

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U16844EJ3V0UM00 (3rd edition)
Date Published August 2007 NS

Printed in Japan

User’s Manual

CAN SOFTWARE DRIVERS

 2003

User’s Manual U16844EJ3V0UM 2

[MEMO]

User’s Manual U16844EJ3V0UM 3

The information in this document is current as of July, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Windows is either registered trademark or trademark of Microsoft Corporation in the United States and/or other

countries.

Multi is a trademark of Green Hills Software, Inc.

PC/AT is a trademark of International Business Machines Corporation.

The names of other companies and products are the registered trademarks or trademarks of each company.

User’s Manual U16844EJ3V0UM 4

[MEMO]

User’s Manual U16844EJ3V0UM 5

INTRODUCTION

Readers This manual is intended for user engineers who wish to understand the functions of

the CAN software drivers and design and develop application systems and programs

for these devices.

Purpose This manual is intended to give users an understanding of the functions described in

the Organization below.

Organization This manual consists of the following items.

• Product overview

• Installation

• System build

• Configuration

• Driver functions

• Sample program

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical

engineering, logic circuits, and microcontrollers.

To gain a general understanding of CAN software driver functions:

→ Read this manual in the order of the CONTENTS. The mark <R> shows major

revised points. The revised points can be easily searched by copying an “<R>” in the

PDF file and specifying it in the “Fine what:” field.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (overscore over pin and signal name)

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

 Decimal ... xxxx

 Hexadecimal ... xxxxH

Units for representing powers of 2 (address space or memory space):

 K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

Data type: Word … 32 bits

 Halfword … 16 bits

 Byte … 8 bits

User’s Manual U16844EJ3V0UM 6

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents Related to Devices

 - Refer to “User’s Manual Hardware” of each product about the target device.

Documents Related to Development Tools

Document Name Document No.

Operation U17293E

C Language U17291E

Assembly Language U17292E

CA850 Ver. 3.00 C Compiler Package

Link Directive U17294E

PM+ Ver. 6.30 Project Manager U18416E

ID850 Ver. 3.00 Integrated Debugger Operation U17358E

ID850QB Ver. 3.40 Integrated

Debugger

Operation U18604E

Basics U13430E

Installation U17419E

Technical U13431E

RX850 Ver. 3.20 or Later

Real-Time OS

Task Debugger U17420E

Basics U18165E

Installation U17421E

Technical U13772E

RX850 Pro Ver. 3.21 or Later

Real-Time OS

Task Debugger U17422E

RD850 Ver. 3.01 Task Debugger U13737E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

Operation U18601E SM+ Ver 1.0 System simulator

User Open Interface U18212E

Operation U17199E

Language U17198E

RA78K0 Ver.3.80 Assembler Package

Structured Assembly Language U17197E

Operation U17201E CC78K0 Ver.3.70 C Compiler

Language U17200E

ID78K0-QB Ver. 3.00 Integrated

Debugger

Operation U18492E

PM+ Ver. 6.30 U18416E

PG-FP4 Flash Memory Programmer U15260E

Caution The related documents listed above are subject to change without
notice. Be sure to use the latest version of each document when
designing.

User’s Manual U16844EJ3V0UM 7

CONTENTS

CHAPTER 1 PRODUCT OVERVIEW..11
1.1 General ...11
1.2 Features..11

1.2.1 High portability... 11
1.2.2 Configuration tool .. 11

1.3 Types of CAN Software Drivers ...11
1.4 Execution Environment ..12
1.5 Development Environment ...14

CHAPTER 2 INSTALLATION ..15
2.1 General ...15
2.2 Installation Steps...15

2.2.1 Windows startup.. 15
2.2.2 Media setting ... 15

2.3 Directory Structure..16
2.3.1 CAN software drivers .. 16
2.3.2 Documentation .. 17
2.3.3 Sample programs .. 17

CHAPTER 3 SYSTEM BUILD ...18
3.1 Position of CAN Software Drivers ...18
3.2 System Building Steps..19

3.2.1 File generation by configurator .. 20
3.2.2 User applications... 21
3.2.3 Creation of object files... 23
3.2.4 Creation of load module files ... 23

CHAPTER 4 CONFIGURATION ..24
4.1 General ...24
4.2 Management of Input Information by Project File..24
4.3 File Creation Steps ..25
4.4 Starting the Configurator..25

4.4.1 Device selection .. 26
4.4.2 Baud rate setting ... 28
4.4.3 Mask settings .. 34
4.4.4 Message buffer settings .. 37
4.4.5 Other settings.. 54
4.4.6 Code generation.. 60
4.4.7 Saving and Opening Project Files ... 62

4.5 Error/Warning Message List...63

User’s Manual U16844EJ3V0UM 8

CHAPTER 5 DRIVER FUNCTIONS ..68
5.1 List of Driver Functions ..68

5.1.1 Initialization and setting (6 types) ..68
5.1.2 Operation modes (3 types) ..68
5.1.3 Buffer data acquisition (4 types) ..68
5.1.4 Buffer data setting (4 types)...68
5.1.5 Transmit/receive confirmation (4 types)...68
5.1.6 CAN channel status acquisition (3 types) ..69

5.2 Data Types..70
5.3 Return Values (Error Codes) ..72
5.4 CAN-ID Conversion Macros..73
5.5 Single-Channel Specification CAN Software Driver Functions ..74
5.6 CAN Software Driver Functions with Improved Performance ..75
5.7 Description of Driver Functions ...76
5.8 Driver Functions ..78

5.8.1 Initialization and setting ...78
5.8.2 Operation modes ...87
5.8.3 Buffer data acquisition ...92
5.8.4 Buffer data setting ...101
5.8.5 Transmit/receive confirmation..110
5.8.6 CAN channel status access...117

CHAPTER 6 SAMPLE PROGRAM .. 124
6.1 V850ES/FJ2.. 124

6.1.1 Operation environment ..124
6.1.2 Overview of operation..124
6.1.3 Items preset by configurator ..125
6.1.4 Sample program (for NEC Electronics tool)...126

APPENDIX REVISION HISTORY.. 134
APP.1 Main Revisions in this Edition ... 134
APP.2 Revision History of Preceding Editions.. 136

User’s Manual U16844EJ3V0UM 9

LIST OF FIGURES

Figure No. Title Page

2-1 Directory Structure for CAN Software Drivers.. 16
2-2 Directory Structure of Sample Programs ... 17

3-1 System Overview... 18
3-2 System Building Steps ... 19
3-3 Correlations Between Application Program and CAN Software Driver/Configurator.. 22

4-1 Main Screen... 25
4-2 Device Selection Menu Screen.. 27
4-3 Baud Rate Setting Screen (V850-aFCAN, V850-DCAN, 78K0-aFCAN) .. 29
4-4 Baud Rate Setting Screen (V850-FCAN)... 31
4-5 Baud Rate Setting Screen (78K0-DCAN) .. 33
4-6 Mask Setting Screen (V850-aFCAN, 78K0-aFCAN) .. 34
4-7 Mask Setting Screen (V850-FCAN) ... 35
4-8 Mask Setting Screen (V850-DCAN, 78K0-DCAN) ... 36
4-9 Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN) ... 38
4-10 Message Buffer Setting Screen (V850-FCAN)... 40
4-11 Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN)... 41
4-12 Transmit Message Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN)... 42
4-13 Receive Message Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN).. 44
4-14 Transmit Message Buffer Setting Screen (V850-FCAN).. 46
4-15 Receive Message Buffer Setting Screen (V850-FCAN)... 48
4-16 Transmit Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN).. 50
4-17 Receive Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN)... 52
4-18 Other Settings Screen (V850-aFCAN, 78K0-aFCAN).. 55
4-19 Other Settings Screen (V850-FCAN) ... 57
4-20 Other Settings Screen (V850-DCAN, 78K0-DCAN) ... 59
4-21 Output Options Setting Screen .. 60
4-22 Code Generation Startup Screen... 61
4-23 Screen for Saving and Opening Project Files .. 62

5-1 Code Format of Driver Functions... 76

User’s Manual U16844EJ3V0UM 10

LIST OF TABLES

Table No. Title Page

2-1 Provision of CAN Software Drivers ..15

4-1 Error Code List ...63
4-2 Warning Code List..66

5-1 Data Type List ..70
5-2 Parameter Range...70
5-3 Macros for Parameters...71
5-4 Macros for Error Codes..72
5-5 List of CAN-ID Conversion Macros ..73
5-6 Single-Channel Specification CAN Software Driver Functions...74
5-7 CAN Software Driver Functions with Improved Performance...75
5-8 Initialization and Setting ...78
5-9 Operation Modes..87
5-10 Buffer Data Acquisition...92
5-11 Buffer Data Setting...101
5-12 Transmit/Receive Confirmation ..110
5-13 CAN Channel Status Access..117

User’s Manual U16844EJ3V0UM 11

CHAPTER 1 PRODUCT OVERVIEW

1.1 General

CAN software drivers provide application program interface functions (API functions) to implement communications

via NEC Electronics' V850 microcontroller of CAN communication function-equipped 32-bit microcontrollers and 78K0

microcontroller of 8-bit microcontrollers.

1.2 Features

1.2.1 High portability

Users can write CAN communication programs without having to know about the CAN's hardware dependencies or

the CPU core. This facilitates portability to and customization of the execution environment.

1.2.2 Configuration tool

GUI-driven commands make it easy to set environment-based initial settings for CAN hardware and other devices

to be used, as well as static generation of messages.

1.3 Types of CAN Software Drivers

The CAN software driver is supplied in a source file. The source file can be output with the type of the CAN

controller and provision of a parameter check function selected.

Type Description

Hardware dependency Different drivers are provided for each CPU core and CAN controller type.

Parameter checking function A function that checks and recognizes a user-specified parameter as an error in CAN

software driver functions, or a function that does not can be selected.

The parameter check function checks errors in CAN software driver functions. Therefore,

illegal parameter specification can be prevented but the code capacity increases. Using

this function for debugging and evaluation is thus recommended.

Since this parameter checking function performs an error check within the CAN software

driver functions, there is a trade-off between parameter checking to prevent errors and

increased code size. Accordingly, use of the parameter checking function is

recommended only for debugging or evaluations.

<R>

CHAPTER 1 PRODUCT OVERVIEW

User’s Manual U16844EJ3V0UM 12

1.4 Execution Environment

CAN software drivers operate on target systems that are equipped with the following hardware.

(1) Target CPU

V850

Microcontrollers

V850ES/FE2, V850ES/FF2, V850ES/FG2, V850ES/FJ2, V850ES/FE3, V850ES/FF3,

V850ES/FG3, V850ES/FJ3, V850ES/FK3, V850ES/SG2, V850ES/SJ2, V850ES/SG3,

V850ES/SJ3, V850E/RS1, V850E/RS2, V850E/PG2, V850E/DJ3, V850E/DL3, V850E/IA1

78K0

Microcontrollers

78K0/FC2, 78K0/FE2, 78K0/FF2, μPD780822B

(2) Target CAN controller

aFCAN

DCAN

FCAN

(3) Memory capacity

The memory capacity varies depending on the number of functions (APIs) used by the user, the number of

message buffers and channels, the CAN controller, and the register mode used. It particularly depends on the

number of functions (APIs).

The memory capacities of the total functions (16 functions) and the functions used in CHAPTER 6 SAMPLE

PROGRAM (8 functions) are shown below.

(a) Memory capacity of total functions

• Compiler : CA850 Ver. 3.00 (made by NEC Electronics)

• Optimization : Size optimization

• CAN controller : aFCAN

• Register mode : 32 register mode

• Number of functions used (APIs) : 16

• Table used : Number of channels : 2

 Number of transmit/receive message buffers : 10 for each channel

 (20 in total)

 ROM Capacity RAM Capacity

16 functions (APIs) Approx. 1.46 KB 8 bytes max.

Table 272 bytes −

Total Approx. 1.73 KB

Remark It depends for the abovementioned contents on the Version of a

compiler.

The RAM capacity is the capacity for the stack area.

<R>

<R>

<R>

<R>

CHAPTER 1 PRODUCT OVERVIEW

User’s Manual U16844EJ3V0UM 13

(b) Memory capacity of functions used in sample program

• Compiler : CA850 Ver. 3.00 (made by NEC Electronics)

• Optimization : Size optimization

• CAN controller : aFCAN

• Register mode : 32 register mode

• Number of functions used (APIs) : 8

• Table used : Number of channels : 1

 Number of transmit/receive message buffers: 2

 ROM Capacity RAM Capacity

8 functions (APIs) Approx. 1.01 KB 8 bytes max.

Table 116 bytes −

Total Approx. 1.13 KB

Remark It depends for the abovementioned contents on the Version of a

compiler.

The RAM capacity is the capacity for the stack area.

<R>

<R>

CHAPTER 1 PRODUCT OVERVIEW

User’s Manual U16844EJ3V0UM 14

1.5 Development Environment

The following environment is required for use of CAN software drivers for development of application systems.

(1) Hardware

 Host machine

 • IBM PC/AT™ Series:

 Supported Windows TM versions

 Windows 98, Windows Me, Windows 2000, Windows XP

(2) Software

 Compiler package

 • CA850: Made by NEC Electronics

 • CCV850: Made by Green Hills Software, Inc.

 • CC78K0: Made by NEC Electronics

(3) Debuggers

 • ID850: Made by NEC Electronics

 • Multi™: Made by Green Hills Software, Inc.

 • PARTNER: Made by Kyoto Microcomputer

 • ID78K0: Made by NEC Electronics

 • ID78K0-NS: Made by NEC Electronics

(4) Simulators

 • SM850: Made by NEC Electronics

 • SM78K0: Made by NEC Electronics

<R>

User’s Manual U16844EJ3V0UM 15

CHAPTER 2 INSTALLATION

2.1 General

CAN software drivers are provided on Windows-based media. CAN software driver functions are provided in

sourece files.

Table 2-1. Provision of CAN Software Drivers

Format Description Media

Full installation • Sample programs

• CAN configurator/CAN software drivers

(CAN configurator, driver source file, header files, device database)

• Configurator

• Documentation (this document)

CD-ROM

Database • Sample programs Web (to be provided),

floppy disk

2.2 Installation Steps

The following are the steps for installing to the host machine the set of files included in the media on which the

CAN software drivers are provided.

2.2.1 Windows startup

Turn on the host machine and peripheral devices, then start Windows.

2.2.2 Media setting

Set the CD containing the CAN software drivers into the target device (CD-ROM drive). The setup program will

open automatically.

The installer generally outputs the following three files.

• CAN configurator/CAN software driver

• Documentation

• Sample programs

Install the above files in accordance with the message displayed on the screen.

<R>

<R>

<R>

CHAPTER 2 INSTALLATION

User’s Manual U16844EJ3V0UM 16

2.3 Directory Structure

2.3.1 CAN software drivers

Figure 2-1. Directory Structure for CAN Software Drivers

[User-specified directory]

[Help]

[Database]

[Source]

DeviceEntry.xml

TemplateData.xml

Help file

[78K0]

[Header]

[Check]

[NoCheck]

CAN Configurator.exe

img_gmask0.png

img_gmask1.png

img_guide.png

img_mask0.png

img_mask0_1.png

img_mask0_g1.png

img_mask1.png

img_nomask.png

sh_candrv.h

sh_candrv.h

[V850]

[aFCAN]

[DCAN]

candrv.h
******.c

[FCAN]

:
:

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<1> : Configurator main unit

<2> : Configurator image file

<3> : Version information file

<4> : Header file with parameter checking

<5> : Header file without parameter checking

<6> : CAN software driver header file

<7> : CAN software driver main unit source file

<R>

CHAPTER 2 INSTALLATION

User’s Manual U16844EJ3V0UM 17

2.3.2 Documentation

Copy this document to any directory.

2.3.3 Sample programs

Sample programs are provided for V850ES/FJ2 and 78K0/FF2. These programs are installed to the directory

structure shown in Figure 2-2, under the user-specified directory.

See the readme.txt file under each directory for description of each sample program's operations.

Figure 2-2. Directory Structure of Sample Programs

[sample] [V850ES_FJ2] config.c

config.h

config.xml

sample.c

[78K0_FF2]

sample.h

readme.txt

config.c

config.h

config.xml

sample.c

sample.h

readme.txt

<R>

<R>

User’s Manual U16844EJ3V0UM 18

CHAPTER 3 SYSTEM BUILD

3.1 Position of CAN Software Drivers

In the system, CAN software drivers are positioned between the user application and hardware (see Figure 3-1). A

user interface is provided for controlling the hardware.

The user can simply describe CAN software driver functions in the application without having to know about

controlling the hardware registers.

Figure 3-1. System Overview

User programs

Microcontroller

CAN software driver

Hardware macro

CAN-BUS

Node

CHAPTER 3 SYSTEM BUILD

User’s Manual U16844EJ3V0UM 19

3.2 System Building Steps

When building a system, the set of files that have been installed from the CAN software driver media to the user-

specified environment (host machine) are used to generate load module files.

The following terms are used in these descriptions.

• OBJ file: Object file

• LINK file: Link directive file

The system building steps are illustrated in the following figure.

Figure 3-2. System Building Steps

Configurator

Include

Include

Information file
(Refer to 3. 2. 1)

OBJ file
(Refer to 3. 2. 3)

Load module files
(Refer to 3. 2. 4)

Configurator header file
(Refer to 3. 2. 1)

CAN software driver
header file

(Refer to 3. 2. 1)

OBJ file
(Refer to 3. 2. 3)

User application
(Refer to 3. 2. 2)

OBJ file
(Refer to 3. 2. 3)

Link files
(Refer to 3. 2. 4)

C compiler/assembler

Linker

CAN software driver
source files

(Refer to 3. 2. 1)

CHAPTER 3 SYSTEM BUILD

User’s Manual U16844EJ3V0UM 20

3.2.1 File generation by configurator

The configurator sets initial values such as the CAN baud rate, message buffer allocation for transmission and

reception, interrupts, and mask, and information files and header files.

For details of the configurator's setting steps, see CHAPTER 4 CONFIGURATION.

(1) Configurator's input data

The following must be determined as the minimum requirement before using the configurator to generate files.

• Device to be used (microcontroller name and device name)

Example: V850ES/FJ2 microcontroller, μPD70F3239

• Device's system clock

• Channel to be used

• CAN system clock for each module

• Baud rate and data bit time configuration for each module

• Setting of message buffer per module

Allocation of transmit and receive buffers, CAN-ID, standard/extended frame, interrupt reporting ON/OFF,

mask settings, etc.

• Interrupt enable/disable setting per module

Error reporting and transmit/receive reporting

(2) Configurator's output data

The following four types of files are output by the configurator.

• Information file

This file contains a table of information that was entered into the CAN device by the user. This file is

referenced by the CAN software driver. Therefore, this file must be compiled/assembled and linked together

with the user application program.

• Configurator header file

Message names set by the user are defined in macros. The user can employ these macro names as

arguments, etc., for CAN software driver functions. Consequently, this file must be included in the user

application.

• CAN software driver source files

A group of CAN software driver source files applicable to the device to be used is output. These files must be

compiled, assembled, and linked, along with the user application program.

• CAN software driver header file (candrv.h)

A header file that will be used in combination with the target CAN software driver's functions is output.

CHAPTER 3 SYSTEM BUILD

User’s Manual U16844EJ3V0UM 21

3.2.2 User applications

CAN's API functions are used to create CAN communication applications. The header file that is created by the

configurator must be included in any file that uses a driver function.

The user should make the following settings in order to use the CAN hardware and the CAN software driver

functions.

(1) to (4) below are initialization routines, while (5) and (6) are code related to CAN control applications.

(1) System settings

The items to be set vary according to the target device. For example, the setting registers include the

following.

For V850 microcontrollers

• System wait control register (VSWC)

• PLL control register (PLLCTL)

For 78K0 microcontrolles

• System wait control register (VSWC)

• Internal memory size switching register (IMS)

• Internal expansion RAM size switching register (IXS)

(2) Port settings

CAN transmit/receive modes are specified for pins assigned to the transmit/receive operations of the CAN

controller to be used.

(3) BPC settings (not required for some devices)

These set the programmable peripheral I/O register area, which is the area allocated for the peripheral I/O

registers used by the CAN controller.

(4) Interrupt settings

When the interrupt handler is used by the CAN controller, the destination address for the interrupt handler

routine must be described.

(5) Inclusion of header files

The following two header files are included in the source file that uses a CAN software driver.

• candrv.h: Header file provided with the CAN software driver

• *****.h: Header file generated by the configurator (***** is determined by the user)

(6) Coding of CAN software driver function (API)

This includes the control code for the CAN that uses the driver's API functions in an application program.

For description of the CAN software driver's API functions, see CHAPTER 5 DRIVER FUNCTIONS.

CHAPTER 3 SYSTEM BUILD

User’s Manual U16844EJ3V0UM 22

Figure 3-3. Correlations Between Application Program and CAN Software Driver/Configurator

Configurator's output files

Header file Information file

(config.h)←Any file name

Name of message buffer for messages input
by the configurator is defined as a macro.

#define bbbb 0
#define dddd 0

(config.c)←Any file name

Setting values such as baud rate and
message buffer entered by the configurator
are organized into a table.

baud rate xxxx
message buffer x2
message buffer x1

#include "candrv.h"
#include "config.h"

canxxx (aaaa, bbbb);

canyyy (cccc, dddd);

Include header file

Describe driver function

Channel number, data type, etc., are
defined as a macro.

#define aaaa 0

#define cccc 0

canxxx (aaaa, bbbb) {

}

canyyy (cccc, dddd) {

}

CAN software driver
header file (candrv.h)

Reference
Reference

Reference

Processing
shifts

Processing
shifts

CAN software driver

Return

Return

CAN software driver
function

CHAPTER 3 SYSTEM BUILD

User’s Manual U16844EJ3V0UM 23

3.2.3 Creation of object files

Information files and CAN software driver source files are compiled and assembled by the user application and

CAN configurator to create relocatable object files.

Remark See user’s manual of each tool for details of the C compiler/assembler startup options and execution

method.

3.2.4 Creation of load module files

The following files are linked to create load module files.

• Object file with compiled/assembled user application

• Object file with compiled information files (generated by the CAN configurator)

• Object files resulting from compiling CAN software driver source files created by the CAN configurator

• Link directive file

• Library files recommended for C compiler package

Remark See user’s manual of each tool for details of the link editor startup options and execution method. Upon

procedure is the example of the compiler made from the NEC electronics, when use other tools, refer to

the user’s manual of each tool for it.

User’s Manual U16844EJ3V0UM 24

CHAPTER 4 CONFIGURATION

4.1 General

The configurator is a development tool that the user employs to set the CAN's initial values when building a system

that includes CAN functions. Functions are provided to enable the user to enter initial values for registers in

accordance with the device to be used, and to perform static generation of messages used in the system.

The initial values for registers corresponding to the target device can be set while selecting the device, entering the

system clock value, and setting the baud rate per channel. In addition to these clock and baud rate settings, interrupts

can be set as enabled or disabled and message buffer settings can be entered.

In the separate window used to set the baud rate, numerical values that can be set are calculated automatically

based on the values input by the user and are displayed in a table. When the user selects any setting from the table,

the bar graph display changes to indicate the selected setting. This enables the user to graphically select and set

baud rate-related values.

As for static generation of messages, assignment to transmit and receive messages, message names, CAN-ID,

and interrupt enable/disable are all settings that can be made.

Remark See the CAN controller chapter in the document of each device for details of the CAN controller

functions.

4.2 Management of Input Information by Project File

The configurator uses project files to store and manage various types of information entered by the user. This use

of project files for storing and retrieving information enables generation of the header files and information files that

can be used by driver functions any number of times.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 25

4.3 File Creation Steps

Once the device to be used has been selected, the other steps can be performed in any order. However, it is

generally recommended to follow the steps described below in 4.4 Starting the Configurator.

4.4 Starting the Configurator

When CANConfigurator.exe is started, the following main screen is displayed. Main items are listed on the left side

of this screen, and brief descriptions of settings are shown on the right side. "Not configured" is displayed in the Value

field for items that have not been set.

Figure 4-1. Main Screen

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 26

4.4.1 Device selection

Select device information from the device selection menu.

<Startup method>

• Start by selecting [File] in [New] menu

• Start by double-clicking "Device Infomation" in the main window.

• To change settings later on, start by selecting [Device Setup] on [Tool] menu.

<Settings>

• Select device microcontroller name and target device

Once the user has selected a device, the device's CAN-related information is displayed in the "Device

Information" field. At that time, the number of CAN channels is changed to a number corresponding to the

specified device.

• Input of CAN clock

Input the frequency of the clock to be supplied to the CAN modules.

The button appears if a device with which the CAN clock can be specified for each

channel is selected. Clicking this button displays another dialog box for inputting multiple clock frequencies.

• Setting of programmable I/O area

Select the I/O area from the pull-down menu. Any I/O area that is not listed in the pull-down menu can be

entered directly.

Selection or input may not be possible (the area is fixed) in some devices.

• Select CAN channel to be used

Select the check box next to the CAN channel to be used.

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 27

Figure 4-2. Device Selection Menu Screen

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 28

4.4.2 Baud rate setting

Select the baud rate for each channel.

<Startup method>

• Start by selecting [Baud Rate Setup] on [Tool] menu

<Settings> (V850-aFCAN, V850-DCAN, 78K0-aFCAN)

• Select CAN module system clock

Select a system clock value from the pull-down menu. The baud rate values that can be selected are

determined according to the module system clock setting.

• Select baud rate

From the pull-down menu, select a baud rate value that corresponds to the CAN bus conditions to be used. The

pull-down menu lists the baud rates that are used often. If the desired baud rate value is not listed, enter it

directly. After selecting or entering a baud rate value, click the button to automatically

recalculate.

• Data bit time setting

The bit time is calculated automatically by the configurator. Select the corresponding bit time combination from

the list. For the standard of a set up, samplepoint is just over or below 75%, and SJW is as large as

possible(maximum is 4)

Clicking on the field for an item (such as Prescaler, DBT, SPT, Sample Point, or SJW) activates the sort function.

The bit time that is centered on the sample point (red triangle) is displayed at the bottom of this list.

Click the button to display values set to registers.

• Initialization of settings

Click the button to deselect any previously selected data bit time and to reset the sort function

to its default setting.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 29

Figure 4-3. Baud Rate Setting Screen (V850-aFCAN, V850-DCAN, 78K0-aFCAN)

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 30

<Settings> (V850-FCAN)

• Select CAN global timer clock

Select a CAN global timer clock from the pull-down menu. The baud rate values that can be selected are

determined according to the global timer clock setting. This setting is common to all the channels.

• Set time stamp clock

Input a time stamp clock. Select the unit by using button. Pressing the

 button after inputting a clock automatically executes calculation.

• Select baud rate

From the pull-down menu, select a baud rate value that corresponds to the CAN bus conditions to be used. The

pull-down menu lists the baud rates that are used often. If the desired baud rate value is not listed, enter it

directly. After selecting or entering a baud rate value, click the to automatically recalculate.

• Set data bit time

The bit time is calculated automatically by the configurator. Select the corresponding bit time combination from

the list.

Clicking on the field for an item (such as Prescaler, DBT, SPT, Sample Point, or SJW) activates the sort function.

The bit time that is centered on the sample point (red triangle) is displayed at the bottom of this list.

By clicking the button, more detailed setting can be made by using the TL mode.

Click the button to display values set to registers.

• Initialization of settings

Click the button to deselect any previously selected data bit time and to reset the sort function

to its default setting.

• Select sampling count

Select a sampling count from the pull-down menu. Select whether sampling is executed once at a sampling

point or received data is sampled three times and is determined by majority.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 31

Figure 4-4. Baud Rate Setting Screen (V850-FCAN)

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 32

<Settings> (78K0-DCAN)

• Select CAN module system clock

Select a system clock value from the pull-down menu. The baud rate values that can be selected are

determined according to the module system clock setting.

To use an external clock, check and directly input the external clock frequency

as the module system clock.

• Select baud rate

From the pull-down menu, select a baud rate value that corresponds to the CAN bus conditions to be used. The

pull-down menu lists the baud rates that are used often. If the desired baud rate value is not listed, enter it

directly. After selecting or entering a baud rate value, click the to automatically recalculate.

• Set data bit time

The bit time is calculated automatically by the configurator. Select the corresponding bit time combination from

the list.

Clicking on the field for an item (such as Prescaler, DBT, SPT, Sample Point, or SJW) activates the sort function.

The bit time that is centered on the sample point (red triangle) is displayed at the bottom of this list.

By clicking the button, more detailed setting can be made by using the TL mode.

Click the button to display values set to registers.

• Initialization of settings

Click the button to deselect any previously selected data bit time and to reset the sort function

to its default setting.

• Select sampling count

Select a sampling count from the pull-down menu. Select whether sampling is executed once at a sampling

point or received data is sampled three times and is determined by majority.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 33

Figure 4-5. Baud Rate Setting Screen (78K0-DCAN)

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 34

4.4.3 Mask settings

Mask settings can be entered for each channel.

Links between receive message buffers and masks are shown in the message buffer settings.

<Startup method>

• Start by selecting [Mask Setup] on [Tool] menu

<Settings> (V850-aFCAN, 78K0-aFCAN)

• Mask settings

A bit image of the mask register is displayed. Set bits in order to avoid comparison between (i.e., to mask) the

message buffer ID of a received message and the message buffer's own ID.

Remark The mask function is useful for managing CAN-IDs in group units because multiple CAN-IDs can be

stored in one message buffer.

Figure 4-6. Mask Setting Screen (V850-aFCAN, 78K0-aFCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 35

<Settings> (V850-FCAN)

• Set mask

The mask register is displayed in bit image.

If the ID of a received message buffer and the ID of the message buffer are not compared (if comparison is to be

masked), set the corresponding bit.

• Mask identifier (ID) format

Use the button to select whether ID format (standard or expansive) is checked or not for

each mask register.

Figure 4-7. Mask Setting Screen (V850-FCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 36

<Settings> (V850-DCAN, 78K0-DCAN)

• Set mask

The mask register is displayed in bit image.

If the ID of a received message buffer and the ID of the message buffer are not compared (if comparison is to be

masked), set the corresponding bit.

• Mask frame format

Use the button to select whether the frame format (data frame or remote frame) is

checked for each mask register.

• Select global mask function

Select whether the mask register is to be used, and select a global mask. When the button is clicked, the image

of the mask is displayed at the lower left part.

Figure 4-8. Mask Setting Screen (V850-DCAN, 78K0-DCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 37

4.4.4 Message buffer settings

The message buffers for each channel are assigned as transmit or receive buffer, and the ID, frame type, and other

settings are entered for each message.

(1) Assignment of message buffers

<Startup method>

• Start by selecting [Message Buffer Setup] on [Tool] menu

<Settings> (V850-aFCAN, 78K0-aFCAN)

• Assignment of unused message buffers to transmit or receive function

Click the button to move message buffers from the No Used Buffers list field to either the Tx Message

or Rx Message list.

• Set the automatic block transmission (ABT) function Note as either enabled or disabled.

To use the ABT function, select the radio button next to "Use". This enables a guard to be set so that

message buffers 0 to 7 cannot be used as transmit message buffers.

Note The automatic block transmission (ABT) function is used to transmit multiple data frames

continuously without using the CPU. The number of transmit message buffers assigned to ABT is

fixed to 8, from message buffer 0 to 7.

 Note, however, that the ABT mode is not included in the CAN software driver function, so users must

code it by themselves.

• Set mask function

The mask setting function described above in 4. 4. 3 Mask settings can also be set by pressing the

 button.

<Other functions>

• How to move an assigned message buffer back to the No Used Buffers list field

Select a message from the Tx (or Rx) list and click the button to move the message to the No Used

Buffers list field.

• Message copy function

To use message buffer settings that have already been set for a message buffer in the No Used Buffers list

field, select the message in the No Used Buffers list field and the message to be copied, then click the

 button.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 38

Figure 4-9. Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 39

<Settings> (V850-FCAN)

• Specify use of unused message buffers as transmit/receive message buffers

Use the button to move unused message buffers from the list (List of Unused Buffers) to the list of

transmit message (Tx Message) buffers or to the list of receive message (Rx Message) buffers.

• Select priority control for transmission

Select priority control by identifiers (ID) or by message numbers, by using the radio button.

• Select overwrite mode

To receive a new message to a message buffer that has already received a message, whether the old

message is overwritten or the new message is discarded without the old message overwritten must be

selected. When Overwrite (default) is selected, the old message is overwritten.

If Discard is selected, the new message is not overwritten to the message buffer that has already received a

messageNote but is discarded.

Note Message buffer whose DN bit is set to “1”

• Setting mask function

The mask setting function in 4. 4. 3 Mask settings can also be used by pressing the button.

<Other functions>

• Return message buffers to unused status

If a message is selected from the Tx (Rx) list and the button is pressed, the selected message returns

to the unused message buffer list.

• Copy message

To use a message buffer in the unused message buffer list with the same contents of a message buffer that

has already been set, select a message from the unused message buffer list and a message to be copied,

and press the button.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 40

Figure 4-10. Message Buffer Setting Screen (V850-FCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 41

<Settings> (V850-DCAN, 78K0-DCAN)

• Select priority control for transmission

Use the radio button to select transmit buffer 0 or 1 as the priority transmission message buffer. The number

of transmit message buffers is fixed to two.

• Register the number of receive message buffers used

Directly input the number of message buffers to be used (using buffer number) or select it from the pull-

down menu and press the button to register the number of message buffers to the list of receive

message (Rx Message) buffers.

• Set mask function

The mask setting function in 4. 4. 3 Mask setting can also be used by pressing the button.

<Other functions>

• Return the registered message buffer to the unused status

If the number of receive message buffers to be used (using buffer number) is decreased and the

button is pressed, the message returns to the list of unused message buffers again.

Figure 4-11. Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 42

(2) Message buffer settings

<Startup method>

Start from the screen for assigning message buffers, as described in (1) above.

• After selecting a message buffer, click the button.

• Double-click a message buffer.

<Settings> (V850-aFCAN, 78K0-aFCAN)

(a) Transmit message buffer setting items

Figure 4-12. Transmit Message Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Do not use any of

these names when entering message names.

 ChX_MsgYY (X: 1 to 6 and YY: 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 43

• Set data length

Specify the CAN message's data length in the DLC field. Either enter the value directly or use the

up/down arrows to change the entered value.

Enter a setting as a decimal value in a range from 0 to 15 bytes.

If the entered data length setting is more than 8 bytes, a warning message will appear.

Remark If the entered data length setting is more than 8 bytes, it is used as the length of data actually

transmitted to the CAN bus.

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

• Select enabled or disabled setting for transmission end interrupts

Select either the enabled or disabled setting for transmission end interrupts. When these interrupts are

enabled, interrupt requests will occur. The default setting (disabled) is already selected.

• Select frame type

Select either data frame or remote frame as the frame type. The default setting (data frame) is already

selected.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 44

(b) Receive message buffer setting items

Figure 4-13. Receive Message Buffer Setting Screen (V850-aFCAN, 78K0-aFCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Be sure to avoid using

any of these names when entering message names.

 ChX_MsgYY (X: 1 to 6 and YY: 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

• Set mask link

When using the mask function, the setting for mask 1 to 4 set in 4. 4. 3 Mask settings can be linked.

Select the mask from the Mask Selection pull-down menu.

The default setting (None) is already selected.

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 45

• Select enabled or disabled setting for reception end interrupts

Select either the enabled or disabled setting for reception end interrupts. When these interrupts are

enabled, interrupt requests will occur. The default setting (disabled) is already selected.

• Select overwriting or discarding of data frame

Select Overwrite or Discard for messages newly received in a message buffer in which a message has

already been received. Previously received messages will be overwritten by newly received messages

when Overwrite is selected.

When Discard is selected, data frames newly received in a message bufferNote in which a message has

already been received are discarded.

Note Receive message buffer for which DN bit is set to 1.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 46

<Settings> (V850-FCAN)

(a) Transmit message buffer setting items

Figure 4-14. Transmit Message Buffer Setting Screen (V850-FCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Do not use any of

these names when entering message names.

ChX_MsgYY (X : 1 to 6 and Y : 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 47

• Set data length

Specify the CAN message's data length in the DLC field. Either enter the value directly or use the

up/down arrows to change the entered value.

Enter a setting as a decimal value in a range from 0 to 15 bytes.

If the entered data length setting is more than 8 bytes, a warning message will appear.

Remark If the entered data length setting is more than 8 bytes, it is used as the length of data actually

transmitted to the CAN bus (initial setting). However, the data length that is transmitted is up

to 8 bytes.

• Specify either whether the time stamp is added, when transmitting

Select either that the time stamp is added or is not, in the Time Stamp Function field. The default setting

(added) is already entered.

• Specify either setting or releasing of remote frame automatic response function

Select either the setting or releasing of the remote frame automatic response function, in the Auto reply

for Remote frame field. The default setting (set) is already entered.

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

• Select enabled or disabled setting for transmission end interrupts

Select either the enabled or disabled setting for transmission end interrupts. When these interrupts are

enabled, interrupt requests will occur. The default setting (disabled) is already selected.

• Select frame type

Select either data frame or remote frame as the frame type. The default setting (data frame) is already

selected.

• Specify DN flag operation when receiving the remote frame in the transmit message buffer

Select either setting or not setting of the DN flag when receiving the remote frame.

The default setting (set) is already entered.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 48

(b) Receive message buffer setting items

Figure 4-15. Receive Message Buffer Setting Screen (V850-FCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Be sure to avoid using

any of these names when entering message names.

ChX_MsgYY (X : 1 to 6 and Y : 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

• Set mask link

When using the mask function, the setting for mask 1 to 4 set in 4. 4. 3 Mask settings can be linked.

When using in diagnostic processing mode, select Diagnostic. Select the mask from the Mask Selection

pull-down menu.

The default setting (None) is already selected.

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 49

• Select enabled or disabled setting for reception end interrupts

Select either the enabled or disabled setting for message reception end interrupts in the Interrupt at Valid

message reception field. When these interrupts are enabled, interrupt requests will occur. The default

setting (disabled) is already selected.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 50

<Settings> (V850-DCAN, 78K0-DCAN)

(a) Transmit message buffer setting items

Figure 4-16. Transmit Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Do not use any of

these names when entering message names.

ChX_MsgYY (X : 1 to 6 and Y : 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

• Set data length

Specify the CAN message's data length in the DLC field. Either enter the value directly or use the

up/down arrows to change the entered value.

Enter a setting as a decimal value in a range from 0 to 15 bytes.

If the entered data length setting is more than 8 bytes, a warning message will appear.

Remark If the entered data length setting is more than 8 bytes, it is used as the length of data actually

transmitted to the CAN bus (initial setting). However, the data length that is transmitted is up

to 8 bytes.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 51

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

• Select enabled or disabled setting for transmission end interrupts

Select either the enabled or disabled setting for transmission end interrupts. When these interrupts are

enabled, interrupt requests will occur. The default setting (disabled) is already selected.

• Select frame type

Select either data frame or remote frame as the frame type. The default setting (data frame) is already

selected.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 52

(b) Receive message buffer setting items

Figure 4-17. Receive Message Buffer Setting Screen (V850-DCAN, 78K0-DCAN)

• Buffer name

Enter the message buffer name in the Buffer Name field. The default message buffer name is already

displayed in this field.

The user can use the message buffer name set in this area as the argument of the CAN software driver

function (API) (message buffer specification).

Caution The following message names are reserved by the configurator. Be sure to avoid using

any of these names when entering message names.

ChX_MsgYY (X : 1 to 6 and Y : 00 to 63)

• Set identifier

Enter the CANID (identifier) as a hexadecimal value. The configurator automatically adds "0x" to the

start of the value.

The default value "0x000" is already entered.

The range of possible settings varies according to the frame format.

• Set mask link

Either masks 1 or 2, or None, which is set in 4. 4. 3 Mask settings, is displayed in the pull-down menu.

The setting cannot be changed from the pull-down menu.

• Select ID format

In the ID Format field, select either Standard ID or Extended ID. The default setting (Standard ID) is

already entered.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 53

• Select enabled or disabled setting for reception end interrupts

Select either the enabled or disabled setting for message reception end interrupts in the Interrupt at Valid

message reception field. When these interrupts are enabled, interrupt requests will occur. The default

setting (disabled) is already selected.

• Select frame type

Select either data frame or remote frame as the frame type. The default setting (data frame) is already

selected.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 54

4.4.5 Other settings

Enter other settings for CAN module functions and module interrupts.

<Startup method>

• Start by selecting [Other Setup] on [Tool] menu.

<Settings> (V850-aFCAN, 78K0-aFCAN)

• Set the transmit delay time for automatic block transfer.

If the automatic block transfer (ABT) function will be used, set the transmit delay time here. The unit for this

setting is data bit time.

• Set operation in response to lost arbitration.

Select whether or not to retry transmission when arbitration is lost during single-shot mode.

• Enable/disable module interrupts

Set either enable or disable for the following interrupt-related settings.

• Interrupt at wakeup from sleep mode

• Interrupt when arbitration is lost

• Interrupt when a CAN protocol error occurs

• Interrupt when a CAN error status occurs

• Interrupt when valid message frame has been received from the message buffer

• Interrupt when normal message frame has been transmitted from the message buffer

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 55

Figure 4-18. Other Settings Screen (V850-aFCAN, 78K0-aFCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 56

<Settings> (V850-FCAN)

• Enable or disable global interrupt

Select either the enabled or disabled setting for interrupts regarding each of the following items.

• Memory access interrupt to unusable address

• Illegal write access interrupt (to temporary buffer, etc.)

• Select either use or non-use of time stamp function

Select the use or unuse of the time stamp function in the Time Stamp Function field. The default setting (Non-

use) is already entered.

• Select dominant level of transmit pin

Select either the low level or high level is transmitted as dominant from the transmit pin. The default setting

(Low level) is already entered.

• Select dominant level of receive pin

Select either the low level or high level to the receive pin is recognized as dominant. The default setting (Low

level) is already entered.

• Enable/disable module interrupts

Set either enable or disable for the following interrupt-related settings.

• CAN module error interrupt

• CAN bus error interrupt

• Interrupt at wakeup from sleep mode

• Receive error passive interrupt

• Transmit error passive or bus off interrupt

• Reception end interrupt

• Transmission end interrupt

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 57

Figure 4-19. Other Settings Screen (V850-FCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 58

<Settings> (V850-DCAN, 78K0-DCAN)

• Set operation in response to lost arbitration.

Select whether or not to retry transmission when arbitration is lost during single-shot mode.

• Select either whether time stamp function is used or is not used

Select whether or not to use the time stamp function in the Use or not Function field. The default setting (non-

use) is already entered.

• Select SOFOUT output format

In the Capture Timing field, select whether SOFOUT is toggled by the interrupt that occurs when the message is

received (time stamp mode) or SOFOUT is toggled for each start-of-frame reception (global time mode). The

default setting (global time mode) is already entered.

• Select SOFTOUT function (SOFEn flag operation)

In the Continue or not Operation field, select either for the SOFEn bit not to depend on the CAN bus operation

(toggle operation continued) or for the SOFEn bit to be cleared when the message begins to be stored in the

receive message buffer 4 (toggle operation stopped). The default setting (toggle operation continued) is already

entered.

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 59

Figure 4-20. Other Settings Screen (V850-DCAN, 78K0-DCAN)

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 60

4.4.6 Code generation

This includes source code for information files and configurator header files, as well as code generated for the CAN

software driver source files and CAN software driver header file.

(1) Output option setting for CAN software driver source files

<Startup method>

• Start by selecting each command in the [Option] menu.

<Settings>

• [Option] – [Parameter]

Select whether or not to use the parameter check function for libraries to be output during library output.

Check Outputs CAN software driver source files with parameter check.

No Check Outputs CAN software driver source files without parameter check.

Figure 4-21. Output Options Setting Screen

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 61

(2) File output

Types of files to be output include information files, configurator header files, CAN software driver source files,

and CAN software driver header files.

The user can specify any folder as the storage destination for these files.

<Startup method>

• Start by selecting [Generate source code] on [Tool] menu.

Figure 4-22. Code Generation Startup Screen

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 62

4.4.7 Saving and Opening Project Files

Project files that are used to manage information files and header files can be stored and opened.

These project files are in XML format.

<Startup method>

• Select [Save As] in the [File] menu to save a new project file.

• Select [Save] in the [File] menu to save a project file (the previous project file will be overwritten).

• Select [Open] in the [File] menu to open a project file.

Figure 4-23. Screen for Saving and Opening Project Files

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 63

4.5 Error/Warning Message List

Messages such as those listed below are output when a setting is out of range or when a required setting has not

been entered.

Table 4-1. Error Code List

(1/3)

Code Name Message Description Action

(E)0101 Device was not selected. Select a device. Displayed when [Tool]-

[Generate Source Code…]

(generating source code) is

executed while no device is

selected.

Select a device by [File]-

[New] or [File]-[Open].

(E)0102 Channel was not selected. Select a channel. Displayed when [Tool]-

[Generate Source Code…]

(generating source code) is

executed while a channel to be

used is not selected in the

device selection dialog box.

Select a channel to be used

by using [Tool]-[Device

Setup…].

(E)0103 Baud rate was not selected. Select a baud rate. Displayed when [Tool]-

[Generate Source Code…]

(generating source code) is

executed while no baud rate is

selected in the baud rate setting

dialog box.

Select a baud rate value by

using [Tool]-[Baud Rate

Setup…].

(E)0104 The CAN clock is wrong value. Displayed if a CAN clock value

for which a baud rate value

cannot be set is set in the

device selection dialog box.

Set a CAN clock value in a

range of 0 < CAN clock <

1310.

(E)0105 The baud rate value is incorrect. Displayed if a value other than a

decimal number is input as a

baud rate value in the baud rate

setting dialog box.

Input a decimal value.

(E)0106 Enter a different baud rate value (from 5 to 1000

Kbps).

Displayed if a baud rate outside

the range of 5 to 1000 kbps is

selected in the baud rate setting

dialog box.

Set a baud rate in the range

of 5 to 1000 kbps.

(E)0107 Channel X not set to baud rate list. Select from

list.

Displayed if there is a channel

for which a list of combination of

settings is not selected in the

baud rate setting dialog box.

Select a combination of set

values from the list.

(E)0108 Buffer name ‘XXX’ already exists. Displayed if an attempt is made

to set a buffer name that has

already been used in the

transmit (or receive) message

buffer setting dialog box.

Set a buffer name that is not

the same as other buffer

name.

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 64

(2/3)

Code Name Message Description Action

(E)0109 CANID 'XXX' is incorrect. Displayed if a character string

other than a hexadecimal

number is input as CANID in

the transmit (or receive)

message buffer setting dialog

box (however, excluding the first

two characters 0x).

Input a value consisting of a

combination of 0 to 9 and A

to F.

(E)010A CANID 'XXX' is outside setting range. Displayed if a value outside the

settable range is input as

CANID in the transmit (or

receive) message buffer setting

dialog box.

Standard ID:

0x000 to 0x7FF

Extended ID:

0x00000000 to 0x1FFFFFFF

(E)010B Buffer name of 'XXX' is reserved name. Set

another name.

Displayed if the default name of

other buffer is set as a buffer

name in the transmit (or

receive) message buffer setting

dialog box.

Set a buffer name that is not

the default name of other

buffer.

(E)010E DLC 'XXX' is incorrect. Displayed if characters other

than numerals are set as the

value of DLC in the transmit

message buffer setting dialog

box.

Set the value of DLC in a

range of 0 to 15.

(E)010F DLC 'XXX' is out of range. Enter a value in the

range from 0 to 15.

Displayed if a value other than 0

to 15 is set as the value of DLC

in the transmit message buffer

setting dialog box.

Set the value of DLC in a

range of 0 to 15.

(E)0111 CAN register area address is incorrect. Displayed if values other than

settable addresses are set as a

CAN register area in the device

selection dialog box.

Set settable addresses.

(E)0112 Enter the CAN clock value. Displayed if a CAN clock value

is not set (blank) in the device

selection dialog box.

Set a CAN clock value in a

range of 0 < CAN clock <

1310.

(E)0113 Enter the CAN register area address. Displayed if no value of a CAN

register area is set (blank) in

the device selection dialog box.

Set settable addresses.

(E)0114 Enter a buffer name. Displayed if no buffer name is

set (blank) in the transmit (or

receive) message buffer setting

dialog box.

Set a buffer name.

(E)0115 Enter a CANID value. Displayed if a value of CANID is

not set (blank) in the transmit

(or receive) message buffer

setting dialog box.

Set a CANID.

(E)0116 Enter a DLC value. Displayed if the value of DLC is

not set (blank) in the transmit

message buffer setting dialog

box.

Set DLC.

<R>

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 65

(3/3)

Code Name Message Description Action

(E)0117 Install database file DeviceEntry.xml. Displayed if a database file for

device-dependent information

(DeviceEntry.xml) cannot be

found.

Install a database file for

device-dependent

information

(DeviceEntry.xml).

(E)0118 Install database file TemplateData.xml. Displayed if a database file for

code generation

(TemplateData.xml) cannot be

found.

Install a database file for

code generation

(TemplateData.xml).

(E)0119 The file name [candrv.h] is library header name.

Set another name.

Displayed if candrv.c/h is set as

the output file name of the

configuration result.

Set an output file name

other than candrv.c/h.

(E)011A XXX is incorrect.

(XXX is the set number of receive message

buffers.)

Displayed if a character other

than a numeral is set in the field

of the number of receive

message buffers used in the

buffer registration dialog box for

DCAN.

Set a numeral in the field of

the number of receive

message buffers used.

(E)011B This channel doesn’t have XXX receive buffers.

Input the number less than N.

(XXX is the set number of receive message

buffers and N is the maximum number of buffers

that can be registered as receive message

buffers.)

Displayed if a value greater

than the value that can be

registered in the field of the

number of receive message

buffers used in the buffer

registration dialog box for

DCAN.

Set a number that can be

registered in the field of the

number of receive message

buffers.

(E)011C This device must use Rx buffer. Input the number

of 1 or over.

Displayed if a value lower than

0 is set in the field of the

number of receive message

buffers in the buffer registration

dialog box for DCAN (78K0).

Set a number that can be

registered in the field of the

number of receive message

buffers.

(E)011D The external CAN clock value is incorrect. Enter

a different external CAN clock value.

Displayed if a character other

than a numeral is set as the

CAN module system clock in

the baud rate setting dialog box

when an external clock is used

as the CAN module system

clock (78K0).

Input a clock value in

number as the CAN module

system clock.

(E)011E XXX doesn’t exist, select other file! (XXX is a file

name)

Displayed if a project file that is

to be opened does not exist.

Select a project file that

exists.

(E)011F Target CAN message buffer has not been

selected. Select a message buffer.

Displayed when [Tool]-

[Generate Source Code…]

(generating source code) is

executed while no message

buffer is set.

Set a message buffer by

using [Tool]-[Baud Rate

Setup…].

(E)0120 The microcontroller name XXX or the device

name YYY is not in the database file

DeviceEntry.xml.

(XXX is a microcontroller name, YYY is a device

name)

Displayed if the microcontroller

name or device name described

in the opened project file does

not exist in a database file for

device-dependent information

(DeviceEntry.xml).

Select the project file that

includes the microcontroller

name and device name

described in the database

file.

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 66

Table 4-2. Warning Code List

(1/2)

Code Name Message Output Location Remarks

(W)0001 Do you want to create a new project without saving the

current project?

Displayed if [File]-[New]

(creating new project) is

executed when there is

setting that is not saved

to a file.

To not save the current

setting:

Press Yes button.

To save the current

setting:

No [File]-[Save]/[Save

as]

(W)0002 The CAN clock has been changed, the Baud rate setting

should be update!

Displayed if the value of

the CAN clock is changed

by [Tool]-[Device

Setup…] (displaying

device selection dialog

box).

Set the baud rate again in

the baud rate setting

dialog box.

(W)0003 The channel being used has been changed: Setting must

be update!

Displayed if the number

of channels is added by

[Tool]-[Device Setup…]

(displaying device

selection dialog box).

Set the added channel in

the respective dialog

boxes (baud rate setting,

mask setting, buffer

registration, and other

settings dialog boxes).

(W)0007 Buffer X can be used as a Send Message! (X is a buffer

number.)

Displayed if an attempt is

made to register any of

buffers 0 to 7 to “For Rx

Message” list while the

ABT mode is selected in

the buffer registration

dialog box.

To use Buffer X as Rx

Message:

Select not to use the ABT

mode.

(W)0008 XXX is set at Rx Message. Delete it from the Rx

Message list. (XXX is a buffer name.)

Displayed if an attempt is

made to use the ABT

mode while any of buffers

0 to 7 is registered to the

“For Rx Message” list in

the buffer registration

dialog box.

To use ABT mode:

Delete buffers 0 to 7

registered to the “For Rx

Message” list from the list.

(W)0009 The DLC value in the message frame has to be

transferred as programmed but only 8 data bytes a

transferred in the data field. Do you want to set the DLC

value (XX)? (XX is DLC value)

Displayed if an attempt is

made to set a value 9 to

15 as DLC in the transmit

message buffer setting

dialog box.

To not use 9 to 15 as the

DLC value, press the No

button and set the DLC

value again (if 9 to 15 is

set, the set value is used

as the DLC that is actually

transmitted to the CAN

bus, but 8-byte data is

transmitted regardless of

the set DLC value.)

<R>

<R>

CHAPTER 4 CONFIGURATION

User’s Manual U16844EJ3V0UM 67

(2/2)

Code Name Message Output Location Remarks

(W)000A Do you want to save the current project? Displayed if [File]-[Exit] or

the x button at the upper

right of the window is

pressed while some

settings have not been

saved to a file.

When current setting is

saved, and application is

ended:

Press Yes button.

When application is ended

without save a current

setting:

Press No button.

When application is not

ended:

Press Cancel button.

(W)000B Select the using device or read the project file. Displayed if an attempt is

made to open the help

while a device to be used

is not selected.

Select a device to be

used, by using [File]-

[New], or open the existing

project file by using [File]-

[Open].

(W)000C Check and update the message buffer setting! Displayed if the mask

operation setting in “apply

area” is changed by mask

setting dialog box for

DCAN.

Check a message buffer

with a [Tool]-[Message

Buffer Setup…], and when

required, perform a re-

setup

(W)000D Do you want to load the project without saving the current

project?

Displayed if [File]-[Open]

(reading existing project)

is executed when there is

setting that is not saved

to a file.

To not save the current

setting:

Press Yes button.

To save the current

setting:

No [File]-[Save]/[Save

as]

User’s Manual U16844EJ3V0UM 68

CHAPTER 5 DRIVER FUNCTIONS

5.1 List of Driver Functions

A list of driver functions is shown below.

5.1.1 Initialization and setting (6 types)

Function Description

CanChEnable Enables CAN (specifies channels)

CanAllEnable Enable CAN (specifies all channels)

CanChInit Initializes CAN channel (re-initializes channel specification)

CanAllInit Initializes CAN channel (re-initializes all channels)

CanChShutdown Forced shutdown (specifies channels)

CanAllShutdown Forced shutdown (specifies all channels)

5.1.2 Operation modes (3 types)

Function Description

CanChSetNrmMode Set normal operation mode

CanChGetMode Acquires operation mode and power-saving mode status

CanChSetInitMode Set Initialization mode

5.1.3 Buffer data acquisition (4 types)

Function Description

CanMsgGetDatDlc Acquires data and data length

CanMsgGetIdDatDlc Acquires CAN-ID, data, and data length

CanMsgGetDatDlc_DSx Acquires data and data length
 Note

CanMsgGetIdDatDlc_DSx Acquires CAN-ID, data, and data length
 Note

5.1.4 Buffer data setting (4 types)

Function Description

CanMsgSetDat Sets data

CanMsgSetIdDatDlc Sets CAN-ID, data, and data length

CanMsgSetDat_DSx Sets data
 Note

 (x = 1 to 8)

CanMsgSetIdDatDlc_DSx Sets CAN-ID, data, and data length
 Note

 (x = 1 to 8)

5.1.5 Transmit/receive confirmation (4 types)

Function Description

CanMsgTxReq Transmit request

CanMsgGetTxInfo Acquires transmit information

CanChSrcRxInfo Searches receive information (search DN)

CanChSrcRxInfo_MSxx Searches receive information (search DN)
 Note

 (xx = 01 to 16)

Note Performance improving function dedicated to 78K0-DCAN.

<R>

<R>

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 69

5.1.6 CAN channel status acquisition (3 types)

Function Description

CanChGetStatus Acquires CAN channel status

CanChClrStatus Clears CAN channel status

CanChGetBusStatus Acquires CAN bus status

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 70

5.2 Data Types

All data types that are used by applications which use the CAN software driver are declared in candrv.h as a

special data type (using typedef).

The data types used in the CAN software driver are listed in Table 5-1.

Table 5-1. Data Type List

Data Type

in CAN Software Driver

Actual Data Type Description

CD_ER unsigned int Note Error codes, return values

CD_ID unsigned long CAN-ID

CD_DLC signed char Data length

CD_DAT unsigned char CAN data

CD_CHNO signed char CAN channel number

CD_BUFNO unsigned char CAN message buffer number

Note The size of the int type is 4 bytes for the CA850 (V850). For the CC78K0 (78K0), it is 2 bytes.

Table 5-2 lists the range of values that can be specified for parameters. Note that operations may become

undefined when an out of range value has been specified.

Table 5-2. Parameter Range

Data Type Specifiable Range

CD_ID 0x0 to 0x1FFFFFFF

CD_DLC 0 to 15

CD_DAT 0x00 to 0xFF

CD_CHNO 0 to X (X: depends on number of channels implemented in device) Note

CD_BUFNO 0 to X (X: depends on number of buffers implemented in device) Note

Note For details, see the specific device's user's manual.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 71

Table 5-3 lists the macros that are provided to specify channel numbers and other parameters.

Table 5-3. Macros for Parameters

Macro Value Description

CD_CAN1 0 Macro for CAN1 specification

CD_CAN2 1 Macro for CAN2 specification

CD_CAN3 2 Macro for CAN3 specification

CD_CAN4 3 Macro for CAN4 specification

CD_CAN5 4 Macro for CAN5 specification

CD_CAN6 5 Macro for CAN6 specification

CD_ERR_CLR_STS 0x0004 Macro that specifies clearing of CAN error status

CD_ERR_CLR_PRT 0x0008 Macro that specifies clearing of CAN protocol error status

CD_ERR_CLR_ABL 0x0010 Macro that specifies clearing of arbitration lost status

CD_ERR_CLR_WAK 0x0020 Macro that specifies clearing of wakeup from CAN sleep mode

CD_ERR_CLR_OVR 0x0040 Macro that specifies clearing of CAN overrun error status

CD_ERR_CLR_TXP 0x0080 Macro that specifies clearing of CAN transmission error passive status or bus-

off status

CD_ERR_CLR_RXP 0x0100 Macro that specifies clearing of CAN reception error passive status

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 72

5.3 Return Values (Error Codes)

The CAN software driver functions return CD_ER type error codes (return values). The symbols used in these

error codes are declared in the header file candrv.h. Table 5-4 lists return values that are returned by driver functions.

Table 5-4. Macros for Error Codes

Symbol Value Meaning

CD_TRUE 1 −

CD_FALSE 0 −

CD_E_OK 0x0 Normal end

CD_E_FLG MSB = 1 MSB = 1.

This indicates that the value is an error code.

CD_E_PRM CD_E_FLG + 0x1 Parameter error

CD_E_STS CD_E_FLG + 0x2 CAN module status error

CD_E_ALRDY CD_E_FLG + 0x3 Already set

CD_E_NOMSG CD_E_FLG + 0x4 Message not received

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 73

5.4 CAN-ID Conversion Macros

The CAN software driver functions handle the CAN-ID in the CAN software driver format, so be sure to use the

conversion macros that are declared in candrv.h, which are listed in Table 5-5.

Remark See the [Use example] of the CanMsgGetIdDatDlc and CanMsgSetIdDatDlc functions for how to use the

CAN-ID macro.

Table 5-5. List of CAN-ID Conversion Macros

Macro Name Value Description

CD_SET_STD_ID(id) (id << 18) Standard CAN-ID format

→ CAN software driver format

CD_SET_EXT_ID(id) (id | 0x80000000) Extended CAN-ID format

→ CAN software driver format

CD_GET_STD_ID(id) (id = (id >> 18) &

0x000007ff)

CAN software driver format

 → Standard CAN-ID format

CD_GET_EXT_ID(id) (id = id & 0x1fffffff) CAN software driver format

→ Extended CAN-ID format

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 74

5.5 Single-Channel Specification CAN Software Driver Functions

Because the CAN software driver functions for the 78K0 microcontroller are of single-channel specification (fixed

channel specification), a channel cannot be specified. The functions of single-channel specification are different in API

from the basic functions, but can be called by basic function names because the function name is replaced as follows

depending on the definition in candrv.h.

Table 5-6. Single-Channel Specification CAN Software Driver Functions

Basic Function Name (Before Replacement) 78K0 Microcontroller-Dedicated Function Name (After Replacement)

CanChEnable(chno) CanChEnable_CH1()

CanChInit(chno) CanChInit_CH1()

CanChSetNrmMode(chno) CanChSetNrmMode_CH1()

CanChGetMode(chno) CanChGetMode_CH1()

CanChSetInitMode(chno) CanChSetInitMode_CH1()

CanMsgGetIdDatDlc(chno, bufno, p_canid, p_data, p_dlc) CanMsgGetIdDatDlc_CH1(bufno, p_canid, p_data, p_dlc)

CanMsgGetDatDlc(chno, bufno, p_data, p_dlc) CanMsgGetDatDlc_CH1(bufno, p_data, p_dlc)

CanMsgSetIdDatDlc(chno, bufno, canid, p_data, dlc) CanMsgSetIdDatDlc_CH1(bufno, canid, p_data, dlc)

CanMsgSetDat(chno, bufno, p_data) CanMsgSetDat_CH1(bufno, p_data)

CanMsgTxReq(chno, bufno) CanMsgTxReq_CH1(bufno)

CanMsgGetTxInfo(chno, bufno) CanMsgGetTxInfo_CH1(bufno)

CanChSrcRxInfo(chno, bufno) CanChSrcRxInfo_CH1(bufno)

CanChGetStatus(chno) CanChGetStatus_CH1()

CanChClrStatus(chno, clrdat) CanChClrStatus_CH1(clrdat)

CanChGetBusStatus(chno) CanChGetBusStatus_CH1()

[Caution]

With the 78K0 microcontroller, both the above function names can be called. To call a basic function name, a

dummy channel number must be specified.

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 75

5.6 CAN Software Driver Functions with Improved Performance

Some functions with improved performance (processing speed) are available for the 78K0-DCAN.

Table 5-7. CAN Software Driver Functions with Improved Performance

Basic Function Name (Common to V850 and 78K0) Name of Function with Improved Performance (78K0-DCAN only)

CanMsgGetIdDatDlc(chno, bufno, p_canid, p_data, p_dlc) CanMsgGetIdDatDlc_DSx()

CanMsgGetDatDlc(chno, bufno, p_data, p_dlc) CanMsgGetDatDlc_DSx()

CanMsgSetIdDatDlc(chno, bufno, canid, p_data, dlc) CanMsgSetIdDatDlc_DSx()

CanMsgSetDat(chno, bufno, p_data) CanMsgSetDat_DSx()

CanChSrcRxInfo(chno, bufno) CanChSrcRxInfo_MSxx()

x: 1 to 8

xx: 01 to 16

[Caution]

The functions with improved performance are different in API from the basic functions and do not have an

argument. Data is transferred by using a global variable. For details, check the specification of each function.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 76

5.7 Description of Driver Functions

The format shown in Figure 5-1 is used to describe the driver functions.

Figure 5-1. Code Format of Driver Functions

[General]

[C language code format]

[Parameters]

[Description]

[Return value]

[Cautions]

I/O Parameters Description

1

2

3

4

5

[Use example]8

6

7

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 77

1. Name

 This indicates the name of the driver function.

2. [General]

 This indicates each driver function's general functions.

3. [C language code format]

 This indicates the code format used to issue driver functions in C language.

4. [Parameters]

 Driver function parameters are indicated in the following format.

I/O Parameter Description

A B C

A : Parameter I/O classification

 I ... Input parameter

 O ... Output parameter

B : Parameter type and name

C : Description of parameter

5. [Description]

 This describes the functions of each driver function.

6. [Return value]

 This uses macros and numerical value to indicate the values returned by driver functions.

7. [Cautions]

 This indicates cautions concerning driver functions. In particular, device-dependent cautions are explained.

8. [Use example]

 This provides use examples for specific driver functions.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 78

5.8 Driver Functions

5.8.1 Initialization and setting

The driver functions listed in Table 5-8 are described below.

Table 5-8. Initialization and Setting

Function Description

CanChEnable Enables CAN (specifies channel)

CanAllEnable Enables CAN (specifies all channels)

CanChInit Initializes CAN channel (re-initializes)

CanAllInit Initializes CAN channel (re-initializes all channels)

CanChShutdown Forced shutdown (specifies channels)

CanAllShutdown Forced shutdown (specifies all channels)

<R>

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 79

CanChEnable

[General]

This function is used to set the specified channel's CAN clock and start the CAN controller.

[C language code format]

CD_ER CanChEnable(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function sets the specified channel's CAN clock and starts the CAN controllerNote. When this operation ends

normally, the CAN module is set to initialization mode.

If this function is issued after the CAN controller has been started, the CAN clock is not set and the CAN module

is not switched to initialization mode.

This function must be issued before using any other driver function.

Note The DCAN controller simply starts the CAN controller but does not perform the CAN clock setting.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CD_E_ALRDY CD_E_FLG + 0x3 CAN clock cannot be set because CAN controller has already

been started

[Cautions]

This function cannot be used with the FCAN controller.

<R>

<R>

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 80

[Use example]
CD_ER ret;

ret = CanChEnable(CD_CAN1);

if (ret == CD_E_OK){

 "Describe normal end processing";

}

else if (ret == CD_E_PRM){

 "Describe error processing"; /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{ /* (ret == CD_E_ALRDY) */

 "Describe error processing"; /* CAN controller has been started */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 81

CanAllEnable

[General]

This function is used to set the CAN clock of all channels and starts the CAN controller.

[C language code format]

CD_ER CanAllEnable();

[Parameters] None

[Description]

This driver function sets the CAN clock of all channels, starts the CAN controller, and sets the operation of the

time stamp counter. When this function is terminated normally, all the CAN modules are in the initialization mode.

If this function is issued when even one of the CAN controllers has been started, settings such as that of the CAN

clock are not performed nor is the operation mode of the CAN module changed.

This function must be issued before the other driver functions are used.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_ALRDY CD_E_FLG + 0x3 CAN controller has already been started and the CAN clock

cannot be set.

[Cautions]

This function can be used only with the FCAN controller.

[Use example]
CD_ER ret;

ret = CanAllEnable();

if (ret == CD_E_OK){

 “Describe Normal end processing”;

}

else{ /* (ret == CD_E_ALRDY) */

 “Describe error processing”; /* CAN controller has been started */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 82

CanChInit

[General]

This function is used to initialize (reset) the specified channel.

[C language code format]

CD_ER CanChInit(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function performs the following settings for the specified channel.

• Baud rate setting

• Sample point setting

• DBT setting

• SJW setting

• Channel interrupt enable/disable settingNote

• Mask register setting

• Message buffer settings (attribute setting, data clearing, etc.)

• Operation setting when arbitration is lost

• ABT delay settingNote

The above settings are specified via a separate configuration file.

This function must be issued while the CAN module is in initialization mode.

If this function is issued when in any mode other than initialization mode, the above settings cannot be made.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CD_E_STS CD_E_FLG + 0x2 The function is issued when a CAN module is not in the

initialization mode.

Note Except the DCAN controller

[Cautions]

This function cannot be used with the FCAN controller.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 83

[Use example]
CD_ER ret;

ret = CanChInit(CD_CAN1);

if (ret == CD_E_OK){

 "Describe normal end processing";

}

else if (ret == CD_E_PRM){

 "Describe error processing"; /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* Issued in mode other than initialization mode */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 84

CanAllInit

[General]

This function is used to initialize (re-initializes) all channels.

[C language code format]

CD_ER CanAllInit();

[Parameters] None

[Description]

This driver functions makes the following setting on a specified channel.

• Baud rate

• Sample point

• DBT

• SJW

• Enabling/disabling channel interrupt

• Mask register

• Message buffer (setting of attribute and clearing data)

The above settings are separately specified by the configuration file.

This function must be issued when all the CAN modules are in the initialization mode.

The above settings are not made if even one of the CAN modules is not in the initialization mode.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 The function is issued when a CAN module is not in the

initialization mode.

[Cautions]

This function can be used only with the FCAN controller.

[Use example]
CD_ER ret;

ret = CanAllInit();

if (ret == CD_E_OK){

 "Describe Normal end processing";

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* Issued in mode other than initialization mode */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 85

CanChShutdown

[General]

This function is used to shut down the specified channel forcibly.

[C language code format]

CD_ER CanChShutdown(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This driver function is used to shut down the specified channel forcibly.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CD_E_STS CD_E_FLG + 0x2 Forced shutdown failed

[Cautions]

This function is available only when the aFCAN controller is used.

[Use example]
CD_ER ret;

ret = CanChShutdown(CD_CAN1);

if (ret == CD_E_OK){

 "Describe Normal end processing";

}

else if (ret == CD_E_PRM){

 "Describe error processing"; /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* Forced shutdown failed */

}

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 86

CanAllShutdown

[General]

This function is used to shut down all the channels forcibly.

[C language code format]

CD_ER CanAllShutdown();

[Parameters] None

[Description]

This driver function is used to shut down all the channels forcibly.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 Forced shutdown failed

[Cautions]

This function can be used only with the FCAN controller.

[Use example]
CD_ER ret;

ret = CanAllShutdown();

if (ret == CD_E_OK){

 "Describe Normal end processing";

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* Forced shutdown failed */

}

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 87

5.8.2 Operation modes

The driver function operation modes listed in Table 5-9 are described below.

Table 5-9. Operation Modes

Function Description

CanChSetNrmMode Set normal operation mode

CanChGetMode Acquire operation mode and power-saving mode status

CanChSetInitMode Set initialization mode

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 88

CanChSetNrmMode

[General]

This function is used to set the specified channel to normal operation mode.

[C language code format]

CD_ER CanChSetNrmMode(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function switches the CAN module for the specified channel number from initialization mode to normal

operation mode. This function must be issued before transmitting or receiving any messages after CanChEnable

and CanChInit have been issued.

This function must be issued while the CAN module is in initialization mode.

If this function is issued when in any mode other than initialization mode, the operation mode cannot be changed.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CD_E_STS CD_E_FLG + 0x2 The function is issued when a CAN module is not in the

initialization mode.

[Use example]
CD_ER ret;

ret = CanChSetNrmMode(CD_CAN1);

if (ret == CD_E_OK){

 "Describe normal end processing";

}

else if (ret == CD_E_PRM){

 "Describe error processing"; /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* Issued in mode other than initialization mode */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 89

CanChGetMode

[General]

This function is used to acquire the specified channel's operation mode and power-saving mode statuses.

[C language code format]

CD_ER CanChGetMode(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function is used to acquire the specified channel's operation mode and power-saving mode status and return

it as the return value.

[Return value]

Error Code Value Meaning

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

− When MSB = 0 See Description of bits when MSB = 0

• Description of bits when MSB = 0

Bit Position Description

Bits 2 to 0 Operation mode status (OPMODE)

000: Initialization mode

001: Normal operation mode

010: Normal operation mode with auto block transfer functionNote

011: Receive-only mode

100: Single-shot mode

101: Self-test modeNote

Bits 4, 3 Power-saving mode status (PSMODE)

00: Power-saving mode not selected

01: CAN sleep mode

11: CAN stop mode

MSB to bit 5 Fixed to zero

Note aFCAN controller only.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 90

[Use example]
CD_ER ret;

CD_ER pmmode;

CD_ER psmode;

ret = CanChGetMode(CD_CAN1);

if (ret == CD_E_PRM){

 "Describe error processing" /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{

 pmmode = ret & 0x07;

 switch (pmmode){

 case 0:

 "Processing in initialization mode"; /* Currently set to initialization mode */

 break;

 case 1:

 "Processing in normal operation mode"; /* Currently set to normal operation mode */

 break;

 case 2:

 "Processing in ABT mode"; /* Currently set to ABT mode */

 break;

 case 3:

 "Processing in receive-only mode"; /* Currently set to receive-only mode */

 break;

 case 4:

 "Processing in single-shot mode"; /* Currently set to single-shot mode */

 break;

 case 5:

 "Processing in self-test mode"; /* Currently set to self-test mode */

 break;

 }

 psmode = (ret >> 3) & 0x02;

 switch (psmode){

 case 0:

 "Processing in mode other than power-saving mode";

 break;

 case 1:

 "Processing in CAN sleep mode"; /* Currently in CAN sleep mode */

 break;

 case 2:

 "Processing in CAN stop mode"; /* Currently in CAN stop mode */

 break;

 }

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 91

CanChSetInitMode

[General]

This function is used to set the specified channel to the initialization mode.

[C language code format]

CD_ER CanChSetInitMode(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This driver function is used to set the specified channel in a CAN module, which is in an operating mode other

than the initialization mode, to the initialization mode.

The operating mode does not change if this function is issued when the CAN module has already been in the

initialization mode.

After calling this function, be sure to confirm that the initialization mode is entered, using CanChGetMode.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CD_E_STS CD_E_FLG + 0x2 The initialization mode has been entered

[Use example]
CD_ER ret;

ret = CanChSetInitMode(CD_CAN1);

if (ret == CD_E_OK){

 ret = CanChGetMode(CD_CAN1);

 if (ret == 0x00){

 "Describe normal end processing";

 }

 else{ /* The initialization mode has not been entered */

 }

}

else if (ret == CD_E_PRM){

 "Describe error processing"; /* Specified channel number is invalid */

 /* Parameter error occurred when using driver with parameter check */

}

else{ /* (ret == CD_E_STS) */

 "Describe error processing"; /* The initialization mode has been entered */

}

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 92

5.8.3 Buffer data acquisition

The driver functions listed in Table 5-10 are described below.

Table 5-10. Buffer Data Acquisition

Function Description

CanMsgGetDatDlc Acquires data and data length

CanMsgGetIdDatDlc Acquires CAN-ID, data, and data length

CanMsgGetDatDlc_DSx Acquires data and data lengthNote (x = 1 to 8)

CanMsgGetIdDatDlc_DSx Acquires CAN-ID, data, and data lengthNote (x = 1 to 8)

Note Functions dedicated to 78K0-DCAN and with improved performance.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 93

CanMsgGetDatDlc

[General]

This function is used to acquire the data and data length from the specified channel's message buffer.

[C language code format]

CD_ER CanMsgGetDatDlc(CD_CHNO chno, CD_BUFNO bufno,

 CD_DAT* p_data, CD_DLC* p_dlc);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

O CD_DAT* p_data Start address of area for storing message data

O CD_DLC* p_dlc Start address of area for storing message length

[Description]

This function is used to acquire the following data from the specified message buffer.

• Data (acquires DLC byte count only: maximum is 8 bytes)

• DLC value (acquired value)

This function first checks for new data. If there is no new data, there is no data acquisition operation. The data

update bit (DN bit) is cleared when data is acquired.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_STS CD_E_FLG + 0x2 Acquiring data has failed

CD_E_NOMSG CD_E_FLG + 0x4 No new data

[Cautions]

When the DCAN controller is used, only the receive buffer can obtain data by using this function.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 94

[Use example]
/* The following are set in advance by the configurator.

 · One message buffer is assigned for reception.

 (Buffer name is defined as Ch1_Msg01, using channel 1's message buffer 1.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · The CAN-ID to be received is set as any value.

 · Mask setting (when required)*/

CD_DLC canRdlc;

CD_DAT canRdata[8];

CD_DAT tempdata[8];

CD_ER ret;

int i;

ret = CanMsgGetDatDlc(CD_CAN1,Ch1_Msg01,canRdata,&canRdlc);

if (ret == CD_E_OK){

 for (i=0; i<canRdlc ; i++){

 tempdata[i] = canRdata[i]; /* DLC-byte data is moved to a different buffer */

 }

}

else if (ret == CD_E_NOMSG){

 "Processing when message is not received"; /* No new messages */

}

else{

 "Processing when parameter error occurs"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 95

CanMsgGetIdDatDlc

[General]

This function is used to acquire the CAN-ID, data, and data length from the specified channel's message buffer.

[C language code format]

CD_ER CanMsgGetIdDatDlc(CD_CHNO chno, CD_BUFNO bufno,

 CD_ID* p_canid, CD_DAT* p_data, CD_DLC* p_dlc);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

O CD_ID* p_canid Start address of area for storing CAN-ID

O CD_DAT* p_data Start address of area for storing message data

O CD_DLC* p_dlc Start address of area for storing message length

[Description]

This function is used to acquire the following data from the specified message buffer.

• CAN-ID (set using CAN software driver format)

• Data (acquire DLC byte count only: maximum is 8 bytes)

• DLC value (acquired value)

Since the CAN-ID is set using the CAN software driver format, use a CAN-ID conversion macro to reference the

CAN-ID.

This function first checks for new data. If there is no new data, there is no data acquisition operation. The data

update bit (DN bit) is cleared when data is acquired.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_STS CD_E_FLG + 0x2 Acquiring data has failed

CD_E_NOMSG CD_E_FLG + 0x4 No new data

[Cautions]

When the DCAN controller is used, only the receive buffer can obtain data by using this function.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 96

[Use example]
/* The following are set in advance by the configurator.

 · One message buffer is assigned for reception.

 (Buffer name is defined as Ch1_Msg01, using channel 1's message buffer 1.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · The CAN-ID to be received is set as any value.

 · Mask setting (when required)

*/

CD_ID canRid;

CD_DLC canRdlc;

CD_DAT canRdata[8];

CD_DAT tempdata[8];

CD_ER ret;

int i;

ret = CanMsgGetIdDatDlc(CD_CAN1,Ch1_Msg01,&canRid,canRdata,&canRdlc);

if (ret == CD_E_OK){

 CD_GET_STD_ID(canRid); /* Acquired CAN-ID is converted to the standard IDformat. */

 for (i=0; i<canRdlc ; i++){

 tempdata[i] = canRdata[i]; /* DLC-byte data is moved to a different buffer */

 }

}

else if (ret == CD_E_NOMSG){

 "Processing when message is not received"; /* No new messages */

}

else{

 "Processing when error occurs"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* after data acquisition failure (ret == CD_E_STS) or */

 /* while using driver with parameter check function */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 97

CanMsgGetDatDlc_DSx (x = 1 to 8)

[General]

Function dedicated to the 78K0-DCAN and with improved performance.

This function is used to obtain a data length from the message buffer of a specified channel and store it in a

global variable.

[C language code format]

CD_ER CanMsgGetDatDlc_DS1(); (Obtained data size = 1)

CD_ER CanMsgGetDatDlc_DS2(); (Obtained data size = 2)

CD_ER CanMsgGetDatDlc_DS3(); (Obtained data size = 3)

CD_ER CanMsgGetDatDlc_DS4(); (Obtained data size = 4)

CD_ER CanMsgGetDatDlc_DS5(); (Obtained data size = 5)

CD_ER CanMsgGetDatDlc_DS6(); (Obtained data size = 6)

CD_ER CanMsgGetDatDlc_DS7(); (Obtained data size = 7)

CD_ER CanMsgGetDatDlc_DS8(); (Obtained data size = 8)

[Parameters] None

[Global variables]

I/O Global Variable Name Description

I unsigned char* u1gp_rxbuf_addr Address of the DSTAT register of the target receive buffer.

The result of search by CanChSrcRxInfo MSxx() can be used as

is.

See to [Use example].

O CD_DAT u1g_rxdata Global variable in which the message data that has been

obtained is to be stored

(The data size is set in accordance with the function to be used.)

O CD_DLC u1g_rxdlc Global function in which DLC that has been obtained is to be

stored

[Description]

This driver function obtains the following data from a specified message buffer and stores the data in a global

variable.

• Data (Data size to be obtained is fixed depending on the function.)

• DLC value (Value that has been obtained as is)

This function first checks whether there is new data. It obtains no data if there is no new data.

When the function has obtained data, it also clears the data updating (DN) bit.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 98

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 Acquiring data has failed

CD_E_NOMSG CD_E_FLG + 0x4 No new data

[Cautions]

This function can obtain data only from the receive buffer.

[Use example]
/* The following are set in advance by the configurator.

 Message buffers 1 to 16 are assigned for reception.

 (Buffer name is defined as Ch1_Msgxx, using channel 1's message buffer xx.)

 Standard ID format is set as the assigned message buffer's frame format.

 The CAN-ID to be received is set as any value.

 Mask setting (when required)

Define the following global variable.

 unsigned char* u1gp_rxbuf_addr;

 CD_DAT u1g_rxdata[8];

 CD_DLC u1g_rxdlc;

*/

CD_DAT tempdata[8];

CD_ER ret1;

CD_ER ret2;

int i;

ret1 = CanChSrcRxInfo_MS01(); /* Searches receiving buffer. */

 /* Search result is stored in global variable u1gp_rxbuf_addr. */

if(!(ret1 & CD_E_FLG)) {

 ret2 = CanMsgGetDatDlc_DS8(); /* Acquires 8 bytes of data from buffer specified by u1gp_rxbuf_addr */

 if (ret2 == CD_E_OK){

 for (i=0; i<u1g_rxdlc ; i++){

 tempdata[i] = u1g_rxdata[i]; /* DLC-byte data is moved to a different buffer */

 }

 }

 else if (ret2 == CD_E_NOMSG){

 "Processing when message is not received"; /* No new messages */

 }

 else{

 "Processing in case of parameter error"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function. */

 }

}

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 99

CanMsgGetIdDatDlc_DSx (x = 1 to 8)

[General]

Function dedicated to the 78K0-DCAN and with improved performance.

This function is used to obtain CAN-ID, data, and data length from the message buffer of a specified channel and

store them in a global variable.

[C language code format]

CD_ER CanMsgGetIdDatDlc_DS1(); (Obtained data size = 1)

CD_ER CanMsgGetIdDatDlc_DS2(); (Obtained data size = 2)

CD_ER CanMsgGetIdDatDlc_DS3(); (Obtained data size = 3)

CD_ER CanMsgGetIdDatDlc_DS4(); (Obtained data size = 4)

CD_ER CanMsgGetIdDatDlc_DS5(); (Obtained data size = 5)

CD_ER CanMsgGetIdDatDlc_DS6(); (Obtained data size = 6)

CD_ER CanMsgGetIdDatDlc_DS7(); (Obtained data size = 7)

CD_ER CanMsgGetIdDatDlc_DS8(); (Obtained data size = 8)

[Parameters] None

[Global variables]

I/O Global Variable Name Description

I unsigned char* u1gp_rxbuf_addr Address of the DSTAT register of the target receive buffer.

The result of search by CanChSrcRxInfo_MSxx() can be used

as is.

See [Use example].

O unsigned char u1g_rxid[5] Global variable in which CAN-ID that has been obtained is to be

stored

O CD_DAT u1g_rxdata Global variable in which the message data that has been

obtained is to be stored

(The data size is set in accordance with the function to be used)

O CD_DLC u1g_rxdlc Global function in which DLC that has been obtained is to be

stored

[Description]

This driver function obtains the following data from a specified message buffer and stores the data in a global

variable.

• CAN-ID (set in register image)

• Data (Data size to be obtained is fixed depending on the function.)

• DLC value (Value that has been obtained as is) However, the most significant bit indicates the format of CAN-ID.

0: Standard CAN-ID, 1: Extended CAN-ID)

This function first checks whether there is new data. It obtains no data if there is no new data.

When the function has obtained data, it also clears the data updating (DN) bit.

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 100

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 Acquiring data has failed

CD_E_NOMSG CD_E_FLG + 0x4 No new data

[Cautions]

This function can obtain data only from the receive buffer.

[Use example]
/* The following are set in advance by the configurator.

 · Message buffers 0 to 15 are assigned for reception.

 (Buffer name is defined as Ch1_Msgxx, using channel 1's message buffer xx.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · The CAN-ID to be received is set as any value.

 · Mask setting (when required)

Define the following global variable.

 unsigned char * u1gp_rxbuf_addr;

 unsigned char u1g_rxid[5]

 CD_DAT u1g_rxdata[8];

 CD_DLC u1g_rxdlc;

*/

unsigned char tempid[5];

CD_DAT tempdata[8];

CD_ER ret1;

CD_ER ret2;

int i;

ret1 = CanChSrcRxInfo_MS01(); /* Searches receiving buffer. */

 /* Search result is stored in global variable u1gp_rxbuf_addr. */

if(!(ret1 & CD_E_FLG)) {

 ret2 = CanMsgGetIdDatDlc_DS8(); /* Acquires 8 bytes of data from buffer specified by u1gp_rxbuf_addr. */

 if (ret2 == CD_E_OK){

 for (i=0; i<u1g_rxdlc ; i++){

 tempdata[i] = u1g_rxdata[i]; /* DLC-byte data is moved to a different buffer */

 }

 for (i=0; i<5 ; i++){

 tempid[i] = u1g_rxid[i]; /* CAN-ID is moved to a different buffer */

 }

 }

 else if (ret2 == CD_E_NOMSG){

 “Processing when message is not received”; /* No new messages */

 }

 else{

 "Processing in case of parameter error"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function. */

 }

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 101

5.8.4 Buffer data setting

The functions listed in Table 5-11 are described below.

Table 5-11. Buffer Data Setting

Function Description

CanMsgGetDatDlc Sets data

CanMsgGetIdDatDlc Sets CAN-ID, data, and data length

CanMsgSetDat_DSx Sets dataNote (x = 1 to 8)

CanMsgSetIdDatDlc_DSx Sets CAN-ID, data, and data lengthNote (x = 1 to 8)

Note Functions dedicated to 78K0-DCAN and with improved performance

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 102

CanMsgSetDat

[General]

This function is used to set data to the specified channel's message buffer.

[C language code format]

CD_ER CanMsgSetDat(CD_CHNO chno, CD_BUFNO bufno, CD_DAT* p_data);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

I CD_DAT* p_data Start address of area for storing message data

[Description]

This function is used to set the following data to the specified message buffer.

• Data (data length: current value set to the buffer (DLC))

Values set to the message buffer (initial values set upon configuration when initialization is complete) are used to

set the transmit CAN-ID and message length.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_STS CD_E_FLG + 0x2 Data setting failed

[Cautions]

If a value has been changed from the initial value set during CAN-ID and DLC configuration by the

CanMsgSetIdDatDlc function, the modified value will be transmitted thereafter by the CanMsgSetDat function as

well.

With the DCAN controller, this function can set data for only the transmit buffer.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 103

[Use example]
/* The following are set in advance by the configurator.

 One message buffer is assigned for reception.

 (Buffer name is defined as Ch1_Msg00, using channel 1's message buffer 0.)

 The DLC is set to 8 bytes

 The CAN-ID to be transmitted is set.

 Standard ID format is set as the assigned message buffer's frame format.

 Data frame is set as the assigned message's frame type

*/

CD_DAT canTdata[8];

CD_ER ret;

canTdata[0] = 0x00; /* Tx data byte1 */

canTdata[1] = 0x11; /* Tx data byte2 */

canTdata[2] = 0x22; /* Tx data byte3 */

canTdata[3] = 0x33; /* Tx data byte4 */

canTdata[4] = 0x44; /* Tx data byte5 */

canTdata[5] = 0x55; /* Tx data byte6 */

canTdata[6] = 0x66; /* Tx data byte7 */

canTdata[7] = 0x77; /* Tx data byte8 */

ret = CanMsgSetDat(CD_CAN1,Ch1_Msg00,canTdata);

 /* Transmit data is set to message buffer */

if(ret == CD_E_OK){

 ret = CanMsgTxReq(CD_CAN1,Ch1_Msg00); /* Message buffer's transmit request bit is set */

 if(ret == CD_E_OK){

 "Processing when transmit request is successful"; /* Transmit request bit is set */

 }

 else{

 "Processing when transmit request failed"; /* Setting of transmit request bit failed */

 }

}

else{

 "Processing when parameter error occurs"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 104

CanMsgSetIdDatDlc

[General]

This function is used to set the CAN-ID, data, and data length to the specified channel's message buffer.

[C language code format]

CD_ER CanMsgSetIdDatDlc(CD_CHNO chno, CD_BUFNO bufno,

 CD_ID canid, CD_DAT* p_data, CD_DLC dlc);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

I CD_ID canid CAN-ID (CAN software driver format)

I CD_DAT* p_data Start address of area for storing message data

I CD_DLC dlc Message length

[Description]

This function is used to set the following data to the specified message buffer.

• CAN-ID (sets using the CAN software driver format)

• Data (sets DLC byte count only: maximum is 8 bytes)

• DLC value (only lower 4 bits are valid)

Since the CAN-ID must be set in the CAN software driver format, use a CAN-ID conversion macro to set it.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_STS CD_E_FLG + 0x2 Data setting failed

[Cautions]

With the DCAN controller, this function can set data for only the transmit buffer.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 105

[Use example]
/* The following are set in advance by the configurator.

 · One message buffer is assigned for reception.

 (Buffer name is defined as Ch1_Msg00, using channel 1's message buffer 0.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · Data frame is set as the assigned message's frame type

*/

CD_ID canTid;

CD_DLC canTdlc;

CD_DAT canTdata[8];

CD_ER ret;

canTdata[0] = 0x00; /* Tx data byte1 */

canTdata[1] = 0x11; /* Tx data byte2 */

canTdata[2] = 0x22; /* Tx data byte3 */

canTdata[3] = 0x33; /* Tx data byte4 */

canTdata[4] = 0x44; /* Tx data byte5 */

canTdata[5] = 0x55; /* Tx data byte6 */

canTdata[6] = 0x66; /* Tx data byte7 */

canTdata[7] = 0x77; /* Tx data byte8 */

canTid = CD_SET_STD_ID(0x100); /* ID with standard ID frame (0x100) is converted into driver format*/

canTdlc = 8; /* DLC is 8 bytes */

ret = CanMsgSetIdDatDlc(CD_CAN1,Ch1_Msg00,canTid,canTdata,canTdlc);

 /* Transmit data is set to message buffer */

if(ret == CD_E_OK){

 ret = CanMsgTxReq(CD_CAN1,Ch1_Msg00); /* Message buffer's transmit requestbit is set */

 if(ret == CD_E_OK){

 "Processing when transmit request is successful"; /* Transmit request bit is set */

 }

 else{

 "Processing when transmit request failed"; /* Setting of transmit request bit failed */

 }

}

else{

 "Processing when data setting fails or parameter error occurs";

 /* Data setting failure (ret == CD_E_STS) or */

 /* parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function */

 }

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 106

CanMsgSetDat_DSx (x = 1 to 8)

[General]

Function dedicated to the 78K0-DCAN and with improved performance.

This function is used to set data specified by a global variable to a specified message buffer.

[C language code format]

CD_ER CanMsgSetDat_DS1(); (Set data size = 1)

CD_ER CanMsgSetDat_DS2(); (Set data size = 2)

CD_ER CanMsgSetDat_DS3(); (Set data size = 3)

CD_ER CanMsgSetDat_DS4(); (Set data size = 4)

CD_ER CanMsgSetDat_DS5(); (Set data size = 5)

CD_ER CanMsgSetDat_DS6(); (Set data size = 6)

CD_ER CanMsgSetDat_DS7(); (Set data size = 7)

CD_ER CanMsgSetDat_DS8(); (Set data size = 8)

[Parameters] None

[Global variables]

I/O Global Variable Name Description

I unsigned char* u1gp_txbuf_addr Address of the TCON register of the target transmit buffer

I CD_DAT u1g_txdata Global variable in which message data to be set is stored

(Data size is set depending on the function to be used.)

[Description]

This driver functions sets the following data to a specified message buffer.

• Data (Data size is set depending on the function to be used.)

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 Setting data has failed

[Cautions]

This function can set data only for the transmit buffer.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 107

[Use example]
/* The following are set in advance by the configurator.

 One message buffer is assigned for transmission.

 (Buffer name is defined as Ch1_Msg00, using channel 1's message buffer 0.)

 DLC is set to 8 bytes.

 CAN-ID to be transmitted is set.

 Standard ID format is set as the assigned message buffer's frame format.

 Data frame is set as the assigned message buffer's frame type.

Define the following global variable.

 unsigned char * u1gp_txbuf_addr;

 CD_DAT u1g_txdata[8];

The following macro is defined. (Address of message buffer to be set)

 #define TXBUFADD_00 (0xf600)

*/

CD_ER ret;

u1gp_txbuf_addr = (unsigned char *)(TXBUFADD_00);

u1g_txdata[0] = 0x00; /* Tx data byte1 */

u1g_txdata[1] = 0x11; /* Tx data byte2 */

u1g_txdata[2] = 0x22; /* Tx data byte3 */

u1g_txdata[3] = 0x33; /* Tx data byte4 */

u1g_txdata[4] = 0x44; /* Tx data byte5 */

u1g_txdata[5] = 0x55; /* Tx data byte6 */

u1g_txdata[6] = 0x66; /* Tx data byte7 */

u1g_txdata[7] = 0x77; /* Tx data byte8 */

ret = CanMsgSetDat_DS8(); /* Sets transmit data to the message buffer */

if(ret == CD_E_OK){

 ret = CanMsgTxReq(CD_CAN1,Ch1_Msg00); /* Sets the transmit request bit of the message buffer */

 if(ret == CD_E_OK){

 “Processing when transmit request is successful”; /* Sets the transmit request bit */

 }

 else{

 “Processing when transmit request has failed”; /* Setting the transmit request has failed. */

 }

}

else{

 “Processing when setting data has failed”; /* Setting data has failed (ret == CD_E_ETS). */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 108

CanMsgSetIdDatDlc_DSx (x = 1 to 8)

[General]

Function dedicated to the 78K0-DCAN and with improved performance.

This function is used to set CAN-ID, data, and data length specified by a global variable to a specified message

buffer.

[C language code format]

CD_ER CanMsgSetIdDatDlc_DS1(); (Set data size = 1)

CD_ER CanMsgSetIdDatDlc_DS2(); (Set data size = 2)

CD_ER CanMsgSetIdDatDlc_DS3(); (Set data size = 3)

CD_ER CanMsgSetIdDatDlc_DS4(); (Set data size = 4)

CD_ER CanMsgSetIdDatDlc_DS5(); (Set data size = 5)

CD_ER CanMsgSetIdDatDlc_DS6(); (Set data size = 6)

CD_ER CanMsgSetIdDatDlc_DS7(); (Set data size = 7)

CD_ER CanMsgSetIdDatDlc_DS8(); (Set data size = 8)

[Parameters] None

[Global variables]

I/O Global Variable Name Description

I unsigned char* u1gp_txbuf_addr Address of the TCON register of the target transmit buffer

I unsigned char u1g_txid[5] Global variable in which CAN-ID to be set is stored

I CD_DAT u1g_txdata Global variable in which message data to be set is stored

(Data size is set depending on the function to be used.)

I CD_DLC u1g_txdlc Global variable in which DLC to be set is stored

[Description]

This driver function sets the following data to the specified message buffer.

• CAN-ID (set in register image)

• Data (Data size is set depending on the function to be used.)

• DLC value (Only the lower 4 bits are valid. The most significant bit indicates the format of CAN-ID.

0: Standard CAN-ID, 1: Extended CAN-ID)

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_STS CD_E_FLG + 0x2 Setting data has failed

CD_E_NOMSG CD_E_FLG + 0x4 No new data

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 109

[Cautions]

This function can set data only for the transmit buffer.

[Use example]
/* The following are set in advance by the configurator.

 · One message buffer is assigned for transmission.

 (Buffer name is defined as Ch1_Msg00, using channel 1's message buffer 0.)

 · DLC, CAN-ID, and frame format can be arbitrarily set.

 · The frame type of the assigned message buffer is set as a data frame

Define the following global variable.

 unsigned char * u1gp_txbuf_addr;

 unsigned char u1g_txid[5];

 CD_DAT u1g_txdata[8];

 CD_DLC u1g_txdlc;

The following macro is defined. (Address of message buffer to be set)

 #define TXBUFADD_00 (0xf600)

*/

CD_ER ret;

u1gp_txbuf_addr = (unsigned char *)(TXBUFADD_00); /* Message buffer address */

u1g_txdata[0] = 0x00; /* Tx data byte1 */

u1g_txdata[1] = 0x11; /* Tx data byte2 */

u1g_txdata[2] = 0x22; /* Tx data byte3 */

u1g_txdata[3] = 0x33; /* Tx data byte4 */

u1g_txdata[4] = 0x44; /* Tx data byte5 */

u1g_txdata[5] = 0x55; /* Tx data byte6 */

u1g_txdata[6] = 0x66; /* Tx data byte7 */

u1g_txdata[7] = 0x77; /* Tx data byte8 */

u1g_txid[0] = 0x00; /* ID byte0 (IDTX0) */

u1g_txid[1] = 0x00; /* ID byte1 (IDTX1) */

u1g_txid[2] = 0x00; /* ID byte2 (IDTX2) */

u1g_txid[3] = 0x00; /* ID byte3 (IDTX3) */

u1g_txid[4] = 0x00; /* ID byte4 (IDTX4) */

u1g_txdlc = 8; /* DLC */

ret = CanMsgSetIdDatDlc_DS8(); /* Sets transmit data to the message buffer */

if(ret == CD_E_OK){

 ret = CanMsgTxReq(CD_CAN1,Ch1_Msg00); /* Sets the transmit request bit of the message buffer */

 if(ret == CD_E_OK){

 “Processing when transmit request is successful”; /* Sets the transmit request bit */

 }

 else{

 “Processing when transmit request has failed”; /* Setting the transmit request has failed */

 }

}

else{

 “Processing when setting data has failed”; /* Setting data has failed (ret == CD_E_ETS) */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 110

5.8.5 Transmit/receive confirmation

The driver functions listed in Table 5-12 are described below.

Table 5-12. Transmit/Receive Confirmation

Function Description

CanMsgTxReq Transmit request (set TRQ bit)

CanMsgGetTxInfo Acquires transmit information (acquires TRQ)

CanChSrcRxInfo Searches receive information (searches DN)

CanChSrcRxInfo_MSxx Searches receive information (searches DN) (xx = 01 to 16)

Note Functions dedicated to 78K0-DCAN and with improved performance

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 111

CanMsgTxReq

[General]

This function is used to set the transmit request bit in the specified channel's message buffer.

[C language code format]

CD_ER CanMsgTxReq(CD_CHNO chno, CD_BUFNO bufno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

[Description]

This function is used to set the transmit request bit in the specified channel's message buffer.

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_STS CD_E_FLG + 0x2 Transmit request bit setting failed

[Use example]

See the description of CanMsgSetIdDatDlc

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 112

CanMsgGetTxInfo

[General]

This function is used to acquire the transmit request bit in the specified channel's message buffer.

[C language code format]

CD_ER CanMsgGetTxInfo(CD_CHNO chno, CD_BUFNO bufno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

[Description]

This function is used to acquire the transmit request bit in the specified channel's message buffer.

[Return value]

Error Code Value Meaning

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_TRUE 1 Transmit request bit has been set

CD_FALSE 0 Transmit request bit has not been set

[Use example]
/* The following are set in advance by the configurator.

 · One message buffer is assigned for reception.

 (Buffer name is defined as Ch1_Msg00, using channel 1's message buffer 0.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · Data frame is set as the assigned message's frame type

*/

CD_ER ret;

ret = CanMsgGetTxInfo(CD_CAN1,Ch1_Msg00);

if (ret == CD_TRUE){

 "Processing when transmit request bit has been set"; /* Unsent data remains */

}

else if (ret == CD_FALSE){

 "Processing when transmit request bit has not been set"; /* No unsent data */

}

else{

 "Processing when parameter error occurs"; /* Parameter error (ret == CD_E_PRM) occurred */

 /* while using driver with parameter check function */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 113

CanChSrcRxInfo

[General]

This function is used to search for the data update bit (DN bit) that has been set to the specified channel.

[C language code format]

CD_ER CanChSrcRxInfo(CD_CHNO chno, CD_BUFNO bufno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I CD_BUFNO bufno Buffer number

[Description]

This function is used to search the transmit request bit (TRQ bit) that has been set to the specified channel.

The search proceeds in ascending order, starting from the specified buffer number in the specified channel, and

continues until the highest buffer number is reached. The first buffer number that is found is returned as the return

value.

[Return value]

Error Code Value Meaning

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

CD_E_NOMSG CD_E_FLG + 0x4 Buffer in specified range with set data update bit (DN bit) was

not found

- When MSB = 0 Buffer number found first

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 114

[Use example]
/* The following are set in advance by the configurator.

 · Message buffers 0 to 15 are assigned for reception.

 (Buffer name is defined as Ch1_Msgxx, using channel 1's message buffer xx.)

 · Standard ID format is set as the assigned message buffer's frame format.

 · The CAN-ID to be received is set as any value.

 · Mask setting (when required)

 */

CD_ER ret;

ret = CanChSrcRxInfo(CD_CAN1,Ch1_Msg00); /* DN bit search starts from buffer number 0 */

if (ret == CD_E_NOMSG){

 "Processing when data update bit has not been set"; /* DN bit was not set */

}

else if (ret == CD_E_PRM){

 "Processing when parameter error occurs"; /* Parameter error occurred when using driver */

 /* with parameter check */

}

else{

 switch (ret){

 case 0:

 "Processing when buffer number 0 has been set";

 break; /* DN bit is set for buffer number 0 */

 case 1:

 "Processing when buffer number 1 has been set";

 break; /* DN bit is set for buffer number 1 */

 case 2:

 "Processing when buffer number 2 has been set";

 break; /* DN bit is set for buffer number 2 */

 case 3:

 break;

 /* */

 }

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 115

CanChSrcRxInfo_MSxx (xx = 01 to 16)

[General]

Function dedicated to the 78K0-DCAN and with improved performance.

This function is used to search a data updating (DN) bit that is set.

[C language code format]

CD_ER CanChSrcRxInfo_MS01(); (Searched receive buffer size = 1)

CD_ER CanChSrcRxInfo_MS02(); (Searched receive buffer size = 2)

CD_ER CanChSrcRxInfo_MS03(); (Searched receive buffer size = 3)

CD_ER CanChSrcRxInfo_MS04(); (Searched receive buffer size = 4)

CD_ER CanChSrcRxInfo_MS05(); (Searched receive buffer size = 5)

CD_ER CanChSrcRxInfo_MS06(); (Searched receive buffer size = 6)

CD_ER CanChSrcRxInfo_MS07(); (Searched receive buffer size = 7)

CD_ER CanChSrcRxInfo_MS08(); (Searched receive buffer size = 8)

CD_ER CanChSrcRxInfo_MS09(); (Searched receive buffer size = 9)

CD_ER CanChSrcRxInfo_MS10(); (Searched receive buffer size = 10)

CD_ER CanChSrcRxInfo_MS11(); (Searched receive buffer size = 11)

CD_ER CanChSrcRxInfo_MS12(); (Searched receive buffer size = 12)

CD_ER CanChSrcRxInfo_MS13(); (Searched receive buffer size = 13)

CD_ER CanChSrcRxInfo_MS14(); (Searched receive buffer size = 14)

CD_ER CanChSrcRxInfo_MS15(); (Searched receive buffer size = 15)

CD_ER CanChSrcRxInfo_MS16(); (Searched receive buffer size = 16)

[Parameters] None

[Global variables]

I/O Global Variable Name Description

O unsigned char* u1gp_rxbuf_addr Global variable in which the address of the DSTAT register of the

receive buffer that has been found first is stored

The result of searching by CanMsgGetDatDlc_DS1() can be

used as is. See [Usage example] of CanMsgGetDatDlc_DSx.

[Description]

This driver function searches a data updating (DN) bit that is set.

The DN bit is always searched starting from receive buffer 0 in the ascending order by the search receive buffer

size that is determined for each function. The address of the DSTAT register of the receive buffer that has been

found first is stored in a global variable.

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 116

[Return value]

Error Code Value Meaning

CD_E_OK 0x0 Buffer with the data updating (DN) bit set has been found in the

searched range.

CD_E_NOMSG CD_E_FLG + 0x4 No buffer with the data updating (DN) bit set has been found in

the searched range.

[Use example]

See CanMsgGetDatDlc_DSx descriptions.

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 117

5.8.6 CAN channel status access

The driver functions listed in Table 5-13 are described below.

Table 5-13. CAN Channel Status Access

Function Description

CanChGetStatus Acquires CAN channel status

CanChClrStatus Clears CAN channel status

CanChGetBusStatus Acquires CAN bus status

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 118

CanChGetStatus

[General]

This function is used to acquire the specified channel's CAN status.

[C language code format]

CD_ER CanChGetStatus(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function is used to acquire the CAN status (wakeup from CAN sleep mode, arbitration lost, CAN protocol

error, CAN error status, etc.) and return it as the return value.

[Return value]

Error Code Value Meaning

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

- When MSB = 0 See Description of bits when MSB = 0

• Description of bits when MSB = 0

Support of Each CAN Controller Bit Position Description

aFCAN FCAN DCAN

Bits 1, 0 Fixed to zero - - -

Bit 2 CAN error status

 (0: No event pending, 1: Event pending)

Supported

Not

supported

Not

supported

Bit 3 CAN protocol error

 (0: No event pending, 1: Event pending)

Supported

Supported

Not

supported

Bit 4 Arbitration lost

 (0: No event pending, 1: Event pending)

Supported Not

supported

Not

supported

Bit 5 Wakeup from CAN sleep mode

 (0: No event pending, 1: Event pending)

Supported

Supported

Supported

Bit 6 CAN overrun error

 (0: No event pending, 1: Event pending)

Not

supported

Supported

Supported

Bit 7 CAN transmission error passive status or bus-off

status

 (0: No event pending, 1: Event pending)

Not

supported

Supported

Not

supported

Bit 8 CAN reception error passive status

 (0: No event pending, 1: Event pending)

Not

supported

Supported

Not

supported

MSB to bit 9 Fixed to zero - - -

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 119

[Use example]
CD_ER ret;

ret = CanChGetStatus(CD_CAN1);

if (ret == CD_E_PRM){

 "Processing when parameter error occurs"; /* Parameter error occurred when using driver */

 /* with parameter check */

}

else{

 if ((ret & 0x04) == 0x04){

 "Processing when CAN error status event has been held pending";

 }

 if ((ret & 0x08) == 0x08){

 "Processing when CAN protocol error event has been held pending ";

 }

 if ((ret & 0x10) == 0x10){

 "Processing when arbitration lost event has been held pending";

 }

 if ((ret & 0x20) == 0x20){

 "Processing when wakeup from CAN sleep mode event has been held pending";

 }

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 120

CanChClrStatus

[General]

This function is used to clear the specified channel's CAN status.

[C language code format]

CD_ER CanChClrStatus(CD_CHNO chno, unsigned char clrdat);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

I unsigned char clrdat Data specified by clear bit setting

[Description]

This function is used to clear the specified channel's CAN status. The CAN status to be cleared is specified by

the clear bit specification data.

Clear bit specification data macro definitions are used for the clear bit specification data. When multiple bits are

cleared by one function call, a vertical line "|" (logical OR operator) is used to combine the targets' macro definitions.

• Macro definitions for clear bit specification data

Support of Each CAN Controller Macro Description

aFCAN FCAN DCAN

CD_ERR_CLR_STS CAN error status clear specification macro Supported Not

supported

Not

supported

CD_ERR_CLR_PRT CAN protocol error status clear specification macro Supported Supported Not

supported

CD_ERR_CLR_ABL Arbitration lost status clear specification macro Supported Not

supported

Not

supported

CD_ERR_CLR_WAK Wakeup from CAN sleep mode status clear specification

macro

Supported Supported Supported

CD_ERR_CLR_OVR CAN overrun error status clear specification macro Not

supported

Supported Supported

CD_ERR_CLR_TXP CAN transmission error passive status or bus-off status

clear specification macro

Not

supported

Supported Not

supported

CD_ERR_CLR_RXP CAN reception error passive status clear specification

macro

Not

supported

Supported Not

supported

[Return value]

Error Code Value Meaning

CD_E_OK CD_E_FLG + 0x0 Normal end

CD_E_PRM CD_E_FLG + 0x1 Specified channel number is invalid

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 121

[Use example]
CD_ER ret;

unsigned char clrdat;

clrdat = CD_ERR_CLR_STS | CD_ERR_CLR_PRT;

ret = CanChClrStatus(CD_CAN1,clrdat); /* Error status and protocol status clear specification */

if (ret == CD_E_OK){

 "Processing upon normal end";

}

else{

 "Processing when parameter error occurs"; /* Parameter error (ret = CD_E_PRM) occurred */

 /* while using driver with parameter check function */

}

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 122

CanChGetBusStatus

[General]

This function is used to acquire the specified channel's CAN bus status.

[C language code format]

CD_ER CanChGetBusStatus(CD_CHNO chno);

[Parameters]

I/O Parameter Description

I CD_CHNO chno Channel number

[Description]

This function is used to acquire the CAN bus status such as the bus-off status and transmit/receive error counter

status of the specified channel and return it as the return value.

[Return value]

Error Code Value Meaning

CD_E_PRM CD_E_FLG + 0x1 Specified channel number or buffer number is invalid

- When MSB = 0 See Description of bits when MSB = 0

• Description of bits when MSB = 0

Bit Position Description

Bits 1, 0 Receive error counter status bit

00: Receive error counter is below warning level (up to 95)

01: Receive error counter is within warning level range (96 to 127)

(Warning level range or error passive range in the case of DCAN controller)

10: Not defined

11: Receive error counter is in error passive range (128 or more)

(Undefined in the case of DCAN controller)

Bits 3, 2 Transmit error counter status bit

00: Transmit error counter is below warning level (up to 95)

01: Transmit error counter is within warning level range (96 to 127)

(Warning level range, error passive range, or bus-off range in the case of DCAN controller)

10: Not defined

11: Transmit error counter is in error passive or bus-off range (128 or more)

(Undefined in the case of DCAN controller)

Bit4 Bus-off status bit

0: Not bus-off status (transmit error counter is less than 256)

1: Bus-off status (transmit error counter is at least 256)

MSB to bit5 Fixed to 0

<R>

<R>

<R>

<R>

CHAPTER 5 DRIVER FUNCTIONS

User’s Manual U16844EJ3V0UM 123

[Use example]
CD_ER ret;

CD_ER rx_err;

CD_ER tx_err;

ret = CanChGetBusStatus(CD_CAN1);

if (ret == CD_E_PRM){

 "Processing when parameter error occurs"; /* Parameter error occurred */

 /* when using driver with parameter check */

}

else{

 rx_err = ret & 0x03;

 switch (rx_err){

 case 0:

 "Receive error counter is below warning level (up to 95)";

 break;

 case 1:

 "Receive error counter is within warning level range (96 to 127)";

 break;

 case 3:

 "Receive error counter is in error passive range (128 or more)";

 break;

 }

 tx_err = (ret >> 2) & 0x03;

 switch (rx_err){

 case 0:

 "Transmit error counter is below warning level (up to 95)";

 break;

 case 1:

 "Transmit error counter is within warning level range (96 to 127)";

 break;

 case 3:

 "Transmit error counter is in error passive range (128 or more)";

 break;

 }

 if ((ret & 0x10) == 0x10){

 "Bus-off status (transmit error counter is at least 256)";

 }

 else{

 "Not bus-off status";

 }

}

<R>

<R>

<R>

<R>

User’s Manual U16844EJ3V0UM 124

CHAPTER 6 SAMPLE PROGRAM

6.1 V850ES/FJ2

This chapter explains the V850ES/FJ2 sample program.

6.1.1 Operation environment

Taget device: μPD70F3239 (V850ES/FJ2)

Taget board: CEB-V850ES/FJ2-SJ2 (made by COSMO)

6.1.2 Overview of operation

• When device initialization processing ends normally, the 7seg-LED display changes from "0" to "1".

• Receive data is detected upon an interrupt.

• Data is transmitted in the cycles generated by timer M.

• The first byte of the receive data is displayed in the 8bit-LED each time data is received.

• Transmit data varies per transmission.

First time : 8-byte data consisting of 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, and 0x07

Second time : 8-byte data consisting of 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, and 0x0f

Third time : 8-byte data consisting of 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, and 0x17
:
:
:

<R>

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 125

6.1.3 Items preset by configurator

The configurator uses the following setting information to generate setting files.

• Name of generated file

 Information file: config.c

 Header file: config.h

Device selection : Device Name uPD70F3239(V850/FJ2)

 : CAN Clock 20MHz

 : CAN register area 0x03FEC000

 : Channel Select Channel 1 only

Baud rate setting : Can module system clock 20MHz

 : Baud rate 500Kbps

 : Data bit setting

 Prescaler 2

 DBT 20

 SPT 15

 Sample point 75

 SJW 2

Mask Setting : None

Buffer Setting(Tx) : Transmit message buffer

 Buffer name TxData_00

 Buffer No 00

 CAN ID 100

 ID Type Std

 DLC 8

 Interrupt Disable

 Flame Type Data

 (Rx) : Receive message buffer

 Buffer name RxData_00

 Buffer No 01

 Mask None

 CAN ID 200

 ID Type Std

 Interrupt Enable

 Flame Type Data

 If DN-bit=1 Overwite

Other setting : Default setting

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 126

6.1.4 Sample program (for NEC Electronics tool)

Header file: sample.h

/*

 * #include

 */

#include <candrv.h> /* Header file for CAN software driver */

/* Wait macro */

#define WAIT(val) { \

 \

 unsigned int ctr ; \

 \

 for(ctr = (unsigned int)(0) ; ctr < val ; ctr++) ; \

 \

 }

/* Display wait */

#define WAIT_DISP ((unsigned int)(2000000))

/* 8bit LED port info. */

#define OUT_LED_7_2 (P6H)

#define OUT_LED_1_0 (PCT)

/* LED mask info */

#define MSK_LED_7_2 ((unsigned char)(0x03))

#define MSK_LED_1_0 ((unsigned char)(0xf3))

/* 7seg LED port info. */

#define SFR_LED0_L (PCD)

#define SFR_LED0_H (PCS)

/* individual segments (0:on, 1:off) */

#define SEG7_A ((unsigned char)(~0x01))

#define SEG7_B ((unsigned char)(~0x02))

#define SEG7_C ((unsigned char)(~0x04))

#define SEG7_D ((unsigned char)(~0x08))

#define SEG7_E ((unsigned char)(~0x10))

#define SEG7_F ((unsigned char)(~0x20))

#define SEG7_G ((unsigned char)(~0x40))

#define SEG7_DP ((unsigned char)(~0x80))

/* all segments ON and OFF */

#define LED_ON ((unsigned char)(0x00))

#define LED_OFF ((unsigned char)(0xff))

/* pattern */

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 127

#define LED_PAT_0 (SEG7_A&SEG7_B&SEG7_C&SEG7_D&SEG7_E&SEG7_F)

#define LED_PAT_1 (SEG7_B&SEG7_C)

#define LED_PAT_2 (SEG7_A&SEG7_B& SEG7_D&SEG7_E& SEG7_G)

#define LED_PAT_3 (SEG7_A&SEG7_B&SEG7_C&SEG7_D& SEG7_G)

#define LED_PAT_4 (SEG7_B&SEG7_C& SEG7_F&SEG7_G)

#define LED_PAT_5 (SEG7_A& SEG7_C&SEG7_D& SEG7_F&SEG7_G)

#define LED_PAT_6 (SEG7_A& SEG7_C&SEG7_D&SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_7 (SEG7_A&SEG7_B&SEG7_C& SEG7_F)

#define LED_PAT_8 (SEG7_A&SEG7_B&SEG7_C&SEG7_D&SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_9 (SEG7_A&SEG7_B&SEG7_C&SEG7_D& SEG7_F&SEG7_G)

#define LED_PAT_A (SEG7_A&SEG7_B&SEG7_C& SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_B (SEG7_C&SEG7_D&SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_C (SEG7_A& SEG7_D&SEG7_E&SEG7_F)

#define LED_PAT_D (SEG7_B&SEG7_C&SEG7_D&SEG7_E& SEG7_G)

#define LED_PAT_E (SEG7_A& SEG7_D&SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_F (SEG7_A& SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_H (SEG7_B&SEG7_C& SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_G (SEG7_A&SEG7_B& SEG7_D&SEG7_E&SEG7_F)

#define LED_PAT_J (SEG7_B&SEG7_C&SEG7_D)

#define LED_PAT_L (SEG7_D&SEG7_E&SEG7_F)

#define LED_PAT_N (SEG7_C& SEG7_E& SEG7_G)

#define LED_PAT_O (SEG7_C&SEG7_D&SEG7_E& SEG7_G)

#define LED_PAT_P (SEG7_A&SEG7_B& SEG7_E&SEG7_F&SEG7_G)

#define LED_PAT_Q (SEG7_A&SEG7_B&SEG7_C& SEG7_F&SEG7_G)

#define LED_PAT_R (SEG7_E& SEG7_G)

#define LED_PAT_U (SEG7_B&SEG7_C&SEG7_D&SEG7_E&SEG7_F)

Source file: sample.c

/*

 * #include

 */

#include "sample.h" /* Header file for can sample program */

#include "config.h" /* Configuration file */

/*

 * #pragma

 */

#pragma ioreg

#pragma interrupt INTTP0CC0 v0i_candrv_tx /* Set interrupt vector address of Timer-P */

#pragma interrupt INTC0REC v0i_candrv_rx /* Set interrupt vector address of CAN0 receive */

/*

 * Prototype declaration

 */

 void main(void) ;

static void v0s_candrv_init(void) ;

static void v0i_candrv_tx(void) ;

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 128

static void v0i_candrv_rx(void) ;

static void v0s_start(void) ;

static void v0s_ledout(unsigned char) ;

static void v0s_7segout(unsigned char) ;

static void v0s_error(void);

/*

 * Main function

 */

void

main(void)

{

 v0s_start() ; /* Initialize sample program */

 v0s_7segout(LED_PAT_0) ; /* Output 7seg-LED */

 v0s_candrv_init() ; /* Initialize CAN */

 TP0CE = 1 ; /* Start TMP0 */

 while(1){ /* Main loop */

 v0s_7segout(LED_PAT_1) ; /* Output 7seg-LED */

 }

}

/*

 * CAN initialize operation

 * (CAN software driver)

 */

static

void

v0s_candrv_init(void)

{

 CD_ER u4t_ret ;

 u4t_ret = CanChEnable(CD_CAN1) ; /* Enable CAN1 */

 if(u4t_ret != CD_E_OK){

 v0s_error() ;

 }

 u4t_ret = CanChInit(CD_CAN1) ; /* Initialize CAN1 */

 if(u4t_ret != CD_E_OK){

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 129

 v0s_error() ;

 }

 u4t_ret = CanChSetNrmMode(CD_CAN1) ; /* Set normal mode CAN1 */

 if(u4t_ret != CD_E_OK){

 v0s_error() ;

 }

 return ;

}

/*

 * CAN transmit interrupt operation

 * (CAN software driver)

 */

__interrupt

void

v0i_candrv_tx(void)

{

 CD_ER u4t_ret ;

 CD_DAT u1t_TxDatabuf[8] ;

static unsigned char u1t_txdata = (unsigned char)(0x00) ;

 u4t_ret = CanMsgGetTxInfo(CD_CAN1, TxData_00) ; /* Check TRQ bit */

 if(u4t_ret == CD_TRUE){

 return ;

 }

 { /* Set Tx data */

 signed int s4t_ctr;

 for(s4t_ctr = (signed int)(0) ; s4t_ctr < (signed int)(8) ; s4t_ctr++){

 u1t_TxDatabuf[s4t_ctr] = u1t_txdata++ ;

 }

 }

 /* Set Tx message */

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 130

 u4t_ret = CanMsgSetDat(CD_CAN1, TxData_00, &u1t_TxDatabuf[0]) ;

 if(u4t_ret != CD_E_OK){

 v0s_error() ;

 }

 u4t_ret = CanMsgTxReq(CD_CAN1, TxData_00) ; /* Set Tx request */

 if(u4t_ret != CD_E_OK){

 v0s_error() ;

 }

 return ;

}

/*

 * CAN receive interrupt operation

 * (CAN software driver)

 */

__interrupt

void

v0i_candrv_rx(void)

{

 CD_ER u4t_ret ;

 CD_DAT u1t_RxDatabuf[8] ;

 CD_DLC s1t_RxDlc ;

 u4t_ret = CanChSrcRxInfo(CD_CAN1, RxData_00) ; /* Search Rx message */

 if((u4t_ret & CD_E_FLG) == (unsigned int)(0x00000000)){

 CD_BUFNO u1t_bufno ;

 u1t_bufno = u4t_ret;

 /* Get Rx message */

 u4t_ret = CanMsgGetDatDlc(CD_CAN1, u1t_bufno, &u1t_RxDatabuf[0], &s1t_RxDlc) ;

 if(u4t_ret != CD_E_OK){

 v0s_error() ;

 }

 v0s_ledout(u1t_RxDatabuf[0]) ; /* Display Rx message */

 }

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 131

 return ;

}

/*

 * Device initialization function

 */

static

void

v0s_start(void)

{

extern signed int _rcopy(unsigned long *, signed long) ;

extern unsigned long _S_romp;

 VSWC = (unsigned char)(0x01) ; /* System clock = 20MHz */

 RCM = (unsigned char)(0x01) ; /* Stop ring-OSC */

 WDTM2 = (unsigned char)(0x00) ; /* Stop WDT2 */

 BPC = (unsigned short)(0x8ffb); /* Set programmable peripheral I/O area */

 (void)_rcopy(&_S_romp, (signed long)(-1)) ; /* Copy ".data" section in ROM to RAM */

 v0s_7segout(LED_OFF) ; /* clear 7seg-LED */

 v0s_ledout((unsigned char)(0x00)) ; /* clear 8bit-LED */

 PMCD = (unsigned char)(0xf0) ; /* Port CD (7seg-LED) */

 PMCCS = (unsigned char)(0x00) ; /* Port CS (7seg-LED) */

 PMCS = (unsigned char)(0x00) ;

 PMCCT = (unsigned char)(0x00) ; /* Port CT (8bit-LED) */

 PMCT = (unsigned char)(0x00) ;

 PMC6H = (unsigned char)(0x00) ; /* Port 6H (8,1bit-LED) */

 PM6H = (unsigned char)(0x00) ;

 /* Port setting for CAN1 */

 PFC3L &= (unsigned char)(0xe7) ; /* Clear PFC33,34 */

 PFCE3L |= (unsigned char)(0x18) ; /* Set PFCE33,34 */

 PMC3L |= (unsigned short)(0x00d8) ; /* Set PMC37,36,34,33 */

 /* Setup Timer P */

 TP0CE = 0 ; /* Stop TMP0 */

 TP0CTL0 = (unsigned char)(0x07) ;

 TP0CTL1 = (unsigned char)(0x00) ;

 TP0IOC0 = (unsigned char)(0x00) ;

 TP0IOC1 = (unsigned char)(0x00) ;

 TP0IOC2 = (unsigned char)(0x00) ;

 TP0OPT0 = (unsigned char)(0x00) ;

 TP0CCR0 = (unsigned short)(0xffff) ; /* TMP0 : 419.424(msec) */

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 132

 /* = (1 / (20MHz / 128) * 65535 */

 SELCNT0 = (unsigned char)(0x00) ;

 SELCNT1 = (unsigned char)(0x00) ;

 __EI() ; /* Enable global interrupt */

 C0RECMK = 0 ; /* Enable receive complete interrupt */

 TP0CCMK0 = 0 ; /* Enable Timer-P interrupt */

}

/*

 * 8bit-LED port output function

 */

static

void

v0s_ledout(/* 8bit-LED output */

 unsigned char u1t_dat

)

{

 OUT_LED_7_2 = ((~u1t_dat) | MSK_LED_7_2) ; /* 8bit-LED : bit7-bit2 */

 OUT_LED_1_0 = (((~u1t_dat) << 2) | MSK_LED_1_0) ; /* 8bit-LED : bit1-bit0 */

 return ;

}

/*

 * 7seg-LED port output function

 */

static

void

v0s_7segout(/* 7seg-LED output */

 unsigned char u1t_pat

)

{

 /* 7seg-LED : a - d */

 SFR_LED0_L = ((unsigned char)(0xf0) | u1t_pat & (unsigned char)(0x0f)) ;

 /* 7seg-LED : e - dot */

 SFR_LED0_H = ((unsigned char)(0x0f) | u1t_pat & (unsigned char)(0xf0)) ;

 return ;

}

/*

 * Error function

CHAPTER 6 SAMPLE PROGRAM

User’s Manual U16844EJ3V0UM 133

 */

static

void

v0s_error(void) /* Error message output */

{

 while(1){

 v0s_7segout(LED_PAT_E) ; /* Output 7seg-LED "E" */

 WAIT(WAIT_DISP) ;

 v0s_7segout(LED_PAT_R) ; /* Output 7seg-LED "R" */

 WAIT(WAIT_DISP) ;

 v0s_7segout(LED_PAT_R) ; /* Output 7seg-LED "R" */

 WAIT(WAIT_DISP) ;

 v0s_7segout(LED_PAT_O) ; /* Output 7seg-LED "O" */

 WAIT(WAIT_DISP) ;

 v0s_7segout(LED_PAT_R) ; /* Output 7seg-LED "R" */

 WAIT(WAIT_DISP) ;

 v0s_7segout(LED_OFF) ; /* Output 7seg-LED " " */

 WAIT(WAIT_DISP) ;

 }

}

User’s Manual U16844EJ3V0UM 134

APPENDIX REVISION HISTORY

The mark <R> shows major revised points.

The revised points can be easily searched by copying an “<R>” in the PDF file and specifying it in the “Fine what:” field.

APP.1 Main Revisions in this Edition

(1/2)

Page Description

p.11 Modification of description to 1.3 Types of CAN Software Drivers

pp.12, 13 Modification of description to 1.4 Execution Environment

p.14 Modification of description to 1.5 Development Environment

p.15 Modification of Table 2-1. Provision of CAN Software Drivers

Modification of description to 2.2.2 Media setting

Deletion of 2.2.3 Installation of CAN software driver

p.16 Modification of Figure 2-1. Directory Structure for CAN Software Drivers, and deletion of Remark

p.17 Modification of description to 2.3.3 Sample programs

Modification of Figure 2-2. Directory Structure of Sample Programs

p.25 Modification of Figure 4-1. Main Screen

p.26 Modification of description to 4.4.1 Device selection

p.27 Modification of Figure 4-2. Device Selection Menu Screen

p.29 Modification of Figure 4-3. Baud Rate Setting Screen (V850-aFCAN, V850-DCAN, 78K0-aFCAN)

p.31 Modification of Figure 4-4. Baud Rate Setting Screen (V850-FCAN)

p.33 Modification of Figure 4-5. Baud Rate Setting Screen (78K0-DCAN)

p.60 Modification of Figure 4-21. Output Options Setting Screen

p.61 Modification of Figure 4-22. Code Generation Startup Screen

p.62 Modification of Figure 4-23. Screen for Saving and Opening Project Files

pp.63 to 65 Modification of Table 4-1. Error Code List

p.66 Modification of Table 4-2. Warning Code List

p.68 Modification of 5.1.1 Initialization and setting (6 types)

Modification of 5.1.2 Operation modes (3 types)

p.74 Modification of Table 5-6. Single-Channel Specification CAN Software Driver Functions

p.78 Modification of Table 5-8. Initialization and Setting

p.79 5.8.1 Initialization and setting

CanChEnable

Deletion of Note in [General]

Modification of Note 1 and deletion of Note 2 in [Description]

p.85 5.8.1 Initialization and setting

Addition of CanChShutdown

p.86 5.8.1 Initialization and setting

Addition of CanAllShutdown

p.87 Modification of Table 5-9. Operation Modes

p.91 5.8.2 Operation modes

Addition of Note in the CanChSetInitMode

p.98 5.8.3 Buffer data acquisition

Modification of [Use example] in the CanMsgGetDatDlc_DSx

APPENDIX REVISION HISTORY

User’s Manual U16844EJ3V0UM 135

(2/2)

Page Description

p.99 5.8.3 Buffer data acquisition

Modification of [Global variables] in the CanMsgGetIdDatDlc_DSx

p.115 5.8.5 Transmit/receive confirmation

Modification of [Global variables] in the CanChSrcRxInfo_MSxx

p.118 5.8.6 CAN channel status access

Modification of • Description of bits when MSB = 0 in the CanChGetStatus

pp.122, 123 5.8.6 CAN channel status access

Modification of • Description of bits when MSB = 0, and [Use example] in the CanGetBusStatus

p.124 Modification of CHAPTER 6 SAMPLE PROGRAM

APPENDIX REVISION HISTORY

User’s Manual U16844EJ3V0UM 136

APP.2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

(1/2)

Edition Description Chapter

Addition of V850/SF1, V850/DB1, μPD780824B(A), 780826B(A), 780828B(A), 78F0828B,

78F0876 for target device.

Modification of driver library for driver source file.

Modification of Documents Related to Devices in INTRODUCTION

Modification of Documents Related to Development Tools in INTRODUCTION

Throughout

Modification of 1. 3 Types of CAN Software Drivers

Modification of 1. 4 (3) (a) Memory capacity of total functions

Modification of 1. 4 (3) (b) Memory capacity of functions used in sample program

CHAPTER 1

PRODUCT OVERVIEW

Modification of Figure 2-1. Directory Structure for CAN Software Drivers

Modification of Figure 2-2. Directory Structure of Sample Programs

CHAPTER 2

INSTALLATION

Modification of Figure 3-2. System Building Steps

Modification of 3. 2. 1 (2) Configurator's output data

Modification of Figure 3-3. Correlations Between Application Program and CAN Software

Driver/Configurator

Modification of 3. 2. 4 Creation of load module files

CHAPTER 3 SYSTEM

BUILD

Modification of Figure 4-1. Main Screen

Modification of Figure 4-2. Device Selection Menu Screen

Modification of 4. 4. 2 Baud rate setting

Modification of 4. 4. 3 Mask settings

Modification of 4. 4. 4 Message buffer settings

Modification of 4. 4. 5 Other settings

Modification of 4. 4. 6 (1) Output option setting for CAN software driver source files

Modification of Figure 4-23. Screen for Saving and Opening Project Files

Modification of 4. 5 Error/Warning Message List

CHAPTER 4

CONFIGURATION

Addition of function in 5. 1. 1 Initialization and setting (4 types)

Addition of function in 5. 1. 3 Buffer data acquisition (4 types)

Addition of function in 5. 1. 4 Buffer data setting (4 types)

Addition of function in 5. 1. 5 Transmit/receive confirmation (4 types)

Addition of macro in Table 5-3. Macros for Parameters

Modification of 5. 5 Single-Channel Specification CAN Software Driver Functions

Modification of 5. 6 CAN Software Driver Functions with Improved Performance

5. 8. 1 Initialization and setting

Modification of the following functions.

CanChEnable, CanChInit

5. 8. 2 Operation modes

Addition of Note in the CanChGetMode.

2nd

5. 8. 3 Buffer data acquisition

Modification of the following functions.

CanMsgGetDatDlc, CanMsgGetIdDatDlc

CHAPTER 5 DRIVER

FUNCTIONS

APPENDIX REVISION HISTORY

User’s Manual U16844EJ3V0UM 137

(2/2)

Edition Description Chapter

5. 8. 4 Buffer data setting

Modification of the following functions.

CanMagSetDat, CanMsgSetIdDatDlc

5. 8. 6 CAN channel status access

Modification of the following functions.

CanChGetStatus, CanChClrStatus, CanGetBusStatus

CHAPTER 5 DRIVER

FUNCTIONS

2nd

Modification of 6. 1. 3 Settings by Startup File (V850ES/FJ2 Device Dependencies) CHAPTER 6 SAMPLE

PROGRAM

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CHAPTER 1 PRODUCT OVERVIEW
	1.1 General
	1.2 Features
	1.2.1 High portability
	1.2.2 Configuration tool

	1.3 Types of CAN Software Drivers
	1.4 Execution Environment
	1.5 Development Environment

	CHAPTER 2 INSTALLATION
	2.1 General
	2.2 Installation Steps
	2.2.1 Windows startup
	2.2.2 Media setting

	2.3 Directory Structure
	2.3.1 CAN software drivers
	2.3.2 Documentation
	2.3.3 Sample programs

	CHAPTER 3 SYSTEM BUILD
	3.1 Position of CAN Software Drivers
	3.2 System Building Steps
	3.2.1 File generation by configurator
	3.2.2 User applications
	3.2.3 Creation of object files
	3.2.4 Creation of load module files

	CHAPTER 4 CONFIGURATION
	4.1 General
	4.2 Management of Input Information by Project File
	4.3 File Creation Steps
	4.4 Starting the Configurator
	4.4.1 Device selection
	4.4.2 Baud rate setting
	4.4.3 Mask settings
	4.4.4 Message buffer settings
	4.4.5 Other settings
	4.4.6 Code generation
	4.4.7 Saving and Opening Project Files

	4.5 Error/Warning Message List

	CHAPTER 5 DRIVER FUNCTIONS
	5.1 List of Driver Functions
	5.1.1 Initialization and setting (6 types)
	5.1.2 Operation modes (3 types)
	5.1.3 Buffer data acquisition (4 types)
	5.1.4 Buffer data setting (4 types)
	5.1.5 Transmit/receive confirmation (4 types)
	5.1.6 CAN channel status acquisition (3 types)

	5.2 Data Types
	5.3 Return Values (Error Codes)
	5.4 CAN-ID Conversion Macros
	5.5 Single-Channel Specification CAN Software Driver Functions
	5.6 CAN Software Driver Functions with Improved Performance
	5.7 Description of Driver Functions
	5.8 Driver Functions
	5.8.1 Initialization and setting
	5.8.2 Operation modes
	5.8.3 Buffer data acquisition
	5.8.4 Buffer data setting
	5.8.5 Transmit/receive confirmation
	5.8.6 CAN channel status access

	CHAPTER 6 SAMPLE PROGRAM
	6.1 V850ES/FJ2
	6.1.1 Operation environment
	6.1.2 Overview of operation
	6.1.3 Items preset by configurator
	6.1.4 Sample program (for NEC Electronics tool)

	APPENDIX REVISION HISTORY
	APP.1 Main Revisions in this Edition
	APP.2 Revision History of Preceding Editions

