To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

8-BIT SINGLE-CHIP MICROCOMPUTER (WITH A/D CONVERTER)

DESCRIPTION

The μ PD78C11A is a CMOS 8-bit microprocessor which can integrate 16 -bit ALU, ROM, RAM, an A/D converter, a multi-function timer/event counter, and a general-purpose serial interface into a single chip, then expand the memory (ROM/RAM) up to 60 K bytes externally. The μ PD78C10A is a ROM-less product of the μ PD78C11A, and can directly address the external memory up to 64 k bytes. The μ PD78C12A is a product which has more built-in ROM capacity than the μ PD78C11A, and its memory (ROM/RAM) can be externally extended up to 56 K bytes. The μ PD78C10A, μ PD78C11A, and μ PD78C12A operated at low power consumption, because they have a CMOS construction. Also, they can hold data with low power consumption by using standby function.

On-chip PROM products, μ PD78CP14 and μ PD78CP18 which are ideal for evaluation or preproduction use during system development, early start-up and short-run multiple-device production of application sets, are available.

FEATURES

- Abundant 159 types of instructions : 87AD series instruction set, multiplication/division instructions, 16-bit operation instructions
- Instruction cycle : $0.8 \mu \mathrm{~s}$ (at 15 MHz operation)
- On-chip ROM : 4096W $\times 8$ (μ PD78C11A), $8192 \mathrm{~W} \times 8$ (μ PD78C12A)

Non (μ PD78C10A)

- On-chip RAM : $256 \mathrm{~W} \times 8$
- High-precision 8-bit A/D converter : 8 analog inputs
- General-purpose serial interface : Asynchronous, synchronous, I/O interface mode
- Multi-function 16-bit timer/event counter
- Two 8-bit timers
- I/O lines : 32 (μ PD78C10A), 44 (μ PD78C11A, 78C12A)
- Interrupt function (external-3, internal -8) : Non-maskable interrupt $\times 1$, maskable interrupt $\times 10$
- Standby function : HALT mode, hardware/software STOP mode
- Zero-cross detection function : (2 inputs)
- On-chip pull-up resistor (port A, B, C: μ PD78C11A, 78C12A only) by mask option

Caution The μ PD78C10A does not hava a mask option.

ORDERING INFORMATION

Ordering Code	Package	On-Chip ROM
μ PD78C10ACW	64-pin plastic shrink DIP (750 mil)	None
μ PD78C10AGF-3BE	64 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)	None
μ PD78C10AGQ-36	64-pin plastic QUIP	None
μ PD78C10AL	68-pin plastic OFJ ($\square 950$ mil)	None
μ PD78C11ACW-xxx	64-pin plastic shirink DIP (750 mil)	Mask ROM
μ PD78C11AGF- $\times \times \times$-3BE	64 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)	Mask ROM
μ PD78C11AGQ-×××-36	64-pin plastic QUIP	Mask ROM
μ PD78C11AGQ-XXX-37	64-pin plastic QUIP straight	Mask ROM
μ PD78C11AL-×××	68-pin plastic OFJ ($\square 950$ mil)	Mask ROM
μ PD78C12ACW-×Xx	64-pin plastic shrink DIP (750 mil)	Mask ROM
μ PD78C12AGF-×××-3BE	64 -pin plastic QFP ($14 \times 20 \mathrm{~mm}$)	Mask ROM
μ PD78C12AGQ-XXX-36	64 -pin plastic QUIP	Mask ROM
μ PD78C12AGQ-×××-37	64-pin plastic QUIP straight	Mask ROM
$\mu \mathrm{PD} 78 \mathrm{C} 12 \mathrm{AL-XXX}$	68-pin plastic QFJ ($\square 950$ mil)	Mask ROM

PIN CONFIGURATION (TOP VIEW)

- For μ PD78C10ACW, μ PD78C10AGQ-36, μ PD78C11ACW $-x \times x, \mu$ PD78C11AGQ- $\times x \times-36 / 37, \mu$ PD78C12ACW- $-x \times$, μ PD78C12AGQ-×××-36/37.

- For μ PD78C10AGF-3BE, μ PD78C11AGF- $x \times x-3 B E, \mu$ PD78C12AGF- $-x \times-3 B E$

- For μ PD78C10AL, μ PD78C11AL-×××, μ PD78C12AL-×XX

Phase-out/Discontinued

1. PIN FUNCTIONS 7
1.1 LIST OF PIN FUNCTION 7
1.2 PIN INPUT/OUTPUT CIRCUITS 9
1.3 PIN MASK OPTIONS 14
1.4 RECOMMENDED CONNECTION OF UNUSED PINS 14
2. DIFFERENCES BETWEEN μ PD78C10A AND μ PD78C11A, 78C12A. 15
3. RESET OPERATIONS 17
4. INSTRUCTION SET 20
4.1 IDENTIFIER/DESCRIPTION OF OPERAND 20
4.2 SYMBOL DESCRIPTION OF OPERATION CODE 21
4.3 INSTRUCTION EXECUTION TIME 22
5. LIST OF MODE REGISTERS 34
6. ELECTRICAL SPECIFICATIONS 35
7. CHARACTERISTIC CURVES (REFERENCE VALUES) 47
8. DIFFERENCES IN 87AD SERIES PRODUCTS 50
9. PACKAGE INFORMATION 54
10. RECOMMENDED SOLDERING CONDITIONS 60
APPENDIX DEVELOPMENT TOOLS 62

1. PIN FUNCTIONS

1.1 LIST OF PIN FUNCTION (1/2)

Pin Name	I/O	Function
PA7 to PA0 (Port A)	Input/Output	8-bit input-output port, which can specify input/output bit-wise.
PB7 to PB0 (Port B)	Input/Output	8-bit input-output port, which can specify input/output bit-wise.
PC0/TxD	Input-output/ Output	Transmit Data Output pin for serial data.
PC1/RxD	Input-output/ Input	Receive Data Input pin for serial data.
PC2/ $\overline{\text { SCK }}$	Input-output/ Input-output	Serial Clock Input-output pin for serial clock. It becomes output clock for the internal clock use, and input for the external.
$\mathrm{PC} 3 / \overline{\mathrm{NT} 2} / \mathrm{TI}$	Input-output/ Input/Input	Interrupt Request/Timer Input Maskable interrut input pin of the edge Port C trigger (falling edge), or an external clock 8 -bit input-output port, input pin for a timer. Also, it can be used which can specify input/ output bit-wise. as a zero-cross detection pin for AC input.
PC4/TO	Input-output/ Output	Timer Output Square wave defining one cycle of internal clock or timer counter time as half cycle is output.
PC5/CI	Input-output/ Input	Counter Input External pulse input pin to timer/event counter.
$\begin{aligned} & \text { PC6/CO0 } \\ & \text { PC7/CO1 } \end{aligned}$	Input-output/ Output	Counter Output 0, 1 Programmable rectangle wave output by timer/event counter.
PD7 to PD0/ AD7 to AD0	Input-output/ Input-output	Port D 8-bit input-output port, which can specify input-output in byte units (μ PD78C11A). Address/Data Bus When external memory is used, it be- comes multiplexed address/data bus.
PF7 to PF0/ AB15 to AB8	Input-output/ Output	Port F Address Bus 8-bit input-output port, which can specify input-output bit-wise. When external memory is used, it be- comes address bus.
$\overline{W R}$ (Write Strobe)	Output	Strobe signal which is output for write operation of external memory. It becomes high in any cycle other than the data write machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.
$\overline{R D}$ (Read Strobe)	Output	Strobe signal which is output for read operation of external memory. It becomes high in any cycle other than the read machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.
ALE (Address Latch Enable)	Output	Strobe signal to latch externally the lower address information which is output to PD7 to PD0 pins to access external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.

1.1 LIST OF PIN FUNCTION (2/2)

Pin Name	I/O	Function
MODEO MODE1 (Mode)	Input-output	μ PD78C11A and 78C12A sets MODE0 pin to "0" (low level), and MODE1 pin to " 1 " (high level*) μ PD78C10A allows you to set MODE0, MODE1 pins to select $4 \mathrm{~K}, 16 \mathrm{~K}$, or 64 K bytes for the size of the memory which is installed externally. Also, when each of MODE0 and MODE1 pins is set to " 1 "*, it is synchronized to ALE to output a control signal.
$\overline{\mathrm{NMI}}$ (Non-Maskable Interrupt)	Input	Non-maskable interrupt input pin of the edge trigger (falling edge)
INT1 (Interrupt Request)	Input	A maskable interrupt input pin of the edge trigger (rising edge). Also, it can be used as a zero-cross detection pin for AC input.
AN7 to ANO (Analog Input)	Input	8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge detection (falling edge) input.
Varef (Reference Voltage)	Input	A common pin serving both as a standard voltage input pin for A / D converter and as a control pin for A/D converter operation.
AVDD (Analog VDD)		Power supply pin for A/D converter.
AVss (Analog Vss)		GND pin for A/D converter.
$\begin{aligned} & \mathrm{X} 1, \mathrm{X} 2 \\ & \text { (Crystal) } \end{aligned}$		Crystal connection pins for system clock oscillation. X1 should be input when a clock is supplied from outside. Input the clock of the reverse phase of X1 to X2.
$\begin{aligned} & \hline \overline{\text { RESET }} \\ & \text { (Reset) } \end{aligned}$	Input	Low-level active system reset input.
$\begin{aligned} & \overline{\text { STOP }} \\ & \text { (Stop) } \end{aligned}$		Control signal input pin in hardware STOP mode. The oscillation stops when a clock is supplied from outside.
VDD		Positive power supply pin.
Vss		GND pin.

* Pull-up. Pull-up resister R is $4[k \Omega] \leq R \leq 0.4$ tcyc $[k \Omega]$ (tcyc is ns unit).

Remarks The μ PD78C11A and μ PD78C12A are pull-up resistor incorporation specifiable by mask option at ports A, B and C.

1.2 PIN INPUT/OUTPUT CIRCUITS

Tables 1-1 and 1-2, and figures (1) to (15) show input- output circuits of each pin in a partially simplified form.
Table 1-1 Pin Type No. (μ PD78C10A)

Pin Name	Type No.	Pin Name	Type No.
PA7 to PA0	5	$\overline{\text { RESET }}$	2
PB7 to PB0	5	$\overline{\text { RD }}$	4
PC1 to PC0	5	$\overline{\mathrm{WR}}$	4
PC2/ $\overline{\text { SCK }}$	8	ALE	4
PC3/INT2	10	$\overline{\text { STOP }}$	2
PC7 to PC4	5	MODE0	11
PD7 to PD0	5	MODE1	11
PF7 to PF0	5	AN3 to AN0	7
$\overline{\text { NMI }}$	5	AN7 to AN4	12
INT1	2	VAREF	13

Table 1-2 Pin Type No. (μ PD78C11A and 78C12A)

Pin Name	Type No.	Pin Name	Type No.
PA7 to PA0	$5-\mathrm{A}$	$\overline{\mathrm{RESET}}$	2
PB7 to PB0	$5-\mathrm{A}$	$\overline{\mathrm{RD}}$	4
PC1 to PC0	$5-\mathrm{A}$	$\overline{\mathrm{WR}}$	4
PC2/ $\overline{\mathrm{SCK}}$	$8-\mathrm{A}$	ALE	4
PC3/INT2	$10-\mathrm{A}$	$\overline{\text { STOP }}$	2
PC7 to PC4	$5-\mathrm{A}$	MODE0	11
PD7 to PD0	5	MODE1	11
PF7 to PF0	5	AN3 to AN0	7
$\overline{\text { NMI }}$	2	AN7 to AN4	12
INT1	9	VAREF	13

(1) Type 1

(2) Type 2

(3) Type 4

(4) Type 4-A

(5) Type 5

(6) Type 5-A

(7) Type 7

(8) Type 8

(9) Type 8-A

(10) Type 9

(11) Type 10

(12) Type $10-\mathrm{A}$

(13) Type 11

(14) Type 12

(15) Type 13

1.3 PIN MASK OPTIONS

μ PD78C11A and 78C12A has the following mask options, which can be selected bit-wise according to the application.

Pin Name	
PA7 to PA0	(1) Pull-up resistor incorporated
PB7 to PB0	(2) Pull-up resistor not incorporated
PC7 to PC0	

Cautions

1. Zero-cross function can not be operated normally if pull-up resistor is incorporated in PC3.
2. μ PD78C10A has no mask option.

1.4 RECOMMENDED CONNECTION OF UNUSED PINS

Pin	Recommended Connection
PA7 to PA0	Connect to Vss or Vdd via resistor
PB7 to PB0	
PC7 to PC0	
PD7 to PD0	
PF7 to PF0	
$\overline{\mathrm{RD}}$	Leave open
$\overline{\mathrm{WR}}$	
ALE	
STOP	Connect to Vdd
INT1, $\overline{\mathrm{NM}}$	Connect to Vss or Vod
AVdd	Connect to Vdd
AV ${ }_{\text {aref }}$	Connect to Vss
AVss	
AN7 to AN0	Connect to AVss or AVdd

2. DIFFERENCES BETWEEN μ PD78C10A AND μ PD78C11A, 78C12A

The difference between the μ PD78C10A and μ PD78C11A, 78C12A is whether or not there is an on-chip mask programmable ROM. The memory map differs accordingly as described below.
(1) $\mu \mathrm{PD} 78 \mathrm{C} 10 \mathrm{~A}$

Since the μ PD78C10A does not have an on-chip ROM, all memory, except the on-chip RAM area (addresses FF00H to FFFFH) can be installed outside. The size of this external memory can be selected from among 4 K bytes $(0000 \mathrm{H}$ to 0 FFFH) , 16 K bytes (0000 H to 3 FFFH), and 64 K bytes (0000 H to FEFFH) by MODE0 and MODE1 pin setting as shown in the following table and Fig. 2-1.

Operation Mode	Control Pin		External Memory	On-Chip RAM
	MODE1	MODE0		
4 K bytes access	0	0	4 K bytes (address 0000 H to $0 F F F H$)	Address FF00H to FFFFH
16 K bytes access	0	1	16 K bytes (address 0000 H to $3 F F F H$)	Address FF00H to FFFFH
64 K bytes access	1	1	64 K bytes (address 0000 H to FEFFH)	Address FF00H to FFFFH

External memory is accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the $\overline{R D}, \overline{W R}$, and ALE signals. When 4K-byte or 16K-byte external memory is accessed PF7 to PF0 not used as address lines can be used as general purpose input/output ports.

The size of external memory can be specified by MODE0 and MODE1 pin setting. Preset each bit of MEMORY MAPPING reisters MM2, MM1, and MM0 to "0".

(2) μ PD78C11A and 78C12A

The μ PD78C11A has an on-chip mask programmable ROM at addresses 0000 H to 0 FFFH and RAM at addresses FFOOH to FFFFH. Externally, memory can be extended up to 60 K bytes (addresses 1000 H to FEFFH) in steps. The μ PD78C12A has an on-chip mask programmable ROM at address 0000 H to 1 FFFH and RAM at address FF00H to FFFFH. Externally, memory can be extended up to 56 K bytes (address 2000 H to FEFFH) in steps. The size of the external extension memory can be selected from among no external memory, 256 bytes, 4 K bytes, 16 K bytes, and $56 \mathrm{~K} / 60 \mathrm{~K}$ bytes* by MEMORY MAPPING register setting. External memory can be accessed by using PD7 to PD0 (multiplexed address/data bus), PF7 to PF0 (address bus), and the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and ALE signals. Programs and data can be stored in external memory. PF7 to PF0 become address lines corresponding to the size of external memory. The remaining pins can be used as general purpose input/output ports.

PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	External Memory
Port	Maximam 256 bytes							
Port	Port	Port	Port	AB11	AB10	AB9	AB8	Maximum 4K bytes
Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	Maximum 16K bytes
AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	Maximum 56K/60K bytes*

* μ PD78C11A: 60K bytes, μ PD78C12A: 56 K bytes

Fig. 2-1 μ PD78C10A Memory Map

3. RESET OPERATIONS

When RESET Input becomes low, the system reset is activated to create the following status.

- INTERRUPT ENABLE F/F is reset and interrupt is disabled.
- All the interrupt mask registers are set (1) and interrupt is masked.
- An interrupt request flag is reset (0) and hold interrupt is eliminated.
- Each bit of PSW is reset (0).
- 0000 H is loaded into the program counter (PC).
- The MODE A, MODE B, MODE C, and MODE F registers are set to FFH and the bits (MM0, 1, and 2) of the MODE CONTROL C and MEMORY MAPPING registers are respectively reset (0), then all the ports (A, B, C, D, and F) become input port (output high-impedance).
- All the test flags but SB flag are reset (0).
- A timer mode register is set to FFH, and TIMER F/F is reset.
- The mode register (ETMM, EOM) of a timer/event counter is reset (0).
- The serial mode high register(SMH) of serial interface is reset (0), while the serial mode low register (SML) is set to 48 H .
- The A/D channel mode register of the A/D converter is reset (0).
- $\overline{W R}, \overline{R D}, A L E$ signals become high-impedance.
- The ZC1, ZC2 bits of the zero-cross mode register (ZCM) are set (1).
- The internal timing generator is initialized.
- Data memory and the following register contents are undefined:

Stack pointer (SP)
Expansion accumulator (EA, EA'), accumulator (A, A^{\prime})
General register ($B, C, D, E, H, L, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}$)
Output latch of each port
TIMER REG0, 1 (TM0, TM1)
TIMER/EVENT COUNTER REG0, 1 (ETM0, ETM1)
RAE bit of MEMORY MAPPING register
SB flag of test flag
When $\overline{\text { RESET }}$ input becomes high, the reset status is released. Then, execution of the program is started from 0000 H . The contents of various kinds of registers must be initialized or re-initialized in the program, if necessary.

Table 3-1 shows the state of each hardware after reset.
Table 3-2 shows the state of each pin after reset.

Table 3-1 State of Each Hardware after Reset

Hardware				State after Reset
Internal data memory	Power-on reset			Previous contents held.
	Reset input during normal operation	Writing	Write address data	Undefined
		by CP	Address data other than the aboove	Previous contents held.
		Operatio	other than writing by CPU	
	Reset input in standby mode			
Expansion accumulator (EA, EA')				Undefined
Accumulator ($\mathrm{A}^{\text {, }} \mathrm{A}^{\prime}$)				
General register (B, C, D, E, H, L, B', C', D', E', H', L')				
Working register vector register (V, V')				
Program counter (PC)				0000H
Stack pointer (SP)				Undefined
Port	Mode register (MA, MB, MC, MF)			FFH
	MCC register			00H
	MM register (bits MM0 to MM2)			0
Output latch of each port				Undefined
Interrupt	INTERRUPT ENABLE F/F			0
	Request flag			0
	Mask register			FFH
Test flag (except SB flag)				0
Standby flag (SB)	Power-on reset			1
	Standby mode			Previous contents held.
	Reset input during normal operation			Contents immediately before RESET input held
Timer	Timer mode register (TMM)			FFH
	Timer F/F			0
	Timer register (TM0, TM 1)			Undefined
Timer/event counter	Timer/event counter mode register (ETMM)			00H
	Timer/event counter output mode register (EOM)			
	Timer/event counter register (ETM0, ETM1)			Undefined
	Timer/event counter capture register (ECPT)			
	Timer/event counter (ECNT)			
Serial interface	Serial mode high register (SMH)			OOH
	Serial mode low register (SML)			48H
A/D channel mode register (ANM)				OOH
MM register (MM3; RAE bit)				Undefined
Zero cross mode register (ZC1, ZC2 bits)				1

Table 3-2 State of Each Pin after Reset

Pin	State after Reset
$\overline{\mathrm{WR}}$	High-impedance
$\overline{\mathrm{RD}}$	
ALE	
All ports (PA, PB, PC, PD, PF)	

4. INSTRUCTION SET

4.1 IDENTIFIER/DESCRIPTION OF OPERAND

Identifier	Description
$\begin{aligned} & r \\ & \text { r1 } \\ & \text { r2 } \end{aligned}$	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C
sr sr1 sr2 sr3 sr4	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB, TM0, TM1, ZCM PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO, CR1, CR2, CR3 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM ETM0, ETM1 ECNT, ECPT
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { rp2 } \\ & \text { rp3 } \end{aligned}$	$\begin{aligned} & \text { SP, B, D, H } \\ & \text { V, B, D, H, EA } \\ & \text { SP, B, D, H, EA } \\ & \text { B, D, H } \end{aligned}$
rpa rpa1 rpa2 rpa3	```B, D, H, D+, H+, D-, H- B, D, H B, D, H, D+, H+, D-, H-, D+byte, H+A, H+B, H+EA, H+byte D, H, D++, H++, D+byte, H+A,H+B,H+EA, H+byte```
wa	8 bit immediate data
word byte bit	16 bit immediate data 8 bit immediate data 3 bit immediate data
f	CY, HC, Z
irf	NMI*, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB

* NMI can also be described as FNMI.

Remarks

1. sr to sr4 (special register)

PA	PORT A	ETMM	: TIMER/EVENT
PB	PORT B		COUNTER MODE
PC	PORT C	EOM	: TIMER/EVENT
PD	PORT D		COUNTER OUTPUT
PF	PORT F		mode
MA	MODE A	ANM	: A/D CHANNEL MODE
MB	MODE B	CRO	: A/D CONVERSION
MC	MODE C	to	RESULT 0 to 3
MCC	MODE CONTROL C	CR3	
MF	MODE F	TXB	Tx BUFFER
Mм	MEMORY MAPPING	RXB	: Rx BUFFER
TM0	TIMER REGO	SMH	: SERIAL MODE High
TM1	TIMER REG1	SML	: SERIAL MODE Low
TMM	: TIMER MODE	MKH	: MASK High
ETMO	TIMER/EVENT	MKL	: MASK Low
	COUNTER REGO	ZCM	: ZERO CROSS MODE
ETM1	TIMER/EVENT		
	COUNTER REG1		
ECNT	TIMER/EVENT		
	COUNTER UPCOUNTER		
ECPT	: TIMER/EVENT		
	COUNTER CAPTURE		

2. rp to rp3 (register pair)

SP	:	STACK POINTER
B	:	BC
D	:	DE
H	:	HL
V	: VA	
EA	: EXTENDED	
	ACCUMULATOR	

3. rpa to rpa3 (rp addressing)

B	: (BC)
D	: (DE)
H	: (HL)
D+	: (DE)+
H+	: (HL)+
D-	: (DE)-
H-	: (HL)-
D++	: (DE)++
H++	: (HL)++
D + byte	: (DE + byte)
H + A	: (HL + A)
H + B	: (HL + B)
H + EA	: (HL + EA)
H + byte	: (HL + byte)

4. f (flag)

CY	: CARRY
HC	: HALF CARRY
Z	$:$

5. irf (interrupt flag)

NMI	$:$
FT0	NMI INPUT
FT1	INTFTO
F1	INTFT1
F2	INTF1
FE0	INTF2
FE1	INTFE0
FEIN	INTFE1
INTFEIN	
FAD	$:$
INTFAD	
FSR	: INTFSR
FST	INTFST
ER	$:$
ERROR	
OV	: OVERFLOW
AN4	: ANALOG INPUT 4 to 7
to	
AN7	
SB	: STANDBY

4.2 SYMBOL DESCRIPTION OF OPERATION CODE

4.3 INSTRUCTION EXECUTION TIME

1 state shown here is composed of 3 clock cycles. When a clock cycle of 15 MHz is used, the execution time should be $200 \mathrm{~ns}(=3 \times 1 / 15 \mu \mathrm{~s}$). In this case, the 4 -state instruction which is the minimum execution time should be execution time of $0.8 \mu \mathrm{~s}$.

Phase-out/Discontinued

	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	MOV	r1, A					4	$\mathrm{r} 1 \leftarrow \mathrm{~A}$	
		A, r1	0				4	$A \leftarrow r 1$	
		sr, A	$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$	$11 \mathrm{~S}_{5} \mathrm{~S}_{4} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			10	$\mathrm{sr} \leftarrow \mathrm{A}$	
		A, sr1	01010001100	$11 S_{5} S_{4} S_{3} S_{2} S_{1} S_{0}$			10	$\mathrm{A} \leftarrow \mathrm{sr} 1$	
		r, word	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$		Low Adrs	High Adrs	17	$r \leftarrow($ word $)$	
		word, r	0101010000	$\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & R_{2} R_{1} R_{0}\end{array}$	Low Adrs	High Adrs	17	(word) $\leftarrow \mathrm{r}$	
	*	r, byte	$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & R_{2} R_{1} R_{0}\end{array}$	Data \longrightarrow			7	$\mathrm{r} \leftarrow$ byte	
		sr2, byte	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$	$\mathrm{S}_{3} 000000 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$	Data		14	sr2 \leftarrow byte	
	MVIW *	wa, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	\longleftarrow Offset \longrightarrow	Data		13	(V. wa) \leftarrow byte	
	MVIX	rpa1, byte	$0100010 A_{1} A_{0}$	Data \longrightarrow			10	(rpa1) \leftarrow byte	
	STAW	wa	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$	Offset			10	(V. wa) $\leftarrow \mathrm{A}$	
	LDAW *	wa	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$	Offset \longrightarrow			10	$\mathrm{A} \leftarrow(\mathrm{V} . \mathrm{wa})$	
	STAX	rpa2	$\mathrm{A}_{3} 011118 \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Data*1			7/13*3	$(\mathrm{rpa} 2) \leftarrow \mathrm{A}$	
	LDAX	rpa2	$\mathrm{A}_{3} 01001 \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Data*1			7/13*3	$A \leftarrow(\mathrm{rpa} 2)$	
	EXX		00001000001				4	$\left\{\begin{array}{l} \mathrm{B} \leftrightarrow \mathrm{~B}^{\prime}, \mathrm{C} \leftrightarrow \mathrm{C}^{\prime}, \mathrm{D} \leftrightarrow \mathrm{D}^{\prime} \\ \mathrm{E} \leftrightarrow \mathrm{E}^{\prime}, \mathrm{H} \leftrightarrow \mathrm{H}^{\prime}, \mathrm{L} \leftrightarrow \mathrm{~L}^{\prime} \end{array}\right.$	
	EXA		01000100000				4	$V, A \leftrightarrow V^{\prime}, A^{\prime}, E A \leftrightarrow E A^{\prime}$	
	EXH		01010100000				4	H, L ↔ H', L'	
	BLOCK		$\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$				$\left(\begin{array}{c} 13 \\ (C+1) \end{array}\right.$	$(\mathrm{DE})^{+} \leftarrow(\mathrm{HL})^{+}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if borrow	
	DMOV	rp3, EA	11 1 1 1 P_{1}				4	$\mathrm{rp} 3 \mathrm{~L} \leftarrow \mathrm{EAL}, \mathrm{rp} 3 \mathrm{H} \leftarrow \mathrm{EAH}$	
		EA, rp3	$1 \begin{array}{lllllll}1 & 0 & 1 & 0 & P_{1} P_{0}\end{array}$				4	$\mathrm{EAL} \leftarrow \mathrm{rp} 3 \mathrm{~L}, \mathrm{EAH} \leftarrow \mathrm{rp} 3 \mathrm{H}$	

Note 1. Instruction Group
2. 16-bit data transfer instructions

Phase-out/Discontinued

N

Note 1. Instruction Group
2. 8-bit operation instructions (register)

Phase-out/Discontinued

Note Instruction Group

Phase-out/Discontinued

[^0]
Phase-out/Discontinued

\#	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	ADI	A, byte	0100000110	Data \longrightarrow			7	$A \leftarrow A+$ byte	
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$	$010000 R_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	Data		11	$\mathrm{r} \leftarrow \mathrm{r}+$ byte	
		sr2, byte	01110	$\mathrm{S}_{3} 100000 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2+$ byte	
	ACl	A, byte	$\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$	Data \longrightarrow			7	$\mathrm{A} \leftarrow \mathrm{A}+$ byte +CY	
		r, byte	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$\mathrm{r} \leftarrow \mathrm{r}+$ byte +CY	
		sr2, byte	0110	$\mathrm{S}_{3} 100100 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr2}+$ byte +CY	
	ADINC	A, byte	00010000110	Data \longrightarrow			7	$A \leftarrow A+$ byte	No Carry
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$\mathrm{r} \leftarrow \mathrm{r}+$ byte	No Carry
		sr2, byte	01110	$\mathrm{S}_{3} 01000 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2+$ byte	No Carry
	SUI	A, byte	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$	Data \longrightarrow			7	$A \leftarrow A$ - byte	
		r, byte	0101110010		Data		11	$\mathrm{r} \leftarrow \mathrm{r}$ - byte	
		sr2, byte	01110	$\mathrm{S}_{3} 11000 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2$ - byte	
	SBI	A, byte	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$	Data \longrightarrow			7	$\mathrm{A} \leftarrow \mathrm{A}$ - byte - CY	
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$\mathrm{r} \leftarrow \mathrm{r}$ - byte - CY	
		sr2, byte	0110	$\mathrm{S}_{3} 11110 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	sr2 $\leftarrow \mathrm{sr2}$ - byte - CY	
	SUINB ${ }^{*}$	A, byte	00011100110	Data \longrightarrow			7	$\mathrm{A} \leftarrow \mathrm{A}$ - byte	No Borrow
		r, byte	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$\mathrm{r} \leftarrow \mathrm{r}$ - byte	No Borrow
		sr2, byte	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	$\mathrm{S}_{3} 011100 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$	\checkmark		20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2$ - byte	No Borrow
	ANI	A, byte	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$	Data \longrightarrow			7	$\mathrm{A} \leftarrow \mathrm{A} \wedge$ byte	
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$	$0100001 R_{2} R_{1} \mathrm{R}_{0}$	Data		11	$\mathrm{r} \leftarrow \mathrm{r} \wedge$ byte	

Note Instruction Group

Phase-out/Discontinued

$\begin{aligned} & \text { む } \\ & \text { Z } \end{aligned}$	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	ANI	sr2, byte	01010000100	$\mathrm{S}_{3} 000001 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$	Data		20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2 \wedge$ byte	
	ORI *	A, byte	$\begin{array}{lllllllll}0 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$	\longleftarrow Data \longrightarrow			7	$\mathrm{A} \leftarrow \mathrm{A} \vee$ byte	
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$r \leftarrow r \vee$ byte	
		sr2, byte	01110	$\mathrm{S}_{3} 0001118 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2 \vee$ byte	
	XRI	A, byte	0000100110	\longrightarrow Data \longrightarrow			7	$A \leftarrow A \forall$ byte	
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	$\mathrm{r} \leftarrow \mathrm{r} \forall$ byte	
		sr2, byte	01110	$\mathrm{S}_{3} 000100 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			20	$\mathrm{sr} 2 \leftarrow \mathrm{sr} 2 \forall$ byte	
	GTI	A, byte	$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$	\longleftarrow Data \longrightarrow			7	A - byte-1	No Borrow
		r, byte	$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	r-byte - 1	No Borrow
		sr2, byte	0110	$S_{3} 011010 S_{2} S_{1} S_{0}$			14	sr2 - byte - 1	No Borrow
	LTI *	A, byte	$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$	-Data \longrightarrow			7	A - byte	Borrow
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	r - byte	Borrow
		sr2, byte	0110	$\mathrm{S}_{3} 011111 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			14	sr2 - byte	Borrow
	NEI ${ }^{*}$	A, byte	$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 1\end{array}$	\longleftarrow Data \longrightarrow			7	A - byte	No Zero
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	r - byte	No Zero
		sr2, byte	01110	$\mathrm{S}_{3} 111010 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			14	sr2 - byte	No Zero
	EQI	A, byte	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$	Data \longrightarrow			7	A - byte	Zero
		r, byte	$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$		Data		11	r - byte	Zero
		sr2, byte	0110	$\mathrm{S}_{3} 111110 \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$			14	sr2 - byte	Zero

Note Instruction Group

Phase-out/Discontinued

Note Instruction Group

Phase-out/Discontinued

[^1]
Phase-out/Discontinued

$$	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	DGT	EA, rp3	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$	$1 \begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & P_{1} P_{0}\end{array}$			11	$E A-r p 3-1$	No Borrow
	DLT	EA, rp3		$1 \begin{array}{llll}1 & 0 & 1\end{array}$			11	EA - rp3	Borrow
	DNE	EA, rp3		11110			11	EA - rp3	No Zero
	DEQ	EA, rp3		$\begin{array}{llll}1 & 1 & 1\end{array}$			11	EA - rp3	Zero
	DON	EA, rp3		1100			11	EA \wedge rp3	No Zero
	DOFF	EA, rp3		$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$			11	EA \wedge rp3	Zero
$\begin{aligned} & \text { N } \\ & \text { む̀ } \\ & 0 \\ & Z \end{aligned}$	MUL	r2	$\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$				32	$\mathrm{EA} \leftarrow \mathrm{A} \times \mathrm{r} 2$	
	DIV	r2	\downarrow 的	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$			59	$\mathrm{EA} \leftarrow \mathrm{EA} \div \mathrm{r} 2, \mathrm{r} 2 \leftarrow$ Remainder	
	INR	r2					4	$\mathrm{r} 2 \leftarrow \mathrm{r} 2+1$	Carry
	INRW *	wa	00010000000	\longleftarrow Offset \longrightarrow			16	$(\mathrm{V}$. wa) $\leftarrow(\mathrm{V}$. wa) +1	Carry
	INX	rp	$00 P_{1} P_{0} 0010$				7	$\mathrm{rp} \leftarrow \mathrm{rp}+1$	
		EA	$1 \begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}$				7	$\mathrm{EA} \leftarrow \mathrm{EA}+1$	
	DCR	r2					4	$\mathrm{r} 2 \leftarrow \mathrm{r} 2-1$	Borrow
	DCRW *	wa	0008191000000	\longleftarrow Offset \longrightarrow			16	$(\mathrm{V}$. wa) $\leftarrow(\mathrm{V}$. wa) - 1	Borrow
	DCX	rp					7	$\mathrm{rp} \leftarrow \mathrm{rp}-1$	
		EA	$\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$				7	$\mathrm{EA} \leftarrow \mathrm{EA}-1$	
$\begin{aligned} & m \\ & \pm \\ & 0 \\ & 2 \end{aligned}$	DAA		$\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$				4	Decimal Adjust Accumulator	
	STC		010100010000	$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$			8	$\mathrm{CY} \leftarrow 1$	
	CLC			$\begin{array}{llllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$			8	$\mathrm{CY} \leftarrow 0$	
	NEGA		\downarrow	$\begin{array}{llllllll}0 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$			8	$\mathrm{A} \leftarrow \overline{\mathrm{A}}+1$	

Note 1. Instruction Group
2. Multiplication/division instructions
3. Other operation instructions

Phase-out/Discontinued

\#	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	RLD		01001000	00111000			17	Rotate Left Digit	
	RRD			1001			17	Rotate Right Digit	
	RLL	r2		$01 \mathrm{R} 1 \mathrm{Ro}_{0}$			8	$\mathrm{r} 2 \mathrm{~m}+1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 20 \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{r} 27$	
	RLR	r2		$\downarrow \quad 00 \mathrm{R}_{1} \mathrm{R}_{0}$			8	$\mathrm{r} 2 \mathrm{~m}-1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 27 \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{r} 20$	
	SLL	r2		0 0 0 0 $R_{1} \mathrm{R}_{0}$			8	$\mathrm{r} 2 \mathrm{~m}+1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 20 \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 27$	
	SLR	r2		- $00 \mathrm{R}_{1} \mathrm{R}_{0}$			8	$\mathrm{r} 2 \mathrm{~m}-1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 27 \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 20$	
	SLLC	r2		$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 \\ R 1\end{array} \mathrm{R}_{0}$			8	$\mathrm{r} 2 \mathrm{~m}+1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 20 \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 27$	Carry
	SLRC	r2					8	$\mathrm{r} 2 \mathrm{~m}-1 \leftarrow \mathrm{r} 2 \mathrm{~m}, \mathrm{r} 27 \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{r} 20$	Carry
	DRLL	EA		101110100			8	$\mathrm{EA}_{n+1} \leftarrow E \mathrm{EA}_{n}, \mathrm{EA} \mathrm{A}_{0} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{EA}_{15}$	
	DRLR	EA		, 0000			8	$\mathrm{EA}_{n-1} \leftarrow \mathrm{EA}_{n}, \mathrm{EA}_{15} \leftarrow \mathrm{CY}, \mathrm{CY} \leftarrow \mathrm{EA}$	
	DSLL	EA		10100100			8	$\mathrm{EA}_{n+1} \leftarrow \mathrm{EA} \mathrm{n}^{\prime}, \mathrm{EA} \mathrm{A}_{0} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{EA}_{15}$	
	DSLR	EA		$\downarrow \quad 0000$			8	$\mathrm{EA}_{n-1} \leftarrow \mathrm{EA} \mathrm{A}^{\prime}, \mathrm{EA}_{15} \leftarrow 0, \mathrm{CY} \leftarrow \mathrm{EA} 0$	
	JMP *	word	01010100	Low Adrs \longrightarrow	High Adrs		10	$\mathrm{PC} \leftarrow$ word	
.	JB		00100001				4	$\mathrm{PC} \mathrm{C} \leftarrow \mathrm{B}, \mathrm{PC} \mathrm{C}_{\leftarrow} \leftarrow \mathrm{C}$	
产	JR	word	$11 \longleftarrow$ jdisp $1 \longrightarrow$				10	$\mathrm{PC} \leftarrow \mathrm{PC}+1+$ jdisp 1	
$\begin{array}{\|l\|l} \stackrel{=}{0} \\ \underline{\xi} \end{array}$	JRE	word	0100111	-jdisp \longrightarrow			10	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp	
\bigcirc	JEA		01001000	00101000			8	$\mathrm{PC} \leftarrow \mathrm{EA}$	
	CALL	word	01000000	Low Adrs \longrightarrow	High Adrs		16	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+3)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+3)\llcorner \\ & \mathrm{PC} \leftarrow \text { word }, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	CALB		01001000	00101001			17	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2) \mathrm{L} \\ & \mathrm{PC}_{H} \leftarrow \mathrm{~B}, \mathrm{PCL} \leftarrow \mathrm{C}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	CALF *	word	0 11114	$-\mathrm{fa} \longrightarrow$			13	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2) \mathrm{L} \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \mathrm{fa}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	

Note Instruction Group

Phase-out/Discontinued

$\begin{array}{\|l\|} \hline \stackrel{y}{ \pm} \\ \dot{0} \\ \hline \end{array}$	Mnemonic	Operand	Operation Code				State	Operation	Skip Condition
			B1	B2	B3	B4			
	CALT	word	$100 \longleftarrow$ ta \longrightarrow				16	$\begin{aligned} & \hline \mathrm{SP}-1) \leftarrow(\mathrm{PC}+1)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+1) \mathrm{L} \\ & \mathrm{PC} \leftarrow(128+2 \mathrm{ta}), \mathrm{PC}+(129+2 \mathrm{ta}), \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	SOFTI		01110010				16	$\begin{aligned} & (S P-1) \leftarrow P S W,(S P-2) \leftarrow(P C+1)_{H,}(S P-3) \\ & \leftarrow(P C+1) L, P C \leftarrow 0060 H, S P \leftarrow S P-3 \end{aligned}$	
	RET		10111000				10	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	
	RETS		1 1001				10	$\begin{aligned} & \mathrm{PC} L \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2 \\ & \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{n} \end{aligned}$	Unconditional skip
	RETI		01100010				13	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PC}, \mathrm{H} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+3 \end{aligned}$	
	BIT	bit, wa	$01011 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	\longrightarrow Offset \longrightarrow			10	Skip if (V. wa) bit = 1	$\begin{gathered} \text { (V. wa) bit } \\ =1 \end{gathered}$
	SK	f	01001000	$00001 \mathrm{~F}_{2} \mathrm{~F}_{1} \mathrm{~F}_{0}$			8	Skip if $f=1$	$\mathrm{f}=1$
	SKN	f		0001 ,			8	Skip if $f=0$	$\mathrm{f}=0$
	SKIT	irf					8	Skip if irf $=1$, then reset irf	irf $=1$
	SKNIT	irf		$011 l_{1}$			8	$\begin{aligned} & \text { Skip if irf = } 0 \\ & \text { Reset irf, if irf = } \end{aligned}$	irf $=0$
	NOP		00000000				4	No Operation	
	El		10101010				4	Enable Interrupt	
	DI		$\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 0\end{array}$				4	Disable Interrupt	
	HLT		01001000	0001111011			12	Set Halt Mode	
	STOP		01001000	101111011			12	Set Stop Mode	

* 1. Data is B 2 if rpa2 = $\mathrm{D}+$ byte, $\mathrm{H}+$ byte.

2. Data is B 3 if rpa3 = $\mathrm{D}+$ byte, $\mathrm{H}+$ byte.
3. In the State item, a figure is in the right side of slash if rpa2 and rpa3 are $D+b y t e, H+A, H+B, H+E A, H+b y t e$.

Remarks The idle state when each instruction is skipped is different from the execution state as shown below.

1-byte instruction	$: 4$ states		3 -byte instruction (with ${ }^{*}$)	$: 10$ states
2-byte instruction (with ${ }^{*}$)	$: 7$ states	3-byte instruction	$: 11$ states	
2-byte instruction	$: 8$ states	4-byte instruction	$: 14$ states	

Note 1.

1. Instruction Group
2. Call instructions

5. LIST OF MODE REGISTERS

Name of Mode Registers		Read/	Function
MA	MODE A register	w	Specifies bit-wise the input/output of the port A .
MB	MODE B register	W	Specifies bit-wise the input/output of the port B.
MCC	MODE CONTROL C register	W	Specifies bit-wise the port/control mode of the port C.
MC	MODE C register	W	Specifies bit-wise the input/output of the port C which is in port mode.
MM	MEMORY MAPPING register	W	Specifies the port/extension mode of port D and port F.
MF	MODE F register	W	Specifies bit-wise the input/output of the port F which is in port mode.
TMM	Timer mode register	R/W	Specifies operating mode of timer.
ETMM	Timer/event counter mode register	W	Specifies the operating mode of timer/event counter.
EOM	Timer/event counter output mode register	R/W	Control the output level of CO0 and CO1.
SML		W	
SMH		R/W	Specifies the operating mode of serial interace.
MKL			
MKH			
ANM	A/D channel mode register	R/W	Specifies the operating mode of A/D converter.
ZCM	Zero-cross mode register	W	Specifies the operation of zero-cross detector circuit.

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
Power supply voltage	VdD		-0.5 to +7.0	V
	$A V_{\text {DD }}$		AVss to Vdo +0.5	V
	$A V_{s s}$		-0.5 to +0.5	V
Input voltage	V		-0.5 to VDD +0.5	V
Output voltage	Vo		-0.5 to VDD +0.5	V
Output current low	IoL	All output pins	4.0	mA
		Total of all output pins	100	mA
Output current high	Іон	All output pins	-2.0	mA
		Total of all output pins	-50	mA
A/D converter reference input voltage	Varef		-0.5 to AV DD +0.3	V
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure not to exceed or fall below this value when using the product.

```
OSCILLATOR CHARACTERISTICS (TA = 40 to +85 '}\mp@subsup{}{}{\circ
```


RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	MAX.	UNIT
Ceramic*1 or crystal resonator*2	$\begin{array}{ll} \mathrm{X} 1 & \mathrm{X} 2 \\ \hline \end{array}$		A/D converter not used	4	15	MHz
			A/D converter used	5.8	15	MHz
External clock		X1 input frequency (fx)	A/D converter not used	4	15	MHz
	HCMOS Inverter		A/D converter used	5.8	15	MHz
		X 1 rise time, fall time (t, t t)		0	20	ns
		X1 input high, low level width (tøøH, tøL)		20	250	ns

Cautions 1. Place oscillator circuit as close as possible to $\mathrm{X} 1, \mathrm{X} 2$ pins.
2. Ensure that no other signal lines pass through the shadow area.

* 1. The ceramic oscillators and external capacitance given in the following table are recommended.

MAKER	PRODUCT NAME	RECOMMENDED CONSTANTS	
		C1[pF]	C2[pF]
Murata Mfg. Co., Ltd	CSA7.37MT	30	30
	CST7.37MTW	On-chip	On-chip
	CSA12.0MT	30	30
	CST12.0MTW	On-chip	On-chip
	CSA15.00MX001	15	15
On-chip	On-chip		
	FCR8.0MC		
	FCR10.0MC		
	FCR12.0OMC		
	FCR15.0MC		

* 2. When a crystal oscillator is used, the following external capacitance is recommended.
$\mathrm{C} 1=\mathrm{C} 2=10 \mathrm{pF}$

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vdd}_{\mathrm{d}}=\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cl_{1}	$\mathrm{fc}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			10	pF
Output capacitance	Co				20	pF
Input-output capacitance	C_{1}				20	pF

DC CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=A \mathrm{VdD}_{\mathrm{D}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Input voltage low	VIL1	All except $\overline{\mathrm{RESET}}, \overline{\mathrm{STOP}}, \overline{\mathrm{NMI}}$, SCK, INT1, TI, AN4 to AN7		0		0.8	V
	VIL2	$\overline{\mathrm{RESET}}, \overline{\mathrm{STOP}}, \overline{\mathrm{NMI}}, \overline{\mathrm{SCK}}$, INT1, TI, AN4 to AN7		0		0.2 Vdd	V
Input voltage high	$\mathrm{V}_{1 \text { IH }}$	All except $\overline{\text { RESET, }} \overline{\text { STOP, }} \overline{\text { NMI, }}$ SCK, INT1, TI, AN4 to AN7, X1, X2		2.2		VdD	V
	$\mathrm{V}_{\mathbf{1 H 2}}$	$\overline{\text { RESET, }} \overline{\text { STOP }}, \overline{\mathrm{NMI}}, \overline{\mathrm{SCK}}$, INT1, TI, AN4 to AN7, X1, X2		0.8 V VD		Vdd	V
Output voltage low	Vol	$\mathrm{loL}=2.0 \mathrm{~mA}$				0.45	V
Output voltage high	Vон	Іон $=-1.0 \mathrm{~mA}$		$\begin{gathered} \text { VDD } \\ -1.0 \end{gathered}$			V
		$\mathrm{Ioн}=-100 \mu \mathrm{~A}$		$\begin{gathered} \text { VDD } \\ -0.5 \end{gathered}$			V
Input current	1	INT1*1, $\mathrm{TI}(\mathrm{PC} 3) * 2 ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$				± 200	$\mu \mathrm{A}$
Input leakage current	Iıı	All except INT1, TI (PC3),$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$				± 10	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}_{\mathrm{DD}}$				± 10	$\mu \mathrm{A}$
AVdo power supply current	Aldd1	Operating mode $\mathrm{f}_{\mathrm{xx}}=15 \mathrm{MHz}$			0.5	1.3	mA
	Aldd2	STOP mode			10	20	$\mu \mathrm{A}$
Vdd power supply current	IdD1	Operating mode $\mathrm{f}_{\mathrm{xx}}=15 \mathrm{MHz}$			13	25	mA
	IDD2	HALT mode $\mathrm{fxx}^{\prime}=15 \mathrm{MHz}$			7	13	mA
Data retention voltage	Vdddr	Hardware/software STOP mode		2.5			V
Data retention current	IDDDR	Hardware/software*3 STOP mode	$\mathrm{V}_{\text {dDDR }}=2.5 \mathrm{~V}$		1	15	$\mu \mathrm{A}$
			$V_{\text {dDDR }}=5 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$
Pull-up resistor*4	RL	Ports A, B and C	$\begin{aligned} & 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \end{aligned}$	17	27	75	$\mathrm{k} \Omega$

Caution For a detailed description of the hardware STOP mode, refer to the 87AD Series mPD78C18 User's Manual.

* 1. If self-bias should be generated by ZCM register.

2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register.
3. If self-bias is not generated.
4. μ PD78C11A and 78C12A only.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}$ ss $=A V \mathrm{ss}=0 \mathrm{~V}$) Read/write Operation:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input cycle time	tcyc		66	250	ns
Address setup time (to ALE \downarrow)	$\mathrm{taL}^{\text {a }}$	$\mathrm{fxx}_{\mathrm{x}}=15 \mathrm{MHz}, \mathrm{CL}=100 \mathrm{pF}$	30		ns
Address hold time (from ALE \downarrow)	tLA		35		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from address	tar		100		ns
Address float time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {AFR }}$	$C \mathrm{~L}=100 \mathrm{pF}$		20	ns
Data input time from address	$\mathrm{t}_{\text {AD }}$	$\mathrm{fxx}_{\mathrm{xx}}=15 \mathrm{MHz}, \mathrm{CL}=100 \mathrm{pF}$		250	ns
Data input time from ALE \downarrow	tLDR			135	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trd			120	ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ALE \downarrow	tLR		15		ns
Data hold time (from $\overline{\mathrm{RD}} \uparrow$)	trdh	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$	0		ns
ALE \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$	trL	$\mathrm{fxxx}^{\prime}=15 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	80		ns
		In Data Read $\mathrm{fxx}_{\mathrm{xx}}=15 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	215		ns
		In OP Code Fetch $\mathrm{fxx}=15 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	415		ns
ALE high level width	tLL	$\mathrm{fxx}_{\mathrm{xx}}=15 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$	90		ns
$\overline{\mathrm{M} 1}$ setup time (to ALE \downarrow)	tmL	$\mathrm{f}_{\mathrm{xx}}=15 \mathrm{MHz}$	30		ns
$\overline{\mathrm{M} 1}$ hold time (from ALE \downarrow)	tLM		35		ns
$\overline{\mathrm{IO}} / \mathrm{M}$ setup time (to ALE \downarrow)	tıL		30		ns
IO/M hold time (from ALE \downarrow)	tıI		35		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from address	taw	$\mathrm{fxx}_{\mathrm{x}}=15 \mathrm{MHz}, \mathrm{Cl}_{\mathrm{L}}=100 \mathrm{pF}$	100		ns
Data output time from ALE \downarrow	tıDw			180	ns
Data output time from $\overline{\mathrm{WR}} \downarrow$	tw	$\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		100	ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ALE \downarrow	tıw	$\mathrm{f}_{\mathrm{Xx}}=15 \mathrm{MHz}, \mathrm{CL}=100 \mathrm{pF}$	15		ns
Data setup time (to $\overline{\mathrm{WR}} \uparrow$)	tow		165		ns
Data hold time (from $\overline{\mathrm{WR}} \uparrow$)	twDH		60		ns
ALE \uparrow delay time from $\overline{W R} \uparrow$	twL		80		ns
$\overline{\text { WR }}$ low level width	tww		215		ns

Serial Operation :

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	MAX.	UNIT
$\overline{\text { SCK }}$ cycle time	tcyk	$\overline{\text { SCK }}$ input	*1	800		ns
			*2	400		ns
		$\overline{\text { SCK output }}$		1.6		$\mu \mathrm{s}$
$\overline{\text { SCK }}$ low level width	tkkL	$\overline{\text { SCK }}$ input	*1	335		ns
			*2	160		ns
		$\overline{\text { SCK output }}$		700		ns
SCK high level width	tккн	$\overline{\text { SCK }}$ input	*1	335		ns
			*2	160		ns
		$\overline{\text { SCK }}$ output		700		ns
R×D setup time (to $\overline{\text { SCK }} \uparrow$)	trxk	*1		80		ns
R×D hold time (from $\overline{\text { SCK }} \uparrow$)	tkrx	*1		80		ns
TxD delay time from $\overline{\text { SCK }} \downarrow$	tkTx	*1			210	ns

* 1. If clock rate is $\times 1$ in asynchronous mode, synchronous mode, or I/O interface mode.

2. If clock rate is $\times 16$ or $\times 64$ in asynchronous mode.

Remarks The numeric values in the table are those when $\mathrm{fxx}^{=}=15 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.

Zero-Cross Characteristics:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
Zero-cross detection input	Vzx	AC combination 60 Hz sine wave	1	1.8	VACp-p
Zero-cross accuracy	Azx			± 135	mV
Zero-cross detection input frequency	fzx		0.05	1	kHz

Other Operation :

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
TI high, low level width	ttin, till		6		tcyc
Cl high, low level width	tcl1H, tcill	Event count mode	6		tcyc
	$\mathrm{tcl2H}, \mathrm{tc} 12 \mathrm{~L}$	Pulse width test mode	48		tcyc
$\overline{\mathrm{NMI}}$ high, low level width	$\mathrm{t}_{\text {NIH, }} \mathrm{t}^{\text {NIL }}$		10		$\mu \mathrm{s}$
INT1 high, low level width	$\mathrm{t}_{11 \mathrm{H}}$, tı11		36		tcre
$\overline{\text { INT2 }}$ high, low level width	$\mathrm{t}_{12 \mathrm{H}}, \mathrm{t}_{12 \mathrm{~L}}$		36		tcyc
AN4 to AN7, low level width	tanh, tanl		36		tcyc
$\overline{\text { RESET }}$ high, low level width	trsh, trsL		10		$\mu \mathrm{s}$

A/D CONVERTER CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s=A V \mathrm{ss}=0 \mathrm{~V}$, $V_{D D}-0.5 \mathrm{~V} \leq A V_{D D} \leq V_{D D}, 3.4 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV} \mathrm{VD}_{\text {) }}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			Bits
Absolute accuracy*		$3.4 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV}_{\text {do }}, 66 \mathrm{~ns} \leq \mathrm{tcyc} \leq 170 \mathrm{~ns}$			$\pm 0.8 \%$	FSR
		$4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AV}_{\text {dD }}, 66 \mathrm{~ns} \leq \mathrm{tcYC} \leq 170 \mathrm{~ns}$			$\pm 0.6 \%$	FSR
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-10 \text { to }+70^{\circ} \mathrm{C}, \\ & 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {AREF }} \leq \mathrm{AVDD}_{\mathrm{DD}}, 66 \mathrm{~ns} \leq \mathrm{tcyc} \leq 170 \mathrm{~ns} \end{aligned}$			$\pm 0.4 \%$	FSR
Conversion time	tconv	$66 \mathrm{~ns} \leq \mathrm{tcyc} \leq 110 \mathrm{~ns}$	576			tcrc
		$110 \mathrm{~ns} \leq \mathrm{tcyc} \leq 170 \mathrm{~ns}$	432			tcyc
Sampling time	tsamp	$66 \mathrm{~ns} \leq \mathrm{tcyc} \leq 110 \mathrm{~ns}$	96			tcrc
		$110 \mathrm{~ns} \leq \mathrm{tcyc} \leq 170 \mathrm{~ns}$	72			tcyc
Analog input voltage	Vian	AN0 to AN7 (including unused pins)	-0.3		$V_{\text {arief }}+0.3$	V
Analog input impedance	Ran			50		$\mathrm{M} \Omega$
Reference voltage	$V_{\text {AREF }}$		3.4		AVdD	V
Varef current	IAREF1	Operating mode		1.5	3.0	mA
	IAREF2	STOP mode		0.7	1.5	mA
AVDD power supply current	Aldon	Operating mode $\mathrm{fxx}^{\text {c }}=15 \mathrm{MHz}$		0.5	1.3	mA
	Aldo2	STOP mode		10	20	$\mu \mathrm{A}$

* Quantization error ($\pm 1 / 2 \mathrm{LSB}$) is not included.

AC Timing Test Point

tcyc-Dependent AC Characteristics Expression

PARAMETER	EXPRESSION	MIN./MAX.	UNIT
$\mathrm{taL}_{\text {L }}$	2T-100	MIN.	ns
tıA	T-30	MIN.	ns
$t_{\text {AR }}$	3T-100	MIN.	ns
tad	7T-220	MAX.	ns
tLDR	5T-200	MAX.	ns
trd	4T-150	MAX.	ns
tLR	T-50	MIN.	ns
tri	2T-50	MIN.	ns
trr	4T-50 (In data read)	MIN.	ns
	7T-50 (In OP code fetch)		
tLL	2T-40	MIN.	ns
tmL	2T-100	MIN.	ns
t LM	T-30	MIN.	ns
tıL	2T-100	MIN.	ns
tıl	T-30	MIN.	ns
taw	3T-100	MIN.	ns
tLDW	$T+110$	MAX.	ns
tıw	T-50	MIN.	ns
tow	4T-100	MIN.	ns
twDH	2T-70	MIN.	ns
twL	2T-50	MIN.	ns
tww	4T-50	MIN.	ns
tcyk	12T ($\overline{\text { SCK }}$ input)*1/6T ($\overline{\text { SCK }}$ input)*2	MIN.	ns
	24T (SCK output)		
tKKL	$5 \mathrm{~T}+5(\overline{\text { SCK }}$ input)*1/2.5T $+5(\overline{\text { SCK }}$ input)*2	MIN.	ns
	12T - 100 (SCK output)		
tккн	$5 \mathrm{~T}+5(\overline{\text { SCK }}$ input)* $1 / 2.5 \mathrm{~T}+5(\overline{\text { SCK }}$ input)*2	MIN.	ns
	12T-100 ($\overline{\text { SCK }}$ output)		

* 1. If clock rate is $\times 1$, in asynchronous mode, synchronous mode, or I/O interface mode.

2. If clock rate is 16×64, in asynchronous mode.

Cautions 1. $\mathrm{T}=\mathrm{tCYC}=1 / \mathrm{fXX}$

2. Other items which are not listed in this table are not dependent on oscillator frequency ($f \mathrm{XX}$).

Timing Waveform

Read operation

* 1. When MODE1 pin is pulled up, $\overline{\mathrm{M} 1}$ signal is output to MODE1 pin in the 1st OP code fetch cycle.

2. When MODEO pin is pulled up, $\overline{I O} / \mathrm{M}$ signal is output to MODEO pin in sr to sr2 register read cycle.

Write operation

* 3. When MODEO pin is pulled up, $\overline{\mathrm{IO}} / \mathrm{M}$ signal is output to MODEO pin in sr to sr2 register write cycle.

Serial Operation

Timer Input Timing

TI

Timer/Event Counter Input Timing

Event Counter Mode

Cl

Pulse Width Test Mode

Cl

Interrupt Input Timing

Reset Input Timing

External Clock Timing

X1

DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention power supply voltage	Vddor		2.5		5.5	V
Data retention power supply current	Iddor	$V_{\text {dodr }}=2.5 \mathrm{~V}$		1	15	$\mu \mathrm{A}$
		V ${ }_{\text {dDDR }}=5 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$
Vod rise/fall time	trvo, tfvo		200			$\mu \mathrm{s}$
$\overline{\text { STOP }}$ setup time (to Vod)	tsstvo		$12 \mathrm{~T}+0.5$			$\mu \mathrm{s}$
STOP hold time (from VDD)	thvost		$12 \mathrm{~T}+0.5$			$\mu \mathrm{s}$

Data Retention Timing

7. CHARACTERISTIC CURVES (REFERENCE VALUES)

Power Supply Voltage - Output Voltage High Vdd - Voh [V]

8. DIFFERENCES IN 87AD SERIES PRODUCTS (1/2)

		μ PD7810	7811*1	μ PD7810H, 7811H	μ PD78C10, 78C11*1
Number of instructions		158 kinds			159 kinds (STOP instruction added)
On-chip ROM		ROM less (μ PD7810) $4 \mathrm{~K} \times 8$ bits (μ PD7811)		ROM less (μ PD7810H) $4 \mathrm{~K} \times 8$ bits ($\mu \mathrm{PD} 7811 \mathrm{H}$)	ROM less (μ PD78C10) $4 \mathrm{~K} \times 8$ bits (μ PD78C11)
On-chip RAM		256×8 bits			
Nnmber of special registers		27			28 (ZCM register added)
Operating frequency Power supply voltage Operating temperature range		$\begin{gathered} 10 \text { to } 12 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 5 \% \\ -10 \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\left\{\begin{array}{l} 4 \text { to } 10 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 10 \% \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{array}\right.$	$\begin{gathered} 4 \text { to } 15 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 10 \% \\ -10 \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 4 \text { to } 15 \mathrm{MHz} * 2 \\ & 5 \mathrm{~V} \pm 10 \% \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
Standby function		Thirty-two bytes of the on-chip RAM 256 bytes of data are held by low power supply voltage (3.2 V)			Three kinds: HALT mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/ hardware STOP mode.
Number of HALT instruction state		11			12
HALT mode	CPU operation	M3 T2 cycle repeated			Stop
	ALE	High level			Low level
Zero crossing detector self-bias control		Self-bias control impossible			Self-bias control possible (by ZCM register specification)
$\overline{\mathrm{NMI}}, \overline{\mathrm{RESET}}$ noise elimination method		By clock sampling			By analog delay
A/D converter operation control		Operation stop impossible			Operation stop possible (Varef pin operation)
A/D converter absolute accuracy (Unit: FSR)		$\begin{aligned} & 0.4 \%\left(T_{A}=-10 \text { to }+50^{\circ} \mathrm{C}\right) \\ & 0.6 \%\left(T_{A}=-40 \text { to }+85^{\circ} \mathrm{C}\right) \end{aligned}$		\% ($\mathrm{T}_{\mathrm{A}}=-10$ to $\left.+70^{\circ} \mathrm{C}\right) * 3$	$\begin{array}{\|ll} 0.4 \% & \left(T_{A}=-10 \text { to }+70^{\circ} \mathrm{C},\right. \\ & \left.V_{\text {AREF }}=4.0 \mathrm{~V} \text { to } \mathrm{AVD}\right) \\ 0.6 \% & \left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C},\right. \\ & \text { VAREF }=4.0 \mathrm{~V} \text { to } \mathrm{AVDD}) \\ 0.8 \% & \left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right. \\ & \text { V } \left._{\text {AREF }}=3.4 \mathrm{~V} \text { to } \mathrm{AVDD}\right) \end{array}$
Varef voltage range		AV cc to 0.5 V to AV cc			3.4 V to AV do
Analog input voltage range		OV to $\mathrm{V}_{\text {AREF }}$			
Alcc/Aldo1		6 mA Typ.			0.5 mA Typ.
Aldod		-			$10 \mu \mathrm{~A}$ Typ.
IAref/laref 1		0.5 m	Typ.	2.0 mA Typ.	1.5 mA Typ.
IAREF2		-			0.7 mA Typ.

* 1. μ PD7810, 7811, 78C10 and 78C11 are maintenance products.

2. K, E, P masks apply from 4 MHz to 12 MHz .
3. The μ PD7810HG and 7811 HG G masks, μ PD7810HCW and 7811 HCW K masks apply $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$.

$\begin{gathered} \mu \text { PD78C10A, 78C11A, } \\ 78 \mathrm{C} 12 \mathrm{~A} \end{gathered}$	μ PD78CP14	μ PD78CP18
159 kinds (STOP instruction added)		
$\begin{array}{ll} \text { ROM less } & (\mu \mathrm{PD} 78 \mathrm{C} 10 \mathrm{~A}) \\ 4 \mathrm{~K} \times 8 \text { bits } & (\mu \mathrm{PD} 78 \mathrm{C} 11 \mathrm{~A}) \\ 8 \mathrm{~K} \times 8 \text { bits } & (\mu \mathrm{PD} 78 \mathrm{C} 12 \mathrm{~A}) \end{array}$	$16 \mathrm{~K} \times 8$ bits (PROM)	$32 \mathrm{~K} \times 8$ bits (PROM)
256×8 bits		1024×8 bits
28 (ZCM register added)		
$\begin{gathered} 4 \text { to } 15 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 10 \% \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 6 \text { to } 15 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 5 \% \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 4 \text { to } 15 \mathrm{MHz} \\ 5 \mathrm{~V} \pm 10 \% \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
Three kinds: Halt mode, software STOP mode, and hardware STOP mode. All data of on-chip RAM are held by low power supply voltage (2.5 V) in software/hardware STOP mode.		
12		
STOP		
Low level		
Self-bias control possible (by ZCM register specification)		
By analog delay		
Operation stop impossible (Varef pin operation)		
$\begin{aligned} & 0.4 \%\left(\mathrm{~T}_{\mathrm{A}}=-10 \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\text {AREF }}=4.0 \mathrm{~V} \text { to } \mathrm{AVDD}\right) \\ & 0.6 \%\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\text {AREF }}=4.0 \mathrm{~V} \text { to } \mathrm{AVDD}\right) \\ & 0.8 \%\left(\mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\text {AREF }}=3.4 \mathrm{~V} \text { to } \mathrm{AVDD}\right) \end{aligned}$		
3.4 V to AV Dd		
-0.3 V to $\mathrm{V}_{\text {aref }}+0.3 \mathrm{~V}$	0 V to Varef	-0.3 V to Varef + 0.3V
0.5 mA Typ.		
$10 \mu \mathrm{~A}$ Typ.		
1.5 mA Typ.		
0.7 mA Typ.		

DIFFERENCES IN 87AD SERIES PRODUCTS (2/2)

Item			$\mu \mathrm{PD} 7810,781{ }^{*} 1$	$\mu \mathrm{PD} 7810 \mathrm{H}, 7811 \mathrm{H}$	μ PD78C10, 78C11*1	
Operation during RESET		$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	High level		High-impedance	
		ALE	Output			
		PD/PF*4	Zero is output at the pin specified by the address bus. Other pins are high impedance.			
On-chip pull-up register (Mask option)			Impossible			
Device configuration			NMOS		CMOS	
Standby current			$3.2 \mathrm{~mA}\left(-10\right.$ to $\left.+70^{\circ} \mathrm{C}\right) \mathrm{MAX}$. $3.5 \mathrm{~mA}\left(-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right) \mathrm{MAX}$.	3.2 mA MAX.	$50 \mu \mathrm{~A}$ MAX. $\text { (VDD = } 5 \mathrm{~V} \pm 10 \text { \%) }$	
Current consumption			$\begin{aligned} & 203.2 \mathrm{~mA}\left(-10 \text { to }+70^{\circ} \mathrm{C}\right) \mathrm{MAX} \text {. } \\ & 223.5 \mathrm{~mA}\left(-40 \text { to }+85^{\circ} \mathrm{C}\right) \mathrm{MAX} . \end{aligned}$	203.2 mA MAX.	25 mA MAX.	
SCK (Unit: ns)	Cyc	e time input	20T	*5		
		level width	$10 \mathrm{~T}+80$			
	Hig	level width	10T-80			
Bus timing (Unit: ns)	Tldw		T + 110			
	Twd		100			
	Tow		4T-100			
Hardware STOP mode restrictions			-		Yes	
Asyncronous mode restrictions during external SCK input.			No		Yes	
Package			64-pin plastic shrink DIP 64-pin plastic QUIP straight*7 64-pin plastic QUIP		64-pin plastic shrink DIP 64-pin plastic QUIP straight*8 64-pin plastic QUIP 64-pin plastic QFP ($14 \times 20 \mathrm{~mm}, 2.05 \mathrm{~mm}$ thickness) 64-pin plastic QFP $(14 \times 20 \mathrm{~mm}, 2.70 \mathrm{~mm}$ thickness) 68-pin plastic QFJ	
Pin connection*10			Vcc (64-pin), Vdd (63-pin)		VDD (64-pin), $\overline{S T O P}$ (63-pin)	

* 1. μ PD7810, 7811, 78C10 and 78C11 are maintenance products.

4. For μ PD7810, $7810 \mathrm{H}, 78 \mathrm{C} 10$ and 78C10A.
5.

(Unit : ns)

		For the asyncronous mode with clock rate $\times 1$, syncronous mode, and I/O interface mode	For the asyncronous mode with clock rate $\times 16$ and $\times 64$
$\overline{\text { SCK }}$	Cycle time input	$12 T$	$6 T$
	Low level width	$5 \mathrm{~T}+5$	$2.5 \mathrm{~T}+5$
	High level width	$5 \mathrm{~T}+5$	$2.5 \mathrm{~T}+5$

Remarks $\quad \mathrm{T}=\mathrm{tcyc}=1 / \mathrm{f}_{\mathrm{xx}}$

$\begin{gathered} \mu \text { PD78C10A, 78C11A, } \\ 78 C 12 A \end{gathered}$	μ PD78CP14	μ PD78CP18
High-impedance		
Only μ PD78C11A, 78C12A possible (ports A, B, C)	Impossible	
CMOS		
$50 \mu \mathrm{~A}$ MAX. $(\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 10 \%)$	$\begin{gathered} 1 \mathrm{~mA} \text { MAX. } \\ (\mathrm{Vdd}=5 \mathrm{~V} \pm 5 \%) \end{gathered}$	$\begin{gathered} 50 \mu \mathrm{~A} \mathrm{MAX} \\ (\mathrm{VDD}=5 \mathrm{~V} \pm 10 \%) \end{gathered}$
25 mA MAX.	32 mA MAX .	35 mA MAX .
*5		
T + 110		T + 130
110		140
$4 \mathrm{~T}-100$		4 T - 140
Yes*6	No	
No		
64-pin plastic shrink DIP 64-pin plastic QUIP straight*9 64-pin plastic QUIP 64-pin plastic OFP $(14 \times 20$ $\mathrm{mm}, 2.70 \mathrm{~mm}$ thickness) 68-pin plastic QFJ	64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14×20 mm, 2.70 mm thickness) 68-pin plastic QFJ 64-pin ceramic shrink DIP with window 64-pin ceramic QUIP with window 64-pin ceramic WOFN	64-pin plastic shrink DIP 64-pin plastic QUIP 64-pin plastic QFP (14×20 mm, 2.70 mm thickness) 64-pin ceramic shrink DIP with window 64-pin ceramic WOFN
	VDD (64-pin), $\overline{\text { STOP }}$ (63-pin)	

* 6. K mask products only

7. μ PD7811, 7811H only
8. μ PD78C11, only
9. μ PD78C11A, 78C12A only
10. Items in the parentheses are the pin numbers for the 64-pin plastic shrink DIP, 64-pin plastic QUIP straight and 64-pin plastic QUIP.

Caution Since the oscillator characteristics, I/O level, and some internal operation timing are different, be careful when studying direct replacement of the mPD78C10A, 78C11A, 78C12A and μ PD7810, 7811, 7810H, 7811H, 78C10, 78C11.

9. PACKAGE INFORMATION

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.311 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
M	$0.25_{-0.0}^{+0.10}$	$0.010_{-0.003}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P64C-70-750A.C-1

64PIN PLASTIC QUIP (STRAIGHT)

P64GQ-100-37-1

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	$41.5 \pm 0 \frac{3}{2}$	1.634 ± 0.812
C	16.5	0.650
D	30.0 ± 04	$1.181^{ \pm 0.016}$
E	$35.1^{ \pm 0.4}$	$1.382^{ \pm 0.016}$
H	$0.50{ }^{ \pm 0.10}$	0.020 ± 8808
1	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
K	1.27 (T.P.)	0.050 (T.P.)
M	$1.1 \pm 8 \frac{25}{15}$	0.043 ± 8811
N	0.25 ± 8.85	0.010 ± 0.804
P	$9.3{ }^{ \pm 0.2}$	0.366 ± 8008
Q	$6.75{ }^{ \pm 0.2}$	0.266 ± 8.808
S	$3.6{ }^{ \pm 0.1}$	0.142 ± 8.885
T	$1.8^{ \pm 0.1}$	0.071 ± 0.005
U	$1.55^{ \pm 0.1}$	0.061 ± 0.004

64 PIN PLASTIC QUIP

P64GQ-100-36

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	41.5 ± 83	$1.634 \pm 8.80{ }^{\text {a }}$
C	16.5	0.650
H	$0.50{ }^{ \pm 0.10}$	0.020 $=8.888$
1	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
K	1.27 (T.P.)	0.050 (T.P.)
M	1.1 ± 8.78	0.043 ± 8818
N	0.25 ± 8.18	0.010 ± 8.883
P	$4.0^{ \pm 0.3}$	$0.157 \pm 8.81 \frac{13}{2}$
S	$3.6{ }^{ \pm 0.1}$	$0.142 \pm 8.88{ }^{\text {c }}$
W	$24.13^{ \pm 1.05}$	$0.950^{ \pm 0.042}$
X	$19.05^{ \pm 1.05}$	$0.750^{ \pm 0.042}$

64PIN PLASTIC QFP (14×20) (UNIT: mm)

NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

P64GF-100-3B8,3BE,3BR-1		
ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	1.0	0.039
H	0.40 ± 0.10	$0.016_{-0.005}^{+0.004}$
I	0.20	0.008
J	$1.0(T . P)$.	$0.039(T . P)$.
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.12	0.005
P	2.7	0.106
O	0.1 ± 0.1	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

ES 64PIN CERAMIC OFP (REFERENCE DRAWING) (UNIT: mm)

Cautions 1. The metal cap is connected to pin 26 and is Vss (GND) level.
2. The bottom leads are tilted.
3. Since cutting of the end of the leads is no process-controlled, the lead length is unspecified.

68PIN PLASTIC OFJ ($\square 950 \mathrm{mil})$ (UNIT: mm)

P68L-50A1-2

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.2 ± 0.2	0.992 ± 0.008
B	24.20	0.953
C	24.20	0.953
D	25.2 ± 0.2	0.992 ± 0.008
E	1.94 ± 0.15	$0.076_{-0.006}^{+0.007}$
F	0.6	0.024
G	4.4 ± 0.2	$0.173_{-0.008}^{+0.009}$
H	2.8 ± 0.2	$0.110_{-0.008}^{+0.009}$
I	$0.9 \mathrm{MIN}$.	0.035 MIN.
J	3.4	0.134
K	$1.27($ T.P.)	$0.050(T . P)$.
M	0.40 ± 1.0	$0.016_{-0.005}^{+0.004}$
N	0.12	0.005
P	23.12 ± 0.20	$0.910_{-0.008}^{+0.009}$
Q	0.15	0.006
T	R 0.8	R
U	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$

10. RECOMMENDED SOLDERING CONDITIONS

The μ PD78C10A, 78C11A, and 78C12A should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 10-1 Surface Mounting Type Soldering Conditions
(1) μ PD78C10AGF-3BE : 64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78C11AGF- $\times \times \times-3 B E: 64$-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78C12AGF-×××-3BE : 64-pin plastic OFP $(14 \times 20 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature : $235^{\circ} \mathrm{C}$, Duration : 30 sec . max. (210 ${ }^{\circ} \mathrm{C}$ min.), Number of times : 2 max. <Points to note> (1) Start the second reflow after the device temperature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.	IR35-00-2
VPS	Package peak temperature : $215^{\circ} \mathrm{C}$, Duration : 40 sec. max. (200 ${ }^{\circ} \mathrm{C}$ min.), Number of times : 2 max. <Points to note> (1) Start the second reflow after the device temperature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.	VP15-00-2
Wave soldering	Solder bath temperature : $260^{\circ} \mathrm{C}$ max., Duration : 10 sec. max., Number of times: 1 Pre-heating temperature : $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Pin part heating	Pin temperature : $300^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per device side)	\square

Caution Do not use two or more soldering methods in combination (except the pin part heating method).

(2) μ PD78C10AL	$:$	$68-$ pin plastic QFJ $(\square 950 \mathrm{mil})$
μ PD78C11AL-×××	$:$	68 -pin plastic QFJ $(\square 950 \mathrm{mil})$
μ PD78C12AL-×XX	$:$	$68-$ pin plastic QFJ $(\square 950 \mathrm{mil})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature : $230^{\circ} \mathrm{C}$, Duration : 30 sec . max. ($210^{\circ} \mathrm{C}$ min.), Number of times : 1	IR30-00-1
VPS	Package peak temperature : $215^{\circ} \mathrm{C}$, Duration : 40 sec. max. ($200{ }^{\circ} \mathrm{C}$ min.), Number of times : 1	VP15-00-1
Pin part heating	Pin temperature : $300^{\circ} \mathrm{C}$ max., Duration : 3 sec . max. (per device side)	-

Caution Do not use two or more soldering methods in combination (except the pin part heating method).

Table 10-2 Inserted Type Soldering Conditions

(1) μ PD78C10ACW	$:$ 64-pin plastic shrink DIP (750 mil)
μ PD78C11ACW $-x \times x$	$:$ 64-pin plastic shrink DIP (750 mil)
μ PD78C12ACW $-\times \times \times$	$:$ 64-pin plastic shrink DIP (750 mil)
μ PD78C10AGQ-36	$:$ 64-pin plastic QUIP
μ PD78C11AGQ- $\times \times \times-36$	$:$ 64-pin plastic QUIP
μ PD78C12AGQ- $\times \times x-36$	$:$ 64-pin plastic QUIP

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: $260^{\circ} \mathrm{C}$ max. Duration: 10 sec. max.
Pin part heating	Pin temperature: $300^{\circ} \mathrm{C}$ max. Duration: 3 sec. max. (per pin)

Caution Ensure that the application of wave soldering is limited to

 the pins and no solder touches the main unit directly.(2) μ PD78C11AGQ-×XX-37 : 64-pin plastic QUIP straight μ PD78C12AGQ-×X×-37 : 64-pin plastic QUIP straight

Soldering Method	Soldering Conditions
Pin part heating	Pin temperature: $300^{\circ} \mathrm{C}$ max. Duration: 3 sec. max. (per pin)

APPENDIX DEVELOPMENT TOOLS

The following development tools are available to develop a system which uses 87AD series products.

Language Processor

87AD series relocatable assembler (RA87)	This is a program which converts a program written in mnemonic to an object code that microcomputer execution is possible. Besides, it contains a function to automatically create a symbol/table, and optimize a branch instruction.			
	Host Machine	OS	Supply Medium	Ordering Code (Product Name)
	PC-9800 series	$\begin{gathered} \text { MS-DOS }^{\mathrm{TM}} \\ {\left[\begin{array}{c} \text { Ver. } 2.11 \\ \text { to } \\ \text { Ver. } 5.00 A^{*} \end{array}\right]} \end{gathered}$	3.5-inch 2HD	$\mu \mathrm{S5A} 13 \mathrm{RA} 87$
			5-inch 2HD	$\mu \mathrm{S5A} 10 \mathrm{RA} 87$
	IBM PC/AT ${ }^{\text {TM }}$	PC DOS ${ }^{\text {™ }}$ (Ver. 3.1)	3.5-inch 2HC	μ S7B13RA87
			5 -inch 2HC	μ S7B10RA87

PROM Write Tools

* Ver. 5.00/5.00A has a task swap function, but this function cannot be used with this software.

Remarks Operation of assemblers and the PG-1500 controller are guaranteed only on the host machines and operating systems quoted above.

Debugging tools

An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for 87AD series. The following table shows its system configuration.

$\begin{aligned} & \frac{1}{\pi} \\ & \frac{1}{0} \\ & \frac{3}{0} \\ & \frac{1}{T} \\ & \frac{1}{2} \end{aligned}$	IE-78C11-M	The IE-78C11-M is an in-circuit emulator which works with 87AD series. Only the IE-78C11-M should be used for a plastic QUIP package, while it should be used with a conversion socket for a plastic shrink DIP package. It can be connected to a host machine to perform efficient debugging.			
	EV-9001-64	Conversion sockets for plastic shrink DIP. Used in combination with the IE-78C11-M.			
	EV-9200G-64	64-pin LCC socket. Can be used as a substitute for 64 -pin plastic QFP products with window in combination with the μ PD78CP14KB/78CP18KB.			
$\begin{aligned} & \frac{0}{2} \\ & \substack{\pi \\ 3 \\ 4 \\ 0 \\ 0 \\ \hline} \end{aligned}$	IE-78C11-M control program (IE controller)	Connects the IE-78C11-M to host machine by using the RS-232-C, then controls the IE-78C11-M on host machine.			
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ {\left[\begin{array}{c} \text { Ver. } 2.11 \\ \text { to } \\ \text { Ver. 3.30D } \end{array}\right]} \end{gathered}$	3.5-inch 2HD	μ S5A13IE78C11
				5 -inch 2HD	μ S5A10IE78C11
		IBM PC/AT	$\begin{aligned} & \text { PC DOS } \\ & \text { (Ver. 3.1) } \end{aligned}$	5-inch 2HC	μ S7B10IE78C11

Remarks Operation of the IE controller is guaranteed only on the host machine and operating systems quoted above.
[MEMO]

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The customer must judge : μ PD78C11ACW- $\times \times \times$, 78C11AGF- $\times x \times-3 B E, 78 C 11 A G Q-\times x \times-36,78 C 11 A G Q-\times \times \times-37$, the need for license μ PD78C11AL- $\times x \times$, 78C12ACW- $\times x \times$, 78C12AGF- $\times x \times-3 B E, 78 C 12 A G Q-x \times x-36$, μ PD78C12AGQ-××X-37, 78C12AL-×XX

License not needed : $\quad \mu$ PD78C10ACW, 78C10AGF-3BE, 78C10AGQ-36, 78C10AL

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

MS-DOS is a trademark of Microsoft Corporation.
 PC/AT and PC DOS are trademarks of IBM Corporation.

[^0]: Note Instruction Group

[^1]: Note Instruction Group

