Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

mos integrated circuit μ PD78217A,78218A

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78217A and 78218A are members of the 78K/II series of microcontrollers featuring a high-speed high-performance CPU. The μ PD78217A and 78218A are based on the μ PD78213 and 78214, and feature increased memory capacity and added functions, such as a timer/counter and macro servicing.

Functions are described in detail in the following User's Manuals, which should be read when carrying out design work.

 μ PD78218A Subseries User's Manual: Hardware (IEU-1313) 78K/II Series User's Manual: Instruction (IEU-1311)

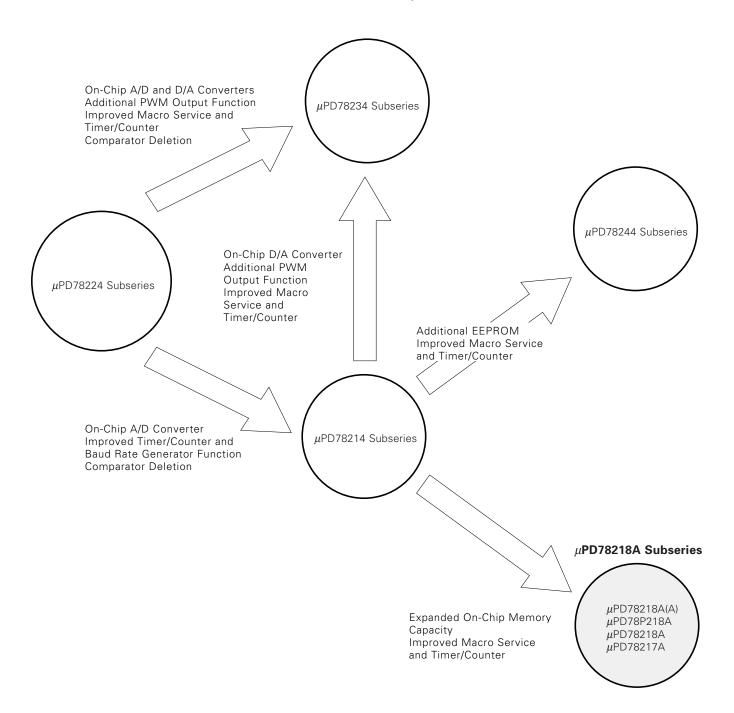
FEATURES

- Upper compatibility with µPD78214 subseries (pin-compatible)
- High-speed instruction execution (at 12 MHz): 333 ns (μPD78218A), 500 ns (μPD78217A)
- On-chip high-performance interrupt controller
- On-chip A/D converter: 8 bits \times 8 channels
- Number of I/O pins: 54 (μPD78218A), 36 (μPD78217A)
- Real-time output ports: 8 bits \times 1 channel or 4 bits \times 2 channels
- Serial interface: 2 channels
- Timer/counter: 16 bits \times 1 channel and 8 bits \times 3 channels

APPLICATION FIELDS

Printers, typewriters, OA equipment such as plain paper copiers (PPCs) and faxes, electronic music instruments, inverters, cameras, etc.

ORDERING INFORMATION


Part Number	Package	On-Chip ROM	On-Chip RAM
μPD78217ACW	64-pin plastic shrink DIP (750 mil)	None	1024
μPD78217AGC-AB8	64-pin plastic QFP (14 x 14 mm)	None	1024
μPD78218ACW-×××	64-pin plastic shrink DIP (750 mil)	32K	1024
μPD78218AGC-×××-AB8	64-pin plastic QFP (14 x 14 mm)	32K	1024

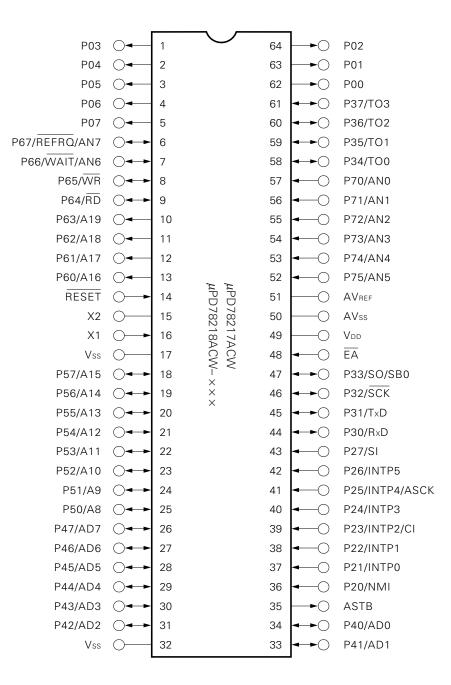
Remark ××× is the ROM code suffix.

The information in this document is subject to change without notice.

78K/II Product Development

NEC

FUNCTION LIST

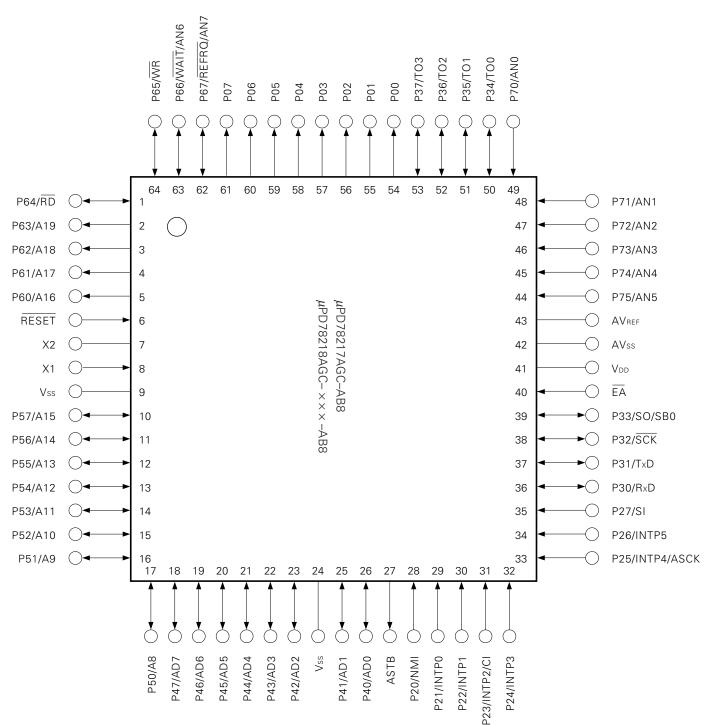

ltem		μPD78217A		μPD78218A		
Basic ir (mnem	nstructions onic)		65			
Minimum instruction execution time		333 ns (at 12-MHz)				
Instruction set		16-bit operation Multiply and divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate BCD adjust, etc.				
	p memory	ROM	None		32 Kbytes	
capacit	ÿ	RAM	1024 bytes			
Addres	s space		Program memory: 64	Kbytes, data memory	y: 1 Mbytes	
I/O	Input		14			
pins	Output		12			
-	Input/Outpu	t	10		28	
-	Total		36		54	
Note	Pins with pu	Ill-up resistor	16		34	
lar niq i		rive outputs			16	
Additional function pins	Transistor d outputs		8			
ROM-le	ess mode set	ting	ROM-less version EA pin = low level		ĒĀ pin = low level	
Genera	l registers		8 bits \times 8 \times 4 banks (memory mapping)			
Timer/d	counter		16-bit timer/counter	Timer register × 1 Capture register × 1 Compare register ×		
			8-bit timer/counter 1	Timer register × 1 Capture/compare register × Compare register ×		
			8-bit timer/counter 2	B-bit timer/counter 2 { Timer register × 1 Pulse output capability Capture register × 1 (Toggle output Compare register × 2 (PWM/PPG × 2)		
			8-bit timer/counter 3 { Timer register × 1 Compare register × 1			
Real-tir	me output po	ort	Output port linked 8-bit timer/counter 1 4 bits × 2 channels			
Serial interface		UART : 1 channel (on-chip dedicated baud rate generator) CSI (3-wire serial I/O, SBI) : 1 channel				
A/D coi	nverter		8-bit resolution × 8 channels			
Interrupt		19 sources (external 7, internal 12) + BRK instruction 2-level priority order (programmable) 2 servicing modes (vectored interrupt, macro service)				
Package			64-pin plastic shrink D 64-pin plastic QFP (14			

Note Additional function pins are included in I/O pins.

μ**PD78217A, 78218A**

PIN CONFIGURATION (TOP VIEW)

64-pin plastic shrink DIP



Phase-out/Discontinued

NEC

μ**PD78217A, 78218A**

64-pin plastic QFP

Phase-out/Discontinued

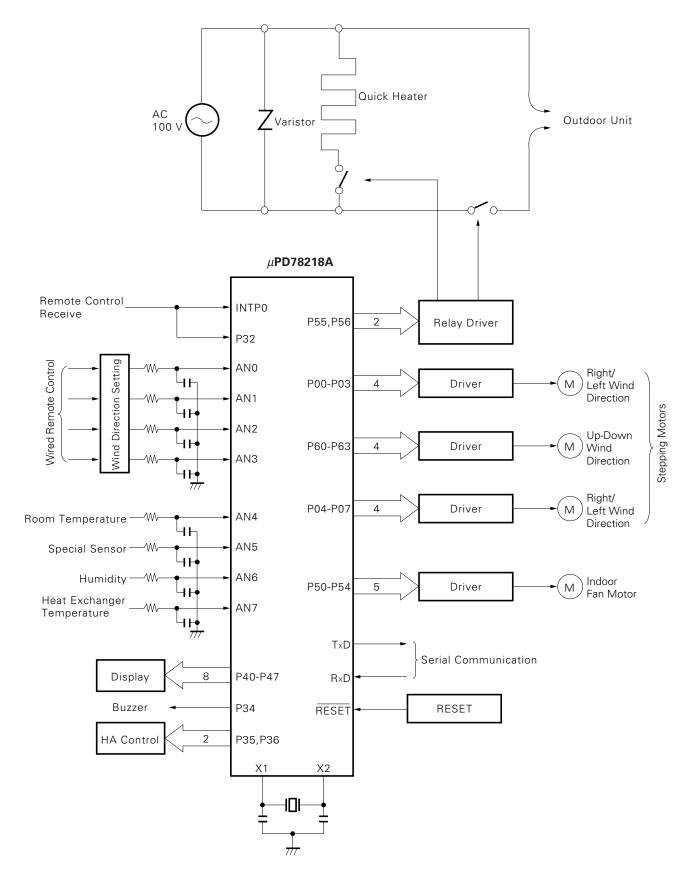
5

μ**PD78217A, 78218A**

PIN IDENTIFICATION

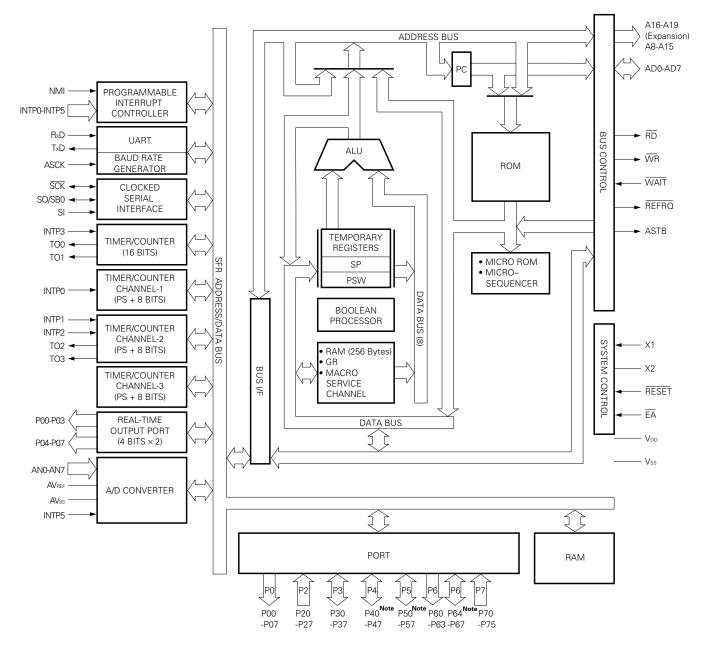
AD0 to AD7 : Address/Data Bus

: Address Bus


A8 to A19

P00 to P07	:	Port 0	RD	:	Read Strobe
P20 to P27	:	Port 2	WR	:	Write Strobe
P30 to P37	:	Port 3	WAIT	:	Wait
P40 to P47	:	Port 4	ASTB	:	Address Strobe
P50 to P57	:	Port 5	REFRO	:	Refresh Request
P60 to P67	:	Port 6	RESET	:	Reset
P70 to P75	:	Port 7	X1, X2	:	Crystal
TO0 to TO3	:	Timer Output	EA		External Access
CI	:	Clock Input	AN0 to AN7	:	Analog Input
RxD	:	Receive Data	AVREF		Reference Voltage
TxD	:	Transmit Data	AVss	:	Analog Ground
SCK	:	Serial Clock	Vdd		Power Supply
ASCK	:	Asynchronous Serial Clock	Vss		Ground
SB0	:	Serial Bus			
SI	:	Serial Input			
SO	:	Serial Output			
NMI	:	Non-maskable Interrupt			
INTP0 to INTP5	:	Interrupt From Peripherals			

Phase-out/Discontinued


EXAMPLE OF SYSTEM CONFIGURATION (INVERTER AIR-CONDITIONER IN-DOOR UNIT)

Phase-out/Discontinued

μ**PD78217A, 78218A**

INTERNAL BLOCK DIAGRAM

Phase-out/Discontinued

Caution Inernal ROM/RAM capacity varies depending on the product.

Note In case of the μPD78217A, P40 to P47, P50 to P57, P64 and P65 cannot be used as ports.

CONTENTS

1.				
2.	PIN	FUNCTI	IONS	
	2.1	PORTS		
	2.2		ORT PINS	
	2.3		ORCUITS AND UNUSED PIN CONNECTION	
-				
3.			BLOCK FUNCTIONS	
	3.1		RY SPACE	
	3.2			
	3.3		IME OUTPUT PORT	
	3.4	-	COUNTER UNIT	
	3.5	A/D CO	DNVERTER	22
	3.6	SERIAL	. INTERFACE	24
		3.6.1	Asynchronous Serial Interface	25
		3.6.2	Clock Synchronous Serial Interface	26
			EXTERNAL CONTROL FUNCTION	27
4.	4.1	-	EXTERNAL CONTROL FONCTION	
	4.1	4.1.1	Interrupt Sources	
		4.1.2	Vectored Interrupt	
		4.1.3	Macro Service	
		4.1.4	Macro Service Application Examples	
	4.2		BUS INTERFACE	
		4.2.1	Memory Expansion	
		4.2.2	Programmable Wait	
		4.2.3	Pseudo-Static RAM Refresh Function	
	4.3		BY	
	4.4			
	7.7	MEGET.		
5.	INS	TRUCTIO	ON SET	
6.	ELE	CTRICAL	L SPECIFICATIONS	40
0.		••••••		
7.	PAC	KAGE D	DRAWINGS	57
8.	REC	OMMEN	NDED SOLDERING CONDITIONS	59
AP	PENC	DIX A. D	DEVELOPMENT TOOLS	60
AP	PENC	IX B. R	ELATED DOCUMENTS	

µPD78214 Subseries

. ` DIFFERENCES BETWEEN μ PD78218A AND μ PD78214 SUBSERIES

Part Number		μ ΡD78217A	μ ΡD78218A	μPD78P218A	μPD78212	μPD78213	μPD78214	μPD78P214
Minimum instruct time (at 12-MHz)	um instruction execution 500 ns 333 ns t 12-MHz)		333 ns	333 ns 500 ns 333 ns		ns		
PUSH PSW instruction time (number of c		When stack area is Other than above	an internal dual port	: RAM : 6 : 8	When stack ar Other than abo	ea is an internal ove	dual port RAM	: 5 or 7 : 7 or 9
Power voltage ran	ge	VDD=+	5V±10%	Vdd=+5V±0.3V		V _{DD} =+5	V±10%	
On-chip memory	ROM	ROM-less	32 Kbytes (mask ROM)	32 Kbytes (PROM)	8 Kbytes (mask ROM)	ROM-less	16 Kbytes (mask ROM)	16 Kbytes (PROM)
	RAM		1024 bytes		384 bytes		512 bytes	
I/O pins		36		54	54	36	5	4
16-bit timer/count pulse output	er one-shot		Available			Not av	ailable	
Macro service cou	nter bit width	8/16 bits s	select capability (exce	pt type A)		Only	8 bits	
Macro service type increments	e C MPD, MPT	16-bit increment			Only low-order 8 bits increment (high-order 8 bits are unchanged)			
Macro service exe	cution time	Macro service depends on mode. Compare with user's manual of products.						
Restrictions when transferred from n type A memory to	nacro service	Generated when transfer source buffer (memory) address is 0FED0H to 0FEDFH. Generated when transfer data is in D0H to DFH.		4.				
A/D converter	Input voltage restrictions	Only pins involved i	n A/D conversion			in A/D conversio NI0 to ANI2 only		,
	AV _{REF} voltage restrictions		3.6 V to VDD		3.4 V to VDD			
Stabilization time for oscillation in STOP mode release		Dedicated counter 15 bits or \overline{NMI} active pulse width + dedi- cated counter 16 bits			NMI active pulse width + dedicated counter 16 bits			
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 x 14 mm) 64-pin ceramic shrink DIP (CERDIP, with window, 750 mil): μPD78P218A only 			 64-pin plastic shrink DIP (750 mil) 64-pin plastic QUIP: Except μPD78212 68-pin plastic QFJ: Except μPD78212 64-pin plastic QFP (14 x 14 mm) 74-pin plastic QFP (20 x 20 mm) 64-pin ceramic shrink DIP (CERDIP, with window, 750 mil): μPD78P214 only 			only

Phase-out/Discontinued

µPD78218A Subseries

10

Series Name

μ**PD78217A, 78218A**

2. PIN FUNCTIONS

2.1 PORTS

Pin Name	I/O	Alternate Function	Function
P00 to P07	Output		Port 0 (P0):
			Established as a real-time output port (4 bits $ imes$ 2)
			Direct drive of transistors capability
P20	Input	NMI	Port 2 (P2):
P21		INTP0	P20 cannot be used as a general-purpose port. (Non-maskable interrupt)
P22		INTP1	However, the input level can be confirmed in the interrupt routine.
P23		INTP2/CI	The connection of the on-chip pull-up resistor can be specified as a 6-bit unit for P22
P24		INTP3	to P27 by software.
P25		INTP4/ASCK	
P26		INTP5	
P27		SI	
P30	Input/	RxD	Port 3 (P3):
P31	output	TxD	The input/output specifiable bit-wise.
P32		SCK	Input mode pins specifiable for on-chip pull-up resistor connection as a batch by
P33		SO/SB0	software.
P34 to P37		TO0 to TO3	
P40 to	Input/	AD0 to AD7	Port 4 (P4):
P47 ^{Note}	output		The input/output specifiable as an 8-bit batch.
			The connection of the on-chip pull-up resistor specifiable as an 8-bit batch by
			software.
			LED direct drive capability.
P50 to	Input/	A8 to A15	Port 5 (P5):
P57 ^{Note}	output		The input/output specifiable bit-wise.
			Input mode pins specifiable for on-chip pull-up resistor connection as a batch by
			software.
			LED direct drive capability.
P60 to P63	Output	A16 to A19	Port 6 (P6):
P64 ^{Note}	Input/	RD	P64 to P67 enables to specify the input/output bit-wise.
P65 ^{Note}	output	WR	The connection of the on-chip pull-up resistor to input mode pins can be specified
P66		WAIT/AN6	as a batch for P64 to P67 by software.
P67		REFRQ/AN7	
P70 to P75	Input	AN0 to AN5	Port 7 (P7)

Phase-out/Discontinued

Note In case of the μ PD78217A, these cannot be used as ports.

2.2 NON-PORT PINS

Pin Name	I/O	Alternate Function	Function	
T00 to T03	Output	P34 to P37	Timer output	
CI	Input	P23 /INTP2	Count clock input to 8-bit timer/counter 2	
RxD	Input	P30	Serial data input (UART)	
TxD	Output	P31	Serial data output (UART)	
ASCK	Input	P25/INTP4	Baud rate clock input (UART)	
SB0	Input/output	P33/SO	Serial data input/output (SBI)	
SI	Input	P27	Serial data input (3-wire serial I/O)	
SO	Output	P33/SB0	Serial data output (3-wire serial I/O)	
SCK	Input/output	P32	Serial clock input/output (SBI, 3-wire serial I/O)	
NMI	Input	P20	External interrupt request	
INTP0		P21		
INTP1	_	P22		
INTP2	_	P23/CI		
INTP3		P24		
INTP4		P25/ASCK		
INTP5	_	P26		
AD0 to AD7	Input/output	P40 to P47 ^{Note}	Time multiplexing address/data bus (external memory connection)	
A8 to A15	Output	P50 to P57 ^{Note}	Upper address bus (external memory connection)	
A16 to A19	Output	P60 to P63	Upper address when extending address (external memory connection)	
RD	Output	P64 ^{Note}	Read strobe into external memory	
WR	Output	P65 ^{Note}	Write strobe into external memory	
WAIT	Input	P66/AN6	Wait insertion	
ASTB	Output		Address (A0 to A7) latch timing output (during external memory access)	
REFRO	Output	P67/AN7	Refresh pulse output into external pseudo-static memory	
RESET	Input		Chip reset	
X1	Input		Crystal connection for system clock oscillation (external clock input to X1	
X2			enabled)	
EA	Input		ROM-less operating specification (external access of the same space as internal	
			ROM). Used high for the μ PD78218A and used low for the μ PD78217A.	
AN0 to AN5	Input	P70 to P75	Analog voltage input for A/D converter	
AN6, AN7		P66/ <mark>WAIT,</mark> P67/REFRQ		
AVREF	<u> </u>		Reference voltage apply for A/D converter	
AVss	1		GND for A/D converter	
Vdd	1		Positive power supply	
Vss	1		GND	

Phase-out/Discontinued

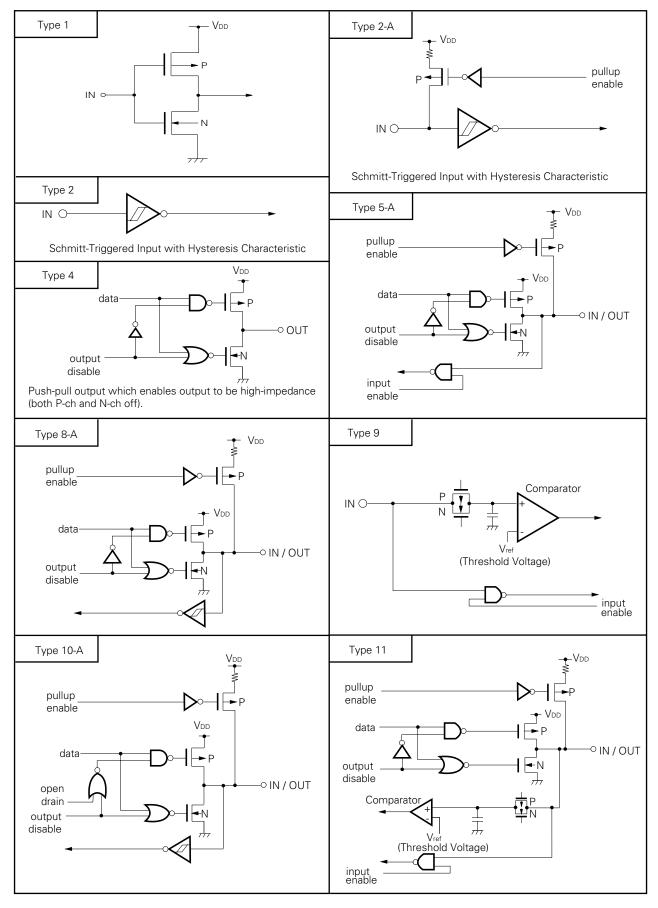
Note In case of the μ PD78217A, these cannot be used as ports.

2.3 PIN I/O CIRCUITS AND UNUSED PIN CONNECTION

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, see Fig. 2-1.

Table 2-1	Input/Output	Circuit Ty	pe of Each Pin
-----------	--------------	-------------------	----------------

Pin Name	Input/Output Circuit Type	I/O	Unused Pin Connection
P00 to P07	4	Output	Leave open.
P20/NMI	2	Input	Connected to VDD or Vss.
P21/INTP0			
P22/INTP1	2-A		Connected to VDD.
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK			
P26/INTP5			
P27/SI			
P30/RxD	5-A	Input/output	Input : Connected to VDD.
P31/TxD			Output : Leave open.
P32/SCK	8-A		
P33/SB0/SO	10-A	-	
P34/TO0 to P37/TO3	5-A		
P40/AD0 to P47/AD7			
P50/A8 to P57/A15			
P60/A16 to P63/A19	4	Output	Leave open.
P64/RD	5-A	Input/output	Input : Connected to VDD.
P65/WR			Output : Leave open.
P66/WAIT/AN6	11		Input : Connected to VDD. Note
P67/REFRQ/AN7	_		Output : Leave open.
P70/AN0 to P75/AN5	9	Input	Connected to Vss.
ASTB	4	Output	Leave open.
RESET	2	Input	
ĒĀ	1		
AVREF			Connected to Vss or VDD.
AVss			Connected to Vss.


Note A voltage outside the range AVss to AVREF should not be applied, as this may damage the μ PD78217A/78218A.

Caution If the input/output mode is undefined for the input/output dual-function pins, connect these pins to V_{DD} via a resistor of several ten kΩ.
 (Especially if the reset input pin exceeds the low-level input voltage at power-on or in case of input/ output switching by software.)

Remark The type numbers are standardized for 78K series, therefore they are not always consecutive numbers for each product (some circuits are not incorporated).

Phase-out/Discontinued

Fig. 2-1 Pin Input/Output Circuits

3. INTERNAL BLOCK FUNCTIONS

3.1 MEMORY SPACE

A memory space of 1 Mbytes can be accessed. Fig. 3-1 shows that memory space. The program memory mapping differs depending on the \overline{EA} pin status.

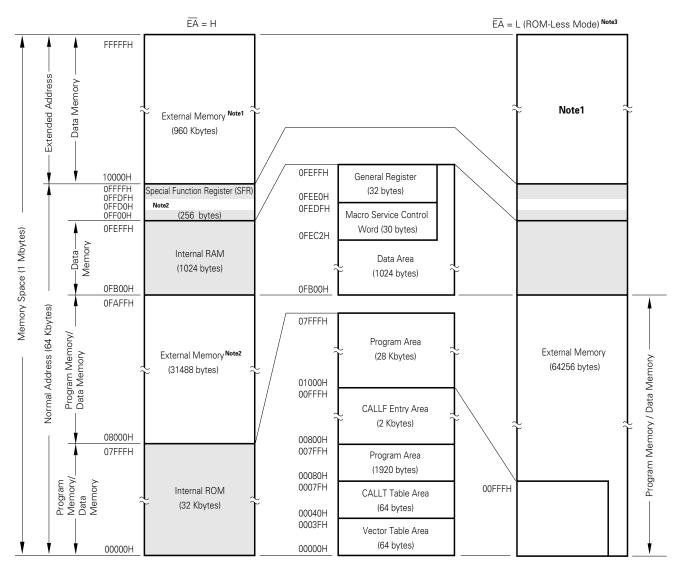
Phase-out/Discontinued

(1) μ PD78217A (EA = L)

The program memory is mapped onto external memory (64256 bytes: 00000H to 0FAFFH). This area can also be used as data memory.

The data memory is mapped onto internal RAM (1024 bytes: 0FB00H to 0FEFFH). In the 1-Mbyte expansion mode, external memory (960 Kbytes: 10000H to FFFFFH) is mapped as expanded data memory.

(2) μ PD78218A (EA = H)


The program memory is mapped onto internal ROM (32 Kbytes: 00000H to 07FFFH) and external memory (31488 bytes: 08000H to 0FAFFH). The external memory is accessed in the external memory expansion mode. The area mapped onto the external memory can also be used as data memory.

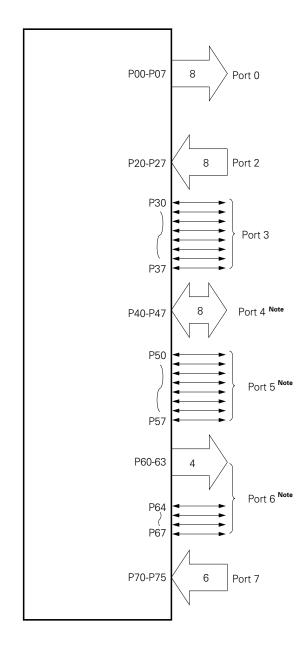
The data memory is mapped onto internal RAM (1024 bytes: 0FB00H to 0FEFFH). In the 1-Mbyte expansion mode, external memory (960 Kbytes: 10000H to FFFFFH) is mapped as expanded data memory.

Phase-out/Discontinued

μ**PD78217A, 78218A**

Fig. 3-1 Memory Map

Notes 1. Accessed by 1-Mbyte expansion mode. Shaded areas denote internal memory.


- 2. Accessed by external memory expansion mode.
- **3**. The μ PD78217A applies only when $\overline{EA} = L$.

3.2 PORTS

The μ PD78217A/78218A has the ports shown in Fig. 3-2 which allow various kinds of control. The functions of each port are shown in Table 3-1. For ports 2 to 6, on-chip pull-up resistor can be specified by software at input.

Phase-out/Discontinued

Fig. 3-2 Port Configuration

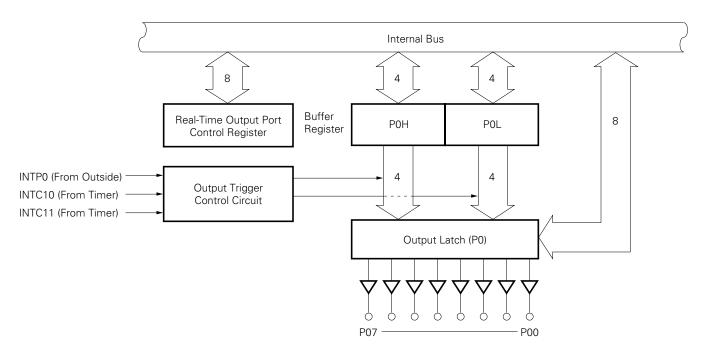
Note In case of the μPD78217A, P40 to P47, P50 to P57, P64, and P65 cannot be used as ports.

Table	3-1	Port	Function
-------	-----	------	----------

Name	Pin Name	Function	Designation of Software Pull-Up
Port 0	P00 to P07	Output or high-impedance specifiable as	
		an 8-bit batch.	
		Can also operate as 4 bits real-time output	
		(P00 to P03, P04 to P07).	
		Transistor direct drive capability.	
Port 2	P20 to P27	Input port	6-bit batch (P22 to P27)
Port 3	P30 to P37	Input or output specifiable bit-wise.	Input mode pins specifiable
			as a batch
Port 4 Note	P40 to P47	Input or output specifiable as an 8-bit batch.	8-bit batch
		LED direct drive capability.	
Port 5 Note	P50 to P57	Input or output specifiable bit-wise.	Input mode pins specifiable
		LED direct drive capability.	as a batch
Port 6 Note	P60 to P63	Output port	
	P64 to P67	Input or output specifiable bit-wise.	Input mode pins specifiable
			as a batch
Port 7	P70 to P75	Input port	

Note In case of the μ PD78217A, P40 to P47, P50 to P57, P64, and P65 cannot be used as ports.

3.3 REAL-TIME OUTPUT PORT


The real-time output port outputs the data stored in the buffer in synchronization with timer match interrupts or external interrupts. A jitterless pulse output is obtained by means of this.

Phase-out/Discontinued

Therefore, it is most suitable for applications which output any pattern at any interval time. (Stepping motor open loop control, etc.)

Port 0 and the buffer register are the core elements of the configuration, as shown in Fig. 3-3.

Fig. 3-3 Real-Time Output Port Block Diagram

3.4 TIMER/COUNTER UNIT

The µPD78217A/78218A has a 16-bit timer/counter unit for 1 channel and 8-bit timer/counter units for 3 channels.

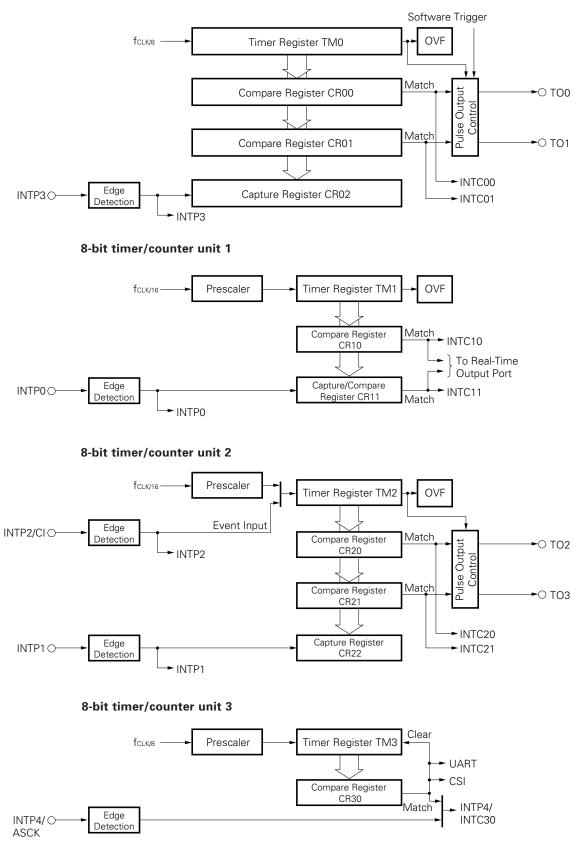
Phase-out/Discontinued

Тур	Unit De & Function	16-Bit Timer/ Counter	8-Bit Timer/ Counter 1	8-Bit Timer/ Counter 2	8-Bit Timer/ Counter 3
	Interval timer	2 chs	2 chs	2 chs	1 ch
Type	External event counter			0	
'	One-shot timer			0	
	Timer output	2 chs		2 chs	
	Toggle output	0		0	
	PWM/PPG output	\bigcirc		0	
Function	One-shot pulse output	0			
Fund	Real-time output		0		
	Pulse amplitude measurement	0	0	0	
	Number of interrupt requests	2	2	2	1
	Clock source of serial interface				0

Table 3-2 Type and Function of Timer/Counter

Since 7 interrupt requests are supported in total, it can also function as timer for 7 channels.

Remark The one-shot pulse output function activates the pulse output level by software, and inactivates it by hardware (interrupt request signal).


This function is different from the one-shot timer function of 8-bit timer/counter 2.

μ**PD78217A, 78218A**

Fig. 3-4 Timer/Counter Unit Block Diagram

Phase-out/Discontinued

16-bit timer/counter unit

OVF: Overflow Flag

NEC

3.5 A/D CONVERTER

The μ PD78217A/78218A incorporate the analog/digital (A/D) converter with 8-channel multiplexed analog input (AN0 to AN7).

Phase-out/Discontinued

The conversion method used is successive approximation. After the A/D conversion results are generated, they are held in the 8-bit A/D conversion result register (ADCR), which may allow high-speed and high-precision conversion (conversion time: Approx. 30 μ s; at 12-MHz operation).

The following two modes are available for starting A/D conversion:

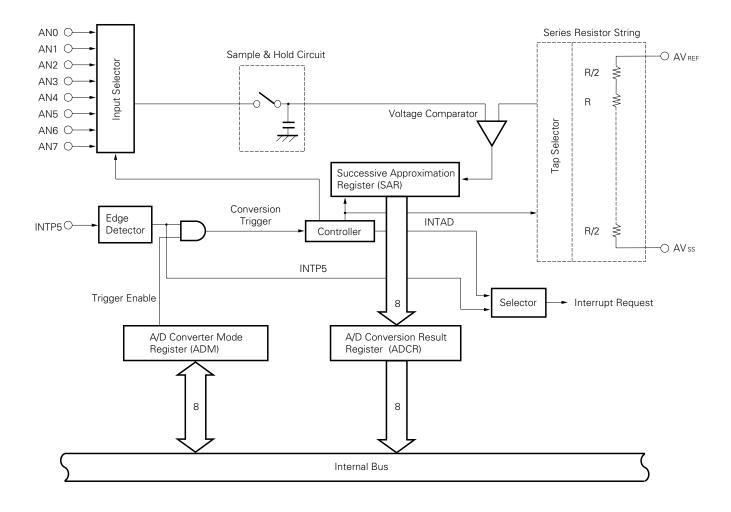
- Hardware start : Starts conversion by trigger input (INTP5)
- Software start : Starts conversion by the A/D converter mode register (ADM) bit setting

The following two modes of operation after starting are available:

- Scan mode : Multiple analog input are selected sequentially and conversion data is obtained from all pins.
- Select mode : The analog input is fixed at one pin and a continuous conversion value is obtained.

The above modes and the conversion operation are all stopped by ADM.

If the conversion result is transferred to the ADCR, an interrupt request INTAD is generated, (except in software start select mode). Therefore, the conversion value can be transferred to memory continuously using macro service (See section **4.1.3 "Macro Service"**).


Table 3-3 INTAD Generation Mode

	Scan Mode	Select Mode
Hardware start	0	0
Software start	0	

μ**PD78217A, 78218A**

Fig. 3-5 A/D Converter Block Diagram

Phase-out/Discontinued

NEC

3.6 SERIAL INTERFACE

The μ PD78217A/78218A has two independent serial interfaces.


- Asynchronous serial interface (UART)
- Clock synchronous serial interface (CSI)
 - 3-wire serial I/O
 - Serial bus interface (SBI)

Therefore, communication with external devices and local communication inside the system can be performed simultaneously (See Fig. 3-6).

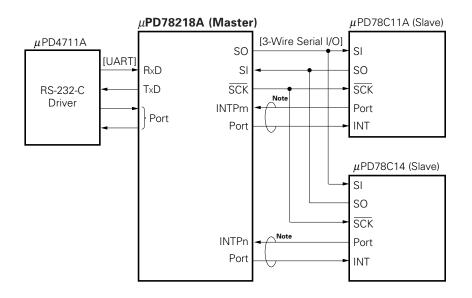

Phase-out/Discontinued

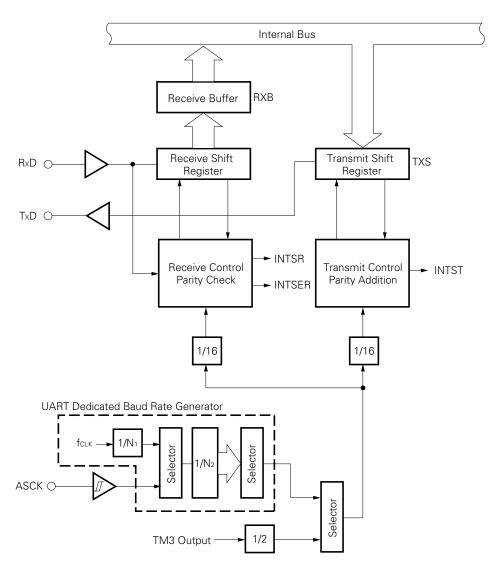
Fig. 3-6 Serial Interface Example

(a) UART + SBI

(b) UART + 3-wire serial I/O

Note Handshake Line

3.6.1 Asynchronous Serial Interface

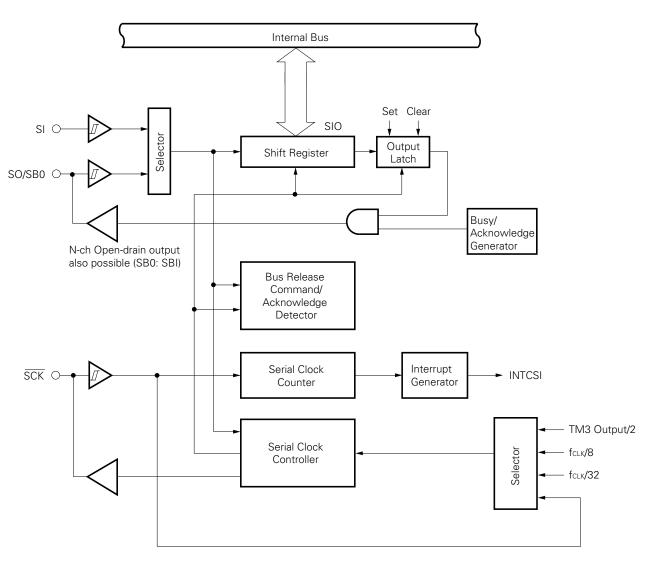

The μ PD78217A/78218A incorporates UART (Universal Asynchronous Receiver Transmitter) as the asynchronous serial interface. UART is used to send/receive one byte of data following a start bit.

Phase-out/Discontinued

The UART incorporates a dedicated baud rate generator which can generate a wide range of desired baud rates and also determine baud rates by scaling the ASCK pin input clocks or 8-bit timer/counter 3 output (TM3 output), allowing transmission/reception with a variety of baud rates.

If the UART dedicated baud rate generator is used, the MIDI standard baud rate (31.25 kbps) can also be obtained.

Fig. 3-7 Asynchronous Serial Interface (UART) Block Diagram



fclk: Internal system clock frequency (System Clock Frequency/2)

3.6.2 Clock Synchronous Serial Interface

The master device starts transmission by activating the serial clock and transfers one-byte data in synchronization with this clock.

Phase-out/Discontinued

fclk: Internal System Clock Frequency (System Clock Frequency/2)

(1) 3-wire serial I/O

This is an interface for communicating with devices incorporating a conventional clock synchronous serial interface.

Basically, communication is performed with three lines, one serial clock line (SCK) and two serial data lines (SI, SO). When connecting to multiple devices, a handshake line is necessary.

(2) SBI

Communication with multiple devices is performed with one serial clock line (SCK) and one serial bus line (SB0). This is NEC's standard serial interface.

The master device selects the slave device to be communicated with by outputting its "address" from the SB0 pin. Therefore, "commands" and "data" perform transfer and receive between the master and slave.

4. INTERNAL/EXTERNAL CONTROL FUNCTION

4.1 INTERRUPTS

Two interrupt request servicing methods can be selected, as shown in the following table.

Table 4-1 Interrupt Request Servicing

Service Mode	Servicing Subject	Service	PC, PSW Contents
Vectored interrupt	Software	Branches to service routine, and executes (any process contents)	With save and return
Macro service	Firmware	Data transfer, etc., between memory and I/O (fixed process contents)	Hold

4.1.1 Interrupt Sources

There are 19 types of interrupt sources and a BRK instruction execution, as shown in Table 4-2.

The priority of the interrupt servicing can be set to 2 levels (high and low priority levels). Therefore, the levels of nest control when the interrupt is in progress and when interrupt requests occur simultaneously (see Fig. 4-1, Fig. 4-2) can be separated. Nesting will always take place in the macro service (It won't be put on hold).

Phase-out/Discontinued

The default priority is the priority level (fixed) to service the interrupt requests which occur at the same level simultaneously (see **Fig. 4-2**).

Type Default Priority		Source		Internal/ External	Macro Service
		Name Trigger			
Software		BRK	Instruction execution		
Non- maskable		NMI	Pin input edge detection	External	
Maskable	0 (highest)	INTP0	Pin input edge detection (TM1 capture trigger)		0
	1	INTP1	Pin input edge detection (TM2 capture trigger)		
	2	INTP2	Pin input edge detection (TM2 event counter input)		
	3	INTP3	Pin input edge detection (TM0 capture trigger)		
	4	INTC00	TM0 to CR00 match signal generation	Internal	
	5	INTC01	TM0 to CR01 match signal generation		
	6	INTC10	TM1 to CR10 match signal generation		
	7	INTC11	TM1 to CR11 match signal generation		
	8	INTC21	TM2 to CR21 match signal generation		
	9	INTP4	Pin input edge detection	External	
		INTC30	TM3 to CR30 match signal generation	Internal	
	10	INTP5	Pin input edge detection	External	
		INTAD	A/D converter conversion termination (transfer to ADCR)	Internal	
	11	INTC20	TM2 to CR20 match signal generation		
	12	INTSER	ASI receive error generation		
	13	INTSR	ASI receive termination		0
	14	INTST	ASI transmit termination		
	15 (lowest)	INTCSI	CSI transfer termination		

Table 4-2 Interrupt Sources

TM0 :	16-bit timer
TM1 to TM3 :	8-bit timer
ASI :	Asynchronous serial interface
CSI :	Clock synchronous serial interface

Fig. 4-1 Servicing Example when an Interrupt Request Occurrence is Issued while an Interrupt is Serviced

Phase-out/Discontinued

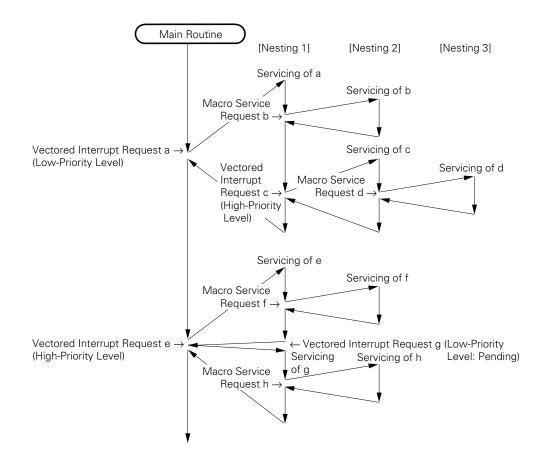
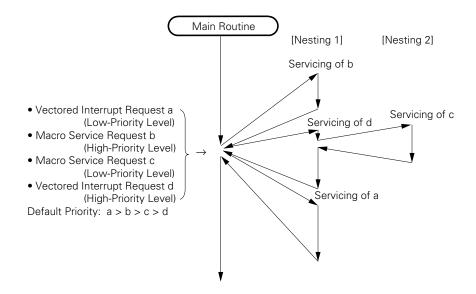



Fig. 4-2 Servicing Example of Simultaneous Interrupt Requests

4.1.2 Vectored Interrupt

The memory contents of the vector table address, which corresponds to the interrupt source, is branched into the service routine as a destination address.

Phase-out/Discontinued

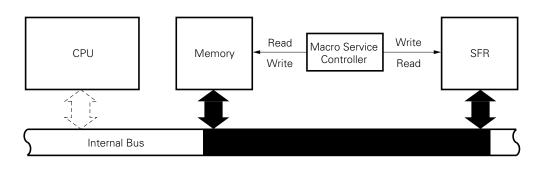
As the CPU executes the interrupt servicing, the following operations occur.

- When branch : Saving the CPU status (PC, PSW contents) to the stack.
- When return : Returning the CPU status (PC, PSW contents) from the stack.

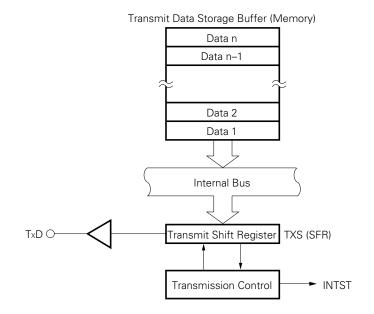
The RETI instruction executes returning to the main routine from the service routine.

Interrupt Source	Vector Table Address
BRK	003EH
NMI	0002H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	0014H
INTC01	0016H
INTC10	0018H
INTC11	001AH

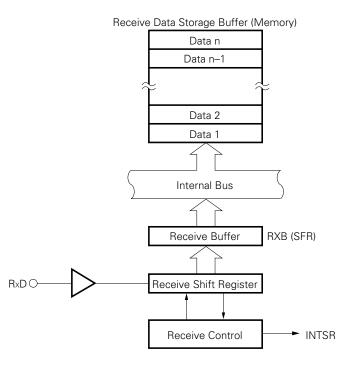
Table 4-3 Vector Table Address


Interrupt Source	Vector Table Address
INTC21	001CH
INTP4	000EH
INTC30	
INTP5	0010H
INTAD	
INTC20	0012H
INTSER	0020H
INTSR	0022H
INTST	0024H
INTCSI	0026H

4.1.3 Macro Service


This is a function to transfer data between the memory and special function registers (SFR) without going through the CPU. The macro service controller accesses the memory and SFR, and transfers data directly without fetching it.

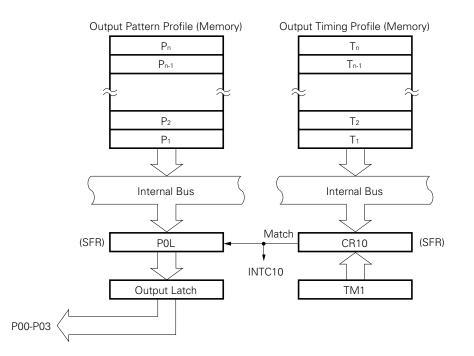
High-speed data transfer is enabled because no data is saved, restored or fetched.


- 4.1.4 Macro Service Application Examples
- (1) Transmit operation of serial interface

Phase-out/Discontinued

Whenever the macro service request INTST is generated, the next transmit data is transferred to TXS from the memory. When the data n (last byte) is transferred to TXS (the transmit data storage buffer becomes empty), a vectored interrupt request INTST is generated.

(2) Receive operation of serial interface

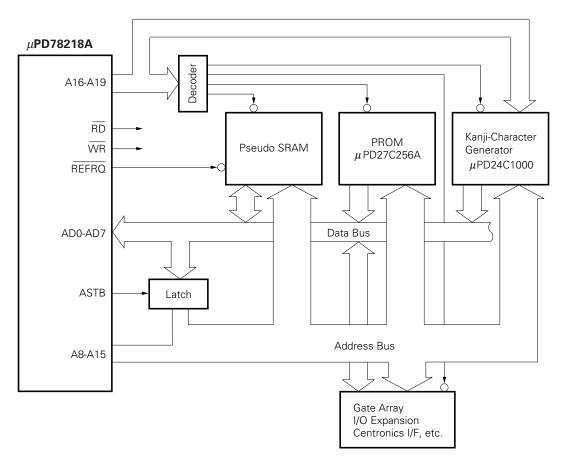


Whenever the macro service request INTSR is generated, the receive data is transferred to the memory from RXB. When the data n (last byte) is transferred to the memory (the receive data storage buffer becomes empty), the vectored interrupt request INTSR is generated.

(3) Real-time output port

The INTC10 and INTC11 become output triggers of the real-time output port. In the macro service for them, the next output pattern and interval can be set simultaneously. Therefore, the INTC10 and INTC11 can control 2 system stepping motor independently. Also, they can be applied to control a PWM or DC motor, etc.

Phase-out/Discontinued


Whenever the macro service request INTC10 is generated, the pattern and timing are transferred to P0L and CR10, respectively. When the contents of the TM1 match with the contents of the CR10, the next INTC10 is generated and the contents of the P0L are sent to the output latch. If T_n (last byte) is sent to CR10, a vectored interrupt request INTC10 is generated.

The same operation is available for INTC11 (differences: CR10 \rightarrow CR11, P0L \rightarrow P0H, P00-P03 \rightarrow P04-P07).

4.2 LOCAL BUS INTERFACE

The μ PD78217A/78218A can be connected to an external memory and I/O (memory mapped I/O), and supports the 1M-byte memory space (see **Fig.3-1**).

Phase-out/Discontinued

Fig. 4-4 Local Bus Interface Example

4.2.1 Memory Expansion

The following modes have been prepared as a memory expansion function.

- External memory expansion mode : Expands the program memory and data memory to 31488 bytes (64256 bytes for the μ PD78217A) externally. However, this area can be used unconditionally under the ROM-less mode (EA = L).
- 1-Mbyte expansion mode : Expands the data memory by 960 Kbytes and become a 1-Mbyte memory space.

4.2.2 Programmable Wait

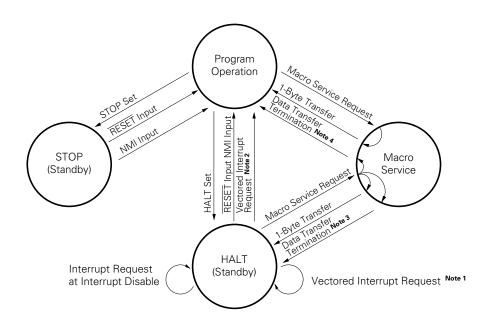
A wait can be independently inserted to the memory mapped on both a normal address (00000H to 0FFFFH) and an expanded address (10000H to FFFFFH). Therefore, the efficiency of the entire system is not decreased.

4.2.3 Pseudo-Static RAM Refresh Function

The refresh operations are as follows.

- Pulse refresh : Outputs the refresh pulse to REFRQ pin in synchronization with a bus cycle.
- Power-down self refresh : Outputs a low-level to the REFRO pin in the standby mode and holds the contents of the pseudo-static RAM.

4.3 STANDBY


This is a function to reduce the power consumption of the chip. The following modes are available.

Phase-out/Discontinued

- HALT mode : Stops the operation clock of the CPU. The average power consumption is reduced by switching from normal mode to HALT mode and vice-versa.
- STOP mode : Stops the oscillator. This stops all operation in the chip and enables minute power consumption consisting only of leakage current.

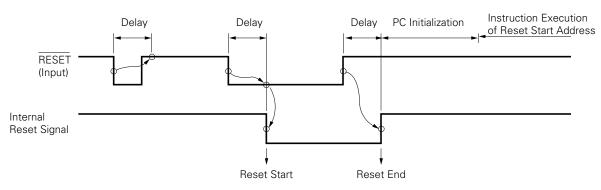
These modes are programmable.

The macro service is started from the HALT mode.

- **Notes 1.** In case a vectored interrupt request is a low-priority level (status to disable interrupt of a low-priority sequence under the HALT setting).
 - 2. In case a vectored interrupt request is a high-priority level or in case of the status to enable interrupt of a low-priority sequence under the HALT setting.
 - **3.** In case a macro service is a high-priority level (status to disable interrupt of a low-priority sequence under the HALT setting).
 - **4.** In case a macro service is a high-priority level or in case of the status to enable interrupt of a low-priority sequence under the HALT setting.

4.4 RESET

When a low level is input to the RESET pin, the internal hardware is initialized (reset state). When the RESET input changes from low level to high level, the following data is set in the program counter (PC).


Phase-out/Discontinued

- Lower 8 bits of PC : Contents of 0000H address
- Upper 8 bits of PC : Contents of 0001H address

The contents of the PC set the destination address and the program starts to be executed from the address. Therefore, it can start from any address by reset start.

Please set the program for the contents of each register as required.

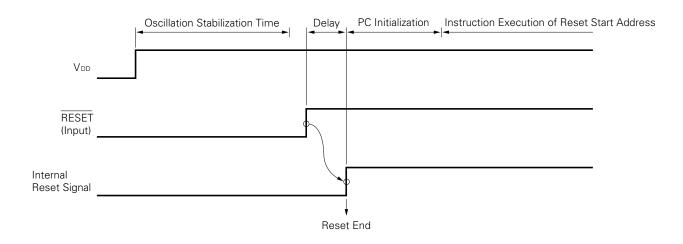

A noise eliminator has been incorporated in the RESET input circuit to prevent any error from noise. This noise eliminator is a sampling circuit based on analog delay.

Fig. 4-6 Reset Acknowledge

Set the RESET signal active in the reset operation at power-on until the oscillation stabilization time (approx. 40 ms) elapses.

Fig. 4-7 Reset Operation at Power-On

5. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP

Phase-out/Discontinued

2nd Operand 1st Operand	#byte	A	r r'	saddr saddr'	sfr	mem	&mem	!addr16	&!addr16	PSW	n	None ^{Note2}
А	ADD ^{Note1}		MOV XCH	MOV XCH ADD ^{Note1}	MOV XCH ADD ^{Note1}	MOV XCH ADD ^{Note1}	MOV XCH ADD ^{Note1}	MOV	MOV	MOV		
r	MOV		MOV XCH ADD ^{Note1}								ROL ROLC ROR RORC SHR SHL	MULU DIVUW INC DEC
r1												DBNZ
saddr	MOV ADD ^{Note1}	MOV		MOV XCH ADD ^{Note1}								INC DBNZ DEC
sfr	MOV ADD ^{Note1}	MOV										PUSH POP
mem & mem		MOV										
mem1 &mem1												ROR4 ROL4
!addr16		MOV										
&!addr16		MOV										
PSW	MOV	MOV										PUSH POP
STBC	MOV											

Table 5-1 Instructions Classified by 8-Bit Addressing Mode

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR and CMP are the same as ADD.

2. There is no 2nd operand, or the 2nd operand is not an operand address.

(2) 16-bit instructions

MOVW, ADDW, SUBW, CMPW, INCW, DECW, SHRW, SHLW, PUSH, POP

Table 5-2 Instructions Classified by 16-Bit Addressing Mode

Phase-out/Discontinued

2nd Operand 1st Operand	#word	AX	rp rp'	saddrp	sfrp	mem1	&mem1	SP	n	None
AX	ADDW SUBW CMPW		ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW ADDW SUBW CMPW	MOVW	MOVW	MOVW		
rp	MOVW		MOVW						SHLW SHRW	INCW DECW PUSH POP
saddrp	MOVW	MOVW								
sfrp	MOVW	MOVW								
mem1 &mem1		MOVW								
SP	MOVW	MOVW								INCW DECW

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Table 5-3 Instructions Classified by Bit Manipulation Instruction Addressing Mode

2nd Operand 1st Operand	СҮ	A.bit	/A.bit	X.bit	/X.bit	saddr. bit	/saddr. bit	sfr.bit	/sfr.bit	PSW.bit	/PSW. bit	None ^{Note}
СҮ		MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	MOV1 AND1 OR1 XOR1	AND1 OR1	SET1 CLR1 NOT1
A.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
X.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
saddr.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
sfr.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR
PSW.bit	MOV1											SET1 CLR1 NOT1 BT BF BTCLR

Note There is no 2nd operand, or the 2nd operand is not an operand address.

(4) Call/branch instructions

CALL, CALLF, CALLT, BR, BC, BT, BF, BTCLR, DBNZ, BL, BNC, BNL, BZ, BE, BNZ, BNE

Table 5-4 Instructions Classified by Call/Branch Instruction Addressing Mode

Phase-out/Discontinued

Operands of Instruction Address	\$addr16	!addr16	rp	!addr11	[addr5]
Basic instructions	BR BC ^{Note}	CALL BR	CALL BR	CALLF	CALLT
Compound instructions	BT BF BTCLR DBNZ				

Note BL, BNC, BNL, BZ, BE, BNZ and BNE are the same as BC.

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, NOP, EI, DI, SEL

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
	Vdd		-0.5 to +7.0	V
Supply voltage	AVREF		-0.5 to V _{DD} +0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	VII		-0.5 to V _{DD} +0.5	V
input voltage	VI2	Note	-0.5 to AVREF +0.5	V
Output voltage	Vo		-0.5 to V _{DD} +0.5	V
Output current, low		Per pin	15	mA
Output current, low	lol	All output pins	100	mA
	Le.:	Per pin	-10	mA
Output current, high	Іон	All output pins	-50	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Phase-out/Discontinued

 \star

- **Note** P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 pins are used as A/D converter input pins. However, V₁₁ absolute maximum ratings should also be satisfied.
- Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

OPERATING CONDITIONS

CLOCK FREQUENCY	OPERATING AMBIENT TEMPERATURE (TA)	SUPPLY VOLTAGE (VDD)
4 MHz \leq fxx \leq 12 MHz	−40 to +85 °C	+5 V \pm 10 %

CAPACITANCE (TA = 25 °C, VDD = Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	С	f = 1 MHz			20	pF
Output capacitance	Co	unmeasured pins			20	pF
I/O capacitance	Сю	returned to 0 V.			20	pF

OSCILLATOR CHARACTERISTICS (TA= -40 to +85 °C, VDD = +5 V ± 10 %, Vss = 0 V)

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	MIN.	MAX.	UNIT
Ceramic resonator or crystal resonator	$V_{SS} \times 1 \times 2$ $C1 \longrightarrow C2$ 777	Oscillator frequency (fxx)	4	12	MHz
External	X1 X2	X1 input frequency (fx)	4	12	MHz
clock		X1 input rising/falling time (txR , txF)	0	30	ns
		X1 input high/low level width (twxн , twxL)	30	130	ns

Caution When using the clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss. Do not ground it to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

RECOMMENDED OSCILLATOR CONSTANTS

CERAMIC RESONATOR

MANUFACTURER	FREQUENCY	PART NUMBER	RECOMMENDED	CONSTANTS	
	[MHz]		C1 [pF]	C2 [pF]	
Murata Mfg.	12	CSA12.0MTZ	30	30	
wurata wig.	12	CST12.0MTW	Capacitor on-chip type		
		EFOGC1205C4 ^{Note}	Capacitor on-chip type		
Matsushita Electronics Parts	12	EFOEC1205C4			
		EFOEN1205C4	33	33	
	12	FCR12.0M2S	33	33	
TDK Co.	12	FCR12.0MC	Capacitor of	n-chip type	

 \star

Note Production discontinued.

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage, low	VIL		0		0.8	V
	VIH1	Pins except for Note 1 and Note 2	2.2		Vdd	V
Input voltage, high	VIH2	Pin of Note 1	2.2		AVREF	V
	VIH3	Pin of Note 2	0.8 VDD		Vdd	V
Output voltage, low	Vol1	lol = 2.0 mA			0.45	V
Output voltage, low	Vol2	IoL = 8.0 mA Note3			1.0	V
	Vон1	Іон = -1.0 mA	V _{DD} -1.0			V
Output voltage, high	Vон2	Іон = -100 μА	VDD-0.5			V
	Vонз	Іон = -5.0 mA ^{Note4}	2.0			V
X1 input current, low	hι	$0 \ V \leq V_I \leq V_{IL}$			-100	μA
X1 input current, high	Ін	$V_{\text{IH3}} \leq V_{\text{I}} \leq V_{\text{DD}}$			100	μA
Input leakage current	lu	$0 \ V \leq V_{I} \leq V_{DD}$			±10	μA
Output leakage current	Ilo	$0 \ V \leq V_{\text{O}} \leq V_{\text{DD}}$			±10	μA
AV _{REF} current	AIREF	Operating mode fxx = 12 MHz		1.5	5.0	mA
	Idd1	Operating mode fxx = 12 MHz		20	40	mA
Vbb supply current	IDD2	HALT mode fxx = 12 MHz		7	20	mA
Data retention voltage	Vdddr	STOP mode	2.5		5.5	V
Data retention current	DDDB	STOP VDDDR = 2.5 V		2	20	μA
	IDDDA	mode V _{DDDR} = 5 V ±10 %		5	50	μA
Pull-up resistor	R∟	$V_1 = 0 V$	15	40	80	kΩ

Notes 1. P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 pins are used as A/D converter input pins.

2. X1, X2, RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/ INTP5, P27/SI, P32/SCK, P33/SO/SB0, EA pins

3. P40/AD0 to P47/AD7, P50/A8 to P57/A15 pins

4. P00 to P07 pins

AC CHARACTERISTICS (TA = -40 to +85 °C, VDD = +5 V \pm 10 %, Vss = 0 V) READ/WRITE OPERATION (1/2)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input clock cycle time	tcyx		82	250	ns
Address setup time (to ASTB \downarrow)	tsast •		52		ns
Address hold time (from $ASTB{\downarrow})^{Note}$	t hsta		25		ns
Address hold time (from $\overline{RD}\uparrow$)	thra		30		ns
Address hold time (from \overline{WR})	thwa		30		ns
$\overline{RD} \downarrow$ delay time from address	tdar •		129		ns
Address float time (from $\overline{\text{RD}}\downarrow$)	tfar •		11		ns
Data input time from address	tdaid •	No. of waits = 0		228	ns
Data input time from ASTB \downarrow	tdstid •	No. of waits = 0		181	ns
Data input time from $\overline{\text{RD}}\downarrow$	tdrid •	No. of waits = 0		100	ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	tdstr •		52		ns
Data hold time (from $\overline{RD}\uparrow$)	thrid		0		ns
Address active time from $\overline{\mathrm{RD}} \uparrow$	tdra •		124		ns
ASTB ^{\uparrow} delay time from $\overline{\text{RD}}^{\uparrow}$	tdrst •		124		ns
RD low-level width	twrl •	No. of waits = 0	124		ns
ASTB high-level width	twsth •		52		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from address	tdaw •		129		ns
Data output time from ASTB \downarrow	tostod •			142	ns
Data output time from $\overline{\text{WR}} \downarrow$	tdwod			60	ns
	tostw1 •	Refreshing disabled	52		ns
WR \downarrow delay time from ASTB \downarrow	tdstw2 •	Refreshing enabled	129		ns
Data setup time (to $\overline{\mathrm{WR}}$)	tsodwr •	No. of waits = 0	146		ns
Data setup time (to $\overline{WR}\downarrow$)	tsodwr •	Refreshing enabled	22		ns
Data hold time $(from \overline{WR}\uparrow)^{Note}$	thwod		20		ns
ASTB \uparrow delay time from $\overline{\mathrm{WR}}\uparrow$	towst •		42		ns
	twwL1 •	Refreshing disabled No. of waits = 0	196		ns
WR low-level width	twwL2•	Refreshing enabled No. of waits = 0	114		ns
$\overline{\text{WAIT}}\downarrow$ input time from address	tdawt •			146	ns
$\overline{\text{WAIT}}\downarrow$ input time from ASTB \downarrow	tdstwt •			84	ns

Note The hold time includes the time to hold the VoH and VoL under the load conditions of CL = 100 pF and RL = 2 k Ω .

Remarks 1. The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

2. For a parameter with a dot (•) in the SYMBOL column, refer to "tcvx DEPENDENT BUS TIMING DEFINITION" as well.

READ/WRITE OPERATION (2/2)

PARAN	/IETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
WAIT hold time	\overline{WAIT} hold time from $ASTB{\downarrow}$		No. of external waits = 1	174		ns
WAIT [↑] delay tim	ne from ASTB↓	tdstwth•	No. of external waits = 1		273	ns
$\overline{WAIT}\downarrow$ input time	e from $\overline{RD}\downarrow$	tdrwtl•			22	ns
WAIT hold time	from $\overline{RD}\downarrow$	thrwt•	No. of external waits = 1	87		ns
WAIT [↑] delay tim	the from $\overline{RD}\downarrow$	tdrwth•	No. of external waits = 1		186	ns
Data input time	from WAIT	towtid •			62	ns
WR↑ delay time	\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$			154		ns
RD↑ delay time	from WAIT ↑	tdwtr•		72		ns
WAIT input time (At refresh disal		tdwwtl •			22	ns
WAIT hold time	Refresh disabled	thwwr1•	No. of external waits = 1	87		ns
from $\overline{WR} \downarrow$	Refresh enabled	thwwt2•	No. of external waits = 1	5		ns
WAIT [↑] delay	Refresh disabled	towwTH1•	No. of external waits = 1		186	ns
time from $\overline{WR}\downarrow$	Refresh enabled	tdwwth2•	No. of external waits = 1		104	ns
REFRQ↓ delay ti	me from RD↑	torrfa•		154		ns
REFRQ↓ delay ti	$\overline{REFRQ}\downarrow$ delay time from $\overline{WR}\uparrow$			72		ns
REFRQ low-leve	l width	twrfal •		120		ns
ASTB↑ delay tim	ne from REFRQ	tdrfast •		280		ns

Phase-out/Discontinued

Remarks 1. The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

2. For a parameter with a dot (•) in the SYMBOL column, refer to "tcvx DEPENDENT BUS TIMING DEFINITION" as well.

SERIAL OPERATION

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
		Input	External clock	1.0		μs
Serial clock cycle time	tсүsк	Output	Internal divided by 16	1.3		μs
		Output	Internal divided by 64	5.3		μs
		Input	External clock	420		ns
Serial clock low-level width	twsĸ∟	Output	Internal divided by 16	556		ns
		Output	Internal divided by 64	2.5		μs
		Input	External clock	420		ns
Serial clock high-level width	twsкн	Output	Internal divided by 16	556		ns
		Output	Internal divided by 64	2.5		μs
SI, SB0 setup time (to SCK↑)	tsssк			150		ns
SI, SB0 hold time (from SCK↑)	tнssк					ns
SO/SB0 output delay time	tdsbsk1		oush-pull output serial I/O mode)	0	300	ns
(from SCK↓)	tdsbsk2	Open-drain output (SBI mode), RL = 1 k Ω		0	800	ns
SB0 high hold time (from SCK [↑])	tнsвsк			4		tсүх
SB0 low setup time (to $\overline{SCK}\downarrow$)	tssbsk	SBI mode		4		tсүх
SB0 low-level width	twsbl			4		tсүх
SB0 high-level width	twsвн			4		tcyx

Phase-out/Discontinued

Remark The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

OTHER OPERATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
NMI low-level width	twnil		10		μs
NMI high-level width	twnih		10		μs
INTP0 to INTP5 low-level width	twi⊤∟		24		tcyx
INTP0 to INTP5 high-level width	twiтн		24		tcyx
RESET low-level width	twrsl		10		μs
RESET high-level width	twrsh		10		μs

Phase-out/Discontinued

EXTERNAL CLOCK TIMING

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input low-level width	twxL		30	130	ns
X1 input high-level width	twxн		30	130	ns
X1 input rise time	txr		0	30	ns
X1 input fall time	tхғ		0	30	ns
X1 input clock cycle time	tсүх		82	250	ns

A/D CONVERTER CHRACTERISTICS (TA = -40 to +85 °C, Vdd = +5 V ± 10 %, Vss = AVss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			bit
		$\begin{array}{llllllllllllllllllllllllllllllllllll$			0.4	%
Overall error ^{Note1}		$\begin{array}{llllllllllllllllllllllllllllllllllll$			0.8	%
		$4.0 V \leq AV_{REF} \leq V_{DD}$			0.8	%
Quantization error					±1/2	LSB
Conversion time	tconv	82 ns ≤ tcyx < 125 ns (The FR bit of ADM is to be "0")	360			tсүх
	LCONV	125 ns \leq tcyx < 250 ns (The FR bit of ADM is to be "1")	240			tсүх
		82 ns ≤ tcyx < 125 ns (The FR bit of ADM is to be "0")	72			tcyx
Sampling time	t samp	125 ns \leq tcyx < 250 ns (The FR bit of ADM is to be "1")	48			tсүх
Analog input voltage	VIAN		-0.3		AV _{REF} +0.3	V
Analog input impedance	Ran			1000		MΩ
Reference voltage	AVREF		3.6		Vdd	V
AVREF current		fxx = 12 MHz		1.5	5.0	mA
	AIREF	Note 2		0.2	1.5	mA

★

Notes 1. Quantization error is not included. Represented by the ratio to full-scale value.

2. When ADM register's CS bit = 0, in STOP mode.

μ**PD78217A, 78218A**

tcyx DEPENDENT BUS TIMING DEFINITION (1/2)

PARAMETER	SYMBOL	FORMULA	MIN./MAX.	12 MHz	UNIT
X1 input clock cycle time	tсүх		MIN.	82	ns
Address setup time (to ASTB \downarrow)	t sast	tcyx – 30	MIN.	52	ns
$\overline{\text{RD}} {\downarrow}$ delay time from address	t dar	2tcyx – 35	MIN.	129	ns
Address float time (from $\overline{\text{RD}}\downarrow$)	t far	tcyx/2 - 30	MIN.	11	ns
Data input time from address	tdaid	(4 + 2n) tcyx - 100	MAX.	228 Note	ns
Data input time from $ASTB{\downarrow}$	t DSTID	(3 + 2n) tcyx - 65	MAX.	181 Note	ns
Data input time from $\overline{\text{RD}} \downarrow$	tdrid	(2 + 2n) tcyx - 64	MAX.	100 Note	ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t dstr	tcyx – 30	MIN.	52	ns
Address active time from $\overline{\text{RD}} \uparrow$	t dra	2tcyx - 40	MIN.	124	ns
ASTB \uparrow delay time from $\overline{\text{RD}}\uparrow$	t drst	2tcyx - 40	MIN.	124	ns
RD low-level width	twrl	(2 + 2n) tcyx - 40	MIN.	124 Note	ns
ASTB high-level width	twsтн	tcyx – 30	MIN.	52	ns
$\overline{\text{WR}} {\downarrow}$ delay time from address	tdaw	2tcyx – 35	MIN.	129	ns
Data output time from ASTB \downarrow	tdstod	tcyx + 60	MAX.	142	ns
	tdstw1	tcyx - 30	MIN.	52	ns
$\overline{\mathrm{WR}}\downarrow$ delay time from ASTB \downarrow	USIWI	(Refreshing disabled)			115
WRV delay time from ASTBV	tdstw2	2tcyx – 35	MIN.	129	ns
	(DSTW2	(Refreshing enabled)			115
Data setup time (to $\overline{WR} \uparrow$)	tsodwr	(3 + 2n) tcyx - 100	MIN.	146 Note	ns
		tcyx – 60	N 41 N I	00	
Data setup time (to $\overline{WR}\downarrow$)	tsodwf	(Refreshing enabled)	MIN.	22	ns
ASTB \uparrow delay time from $\overline{\mathrm{WR}}\uparrow$	t dwst	tcyx - 40	MIN.	42	ns
	twwL1	(3 + 2n) tcyx - 50	MIN.	196 Note	ns
WR low-level width	CVVVLI	(Refreshing disabled)	iviiri.	100	113
	twwL2	(2 + 2n) tcyx - 50	MIN.	114 Note	ns
	LVVVVLZ	(Refreshing enabled)	ivilin.	117	115
$\overline{WAIT} \downarrow input time from address$	t dawt	3tcyx – 100	MAX.	146	ns
$\overline{\text{WAIT}} \downarrow \text{ input time from ASTB} \downarrow$	t dstwt	2tcyx - 80	MAX.	84	ns

Phase-out/Discontinued

Remark "n" indicates the number of waits.

Note When n = 0

tcvx DEPENDENT BUS TIMING DEFINITION (2/2)

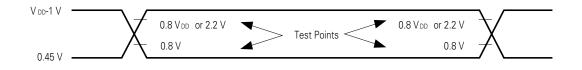
PARAMETER		SYMBOL	FORMULA	MIN./MAX.	12 MHz	UNIT
WAIT hold time	from ASTB \downarrow	tнsтwт	2Xtcyx + 10	MIN.	174 Note	ns
WAIT [↑] delay tim	ne from ASTB \downarrow	t DSTWTH	2(1 + X)tcyx - 55	MAX.	273 Note	ns
WAIT↓ input tim	ie from $\overline{RD}\downarrow$	t drwtl	tcyx - 60	MAX.	22	ns
WAIT hold time	from RD↓	thrwt	(2X - 1)tcyx + 5	MIN.	87 ^{Note}	ns
WAIT [↑] delay tim	the from $\overline{RD}\downarrow$	t drwth	(2X + 1)tcyx - 60	MAX.	186 Note	ns
Data input time	from WAIT	tdwtid	tcvx - 20	MAX.	62	ns
WR↑ delay time	from WAIT↑	tdwtw	2tcyx - 10	MIN.	154	ns
RD↑ delay time	from WAIT↑	tdwtr	tcyx - 10	MIN.	72	ns
WAIT input time (At refresh disal		t dwwtl	tcyx - 60	MAX.	22	ns
WAIT hold time	Refresh disabled	t HWWT1	(2X – 1)tcyx + 5	MIN.	87 ^{Note}	ns
from $\overline{WR}\downarrow$	Refresh enabled	thwwt2	2(X - 1)tcyx + 5	MIN.	5 Note	ns
WAIT [↑] delay	Refresh disabled	tdwwth1	(2X + 1)tcvx - 60	MAX.	186 ^{Note}	ns
time from $\overline{WR}\downarrow$	Refresh enabled	tdwwth2	2Xtcyx - 60	MAX.	104 Note	ns
$\overline{REFRQ}\downarrow$ delay time from $\overline{RD}\uparrow$		t DRRFQ	2tcyx - 10	MIN.	154	ns
$\overline{REFRQ}\downarrow$ delay time from $\overline{WR}\uparrow$		t dwrfq	tcyx - 10	MIN.	72	ns
REFRQ low-leve	l width	t WRFQL	2tcyx - 44	MIN.	120	ns
ASTB↑ delay tim	ne from REFRQ↑	t drfqst	4tcyx - 48	MIN.	280	ns

Phase-out/Discontinued

Remarks 1. X: The number of the external waits (1, 2, ...)

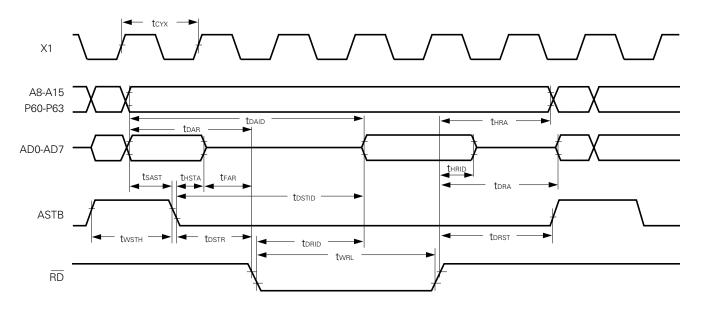
- **2.** $tcyx \cong 82$ ns (fxx = 12 MHz)
- **3.** "n" indicates the number of waits.

Note When X = 1

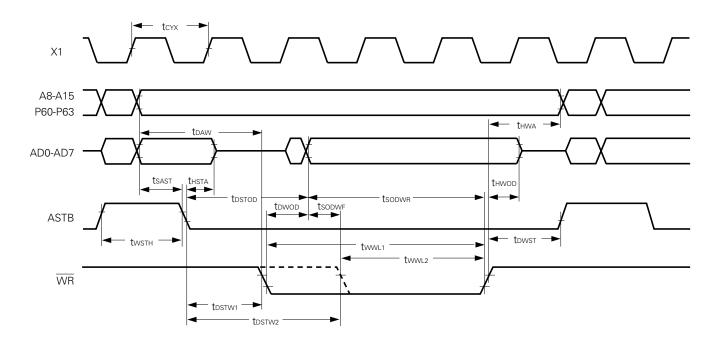

DATA RETENTION CHARACTERISTICS (TA= -40 to +85 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention voltage	Vdddr	STOP mode	2.5		5.5	V
Dete setentian comment		VDDDR = 2.5 V		2	20	μΑ
Data retention current	IDDDR	$V_{DDDR} = 5 V \pm 10 \%$		5	50	μΑ
VDD rise time	trvd		200			μs
VDD fall time	tfvd		200			μs
VDD hold time (from	thyp					
STOP mode setting)	CIVE		0			ms
STOP release signal	t drel		0			ms
input time			0			1115
Oscillation stabilization		Crystal resonator	30			ms
wait time	twait	Ceramic resonator	5			ms
Low-level input voltage	VIL	Specified pin ^{Note}	0		0.1 VDDDR	V
High-level input voltage	VIH	epection pin	0.9 VDDDR		Vdddr	V

Phase-out/Discontinued

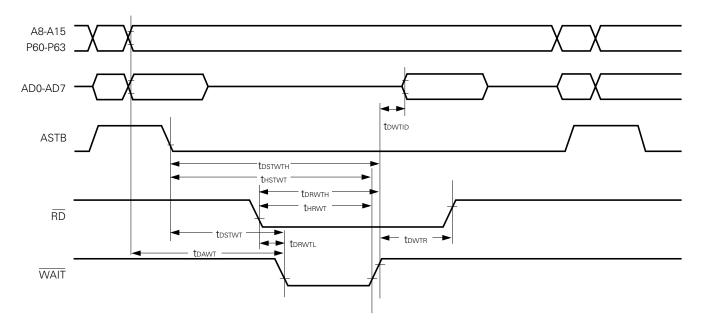

Note RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0 and EA pins.

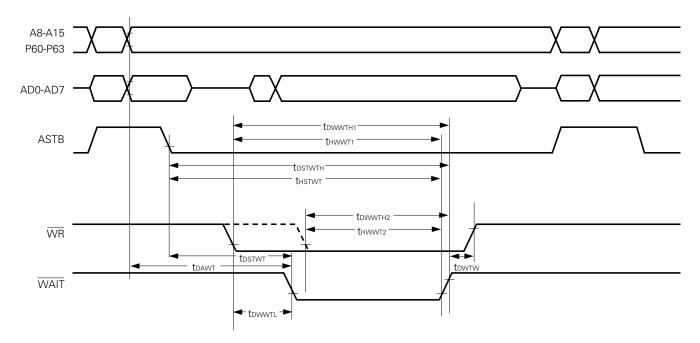
AC Timing Test Point


Timing Waveform

Read operation

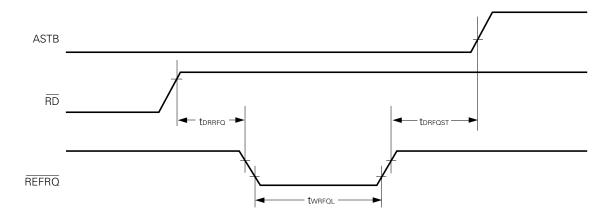
Phase-out/Discontinued


Write operation

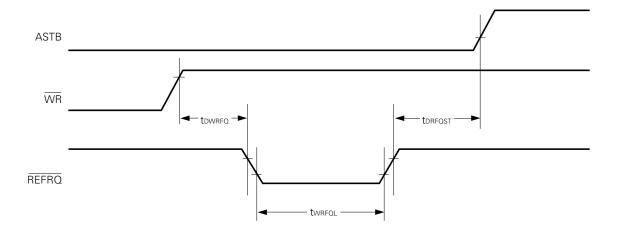

External WAIT Signal Input Timing

Read operation

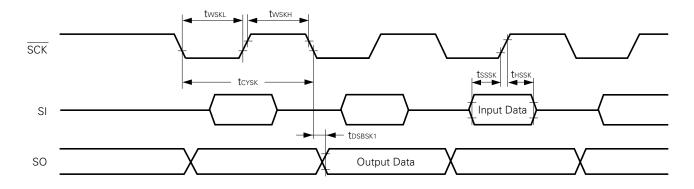
Phase-out/Discontinued


Write operation

52

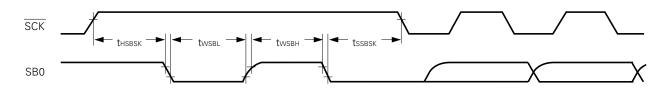

Refresh Timing Waveform

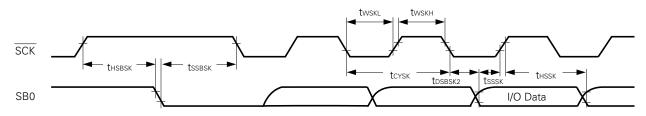
Refresh after read


Phase-out/Discontinued

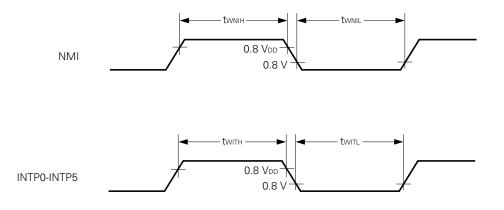
Refresh after write

Serial Operation

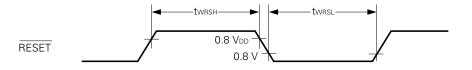

3-wire serial I/O mode


Phase-out/Discontinued

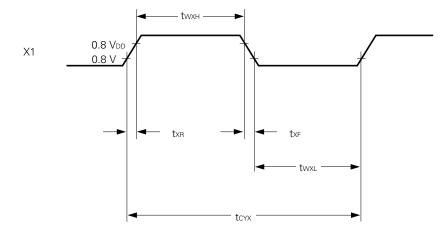
SBI Mode


Bus release signal transfer

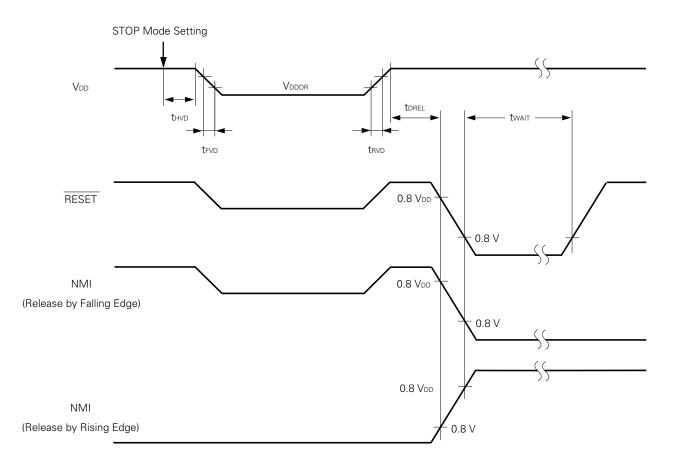
Command signal transfer



Interrupt Input Timing


Phase-out/Discontinued

Reset Input Timing



Phase-out/Discontinued

External Clock Timing

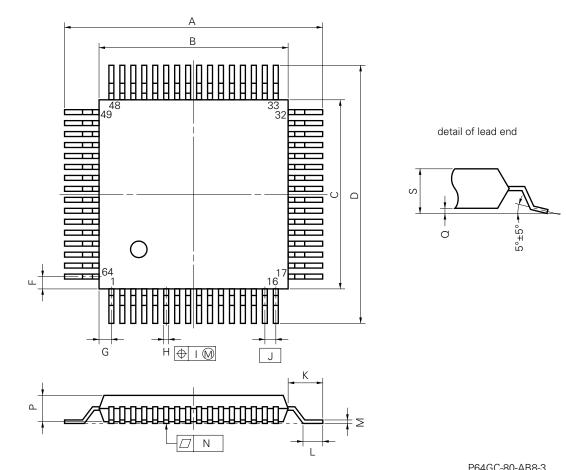
Data Retention Characteristics

7. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

Phase-out/Discontinued

NOTE


- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°
		64C-70-750A C-1

P64C-70-750A,C-1

Remark ES versions have the same package drawings and use the same materials as mass-produced versions.

64 PIN PLASTIC QFP (□14)

Phase-out/Discontinued

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P64GC-80-AB8-3
ITEM	MILLIMETERS	INCHES
А	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	0.014+0.004 -0.005
Ι	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	$0.15\substack{+0.10 \\ -0.05}$	0.006+0.004
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

Remark ES versions have the same package drawings and use the same materials as mass-produced versions.

 \star

8. RECOMMENDED SOLDERING CONDITIONS

The μ PD78217A/78218A should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to the information document **"Semiconductor Device Mounting Technology Manual"** (IEI-1207).

Phase-out/Discontinued

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 8-1 Surface Mounting Type Soldering Conditions

μPD78217AGC-AB8/78218AGC-×××-AB8 : 64-pin plastic QFP (14 x 14 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	 Package peak temperature: 235 °C, Reflow time: 30 seconds or less (at 210 °C or higher), Maximum number of reflow processes: 2 times <cautions></cautions> (1) After the first reflow process, cool the package down to room temperature, then start the second reflow process. (2) After the first reflow process, do not use water to remove residual flux. 	IR35-00-2
VPS	 Package peak temperature: 215 °C, Reflow time: 40 seconds or less (at 200 °C or higher), Maximum number of reflow processes: 2 times <cautions></cautions> (1) After the first reflow process, cool the package down to room temperature, then start the second reflow process. (2) After the first reflow process, do not use water to remove residual flux. 	VP15-00-2
Partial heating	Pin temperature: 300 °C or below, Heat time: 3 seconds or less (per each side of the device)	

Caution Apply only one kind of soldering method to a device, except for partial heating method.

Table 8-2 Insertion Type Soldering Conditions

μ PD78217ACW/78218ACW- \times ×× : 64-pin plastic shrink DIP (750 mil)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder temperature: 260 °C or below, Flow time: 10 seconds or less
Partial heating	Pin temperature: 300 °C or below, Heat time: 3 seconds or less (per pin)

Caution The wave soldering process must be applied only to pins, and make sure that the package body does not get jet soldered.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78217A/78218A.

Language Processing Software

RA78K/II ^{Notes1, 2, 3}	78K/II series common assembler package
CC78K/II Notes1, 2, 3	78K/II series common C compiler package
CC78K/II-L Notes1, 2, 3	78K/II series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P214CW PA-78P214GC	Programmer adapters connected to PG-1500
PG-1500 controller Notes1, 2	PG-1500 control program

Debugging Tools

IE-78240-R-A IE-78240-R ^{Note4}	μ PD78218A subseries common in-circuit emulators
IE-78200-R-BK	78K/II series common break board
IE-78240-R-EM IE-78200-R-EM ^{Note₄}	μ PD78218A subseries evaluation emulation boards
EP-78210CW ^{Note4} EP-78240CW-R EP-78210GC ^{Note4} EP-78240GC-R	μ PD78218A subseries common emulation probes
EV-9200GC-64	Socket to be mounted on a user system board made for 64-pin plastic QFP
SD78K/II Notes1, 2	IE-78240-R-A screen debugger
DF78210 Notes1, 2	μ PD78218A subseries device file

Fuzzy Inference Development Support System

FE9000 Note1, FE9200 Note5	Fuzzy knowledge data creation tool
FT9080 Note1, FT9085 Note2	Translator
FI78K/II Notes1, 2	Fuzzy inference module
FD78K/II Notes1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOS[™]) based
 - 2. IBM PC/AT[™] (PC DOS[™]) based
 - HP9000 series 300[™] (HP-UX[™]) based, SPARCstation[™] (Sun OS[™]) based, EWS-4800 series (EWS-UX/V) based
 - 4. No longer manufactured and not available for purchase
 - 5. IBM PC/AT (PC DOS + Windows[™]) based

Remark For third-party development tools, see the 78K/II Series Development Tool Selection Guide (EF-231).

Phase-out/Discontinued

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No. (Japanese)	Document No. (English)
μ PD78218A Subseries User's Manual: Hardware		IEU-755	IEU-1313
78K/II Series User's Manual: Instruction		IEU-754	IEU-1311
78K/II Series Application Note	Fundamentals	IEA-607	IEA-1220
	Application	IEA-700	IEA-1282
	Floating Point Operation Program	IEA-686	IEA-1273
78K/II Series Selection Guide		IF-304	IF-1160
78K/II Series Instruction Table		IEM-5101	
78K/II Series Instruction Set		IEM-5102	
μ PD78218A Series Special Function Register Table		IEM-5532	

Phase-out/Discontinued

Development Tool Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	, ,	EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K Series Library Source File		EEU-777	
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller		EEU-704	EEU-1291
IE-78240-R-A In-Circuit Emulator		EEU-796	EEU-1395
IE-78240-R In-Circuit Emulator	Hardware	EEU-705	EEU-1322
	Software	EEU-706	EEU-1331
SD78K/II Screen Debugger MS-DOS Based	Introduction	EEU-841	
	Reference	EEU-813	
SD78K/II Screen Debugger PC DOS Based	Introduction		
	Reference	EEU-956	EEU-1447
78K/II Series Development Tool Selection Guide		EF-231	

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Embedded Software Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
RX78K/II Real-Time OS	Basic	EEU-910	
	Installation	EEU-884	
	Debugger	EEU-895	
	Technical	EEU-885	
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System	Translator	EEU-862	EEU-1444
78K/II Series Fuzzy Inference Development Support System	Fuzzy Inference Module	EEU-860	EEU-1440
78K/II Series Fuzzy Inference Debugger		EEU-917	EEU-1459

Phase-out/Discontinued

Other Related Documents

Document Name	Document No. (Japanese)	Document No. (English)
QTOP Microcomputer Pamphlet	IB-5040	
Semiconductor Device Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-616	IEI-1207
Quality Grades on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability & Quality Control System	IEM-5068	
Electrostatic Discharge (ESD) Test	MEM-539	
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer-Related Products Guide – Third Party Products	MEI-604	

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Phase-out/Discontinued

μ**PD78217A, 78218A**

[MEMO]

NOTES FOR CMOS DEVICES

Phase-out/Discontinued

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

Phase-out/Discontinued

License not needed: μPD78217ACW, 78217AGC-AB8 The customer must judge the need for license: μPD78218ACW-xxx, 78218AGC-xxx-AB8

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11

MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation. SPARCstation is a trademark of SPARC International, Inc. Sun OS is a trademark of Sun Microsystems, Inc. HP9000 series 300 and HP-UX are trademarks of Hewlett-Packard Company.