Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT μPD78CP18(A) ase-out/Discontinued

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD78CP18(A) is a version of the μ PD78C18(A) in which the internal mask ROM is replaced by one-time PROM. The one-time PROM version can be programmed once only by users, and is ideally suited for small-scall of many differnt products, and rapid development and time-to-market of a new product.

The detailed functions are descrived in the following user's manual. Read this manual before starting design work.

87AD series μ PD78C18 user's manual: IEU-1314

FEATURES

- High reliability compared to the μPD78CP18
- Compatible with the μPD78C11A(A), 78C12A(A), 78C14(A), 78C18(A)
- Internal PROM: 32768 W \times 8
 - Internal PROM capacity can be changed by software to conform to the μPD78C11A(A), 78C12A(A), 78C14(A), 78C18(A).
- PROM programming characteristics: µPD27C256A compatible
- Power supply voltage range: 5 V \pm 10 %
- Supports QTOP™ microcomputer
 - **Remark** QTOP microcomputer is the generic name of NEC's single-chip microcomputers for which NEC provides total service including writing, marking, screening, and inspection.

ORDERING INFORMATION

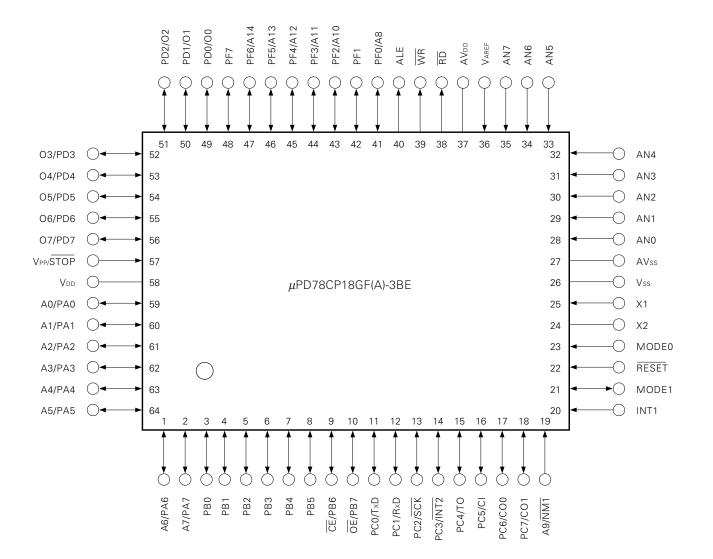
Part Number	Package	Internal ROM
μ PD78CP18GF(A)-3BE	64-pin plastic QFP (14 $ imes$ 20 mm)	One-time PROM
μPD78CP18GQ(A)-36	64-pin plastic QUIP	One-time PROM

QUALITY GRADE

Part Number	Quality Grade
μ PD78CP18GF(A)-3BE	Special
µPD78CP18GQ(A)-36	Special

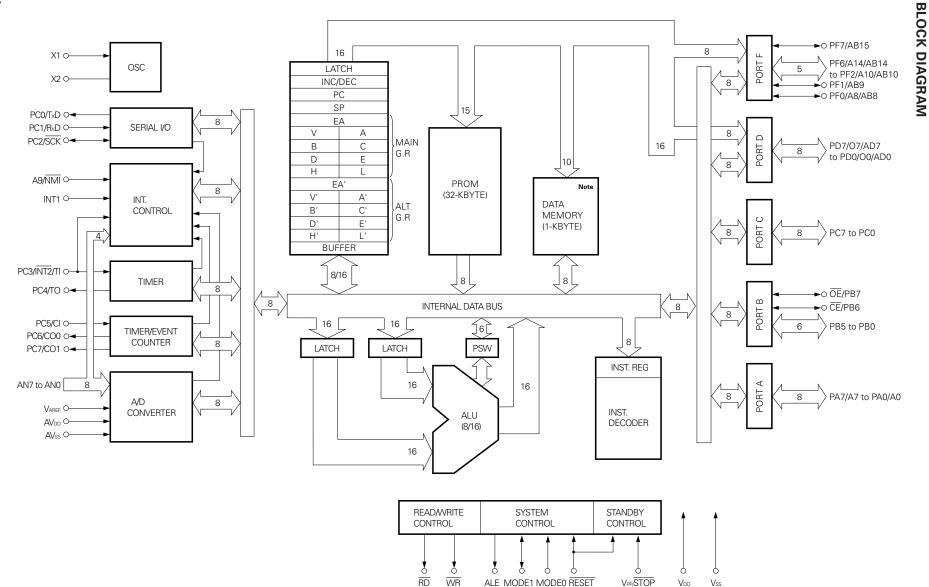
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.


*

μ**PD78CP18(A)**

PIN CONFIGURATION (TOP VIEW)


			~ ~			
A0/PA0	◯◄►	1	\bigcirc	64	———————————————————————————————————————	Vdd
A1/PA1	◯≁→	2		63	←──	$\overline{\text{STOP}}/\text{V}_{\text{PP}}$
A2/PA2	◯◀ᢇ►	3		62	►	PD7/07
A3/PA3	◯≁→	4		61	►	PD6/06
A4/PA4	◯≁→	5		60	►	PD5/05
A5/PA5	◯◀━►	6		59	►	PD4/04
A6/PA6	◯◀ᢇ►	7		58	►	PD3/03
A7/PA7	◯≁→	8		57	►	PD2/02
PB0	◯◀━►	9		56	►	PD1/01
PB1	◯◀ᢇ►	10		55	►	PD0/00
PB2	◯≁→	11		54	►	PF7
PB3	◯◀━►	12		53	►	PF6/A14
PB4	◯≁→	13	μ	52	>○	PF5/A13
PB5	◯≁→	14	PD	51	►	PF4/A12
CE/PB6	◯◀━►	15	78C	50	►	PF3/A11
OE/PB7	◯≁→	16	P18	49	►	PF2/A10
PC0/TxD	◯≁→	17	uPD78CP18GQ(A)-36	48	►	PF1
PC1/RxD	◯≁►	18	(A)-	47	>○	PF0/A8
PC2/SCK	◯◀ᢇ►	19	36	46	 O	ALE
PC3/INT2	◯≁→	20		45	 O	WR
PC4/TO	◯◀━►	21		44	~	RD
PC5/CI	◯≁→	22		43	———————————————————————————————————————	AVdd
PC6/CO0	◯≁→	23		42		VAREF
PC7/CO1	◯◀━►	24		41	○	AN7
A9/NMI	◯─►	25		40		AN6
INT1	◯─►	26		39	○	AN5
MODE1	◯◀━►	27		38	←──	AN4
RESET	◯─►	28		37		AN3
MODE0	○—►	29		36		AN2
X2	0	30		35	○	AN1
X1	◯─►	31		34	○	AN0
Vss	0	32		33	———————————————————————————————————————	AVss

Phase-out/Discontinued

Phase-out/Discontinued

 V_{DD}

Vss

Note Can be used only when RAE bit of MM register is 1. External memory is needed in case of 0.

µPD78CP18(A)

4

DIFFERENCES BETWEEN THE μ PD78CP18(A) AND μ PD78CP18

Product Name Item	μPD78CP18(A)	μPD78CP18
Quality grade	Special	Standard
Electrical specifications	Input leakage current AN7 to AN0: ±1 μA (MAX.)	Input leakage current AN7 to AN0; ±10 μA (MAX.)
Package	 64-pin plastic QFP (14 × 20 mm) 64-pin plastic QUIP 	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QUIP 64-pin plastic QFP (14 × 20 mm) 64-pin ceramic shrink DIP with window (750 mil) 64-pin ceramic WQFN

Phase-out/Discontinued

CONTENTS

1.	LIST	OF PORT FUNCTIONS	
	1.1	PORT FUNCTIONS	
	1.2	NON-PORT FUNCTIONS (IN NORMAL OPERATION)	3
	1.3	NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ))
	1.4	HANDLING OF UNUSED PINS)
2.	MEN	IORY CONFIGURATION	1
~		IORY EXTENSION	
3.			
	3.1	MODE PINS	
	3.2	MEMORY MAPPING REGISTER (MM)	/
4.	PRO	M PROGRAMMING)
	4.1	PROM PROGRAMMING OPERATING MODES	
	4.2	PROM WRITING PROCEDURE	
	4.3	PROM READING PROCEDURE	
5.	SCRI	EENING OF ONE-TIME PROM VERSIONS	ŀ
6.	ELEC	TRICAL SPECIFICATIONS	5
7.	CHA	RACTERISTIC CURVES (REFERENCE VALUE)	•
8.	PACI	AGE DRAWINGS	2
9.	RECO	OMMENDED SOLDERING CONDITIONS44	Ł
10.	DIFF	ERENCES BETWEEN THE μ PD78CP18(A) AND μ PD78C18(A)45	5
APF	PEND	IX. DEVELOPMENT TOOLS	5

1. LIST OF PORT FUNCTIONS

1.1 PORT FUNCTIONS

Pin Name	I/O	Function
PA7 to PA0 (Port A)	Input/Output	8-bit input-output port, which can specify input/output bit-wise.
PB7 to PB0 (Port B)	-	
PC7 to PC0 (Port C)	-	
PD7 to PD0 (Port D)	-	8-bit input-output port, which can specify input/output in byte units.
PF7 to PF0 (Port F)	-	8-bit input-output port, which can specify input/output bit-wise.

RemarkThese port pins have alternate function pins as shown in 1.2 "NON-PORT FUNCTIONS (IN NORMAL
OPERATION)" and 1.3 "NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ)".

1.2 NON-PORT FUNCTIONS (IN NORMAL OPERATION)

Pin Name	I/O	Alternate Function Pin	Function	
TxD (Transmit Data)	Output	PC0	Serial data output pin	
RxD (Receive Data)	Input	PC1	Serial data input pin	
SCK (Serial Clock)	Input/output	PC2	Serial clock input/output pin. Output when internal clock is used, input when external clock is used.	
INT2 (Interrupt Request)	Input	PC3	Edge trigger (falling edge) maskable interrupt input pin	
TI (Timer Input)	Input		Timer external clock input pin	
Zero-cross	Input		AC input zero-cross detection pin	
TO (Timer Output)	Output	PC4	During timer count time, square wave with one internal clock cycle as one half cycle is output.	
Cl (Counter Input)	Input	PC5	Timer/event counter external pulse input pin	
CO0 and CO1 (Counter Output 0, 1)	Output	PC6 and PC7	Square wave output programmable by timer/event counter.	
AD7 to AD0 (Address/Data Bus 7 to 0)	Input/output	PD7 to PD0	Multiplexed address/data bus when external memory is used	
AB15 to AB8 (Address Bus 15 to 8)	Output	PF7 to PF0	Address bus when external memory is used	
WR (Write Strobe)	Output		Strobe signal which is output for write operation of external memory. It becomes high in any cycle other than the data write machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes high-impedance.	
RD (Read Strobe)	Output		Strobe signal which is output for read operation of external memory. It becomes high in any cycle other than the data read machine cycle of external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes output high-impedance.	
ALE (Address Latch Enable)	Output		Strobe signal to latch externally the lower address information which is output to PD7 to PD0 pins to access external memory. When RESET signal is either low or in the hardware STOP mode, this signal becomes high-impedance.	
MODE0 MODE1 (Mode)	Input Input/output		Set MODE0 pin to "0" (low level), and MODE1 pin to "1" (high level) $\ensuremath{^{Note}}$	
NMI (Non-Maskable Interrupt)	Input		Non-maskable interrupt input pin of the edge trigger (falling edge)	

Note Pull-up. Pull-up resister R is 4 $[k\Omega] \le R \le 0.4$ tcyc $[k\Omega]$ (tcyc is ns unit).

Phase-out/Discontinued

Pin Name	I/O	Alternate Function Pin	Function	
INT1 (Interrupt Request)	Input		A maskable interrupt input pin of the edge trigger (rising edge). Also, it can be used as a zero-cross detection pin for AC input.	
AN7 to AN0 (Analog Input)	Input		8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge detection (falling edge) input.	
V _{AREF} (Reference Voltage)	Input		A common pin serving both as a reference voltage input pin for A/D converter and as a control pin for A/D converter operation.	
AV _{DD} (Analog V _{DD})			Power supply pin for A/D converter.	
AVss (Analog Vss)			GND pin for A/D converter.	
X1, X2 (Crystal)			Crystal connection pins for system clock oscillation. X1 should be input when a clock is supplied from outside. Inverted clock of X1 should be input in X2.	
RESET (Reset)	Input		Low-level active system reset input.	
STOP (Stop)	Input		Hardware STOP mode control signal input pin. When the low level is input to this pin, the oscillation stops.	
Vdd			Positive power supply pin.	
Vss			GND pin.	

1.3 NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ)

Pin Name	I/O	Alternate Function Pin	Function	
A7 to A0	Input	PA7 to PA0	Address lower 8 bit input pins	
CE	Input	PB6	Chip enable signal input pin	
ŌĒ	Input	PB7	Output enable signal input pin	
07 to 00	Input/output	PD7 to PD0	Data input/output pins	
A14 to A10	Input	PF6 to PF2	Address higher 7 bit input pins	
A8		PF0		
A9	Input	NMI		
MODE0 MODE1	Input		Set MODE0 pin to "1" (high level), and MODE1 pin to "0" (low level).	
RESET	Input		Set to "0" (low level).	
Vpp		STOP	High-voltage application pin "1" (high level) is input when EPROM is read.	

Phase-out/Discontinued

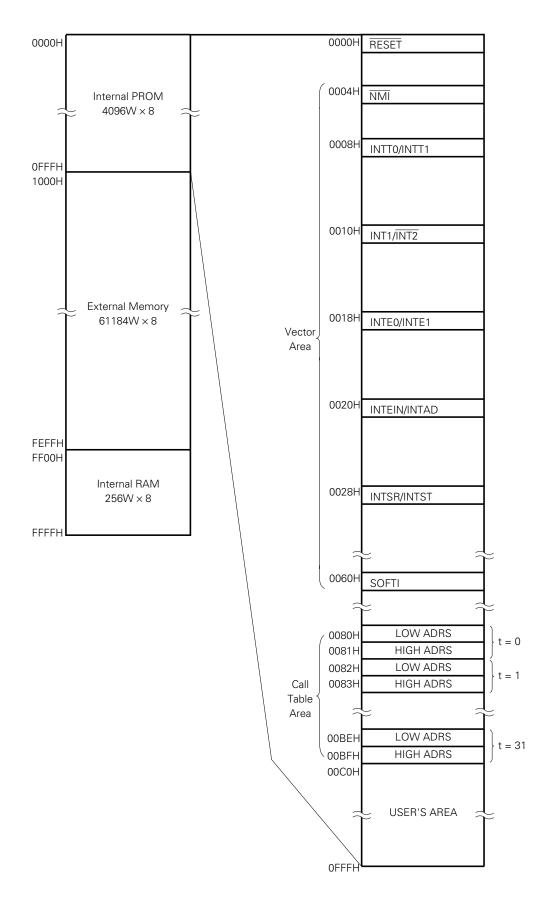
1.4 HANDLING OF UNUSED PINS

Pin	Recommended Connection
PA7 to PA0 PB7 to PB0 PC7 to PC0 PD7 to PD0 PF7 to PF0	Connect to Vss or Vbb via resistor.
RD WR ALE	Leave open.
STOP	Connect to VDD.
INT1, NMI	Connect to Vss or Vdd.
AVDD	Connect to VDD.
Varef AVss	Connect to Vss.
AN7 to AN0	Connect to AVss or AVDD.

2. MEMORY CONFIGURATION

The μ PD78CP18(A) memory can operate in the following 4 modes according to the mode specification.

- \bigcirc µPD78C11A mode (see Figure 2-1)
- $\odot~\mu {\rm PD78C12A}$ mode (see Figure 2-2)
- \bigcirc µPD78C14 mode (see **Figure 2-3**)
- \bigcirc µPD78C18 mode (see Figure 2-4)


In addition, the internal PROM and internal RAM address ranges can be specified for efficient mapping of external memory (excluding PROM) (see **3.2 "MEMORY MAPPING REGISTER (MM)**").

The vector area and call table area are common to all modes.

Setting the hardware/software STOP mode or HALT mode enables internal RAM data to be retained at a low consumption current.

Figure 2-1. Memory Map (µPD78C11A Mode)

Phase-out/Discontinued

Figure 2-2. Memory Map (µPD78C12A Mode)

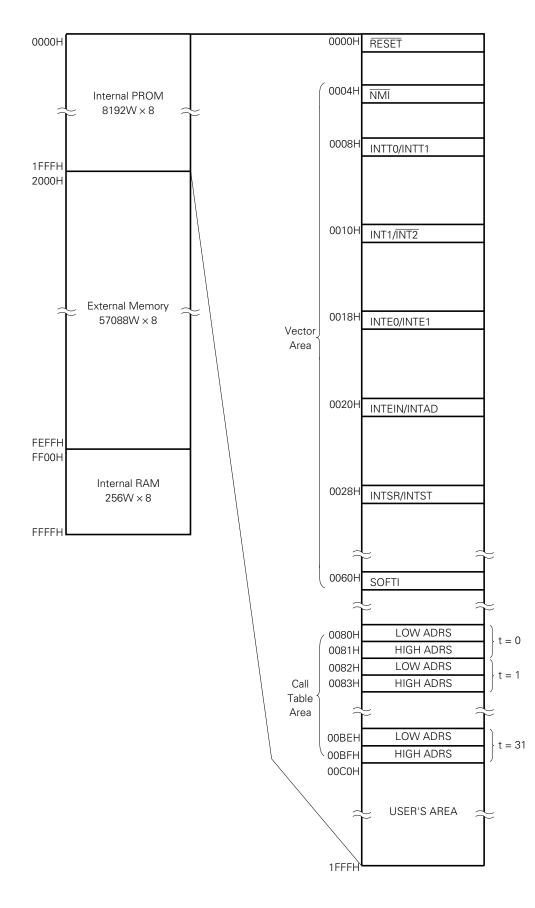


Figure 2-3. Memory Map (µPD78C14 Mode)

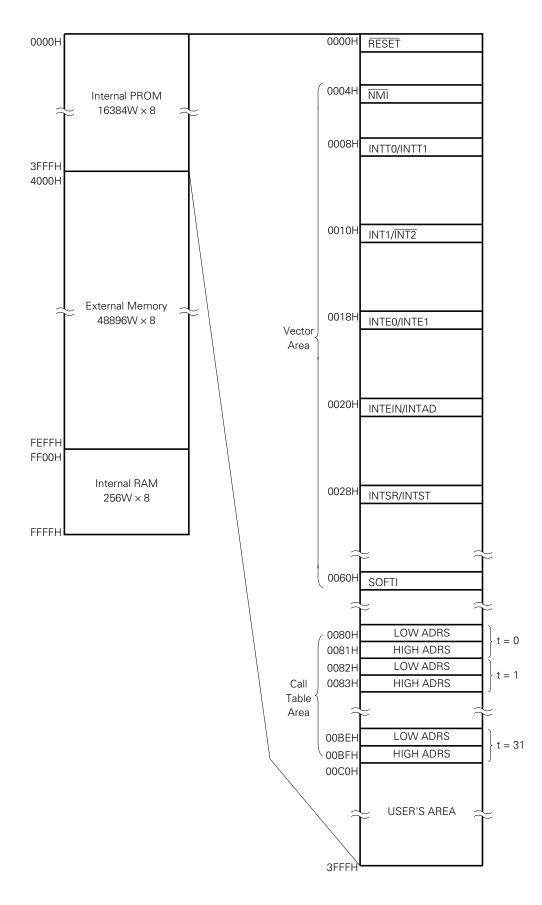


Figure 2-4. Memory Map (µPD78C18 Mode)

3. MEMORY EXTENSION

The μ PD78CP18(A) allows external memory extension by means of the MEMORY MAPPING register (MM) or the MODE0 and MODE1 pins. Also, the internal PROM and internal RAM access areas can be specified by means of bits MM7, MM6 and MM5 of the MEMORY MAPPING register.

Phase-out/Discontinued

3.1 MODE PINS

The μ PD78CP18(A) can be switched between programming mode and normal operation mode according to the specification of the MODE0 and MODE1 pins.

Table 3-1 shows the modes set by the MODE pins.

MODE1	MODE2	Operating Mode
L	L	Setting prohibited
L	Н	Programming mode ^{Note}
н	L	Normal operation mode
Н	Н	Setting prohibited

Table 3-1. Modes Set By MODE Pins

Note See 4. "PROM PROGRAMMING".

When MODE0 and MODE1 are driven high, a 4 [$k\Omega$] $\leq R \leq 0.4$ tcvc [$k\Omega$] pull-up resistor should be used (tcvc: ns units).

3.2 MEMORY MAPPING REGISTER (MM)

The MEMORY MAPPING register is an 8-bit register which performs the following controls:

- Port/extension mode specification for PD7 to PD0 and PF7 to PF0
- Enabling/disabling of internal RAM accesses
- Specification of internal PROM and RAM access areas

The configuration of the MEMORY MAPPING register is shown in Figure 3-1.

(1) Bits MM2 to MM0

These bits control the PD7 to PD0 port/extension mode specification, input/output specification, and the PF7 to PF0 address output specification.

Phase-out/Discontinued

As shown in Figure 3-1, there is a choice of four capacities for the connectable external memory:

- 256 bytes
- 4 Kbytes
- 16 Kbytes
- 32 K/48 K/56 K/60 Kbytes (set by bits MM7 to MM5)

Ports of PF7 to PF0 not used as address outputs can be used as general-purpose ports.

When RESET signal is input or in the hardware STOP mode, these bits are reset to (0) and PD7 to PD0 are set to input port mode (high-impedance).

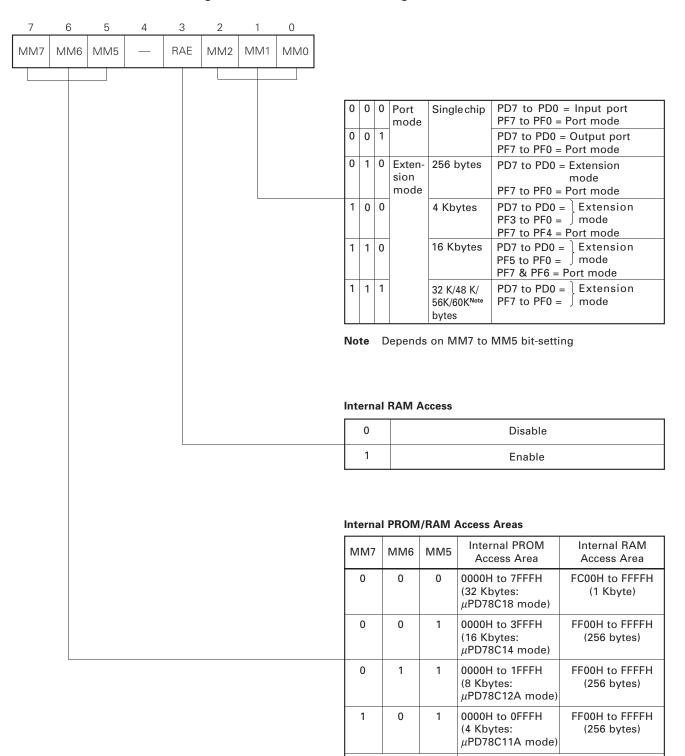
(2) MM3 bit (RAE)

This bit enables (RAE = 1) and disables (RAE = 0) internal RAM access. This bit should be set to "0" during standby operation and when externally connected RAM, not internal RAM, is used.

In normal operation this bit retains its value when RESET signal is input. However, the RAE bit is undefined after a power-on reset, and must therefore be initialized by an instruction.

(3) Bits MM7 to MM5

These bits specify the access area of the internal PROM.

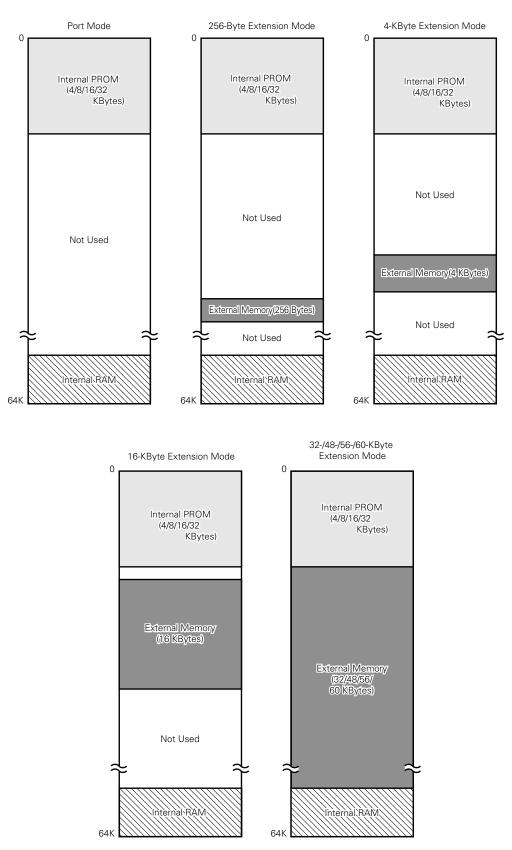

When $\overline{\text{STOP}}$ or $\overline{\text{RESET}}$ signal is input, these bits are reset, selecting the 32-Kbyte mode (μ PD78C18 mode).

These bits are only valid in the μ PD78CG14, 78CP14, 78CP18, 78CP14(A), and 78CP18(A); if data is written to these bits in the μ PD78C11A(A), 78C12A(A), 78C14(A), or 78C18(A), it will be ignored. Therefore, a program developed on the μ PD78CP18(A) can be directly ported to mask ROM.

μ**PD78CP18(A)**

Figure 3-1. MEMORY MAPPING Register Format

Phase-out/Discontinued



Other than above

Setting Prohibited

Caution The internal PROM and internal RAM access areas are determined by MM7 to MM5.

4. PROM PROGRAMMING

The μ PD78CP18(A) incorporates 32768×8-bit PROM as a program memory. The pins shown in Table 4-1 are used for write/verify operations on this PROM.

Phase-out/Discontinued

 μ PD78CP18(A) program timing is compatible with the μ PD27C256A.

Please read the following in conjunction with documentation of the μ PD27C256A.

Table 4-1.	Pins	Used	in	PROM	Programming
------------	------	------	----	------	-------------

Pin Name	Function
RESET	Low-level input (at write/verify and read)
MODE0	High-level input (at write/verify and read)
MODE1	Low-level input (at write/verify and read)
V _{PP} ^{Note}	High-voltage input (at write/verify), high-level input (at read)
CENote	Chip enable input
OENote	Output enable input
A14 to A0 ^{Note}	Address input
07 to O0 ^{Note}	Data input (at write), data output (at verify, read)
VDD ^{Note}	Supply voltage input

Note These pins correspond to the μ PD27C256A.

Caution The μ PD78CP18(A) one-time PROM version is not equipped with an erasure window, and therefore ultraviolet erasure cannot be performed on it.

4.1 PROM PROGRAMMING OPERATING MODES

The PROM programming operating mode is set as shown in Table 4-2. Pins not used for programming should be handled as shown in Table 4-3.

Operating Mode	\overline{CE}^{Note}	OE ^{Note}	V_{PP}^{Note}	VDD ^{Note}	RESET	MODE0	MODE1
Program	L	Н	+12.5 V	+6 V	L	Н	L
Program verify	н	L					
Program inhibit	Н	Н					
Read	L	L	+5 V	+5 V			
Output disable	L	Н					
Standby	Н	L/H					

Table 4-2. PROM Programming Modes

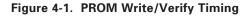
Note These pins correspond to the μ PD27C256A.

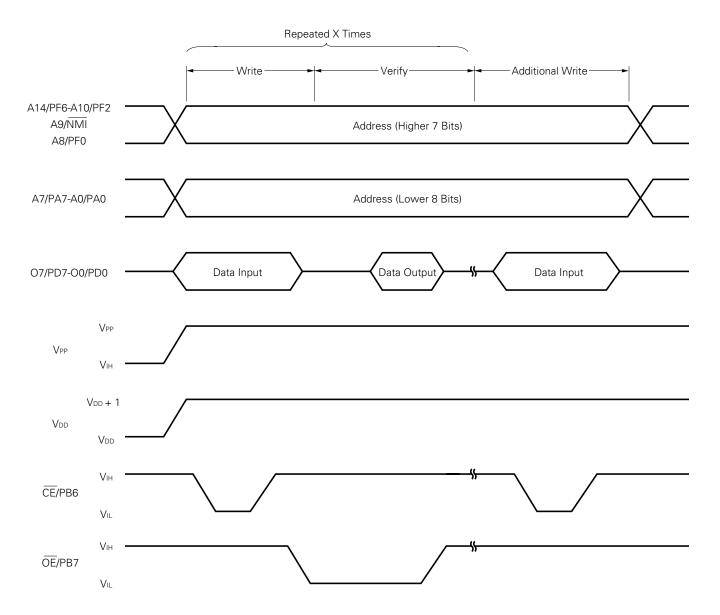
Caution When +12.5 V is applied to VPP and +6 V is applied to VDD, setting both \overline{CE} and \overline{OE} to "L" is prohibited.

Table 4-3. Recommended Connection of Unused Pins (in PROM Programming Mode)

Pin	Recommended Connection			
INT1	Connect to Vss.			
X1				
AN0 to AN7				
Varef				
AVdd				
AVss				
Pins other than the above	Connect to Vss via individual resistor.			
X2	Leave open.			

μ**PD78CP18(A)**


4.2 PROM WRITING PROCEDURE

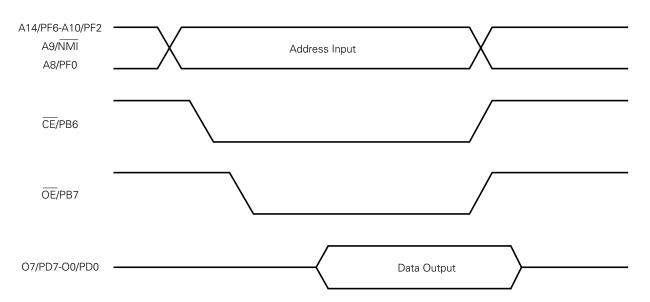

The PROM writing procedure is as shown below, allowing high-speed writing.

- (1) Connect unused pins to Vss via a pull-down resistor, and supply +6 V to VDD and +12.5 V to VPP.
- (2) Provide the initial address.
- (3) Provide the write data.
- (4) Provide a 1-ms program pulse (active low) to the CE pin.
- (5) Verify mode. If written, go to (7); if not written, repeat (3) to (5). If the write operation has failed 25 times, go to (6).

Phase-out/Discontinued

- (6) Halt write operation due to defective device.
- (7) Provide write data and program pulse of X times x 3 ms (X; repeated times from (3) to (5)) (additional write).
- (8) Increment the address.
- (9) Repeat (3) to (8) until the final address.

μ**PD78CP18(A)**


4.3 PROM READING PROCEDURE

PROM contents can be read onto the external data bus (O7 to O0) using the following procedure.

Phase-out/Discontinued

- (1) Connect unused pins to Vss via a pull-down resistor.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of data to be read to pins A14 to A0.
- (4) Read mode
- (5) Output data to pins O7 to O0.

Timing for steps (2) to (5) above is shown in Figure 4-2.

Figure 4-2. PROM Read Timing

5. SCREENING OF ONE-TIME PROM VERSIONS

Because of their construction, one-time PROM versions cannot be fully tested by NEC before shipment. After the necessary data has been written, it is recommended that screening be implemented in which PROM verification is performed after high-temperature storage under the following conditions.

Phase-out/Discontinued

Storage Temperature	Storage Time
125 °C	24 hours

★ NEC provides writing, marking, screening, and inspection services for single-chip microcomputers labeld QTOP microcomputers. For details, consult NEC.

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT
	Vdd		-0.5 to +7.0	V
Device events we like as	AVDD		AVss to VDD + 0.5	V
Power supply voltage	AVss		-0.5 to +0.5	V
	Vpp		-0.5 to +13.5	V
Input voltage		Other than MII/A9 pin	-0.5 to V _{DD} + 0.5	V
	Vı	NMI/A9 pin	-0.5 to +13.5	V
Output voltage	Vo		-0.5 to V _{DD} + 0.5	V
	Iol	All output pins	4.0	mA
Output current low		Total of all output pins	100	mA
		All output pins	-2.0	mA
Output current high	Іон	Total of all output pins	-50	mA
A/D converter reference input voltage	Varef		-0.5 to AV _{DD} + 0.3	V
Ambient operating temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Phase-out/Discontinued

Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, * the quality of the product may be degraded. The absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product with these rated values never exceeded.

★

OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V, $V_{\text{DD}} \text{ --0.8 } V \leq AV_{\text{DD}} \leq V_{\text{DD}}, \text{ 3.4 } V \leq V_{\text{AREF}} \leq AV_{\text{DD}})$

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	MAX.	UNIT	
Ceramic or crystal resonator		Oscillator frequency (fxx)	A/D converter not used	4	15	MHz	
			A/D converter used	5.8	15		
	X1 X2 HCMOS Inverter	X1 input frequency (fx)	A/D converter not used	4	15	MHz	
External clock			A/D converter used	5.8	15	IVITIZ	
External clock		X1 rise time, fall time (tr, tr)		0	20	ns	
		X1 input high-, low- level width (tøH, tøL)		20	250	ns	

Cautions 1. Place the oscillator as close as possible to the X1 and X2 pins.

2. Ensure that no other signal lines pass through the shaded area.

CAPACITANCE (TA = 25 $^{\circ}$ C, VDD = Vss = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	С	fc = 1 MHz			10	pF
Output capacitance	Co	Unmeasured pins returned to 0 V			20	pF
Input-output capacitance	Сю				20	pF

Phase-out/Discontinued

DC CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V)

PARAMETER	SYMBOL	TEST CON	DITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage low		All except RESET, STOP SCK, INT1, TI, AN4 to A	0		0.8	V	
		RESET, STOP, NMI, SCI TI, AN4 to AN7	κ̄, INT1,	0		0.2VDD	V
	V _{IH1}	All except RESET, STOP SCK, INT1, TI, AN4 to A		2.2		Vdd	V
Input voltage high	VIH2	RESET, STOP, NMI, SC TI, AN4 to AN7, X1, X2	κ̄, INT1,	0.8 VDD		Vdd	V
Output voltage low	Vol	IoL = 2.0 mA				0.45	V
Outent us have birth		Іон = -1.0 mA		V _{DD} - 1.0			V
Output voltage high Vон		Іон = -100 <i>µ</i> А	V _{DD} - 0.5			V	
Input current	h	INT1 ^{Note1} , TI(PC3) ^{Note2} ; 0	$V \leq V_{I} \leq V_{DD}$			±200	μA
Input leakage	lu	All except INT1, TI (PC3 AN7 to AN0; 0 V \leq V ₁ \leq			±10	μΑ	
current		AN7 to AN0; 0 V \leq V \leq			±1	μA	
Output leakage current	Ilo	$0 \ V \leq V_{\text{O}} \leq V_{\text{DD}}$				±10	μΑ
AV _{DD} power supply	Aldd1	Operating mode fxx = 1	5 MHz		0.5	1.3	mA
current	Aldd2	STOP mode			10	20	μA
VDD power supply	Idd1	Operating mode fxx = 1	5 MHz		16	35	mA
current	IDD2	HALT mode fxx = 15 MH	HALT mode fxx = 15 MHz		7	13	mA
Data retention voltage	Vdddr	Hardware/software STC	2.5			V	
Data retention		Hardware/software ^{Note3}	$V_{DDDR} = 2.5 V$		1	15	μA
current	Idddr	STOP mode	$V_{\text{DDDR}} = 5 \text{ V} \pm 10 \text{ \%}$		10	50	μΑ

★

Notes 1. If self-bias should be generated by ZCM register.

2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register.

3. If self-bias is not generated.

AC CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V) READ/WRITE OPERATION:

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input cycle time	tcvc		66	167	ns
Address setup time (to ALE \downarrow)	tal		30		ns
Address hold time (from ALE \downarrow)	tla	fxx = 15 MHz, CL = 150 pF	35		ns
$\overline{\text{RD}}\downarrow$ delay time from address	tar		100		ns
Address float time from $\overline{\text{RD}}\downarrow$	tafr	C _L = 150 pF		20	ns
Data input time from address	tad			250	ns
Data input time from ALE \downarrow	tldr			135	ns
Data input time from $\overline{\mathrm{RD}}\downarrow$	trd	fxx = 15 MHz, C _L = 150 pF		120	ns
$\overline{\text{RD}} \downarrow$ delay time from ALE \downarrow	tlr		15		ns
Data hold time (from $\overline{\mathrm{RD}}$)	trdн	C _L = 150 pF	0		ns
ALE ^{\uparrow} delay time from $\overline{\text{RD}}^{\uparrow}$	trl	fxx = 15 MHz, CL = 150 pF	80		ns
		In data read fxx = 15 MHz, C∟ = 150 pF	215		ns
RD low-level width	trr	In OP code fetch fxx = 15 MHz, C∟ = 150 pF	415		ns
ALE high-level width	tu	fxx = 15 MHz, CL = 150 pF	90		ns
$\overline{\text{WR}} {\downarrow}$ delay time from address	taw		100		ns
Data output time from ALE \downarrow	tldw	fxx = 15 MHz, C _L = 150 pF		197	ns
Data output time from $\overline{\text{WR}} \downarrow$	twp	CL = 150 pF		140	ns
$\overline{\rm WR} {\downarrow}$ delay time from ALE ${\downarrow}$	tLW		15		ns
Data setup time (to $\overline{WR} \uparrow$)	tow		127	<u> </u>	ns
Data hold time (from \overline{WR}^{\uparrow})	twdh	fxx = 15 MHz, CL = 150 pF	60		ns
ALE ^{\uparrow} delay time from $\overline{\text{WR}}^{\uparrow}$	tw∟		80		ns
WR low-level width	tww		215		ns

ZERO-CROSS CHARACTERISTICS :

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
Zero-cross detection input	Vzx		1	1.8	VAC _{P-P}
Zero-cross accuracy	Azx	AC coupling 60-Hz sine wave		±135	mV
Zero-cross detection input frequency	fzx	00-112 51116 Wave	0.05	1	kHz

SERIAL OPERATION :

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
			Note1	800		ns
SCK cycle time	tсүк	SCK input	Note2	400		ns
		SCK output		1.6		μs
SCK low-level width			Note1	335		ns
	tккl	SCK input	Note2	160		ns
		SCK output		700		ns
		SCK input	Note1	335		ns
SCK high-level width	tккн		Note2	160		ns
		SCK output		700		ns
RxD setup time (to SCK↑)	trxк	Note1		80		ns
RxD hold time (from \overline{SCK})	tkrx	Note1		80		ns
TxD delay time from SCK↓	tктх	Note1			210	ns

Phase-out/Discontinued

Notes 1. If clock rate is \times 1 in asynchronous mode, synchronous mode, or I/O interface mode.

2. If clock rate is \times 16 or \times 64 in asynchronous mode.

Remark The numeric values in the table are those when fxx = 15 MHz, CL = 100 pF.

OTHER OPERATION :

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
TI high-, low-level width	tтıн, tтı∟		6		tcyc
	tciih, tciil	 Event counter mode Frequency test mode 	6		tcyc
Cl high-, low-level width	tci2H, tci2L	 Pulse width test mode ECNT latch and clear input INTEIN set input 	48		tcyc
NMI high-, low-level width	tnih, tnil		10		μs
INT1 high-, low-level width	tiih, tiil		36		tcyc
INT2 high-, low-level width	ti2H, ti2L		36		tcyc
AN4 to AN7, low-level width	tanh, tanl		36		tcyc
RESET high-, low-level width	trsh, trsl		10		μs

×

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = +5.0 V \pm 10 %, Vss = AVss = 0 V, Vdd - 0.5 V \leq AVdd \leq Vdd, 3.4 V \leq Varef \leq AVdd)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			Bits
		3.4 V \leq Varef \leq AVdd, 66 ns \leq toyo \leq 167 ns			±0.8 %	FSR
Absolute accuracy ^{Note}		4.0 V \leq Varef \leq AVdd, 66 ns \leq teye \leq 167 ns			±0.6 %	FSR
		$ \begin{array}{l} T_A = -10 \mbox{ to } +70 \ ^\circ C, \\ \mbox{4.0 V} \leq V_{AREF} \leq AV_{DD}, \mbox{ 66 ns} \leq t_{CYC} \leq 167 \mbox{ ns} \end{array} $			±0.4 %	FSR
Conversion time	tсолу	66 ns ≤ tcvc ≤ 110 ns	576			tcyc
		110 ns ≤ tcyc ≤ 167 ns	432			tcyc
Sampling time	t samp	66 ns ≤ tcvc ≤ 110 ns	96			tcyc
		110 ns ≤ tcvc ≤ 167 ns	72			tcyc
Analog input voltage	VIAN		-0.3		VAREF + 0.3	V
Analog input impedance	Ran			50		MΩ
Reference voltage	VAREF		3.4		AVDD	V
Varef current	AREF1	Operating mode		1.5	3.0	mA
	AREF2	STOP mode		0.7	1.5	mA
AV _{DD} power supply current	Aldd1	Operating mode fxx = 15 MHz		0.5	1.3	mA
	Aldd2	STOP mode		10	20	μΑ

Note Quantization error ($\pm 1/2$ LSB) is not included.

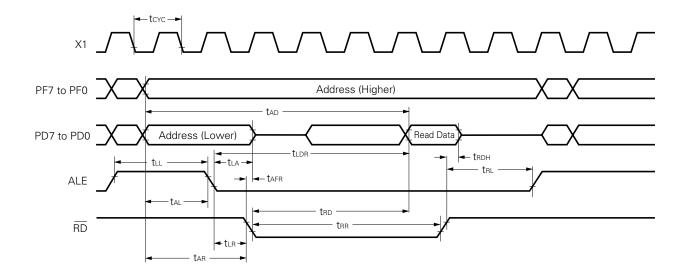
AC Timing Test Point

tcvc-Dependent AC Characteristics Expression

PARAMETER	EXPRESSION	MIN./MAX.	UNIT	
tal	2T – 100	MIN.	ns	
tla	T – 30	MIN.	ns	
tar	3T – 100	MIN.	ns	
tad	7T – 220	MAX.	ns	
tldr	5T – 200	MAX.	ns	
trd	4T – 150	MAX.	ns	
tlr	T – 50	MIN.	ns	
trl	2T – 50	MIN.	ns	
trr	4T – 50 (In data read)	BAINI	ns	
	7T – 50 (In OP code fetch)	MIN.		
tu	2T – 40	MIN.	ns	
taw	3T – 100	MIN.	ns	
tldw	T + 130	MAX.	ns	
tıw	T – 50	MIN.	ns	
tow	4T – 140	MIN.	ns	
twdн	2T – 70	MIN.	ns	
tw∟	2T – 50	MIN.	ns	
tww	4T – 50	MIN.	ns	
tсук	12T (SCK input)Note1		ns	
	6T (SCK input)Note2	MIN.		
	24T (SCK output)			
tkkl -	5T + 5 (SCK input) ^{Note1}	(SCK input)Note1		
	2.5T + 5 (SCK input) ^{Note2}	MIN.	ns	
	12T – 100 (SCK output)			
tккн	5T + 5 (SCK input) ^{Note1}		ns	
	2.5T + 5 (SCK input) ^{Note2}	MIN.		
	12T – 100 (SCK output)			

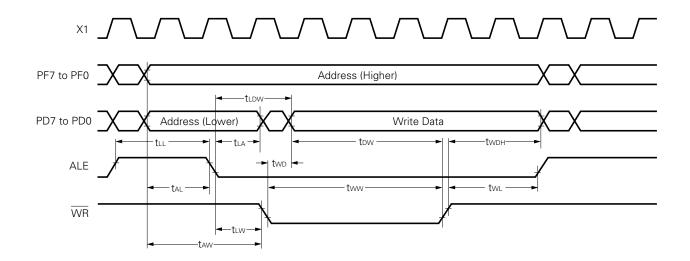
Phase-out/Discontinued

Notes 1. If clock rate is ×1, in asynchronous mode, synchronous mode, or I/O interface mode.
2. If clock rate is ×16, ×64 in asynchronous mode.

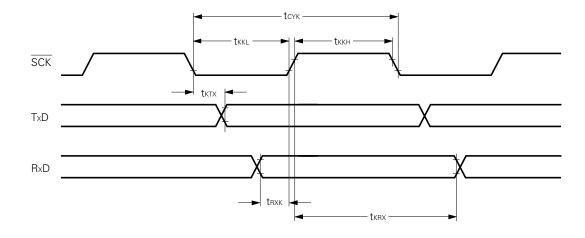

Remarks 1. T = tcyc = 1/fxx

2. Other items which are not listed in this table are not dependent on oscillator frequency (fxx).

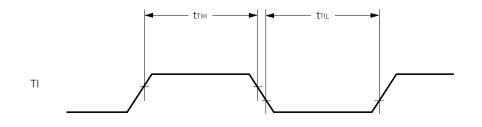
μ**PD78CP18(A)**


Timing Waveforms

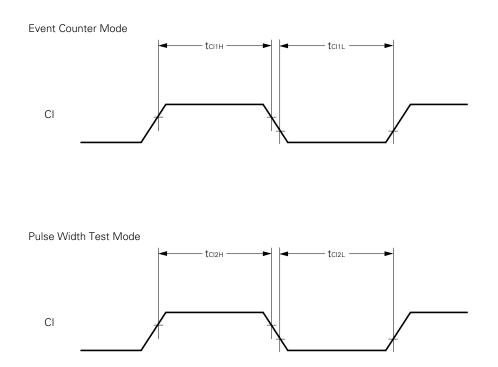
Read Operation


Phase-out/Discontinued

Write Operation

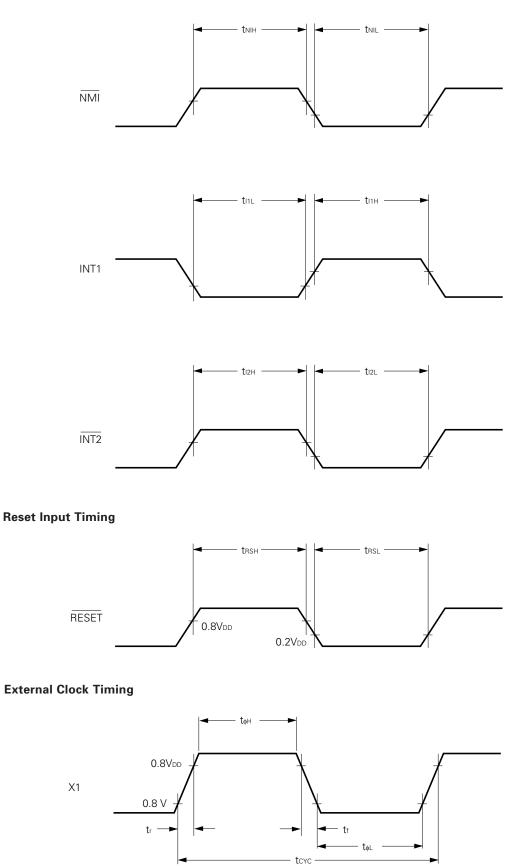

μ**PD78CP18(A)**

Serial Operation



Phase-out/Discontinued

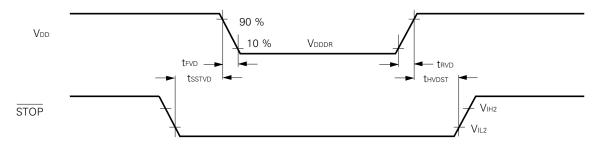
Timer Input Timing



Timer/Event Counter Input Timing

Phase-out/Discontinued

Interrupt Input Timing


★

DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = -40 to +85 $^\circ\text{C}$)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention power supply voltage	Vdddr		2.5		5.5	V
Data retention power	1	$V_{DDDR} = 2.5 V$		1	15	μΑ
supply current	DDDR	$V_{DDDR} = 5 V \pm 10 \%$		10	50	μA
VDD rise/fall time	trvd, tfvd		200			μs
STOP setup time (to V _{DD})	tsstvd		12T + 0.5 Note			μs
STOP hold time (from V _{DD})	thvdst		12T + 0.5 Note			μs

Note T= tcyc = 1/fxx

Data Retention Timing

DC PROGRAMMING CHARACTERISTICS (TA = 25 \pm 5 °C, MODE1 = VIL, MODE0 = VIH, Vss = 0 V)

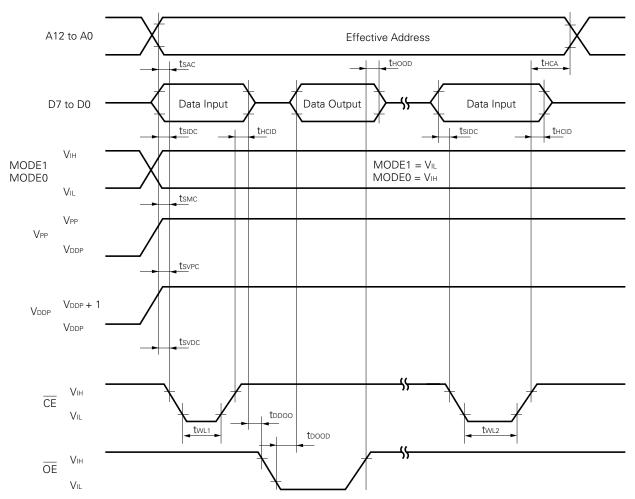
Phase-out/Discontinued

PARAMETER	SYMBOL	SYMBOL ^{Note}	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage high	Vін	Vih		2.4		V _{DDP} + 0.3	V
Input voltage low	VIL	VIL		-0.3		0.8	V
Input leakage current	ILIP	Ιu	$0 \le V_I \le V_{DDP}$; except INT1, TI (PC3)			±10	μΑ
Output voltage high	Vон	Vон	Іон = −1.0 mA	V _{DD} - 1.0			V
Output voltage low	Vol	Vol	loL = 2.0 mA			0.45	V
Output leakage current	Ιιο	_	$0 \le V_0 \le V_{DDP}, \ \overline{OE} = V_{IH}$			±10	μΑ
VDDP supply voltage	VDDP	VDD	EPROM programming mode	5.75	6.0	6.25	V
volle supply vollage	VDDP	VUU	EPROM read mode	4.5 5.0 5.5	V		
VPP supply voltage	Vpp	Vpp	EPROM programming mode	12.2	12.5	12.8	V
vii supply voltage	• · · ·	VII .	EPROM read mode		Vpp = Vdd	P	V
			EPROM programming mode		5	50	mA
VDDP supply current	lod	loo	EPROM read mode CE = VIL, VI = VIH		5	50	mA
VPP supply current	Ірр	Ірр	EPROM programming mode CE = VIL, OE = VIH		5	30	mA
			EPROM read mode		1	100	μA

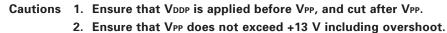
Note Corresponding *µ*PD27C256A symbol

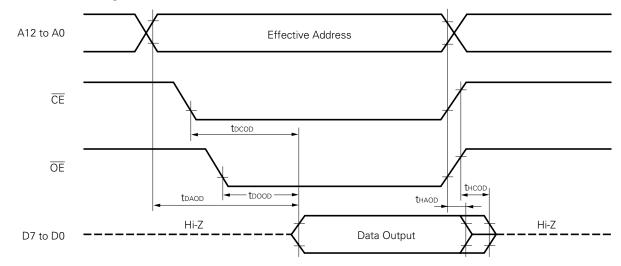
AC PROGRAMMING CHARACTERISTICS (TA = 25 \pm 5 °C, MODE1 = VIL, MODE0 = VIH, Vss = 0 V)

Phase-out/Discontinued

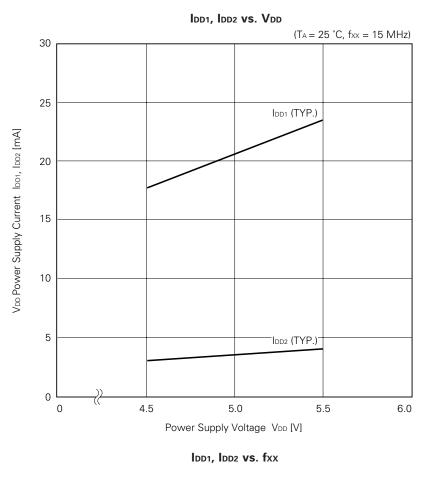

PARAMETER	SYMBOL	SYMBOL ^{Note1}	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time (to $\overline{CE}\downarrow$)	tsac	tas		2			μs
$\overline{\text{OE}}\downarrow$ delay time from data	tddoo	toes		2			μs
Input data setup time (to $\overline{CE} \downarrow$)	tsidc	tos		2			μs
Address hold time (from $\overline{\text{CE}}^{\uparrow}$)	tнса	tан		2			μs
Input data hold time (from \overline{CE})	tнсір	tон		2			μs
Output data hold time (from $\overline{OE} \uparrow$)	tноор	tdf		0		130	ns
V_{PP} setup time (to $\overline{\text{CE}}{\downarrow})$	tsvpc	tvps		2			μs
V_{DDP} setup time (to $\overline{\text{CE}} \downarrow$)	tsvdc	tvds		2			μs
Initial program pulse width	twL1	tpw		0.95	1.0	1.05	ms
Additional program pulse width	twL2	topw		2.85		78.75	ms
EPROM programming/read mode setup time (to $\overline{\text{CE}} \downarrow)^{\text{Note2}}$	tsмc			2			μs
Data output time from address	t daod	tacc	OE = VIL			1	μs
Data output time from $\overline{CE} \downarrow$	tdcod	tce				1	μs
Data output time from $\overline{\text{OE}} \downarrow$	tdood	toe				1	μs
Data hold time (from $\overline{\text{OE}}\uparrow$)	tнсор	tdf		0		130	ns
Data hold time (from address)	t haod	tон	OE = VIL	0			ns

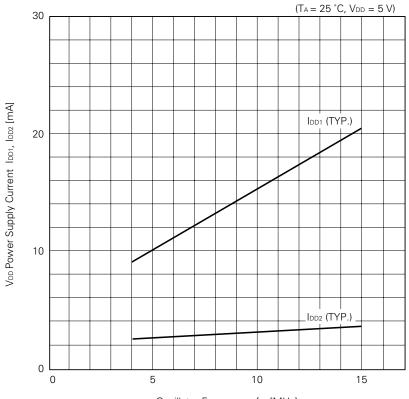
Notes 1. Corresponding μ PD27C256A symbol


2. Indicates state in which MODE1 = VIL and MODE0 = VIH.

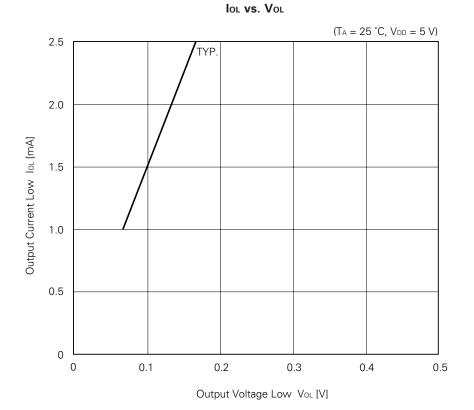

PROM Programming Mode Timing

Phase-out/Discontinued

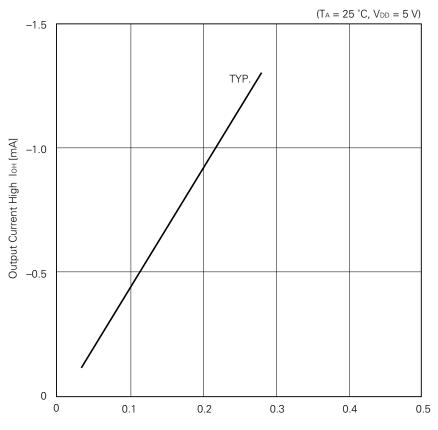

PROM Read Mode Timing

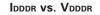


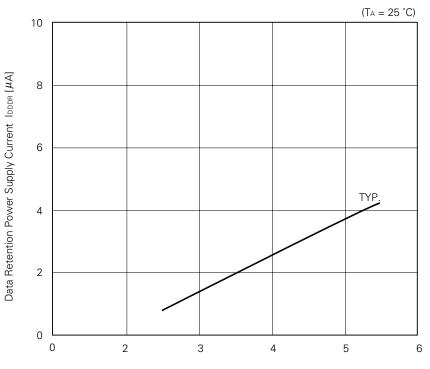
- Cautions 1. If you wish to read within the tDAOD range, the OE input delay time from the fall of CE should be a maximum of tDAOD tDOOD.
 - 2. THCOD is the time from the point at which \overline{OE} or \overline{CE} (whichever is first) reaches VIH.



7. CHARACTERISTIC CURVES (REFERENCE VALUE)

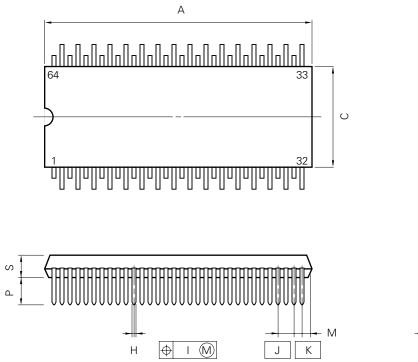


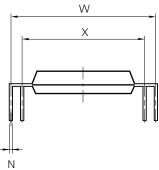




Іон vs. Vон

Power Supply Voltage – Output Voltage High V_DD – VOH [V]

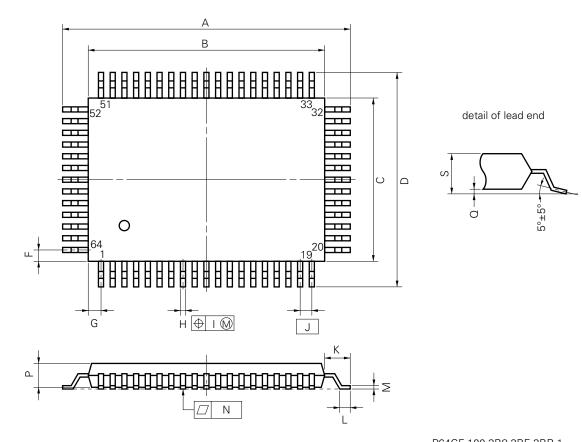




Data Retention Power Supply Voltage V_{DDDR} [V]

8. PACKAGE DRAWINGS

64 PIN PLASTIC QUIP


NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

		P64GQ-100-36
ITEM	MILLIMETERS	INCHES
А	$41.5 \substack{+0.3 \\ -0.2}$	1.634 ^{+0.012} 0.008
С	16.5	0.650
Н	$0.50^{\pm 0.10}$	$0.020^{+0.004}_{-0.005}$
I	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
К	1.27 (T.P.)	0.050 (T.P.)
М	1.1+0.25	0.043 ^{+0.011} -0.006
N	$0.25^{+0.10}_{-0.05}$	0.010+0.004 -0.003
Р	4.0 ^{±0.3}	0.157 ^{+0.013} 0.012
S	3.6 ^{±0.1}	0.142 ^{+0.004} 0.005
W	24.13 ^{±1.05}	0.950 ^{±0.042}
Х	$19.05^{\pm 1.05}$	0.750 ^{±0.042}

μ**PD78CP18(A)**

64 PIN PLASTIC QFP (14×20)

Phase-out/Discontinued

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

	P64	4GF-100-3B8,3BE,3BR-1
ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795\substack{+0.009\\-0.008}$
С	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	0.016+0.004 -0.005
Ι	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
К	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
Μ	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

* 9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78CP18(A) should be soldered and mounted under the following recommended conditions.

For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual (IEI-1207)".

Phase-out/Discontinued

For soldering methods and conditions other than those recommended below, contact an NEC representative.

Table 9-1. Surface Mount Type Soldering Conditions

 μ PD78CP18GF(A)-3BE: 64-Pin Plastic QFP (14 \times 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Infrared reflow Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or higher), Count: Twice or less <attention></attention>	
	 Perform the second reflow at the time the device temperature is lowered to the room temperature from the heating by the first reflow. Do not wash the soldered portion with the flux following the first reflow. 	
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or higher), Count: Twice or less <attention></attention>	VP15-00-2
	 Perform the second reflow at the time the device temperature is lowered to the room temperature from the heating by the first reflow. Do not wash the soldered portion with the flux following the first reflow. 	
Wave soldering	Solder bath temperature: 260 °C max., Duration: 10 sec. max., Count: Once Preheating temperature: 120 °C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side row of pins)	

Caution Use of more than one soldering method should be avoided (except in the case of pin part heating).

Table 9-2. Through-Hole Type Soldering Conditions

µPD78CP18GQ(A)-36: 64-Pin Plastic QUIP

Soldering Method	Soldering Conditions
Wave soldering (pin part only)	Solder bath temperature: 260 °C max., Duration: 10 sec. max.
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per pin)

Caution Wave soldering is used on the pin only, and care must be taken to prevent solder from coming into direct contact with the body.

10. DIFFERENCES BETWEEN THE μ PD78CP18(A) AND μ PD78C18(A)

Part Number Item	μΡD78CP18(A)	μPD78C18(A)
Internal ROM	32 K × 8 bits (PROM)	32 K \times 8 bits (mask ROM)
Internal RAM	1 K \times 8 bits	$1 \text{ K} \times 8 \text{ bits}$
Pin connection	PB7/OE	PB7
	PB6/CE	PB6
	STOP/VPP	STOP
	NMI/A9	NMI
	PA7/A7 to PA0/A0	PA7 to PA0
	PF6/A14 to PF2/A10	PF6 to PF2
	PF0/A8	PF0
	PD7/07 to PD0/00	PD7 to PD0
Mode set by MODE pins (when MODE0 is set to 1, and MODE1 to 0)	PROM programming mode	 Operates as the μPD78C17(A) (ROM-less mode) External memory 16 K extension mode
MODE0 pin input/output function	Input only ^{Note}	Input/output
Internal memory access area setting by MM register	Yes	No
Port A to Port C	Pull-up resistors not incorporated	Pull-up resistor incorporation selectable bit-wise by mask option

Phase-out/Discontinued

Note An emulation control signal is not output even if the MODE0 pin is pulled high.

***** APPENDIX DEVELOPMENT TOOLS

The following development tools are available to develop a system which uses the μ PD78CP18(A).

Language Processor

87AD series relocatable assembler (RA87)	microcomputer e	execution is possib	le.	monic to an object code for which mbol/table, and optimize branch
	Host Machine	OS	Supply Medium	Ordering Code (Product Name)
	PC-9800 series	MS-DOS™ ┌─ Ver. 2.11 ᄀ	3.5-inch 2HD	μS5A13RA87
		to Ver. 5.00A ^{Not} e	5-inch 2HD	μS5A10RA87
		PC DOS™	3.5-inch 2HC	μS7B13RA87
	IBM PC/AT [™] (Ver. 3.1)	(Ver. 3.1)	5-inch 2HC	μS7B10RA87

PROM Write Tools

e	PG-1500	With a provided board and an optional programmer adapter connected, this PROM programmer can manipulate from a stand-alone or host machine to perform programming on a single-chip microcomputer which incorporates PROM. It is also capable of programming a typical PROM ranging from 256 K to 4 M bits.							
Hardware	PA-78CP14GF/ GQ	PROM programm	PROM programmer adapter for the μ PD78CP18(A). Used by connecting to the PG-1500.						
	PA-78CP14GF	For the μ PD78CP	18GF(A)-3BE						
	PA-78CP14GQ	For the μ PD78CP	For the µPD78CP18GQ(A)-36						
	PG-1500 controller	Connects the PG-1500 to a host machine by using serial and parallel interface, to control t 1500 on a host machine.							
		Host Machine	OS	Supply Medium	Ordering Code (Product Name)				
Software		PC-9800 series	MS-DOS Ver. 2.11	3.5-inch 2HD	μS5A13PG1500				
Ň			to Ver. 5.00A ^{Note}	5-inch 2HD	μS5A10PG1500				
		IBM PC/AT	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10PG1500				

Note Versions 5.00 and 5.00A have a task swap function, but this function cannot be used with this software.

Remark The operations of the assembler and the PG-1500 controller are guaranteed only on the above host machines and operating systems.

Debugging Tools

An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for the μ PD78CP18(A). The following table shows its system configuration.

Phase-out/Discontinued

Hardware	IE-78C11-M	The IE-78C11-M is an in-circuit emulator which works with the 87AD series. It can be connected to a host machine to perform efficient debugging.							
	IE-78C11-M control program (IE controller)	Connects the IE-78C11-M to host machine by using the RS-233C, to control the IE-78C11-M on host machine.							
are		Host Machine	OS	Supply Medium	Ordering Code (Product Name)				
Software		PC-9800 series	MS-DOS ┌ Ver. 2.11	3.5-inch 2HD	μS5A13IE78C11				
			to └ Ver. 3.30D J	5-inch 2HD	μS5A10IE78C11				
		IBM PC/AT	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10IE78C11				

Remark The operations of the IE controller are guaranteed only on the above host machines and operating systems.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards wiht semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11

QTOP is a trademark of NEC Corporation. MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.