg	reg'	2	2	2	reg←reg ∀ reg′	U	7) () ×	· >	
instruction		mem,reg	0	0	1	1	0	0	0 V	V n	nod	ı	гед	mem	2-4	16/24	16/24	(mem)←(mem) ∀ reg	U	() () ×	×	
		reg,mem	0	0	1	1	0	0	1 V	V n	nod		reg	mem	2-4	11/15	11/15	reg←reg ∀ (mem)	U) (×	,	
ration		reg,imm	1	0	0	0	0	0	0 V	N ·	1 1	1	1	0 reg	3-4	4	4	reg←reg ∀ imm	U	1) () ×	,	,
obere		mem,imm	1	0	0	0	0	0	0 V	V n	nod	1	1	0 mem	3-6	18/26	18/26	(mem)←(mem) ∀ imm	U	1) () ×	()	,
Logical o		acc,imm	0	0	1	1	0	1	0 V	V			-		2-3	4	4	When W = 0, AL←AL ∀ imm8 When W = 1, AW←AW ∀ imm16	U	1) () ×	()	

Phase-out/Discontinued

			_									_	ا <u>ا</u>				,			· · · · · · · · · · · · · · · · · · ·						_
Instruction Group	Mnemonic	Operand						Op	oer:	atic	on C	od	е				Number of Bytes	Number	of Clocks	Operation			Flag	gs		
<u> </u>			7	6	5	4	3	2	1	0	7	6	5 4	4 3	3 2	2 1 0		μPD70108H	μPD70116H		AC	CY	v	P	s	z
	TEST1	reg8,CL	0	0	0	1	0	0	0	0	1	1	0 (0 (0	reg	3	3	3	reg8 bit NO.CL = 0 : Z←1 reg8 bit NO.CL = 1 : Z←0	U	0	0	U	U	×
		mem8,CL					0	0	0	0	mo	d	0 (0 (0	mem	3-5	8	8	(mem8) bit NO.CL = 0 : Z←1 (mem8) bit NO.CL = 1 : Z←0	U	0	0	U	U	×
		reg16,CL					0	0	0	1	1	1	0 (0 (D	reg	3	3	3	reg16 bit NO.CL = 0 : Z←1 reg16 bit NO.CL = 1 : Z←0	U	0	0	U	U	×
		mem16,CL	-				0	0	0	1	mo	d	0 (0 (0	mem	3-5	12	8/12	(mem16) bit NO.CL = 0 : Z←1 (mem16) bit NO.CL = 1 : Z←0	U	0	0	U	U	x
5		reg8,imm3					1	0	0	0	1	1	0 (0 (0	reg	4	4	4	reg8 bit NO.imm3 = 0 : Z←1 reg8 bit NO.imm3 = 1 : Z←0	U	0	0	U	U	×
nstructic		mem8,imm3					1	0	0	0	mo	d	0	0 (0	mem	4-6	9	9	(mem8) bit NO.imm3 = 0 : Z←1 (mem8) bit NO.imm3 = 1 : Z←0	U	0	0	U	υ	×
Bit operation instruction		reg16,imm4					1	0	Ö	1	1	1	0 (0 (0	reg	4	4	4	reg16 bit NO.imm4 = 0 : Z←1 reg16 bit NO.imm4 = 1 : Z←0	U	0	0	U	U	×
Bit ope		mem16,imm4					1	0	0	1	mo	d	0 (0 (0	mem	4-6	13	9/13	(mem16) bit NO.imm4 = 0 : Z←1 (mem16) bit NO.imm4 = 1 : Z←0	U	0	0	U	U	×
	NOT1	reg8,CL	-	1			0	1	1	0	1	1	0	0 (0	reg	3	4	4	reg8 bit NO.CL←reg8 bit NO.CL		T		1	1	_
		mem8,CL	T	1			0	1	1	0	mo	d	0	0 (0	mem	3-5	13	13	(mem8) bit NO.CL←(mem8) bit NO.CL	1					
		reg16,CL	T				0	1	1	1	1	1	0	0 (0	reg	3	4	4	reg16 bit NO.CL←reg16 bit NO.CL		Γ				
		mem16,CL	T				0	1	1	1	mo	d	0	0 (0	mem	3-5	21	13/21	(mem16) bit NO.CL←(mem16) bit NO.CL						
		reg8,imm3					1	1	1	0	1	1	0	0 (0	reg	4	5	5	reg8 bit NO.imm3←reg8 bit NO.imm3						
		mem8,imm3					1	1	1	0	mo	d	0	0 (0	mem	4-6	14	14	(mem8) bit NO.imm3←(mem8) bit NO.imm3						
		reg16,imm4					1	1	1	1	1	1	0	0 (0	reg	4	5	5	reg16 bit NO.imm4←reg16 bit NO.imm4		_				
		mem16,imm4			,		1	1	1	1	mo	d	0	0 (0	mem	4-6	22	14/22	(mem16) bit NO.imm4←(mem16) bit NO.imm4						

2nd byte* 3rd byte* #:1st byte = 0FH

NOT1 CY 1 1 1 0 1 0 1 1 2 2 CY←CY x

Instruction Group	Mnemonic	Operand						Ор	era	tio	n Co	ode					Number of Bytes	Number (of Clocks	Operation			Fla	ags	3	
<u> </u>			7	6	5	4	3	2	1 (D	7 6	5	4	3	2 1	0		µ₽070108H	µPD70116H		AC	ด	v	Р	S	z
	CLR1	reg8,CL	0	0	0	1	0 4	0	1 () 1	1 1	0	0	0	reç	,	3	5	5	reg8 bit NO.CL←0						
		mem8,CL					0	0	1 () 11	ıod	0	0	0	mei	m	3-5	14	14	(mem8) bit NO.CL←0						
		reg16,CL					0	0	1 1	1	1 1	0	0	0	reç)	3	5	5	reg16 bit NO.CŁ←0						
		mem16,CL		1			0	0	1 1	1	nod	0	0	0	me	m	3-5	22	14/22	(mem16) bit NO.CL←0						
		reg8,imm3					1 (0	1 ()	1 1	0	0	0	reç)	4	6	6	reg8 bit NO.imm3←0						
<u>io</u>		mem8,imm3			•		1	0	1 () 17	nod	0	0	0	me	m	4-6	15	15	(mem8) bit NO.imm3←0						
operation instruction		reg16,imm4				•	1	0	1 1	1	1 1	0	0	0	reç)	4	6	6	reg16 bit NO.imm4←0				Γ		
in 8		mem16,imm4		1			1	0	1 1	נון ו	nod	0	0	0	mei	m	4-6	23	15/23	(mem16) bit NO.imm4←0						
ation	SET1	reg8,CL	1				0	1	0 () (1 1	0	0	0	reç	,	3	4	4	reg8 bit NO.CL←1						
bec		mem8,CL	1	1			0	1	0 0) 17	nod	0	0	0	me	m	3-5	13	13	(mem8) bit NO.CL←1		Γ				
Bit		reg16,CL		Ī			0	1	0 1	1	1 1	0	0	0	reç	,	3	4	4	reg16 bit NO.CL←1				Γ		
		mem 16,CL	Γ	T			0	1	D 1	h	nod	0	0	0	mei	m	3-5	21	13/21	(mem16) bit NO.CL←1					Ĭ	
		reg8,imm3				•	1	1	0 ()	1 1	Ò	0	0	reç	3	4	5	5	reg8 bit NO.imm3←1		Ī				
		mem8,imm3					1	1	0 () 1	bor	0	0	0	me	m,	4-6	14	14	(mem8) bit NO.imm3←1						
		reg16,imm4	Γ				1	1	D 1	ı	1 1	0	0	0	re	;	4	5	5	reg16 bit NO.imm4←1						
		mem16,imm4		1			1	1	0 1	ı	nod	0	0	0	me	m	4-6	22	14/22	(mem16) bit NO.imm4←1						

2nd byte*

3rd byte*

: 1st byte = 0FH

CLR1	СУ	1 1 1 1 0 0 0	1	2	2	CY←0 0
	DIR	1 1 1 1 1 0 0	1	2	2	DIR←0
SET1	CY	1 1 1 1 0 0 1	1	2	2	CY←1 1 1
	DIR	1 1 1 1 1 0 1	1	2	2	DIR←1

												[M	Se	out	Dise	<u>onti</u>	nued					
Instruction Group	Mnemonic	Operand					C	Оре	rati	on	Cod	_					Number o		Operation			Fla	gs	
<u>=</u>			7	6	5	4	3 2	2 1	0	7	6	5	4 3	3 2	1 0	Dytes	µPD70108H	μ P D70116H		AC	CY	٧	P :	s z
	SHL	reg,1	1	1 :	0	1 (0 0) (W	1	1	1 +	0 0	o	reg	2	6	6	CY←MSB of reg, reg←regx2 When MSB of reg ≠ CY, V←1 When MSB of reg = CY, V←0	U	×	×	×	x x
		mem,1	1	1	0	1	0 0	0 (w	m	od	1	0 (0	mem	2-4	16/24	16/24	CY←MSB of (mem), (mem)←(mem)×2 When MSB of (mem) ≠ CY, V←1 When MSB of (mem) = CY, V←0	u	×	x	×	×
		reg,CL	1	1	0	1	0 (D	w	1	1	1	0 (D	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: CY←MSB of reg, reg←regx2 temp←temp-1	U	×	U	×	× 2
ruction		mem,CL	1	1	0	1	0 (0	ı w	m	od	1	0 (D	mem	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0: CY←MSB of (mem), (mem)←(mem)x2 temp←temp–1	υ	×	υ	×	×
Shift instruction		reg,imm8	1	1	0	0	0 (D (w	1	1	1	0 (0	reg	3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←MSB of reg, reg←regx2 temp←temp~1	Ų	x	U	×	×
		mem,imm8	1	1	0	0	0 (0 (w	m	od	1	0 (0	mem	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←MSB of (mem), (mem)←(mem)×2 temp←temp–1	υ	×	U	×	×
	SHR	reg,1	1	1	0	1	0 (0 (D W	1	1	1	0	1	reg	2	6	6	CY←LSB of reg, reg←reg+2 MSB of reg ≠ next bit of MSB of reg: V←1 MSB of reg = next bit of MSB of reg: V←0	U	x	x	×	×
		mem,1	1	1	0	1	0 (0	D W	m	od	1	0 (0	mem	2-4	16/24	16/24	CY←MSB of (mem), (mem)←(mem)+2 MSB of reg ≠ next bit of MSB of reg: V←1 MSB of reg = next bit of MSB of reg: CY, V←0	U	×	×	X	×

n : Number of shifts

		·				_						_{		h		3 @= (out	Dise	ontin	nued	 				
Instruction Group	Mnemonic	Operand						Oj	per	atio	on C						İ	Number o		Operation			Fla	gs	
ing.			7	6	5	4	3	2	1	0	7	6 !	5 4	4 3	3 2	1 0		μPD70108H	μ P 070116H		AC	CY	v	Р	S Z
	SHR (cont'd)	reg,CL	1	1	0	1	0	0	1	w	1 '	1 1	0	0	1	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 temp←temp-1	U	×	U	×	××
		mem,CL	1	1	0	1	0	0	1	w	mo	d 1	· (0	n	nem	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(mem)+2 temp←temp-1	U	×	U	×	××
		reg,imm8	1	1	0	0	0	0	0	W	1	1 1	ı () 0) (reg	3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 temp←temp-1	U	×	U	×	x
		mem,imm8	1	1	0	0	0	0	0	W	mo	d 1	1 (0) 17	nem	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(mem)+2 temp←temp-1	U	×	U	×	××
Shift instruction	SHRA	reg,1	1	1	0	1	0	0	0	W	1	1 1	1	1 1		reg	2	6	6	CY←LSB of reg, reg←reg+2, V←0 MSB of operand is not affected.	U	×	U	×	x
Shift in		mem,1	1	1	0	1	0	0	0	W	mo	d 1	1 1	1 1	n	nem	2-4	16/24	16/24	CY←LSB of (mem), (mem)←(mem)+2, V←0 MSB of operand is not affected.	U	×	U	×	x x
		reg,CL	1	1	0	1	0	0	1	W	1	1 -	 I '	1 1	. <u> </u>	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 temp←temp-1, MSB of operand is not affected.	U	×	U	×	××
		mem,CL	1	1	0	1	0	0	1	W	mo	d ·	1	1 1	l n	nem	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(rnem)+2 temp←temp-1, MSB of operand is not affected.	U	×	U	×	××
		reg,imm8	1	1	0	0	O	0	0	W	1	1	1	1 1	l	reg	3	7+n	· 7+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 temp←temp–1, MSB of operand is not affected.					
		mem,imm8	1	1	0	0	0	0	0	W	mo	d	1	1 1	ì n	mem	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(mem)÷2 temp←temp-1, MSB of operand is not affected.	U	×	U	×	x >

n : Number of shifts

											1		h	- ES(-0 U		eonti	nued					
Instruction Group	Mnemonic	Operand					Oį	per	atio	n Co		_				er Numbei	of Clocks				Fla	gs	
) Suj			7	6 !	5 4	1 3	2	1	0	7 6	5	4	3	2 1		μPD70108	н <i>μ</i> РD70116H		AC	CY	v	Р	s z
	ROL	reg,1	1	1 () 1	I 0	0	0	w	1 1	0	0	0	reg	2	6	6	CY←MSB of reg, reg←regx2+CY When MSB of reg ≠ CY: V←1 When MSB of reg = CY: V←0		×	×		
		mem,1	1	1 (0 1	i O	0	0	w	mod	i 0	0	0	men	2-4	16/24	16/24	CY←MSB of (mem), (mem)←(mem)×2+CY When MSB of (mem) ≠ CY: V←1 When MSB of (mem) = CY: V←0		x	x		
		reg,CL	1	1 (D 1	1 0	0	1	w	1 1	0	0	0	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: CY←MSB of reg, reg←regx2+CY temp←temp-1		×	υ		
truction		mem,CL	1	1 (D 1	1 0	0	1	w	mod	1 0	0	0	men	2-4	19/27+	n 19/27+n	temp←CL, repeats following operation, while temp ≠ 0: CY←MSB of (mem), (mem)←(mem)x2+CY temp←temp-1		x	υ		
Rotate ion instruction		reg,imm8	1	1 (0 0	0	0	0	w	1 1	0	0	O	reg	3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←MSB of reg, reg←regx2+CY temp←temp–1		x	U		
L		mem,imm8	1	1	 D (0	0	0	w	mod	1 0	0	0	men	3-5	19/27+	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←MSB of (mem), (mem)←(mem)x2+CY temp←temp-1		x	U		
	ROR	reg,1	1	1	0 1	1 0	0	0	W	1 1	0	0	1	reg	2	6	6	CY←LSB of reg←reg+2 MSB of reg←CY MSB of reg ≠ next bit of MSB of reg: V←1 MSB of reg = next bit of MSB of reg: V←0		x	x		
		mem,1	1	1 (0 1	1 0	0	0	w	mod	1 0	0	1	men	2-4	16/24	16/24	CY←LSB of (mem)←(mem)+2 MSB of (mem)←CY MSB of (mem) ≠ next bit of MSB of reg: V←1 MSB of (mem) = next bit of MSB of reg: V←0		×	×		

n : Number of shifts

r	Γ	T	•										F	h		SQ=	out/	Disc		nued					
Instruction Group	Mnemonic	Operand						Op	era	etic	on C	od	e				Number of Bytes	Number o	of Clocks	Operation			Fla	gs	
	ROR (cont'd)	reg,CL	_								1 '					1 0	2	μPD70108H 7+n	<i>µ</i> PD70116H 7+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 MSB of reg←CY temp←temp-1	_	CY ×	\rightarrow	P	SZ
		mem,CL	1	1	0	1	0	0	1 \	~	moi	.) O) 1		mem	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(mem)+2 MSB of (mem)←CY temp←temp-1		x	U		
Ę	:	reg,imm8	1	1	0	0	0	0	Ö 1	~	1) () () 1	1	reg	3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of reg, reg←reg+2 MSB of reg←CY temp←temp~1		x	ט		
Rotate ion instruction		mem,imm8	1	1	0	0	0	0	0 1	N	mo	d () () 1	l i	mem	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: CY←LSB of (mem), (mem)←(mem)+2 MSB of (mem)←CY temp←temp-1		x	υ		
Rota	ROLC	reg,1	1	1	0	1	0	0	0 '	~	1	1 () 1	1 0)	reg	2	6	6	tmpcy←CY, CY←MSB of reg reg←reg×2+tmpcy When MSB of reg ≠ CY: V←1 When MSB of reg = CY: V←0		x	x		
		mem,1	1	1	0	1	0	0	0 1	W	mo	d () 1	. 0) (mem	2-4	16/24	16/24	tmpcy←CY, CY←MSB of {mem} (mem)←(mem)x2+tmpcy When MSB of (mem) ≠ CY: V←1 When MSB of (mem) = CY: V←0		x	x		
		reg,CL	1	1	0	1	0	0	1 1	~	1	1 (D 1	1 0)	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: tmpcy←CY, CY←MBS of reg reg←regx2+tmpcy temp←temp–1		x	U		

n : Number of shifts

Phase-out/Discontinued	

	r	,										_									_				
Instruction Group	Mnemonic	Operand					,	Оре	erat	tior	n Co	de					Number of Bytes	Number o	of Clocks	Operation		ł	Flaç	js	
<u>=</u>			7	6	5	4	3	2	1 () 7	7 6	5	4	3	2	1 0	7,000	μPD70108H	μPD70116H	·	AC	CY	٧	P 9	SZ
	ROLC (cont'd)	mem,CL	1	1	0	1	0	0	1 V	V	nod	0	1	0	m	em	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0: tmpcy←CY, CY←MSB of (mem) (mem)←(mem)x2+tmpcy temp←temp-1		х	U		
		reg,imm8	1	1	0	0	0	0 (0 V	V	1 1	0	1	0	r	eg	3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0: tmpcy←CY, CY←MSB of reg reg←regx2+tmpcy temp←temp–1		x	U		
c		mem,imm8	1	1	0	0	0	0 (0 V	V r	mod	0	1	0	m	iem	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0: tmpcy←CY, CY←MSB of {mem} (mem)←(mem)x2+tmpcy temp←temp-1		x	U		
Rotate ion instruction	RORC	reg,1	1	1	0	1	0	0 (0 V	~	1 1	0	1	1	ſ	eg	2	6	6	tmpcy←CY, CY← LSB of reg reg←reg+2 MSB of reg←tmpcy When MSB of reg ≠ next bit of MSB of: V←1 When MSB of reg = next bit of MSB of reg: V←0		x	×		
<u> </u>		mem,1	1	1	0	1	0	0	0 V	V r	nod	1 0	1	1	m	nem	2-4	16/24	16/24	tmpcy←CY, CY←LSB of (mem) (mem)←(mem)+2 MSB of (mem)←tmpcy When MSB of (mem) ≠ next bit of MSB of (mem): V←1 When MSB of (mem) = next bit of MSB of (mem): V←0		×	×		
		reg,CL	1	1	0	1	0	0	1 V	~	1 1	0	1	1	i	reg	2	7+n	7+n	temp←CL, repeats following operation, while temp ≠ 0: tmpcy←CY, CY←LSB of reg reg←reg+2 MSB of reg←tmpcy temp←temp-1		×	U		

n : Number of shifts

Group	Mnemonic	Operand						Or	er	atio	on C	od	e				- 1	Number of Bytes	Number o	f Clocks	Operation			Fla	gs	
			7	6	5	4	3	2	1	0	7	6	5	4	3	2 1		·	PD70108Hبر				ÇY		Р	s
	RORC	mem,CL	1	1	0	1	Q	0	1	W	mo	d	0	1	1	men	n	2-4	19/27+n	19/27+n	temp←CL, repeats following operation, while temp ≠ 0:		x	υļ		
	(cont'd)																				tmpcy←CY, CY←LSB of (mem)			- 1		
																					(mem)←(mem)+2				-	
																					MSB of (mem)←tmpcy				1	
																					temp←temp–1					
,		reg,imm8	1	1	0	0	0	0	0	w	1	1	0	1	1	reg		3	7+n	7+n	temp←imm8, repeats following operation, while temp ≠ 0:		×	U	\dashv	_
5																					tmpcy←CY, CY←LSB of reg					
ĺ			ĺ																		reg←reg+2					
-																	İ				MSB of reg←tmpcy					
ויטווסטוופווו ווטו פופוסט																					temp←temp-1					İ
}		mem,imm8	1	1	0	0	0	0	0	w	mo	d	0	1	1	men	n	3-5	19/27+n	19/27+n	temp←imm8, repeats following operation, while temp ≠ 0:	+	×	υ		
			ŀ																		tmpcy←CY, CY←LSB of (mem)					
																					(mem)←(mem)+2					
																					MSB of (mem)←tmpcy					
			1																		temp←temp–1					

n : Number of shifts

NEC

Phase-out/Discontinued

Ē	<u> </u>												٣				T -									
Instruction Group	Mnemonic	Operand						Op	era	tio	n C	ode					of	Number (of Clocks	Operation			Fla	ıgs		
Inst	1		7	6	5	4	3	2	1 (0	7 €	5	4	3	2	1 (Bytes	μPD70108H	μ P D70116H		AC	CY	٧	Р	s	Z
	CALL	near-proc	1	1	1	0	1	0	0 (0							3	20	16/20	SP←SP-2, (SP+1,SP)←PC						[
																				PC←PC+disp						
		regptr16	1	1	1	1	1	1	1	1	1 1	0	1	0		reg	2	18	14/18	SP←SP-2, (SP+1,SP)←PC						
	!																			PC←regptr16						L
		memptr16	1	1	1	1	1	1	1	1	mo	d 0	1	0	ſ	mem	2-4	31	23/31	TA←(memptr16)						
																			<u> </u>	SP←SP-2, (SP+1,SP)←PC, PC←TA						L
		far-proc	1	0	0	1	1	0	1	0							5	29	21/29	SP←SP-2, (SP+1,SP)←PS, PS←seg						
ri oi																				SP←SP-2, (SP+1,SP)←PC, PC←offset	_					
Subroutine control instruction		memptr32	1	1	1	1	1	1	1	1	mo	d O	1	1	ı	mem	2-4	47	31/47	TA←(memptr32), TB←(memptr32+2)						
<u>:</u>										ŀ										SP←SP-2, (SP+1,SP)←PS, PS←TB						
Į ž																				SP←SP-2, (SP+1,SP)←PC, PC←TA						<u> </u>
ě	RET		1	1	0	0	0	0	1	1							1	19	15/19	PC←(SP+1,SP)					i	
o eti																				SP←SP+2		ļ.	1_	_	_	L
Subi		pop-value	1	1	0	0	0	0	1	0							3	24	20/24	PC←(SP+1,SP)		i				
																				SP←SP+2, SP←SP+pop-value		╽	_	_		L
			1	1	0	0	1	0	1	1							1	29	21/29	PC←(SP+1,SP)						
																				PS←(SP+3,SP+2)						
												_								SP←SP+4		\downarrow				L
		pop-value	1	1	0	0	1	0	1	0							3	32	24/32	PC←(SP+1,SP)						
																				PS←(SP+3,SP+2)						
																				SP←SP+4, SP←SP+pop-value						

			Phase-	out/	Disc		nued							
Instruction Group	Mnemonic	Operand	Operation Code	Number of Bytes	Number o	of Clocks	Operation				ag:			
Ë			7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0		<i>μ</i> PD70108H	<u>: </u>		A	c c	<u> </u>		15	Z	l
	PUSH	mem16	1 1 1 1 1 1 1 1 mod 1 1 0 mem	2-4	26	18/26	SP←SP-2 (SP+1,SP)←(mem16)							
		reg16	0 1 0 1 0 reg	1	12	8/12	SP←SP-2							
							(SP+1,SP)←reg16							
		sreg	0 0 0 sreg 1 1 0	1	12	8/12	SP←SP-2							l
							(SP+1,SP)←sreg							
	ļ	PSW	1 0 0 1 1 1 0 0	1	12	8/12	SP←SP-2		T		T	T		1
							(SP+1,SP)←PSW							l
tion		R .	0 1 1 0 0 0 0 0	1	67	35/67	Push registers on the stack							l
Stack operation instruction		imm8	0 1 1 0 1 0 1 0	2	11	7/11	(SP–1,SP–2)←sign expansion of imm8				T			١
n ins							SP←SP-2							l
ratio		imm16	0 1 1 0 1 0 0 0	3	12	8/12	(SP-1,SP-2)←imm16			T	T	T	Ī	l
edo	1					i	SP←SP-2							l
tack	POP	mem16	1 0 0 0 1 1 1 1 mod 0 0 0 mem	2-4	25	17/25	SP←SP+2							1
S							(mem16)←(SP-1, SP-2)							
		reg16	0 1 0 1 1 reg	1	12	8/12	SP←SP+2				T	T		l
							reg16←(SP-1, SP-2)							l
		sreg	0 0 0 sreg 1 1 1	1	12	8/12	SP←SP+2							
							sreg←(SP-1, SP-2) sreg: SS,DS0,DS1							I
		PSW	1 0 0 1 1 1 0 1	1	12	8/12	SP←SP+2	A	R P	R	F	3 F	R	
							PSW←(SP-1, SP-2)							
		R	0 1 1 0 0 0 0 1	1	75	43/75	Pop registers from the stack		I		\int	\int		

μ F
_
Q
7
0
8
Ŧ
1,
7
0
=
罕

			æ										ļ				S		out	Dise	onti	nued						
Instruction Group	Mnemonic	Operand						0	be			Co	de							Number (of Clocks	Operation		_		Flag		
트			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		µРD70108H	μPD70116H		A	의	CY	<u> </u>	P :	S Z
	PREPARE	imm16,imm8	1	1	0	0	1	0	0	0	1								4	Note1	Note2	Prepare New Stack Frame						,
	DISPOSE		1	1	0	0	1	0	0	1				•					1	10	6/10	Dispose of Stack Frame				ŀ		
_	BR	near-label	1	1	1	0	1	0	0	1									3	13	13	PC←PC+disp						
ıctio		short-label	1	1	1	0	1	0	1	1									2	12	12	PC←PC+ext-disp8		T			Т	
instruction		regptr16	1	1	1	1	1	1	1	1	1	1	1	0	0		reg		2	11	11	PC←regptr16						
		memptr16	1	1	1	1	1	1	1	1	п	nod	1	C	0	ı	ner	n	2-4	24	20/24	PC←(memptr16)		1		T		
Branch		far-label	1	1	1	0	1	0	1	- (,								5	15	15	PS←seg		Ì				
																						PC←offset						
		memptr32	1	1	1	1	1	1	1	1	u	rod	1	(1	ı	mer	n	2-4	35	27/35	PS←(memptr32+2)					T	
Ī	1	i	l																		ì	PC←(memptr32)	1	ı		. 1		- 1

Note 1. When imm8 = 0: 16

When imm8 ≥ 1 : 23+16 (imm8-1)

2. When imm8 = 0: 12/16

When imm8 ≥ 1: {19+8 (imm8-1)}/(23+16 (imm8-1)}

													F	h		SE)= (Dise	ondi	nued						
Instruction Group	Mnemonic	Operand						•	Оре	rat	ion	Coc							Number	Note		Operation			Fla	gs	
sul .			7	6	5	4	:	3 :	2 1	(7	6	5	4 3	3 2	2 1	0		μPD70108H	μ PD 70116H			AC	СУ	V	P :	s z
	BV	short-label	0	_1	1	1	0	0	0	0	\perp							2	14/4	14/4	if V = 1	PC←PC+ext-disp8		_		_	
	BNV	short-label	L		L		0	C	0	1								2	14/4	14/4	if V = 0	PC←PC+ext-disp8		_			
	BC BL	short-label					0	· C	1	C								2	14/4	14/4	if CY = 1	PC←PC+ext-disp8					
	BNC BNL	short-label					0	C) 1	1								2	14/4	14/4	if CY = 0	PC←PC+ext-disp8					
	BE BZ	short-label			†	•	 O) 1	0									2	14/4	14/4	if Z = 1	PC←PC+ext-disp8					
	BNE BNZ	short-label					0) 1	0	1								2	14/4	14/4	if Z = 0	PC←PC+ext-disp8		-			
instruction	BNH	short-label	H		+		•) 1	1		+							2	14/4	14/4	if CY V Z = 1	PC←PC+ext-disp8		 			+
Ę	ВН	short-label	+						1		· †							2	14/4	14/4	if CY V Z = 0	PC←PC+ext-disp8					1
<u>.</u>	BN	short-label	-		1 -) (2	14/4	14/4	if S = 1	PC←PC+ext-disp8			П		_
둳	BP	short-label			T		•) (+							2	14/4	14/4	if S = 0	PC←PC+ext-disp8					
branch	BPE	short-label			T		1) 1	(,							2	14/4	14/4	if P = 1	PC←PC+ext-disp8					
	BPO	short-label	T		T		1	•) 1	1								2	14/4	14/4	if P = 0	PC←PC+ext-disp8					
Condition	BLT	short-label			T		1	1	0	(,							2	14/4	14/4	if S ∀ V = 1	PC←PC+ext-disp8				Π	
ပိ	BGE	short-label			T		1	1	0	1								2	14/4	14/4	if S ∀ V = 0	PC←PC+ext-disp8					
	BLE	short-label	T		T		1	1	1	(,		•					2	14/4	14/4	if (S ∀ V) V Z = 1	PC←PC+ext-disp8					
1	BGT	short-label	T	,	⇟		1	1	1	1								2	14/4	14/4	if (S ∀ V) V Z = 0	PC←PC+ext-disp8					
	DBNZNE	short-label	1	1	1	0) () (0	(2	14/5	14/5	CW = CW-1 if Z = 0 and CW ≠	PC←PC+ext-disp8					
	DBNZE	short-label	1	1	1	0) () () () 1				<u> </u>				2	14/5	14/5	CW = CW-1 if Z = 1 and CW ≠	PC←PC+ext-disp8					
	DBNZ	short-label	1	1	1	0) ((2	13/5	13/5	CW = CW-1 if CW ≠ 0	PC←PC+ext-disp8					

Note Condition judgement: true/false

Instruction Group	Mnemonic	Operand			•			O)pe	rati	on (Cod	•						Number of Bytes	Number o	of Clocks	Operation			FI	ags		
<u> </u>			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1 (0		μPD70108H	µРD70116H		AC	C	<u> </u>	P	s	Z
	BCWZ	short-label	1	1	1	0	0	0	1	1									2	13/5 ^{Note1}	13/5 ^{Note1}	if CW = 0 PC←PC+ext-disp8						
	BRK	3	1	1	0	0	1	1	0	0									1	50	38/50	TA←(00DH,00CH), TC←(00FH,00EH)						
																						SP←SP-2, (SP+1,SP)←PSW, IE←0, BRK←0				1		
																						SP←SP-2, (SP+1,SP)←PS, PS←TC						
Š]	SP←SP-2, (SP+1,SP)←PC, PC←TA						
interrupt instruction		imm8 (≠3)	1	1	0	0	1	1	0	1	\vdash			· · · <u>-</u>					2	50	38/50	TA←(4n+1,4n), TC←(4n+3,4n+2) n = imm8		T	1			
t ins																						SP←SP-2, (SP+1,SP)←PSW, IE←0, BRK←0				1		
l g																						SP←SP-2, (SP+1,SP)←PS, PS←TC						
Inte																						SP←SP-2, (SP+1,SP)←PC, PC←TA						
1	BRKV		1	1	0	0	1	1	1	0								Ī	1	Note2	Note3	When V = 1,		T		T		
																						TA←(011H,010H), TC←(013H,012H)						
																						SP←SP-2, (SP+1,SP)←PSW, IE←0, BRK←0						
																		ļ				SP←SP-2, (SP+1,SP)←PS, PS←TC						
																						SP←SP-2, (SP+1,SP)←PC, PC←TA						
	RETI		1	1	0	0	1	1	1		╁								1	39	27/39	PC←(SP+1,SP), PS←(SP+3,SP+2),	R	F	R P	R	R	R
																						PSW←(SP+5,SP+4), SP←SP+6						

Note 1. Condition judgement: true/false

2. When V = 1:52

When V = 0 : 3

3. When V = 1 : 40/52

When V = 0:3

					-								P	h		36			ut/	Disc	ontin	nued						
Instruction Group	Mnemonic	Operand						Ор	era	tio	n C	ode							umber of Sytes	Number o		Operation			Fla			
ڃَ			7	6	5	4	3	2	1	0	7 6	3 5	4	3	2	1	0			μ P D70108H	μPD70116H		AC	CY	V	Р	s	Z
	BRKEM	imm8	0	0	0	0	1	1	1	1	1 1	l 1	1	1	1	1	1		3	50	38/50	TA←(4n+1,4n), TC←(4n+3,4n+2) n = imm8			}			
																						SP←SP-2, (SP+1,SP)←PSW, MD←0	1	1				
5																						MD is enabled to write						İ
instruction																						SP←SP-2, (SP+1,SP)←PS, PS←TC						
	1																					SP←SP-2, (SP+1,SP)←PC, PC←TA						
Interrupt	CHKIND	reg16,mem32	0	1	1	0	0	0	1	0 6	noc		ге	g		ne	m	1	2-4	Note1	Note2	When (mem32) > reg16 or (mem32+2) < reg16,						
n te																						TA←(015H,014H), TC←(017H,016H)						
										١											!	SP←SP-2, (\$P+1,SP)←PSW, IE←0, BRK←0					-	
																						SP←SP-2. (SP+1,SP)←PS, PS←TC						
																						SP←SP−2, (SP+1,SP)←PC, PC←TA						

Note 1. 73-76 when interrupt condition is satisfied. 26 when interrupt condition is not satisfied.

(53-56)/(73-76) when interrupt condition is satisfied.
 18/26 when interrupt condition is not satisfied.

~	
<u></u>	
T	Į
	Į
J	İ
0	i
3	Ĺ
$\overline{}$	
_	,
-00	Ì
т	•
$\overline{}$	•
-	ı
_	•
0)
	ì
	b
0	ì
Ť	•
-	•

Group	Mnemonic	Operand					(Эре	rat	ion	Cod	de	_				of	Number o	of Clocks	Operation		Flags		js	
<u>φ</u>			7	6	5	4	3 2	? '	0	7	6	5	4	3	2 '	1 0	Bytes	µPD70108H	μPD70116H		AC	CY	v	PS	1
	HALT		1	1	1	1 (0 1	1 (0								1	2	2	CPU Halt					I
	POLL		1	0	0	1	1 () '	1								1	2+5n	2+5n	Poll and wait n: POLL pin sampling times					
<u> </u>	DI		1	1	1	1	1 () '	0			,					1	2	2	IE←0					
uctic	EI		1	1	1	1	1 () ′	1								1	2	2	IE←1					1
instr	BUSLOCK		1	1	1	1 (0 () (0								1	2	2	Bus Lock Prefix					
control instruction	FPO1	fp-op	1	1	0	1	1)	()	(X	1	1	Y	Y	Y	Z Z	ΖZ	2	2	2	No Operation					
CO		fp-op,mem	1	1	0	1	1)	()	(X	n	nod	Y	Y	Y	me	em	2-4	15	11/15	data bus←(mem)					
2	FPO2	fp-op	0	1	1	0	0	1	ı x	1	1	Y	Y	Y	Z	ZZ	2	2	2	No Operation					
		fp-op,mem	0	1	1	0	0	1	ı x	'n	nod	Y	Y	Y	me	em	2-4	15	11/15	data bus←(mem)					\int
	NOP		1	0	0	1	0 () (0	1							1	3	3	No Operation					T

^{*:} DS0:, DS1:, PS:, SS:

nstruction Group	Mnemonic	Operand						Op	er	atio	on ·	Cod	de							mber of ytes	Number o	of Clocks	Operation	Flags					
			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		yies	μPD70108H	μPD70116H		AC	C'	/ V	Р	S	Z
	RETEM		1	1	1	0	1	1	0	1	1	1	1	1	1	1	0	1		2	39	27/39	PC←(SP+1,SP), PC←(SP+3,SP+2).	R	F	R	R	R	F
																							PSW←(SP+5,SP+4), SP←SP+6, MD is disabled to write.						
	CALLN	imm8	1	1	1	0	1	1	Ō	1	1	1	1	0	1	1	0	1	Ì	3	58	38/58	TA←(4n+1,4n), TC←(4n+3,4n+2) n = imm8	T	T				Ì
8080																							SP←SP-2, (SP+1,SP)←PSW, MD←1						
																							SP←SP-2, (SP+1,SP)←PS, PS←TC						
																							SP←SP-2, (SP+1,SP)←PC, PC←TA						

9. ELECTRICAL SPECIFICATIONS

9.1 WHEN VDD = 5 V ± 10%

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

ltem	Symbol	Conditions	Ratings	Unit
Power supply voltage	Vos		-0.5 to +7.0	V
Input voltage	Vı	Vpc = 5 V ± 10 %	-0.5 to Vop+0.5	V
Clock input voltage	Vĸ		-0.5 to Voo+1.0	٧
Output voltage	. Vo		-0.5 to Voc+0.5	v
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

- Caution 1. Be sure to avoid direct coupling between IC-product output (or input/output) pins or between Voo or Vcc and GND. However, direct coupling between open-drain pins or open-collector pins is O.K.

 Direct coupling is also possible between pins which become high-impedance if they are installed on external circuitry for which the timing is set to avoid output conflicts.
 - If the absolute maximum ratings of even one of the items above are exceeded for a moment, the product quality may be damaged. In other words, the absolute maximum ratings are the values above which physical damage may result. Be sure to use the product in a way in which these rating values are not exceeded.

The specifications and conditions described in the DC and AC characteristics are the limits for normal operation and quality assurance of the product.

DC CHARACTERISTICS (TA = -40 to +85°C, Vob = 5 V \pm 10%)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
		Other than (1), (2)	2.2		Von+0.5	٧
Input voltage, high	ViH	(1) READY				
		(2) HLDRQ (RQ0, RQ1) : DIP only	0.6Vpp		V00+0.5	
Input voltage, low	Vit		-0.5		0.8	٧
Clock input voltage, high	VĸH		00V80		Vpp+1.0	٧
Clock input voltage, low	VĸL		-0.5		0.15Vpc	V
		Iон = -2.5 mA	0.7Vpp			٧
Output voltage, high	Voн	Іон = -100 μΑ	Vpo-0.4			
Output voltage, low	Vol	loL = 2.5 mA			0.4	٧
Input leakage current, high	Гын	VI = VDD			10	μΑ
Input leakage current, low	lui	V: = 0 V			-10	μΑ
Output leakage current, high	Ісон	Vo = Voo			10	μА
Output leakage current, low	lror	Vo = 0 V			-10	μΑ
RQ input current, high	Інан	VI = VDD			10	μА
RQ input current, low	1но.	Vi = 0 V		•	-0.5	mA
Latch leakage current, high	lun	Vı = 3.0 V	-50		-300	μΑ
Latch leakage current, low	lu	Vı = 0.8 V	50		300	μА
Latch inverse current, (L → H)	hцн				400	μΑ
Latch inverse current, $(H \rightarrow L)$	lill				-400	μΑ
,		Operating: V _{IH} = V _{DD} , V _{IL} = 0V, tcvκ ≤ 2 μs		3.5fx	5fx	mA
Supply current Nete	acl	Standy: (HALT), Viн = Vob, ViL = 0 V, tcvκ ≤ 2 μs		0.5fx	0.8fx	
		Standby: (Clock input stops) Viii = Vpp, Vii. = 0 V			50	μА

Note The constants 3.5, 5, 0.5, and 0.8 of the value are in mA/MHz. fx is the frequency of CLK input.

For the supply current for the L and F rated products, please consult your NEC dealer.

CAPACITANCE (TA = 25°C, VDD = 0 V)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	ū	fc = 1MHz			10	рF
I/O capacitance	Сю	Unmeasured pins returned to 0 V			15	pF

AC CHARACTERISTICS (TA = -40 to +85°C, VDD = 5 V \pm 10%)

(1) In both small-scale/large-scale mode

Loading capacity of output pins: CL = 100pF

	 		μPD7010	8H-10,	μPD7010	8H-12,	μPD7010	BH-16,	
ltem	Sy	mbol	μPD7011		μPD7011		μPD7011	1	Unit
-			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Clock cycle	0	tcyk	100		80		62.5		ns
Clock pulse high-level width (Vĸн = 3.0 V)	2	tkkH	39		35		25		ns.
Clock pulse low-level width (VkL = 1.7 V)	3	tkkl	45		35		25		ns
Clock rise time (1.7 → 3.0 V)	•	tka		5		5		5	ns
Clock fall time (3.0 → 1.7 V)	⑤	tkF		5		5		5	ns
RESET release delay time (Von = 5 V to 10 %)	©	tovest	1		11		1	<u>. </u>	με
RESET set time (vs. CLK 1)	O	tsrstk	15		10		10	<u> </u>	ns
RESET hold time (vs. CLK 1)	(8)	thkast	15		15		15	i 	n\$
RESET high-level width	9	twesth	4tcyx		4tcvk		4tcvk		ns
READY inactive set time (vs. CLK ↓)	0	tsrylk	-8		8		-8	<u> </u>	ns
READY inactive hold time (vs. CLK ↑)	0	thkryh	20		20		15		ns
READY active set time (vs. CLK 1)	0	tsryhk	tkkl-8		tkkL-8		tkkL-8		ns
READY active hold time (vs. CLK 1)	0	t H KRY L	20		20		15		ns
Data set time (vs. CLK ↓)	0	tsok	10		10		5		ns
Data hold time (vs. CLK ↓)	16	ţнко	10		10		10	ļ	ns
NMI, INT, POLL set time (vs. CLK 1)	169	tsıĸ	15		15		10		ns
Input rise time ^{Nota1} (0.8 → 2.2 V)	0	ţıR	•	20		20		20	ns
Input fall time Note1 (2.2 → 0.8 V)	13	tıF		12		12	L	12	ns
Output rise time (0.8 → 2.2 V)	19	tor		20		15		10	ns
Output fall time (2.2 → 0.8 V)	0	tor		12		10		8	ns
CLK \downarrow \rightarrow address delay time	O	t DKA	5	48	5	40	5	30	ns
CLK \downarrow $ ightarrow$ address hold time	0	thka	5		5		5		ns
CLK ↓ → PS delay time	0	t DKP	5	50	5	40	5	30	ns
CLK ↑ → PS float delay time	0	teke	5	50	5	40	5	30	ns
CLK ↓ → address float delay time	(3	tfka	thka	50	thka	40	thka	30	ns
CLK $\downarrow \rightarrow \overline{\text{RD}} \downarrow \text{delay time}$	29	TDKRL	0	50	0	40	0	30	ns
CLK ↓ → RD ↑ delay time ^{Nete2}	Ø	TOKRH	0	50	0	40	0	30	ns
RD ↑ → address delay time	29	TORHA	tcyk-35		tcvk-25	ļ	tcvx-10		ns
RD low-level width	(9	tar	2tcvk-40		2tcvx-25		2tcvk-20	<u> </u>	ns
CLK \downarrow $ ightarrow$ data output delay time	90	toko	5	50	5	40	5	30	an
CLK \downarrow $ ightarrow$ data float delay time	0	teko	0	50	0	40	0	30	ns

Note 1. CLK excluded

2. When RD becomes inactive in read cycle, the data has been read.

(2) Small-scale mode

Loading capacity of output pins: CL = 100pF

			μPD7010	08H-10,	μPD7016	08H-12,	μPD7010	8H-16,	
ltem	Sy	mbol	μPD701	16H-10	μPD701	16H-12	μPD7011	6H-16	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	<u> </u>
Address set time (vs. ASTB ↓)	0	tsast	tkkl-30		1KKL-20		tĸĸ15		ns
CLK ↓ → ASTB ↑ delay time	49	toksth	0	40	0	35	0	30	ns
CLK ↑ → ASTB ↓ delay time	9	tokstl	0	45	0	40	0	30	ns
ASTB high-level width	39	tsīsī	tkkL-10		1кк∟−10		tkkl-5		nş
ASTB \downarrow \rightarrow address hold time	39	tHSTA	tкю-10		tккн—10		tккн-5	İ	пѕ
CLK → control delay time Note	9	toket	0	55	0	40	0	: 30	ns
Address float → RD ↓ delay time	98	t afrl	0		0		0	i	ns
WR low-level width	₩	tww	2tcyk-35		2tcyk-25		2tcvk-20		กร
HLDRQ set time (vs. CLK 1)	•	tsnok	20		10		5	<u> </u>	ns
CLK ↓ → HLDAK delay time	0	T DKHA	0	60	0	40	0	30	ns
WR ↑ → BUFEN ↑	0	twcr	tkkL-20		tkkL-15		tкк.—10		ns

Note When BUFEN becomes inactive in read cycle, the data has been read.

(3) Large-scale mode

Loading capacity of output pins: CL = 100pF

			μPD701	08H-10,	μPD701	08H-12,	μPD7010	08H-16,	ļ
ltem	Sy	mbol	μPD701	116H-10	μPD701	16H-12	μPD701	16H-16	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
CLK ↑ → BS ↓ delay time	•	tokel	0	50	0	40	0	30	ns
CLK ↓ → BS ↑ delay time	0	token	0	50	0	40	0	35	nş
Address float $\rightarrow \overline{RD} \downarrow delay$ time	•	TDAFRL	0		0		0		ns
CLK \downarrow \rightarrow QS delay time	•	tokas	0	50	0	40	0	30	ns
CLK $\downarrow \rightarrow \overline{AK}$ delay time	0	TOKAK	0	40	0	40	٥	30	ns
RQ set time (vs. CLK 1)	•	tsrak	9		7	<u> </u>	5		ns
RQ hold time (vs. CLK ↓)	•	thkrot	0		0		0		ns
RQ hold time (vs. CLK ↑)	89	THKRQ2	20		15		10		ns

9.2 WHEN VDD = 3 V ± 10%

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

ltem	Symbol	Conditions	Ratings	Unit
Power supply voltage	VDD		-0.5 to +7.0	V
Input voltage	Vı	Vpp =3 V ± 10 %	-0.5 to Vpp+0.5	V
CLK input voltage	Vĸ		-0.5 to Vpp+1.0	V
Output voltage	Vo		-0.5 to Vpp+0.5	٧
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tetg		~65 to +150	; °C

- Caution 1. Be sure to avoid direct coupling between IC-product output (or input/output) pins or between Voo or Vcc and GND. However, direct coupling between open-drain pins or open-collector pins is O.K. Direct coupling is also possible between pins which become high-impedance if they are installed on external circuitry for which the timing is set to avoid output conflicts.
 - If the absolute maximum ratings of even one of the items above are exceeded for a moment, the product quality may be damaged. In other words, the absolute maximum ratings are the values above which physical damage may result. Be sure to use the product in a way in which these rating values are not exceeded.

The specifications and conditions described in the DC and AC characteristics are the limits for normal operation and quality assurance of the product.

DC CHARACTERISTICS (TA = -40 to +85°C, VDD = 3 V \pm 10%)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH		0.7Voo		Voo+0.3	٧
Input voltage, low	ViL		-0.5		0.2Vpp	٧
Clock input voltage, high	Vĸн		0.8Vpp		Vpp+0.5	٧
Clock input voltage, low	VKL		-0.5		0.2Vpp	٧
O and a land hink	Vон	Iон = −2.5 mA	0.7Vpp			٧
Output voltage, high	VOH 1	ioн = −100 <i>μ</i> A	VDD-0.4			
Output voltage, low	Vol	lot = 2.5 mA			0.4	٧
Input leakage current, high	lue	VI = VDD			10	μΑ
input leakage current, low	ILIL	Vı = 0 V			-10	μΑ
Output leakage current, high	Кон	Vo = Vpp			10	μÁ
Output leakage current, low	lror	Vo = 0 V			-10	μΑ
RQ input current, high	Інон	VI = VDD			10	μΑ
RQ input current, low	IHOL	Vı = 0 V			-0.5	mA
Latch leakage current, high	ILLH	Vi = 2.0 V	-15		-200	μА
Latch leakage current, low	, luu	Vı ≈ 0.2 V	15		200	μА
Latch inverse current, (L → H)	Нин				300	μΑ
Latch inverse current, (H → L)	lice				-300	μА
		Operating: Viн = Voo, ViL = 0 V, tcvκ ≤ 2 μs		2fx	3.5fx	mA
Supply current Note	lpo	Standy: (HALT), $V_{IH} = V_{DD}$, $V_{IL} = 0 V$, $t_{CYK} \le 2 \mu s$		0:2fx	0.4f*	
		Standby (Clock input stops): VIH = Vpp, VIL = 0 V			30	μΑ

Note The constants 2, 3.5, 0.2, and 0.4 of the value are in mA/MHz. fx is the frequency of clock input.

For the supply current for the L and F rated products, please consult your NEC dealer.

CAPACITANCE (TA = 25°C, VDD = 0 V)

ltem	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	fc = 1MHz			10	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V			15	pF

AC CHARACTERISTICS (TA = -40 to +85°C, VDD = 3 V \pm 10%)

(1) In both small-scale/large-scale mode

Loading capacity of output pins: CL = 100pF

			μPD70108H-10, μPD70108H-12, μPD70108H-16,					3H-16,	
ltem		mbol	μPD70116H-10		μPD70116H-12		μPD70116H-16		Unit
	 		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Clock cycle	①	toyk	200		160		125		ns
Clock pulse high-level width (VkH = 2.5 V)	2	tkkh	69		60		44		ns
Clock pulse low-level width (VkL = 1.0 V)	3	tkkl	90		70		60		ns
Clock rise time (1.0 \rightarrow 2.5 V)	④	tkr		10		10		10	ns
Clock fall time (2.5 → 1.0 V)	⑤	tkF		10		10		10	ns
RESET release delay time (Voc = 3 V ± 10 %)	®	t ovast	1		1		1		μs
RESET set time (CLK 1)	(7)	tsrstk	15		15		15		ns
RESET hold time (CLK 1)	8	t HKRST	15		15		15		ns
RESET high-level width	9	twrsth	4tcvk		4tcvk		4tcvk		ns
READY inactive set time (vs. CLK ↓)	0	tsa ylk	-8		-8		-8		ns
READY inactive hold time (vs. CLK 1)	O	тнкячн	30		25		20		ns
READY active set time (vs. CLK 1)	0	t sayhk	tkkl-8		tĸĸĿ-8		tkkl-8		ns
READY active hold time (vs. CLK ↑)	0	thkryl	30		25		20		ns
Data set time (vs. CLK ↓)	19	tsok	30		25		20		ns
Data hold time (vs. CLK ↓)	1 9	тнко	10		10		10		ns
NMI, INT, FOLL set time (vs. CLK 1)	19	tsik	30		20		15		ns
Input rise time ^{Note1} (0.2 Vpp → 0.7 Vpp)	0	tır		20		20		20	ns
Input fall time ^{Nete1} (0.7 Vpb → 0.2 Vpb)	18	tır		12		12		12	ns
Output rise time (0.2 Voc → 0.7 Voc)	19	ton		20		20		20	ns
Output fall time (0.7 Vpc → 0.2 Vpc)	20	tor		12		12		12	ns
CLK ↓ → address delay time	Ø	toka	10	90	10	70	10	60	ns
CLK ↓ → address hold time	0	thka	10		10		10	,	ns
CLK ↓ → PS delay time	83	toke	10	90	10	70	10	60	nş
CLK ↑ → PS float delay time	8	teke	10	80	10	70	10	60	ns
CLK ↓ → address float delay time	89	TFKA	thka	80	THKA	70	thka	60	ns
CLK ↓ → RD ↓ delay time	29	TOKAL	10	165	10	100	10	80	กร
CLK ↓ → RD ↑ delay time ^{Nete2}	20	TDKRH	10	150	10	100	10	80	ns
RD ↑ → address delay time	29	TORHA	tcvx-35	1	tcvk-25		tcvk-10		ns
RD low-level width	29	ter	2tcvk-75		2tcvk-60		2tcvk-50		ns
CLK ↓ → data output delay time	90	toko	10	90	10	70	10	60	nş
CLK ↓ → data float delay time	3	TFKD	10	80	10	70	10	- 60	ns

Note 1. CLK excluded

2. When RD becomes inactive in read cycle, the data has been read.

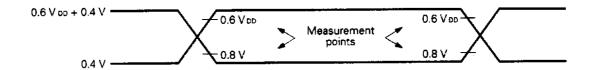
(2) Small-scale mode

Loading capacity of output pins: CL = 100pF

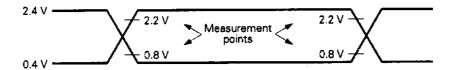
ltem	Symbol		μΡD70108H-10, μΡD70116H-10		μPD70108H-12, μPD70116H-12		μPD70108H-16, μPD70116H-16		Unit
		•		MAX.	MIN.	MAX.	MIN.	MAX.	
Address set time (vs. ASTB ↓)	9	t sast	tкк. 6 0		tkkl-30		tкк30		ns
CLK ↓ → ASTB ↑ delay time	8	toksth	5	80	5	70	5	50	ns
CLK ↑ → ASTB ↓ delay time	9	tokstl	5	85	5	70	5	55	ns
ASTB high-level width	3	tstst	tккL-20		tкк∟–15		txxx-10		กร
ASTB ↓ → address hold time	98	THSTA	tкю—10		tкю—10		tкк.—10		ns
CLK → control delay timeNote	Ø	toket	10	110	10	80	10	65	กร
Address float $\rightarrow \overline{RD} \downarrow delay$ time	€ 39	t AFRL	0		0		0	! :	an
WR low-level width	39	tww	2tcvk-60		2tcvk-50		2tcvk-40		ns
HLDRQ set time (vs. CLK 1)	49	tsнак	35		30		20		ns
CLK \downarrow \rightarrow HLDAK delay time	0	tokha	10	160	10	120	10	100	ns
WR ↑ → BUFEN ↑	Ø	twcr	tkkl-20		tkkL-20		tkk1-20		пв

Note When BUFEN becomes inactive in read cycle, the data has been read.

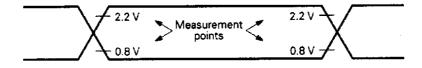
(3) Large-scale mode

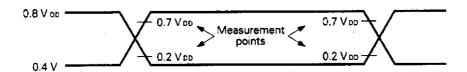

Loading capacity of output pins: CL = 100pF

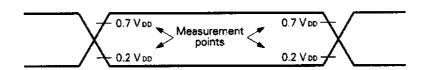
	Symbol		μPD70108H-10,		μPD70108H-12,		μPD70108H-16,		Unit
Item			μPD70116H-10		μPD70116H-12		μPD70116H-16		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
CLK ↑ → BS ↓ delay time	G	tokal	10	110	10	. 70	10	60	ns
CLK \downarrow $ ightarrow$ BS \uparrow delay time	0	token	10	130	10	70	10	70	ns
Address float → RD ↓ delay time	•	TDAFRL	O		0		0		ns
CLK ↓ → QS delay time	0	toxos	5	80	5	70	5	50	ns
CLK ↓ → AK delay time	0	TOKAK	5	70	5	65	5	50	กร
RQ set time (vs. CLK 1)	•	tsrok	20		15		10		ns
RQ hold time (vs. CLK ↓)	69	THKRQ1	0		0		0		ns
RQ hold time (vs. CLK 1)	8	THKRQ2	40		35		30		ns



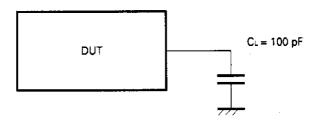
AC TEST INPUT WAVEFORMS (except CLK) (VDD = 5 V ± 10%)


(1) READY, HLDRQ (RQO, RQ1): DIP only

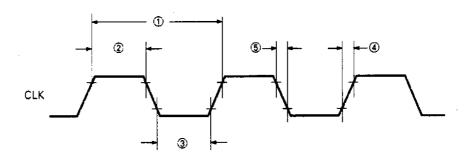

(2) Others


AC TEST OUTPUT MEASUREMENT POINTS (Vod = 5 V ± 10%)

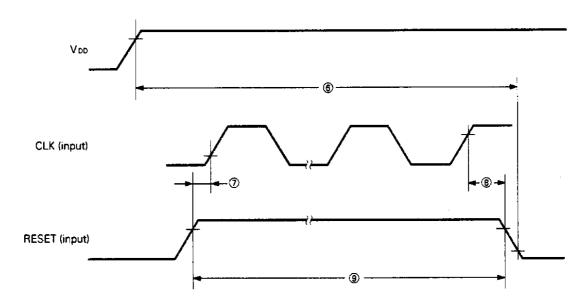
AC TEST INPUT WAVEFORM (except CLK) (VDD = 3 V ± 10%)



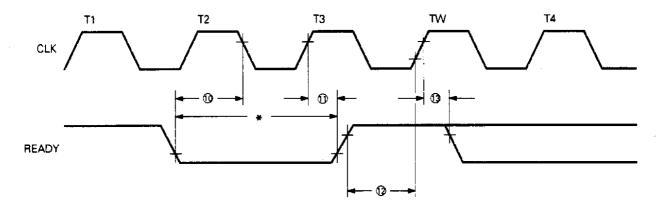
AC TEST OUTPUT MEASUREMENT POINTS (VDD = 3 V ± 10%)



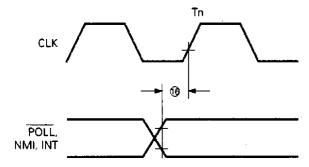
LOAD CONDITION



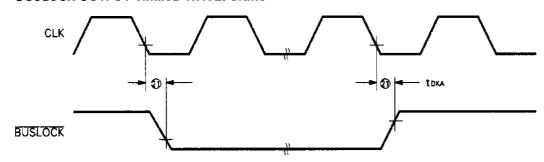
Caution If load capacitance exceeds 100pF due to circuit configuration, reduce the load capacitance of this device down to 100pF or less by inserting a buffer, etc.


CLOCK TIMING WAVEFORMS

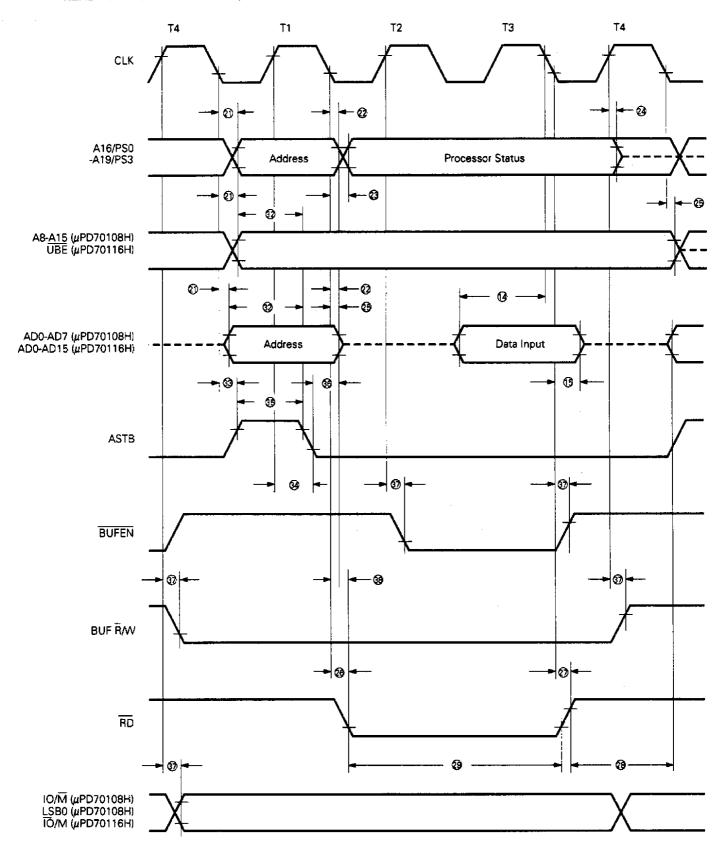
RESET TIMING



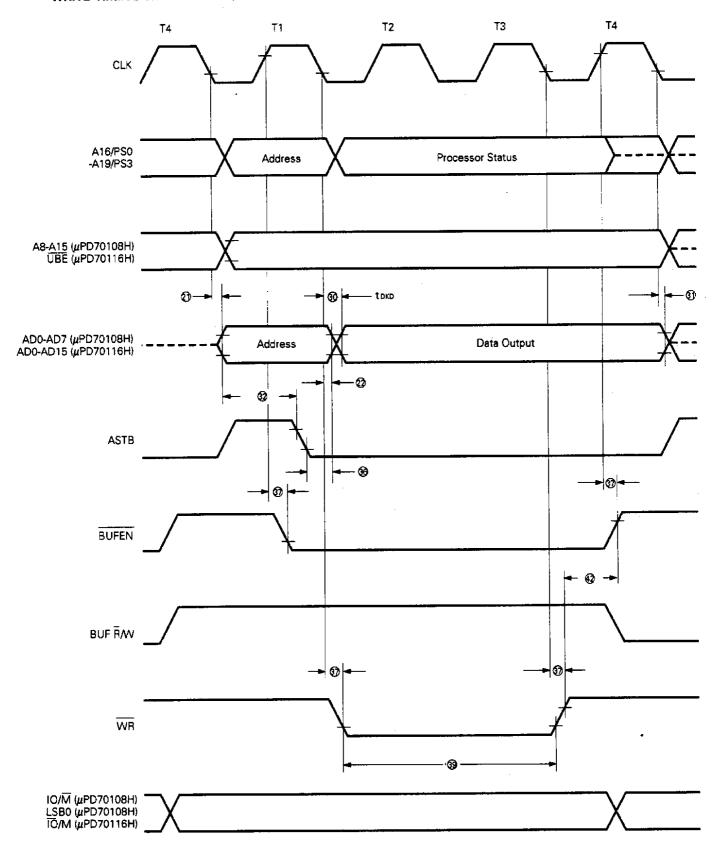
WAIT (READY) TIMING WAVEFORMS



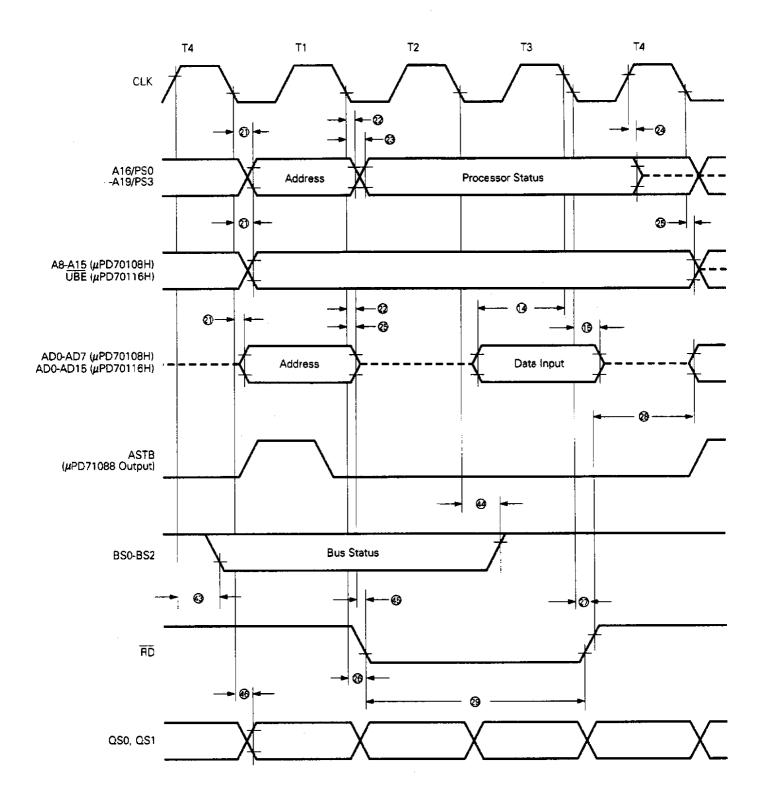
*: In this period, the READY signal must be fixed to low or high.


POLL, NMI, INT INPUT TIMING WAVEFORMS

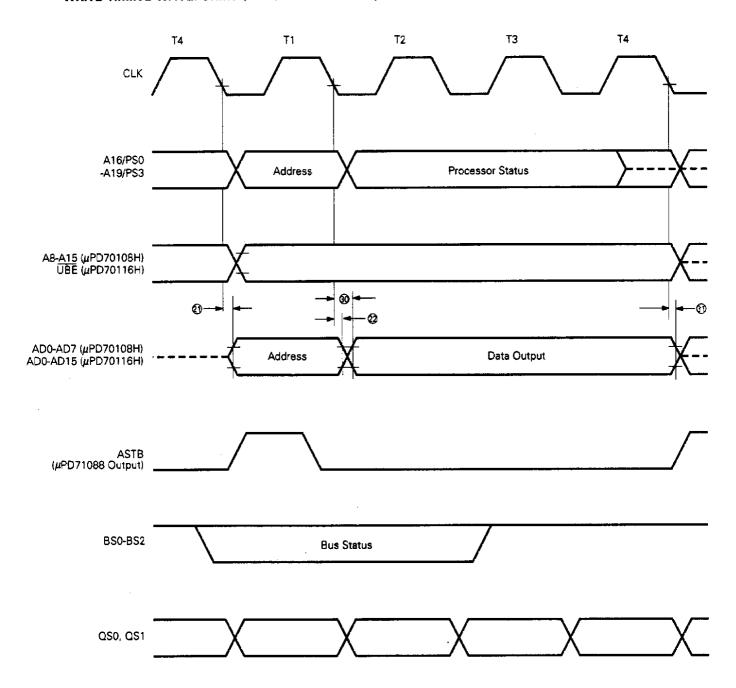
BUSLOCK OUTPUT TIMING WAVEFORMS



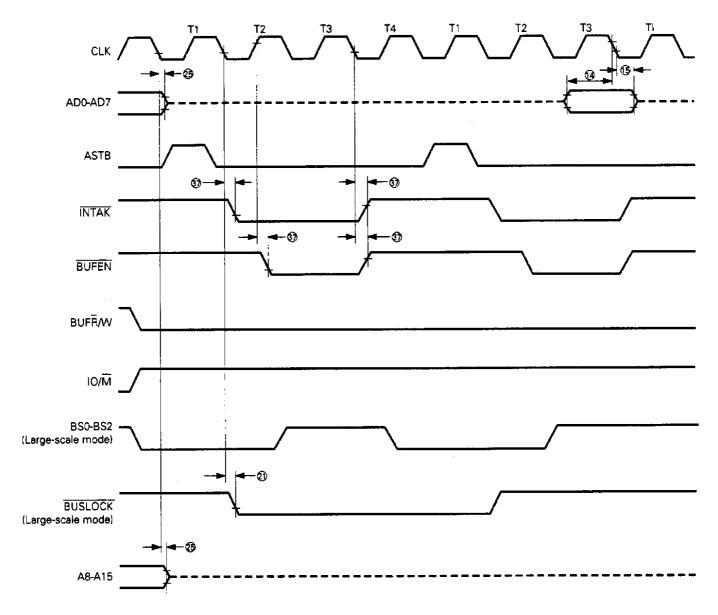
READ TIMING WAVEFORMS (SMALL-SCALE MODE)


Remark Dashed line indicates high impedance.

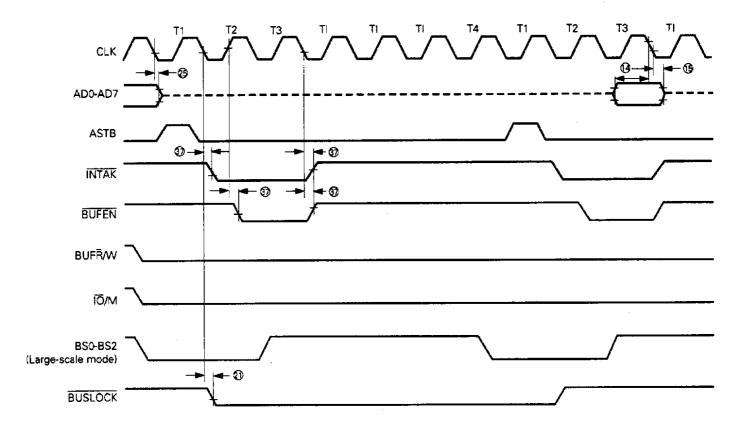
WRITE TIMING WAVEFORMS (SMALL-SCALE MODE)


Remark Dashed line indicates high impedance.

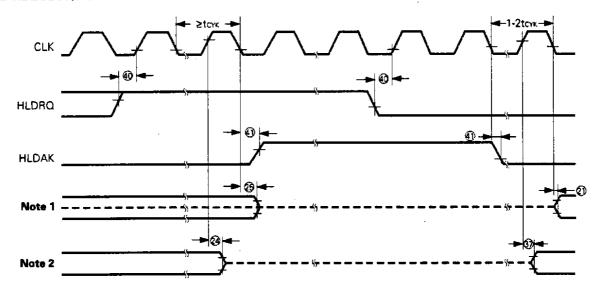
READ TIMING WAVEFORMS (LARGE-SCALE MODE)


Remark Dashed line indicates high impedance.

WRITE TIMING WAVEFORMS (LARGE-SCALE MODE)


Remark Dashed line indicates high impedance.

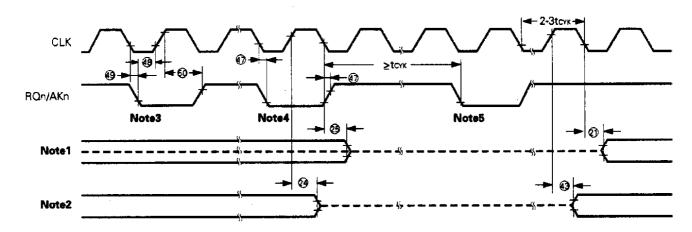
INTERRUPT ACKNOWLEDGE TIMING WAVEFORMS (μ PD70108H)


Dashed line indicates high impedance. Remark

INTERRUPT ACKNOWLEDGE TIMING WAVEFORMS (µPD70116H)

Dashed line indicates high impedance. Remark

HOLD REQUEST/ACKNOWLEDGE TIMING WAVEFORMS (SMALL-SCALE MODE)


Note 1. μPD70108H: AD0 - AD7, A8 - A15

μPD70116H: AD0 - AD15

2. μPD70108H: A16/PS0 - A19/PS3, RD, WR, IO/M, BUFR/W, BUFEN, LBS0 μPD70116H: A16/PS0 - A19/PS3, RD, WR, IO/M, BUFR/W, BUFEN, UBE

Remark Dashed line indicates high impedance.

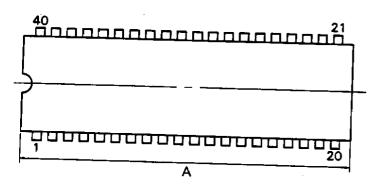
BUS REQUEST/ACKNOWLEDGE TIMING WAVEFORMS (LARGE-SCALE MODE)

Note 1. μPD70108H: AD0 - AD7, A8 - A15

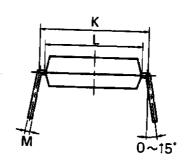
μPD70116H: AD0 - AD15

2. A16/PS0 - A19/PS3, RD, BS0 - BS2, BUSLOCK

3. Ran (input) : Request pulse

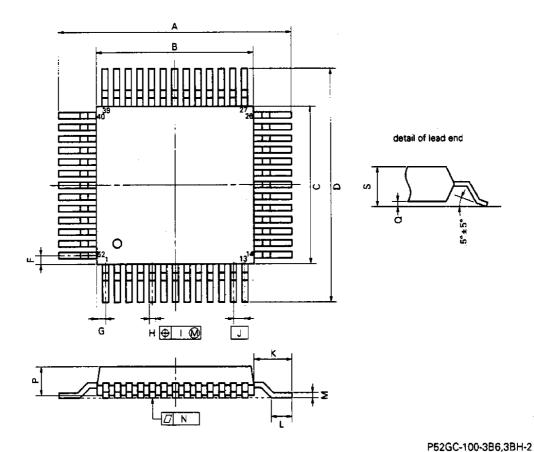

4. AKn (output) : Acknowledge pulse

5. RQn (input) : Release pulse


Remark Dashed line indicates high impedance.

0. PACKAGE DRAWINGS

OPIN PLASTIC SHRINK DIP (600 mil)

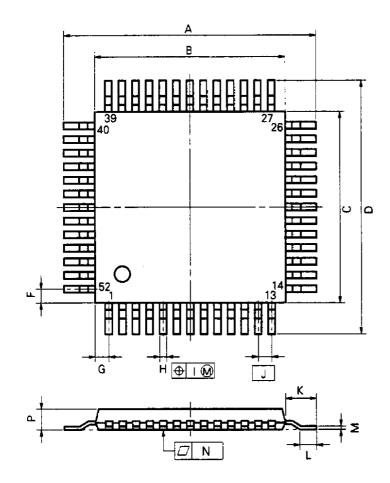

P40C-70-800A

iach lead centerline is located within 0.17 nm (0.007 inch) of its true position (T.P.) t maximum material condition.

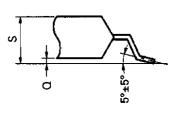
em "K" to center of leads when formed arallel.

ITEM	MILLIMETERS	INCHES
Α	39.13 MAX.	1.541 MAX
В	2.67 MAX,	0.106 MAX
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ±0.10	0.020 +8:88
F	0.9 MIN.	0.035 MIN.
G	3.2 = 0.3	0.126 ±0.012
н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
M	0.25-8.68	0.010 +8:884
N	0.17	0.007

52 PIN PLASTIC QFP (□14)

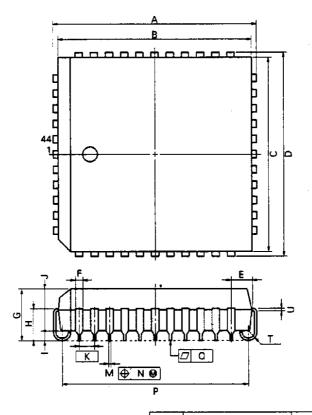

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.


		1 0200-100-000,0011-2
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551 <u>±8</u> ;888
С	14.0±0.2	0.551±8.008
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Ŧ	0.40±0.10	0.016±8:88
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071±8.888
L	0.8±0.2	0.031:8:888
М	0.15±8:8	0.006±8.883
N	0.10	0.004
P	2.7	0.106
a	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

52 PIN PLASTIC QFP (□14)

detail of lead end


NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P52G-100-22-2

ITEM	MILLIMETERS	INCHES
Α	18.4±0.4	0.724 ^{+0.017} _{-0.016}
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551+0.009
D	18.4±0.4	0.724+0.017
F	1.0	0.039
G	1.0	0.039
н	0.40±0.10	0.016+0.004
1	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
К	2.2±0.2	0.087+0.008
L	1.0±0.2	0.03910.008
М	0.15 \ 0.10 \ 0.05	0.006+0.004
N	0.15	0.006
P	1.5±0.1	0.059±0.004
a	0.1±0.1	0.004±0.004
S	1.7 MAX.	0.067 MAX.

44 PIN PLASTIC QFJ (□650 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P44L-50A1-2

ITEM	MILLIMETERS	INCHES
Α	17.5±0.2	0.689±0.008
В	16.58	0.653
C	16.58	0.653
D	17.5±0.2	0.689±0.008
E	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173+0.009
Н	2.8±0.2	0.110±0.009 0.008
1	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±0.10	0.016+0.004
N	0.12	0.005
P	15.50±0.20	0.610 10.009
۵	0.15	0.006
T	R 0.8	R 0.031
U	0.20 0 10	0.008±0.004

11. RECOMMENDED SOLDERING CONDITIONS

For the μ PD70108H and μ PD70116H, soldering must be performed under the following conditions.

For details of recommended conditions for surface mounting, refer to information document "Semiconductor device mounting technology manual" (IEI-1207).

For other soldering methods, please consult with NEC sales personnel.

Table 11-1 Surface Mounting Type Soldering Conditions (1/2)

(1) μ PD70108HGC-XX-3B6: 52-pin plastic QFP (\square 14 mm) (resin thick 2.70 mm) μ PD70116HGC-XX-3B6: 52-pin plastic QFP (\square 14 mm) (resin thick 2.70 mm)

(a) V, F rated products

Soldering Method	Soldering Conditions	Recommended Condi tions Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: 2 max. < precautions > (1) The second reflow should be started after the first reflow device temperature has returned to the ordinary state. (2) Flux washing must not be performed by the use of water after the first reflow.	IR35-00-2
VPS	Package peak temperature: 215°C, Duration: 40 sec. (at 200°C or above), Number of times: 2 max. < precautions > (1) The second reflow should be started after the first reflow device temperature has returned to the ordinary state. (2) Flux washing must not be performed by the use of water after the first reflow.	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Duration: 10 sec. max., Number of times: 1, Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Pin part heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per device side)	

(b) L rated products

Soldering Method	Soldering Conditions	Recommended Condi- tions Reference Code
Infrared Reflow	Package peak temperature: 230°C, Time: 30 sec. max. (210°C min.), Number of times: 1, Number of days (after this, prebaking is necessary at 125°C for 10 hours)	IR30-107-1
VPS	Package peak temperature: 215°C, Time: 40 sec. max. (200°C min.), Number of times: 1, Number of days (after this, prebaking is necessary at 125°C for 10 hours)	VP15-107-1
Wave Soldering	Solder bath temperature: 260°C max., Time: 10 sec. max., Number of times: 1, Number of days after this, prebaking is necessary at 125°C for 10 hours), Preheating temperature: 120°C max. (Package surface temperature)	WS60-107-1
Pin Partial Heating	Pin temperature: 300°C max., Time: 3 sec. max. (per side)	

Note This means the number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

Caution Do not use one soldering method in combination with another. (however, pin partial heating can be performed with other soldering methods).

Table 11-1 Surface Mounting Type Soldering Conditions (2/2)

(2)	μPD70108HG-XX-22:	52-pin plastic	QFP (14	mm) (resin	thick 1	.50 n	nm)
	μPD70116HG-XX-22:	52-pin plastic	QFP (14	mm) (resin	thick 1	. 50 n	nm)

Soldering Method	Soldering Conditions	Recommended Condi- tions Reference Code
Infrared Reflow	Package peak temperature: 230°C, Time: 30 seconds max. (210°C min.), Number of times: 1, Number of days Mote: 1 day (after this, prebaking is necessary at 125°C for 10 hours)	IR30-101-1
VPS _	Package peak temperature: 215°C, Time: 40 seconds max. (200°C min.), Number of times: 1, Number of days Note: 1 day (after this, prebaking is necessary at 125°C for 10 hours)	VP15-101-1
Pin Partial Heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side)	

Note This means the number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

Caution Do not use one soldering method in combination with another. (however, pin partial heating can be performed with other soldering methods).

(3)	μ PD70108HLM-XX:	44-pin	Plastic	QFJ (<u> 650 </u>	mil.
	μPD70116HLM-XX:	44-pin	Plastic	QFJ (650	mil

(a) F rated products

Soldering Method	Soldering Conditions	Recommended Condi- tions Symbol
Infrared reflow	Package peak temperature: 230°C, Duration: 30 sec. max. (at 210°C or above), Number of times: 1	IR30-00-1
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: 1	VP15-00-1
Pin part heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per device side)	

(b) V, L rated products

Soldering Method	Soldering Conditions	Recommended Condi- tions Reference Code
Infrared Reflow	Package peak temperature: 230°C, Time: 30 seconds max. (210°C min.), Number of times: 1, Number of days ^{Note} : 7 days (after this, prebaking is necessary at 125°C for 10 hours)	(R30-107-1
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (200°C min.), Number of times: 1, Number of days ^{Note} : 7 days (after this, prebaking is necessary at 125°C for 10 hours)	VP15-107-1
Pin Partial Heating	Pin temperature: 300°C max., Time: 3 seconds max. (per side)	

Note This means the number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

Caution Do not use one soldering method in combination with another. (however, pin partial heating can be performed with other soldering methods).

Table 11-2 Insertion Type Soldering Conditions

 $\mu\text{PD70108HCZ-XX:}$ 40-pin plastic DIP (600 mil) $\mu\text{PD70116HCZ-XX:}$ 40-pin plastic DIP (600 mil)

Soldering Method	Soldering Conditions	
Wave Soldering (Only for pin)	Solder bath temperature: 260°C max., Time: 10 seconds max.	
Pin Partial Heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin)	

Caution The wave soldering must be performed at the pin only. Note that the solder must not be directly contacted to the package body.

[MEMO]

NOTES FOR CMOS DEVICES

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vpp or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94 11