Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

MOS INTEGRATED CIRCUIT Phase-out/Discontinued $\mu PD78P014$

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD78P014 is a member of the μ PD78014 subseries of 78K/0 series products. It uses a one-time-programmable (OTP) ROM or EPROM instead of the mask ROM of the μ PD78014.

Because the μ PD78P014 can be programmed by users, it is ideally suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of a new product.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

 μ PD78014, 78014Y Series User's Manual : IEU-1343

FEATURES

- Pin compatible with mask ROM versions (except VPP pin)
- Internal PROM: 32K bytes^{Note}
 - µPD78P014DW : Reprogrammable (ideal for system evaluation)
 - µPD78P014CW, 78P014GC-AB8 : Programmable once only (ideal for small-scale production)
- Internal high-speed RAM: 1024 bytes^{Note}
- Buffer RAM: 32 bytes
- Operable over same supply voltage range as mask ROM version (2.7 to 6.0 V)
- Available for the QTOP[™] microcomputer

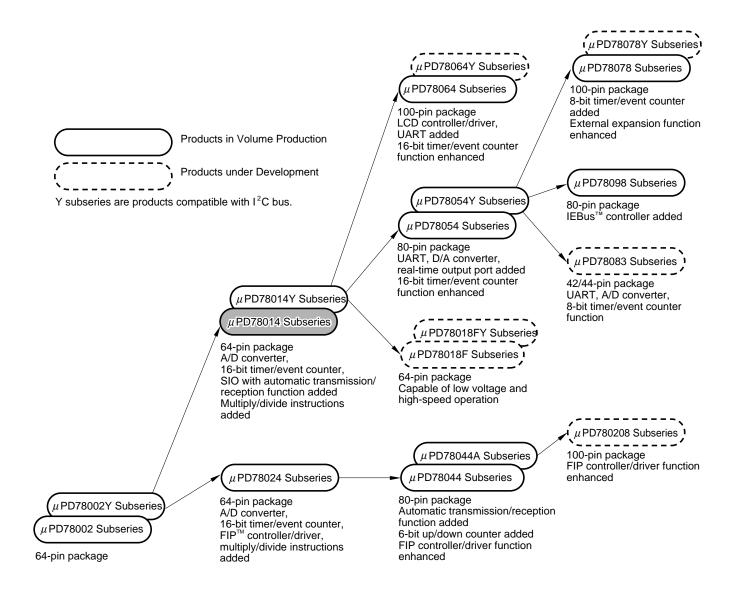
Note The internal PROM and internal high-speed RAM size can be set by means of the memory size switching register.

Remark The QTOP microcomputer is the general term for a single-chip microcomputer with on-chip one-time PROM. NEC supports its program writing, marking, screening, and verification.

Differences from mask ROM versions are as follows:

- The same memory mapping as on a mask ROM version is possible by setting the memory size switching register.
- There is no function for incorporating pull-up resistors by means of a mask option in P60 to P63 pins.

ORDERING INFORMATION


Part No.	Package	Internal ROM
μ PD78P014CW	64-pin plastic shrink DIP (750 mil)	One-time PROM
μ PD78P014DW	64-pin ceramic shrink DIP (with window) (750 mil)	EPROM
μ PD78P014GC-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)	One-time PROM

In this document, the common parts of the one-time PROM version and EPROM version are represented by PROM.

The information in this document is subject to change without notice.

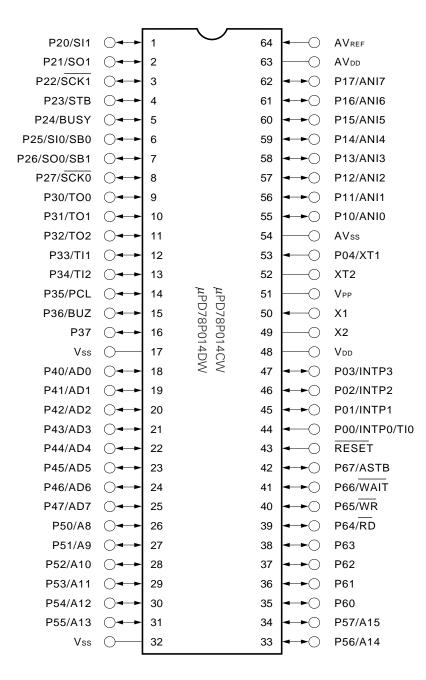
Phase-out/Discontinued

★ 78K/0 SERIES DEVELOPMENT

OUTLINE OF FUNCTION

	ltem	Function		
Internal me	emory	 PROM : 32K bytes^{Note} RAM Internal high-speed RAM : 1024 bytes^{Note} Buffer RAM : 32 bytes 		
Memory sp	ace	64K bytes		
General reg	gisters	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Instruction	cycle	On-chip instruction execution time cycle modification function		
	in system clock ected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (at 10.0 MHz operation)		
	osystem clock ected	122 μ s (at 32.768 kHz operation)		
Instruction	set	 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulate (set, reset, test, Boolean operation) BCD correction, etc. 		
I/O ports		Total : 53 • CMOS input : 2 • CMOS I/O : 47 • N-channel open-drain I/O (15 V withstand voltage) : 4		
A/D converter		 8-bit resolution × 8 channels Operable over a wide power supply voltage range: VDD = 2.7 to 6.0 V 		
Serial interface		 3-wire/SBI/2-wire mode selectable : 1 channel 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel 		
Timer		 16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Clock timer : 1 channel Watchdog timer : 1 channel 		
Timer outp	ut	3 (14-bit PWM output : 1)		
Clock output	ut	39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock 10.0 MHz operation) 32.768 kHz (at subsystem clock 32.768 kHz operation)		
Buzzer outp	out	2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock 10.0 MHz operation)		
Vectored interrupts	Maskable interrupts	Internal : 8, External : 4		
	Non-maskable interrupt	Internal : 1		
Software		Internal : 1		
Test input		Internal : 1 External : 1		
Operating	voltage range	VDD = 2.7 to 6.0 V		
Operating t range	emperature	−40 to +85 °C		
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 14 mm) 64-pin ceramic shrink DIP (with window) (750 mil) 		

Phase-out/Discontinued

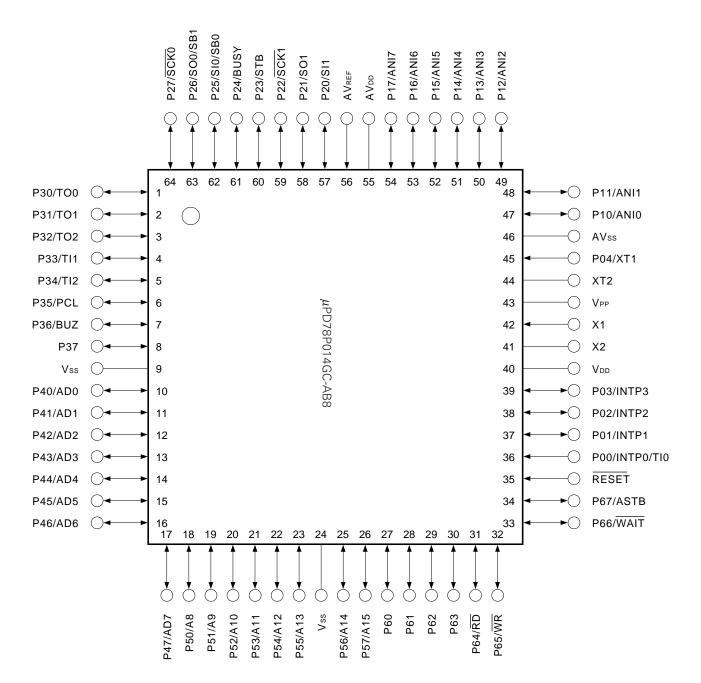

Note The capacity of the internal PROM and internal high-speed RAM can be set by means of the memory size switching register.

μ**PD78P014**

PIN CONFIGURATION (Top View)

(1) Normal operating mode

64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) (750 mil)


Phase-out/Discontinued

Cautions 1. VPP pin should be connected to Vss directly.

- 2. AVDD pin should be connected to VDD.
- 3. AVss pin should be connected to Vss.

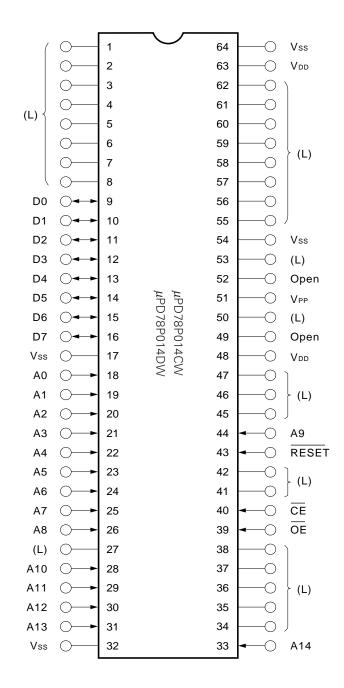
μ**PD78P014**

64-pin plastic QFP (14 \times 14 mm)

Phase-out/Discontinued

Cautions 1. VPP pin should be connected to Vss directly.

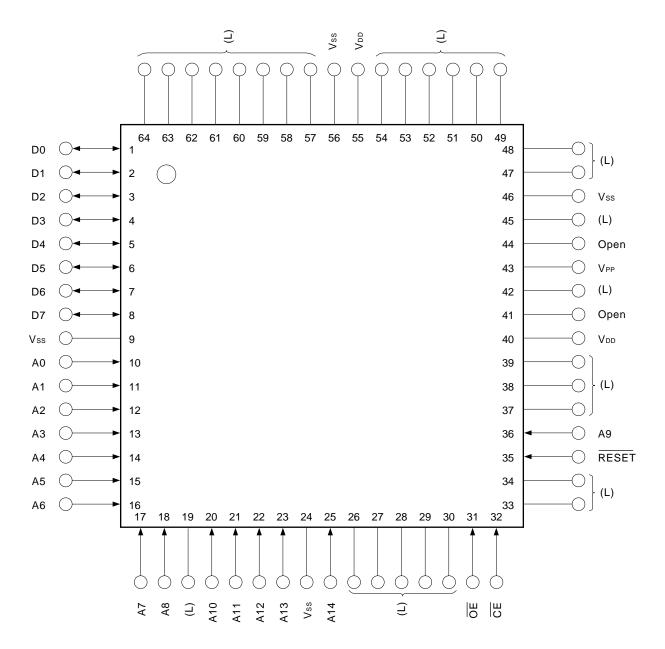
- 2. AVDD pin should be connected to VDD.
- 3. AVss pin should be connected to Vss.


Phase-out/Discontinued

P00 to P04	: Port 0	AD0 to AD7	: Address/Data Bus
P10 to P17	: Port 1	A8 to A15	: Address Bus
P20 to P27	: Port 2	RD	: Read Strobe
P30 to P37	: Port 3	WR	: Write Strobe
P40 to P47	: Port 4	WAIT	: Wait
P50 to P57	: Port 5	ASTB	: Address Strobe
P60 to P67	: Port 6	X1, X2	: Crystal (Main System Clock)
INTP0 to INTP3	: Interrupt From Peripherals	XT1, XT2	: Crystal (Subsystem Clock)
TI0 to TI2	: Timer Input	RESET	: Reset
TO0 to TO2	: Timer Output	ANI0 to ANI7	: Analog Input
SB0, SB1	: Serial Bus	AVDD	: Analog Power Supply
SI0, SI1	: Serial Input	AVss	: Analog Ground
SO0, SO1	: Serial Output	AVREF	: Analog Reference Voltage
SCK0, SCK1	: Serial Clock	Vdd	: Power Supply
PCL	: Programmable Clock	Vpp	: Programming Power Supply
BUZ	: Buzzer Clock	Vss	: Ground
STB	: Strobe		
BUSY	: Busy		

(2) PROM programming mode

64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) (750 mil)

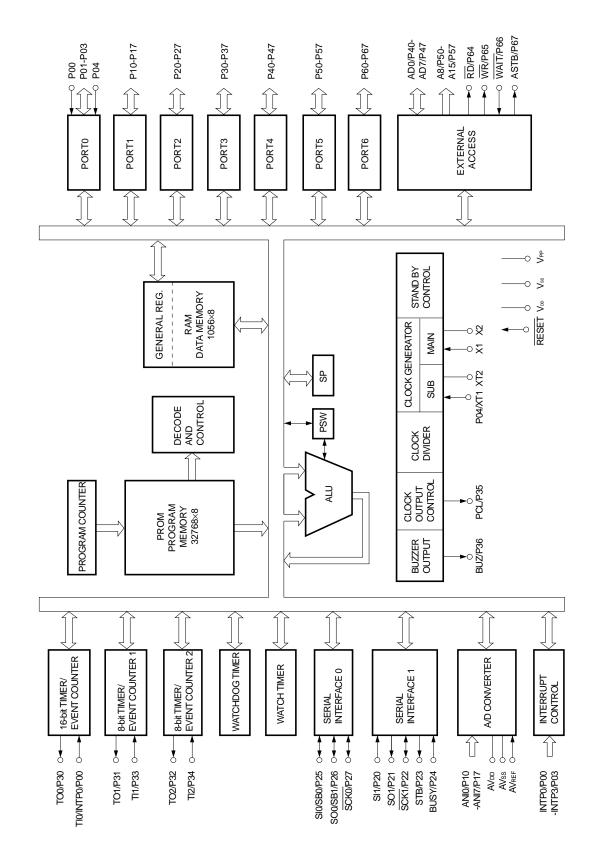

Phase-out/Discontinued

Cautions 1. (L) : Connect to Vss individually via a pull-down resistor.

- 2. Vss : Connect to ground.
- 3. RESET : Set to low level.
- 4. Open : Do not make any connection.

Phase-out/Discontinued

64-pin plastic QFP (14 \times 14 mm)


Cautions 1. (L) : Connect to Vss individually with a pull-down resistor.

- 2. Vss : Connect to ground.
- 3. **RESET** : Set to low level.
- 4. Open : Do not make any connection.

A0 to A14	: Address Bus	RESET	: Reset
D0 to D7	: Data Bus	Vdd	: Power Supply
CE	: Chip Enable	Vpp	: Programming Power Supply
OE	: Output Enable	Vss	: Ground

Phase-out/Discontinued

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN µPD78P014 AND MASK ROM VERSION1	1
2.	PIN FUNCTIONS 1	12
	2.1 Normal Operating Mode Pins 1	
	2.2 PROM Programming Mode Pins 1	15
	2.3 Pin Input/Output Circuits and Connection of Unused Pins	6
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)1	18
4.	PROM PROGRAMMING1	19
	4.1 Operating Modes	19
	4.2 PROM Write Procedure	20
	4.3 PROM Read Procedure	22
5.	ERASURE PROCEDURE (µPD78P014DW ONLY)2	23
6.	OPAQUE FILM FOR ERASURE WINDOW (µPD78P014DW ONLY)	23
7.	ONE-TIME PROM VERSION SCREENING	23
8.	ELECTRICAL SPECIFICATIONS	24
9.	CHARACTERISTIC CURVES (FOR REFERENCE ONLY)4	19
10.	PACKAGE DRAWINGS	53
11.	RECOMMENDED SOLDERING CONDITIONS	56
API	PENDIX A. DEVELOPMENT TOOLS	7
API	PENDIX B. RELATED DOCUMENTS	;9

1. DIFFERENCES BETWEEN μ PD78P014 AND MASK ROM VERSION

The μ PD78P014 incorporates one-time PROM which can be written to once only, or EPROM to which programs can be written, erased and rewritten.

By setting the internal memory size switching register, it is possible to make the functions of this device, except for the PROM specification and mask option for pins P60 to P63, identical to those of a mask ROM version.

The differences between μ PD78P014 and mask ROM versions are shown in Table 1-1.

Table 1-1. Differences Between μ PD78P014 and Mask ROM Version

ltem	μPD78P014	Mask ROM Version
IC pin	No	Yes
V _{PP} pin	Yes	No
Mask option for pins P60 to P63	No mask option for incorporation of pull- up resistor	Pull-up resistor incorporation possible by means of mask option

Caution In the µPD78P014, the capacity of the internal PROM and internal high-speed RAM can be changed by using the internal memory size switching register.

RESET input sets internal PROM to 32K bytes and internal high-speed RAM to 1K bytes.

2. PIN FUNCTIONS

2.1 Normal Operating Mode Pins

(1) Port pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI0
P01	Input/	5-bit I/O port	Input/output can be specified in 1-bit unit.	Input	INTP1
P02	output		When used as an input port, pull-up resistor can		INTP2
P03			be used by software.		INTP3
P04 ^{Note 1}	Input		Input only	Input	XT1
P10 to P17	Input/ output		port. e specified in 1-bit unit. nput port, pull-up resistor can be used by	Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/output p			SO1
P22	-		e specified in 1-bit unit. nput port, pull-up resistor can be used by software.		SCK1
P23	-	when used as an in	input port, puil-up resistor can be used by software.		STB
P24	-				BUSY
P25	-				SI0/SB0
P26					SO0/SB1
P27	-				SCK0
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output p			TO1
P32	-		e specified in 1-bit unit. nput port, pull-up resistor can be used by software.		TO2
P33	-				TI1
P34					TI2
P35	_				PCL
P36					BUZ
P37					_
P40 to P47	Input/ output	When used as an i	port. e specified in 8-bit unit. nput port, pull-up resistor can be used by software. RIF) is set to 1 by falling edge detection.)	Input	AD0 to AD7

Notes 1. When P04/XT1 pins are used as the input ports, set processor clock control register bit 6 (FRC) to 1. (Do not use the on-chip feedback resistor of the subsystem clock oscillation circuit.)

2. When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for A/D converter, the pull-up resistor is automatically disabled.

(1) Port pins (2/2)

Pin Name	I/O	Function		After Reset	Alternate Function
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified in 1-bit unit. When used as an input port, pull-up resisto	r can be used by software.	Input	A8 to A15
P60	Input/	Port 6	N-ch open-drain input/	Input	_
P61	output	8-bit input/output port. Input/output can be specified in 1-bit unit.	output port. LED can be driven		
P62	-		directly.		
P63					
P64			When used as an input		RD
P65	-		port, pull-up resistor can		WR
P66			be used by software.		WAIT
P67					ASTB

(2) Non port pins (1/2)

Pin Name	I/O	Function	After Reset	Altrnate Function
INTP0	Input	External interrupt input with specifiable valid edge (rising edge, falling	Input	P00/TI0
INTP1		edge, or both rising and falling edges).		P01
INTP2				P02
INTP3		Falling edge detection external interrupt input.		P03
S10	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1	-			P21
SB0	Input/	Serial interface serial data input/output.	Input	P25/SI0
SB1	output			P26/SO0
SCK0	Input/	Serial interface serial clock input/output.	Input	P27
SCK1	output		input	P22
STB	Output	Serial interface automatic transmission/reception strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmission/reception busy input.	Input	P24
T10	Input	Input of external count clock to 16-bit timer (TM0).	Input	P00/INTP0
TI1	-	Input of external count clock to 8-bit timer (TM1).		P33
TI2	-	Input of external count clock to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (alternate function with 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2	_	8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for trimming main system clock or subsystem clock).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
AD0 to AD7	Input/ output	Low address/data bus when memory is expanded externally.	Input	P40 to P47
A8 to A15	Output	High address bus when memory is expanded externally.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR]	External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Output of strobe which externally latches address information to be output to ports 4 and 5 when accessing external memory.	Input	P67

Phase-out/Discontinued

(2) Non port pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.	_	—
AVdd	—	A/D converter analog power supply. Connect to VDD.	_	_
AVss	_	A/D converter ground potential. Connect to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	
X2	_		_	—
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	_		_	_
Vdd		Positive power supply.	_	_
Vpp		(High voltage application for program write/verify. Directly connected to Vss in normal operating mode.)	_	_
Vss	—	Ground potential		—

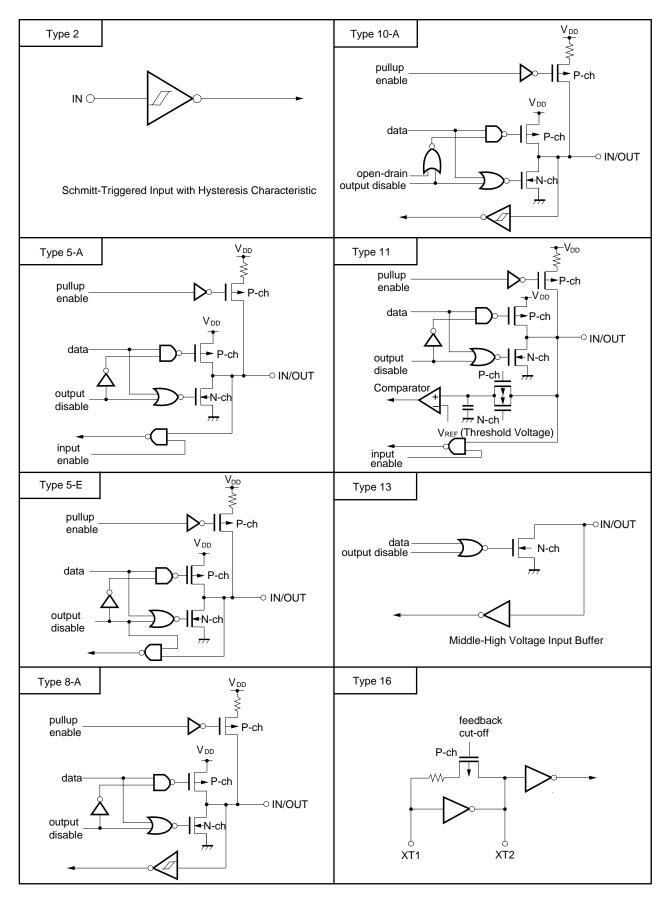
Phase-out/Discontinued

2.2 PROM Programming Mode Pins

Pin Name	I/O	Function
RESET	Input	PROM programming mode setting.
		When +5 V or +12.5 V is applied to the VPP pin and a low-level signal to the $\overline{\text{RESET}}$ pin, the PROM
		programming mode is set.
Vpp	Input	PROM programming mode setting and high voltage application for program write/verify.
A0 to A14	Input	Address bus.
D0 to D7	Input/	Data bus.
	output	
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	PROM read strobe input.
Vdd	_	Positive power supply.
Vss	_	Ground potential.

2.3 Pin Input/Output Circuits and Connection of Unused Pins

The input/output circuit type of each pin and the recommended connection of unused pins are shown in Table 2-1.


The configuration of each type of input/output circuit is shown in Figure 2-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Used Pi	ins	
P00/INTP0/TI0	2	Input	Connect to Vss .		
P01/INTP1	8-A	Input/output	Input : Connect to Vss.		
P02/INTP2			Output : Leave open.		
P03/INTP3	-				
P04/XT1	16	Input	Connected to Vss.		
P10/ANI0 to P17/ANI7	11	Input/output	Input : Connect to VDD or Vss. Output : Leave open.		
P20/SI1	8-A	Input/output	Input : Connect to VDD or Vss.		
P21/SO1	5-A		Output : Leave open.		
P22/SCK1	8-A				
P23/STB	5-A				
P24/BUSY	8-A	_			
P25/SI0/SB0	10-A				
P26/SO0/SB1	1				
P27/SCK0	1				
P30/TO0	5-A	Input/output	Input : Connect to VDD or Vss.		
P31/TO1	1		Output : Leave open.		
P32/TO2					
P33/TI1	8-A				
P34/TI2					
P35/PCL	5-A				
P36/BUZ					
P37					
P40/AD0 to P47/AD7	5-E	Input/output	Input : Connect to VDD or VSS. Output : Leave open.		
P50/A8 to P57/A15	5-A	Input/output	Input : Connect to VDD or Vss.		
P60 to P63	13		Output : Leave open.		
P64/RD	5-A				
P65/WR					
P66/WAIT					
P67/ASTB					
RESET	2	Input	_		
XT2	16	_	Leave open.		
AVREF			Connect to Vss.		
AVDD			Connect to VDD.		
AVss]		Connect to Vss.		
Vpp			Directly connect to Vss.		

Table 2-1. Type of Pin Input/Output Circuits

Phase-out/Discontinued

Figure 2-1. Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This register is used to prevent part of the internal memory from being used by software. Setting the internal memory size switching register (IMS) enables memory mapping identical to that of a mask ROM version with different internal memory (ROM and RAM) to be used.

Phase-out/Discontinued

The IMS register is set by an 8-bit memory manipulation instruction.

RESET input sets this register to C8H.

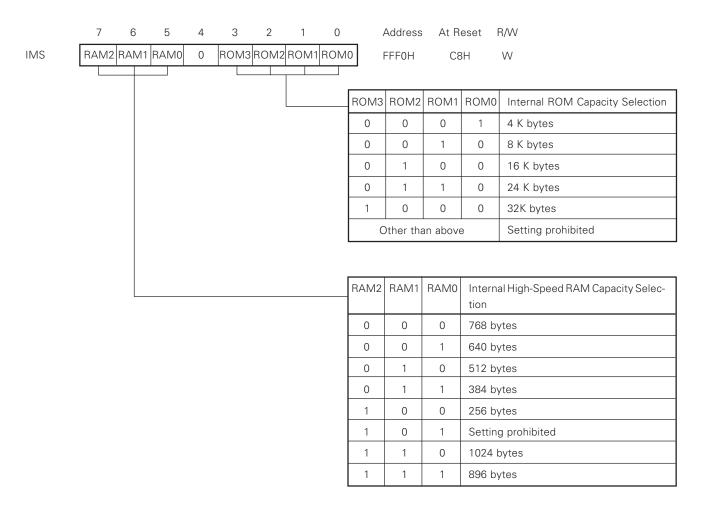


Figure 3-1. Internal Memory Size Switching Register Format

The IMS set values to make the memory map identical to various mask ROM versions are shown in Table 3-1.

Table 3-1. Examples of Internal Memory Size Switching Register Settings

Target Mask ROM Version	IMS Set Value	Target Mask ROM Version	IMS Set Value
μPD78001B	82H	μPD78012B	44H
μPD78002B	64H	μPD78013	C6H
μPD78011B	42H	μPD78014	C8H

4. PROM PROGRAMMING

The μ PD78P014 incorporates a 32K-byte PROM as program memory. When programming the μ PD78P014, the PROM programming mode is set by means of the VPP and RESET pins. For the connection of unused pins, see "**PIN CONFIGURATION (2) PROM programming mode**".

Phase-out/Discontinued

4.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin, the μ PD78P014 enters the programming mode. This is one of the operating modes shown in Table 4-1 below according to the setting of the CE and OE pins.

Also, the PROM contents can be read by setting the read mode.

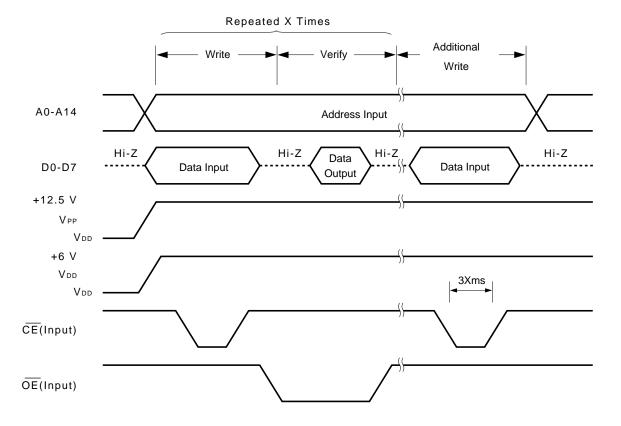
Pins Operating Mode	RESET	Vpp	Vdd	CE	ŌĒ	D0 to D7
Program write				L	н	Data input
Program verify		+12.5 V	+6 V	Н	L	Data output
Program inhibit				Н	н	High-impedance
Read	L			L	L	Data output
Output disable		+5 V	+5 V	L	н	High-impedance
Standby				Н	L/H	High-impedance

Table 4-1. PROM Programming Operating Modes

NEC

μ**PD78P014**

4.2 PROM Write Procedure


The PROM write procedure is as shown below, allowing high-speed writing.

(1) Fix the RESET pin low. Supply +5 V to the VPP pin. Unused pins are handled as shown in "PIN CONFIGURATION (2) PROM programming mode".

Phase-out/Discontinued

- (2) Supply +6 V to the VDD pin and +12.5 V to the VPP pin.
- (3) Supply the initial address.
- (4) Supply the write data.
- (5) Supply a 1 ms program pulse (active low) to the \overline{CE} pin.
- (6) Verify mode. If written, go to (8); if not written, repeat (4) through (6). When the write operation has been repeated 25 times, go to (7).
- (7) Halt write operation due to defective device.
- (8) Supply write data and supply (times repeated in (4) through (6)) \times 3 ms program pulse (additional write).
- (9) Increment the address.
- (10) Repeat (4) through (9) until the final address.

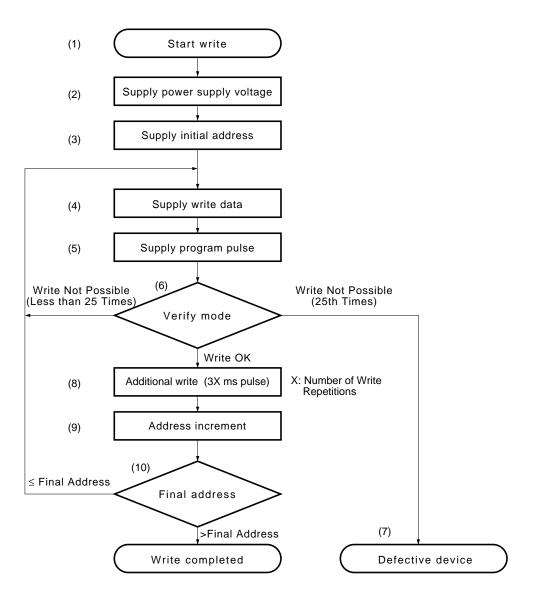

Timing for steps (2) through (8) above is shown in Figure 4-1.

Figure 4-1. PROM Write/Verify Timing

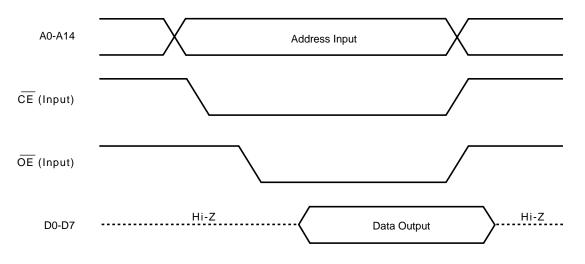
Phase-out/Discontinued

Figure 4-2. Write Procedure Flowchart

NEC

4.3 PROM Read Procedure

PROM contents can be read onto the external data bus (D0 to D7) using the following procedure.


(1) Fix the RESET pin low. Supply +5 V to the VPP pin. Unused pins are handled as shown in "PIN CONFIGURATION
 (2) PROM programming mode".

Phase-out/Discontinued

- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of data to be read to pins A0 through A14.
- (4) Read mode.
- (5) Output data to pins D0 through D7.

Timing for steps (2) through (5) above is shown in Figure 4-3.

5. ERASURE PROCEDURE (µPD78P014DW ONLY)

With the μ PD78P014DW, it is possible to erase (set to FFH) data written to the program memory, and rewrite the memory.

Phase-out/Discontinued

The data can be erased by exposing the window to light with a wavelength of approximately 400 nm or less. Usually, exposure is performed with ultraviolet light with a wavelength of 254 nm. The amount of exposing required for complete erasure is shown below.

- UV intensity x erasure time: 15 W·s/cm² or more
- Erasure time: 15 to 20 minutes (using a 12,000 μW/cm² ultraviolet lamp. A longer erasure time may be required in case of deterioration of the ultraviolet lamp or dirt on the erasure window).

Erasure should be carried out with the ultraviolet lamp placed at a distance of 2.5 cm or less from the window. If the ultraviolet lamp is fitted with a filter, this should be removed before performing exposure.

6. OPAQUE FILM FOR ERASURE WINDOW (µPD78P014DW ONLY)

An opaque film should be applied to the erasure window except when erasing the EPROM contents, in order to prevent the EPROM contents from being unintentionally erased by light other than from the erasure lamp, and the internal circuits other than EPROM from misoperation due to light.

7. ONE-TIME PROM VERSION SCREENING

One-time PROM versions (μ PD78P014CW and μ PD78P014GC-AB8) cannot be fully tested and shipped by NEC for reasons related to their structure. It is recommended that after writing the necessary data and storing at high temperature under the following conditions, screening should be conducted to verify the PROM.

Storage Temperature	Storage Time				
125 °C	24 hours				

NEC provides charged services for one-time PROM writing, marking, screening, and verification, under the name "QTOP Microcomputer". Contact NEC for details.

μ**PD78P014**

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Te	st Conditions	Ratings	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
				-0.3 to +13.5	V
	Vpp			-0.3 to V _{DD} + 0.3	V
	AVDD			-0.3 to V _{DD} + 0.3	V
	AVREF			-0.3 to + 0.3	V
Input voltage	AVss	P00 to P04, P10 to	P17, P20 to P27,		
		P30 to P37, P40 to	P47, P50 to P57,	-0.3 to V _{DD} + 0.3	V
	VII	P64 to P67, X1, X2	2, XT2		
		P60 to P63 0	P60 to P63 Open-drain		V
	VI2	A9 F	ROM programming mode	-0.3 to +13.5	V
Output voltage	V _{I3}			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Vo	P10 to P17 A	Analog input pins	AVss - 0.3 to AVREF + 0.3	V
Output current high	VAN	1 pin		-10	mA
		Total for P10 to P17, P20 to P27, P30 to P37		-15	mA
	Іон	Total for P01 to P0 P60 to P67	03, P40 to P47, P50 to P57,	-15	mA
Output current low		1 pin	Peak value	30	mA
			R.m.s. value	15	mA
nalog input voltage utput current high		Total for P40 to P4	7, Peak value	100	mA
		P50 to P55	R.m.s. value	70	mA
		Total for P01 to P0)3, Peak value	100	mA
	IOL ^{Note}	P56, P57, P60 to P	67 R.m.s. value	70	mA
		Total for P01 to P0)3, Peak value	50	mA
		P64 to P67	R.m.s. value	20	mA
		Total for P10 to P1	7, Peak value	50	mA
		P20 to P27, P30 to	P37 R.m.s. value	20	mA
Operating temperature	Topt			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Phase-out/Discontinued

Note The r.m.s. value should be calculated as follows: [R.m.s. value] = [Peak value] x \sqrt{Duty}

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Main System Clock Oscillator Characteristics (T_a = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	V _{ss} X1 X2	Oscillation frequency (f _X) ^{Note 1}	V _{DD} = Oscillation voltage range	1		10	MHz
[≷] R1 +1□ +1□ +1 +1 +1 + C1 +C2 + 777	Oscillation stabiliza- tion time ^{Note 2}	After V _{DD} has reached MIN. of oscillation voltage range			4	ms	
Crystal resonator	$\begin{array}{c c} V_{ss} X1 & X2 \\ \hline $	Oscillation frequency (f _X) ^{Note 1}		1	8.38	10	MHz
		Oscillation stabiliza-	V _{DD} = 4.5 to 6.0 V			10	ms
	·'	tion time ^{Note 2}				30	
External clock		X1 input frequency (f _X) ^{Note 1}		1.0		10.0	MHz
	↓ ⊳ ↓ μPD74HCU04	X1 input high-/low- level width (txн/tx∟)		42.5		500	ns

Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.

2. This is the time required for oscillation to stabilize after a reset or STOP mode release.

Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics ($T_a = -40$ to +85 °C, $V_{DD} = 2.7$ to 6.0 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	· Vss XT1 XT2	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabiliza- tion time ^{Note 2}	V _{DD} = 4.5 to 6.0 V		1.2	2	s
						10	
External clock		XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		XT1 input high-/low- level width (txTH/tXTL)		5		15	μs

Notes 1. Only the oscillator characteristics are shown. Refer to AC characteristics for instruction execution times.
 2. Time required to stabilize oscillation after VDD reaches MIN. of oscillation voltage range.

Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.
- 2. The subsystem clock oscillator is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock. When using the subsystem clock, special care is needed regarding the wiring method.

Recommended Oscillation Constants

Main System Clock: Ceramic Resonator (T_a = -40 to +85 °C)

			Recommended Oscillator			Oscillatio	n Voltage
Manufacturer	Product Name		Constant Range				
		(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
Murata Mfg.	CSB1000J	1.00	100	100	6.8	2.8	6.0
	CSB××××J	1.01 to 1.25	100	100	4.7	2.8	6.0
	CSA×. ×××MK	1.26 to 1.79	100	100	0	2.8	6.0
	CSA×. ××MG093	1.80 to 2.44	100	100	0	2.7	6.0
	CST×. ××MG093	- 1.80 to 2.44	Incorporated	Incorporated	0	2.7	6.0
	CSA×. ××MG		30	30	0	2.7	6.0
	CST×. ××MGW	2.45 to 4.18	Incorporated	Incorporated	0	2.7	6.0
	CSA×. ××MGU	4 10 to 0 00	30	30	0	2.7	6.0
	CST×. ××MGWU	4.19 to 6.00	Incorporated	Incorporated	0	2.7	6.0
	CSA×. ××MT	0.01 to 10.0	30	30	0	3.0	6.0
	CST×. ××MTW	6.01 to 10.0	Incorporated	Incorporated	0	3.0	6.0

Phase-out/Discontinued

Remark \times . \times , \times , \times . \times and \times indicate frequency.

Subsystem Clock: Crystal Resonator (T_a = -40 to +60 °C)

Manufacturer Product Name		_	Recon	nmended Os	Oscillation Voltage		
	Frequency	Constant	Range				
		(kHz)	C3 (pF)	C4 (pF)	R2 (kΩ)	MIN. (V)	MAX. (V)
Daishinku Corp.	DT-38 (1TA632E00, load capacitance 6.3 pF)	32.768	10	10	100	2.7	6.0

Capacitance (T_a = 25 °C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Test Co	MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmeasured			15	pF	
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67			15	pF
			P60 to P63			20	pF

DC Characteristics (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage high	VIH1	P10 to P17, P21, P23, P3 P40 to P47, P50 to P57,		0.7 Vdd		Vdd	V
	VIH2	P00 to P03, P20, P22, P24	to P27, P33, P34, RESET	0.8 Vdd		Vdd	V
	VIH3	P60 to P63	Open-drain	0.7 Vdd		15	V
	VIH4	X1, X2	I	Vdd - 0.5		Vdd	V
	VIH5	XT1/P04, XT2	V _{DD} = 4.5 to 6.0 V	Vdd - 0.5		Vdd	V
	VIIIS	X11/104, X12		Vdd - 0.3		Vdd	V
Input voltage low	VIL1		P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67				V
	VIL2	P00 to P03, P20, P22, P24	0		0.2 Vdd	V	
	VIL3	P60 to P63	V _{DD} = 4.5 to 6.0 V	0		0.3 Vdd	V
	VIL3	P00 10 P03		0		0.2 Vdd	V
	VIL4	X1, X2		0		0.4	V
	ν.		V _{DD} = 4.5 to 6.0 V	0		0.4	V
	VIL5	XT1/P04, XT2		0		0.3	V
Output voltage high		VDD = 4.5 to 6.0 V, Iон =	–1 mA	Vdd - 1.0			V
	Voh1	Іон = -100 µА		Vdd - 0.5			V
Output voltage low	Vol1	P50 to P57, P60 to P63	VDD = 4.5 to 6.0 V, IOL = 15 mA		0.4	2.0	V
	P01 to P03, P10 P20 to P27, P30	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67	V _{DD} = 4.5 to 6.0 V, I _{OL} = 1.6 mA			0.4	V
	Vol2	SB0, SB1, <u>SCK0</u>	$V_{DD} = 4.5$ to 6.0 V, open-drain, pulled high (R = 1 k Ω)			0.2 VDD	V
	Vol3	Iol = 400 μA				0.5	V
Input leakage current high	Ілні	Vin = Vdd	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, RESET			3	μΑ
	ILIH2	1	X1, X2, XT1/P04, XT2			20	μA
	Іцнз	VIN = 15 V	P60 to P63			80	μΑ
Input leakage current low	Ilil1	Vin = 0 V	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, RESET			-3	μA
		-	X1, X2, XT1/P04, XT2			-20	μA

Phase-out/Discontinued

DC Characteristics (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

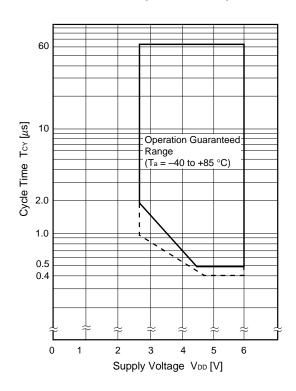
Parameter	Symbol	Test Conc	litions	MIN.	TYP.	MAX.	Unit
Output leakage current high	Iloh1	Vout = Vdd				3	μA
Output leakage current low	Ιίοι	Vout = 0 V				-3	μA
Software pull-up resistor	R2	V _{IN} = 0 V, P01 to P03, P10 to P17, P20 to P27,	$4.5~V \leq V_{\text{DD}} \leq 6.0~V$	15	40	90	kΩ
O l Noto 2	112	P30 to P37, P40 to P47, P50 to P57, P64 to P67	$2.7~V \leq V_{\text{DD}} < 4.5~V$	20		500	kΩ
Supply current ^{Note 3}		8.38 MHz crystal oscilla-	$V_{DD} = 5.0 \text{ V} \pm 10\%^{Note 1}$		9	27	mA
	1001	tion operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		1	3	mA
		8.38 MHz crystal oscilla-	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		1.4	4.2	mA
	IDD2	tion HALT mode	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		550	1650	μΑ
	DD3	32.768 kHz crystal oscilla-	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		90	180	μA
	IDD3	tion operating mode	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		50	100	μA
	DD4	32.768 kHz crystal oscilla-	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%$		25	50	μΑ
	IDD4	tion HALT mode	$V_{\text{DD}}=3.0~\text{V}\pm~10\%$		5	10	μA
		XT1 = 0 V	$V_{\text{DD}}=5.0~V\pm10\%$		1	30	μA
	Idd5	STOP mode Feedback resistor used	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		0.5	10	μA
-	IDD6 Fee	XT1 = 0 V STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μΑ
		Feedback resistor not used	$V_{\text{DD}}=3.0~\text{V}\pm10\%$		0.05	10	μΑ

Phase-out/Discontinued

Notes 1. High-speed mode operation (when processor clock control register is set to 00H).

- 2. Low-speed mode operation (when processor clock control register is set to 04H).
- 3. Not including AVREF currents or port currents

μ**ΡD78P014**


AC Characteristics

(1) Basic operation (T_a = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

Parameter	Symbol	Test Condi	tions	MIN.	TYP.	MAX.	Unit
Cycle time			V _{DD} = 4.5 to 6.0 V	0.48		64	μs
(Min. instruction execution time)	Тсч			1.91		64	μs
		Operating with main system clock	$\label{eq:Ta} \begin{array}{l} T_{a} = -40 \ to \ +40 \ ^{\circ}C \\ V_{DD} = \ 4.75 \ to \ 6.0 \ V \end{array}$	0.4		64	μs
			$T_a = -40 \text{ to } +40 \ ^\circ\text{C}$	0.96		64	μs
		Operating with subsystem	40	122	125	μs	
TI input frequency	fтı	V _{DD} = 4.5 to 6.0 V	0		4	MHz	
	111			0		275	kHz
TI input high-/low-level	tтін	V _{DD} = 4.5 to 6.0 V		100			ns
width	t⊤ı∟			1.8			μs
Interrupt input high-/low-	4	INTP0		8/fsam ^{Note}			μs
level width	tinth	INTP1 to INTP3		10			μs
	t intl	KR0 to KR7	10			μs	
RESET low-level width	trsl			10			μs

Phase-out/Discontinued

Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of f_{sam} is possible between $f_x/2^{N+1}$, $f_x/64$, and $f_x/128$ (N = 0 to 4).

TCY VS VDD (At main system clock operation)

Caution When $T_a = -40$ to +40 °C, the operation guaranteed range is extended to the dotted line.

(2) Read/write operation ($T_a = -40$ to +85 °C, $V_{DD} = 2.7$ to 6.0 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.5tcy		ns
Address setup time	tads		0.5tcy - 30		ns
Address hold time	t adh	Load resistance \ge 5 k Ω	10		ns
Data input time from address	tADD1			(2 + 2n)tcy - 50	ns
Data input time from address	tadd2		5	(3 + 2n)tcy - 100	ns
Data input time from $\overline{RD}\downarrow$	trdd1			(1 + 2n)tcy – 25	ns
	trdd2			(2.5 + 2n)tcy - 100	ns
Read data hold time	t rdh		0		ns
RD low-level width	trdl1		(1.5 + 2n)tcy - 20		ns
	trdl2		(2.5 + 2n)tcy - 20		ns
$\overline{WAIT}\downarrow$ input time from $\overline{RD}\downarrow$	trdwt1			0.5tcy	ns
WAIT V Input time nom KDV	trdwt2			1.5tcy	ns
$\overline{WAIT} {\downarrow}$ input time from $\overline{WR} {\downarrow}$	twrwt			0.5tcy	ns
WAIT low-level width	twr∟		(0.5 + 2n)tcr + 10	(2 + 2n)tcy	ns
Write data setup time	twos		100		ns
Write data hold time	twdн		5		ns
\overline{WR} low-level width	twrl1		(2.5 + 2n)tcy - 20		ns
$\overline{\text{RD}} {\downarrow}$ delay time from $\text{ASTB} {\downarrow}$	t astrd		0.5tcy - 30		ns
$\overline{\rm WR} {\downarrow}$ delay time from ASTB {\downarrow}	t astwr		1.5tcy – 30		ns
ASTB [↑] delay time from RD [↑] in external fetch	t rdast		tcy - 10	tcy + 40	ns
Address hold time from RD↑ in external fetch	trdadh		tcy	tcy + 50	ns
Write data output time from $\overline{\text{RD}}^{\uparrow}$	trdwd		10		ns
		V _{DD} = 4.5 to 6.0 V	0.5tcy - 120	0.5tcy	ns
$\overline{WR} \downarrow$ delay time from write data	twdwr		0.5tcy - 170	0.5tcy	ns
		V _{DD} =4.5 to 6.0 V	tcy	tcy + 60	ns
Address hold time from \overline{WR}^\uparrow	twradh		tcy	tcy + 100	ns
$\overline{\mathrm{RD}}$ delay time from $\overline{\mathrm{WAIT}}$	twrrd		0.5tcy	2.5tcy + 80	ns
\overline{WR}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtwr		0.5tcy	2.5tcy + 80	ns

Remarks 1. $t_{CY} = T_{CY}/4$

- 2. n indicates number of waits.
- 3. $C_{L} = 100 \text{ pF}$ (C_{L} indicates the load capacitance of pins P40/AD0 to P47/AD7, P50/A8 to P57/A15, P64/ RD, P65/WR, P66/WAIT, P67/ASTB.)

Phase-out/Discontinued

- (3) Serial interface (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)
 - (a) 3-wire serial I/O mode (SCK... Internal clock output)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
	t vov.	V _{DD} = 4.5 to 6.0	V	800			ns
SCK cycle time	t ксү1			3200			ns
SCK high-/low-level	h-/low-level tкн1 VDD = 4.5 to 6.0 V		V	tксү1/2 – 50			ns
width	tĸ∟1			tксү1/2 – 150			ns
SI setup time (to \overline{SCK})	tsıkı			100			ns
SI hold time (from \overline{SCK})	tksi1			400			ns
SO output delay time from $\overline{\text{SCK}} \downarrow$	tkso1	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
						1000	ns

Note C is the load capacitance of SO output line.

(b) 3-wire serial I/O mode (SCK...External clock input)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
	V _{DD} = 4.5 to 6.0		V	800			ns
SCK cycle time	tkcy2			3200			ns
SCK high-/low-level	tкн2	V _{DD} = 4.5 to 6.0	V	400			ns
width	tĸL2			1600			ns
SI setup time (to \overline{SCK})	tsık2			100			ns
SI hold time (from $\overline{SCK}^{\uparrow}$)	tksi2			400			ns
SO output delay time from SCK↓	tĸso2	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
						1000	ns
SCK rise and fall times (For serial interface channel 0)		When using the external device expansion function				160	ns
	tF2	When not using the external device expansion function	When using the 16-bit timer output function			700	ns
			When not using the 16-bit timer output function			1000	ns
SCK rise and fall times (For serial interface channel 1)	tr2	When using the external device expansion function				160	ns
	tF2	When not using the external device expansion function				1000	ns

Note C is the load capacitance of SO output line.

 \star

★

*

×

×

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
	tксүз	V _{DD} = 4.5 to 6.0	V	800			ns
SCK cycle time				3200			ns
SCK high-/low-level	tкнз	V _{DD} = 4.5 to 6.0	V _{DD} = 4.5 to 6.0 V				ns
width	tкьз			tксүз/2 - 150			ns
SB0, SB1 setup time	tsik3	V _{DD} = 4.5 to 6.0 V		100			ns
(to SCK↑)	COING			300			ns
SB0, SB1 hold time (from SCK↑)	tкsıз			tксүз/ 2			ns
SB0, SB1 output delay time from SCK↓	tκso3 R = 1 kΩ, C = 100 pF	R = 1 kΩ,	V _{DD} = 4.5 to 6.0 V	0		250	ns
		$C = 100 \text{ pF}^{Note}$		0		1000	ns
SB0, SB1↓ from SCK↑	tкsв			tксүз			ns
$\overline{SCK}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level width	tsвн			tксүз			ns
SB0, SB1 low-level width	tsbl			tксүз			ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.

(d) SBI mode (SCK...External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
SCK cycle time		V _{DD} = 4.5 to 6.0	V	800			ns
	t ксү4			3200			ns
SCK high-/low-level	tкн4	V _{DD} = 4.5 to 6.0	V	400			ns
width	tĸ∟4			1600			ns
SB0, SB1 setup time	tsik4	V _{DD} = 4.5 to 6.0	V	100			ns
(to SCK↑)	1011(4			300			ns
SB0, SB1 hold time (from SCK↑)	tksi4			tксү4/ 2			ns
SB0, SB1 output	tkso4	$\label{eq:R} \begin{split} R &= 1 \ k\Omega, \\ C &= 100 \ p F^{\text{Note}} \end{split}$	V _{DD} = 4.5 to 6.0 V	0		300	ns
delay time from $\overline{SCK}\downarrow$				0		1000	ns
SB0, SB1 \downarrow from $\overline{SCK}\uparrow$	tкsв			t ксү4			ns
$\overline{\text{SCK}}\downarrow$ from SB0, SB1 \downarrow	tsвк			t ксү4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	t sbl			tксү4			ns
SCK rise and fall times		When using the expansion funct	e external device tion			160	ns
		using the	When using the 16-bit timer output function			700	ns
		When not using the 16-bit timer output function			1000	ns	

*

★

★

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output line.

(e) 2-wire serial I/O mode (SCK... Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
		$V_{DD} = 4.5 \text{ to } 6.0$	V	1600			ns
SCK cycle time	tксүъ			3800			ns
SCK high-level width	tкнъ	$R = 1 k\Omega, C = 10$	tксү5/2 – 50			ns	
SCK low-level width	tĸL5			tксү5/2 – 50			ns
SB0, SB1 setup time (to SCK [↑])	tsiĸ₅			300			ns
SB0, SB1 hold time (from $\overline{\text{SCK}}$)	tksi5			600			ns
SB0, SB1 output delay time		R = 1 kΩ,	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0		250	ns
from SCK↓	tĸso₅	$C = 100 \text{ pF}^{Note}$		0		1000	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output line.

(f) 2-wire serial I/O mode (SCK... External clock input)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
		$V_{DD} = 4.5 \text{ to } 6.0$	V	1600			ns
SCK cycle time	t ксү6			3800			ns
SCK high-level width	tкнө			650			ns
SCK low-level width	tĸ∟6			800			ns
SB0, SB1 setup time (to \overline{SCK})	tsik6			100			ns
SB0, SB1 hold time (from $\overline{\text{SCK}}\uparrow$)	tksi6			tксүб/2			ns
SB0, SB1 output delay time	t κso6	$\label{eq:R} \begin{split} R &= 1 \ k\Omega, \\ C &= 100 \ pF^{Note} \end{split}$	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0		300	ns
from SCK↓				0		1000	ns
		When using the external device expansion function				160	ns
SCK rise and fall times	tre tre	When not using the external device expansion function	When using the 16-bit timer output function			700	ns
			When not using the 16-bit timer output function			1000	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0 and SB1 output line.

*

g) 3-wire serial I/O	mode wit	h automatic tr	ansmit/receive fu	nction (SCK	.Internal cl	ock output)	
Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
		V _{DD} = 4.5 to 6.0	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$				ns
SCK cycle time	t ксү7			3200			ns
SCK high/low-level	t кн7	V _{DD} = 4.5 to 6.0) V	tксү7/2 – 50			ns
width	tĸ⊥7			tксү7/2 – 150			ns
SI setup time (to SCK↑)	tsik7			100			ns
SI hold time (from \overline{SCK})	t KSI7			400			ns
SO output delay time	tkso7	C = 100 pF ^{Note}	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$			300	ns
from SCK↓	18307	C = 100 pr				1000	ns
STB↑ from SCK↑	tsbd			400		t ксү7	ns
Strobe signal high- level width	tsвw			tксү7 – 30		tkcy7 + 30	ns
Busy signal setup time (to busy signal detection timing)	tвys			100			ns
Busy signal hold time (from busy signal detection timing)	tвүн			100			ns
SCK↓ from busy inactive	tsps					2tксү7	ns

Note C is the load capacitance of the SO output line.

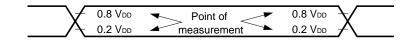
(h) 3-wire serial I/O mode with automatic transmit/receive function (SCK...External clock input)

Parameter	Symbol	Test 0	Conditions	MIN.	TYP.	MAX.	Unit
	tuova	V _{DD} = 4.5 to 6.0 V		800			ns
SCK cycle time	tксүя		3200			ns	
SCK high/low-level	tкнв	V _{DD} = 4.5 to 6.0	V	400			ns
width	tĸ∟8			1600			ns
SI setup time (to \overline{SCK})	tsik8			100			ns
SI hold time (from \overline{SCK})	tksi8			400			ns
SO output delay time	tkso8	C = 100 pF ^{Note}	V _{DD} = 4.5 to 6.0 V			300	ns
from SCK↓	LKSU8	C = 100 pF				1000	ns
SCK rise and fall times	trs	U U	When using the external device expansion function			160	ns
SCK rise and fall times		When not using device expansio				1000	ns

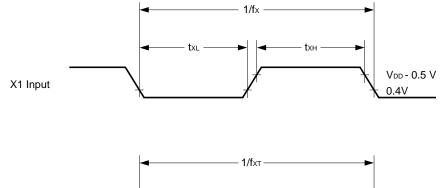
★

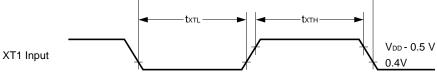
 \star

Note	C is the	load	capacitance	of the	SO	output	line
NUC	0 13 1110	louu	capacitance	or the	00	output	mic.

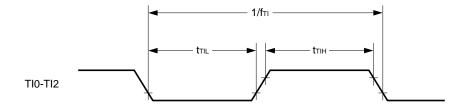

A/D Converter Characteristics (Ta = -40 to +85 °C, AVDD = VDD = 2.7 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}					0.6	%
Conversion time	tconv		19.1		200	μs
Sampling time	t samp		24/f×			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.7		AVDD	V
AVREF current	IREF			0.5	1.5	mA

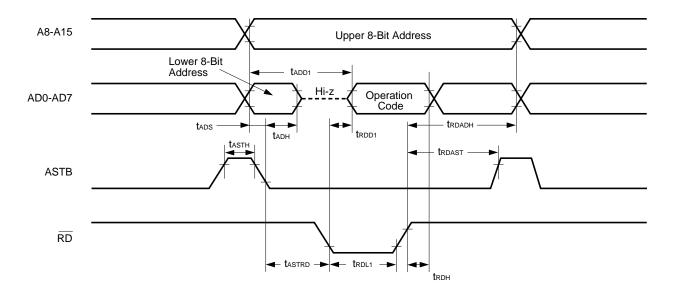

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

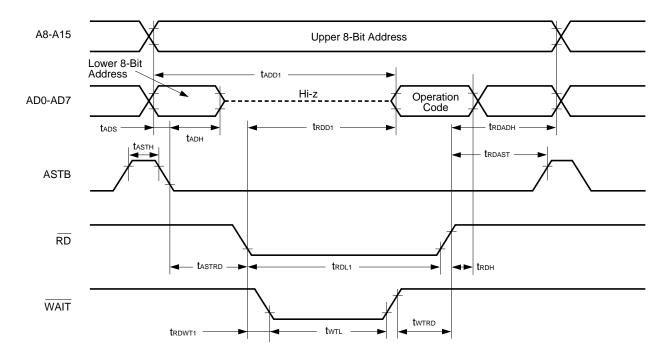


AC Timing Test Point (Excluding X1 and XT1 Input)



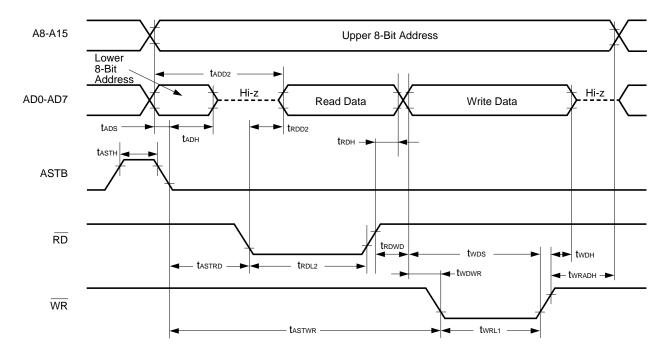
Clock Timing


TI Timing

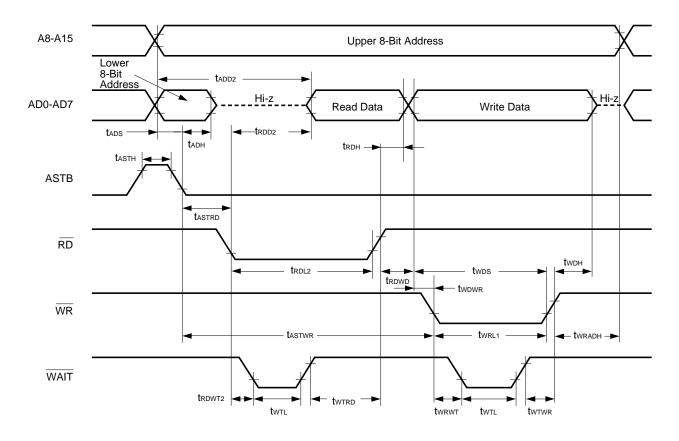


Read/Write Operation

External fetch (no wait):



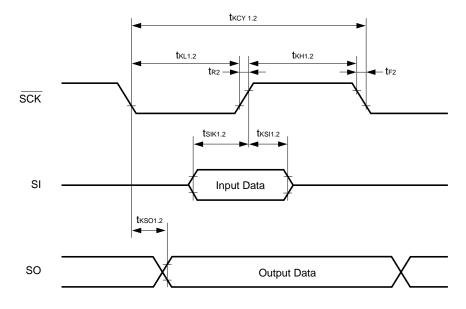
External fetch (wait insertion):



External data access (no wait):

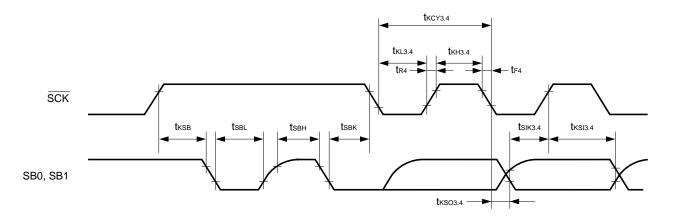
External data access (wait insertion):

μ**PD78P014**

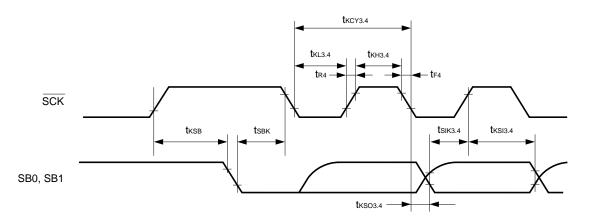

 \star

★

 \star


Serial Transfer Timing

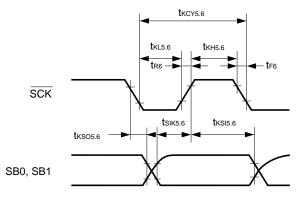
3-wire serial I/O mode:



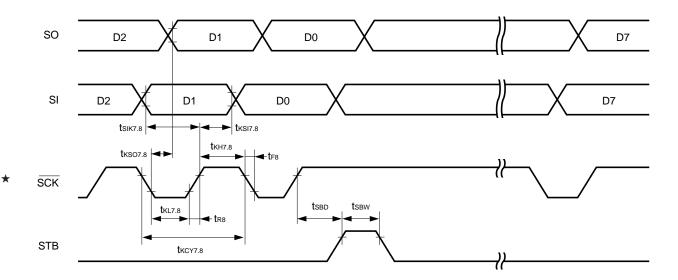
Phase-out/Discontinued

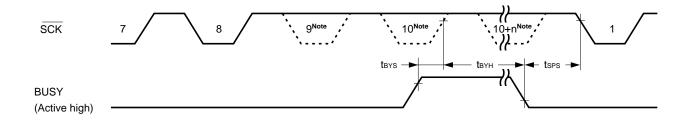
SBI mode (bus release signal transfer):

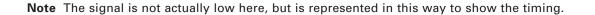
SBI mode (command signal transfer):



41

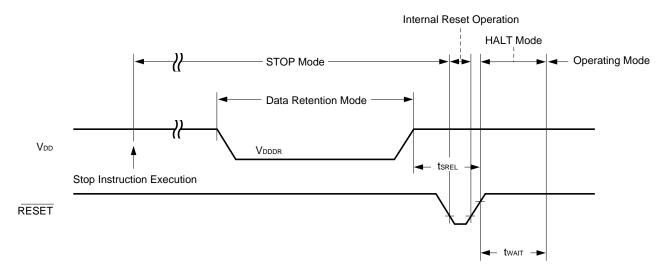

 \star


2-wire serial I/O mode:

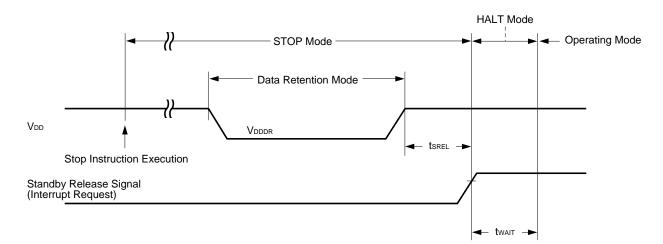


3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (Busy processing):

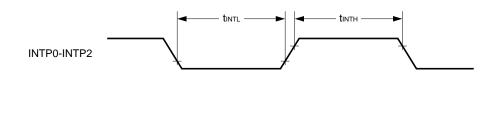


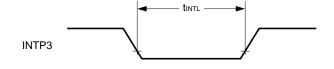
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Ta = -40 to +85 °C)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		2.0		6.0	V
Data retention power supply current	Idddr	V _{DDDR} = 2.0 V Subsystem clock stop and feedback resistor disconnected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation	twait	Release by RESET		2 ¹⁸ /f×		ms
stabilization wait time	LWAIT	Release by interrupt		Note		ms

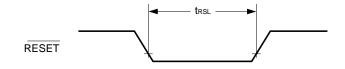
Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of $2^{13}/f_x$ and $2^{15}/f_x$ to $2^{18}/f_x$ is possible.

Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



NEC


Phase-out/Discontinued

Interrupt Input Timing

RESET Input Timing

DC Programming Characteristics (T_a = 25 \pm 5 $^{\circ}C,$ Vss = 0 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	Vін	Vін		0.7 Vddp		Vddp	V
Input voltage Iow	VIL	VIL		0		0.3 Vddp	V
Input leakage current	Ilip	lu	$0 \leq V_{I} \leq V_{DDP}$			10	μA
Output	Vон1	Vон1	Іон = -400 μА	2.4			V
voltage high	Vон2	Vон2	Іон = -100 μА	V _{DD} - 0.7			V
Output voltage low	Vol	Vol	lo _L = 2.1 mA			0.45	V
Output leakage current	Ilo	_	$0 \leq V_{O} \leq V_{DDP}, \ \overline{OE} = V_{IH}$			10	μΑ
VDDP supply			Program memory write mode	5.75	6.0	6.25	V
voltage	Vddp	Vcc	Program memory read mode	4.5	5.0	5.5	V
VPP supply	Vpp	VPP	Program memory write mode	12.5	12.5	12.8	V
voltage	V PP	V PP	Program memory read mode	,	Vpp = Vddp		
			Program memory write mode		5	30	mA
VDDP supply current	loo	Icc	Program memory read mode $\overline{CE} = V_{IL}, V_I = V_{IH}$		5	30	mA
VPP supply	PP	Ірр	Program memory write mode $\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$		5	30	mA
current			Program memory read mode		1	100	μA

Phase-out/Discontinued

Note Corresponding μ PD27C256A symbol.

 μ PD78P014

Program Operation

AC Characteristics (T_a = 25 \pm 5 $^{\circ}C,$ V_DD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{CE}\downarrow$)	tsac	tas		2			μs
$\overline{\text{OE}}\downarrow$ delay time from data	tddoo	toes		2			μs
Input data setup time (to $\overline{CE}\downarrow$)	tsidc	tos		2			μs
Address hold time (from $\overline{CE}\uparrow$)	tнса	tан		2			μs
Input data hold time (from CE↑)	tнсір	tон		2			μs
Output data hold time (from OE1)	tноор	tdf		0		130	ns
V_{PP} setup time (to $\overline{CE}\downarrow$)	tsvpc	tvps		1			ms
VDDP setup time (to $\overline{CE}\downarrow$)	tsvdc	tvds		1			ms
Initial program pulse width	twL1	tpw		0.95	1.0	1.05	ms
Additional program pulse width	twL2	topw		2.85		78.75	ms
Data output time from $\overline{OE}\downarrow$	tdood	toe				1	μs

Phase-out/Discontinued

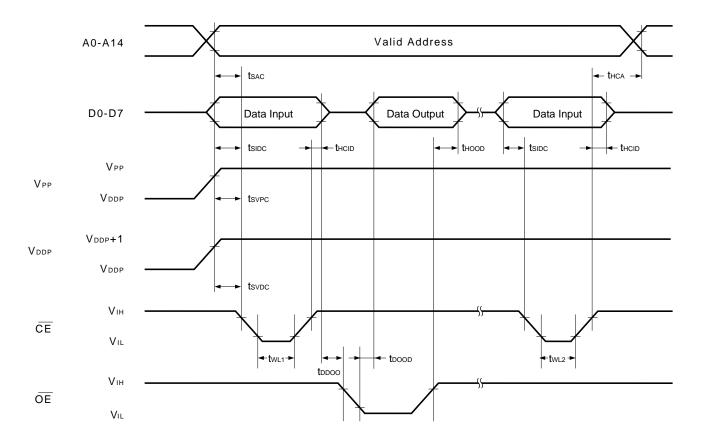
Note Corresponding μ PD27C256A symbol.

Read Operation

AC Characteristics (T_a = 25 \pm 5 $^{\circ}C,$ V_DD = 5.0 \pm 0.5 V, VPP = V_DD, Vss = 0 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output time from address	t daod	tacc				200	ns
Data output time from $\overline{\text{CE}}\downarrow$	tdcod	tce				200	ns
Data output time from $\overline{\text{OE}}\downarrow$	tdood	toe				75	ns
Data hold time (from $\overline{OE}\uparrow$)	t hcod	tdf		0		60	ns
Data hold time (from address)	t haod	toн		0			ns

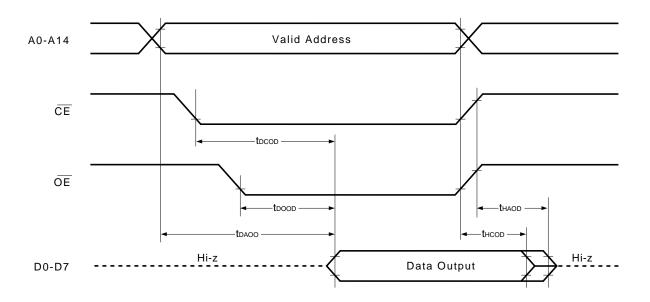
Note Corresponding μ PD27C256A symbol.


PROM Mode Setting

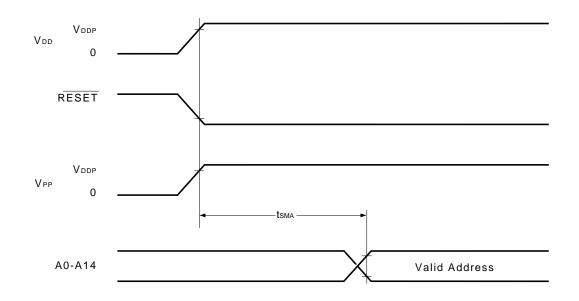
AC Characteristics (T_a = 25 \pm 5 $^\circ C,$ Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM mode setup time	tsma		10			μs

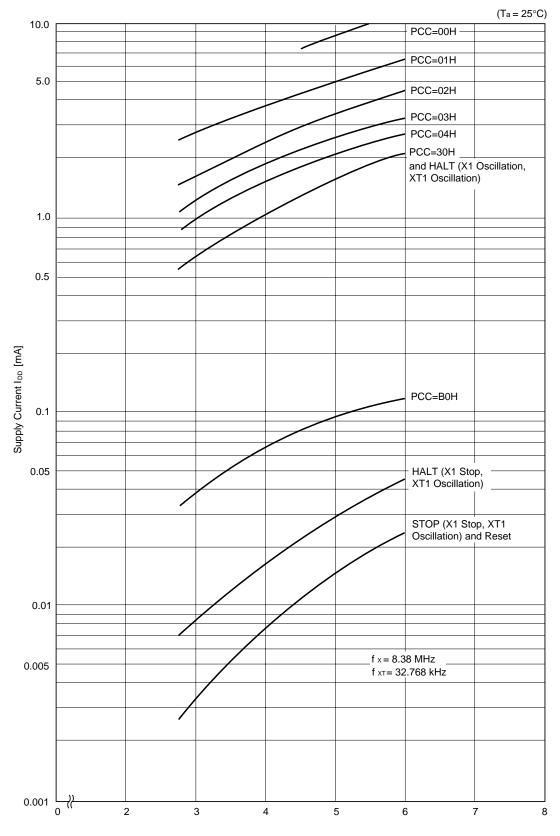
PROM Write Mode Timing



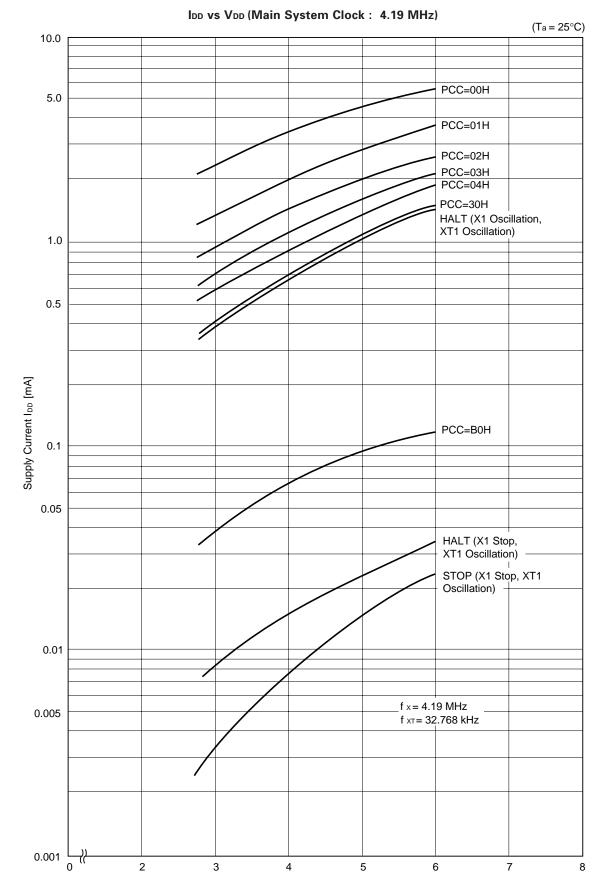
Phase-out/Discontinued


Cautions 1. VDDP should be applied before VPP, and cut after VPP.
2. VPP should not reach +13V or above including overshoot.

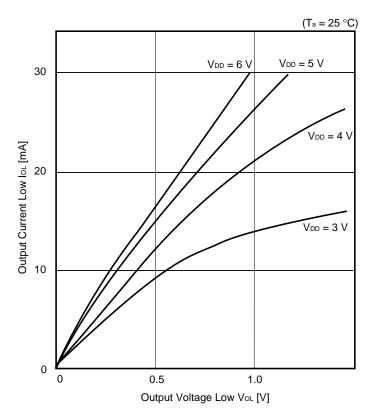
PROM Read Mode Timing



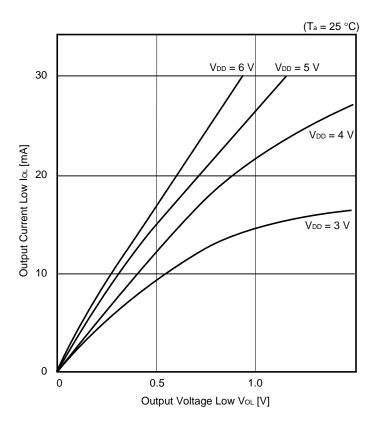
PROM Mode Setting Timing



9. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

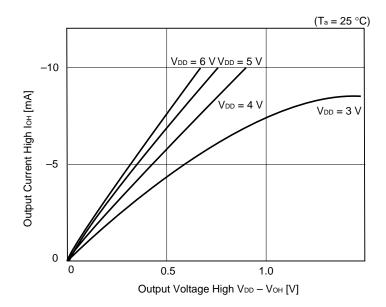


Supply Voltage V_{DD} [V]

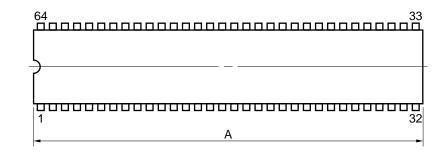


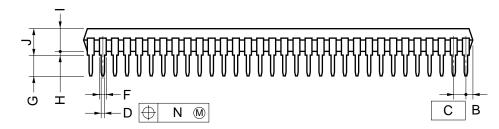
Supply Voltage V_{DD} [V]

Vol vs lol (Ports 0 , 2 to 5, P64 to P67)


Vol vs lol (Port 1)

VOL vs IOL (P60 to P63)


Voh vs loh (Ports 0 to 5, P64 to P67)

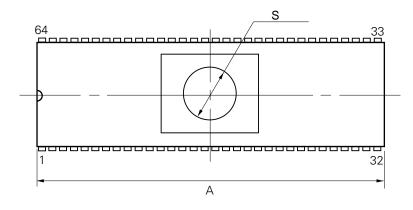

μ**PD78P014**

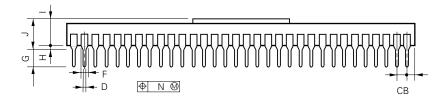
10. PACKAGE DRAWINGS

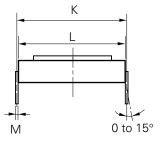
64 PIN PLASTIC SHRINK DIP (750 mil)

Phase-out/Discontinued

NOTE

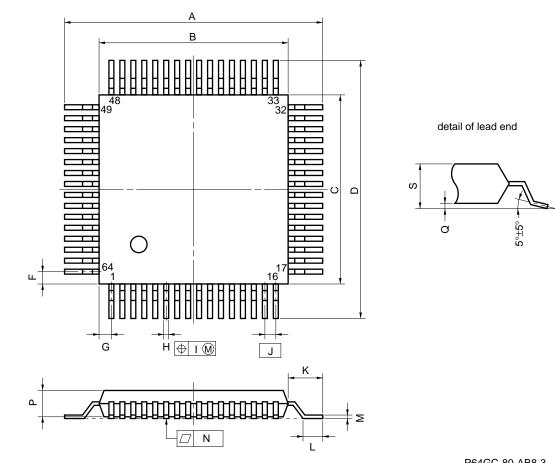

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} -0.05	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°
	_	


P64C-70-750A,C-1

64 PIN CERAMIC SHRINK DIP (750 mil)

NOTES


1) Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maxi-mum material condition.

2) Item "K" to center of leads when formed parallel.

P64DW-70-750A

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	$0.46^{\pm 0.05}$	0.018 ^{±0.002}
F	0.8 MIN.	0.031 MIN.
G	$3.5^{\pm 0.3}$	0.138 ^{±0.012}
Н	1.0 MIN.	0.039 MIN.
I	3.0	0.118
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
М	0.25 ^{±0.05}	0.010+0.002
N	0.25	0.01
S	Ø 8.89	Ø0.350

64 PIN PLASTIC QFP (□14)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P64GC-80-AB8-3
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551\substack{+0.009\\-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014\substack{+0.004\\-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15_{-0.05}^{+0.10}$	0.006 ^{+0.004} 0.003
Ν	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

11. RECOMMENDED SOLDERING CONDITIONS

The μPD78P014 should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to the information document **"Semiconductor Device Mounting Technology Manual"** (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 11-1. Surface Mounted Type Soldering Conditions

μ PD78P014GC-AB8: 64-pin plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 230 °C Duration: 30 sec. max. (at 210 °C or above) Number of times: Once Time limit: 2 days ^{Note} (thereafter 20 hours prebaking required at 125 °C)	IR30-202-1
VPS	Package peak temperature: 215 °C Duration: 40 sec. max. (at 200 °C or above) Number of times: Once Time limit: 2 days ^{Note} (thereafter 20 hours prebaking required at 125 °C)	VP15-202-1
Pin partial heating	Pin temperature: 300 °C max. Duration: 3 sec. max. (Per side of the device)	

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.

Caution Use of more than one soldering method should be avoided (except in the case of pin partial heating).

Table 11-2. Insert Type Soldering Conditions

μ PD78P014CW: 64-pin plastic shrink DIP (750 mil) μ PD78P014DW: 64-pin ceramic shrink DIP (with window) (750 mil)

Soldering Method	Soldering Conditions
Wave soldering (Pin only)	Solder bath temperature : 260 °C max. Duration: 10 sec. max.
Pin partial heating	Pin temperature: 300 °C max. Duration: 3 sec. max (per 1 pin).

*

Caution The wave soldering applies to the pin only. Ensure that no solder touches the body directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78P014.

Language Processing Software

RA78K/0 Note 1, 2, 3	78K/0 series common assembler package
CC78K/0 Note 1, 2, 3	78K/0 series common C compiler package
DF78014 Note 1, 2, 3	μ PD78014 subseries device file
CC78K/0-L Note 1, 2, 3	78K/0 series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer	
PA-78P014CW	Programmer adapter connected to PG-1500	
PA-78P014GC		
PG-1500 controller Note 1, 2	PG-1500 control program	

Debugging Tools

IE-78000-R	78K/0 series common in-circuit emulators
IE-78000-R-BK	78K/0 series common break board
IE-78014-R-EM	μ PD78002/78014 subseries evaluation emulation boards
EP-78240CW-R	μ PD78244 subseries common emulation probes
EP-78240GC-R	
EV-9200GC-64	Socket to be mounted on a user system board made for 64-pin plastic QFP
SD78K/0 Note 1, 2	IE-78000-R screen debugger
SM78K/0 Note 3, 4, 5, 6	78K/0 series common system simulator
DF78014 Note 1, 2, 3, 4, 5	μ PD78014 subseries device file

Real-Time OS

RX78K/0 Note 1, 2, 3	78K/0 series common real-time OS
MX78K/0 Note 1, 2, 3, 6	78K/0 series common OS

*

Fuzzy Inference Development Support System

FE9000 Note 1/FE9200 Note 5	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Note 1, 2	Fuzzy inference module
FD78K0 Note 1, 2	Fuzzy inference debugger

- Notes 1. PC-9800 series (MS-DOS™) based
 - 2. IBM PC/AT[™] (PC DOS[™]) based
 - 3. HP9000 series 300[™], HP9000 series 700[™] (HP-UX[™]) based, SPARCstation[™] (SunOS[™]) based, EWS-4800 series (EWS-UX/V) based
 - 4. PC-9800 series (MS-DOS+Windows[™]) based
 - 5. IBM PC/AT (PC DOS + Windows) based
 - 6. Under development

Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (IF-1185).

2. RA78K/0, CC78K/0, SD78K/0, and SM78K/0 are used together with the DF78014.

*

★

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No. (Japanese)	Document No. (English)
μPD78014/78014Y Series User's Manual		IEU-780	IEU-1343
78K/0 Series User's Manual Instructions		IEU-849	IEU-1372
Basic I		IEA-715	IEA-1288
78K/0 Series Application Notes	Basic II	IEA-740	IEA-1299
	Electronic Notebook	IEA-744	IEA-1301

Development Tool Related Documents (User's Manual)

Document Name		Document No. (Japanese)	Document No. (English)
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
CCrok Series C Compiler	Language	EEU-655	EEU-1284
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller		EEU-704	EEU-1291
IE-78000-R		EEU-810	EEU-1398
IE-78000-R-BK		EEU-867	EEU-1427
SD78K/0 Screen Debugger	Basic	EEU-852	EEU-1414
	Reference	EEU-816	EEU-1413

Other Related Documents

Document Name	Document No. (Japanese)	Document No. (English)
Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-616	IEI-1207
Quality Grades on Semiconductor Devices	IEI-620	IEI-1209
Semiconductor Devices Quality Guarantee Guide	MEI-603	MEI-1202

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest documents.

[MEMO]

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

uPD78P014

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

FIP is a trademark of NEC Corporation. IEBus and QTOP are trademarks of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.

HP9000 series 300, HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.