

Renesas Flexible Software Package (FSP)
V5.5.0

 User’s Manual

 Renesas RA Family

 All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the
Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 4.50 Aug.29.2024
www.renesas.com

Table of Contents

Chapter 1 Introduction .. 12
1.1 Overview .. 12
1.2 Using this Manual .. 12
1.3 Documentation Standard ... 12
1.4 Introduction to FSP ... 12

1.4.1 Purpose .. 13
1.4.2 Quality ... 13
1.4.3 Ease of Use .. 13
1.4.4 Scalability ... 13
1.4.5 Build Time Configurations .. 13
1.4.6 e² studio IDE ... 13

Chapter 2 Reference Materials .. 14
2.1 Using Registers Directly .. 14

2.1.1 Overview .. 14
2.1.2 What's in an ... 14
2.1.3 Where are iodefine files located? .. 14
2.1.4 Using the register definitions .. 14
2.1.5 Tips for writing hardware drivers .. 16

2.2 FSP v4.0.0 FreeRTOS Stack Migration Guide .. 17
2.2.1 Overview .. 17
2.2.2 Stack Migration Steps .. 17
2.2.3 List of Code Change Highlights ... 19

2.3 Cortex-M85 Caches .. 20
2.3.1 Overview .. 20
2.3.2 CM85 Cache Features .. 22
2.3.3 RA8 Cache Background Information .. 22
2.3.4 Cache Maintenance ... 23
2.3.5 Typical Cache Maintenance Scenarios .. 24
2.3.6 Cache Functions and Macros .. 26
2.3.7 Cache Details ... 28
2.3.8 Other Information ... 30
2.3.9 References .. 34

Chapter 3 Starting Development ... 37
3.1 Starting Development Introduction ... 37
3.2 e² studio User Guide .. 38

3.2.1 What is e² studio? .. 38
3.2.2 e² studio Prerequisites .. 40

3.2.2.1 Obtaining an RA MCU Kit .. 40
3.2.2.2 PC Requirements .. 40
3.2.2.3 Installing e² studio, platform installer and the FSP package ... 40
3.2.2.4 Choosing a Toolchain ... 40
3.2.2.5 Licensing .. 41

3.2.3 What is a Project? .. 41
3.2.4 Creating a Project .. 43

3.2.4.1 Creating a New Project ... 43
3.2.4.2 Selecting a Board and Toolchain .. 44
3.2.4.3 Selecting Flat or Arm TrustZone Project .. 45
3.2.4.4 Selecting a Project Template .. 46

3.2.5 Configuring a Project ... 49
3.2.5.1 Summary Tab ... 49
3.2.5.2 Configuring the BSP .. 50

3.2.5.3 Configuring Clocks ... 51
3.2.5.4 Configuring Pins .. 52
3.2.5.5 Configuring Interrupts from the Stacks Tab ... 54
3.2.5.6 Viewing Event Links .. 57

3.2.6 Adding Threads and Drivers ... 57
3.2.6.1 Adding and Configuring HAL Drivers .. 58
3.2.6.2 Adding Drivers to a Thread and Configuring the Drivers .. 60
3.2.6.3 Configuring Threads .. 64

3.2.7 Reviewing and Adding Components .. 65
3.2.8 Writing the Application .. 66

3.2.8.1 Coding Features .. 66
3.2.8.2 HAL Modules in FSP: A Practical Description .. 72
3.2.8.3 RTOS-Independent Applications .. 73
3.2.8.4 RTOS Applications ... 74
3.2.8.5 Additional Resources for Application Development ... 76

3.2.9 Debugging the Project .. 77
3.2.10 Modifying Toolchain Settings ... 77
3.2.11 Creating RA project with Arm Compiler 6 in e² studio ... 79
3.2.12 Importing an Existing Project into e² studio ... 82
3.2.13 Using Semihosting in a Project .. 86

3.3 Tutorial: Your First RA MCU Project - Blinky ... 87
3.3.1 Tutorial Blinky ... 87
3.3.2 What Does Blinky Do? .. 87
3.3.3 Prerequisites ... 87
3.3.4 Create a New Project for Blinky ... 87

3.3.4.1 Details about the Blinky Configuration ... 90
3.3.4.2 Configuring the Blinky Clocks .. 91
3.3.4.3 Configuring the Blinky Pins ... 91
3.3.4.4 Configuring the Parameters for Blinky Components .. 91
3.3.4.5 Where is main()? .. 91
3.3.4.6 Blinky Example Code .. 91

3.3.5 Build the Blinky Project ... 91
3.3.6 Debug the Blinky Project ... 92

3.3.6.1 Debug prerequisites .. 92
3.3.6.2 Debug steps .. 93
3.3.6.3 Details about the Debug Process .. 94

3.3.7 Run the Blinky Project .. 95
3.4 Tutorial: Using HAL Drivers - Programming the WDT ... 95

3.4.1 Application WDT ... 95
3.4.2 Creating a WDT Application Using the RA MCU FSP and e² studio 95

3.4.2.1 Using FSP and e² studio .. 95
3.4.2.2 The WDT Application .. 95
3.4.2.3 WDT Application flow .. 96

3.4.3 Creating the Project with e² studio ... 96
3.4.4 Configuring the Project with e² studio .. 100

3.4.4.1 BSP Tab ... 101
3.4.4.2 Clocks Tab .. 101
3.4.4.3 Interrupts Tab ... 102
3.4.4.4 Event Links Tab ... 102
3.4.4.5 Pins Tab ... 102
3.4.4.6 Stacks Tab .. 102
3.4.4.7 Components Tab ... 105

3.4.5 WDT Generated Project Files ... 106
3.4.5.1 WDT hal_data.h ... 108
3.4.5.2 WDT hal_data.c ... 109

3.4.5.3 WDT main.c ... 110
3.4.5.4 WDT hal_entry.c ... 110

3.4.6 Building and Testing the Project ... 113
3.5 Primer: Arm TrustZone Project Development ... 114

3.5.1 Target Device .. 115
3.5.2 Renesas Implementation of Arm TrustZone Technology 115

3.5.2.1 Calling from Non-Secure to Secure .. 116
3.5.2.2 Calling from Secure to Non-Secure .. 116

3.5.3 Workflow ... 117
3.5.3.1 Secure Project .. 117
3.5.3.2 Non-Secure Project .. 117
3.5.3.3 Flat Project .. 117

3.5.4 RA Project Generator (PG) .. 118
3.5.4.1 Secure Project Set Up .. 119
3.5.4.2 RTOS Support in TrustZone Project ... 120
3.5.4.3 Peripheral Security Attribution .. 121
3.5.4.4 Non-Secure .. 122
3.5.4.5 Flat Project Type ... 122
3.5.4.6 Secure Connection to Non-Secure Project .. 122
3.5.4.7 Debug Configurations .. 123

3.5.5 Secure Projects ... 124
3.5.5.1 Secure Clock ... 124
3.5.5.2 Setting Drivers as NSC .. 124
3.5.5.3 Guard Functions ... 125

3.5.6 Non-Secure projects .. 126
3.5.6.1 Clock Set Up ... 126
3.5.6.2 Selecting NSC Drivers .. 126
3.5.6.3 Locked Resources .. 127
3.5.6.4 Locked Channels ... 127

3.5.7 IDAU registers ... 127
3.5.7.1 SCI Boot Mode .. 129
3.5.7.2 DLM States .. 130
3.5.7.3 Devices with Alternate DLM States .. 131
3.5.7.4 Devices without DLM ... 133

3.5.8 Debug .. 133
3.5.8.1 Non-Secure Debug .. 133

3.5.9 Debugger support ... 134
3.5.10 Third-Party IDEs .. 135
3.5.11 Renesas Flash Programmer (RFP) ... 135
3.5.12 Glossary .. 136

3.5.12.1 Configurator Icon Glossary ... 137
3.6 RASC User Guide for MDK and IAR ... 137

3.6.1 What is RASC? ... 137
3.6.2 Using RA Smart Configurator with Keil MDK .. 137

3.6.2.1 Prerequisites ... 137
3.6.2.2 Create new RA project .. 138
3.6.2.3 Modify existing RA project .. 139
3.6.2.4 Build and Debug RA project ... 140
3.6.2.5 Notes and Restrictions .. 141

3.6.3 Using RA Smart Configurator with IAR EWARM .. 141
3.6.3.1 Prerequisites ... 141
3.6.3.2 Create new RA project .. 141
3.6.3.3 Notes and Restrictions .. 143

Chapter 4 FSP Architecture ... 144

4.1 FSP Architecture Overview ... 144
4.1.1 C99 Use ... 144
4.1.2 Doxygen ... 144
4.1.3 Weak Symbols ... 144
4.1.4 Memory Allocation ... 144
4.1.5 FSP Terms ... 144

4.2 FSP Modules .. 146
4.2.1 Module Sources .. 147
4.2.2 Module Distribution ... 147
4.2.3 Module Versioning ... 147

4.3 FSP Stacks ... 147
4.4 FSP Interfaces ... 148

4.4.1 FSP Interface Enumerations ... 149
4.4.2 FSP Interface Callback Functions .. 149
4.4.3 FSP Interface Data Structures .. 151

4.4.3.1 FSP Interface Configuration Structure .. 151
4.4.3.2 FSP Interface API Structure ... 152
4.4.3.3 FSP Interface Instance Structure ... 154

4.5 FSP Instances ... 155
4.5.1 FSP Instance Control Structure .. 155
4.5.2 FSP Interface Extensions ... 156

4.5.2.1 FSP Extended Configuration Structure .. 156
4.5.3 FSP Instance API .. 156

4.6 FSP API Standards .. 156
4.6.1 FSP Function Names ... 156
4.6.2 Use of const in API parameters .. 157
4.6.3 FSP Version Information .. 157

4.7 FSP Build Time Configurations .. 157
4.8 FSP File Structure ... 158
4.9 FSP TrustZone Support ... 158

4.9.1 FSP TrustZone Projects .. 158
4.9.2 Non-Secure Callable Guard Functions .. 158
4.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules 159
4.9.4 Migrating TrustZone Project to newer FSP Version .. 159
4.9.5 Additional TrustZone Information ... 159

4.10 FSP Architecture in Practice ... 159
4.10.1 FSP Connecting Layers ... 159
4.10.2 Using FSP Modules in an Application ... 160

4.10.2.1 Create a Module Instance in the RA Configuration Editor .. 160
4.10.2.2 Use the Instance API in the Application ... 160

Chapter 5 API Reference .. 162
5.1 BSP .. 163

5.1.1 BSP I/O access ... 165
5.1.2 Common Error Codes ... 179
5.1.3 MCU Board Support Package ... 190

5.1.3.1 RA0E1 .. 229
5.1.3.2 RA2A1 .. 233
5.1.3.3 RA2A2 .. 239
5.1.3.4 RA2E1 .. 245
5.1.3.5 RA2E2 .. 252
5.1.3.6 RA2E3 .. 258
5.1.3.7 RA2L1 .. 264
5.1.3.8 RA4E1 .. 272
5.1.3.9 RA4E2 .. 280
5.1.3.10 RA4M1 ... 289

5.1.3.11 RA4M2 ... 294
5.1.3.12 RA4M3 ... 302
5.1.3.13 RA4T1 ... 311
5.1.3.14 RA4W1 ... 319
5.1.3.15 RA6E1 ... 325
5.1.3.16 RA6E2 ... 334
5.1.3.17 RA6M1 ... 342
5.1.3.18 RA6M2 ... 348
5.1.3.19 RA6M3 ... 356
5.1.3.20 RA6M4 ... 363
5.1.3.21 RA6M5 ... 372
5.1.3.22 RA6T1 ... 381
5.1.3.23 RA6T2 ... 387
5.1.3.24 RA6T3 ... 396
5.1.3.25 RA8D1 ... 404
5.1.3.26 RA8M1 ... 418
5.1.3.27 RA8T1 ... 431

5.2 Modules ... 445
5.2.1 Analog .. 447

5.2.1.1 ADC (r_adc) ... 449
5.2.1.2 ADC (r_adc_b) .. 486
5.2.1.3 ADC (r_adc_d) .. 525
5.2.1.4 Comparator, High-Speed (r_acmphs) ... 546
5.2.1.5 Comparator, Low-Power (r_acmplp) ... 553
5.2.1.6 DAC (r_dac) ... 561
5.2.1.7 DAC8 (r_dac8) .. 568
5.2.1.8 Operational Amplifier (r_opamp) ... 574
5.2.1.9 SDADC Channel Configuration (r_sdadc) .. 591
5.2.1.10 SDADC_B Channel Configuration (r_sdadc_b) ... 613

5.2.2 AI ... 630
5.2.2.1 Reality AI Data Collector (rm_rai_data_collector) ... 631
5.2.2.2 Reality AI Data Shipper (rm_rai_data_shipper) .. 645

5.2.3 Audio ... 650
5.2.3.1 ADPCM Decoder (rm_adpcm_decoder) ... 651
5.2.3.2 Audio Playback PWM (rm_audio_playback_pwm) .. 654

5.2.4 Bootloader .. 666
5.2.4.1 MCUboot Port (rm_mcuboot_port) .. 666

5.2.5 CapTouch .. 686
5.2.5.1 CTSU (r_ctsu) .. 687
5.2.5.2 Touch (rm_touch) ... 724

5.2.6 Connectivity ... 744
5.2.6.1 Azure RTOS USBX Port (rm_usbx_port) ... 749
5.2.6.2 CAN (r_can) ... 855
5.2.6.3 CAN FD (r_canfd) .. 893
5.2.6.4 CEC (r_cec) ... 929
5.2.6.5 I2C Communication Device (rm_comms_i2c) ... 940
5.2.6.6 I2C Master (r_iic_b_master) ... 948
5.2.6.7 I2C Master (r_iic_master) ... 962
5.2.6.8 I2C Master (r_iica_master) .. 976
5.2.6.9 I2C Master (r_sau_i2c) .. 988
5.2.6.10 I2C Master (r_sci_b_i2c) ... 1005
5.2.6.11 I2C Master (r_sci_i2c) ... 1018
5.2.6.12 I2C Slave (r_iic_b_slave) ... 1031
5.2.6.13 I2C Slave (r_iic_slave) .. 1043
5.2.6.14 I2C Slave (r_iica_slave) .. 1054

5.2.6.15 I2S (r_ssi) ... 1065
5.2.6.16 I3C (r_i3c) ... 1080
5.2.6.17 LIN (r_sci_b_lin) .. 1122
5.2.6.18 SMBUS Communication Device (rm_comms_smbus) ... 1153
5.2.6.19 SMCI (r_sci_smci) ... 1164
5.2.6.20 SPI (r_sau_spi) .. 1177
5.2.6.21 SPI (r_sci_b_spi) ... 1191
5.2.6.22 SPI (r_sci_spi) ... 1202
5.2.6.23 SPI (r_spi) ... 1214
5.2.6.24 SPI (r_spi_b) ... 1232
5.2.6.25 UART (r_sau_uart) .. 1249
5.2.6.26 UART (r_sci_b_uart) ... 1265
5.2.6.27 UART (r_sci_uart) ... 1284
5.2.6.28 UART (r_uarta) .. 1306
5.2.6.29 UART Communication Device (rm_comms_uart) ... 1320
5.2.6.30 USB (r_usb_basic) .. 1327
5.2.6.31 USB Composite (r_usb_composite) .. 1389
5.2.6.32 USB HCDC (r_usb_hcdc) ... 1419
5.2.6.33 USB HHID (r_usb_hhid) .. 1468
5.2.6.34 USB HMSC (r_usb_hmsc) ... 1478
5.2.6.35 USB Host Vendor class (r_usb_hvnd) ... 1488
5.2.6.36 USB PCDC (r_usb_pcdc) ... 1501
5.2.6.37 USB PHID (r_usb_phid) .. 1511
5.2.6.38 USB PMSC (r_usb_pmsc) ... 1523
5.2.6.39 USB PPRN (r_usb_pprn) ... 1529
5.2.6.40 USB Peripheral Vendor class (r_usb_pvnd) .. 1537
5.2.6.41 USB_PCDC Communication Device (rm_comms_usb_pcdc) 1548

5.2.7 DSP .. 1556
5.2.7.1 CMSIS DSP H/W Acceleration (rm_cmsis_dsp) .. 1556
5.2.7.2 IIR Filter Accelerator (r_iirfa) .. 1558

5.2.8 Graphics .. 1566
5.2.8.1 Azure RTOS GUIX Port (rm_guix_port) ... 1567
5.2.8.2 Capture Engine Unit (r_ceu) .. 1575
5.2.8.3 D/AVE 2D Port Interface (r_drw) .. 1588
5.2.8.4 Graphics LCD (r_glcdc) ... 1590
5.2.8.5 JPEG Codec (r_jpeg) .. 1630
5.2.8.6 MIPI Display Serial Interface (r_mipi_dsi) .. 1657
5.2.8.7 Parallel Data Capture (r_pdc) .. 1676
5.2.8.8 SEGGER emWin RA Port (rm_emwin_port) .. 1687
5.2.8.9 Segment LCD (r_slcdc) ... 1695

5.2.9 Input .. 1704
5.2.9.1 External IRQ (r_icu) .. 1704
5.2.9.2 Key Matrix (r_kint) ... 1711

5.2.10 Monitoring .. 1715
5.2.10.1 CRC (r_crc) .. 1716
5.2.10.2 Clock Accuracy Circuit (r_cac) .. 1722
5.2.10.3 Data Operation Circuit (r_doc) ... 1728
5.2.10.4 Independent Watchdog (r_iwdt) .. 1734
5.2.10.5 Low/Programmable Voltage Detection (r_lvd) ... 1744
5.2.10.6 Watchdog (r_wdt) ... 1752

5.2.11 Motor ... 1764
5.2.11.1 120-degree conduction control sensorless (rm_motor_120_control_sensorless) 1766
5.2.11.2 120-degree conduction control with Hall sensors (rm_motor_120_control_hall) 1784
5.2.11.3 ADC and PWM Modulation (rm_motor_driver) ... 1799
5.2.11.4 ADC and PWM modulation (rm_motor_120_driver) .. 1809

5.2.11.5 Motor 120 degree control (rm_motor_120_degree) .. 1824
5.2.11.6 Motor Angle (rm_motor_estimate) ... 1845
5.2.11.7 Motor Angle (rm_motor_sense_encoder) ... 1855
5.2.11.8 Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall) 1866
5.2.11.9 Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction) 1877
5.2.11.10 Motor Current Controller (rm_motor_current) ... 1888
5.2.11.11 Motor Encoder Vector Control (rm_motor_encoder) ... 1899
5.2.11.12 Motor Inertia estimate (rm_motor_inertia_estimate) ... 1921
5.2.11.13 Motor Position Controller (rm_motor_position) .. 1931
5.2.11.14 Motor Sensorless Vector Control (rm_motor_sensorless) 1942
5.2.11.15 Motor Speed Controller (rm_motor_speed) ... 1960
5.2.11.16 Motor Vector Control with hall sensors (rm_motor_hall) 1972
5.2.11.17 Motor return origin (rm_motor_return_origin) ... 1989
5.2.11.18 Motor vector control with induction sensor (rm_motor_induction) 1998

5.2.12 Networking .. 2019
5.2.12.1 AWS Cellular Interface on GM (rm_cellular_gm_aws) ... 2022
5.2.12.2 AWS MQTT .. 2029
5.2.12.3 AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot) 2036
5.2.12.4 AWS PKCS11 PAL on LittleFS (rm_aws_pkcs11_pal_littlefs) 2039
5.2.12.5 AWS coreHTTP .. 2039
5.2.12.6 Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm) 2045
5.2.12.7 BLE Abstraction (rm_ble_abs) ... 2051
5.2.12.8 BLE Driver (r_ble_balance) .. 2088
5.2.12.9 BLE Driver (r_ble_compact) .. 2091
5.2.12.10 BLE Driver (r_ble_extended) ... 2094
5.2.12.11 BLE Mesh Network Modules ... 2097
5.2.12.12 Cellular Comm Interface on UART (rm_cellular_comm_uart_aws) 2659
5.2.12.13 DA16XXX Transport Layer (rm_at_transport_da16xxx_uart) 2664
5.2.12.14 Ethernet (r_ether) .. 2672
5.2.12.15 Ethernet (r_ether_phy) .. 2697
5.2.12.16 FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp) 2708
5.2.12.17 GTL BLE Abstraction (rm_ble_abs_gtl) ... 2715
5.2.12.18 NetX Duo Ethernet Driver (rm_netxduo_ether) .. 2723
5.2.12.19 NetX Duo WiFi Driver (rm_netxduo_wifi) ... 2727
5.2.12.20 On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx) 2734
5.2.12.21 On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx) 2741
5.2.12.22 PTP (r_ptp) ... 2761
5.2.12.23 SPP BLE Abstraction (rm_ble_abs_spp) ... 2783
5.2.12.24 WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx) 2795
5.2.12.25 WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex) 2808
5.2.12.26 lwIP Baremetal Porting Layer (rm_lwip_sys_baremetal) 2833
5.2.12.27 lwIP Ethernet Driver (rm_lwip_ether) ... 2834
5.2.12.28 lwIP FreeRTOS Porting Layer (rm_lwip_sys_freertos) .. 2838

5.2.13 Power ... 2838
5.2.13.1 Low Power Modes (r_lpm) ... 2838

5.2.14 RTOS ... 2848
5.2.14.1 Azure RTOS ThreadX Port (rm_threadx_port) ... 2848
5.2.14.2 FreeRTOS Port (rm_freertos_port) .. 2858

5.2.15 Security .. 2887
5.2.15.1 AWS Device Provisioning ... 2888
5.2.15.2 Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto) 2892
5.2.15.3 Mbed Crypto H/W Acceleration (rm_psa_crypto) ... 2930
5.2.15.4 Renesas Secure IP (r_rsip_protected) ... 2986
5.2.15.5 SCE Protected Mode ... 3067
5.2.15.6 Secure Crypto Engine (r_sce_protected_cavp) .. 3230

5.2.15.7 Secure Key Injection (r_rsip_key_injection) .. 3234
5.2.15.8 Secure Key Injection (r_sce_key_injection) .. 3256
5.2.15.9 TinyCrypt H/W Acceleration (rm_tinycrypt_port) .. 3295

5.2.16 Sensor .. 3309
5.2.16.1 FS1015 Flow Sensor (rm_fs1015) ... 3310
5.2.16.2 FS2012 Flow Sensor (rm_fs2012) [Deprecated] .. 3317
5.2.16.3 FS3000 Flow Sensor (rm_fs3000) ... 3323
5.2.16.4 HS300X Temperature/Humidity Sensor (rm_hs300x) ... 3329
5.2.16.5 HS400X Temperature/Humidity Sensor (rm_hs400x) ... 3341
5.2.16.6 OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated] 3355
5.2.16.7 RRH46410 Gas Sensor Module (rm_rrh46410) .. 3397
5.2.16.8 ZMOD4XXX Gas Sensor (rm_zmod4xxx) ... 3417

5.2.17 Storage .. 3487
5.2.17.1 Block Media Custom Implementation (rm_block_media_user) 3489
5.2.17.2 Block Media RAM (rm_block_media_ram) ... 3490
5.2.17.3 Block Media SD/MMC (rm_block_media_sdmmc) ... 3496
5.2.17.4 Block Media SPI Flash (rm_block_media_spi) ... 3503
5.2.17.5 Block Media USB (rm_block_media_usb) ... 3512
5.2.17.6 FileX I/O (rm_filex_block_media) ... 3519
5.2.17.7 FileX I/O (rm_filex_levelx_nor) .. 3537
5.2.17.8 Flash (r_flash_hp) ... 3552
5.2.17.9 Flash (r_flash_lp) ... 3572
5.2.17.10 FreeRTOS+FAT Port for RA (rm_freertos_plus_fat) ... 3590
5.2.17.11 LevelX NOR Port (rm_levelx_nor_spi) .. 3603
5.2.17.12 LittleFS on Flash (rm_littlefs_flash) .. 3617
5.2.17.13 LittleFS on SPI Flash (rm_littlefs_spi_flash) ... 3623
5.2.17.14 OSPI Flash (r_ospi) ... 3631
5.2.17.15 OSPI Flash (r_ospi_b) .. 3658
5.2.17.16 QSPI (r_qspi) .. 3685
5.2.17.17 SD/MMC (r_sdhi) .. 3703
5.2.17.18 Virtual EEPROM on Flash (rm_vee_flash) .. 3719

5.2.18 System .. 3733
5.2.18.1 Clock Generation Circuit (r_cgc) .. 3734
5.2.18.2 Event Link Controller (r_elc) .. 3756
5.2.18.3 I/O Port (r_ioport) ... 3764

5.2.19 Timers .. 3790
5.2.19.1 Independent Channel, 16-bit and 8-bit timer (r_tau) .. 3792
5.2.19.2 Port Output Enable for GPT (r_poeg) ... 3818
5.2.19.3 Realtime Clock (r_rtc) ... 3825
5.2.19.4 Realtime Clock (r_rtc_c) .. 3843
5.2.19.5 Three-Phase PWM (r_gpt_three_phase) ... 3856
5.2.19.6 Timer, 32-bit Interval Timer (r_tml) .. 3865
5.2.19.7 Timer, General PWM (r_gpt) ... 3884
5.2.19.8 Timer, Low-Power (r_agt) ... 3936
5.2.19.9 Timer, Simultaneous Channel (r_tau_pwm) .. 3963
5.2.19.10 Timer, Ultra Low-Power (r_ulpt) ... 3986

5.2.20 Transfer ... 4009
5.2.20.1 Transfer (r_dmac) ... 4010
5.2.20.2 Transfer (r_dtc) .. 4024

5.2.21 TrustZone .. 4037
5.2.21.1 Arm TrustZone Context RA Port (rm_tz_context) ... 4037

5.3 Interfaces ... 4038
5.3.1 Analog ... 4040

5.3.1.1 ADC Interface ... 4041
5.3.1.2 Comparator Interface .. 4059

5.3.1.3 DAC Interface ... 4067
5.3.1.4 OPAMP Interface .. 4071

5.3.2 AI .. 4076
5.3.2.1 Data Collector Interface ... 4076
5.3.2.2 Data Shipper Interface ... 4084

5.3.3 Audio .. 4088
5.3.3.1 ADPCM Decoder Interface ... 4089
5.3.3.2 AUDIO PLAYBACK Interface .. 4092

5.3.4 CapTouch ... 4096
5.3.4.1 CTSU Interface ... 4096
5.3.4.2 Touch Middleware Interface .. 4109

5.3.5 Connectivity .. 4117
5.3.5.1 CAN Interface ... 4119
5.3.5.2 CEC Interface ... 4129
5.3.5.3 Communicatons Middleware Interface ... 4137
5.3.5.4 I2C Master Interface .. 4142
5.3.5.5 I2C Slave Interface ... 4150
5.3.5.6 I2S Interface .. 4158
5.3.5.7 I3C Interface .. 4169
5.3.5.8 LIN Interface .. 4186
5.3.5.9 SMCI Interface ... 4194
5.3.5.10 SPI Interface ... 4206
5.3.5.11 UART Interface .. 4217
5.3.5.12 USB HCDC Interface ... 4228
5.3.5.13 USB HHID Interface .. 4234
5.3.5.14 USB HMSC Interface ... 4236
5.3.5.15 USB Interface ... 4241
5.3.5.16 USB PCDC Interface ... 4271
5.3.5.17 USB PHID Interface .. 4273
5.3.5.18 USB PMSC Interface ... 4273
5.3.5.19 USB PPRN Interface ... 4274

5.3.6 DSP .. 4274
5.3.6.1 IIR Interface .. 4275

5.3.7 Graphics .. 4279
5.3.7.1 CAPTURE Interface .. 4280
5.3.7.2 Display Interface .. 4285
5.3.7.3 JPEG Codec Interface ... 4302
5.3.7.4 MIPI DSI Interface ... 4315
5.3.7.5 SLCDC Interface .. 4341

5.3.8 Input .. 4352
5.3.8.1 External IRQ Interface ... 4353
5.3.8.2 Key Matrix Interface .. 4358

5.3.9 Monitoring ... 4362
5.3.9.1 CAC Interface ... 4363
5.3.9.2 CRC Interface ... 4373
5.3.9.3 DOC Interface ... 4378
5.3.9.4 Low Voltage Detection Interface .. 4384
5.3.9.5 WDT Interface ... 4395

5.3.10 Motor ... 4404
5.3.10.1 Motor 120-Degree Control Interface .. 4405
5.3.10.2 Motor 120-Degree Driver Interface .. 4416
5.3.10.3 Motor Inertia Estimate Interface .. 4424
5.3.10.4 Motor Interface .. 4429
5.3.10.5 Motor Return Origin Function Interface .. 4437
5.3.10.6 Motor angle Interface ... 4442

5.3.10.7 Motor current Interface .. 4450
5.3.10.8 Motor driver Interface ... 4458
5.3.10.9 Motor position Interface .. 4464
5.3.10.10 Motor speed Interface .. 4471

5.3.11 Networking .. 4477
5.3.11.1 BLE ABS Interface .. 4478
5.3.11.2 BLE Interface ... 4514
5.3.11.3 BLE Mesh Network Interfaces ... 4886
5.3.11.4 DA16XXX AT Command Transport Layer ... 5082
5.3.11.5 Ethernet Interface ... 5088
5.3.11.6 Ethernet PHY Interface .. 5097
5.3.11.7 PTP Interface ... 5104
5.3.11.8 WiFi Interface ... 5128

5.3.12 Power ... 5164
5.3.12.1 Low Power Modes Interface .. 5164

5.3.13 Security .. 5183
5.3.13.1 RSIP Interface ... 5183
5.3.13.2 RSIP key injection Interface .. 5222
5.3.13.3 SCE Interface ... 5243
5.3.13.4 SCE key injection Interface .. 5333

5.3.14 Sensor .. 5354
5.3.14.1 FSXXXX Middleware Interface .. 5355
5.3.14.2 HS300X Middleware Interface ... 5359
5.3.14.3 HS400X Middleware Interface ... 5365
5.3.14.4 OB1203 Middleware Interface ... 5371
5.3.14.5 ZMOD4XXX Middleware Interface ... 5396

5.3.15 Storage .. 5409
5.3.15.1 Block Media Interface ... 5410
5.3.15.2 FileX Block Media Port Interface ... 5417
5.3.15.3 Flash Interface .. 5421
5.3.15.4 FreeRTOS+FAT Port Interface .. 5434
5.3.15.5 LittleFS Interface ... 5438
5.3.15.6 SD/MMC Interface ... 5440
5.3.15.7 SPI Flash Interface .. 5457
5.3.15.8 Virtual EEPROM Interface ... 5470

5.3.16 System .. 5477
5.3.16.1 CGC Interface ... 5478
5.3.16.2 ELC Interface ... 5490
5.3.16.3 I/O Port Interface ... 5494

5.3.17 Timers .. 5501
5.3.17.1 POEG Interface .. 5502
5.3.17.2 RTC Interface ... 5510
5.3.17.3 Three-Phase Interface ... 5525
5.3.17.4 Timer Interface .. 5530

5.3.18 Transfer ... 5544
5.3.18.1 Transfer Interface ... 5544

5.4 BSP_SDRAM ... 5556

Chapter 6 Copyright .. 5558

Flexible Software Package

User’s Manual
Introduction

Chapter 1 Introduction

1.1 Overview
This manual describes how to use the Renesas Flexible Software Package (FSP) for writing
applications for the RA microcontroller series.

1.2 Using this Manual
This manual provides a wide variety of information, so it can be helpful to know where to start. Here
is a short description of each main section and how they can be used.

Starting Development - Provides a step by step guide on how to use e² studio and FSP to develop a
project for RA MCUs. This is a good place to start to get up to speed quickly and efficiently.

FSP Architecture - Provides useful background material on key FSP concepts such as Modules,
Stacks, and API standards. Reference this section to extend or refresh your knowledge of FSP
concepts.

API Reference - Provides detailed information on each module and interface including features, API
functions, configuration settings, usage notes, function prototypes and code examples. Board
Support Package (BSP) related API functions are also included.

Note
Much of the information in the API Reference section is available from within the e² studio tool via the Developer
Assistance feature. The information here can be referenced for additional details on API features.

1.3 Documentation Standard
Each Modules section user guide outlines the following:

Features: A bullet list of high level features provided by the module.
Configuration: A description of module specific configurations available in the RA
Configuration editor.
Usage Notes: Module specific documentation and limitations.
Examples: Example code provided to help the user get started.
API Reference: Usage notes for each API in the module, including the function prototype and
hyperlinks to the interface documentation for parameter definitions.

Each Interfaces section user guide outlines the following:

Detailed Description: A short description and summary of the interface functionality.
Data Structures: A list and definition of each data structure used by the interface including
the structure of the pointers that define the API and are shared by all modules that
implement the interface.
Typedefs: A list and description of the typedefs used by the interface.
Enumerations: A list and description of the enumerations used by the interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 12 / 5,560

Flexible Software Package

User’s Manual
Introduction > Introduction to FSP

1.4 Introduction to FSP
1.4.1 Purpose

The Renesas Flexible Software Package (FSP) is an optimized software package designed to provide
easy to use, scalable, high quality software for embedded system design. The primary goal is to
provide lightweight, efficient drivers that meet common use cases in embedded systems.

1.4.2 Quality

FSP code quality is enforced by peer reviews, automated requirements-based testing, and
automated static analysis.

1.4.3 Ease of Use

FSP provides uniform and intuitive APIs that are well documented. Each module is supported with
detailed user documentation including example code.

1.4.4 Scalability

FSP modules can be used on any MCU in the RA family, provided the MCU has any peripherals
required by the module.

1.4.5 Build Time Configurations

FSP modules also have build time configurations that can be used to optimize the size of the module
for the feature set required by the application.

1.4.6 e² studio IDE

FSP provides a host of efficiency enhancing tools for developing projects targeting the Renesas RA
series of MCU devices. The e² studio IDE provides a familiar development cockpit from which the key
steps of project creation, module selection and configuration, code development, code generation,
and debugging are all managed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 13 / 5,560

Flexible Software Package

User’s Manual
Reference Materials

Chapter 2 Reference Materials

This section contains miscellaneous reference materials.

Document Summary

Using Registers Directly Overview of register definition files and their
use.

FSP v4.0.0 FreeRTOS Stack Migration Guide Migration guide for FreeRTOS Network stack
users moving to FSP v4.0.0.

Cortex-M85 Caches Overview of the Cortex-M85 caches present in
RA8 devices and when to perform cache
maintenance.

2.1 Using Registers Directly

2.1.1 Overview

In some cases users may wish to utilize chip functionality that is not supported yet by FSP. While we
encourage contacting us when new feature requests arise it takes time before any updates are
made. In the meantime, it is recommended to use the register definition files accessed via renesas.h
to add custom functionality as needed. Official ARM CMSIS documentation refers to this format of
related register definition files as device header files. Within Renesas, these files are often referred
to as an IO define or more commonly iodefine.

2.1.2 What's in an "iodefine"?

Iodefine files contain definitions for all the I/O registers on a device. For RA FSP, one iodefine header
is provided per device group (RA6M3, RA2A1 etc.) that contains all the register definitions provided
in the hardware manual for that group. These headers are accessed via renesas.h, which selects the
appropriate file based on the MCU configured in the project.

Note
Prior to FSP 4.0.0 renesas.h contained a superset of all register definitions for RA MCUs. This became
unsustainable as new device families were added and was confusing for users, so headers for each device were
created and renesas.h was updated to serve as a selector.

2.1.3 Where are iodefine files located?

In RA FSP, iodefine files are stored in ra/fsp/src/bsp/cmsis/Device/RENESAS/Include. This includes
both renesas.h as well as the device group specific iodefine headers.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 14 / 5,560

https://www.keil.com/pack/doc/CMSIS/Core/html/device_h_pg.html

Flexible Software Package

User’s Manual
Reference Materials > Using Registers Directly > Using the register definitions

2.1.4 Using the register definitions

Each peripheral register set is provided as a struct. In general, the template to follow is:

R_ + peripheral abbreviation + channel number + -> + register name [+ _b. + bitfield

name]

Basic register access

Registers are most commonly accessed whole. For example, say we want to read the counter on GPT
channel 3:

uint32_t count = R_GPT3->GTCNT;

As shown in the template, the iodefines can also be used to access bitfields. For example, to start
GPT channel 3:

R_GPT3->GTCR_b.CST = 1;

Bitfield macros

It is worth noting that each bitfield access will cause a full read-modify-write which cannot be
combined by the compiler because the register definitions are by necessity volatile. This can be very
size and speed inefficient, particularly when the peripheral is on a very slow clock. It is
recommended to write whole registers wherever possible. This is made easier by macros that are
provided alongside the register definitions.

Every bitfield has two associated macros: _Msk (bitfield mask) and _Pos (bit position). These macros
can be used to manipulate whole registers instead of using bitfield access when multiple bitfields are
modified simultaneously. For example, setting both GPT3 output pins to 100% duty cycle:

uint32_t gtuddtyc = R_GPT3->GTUDDTYC

gtuddtyc &= ~(R_GPT0_GTUDDTYC_OADTY_Msk |

R_GPT0_GTUDDTYC_OBDTY_MSK) // Mask off bits to clear

gtuddtyc |= (3 << R_GPT0_GTUDDTYC_OADTY_Pos) | (3 <<

R_GPT0_GTUDDTYC_OBDTY_Pos); // Shift values to bitfield positions

R_GPT3->GTUDDTYC = gtuddtyc;

Note
The macros are all named with channel 0 due to internal process requirements; they can be used with all channels.

Arrays and clusters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 15 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Using Registers Directly > Using the register definitions

Some registers are part of an array. These are typically listed in the manual using indexes like "n" or
"m", but may occasionally be listed with individual numbers or letters. Accessing register arrays is
just like accessing a regular array. For example, the GPT duty cycle registers are GTCCRA through
GTCCRF. In the iodefine, they are accessed via the GTCCR array:

/* Set GTCCRB */

R_GPT3->GTCCR[1] = duty_cycle_b;

Note
Not all indices may be available in every array. Be sure to check the hardware manual to verify which registers are
provided on the device in use.

Sometimes there are groups of registers that are repeated multiple times. These groups are called a
cluster. Clusters are accessed similarly to arrays, except the actual registers are elements of the
array values instead. For example, mailboxes in the CAN peripheral have several registers each:

/* Get data from mailbox 3 */

uint32_t mailbox = 3;

/* Get the frame data length code */

uint32_t data_length = R_CAN0->MB[mailbox].DL_b.DLC;

/* Get message data */

uint8_t data[8];

for (uint32_t i = 0U; i < data_length; i++)

{

 data[i] = p_reg->MB[mailbox].D[i]; // Copy receive data to buffer

}

2.1.5 Tips for writing hardware drivers

Channel register access

FSP drivers often calculate a register offset in the Open function. This is typically done by multiplying
the channel by the offset between channels 0 and 1. For example, here is the calculation for GPT:

 /* Save register base address. */

 uint32_t base_address = (uint32_t) R_GPT0 + (p_cfg->channel * ((uint32_t) R_GPT1 -

(uint32_t) R_GPT0));

 p_instance_ctrl->p_reg = (R_GPT0_Type *) base_address;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 16 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Using Registers Directly > Tips for writing hardware drivers

When drivers need to support multiple channels of a peripheral it can be helpful to save the offset in
a persistent variable or structure so that it only needs to be calculated once.

2.2 FSP v4.0.0 FreeRTOS Stack Migration Guide

Note
This guide only applies to users converting e² studio projects created with FSP v3.8.0 or earlier
Migration is only possible for network stacks using CoreMQTT and CoreHTTP modules. Stacks using
deprecated MQTT Client and HTTP Client modules will not be able to be migrated over to FSP v4.0.0 and up.
See the following guide for migrating code from the deprecated Client libraries: https://aws.github.io/aws-iot-
device-sdk-embedded-C/202103.00/docs/doxygen/output/html/mqtt_migration.html

2.2.1 Overview

This migration guide is for moving to the new FreeRTOS Network stacks introduced in FSP v4.0.0. It
will describe steps for moving over stacks as well as changes to make code compile correctly.

2.2.2 Stack Migration Steps

Note
Perform all of the following steps before attempting to save the project. Failure to do so may cause unexpected
errors in the configuration.xml.

1. Open project to be migrated in e² studio using FSP v4.0.0 or greater. The existing
CoreMQTT/HTTP stack should still exist. Many of the stack components will have No Longer
Supported in the display and have permanent constraint error messages on them:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 17 / 5,560

https://aws.github.io/aws-iot-device-sdk-embedded-C/202103.00/docs/doxygen/output/html/mqtt_migration.html
https://aws.github.io/aws-iot-device-sdk-embedded-C/202103.00/docs/doxygen/output/html/mqtt_migration.html

Flexible Software Package

User’s Manual
Reference Materials > FSP v4.0.0 FreeRTOS Stack Migration Guide > Stack Migration Steps

Figure 1: Old MQTT Stack

2. Add a new network stack (New Stack->Networking->AWS CoreHTTP or AWS CoreMQTT):

Figure 2: Add a New MQTT Stack

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 18 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > FSP v4.0.0 FreeRTOS Stack Migration Guide > Stack Migration Steps

3. Choose a sockets wrapper for the new stack (Add Sockets Wrapper).

Figure 3: Add a Sockets Wrapper

4. The submodule for AWS PKCS11 to MbedTLS will likely be missing. Click Add FreeRTOS
MbedTLS Port and use the existing instance:

Figure 4: FreeRTOS MbedTLS Port

5. Got to the components tab and see if AWS MbedTLS FreeRTOS Port
(AWS|Abstractions|FreeRTOS_Plus|utilities|mbedtls) is checked. If this component is not
checked then check it so that appears like so:

Figure 5: FreeRTOS MbedTLS Port Component

6. Check that settings/properties are correct on the new stack. Common stack elements
between the old and new stacks should already have previous settings.

7. Remove the old stack.
8. Save project and generate project content. See the next section for things to change in the

code for successful compilation.

2.2.3 List of Code Change Highlights

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 19 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > FSP v4.0.0 FreeRTOS Stack Migration Guide > List of Code Change Highlights

This is a list of important changes from pre-4.0 code. For more detailed examples see
CoreMQTT/HTTP examples and devassist.

Any calls to SYSTEM_Init() should be removed. mbedtls_platform_setup() now does
initialization that this IoT library function originally did.
xLoggingTaskInitialize should no longer be called. Logging libraries which create a logging
task no longer exist. Logging by default uses printf when enabled. The user can redefine
vLoggingPrintf(const char * pcFormat, ...) and vLoggingPrint(const char * pcFormat) to
change this behavior.
The transport interface for CoreMQTT/HTTP will now need to be setup directly by creating a
transport interface and setting the send and receive pointers to TLS_FreeRTOS_recv and
TLS_FreeRTOS_send. See the examples and devassist for more info.
The user will need to call TLS_FreeRTOS_Connect to connect to a server/endpoint before
using CoreMQTT/HTTP APIs to communicate. TLS_FreeRTOS_Disconnect can be used to
disconnect from a server/endpoint.

2.3 Cortex-M85 Caches

Note
This overview should be considered supplementary information only. Consult with the listed references (non-
exhaustive) for detailed information on the CM85 caches, Renesas caches, and cache coherency. Cache
coherency can be a difficult problem to understand and solve correctly.

2.3.1 Overview

When using any type of caches in a system, coherency must be considered. A cache may contain
data that is different from the backing memory (e.g. SRAM, Flash, etc.), or contain data that is
different from another cache, which would make the cache incoherent. Coherency can be maintained
through hardware and/or software support. For Cortex-M devices like the RA8, coherency can only be
achieved through manual software management, and no automatic hardware coherency support
exists.

In the default configuration for RA8 devices, FSP always enables the Code Flash Cache (FCACHE) and
CM85 Instruction Cache (I-Cache) and handles the coherency of these caches where it is required.
FSP does not handle FCACHE or I-Cache coherency outside of FSP. FSP optionally allows the CM85
Data Cache (D-Cache) to be enabled in the BSP configuration settings, where it is disabled by
default. If the D-Cache is enabled, additional coherency concerns will arise. FSP does not currently
handle any D-Cache coherency. This is a work in-progress. Drivers that will require D-
Cache coherency support do not presently support it.

If D-Cache is enabled, the most common coherency concern is when data is shared between the CPU
and another bus master. The D-Cache and backing memory for the shared location (usually SRAM)
can become incoherent. To properly manage coherency in this situation, do one of the following:

Place the shared data in a non-cacheable region defined by the MPU or hardware.

Using a non-cacheable region means there will be no cache maintenance required and no
coherency issues because the shared data will not be cached. A non-cacheable region can

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 20 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Overview

be defined in the MPU to contain the shared data. The non-cacheable region MUST be
aligned to 32 bytes and be a length multiple of 32 bytes. This is required to meet MPU
alignment and length requirements. FSP predefines the .nocache and .nocache_sdram
uninitialized regions for this purpose, where data can be placed (see the BSP Usage Notes
reference material). FSP configures and enables the MPU with these predefined regions at
startup, if they have a non-zero size. Any address outside these regions will use the
cacheability attributes defined by the default system address map. As an alternative, DTCM
is always hardcoded as non-cacheable by the hardware and could contain the shared data.
Using the MPU should be preferred, since DTCM can only be accessed through S-AHB by
other bus masters and the access may contend with CPU access to DTCM.

Place the shared data in a cache line aligned and padded cacheable region, and use the
CMSIS cache maintenance functions.

Using a cacheable region requires that the CMSIS cache maintenance functions be used to
solve the coherency issues. The data MUST be aligned to 32 bytes and be a length multiple
of 32 bytes. This is required to meet D-Cache line alignment and length requirements. If
data is not aligned and fit exactly to D-Cache lines, you will create rare and
difficult bugs! Use the CMSIS cache maintenance functions as required to manage the
shared data coherency. When the D-Cache is enabled, FSP configures and enables the MPU
at startup. Any address outside the predefined MPU regions will use the cacheability
attributes defined by the default system address map. Cacheable shared data cannot
be pooled into a single aligned and padded region, like the non-cacheable region.
Cacheable shared data must be aligned and padded to its own data cache lines.

Less common coherency concerns include:

FACI erasing and programming
FCACHE, I-Cache, and D-Cache can become incoherent if Code Flash or Data Flash
changes

Writing instructions into RAM using the CPU or a bus master
D-Cache and I-Cache can become incoherent if code in RAM changes

MPU configuration changes
FCACHE, I-Cache, and D-Cache can become incoherent if the cacheability
attributes of an address changes

SAU (Security Attribution Unit) configuration changes
FCACHE, I-Cache, and D-Cache can become incoherent if the security attributes of
an address changes

Changing power modes
May be required to clean and invalidate caches before changing to a low power
mode

These less common situations require careful consideration for cache maintenance. FSP handles
some of these less common situations for FCACHE and I-Cache where it must, but it is not possible to
cover all user behavior that may occur.

Other special cache concerns that are not specifically coherency related include:

Reading and writing from CSC, SDRAM, and Standby SRAM which use write buffers
If a write or read is intended to force a write buffer to flush, or to force a bus
access to occur, the D-Cache may stop that from occurring by processing the read
or write if the address is cacheable
Standby SRAM requires a different procedure than CSC or SDRAM to clear its write
buffer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 21 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Overview

OSPI provides both a prefetch buffer for reading and a write buffer for writing on each of its
channels

These buffers are optionally enabled individually, and may also be flushed
individually
Cache interactions with these buffers during normal operation and during their
flush procedures must be considered

2.3.2 CM85 Cache Features

The CM85 optionally implements an I-Cache and/or D-Cache, with several configurable properties.
Renesas RA8 devices have an implementation as follows:

I-Cache and D-Cache are both implemented with 16 KiB size each
ECC is optionally enabled for the I-Cache and D-Cache with OFS1.INITECCEN

The OFS1_SEL register selects whether the Secure or Non-secure OFS1.INITECCEN
option bit is used
The OFS1.INITECCEN option bit also enables ECC for the ITCM and DTCM

Automatic hardware cache invalidation is enabled at reset for I-Cache and D-Cache
This can be controlled with CACHEDBGCR.L1RSTDIS for debugging, but generally
there is no use case

TrustZone is integrated, which means
CCR.xC is banked between Secure and Non-secure modes which means cache
allocation can be controlled for each mode separately
There are eight Secure and Non-Secure MPU regions each which govern memory
access in their respective modes
D-Cache maintenance from the Non-secure state is promoted to clean type
maintenance, since both Secure and Non-secure data may be cached

2.3.3 RA8 Cache Background Information

CM85 Caches

The I-Cache and D-Cache are implemented inside of the CM85 by Arm. The CM85 has a Harvard
design, where instruction fetches and data reads/writes are performed on separate interfaces. The I-
Cache can only perform lookup and allocation for instruction fetches. The D-Cache can only perform
lookup and allocation for data reads and writes.

Whether lookup of an address occurs in a cache depends on:

1. Cache lookups are enabled in the MSCR register.
2. The Shareability (Non-shareable) (D-Cache Only), Inner Cacheability (Cacheable), and

Memory Type (Normal) as defined by the System Address Map or the Arm MPU (S or NS).
3. Any hardware cacheability caveats, where some addresses can never lookup in a cache,

like ITCM and DTCM.

Whether allocation of an address occurs in a cache depends on:

1. Cache allocations are enabled in the CCR register (S or NS).
2. Cache lookups are allowed for that address.
3. Inner Cacheability (Read and/or Write Allocate) as defined by the System Address Map or

the Arm MPU (S or NS).

The MSCR register controls whether lookups may occur for a cache, while the CCR register (S or NS)
controls whether allocation may occur for a cache.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 22 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > RA8 Cache Background Information

The system address map and Arm MPU (S or NS) define the memory type, shareability attributes,
and cacheability attributes for an address. All three memory properties combine to define whether
an address may lookup and allocate within one of the caches. The CM85 defines specific behaviors
for some architecturally implementation defined or undefined behaviors regarding combinations of
these three properties.

Both caches accept Inner cacheability attributes from the system address map and the Arm MPU (S
or NS). The support of cacheability attributes varies depending on the cache and its configuration.

The I-Cache and D-Cache have different associativity, supported cache policies, supported memory
attributes, and supported shareability attributes. Because of these variations, the behavior of I-
Cache and D-Cache will be different even when accessing the same address.

Even when the Arm MPU (S or NS) is disabled, the default system address map will provide the
memory type, shareability attributes, and cacheability attributes for an address. If the Arm MPU (S or
NS) is enabled with no regions defined, it may be configured to use the default system address map
as a background region.

Arm prescribes specific procedures for enabling and disabling the caches, and other cache
maintenance operations that must be followed. There are I-Cache and D-Cache specific Arm
architectural instructions that are used to perform these procedures. The Arm CMSIS library provides
functions to perform these cache operations.

Renesas FCACHE

The FCACHE is implemented by Renesas and performs instruction prefetches, caches instruction
fetches, and caches data reads from the CPU and other bus masters to Code Flash memory.

Cache maintenance for FCACHE is conducted through its peripheral registers.

In general, whether for the CM85 I-Cache or D-Cache, or Renesas FCACHE, cache maintenance is
used to synchronize a given cache with the backing memory, and to synchronize caches with each
other.

2.3.4 Cache Maintenance

The correct maintenance sequence must be followed to avoid caches reading stale data from each
other or from backing memory.

Unlike the D-Cache, the I-Cache is a read-only interface which cannot be written with new
instructions by the CPU. The only way for the CPU to see modified instructions while using I-Cache is
through invalidation. Thus if instructions change, I-Cache maintenance is always required whether
FCACHE maintenance is needed or not.

The D-Cache is a read and write interface. The CPU will write modified data into the D-Cache (if
cacheable, and other properties are met), so any read back from the D-Cache will have the latest
data. Thus if data changes, it may be necessary to perform D-Cache maintenance and possibly
FCACHE maintenance depending on whether the data is shared between the CPU and another bus
master or if the data is changed by FACI.

The word "shared" here does not mean "Shareability" as defined as an Arm memory attribute.

I-Cache and D-Cache cache lines are aligned to 32 bytes and are 32 bytes in length each. For D-
Cache specifically, where a cache line may become dirty when write-back is used,
cacheable shared data written by a bus master cannot be allowed to mix on a write-back

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 23 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Cache Maintenance

cache line with data that is unrelated. For simplicity, follow the most conservative rule of
aligning and padding cacheable shared data to meet D-Cache line requirements.

CM85 has an erratum with write-back when D-Cache is enabled. FSP v5.3.0 has added the
recommended workaround of using MSCR.FORCEWT to force all D-Cache access to write-through,
even if an access specifies write-back. Developers should write software as if write-back is
being used for full compatability with data cache, which includes the above alignment
and padding requirement.

This guide describes common maintenance scenarios including write-back and write-through. The
write-through write policy does not obviate the need for using memory barriers on the
CM85. The use of memory barriers is out-of-scope for this document.

FSP handles some of these maintenance scenarios during startup and in the Flash HP driver.

2.3.5 Typical Cache Maintenance Scenarios

Note
Whether full or address-based cache maintenance can or should be used depends on the capabilities of the
target cache (FCACHE has no address-based maintenance capability) and the particular application scenario.

I-Cache, FCACHE Enabled (Default Configuration)

Instructions Change

Instructions Not Cacheable
No Maintenance Required (Not Cacheable)

Instructions Cacheable
FACI Code Flash Program or Erase

1. Invalidate FCACHE
2. Invalidate I-Cache

FACI Data Flash Program or Erase
1. Invalidate I-Cache

In RAM or Other
Written by CPU

1. Invalidate I-Cache
Written by Bus Master

1. Invalidate I-Cache

Data Change

Data Not Cacheable
No Maintenance Required (Not Cacheable)

Data Cacheable
FACI Code Flash Program or Erase

1. Invalidate FCACHE
FACI Data Flash Program or Erase

No Maintenance Required (D-Cache Disabled)
In RAM or Other

No Maintenance Required (D-Cache Disabled)

Instructions and Data Change

Instructions and Data Not Cacheable
No Maintenance Required (Not Cacheable)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 24 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Typical Cache Maintenance Scenarios

Instructions and Data Cacheable
FACI Code Flash Program or Erase

1. Invalidate FCACHE
2. Invalidate I-Cache

FACI Data Flash Program or Erase
1. Invalidate I-Cache

In RAM or Other
Written by CPU

1. Invalidate I-Cache
Written by Bus Master

1. Invalidate I-Cache

D-Cache, I-Cache, FCACHE Enabled

Data Change

Data Not Cacheable
No Maintenance Required (Not Cacheable)

Data Cacheable
FACI Code Flash Program or Erase

1. Invalidate FCACHE
2. Clean And Invalidate D-Cache

FACI Data Flash Program or Erase
1. Clean and Invalidate D-Cache

In RAM or Other
Data Not Shared

No Maintenance Required (Not Shared)
Data Shared

Written by CPU

Write Back

Area must be aligned and padded to D-Cache line
requirements.

1. Clean D-Cache, After CPU Write
Write Through

No Maintenance Required (Write Through)
Written by Bus Master

Write Back

Area must be aligned and padded to D-Cache line
requirements.

Buffer to be Written is Dirty (e.g. Stack or
Heap Allocated Buffer May Be Dirty Already)

1. Invalidate D-Cache, Before and After
Bus Master Write

Buffer to be Written is Clean
1. Invalidate D-Cache, After Bus Master

Write
Write Through

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 25 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Typical Cache Maintenance Scenarios

1. Invalidate D-Cache, After Bus Master Write

Instructions Change or Instructions and Data Change

Instructions Not Cacheable or Instructions and Data Not Cacheable
No Maintenance Required (Not Cacheable)

Instructions Cacheable or Instructions and Data Cacheable
FACI Code Flash Program or Erase

1. Invalidate FCACHE
2. Clean And Invalidate D-Cache
3. Invalidate I-Cache

FACI Data Flash Program or Erase
1. Clean And Invalidate D-Cache
2. Invalidate I-Cache

In RAM or Other
Written by CPU

Write Back

Area must be aligned and padded to D-Cache line
requirements if shared with a bus master.

1. Clean D-Cache, After CPU Write
2. Invalidate I-Cache

Write Through
1. Invalidate I-Cache

Written by Bus Master

Write Back

Area must be aligned and padded to D-Cache line
requirements as we assume it is shared with CPU here.

Buffer to be Written is Dirty (e.g. Stack or Heap
Allocated Buffer May Be Dirty Already)

1. Invalidate D-Cache, Before and After Bus
Master Write

2. Invalidate I-Cache
Buffer to be Written is Clean

1. Invalidate D-Cache, After Bus Master Write
2. Invalidate I-Cache

Write Through
1. Invalidate D-Cache, After Bus Master Write
2. Invalidate I-Cache

2.3.6 Cache Functions and Macros

Renesas BSP Configuration Macros

Macro Purpose Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 26 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Cache Functions and Macros

BSP_CFG_DCACHE_ENABLED Defaults to zero (disabled). If
defined and non-zero, the FSP
startup code in system.c will
configure several predefined
non-cacheable sections in the
MPU if they are of non-zero
size, enable the MPU, and
enable the D-Cache.

This is normally configured in
e2 Studio under the
BSP->Cache settings->Data
cache properties panel for the
project.

BSP_CFG_ROM_REG_OFS1_INITE
CCEN

Defaults to zero (disabled). Sets
the value of OFS1.INITECCEN
for BSP_CFG_ROM_REG_OFS1,
which controls whether ECC is
enabled for caches and TCM.

This is normally configured in
e2 Studio under the BSP->OFS1
register settings->Tightly
Coupled Memory (TCM)/Cache
ECC properties panel for the
project.

CMSIS 6 I-Cache Functions

Function Purpose Notes

SCB_EnableICache If I-Cache allocations are not
already enabled, invalidate the
entire I-Cache then enable I-
Cache allocations with CCR.IC.

Will do nothing if I-Cache
allocations are already enabled.
FSP automatically enables the I-
Cache at startup by directly
setting CCR.IC instead of using
this function.

SCB_DisableICache Disable I-Cache allocations with
CCR.IC, then invalidate the
entire I-Cache.

SCB_InvalidateICache Invalidate the entire I-Cache. This is safe to use at any time,
because cache lines in the I-
Cache can never be dirty. Used
after modifying instructions
anywhere in memory (e.g.
Flash, RAM). FSP calls this
function after initializing the
predefined RAM code section
during startup, and when
exiting Code Flash program or
erase mode in the Flash HP
driver.

SCB_InvalidateICache_by_Addr Loop to invalidate the
instructions in the I-Cache,
starting at a particular address
and extending for the specified
length in bytes.

This is safe to use at any time,
because cache lines in the I-
Cache can never be dirty. Can
be used to more efficiently
invalidate instructions at
specific addresses. Will
invalidate in increments of
cache lines (32 bytes).

These functions can be safely interrupted and do not need to be guarded by critical sections.
However, depending on the structure of the application logic, guarding the functions may be
necessary. This must be analyzed for an individual scenario. See the CMSIS 6 API reference material

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 27 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Cache Functions and Macros

for further information.

CMSIS 6 D-Cache Functions

Function Purpose Notes

SCB_EnableDCache If D-Cache allocations are not
already enabled, loop to
invalidate the entire D-Cache
then enable D-Cache
allocations with CCR.DC.

Will do nothing if D-Cache
allocations are already enabled.
FSP automatically calls this
function at startup if
BSP_CFG_DCACHE_ENABLED is
defined and non-zero.

SCB_DisableDCache Disable D-Cache allocations
with CCR.DC, then loop to clean
and invalidate the entire D-
Cache.

SCB_InvalidateDCache Loop to invalidate the entire D-
Cache.

This function should generally
not be used, since no use case
typically exists to invalidate the
entire D-Cache.

SCB_CleanDCache Loop to clean the entire D-
Cache.

SCB_CleanInvalidateDCache Loop to clean and invalidate the
entire D-Cache.

SCB_InvalidateDCache_by_Addr Loop to invalidate the data in
the D-Cache, starting at a
particular address and
extending for the specified
length in bytes.

Will invalidate in increments of
cache lines (32 bytes).

SCB_CleanDCache_by_Addr Loop to clean the data in the D-
Cache, starting at a particular
address and extending for the
specified length in bytes.

Will clean in increments of
cache lines (32 bytes).

SCB_CleanInvalidateDCache_by
_Addr

Loop to clean and invalidate the
data in the D-Cache, starting at
a particular address and
extending for the specified
length in bytes.

Will clean and invalidate in
increments of cache lines (32
bytes).

These functions can be safely interrupted and do not need to be guarded by critical sections.
However, depending on the structure of the application logic, guarding the functions may be
necessary. This must be analyzed for an individual scenario. See the CMSIS 6 API reference material
for further information.

2.3.7 Cache Details

I-Cache Details

FSP I-Cache and FCACHE Behavior

Because of the simplicity of the I-Cache and FCACHE relative to the D-Cache and the critical

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 28 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Cache Details

instruction execution performance enhancement that they provide, FSP always enables the I-Cache
and the FCACHE. This is not configurable.

FSP automatically enables the I-Cache at startup for CM85 by directly setting CCR.IC. This method is
used instead of the CMSIS 6 function, so that the I-Cache, branch prediction, and the low-overhead
branch (LOB) extension may simultaneously be enabled. The automatic hardware cache invalidation
of the CM85 ensures that cache lookups, allocations, and cache maintenance are no-op until the
invalidation is finished, so immediately enabling the I-Cache is safe to do.

FSP invalidates the I-Cache using the CMSIS 6 functions:

After initialzing the predefined RAM code section during startup
After initializing the SAU for a Secure TZ application
When exiting Code Flash program or erase mode in the Flash HP driver

The FCACHE is a Renesas cache, not an Arm cache, and it is controlled through its separate
peripheral registers.

User Required I-Cache Maintenance

If instructions have changed outside of the control of FSP, it is user responsibility to perform I-Cache
maintenance. This means instructions stored in any cacheable location, including internal flash,
internal RAM, external flash, external RAM, etc. It is recommended to use the CMSIS 6 functions to
perform I-Cache maintenance.

Users must also consider the interactions that D-Cache has with instruction modifications. For
example, if the modified instructions are written to a cacheable location while D-Cache is enabled
(e.g. RAM), those data writes may be cached. The D-Cache will need to be cleaned to guarantee that
all data writes have been written back to guarantee their visibility to the I-Cache. D-Cache
maintenance will also be needed if instructions change in Code or Data Flash via FACI and are
cacheable, since D-Cache will cache instructions as data.

There is no hardware mechanism between the I-Cache and D-Cache in which they automatically
share coherency, so coherency must be manually maintained by software as required.

D-Cache Details

FSP D-Cache Behavior

The D-Cache is a cache with more complex interactions than the I-Cache. Thus, FSP leaves the D-
Cache disabled by default on RA8 projects. It can be enabled in e2 Studio under the BSP->Cache
settings->Data cache properties panel for the project.

Presently, FSP does not support any D-Cache functionality except:

Configuring the Arm MPU (S and NS) with two predefined no-cache sections if they are non-
zero size

One in SRAM
One in SDRAM

Enabling the Arm MPU (S and NS) after configuration
Enabling D-Cache allocations (S or NS) with the CMSIS function

No FSP drivers are currently compatible with D-Cache enablement. This compatibility is a
work in-progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 29 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Cache Details

User Required D-Cache Maintenance

Presently, D-Cache usage is fully in the realm of user responsibility. The user must perform all D-
Cache maintenance as required, or must store data accordingly in the predefined non-cacheable
regions or otherwise.

Affected Bus Masters

Coherency must be considered for these bus masters:

CEU
DMAC
DRW
DTC
EDMAC
GLCDC
MIPI

Other Interactions that are not Bus Masters

Coherency must be considered for interactions with:

FACI
CSC
SDRAM
Standby SRAM
OSPI
Code in RAM (I-Cache and D-Cache are not automatically coherent)

FSP Predefined No-Cache Sections

The .nocache and .nocache_sdram sections are predefined for GCC, LLVM, and IAR compilers. These
same sections exist for AC6 as .bss.nocache and .bss.nocache_sdram because of special naming
restrictions with AC6 and uninitialized sections. These sections are uninitialized for all compilers,
despite AC6 requiring a prefix of .bss.

Anything placed within them will be non-cacheable. Instruction fetches and data reads or writes to
these sections will never lookup or allocate in their respective caches.

The FSP startup code configures these sections as non-cacheable using the MPU during startup, if
the D-Cache is enabled via the BSP configuration. Otherwise, they are not configured by FSP in the
MPU if the D-Cache is disabled. The predefined sections are aligned to 32 bytes and are padded to a
minimum of 32 bytes in length. This meets both MPU region alignment and length requirements, and
cache line alignment and length requirements. The MPU and cache line alignment and length
requirements protect against inadvertent mixing of cacheable and non-cacheable data.

2.3.8 Other Information

Cache Maintenance when MPU Configuration Changes

If the Secure and/or Non-secure MPU configuration is changed, and the cacheability of an address
changes, cache maintenance is required to synchronize the caches with the new memory attributes.
If this is not done, a newly non-cacheable address may be left in the cache, and behavior when
accessing the address is considered undefined.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 30 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Other Information

Cache Maintenance when SAU Configuration Changes

If the SAU configuration is changed, and the security attributes of an address changes, cache
maintenance is required to synchronize the caches with the new security attributes. If this is not
done, cached data will be desynchronized with the new security attributes and may result in
undefined behavior.

Cache Maintenance and TrustZone

Warning
If cacheable shared data is improperly structured by the Secure application and
is not aligned and padded to match D-Cache line requirements, a clean and
invalidate by set/way of the D-Cache by the Non-secure application, or an
automatic D-Cache eviction by the Non-secure application, will cause data to be
destroyed for the Secure application. This consequence is additional to the bugs that
the Secure application may trigger itself by improper data layout, D-Cache maintenance,
and automatic D-Cache eviction.

The System Address Map and the MPU

The Armv8-M Architecture Reference Manual specifies a default system address map that defines
the memory regions of the architecture and their various properties.

These properties include the memory type, shareability attributes, and cacheability attributes for the
regions. When the MPU is disabled, this default system address map provides the system with
default attributes for instruction fetches, data reads, and data writes to and from addresses. When
the MPU is enabled, it can be used to override the default system address map entirely, or both may
be used together by setting the MPU_CTRL.PRIVDEFENA bit. This bit allows instruction fetches or
data reads and writes that do not correspond to a configured MPU region to hit the default system
address map as a background region instead, so long as the access is Privileged. FSP does not
support Unprivileged execution, so it always assumes Privileged execution state. Allowing the default
system address map as a background region is the method that FSP uses to provide the predefined
no-cache sections, by configuring the MPU for the no-cache sections while allowing all other memory
accesses to rely on the default system address map. Configuring an MPU region involves specifying a
32 byte aligned start address and an inclusive ending address, and also specifying the various
memory attributes of the region. The MPU region beginning address register will mask downward to
align to a 32 byte boundary. i.e (address & ~0x1F) The MPU region ending address register will OR
upward with 0x1F for the inclusive ending boundary. i.e. (address | 0x1F) Thus, the minimum size of
an MPU region is 32 bytes and the size may only increase in 32 byte increments.

See the Armv8-M Memory Model and Memory Protection User Guide in the references section for a
high-level introduction, and the Armv8-M Architecture Reference Manual for details.

Speculative Instruction Fetching and Data Reads

The CM85 may, with no deliberate software instruction, speculatively fetch instructions or read data
from any memory location. Upon doing so, the instruction fetch or data read may enter the
respective cache. The purpose of this speculative behavior is to predict the next instructions or data
to be fetched, read, or written, which increases performance if the prediction is correct. This may
cause instructions or data to unexpectedly appear in cache, so speculation must be
considered when solving for cache coherency.

Cache Eviction

At any time, the I-Cache or D-Cache may evict cache lines. For I-Cache, this means invalidation of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 31 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Other Information

the evicted line. For D-Cache, this means cleaning and invalidation of the evicted line, where
cleaning occurs if the cache line is dirty. D-Cache eviction of dirty lines may cause data to be
unexpectedly written out to backing memory when write-back is used, and this must be
considered when solving for cache coherency. For D-Cache aligned and padded buffers
derived from areas like the stack or heap, one or more of the associated cache lines may
already be dirty and require cleaning and/or invalidation before being used by a bus
master.

Example of D-Cache Eviction and Speculative Read Dangers

The CM85 will provide a SRAM buffer to the DMAC, the DMAC will write to the buffer, and the CM85
will read from the written buffer. I-Cache, D-Cache, and FCACHE are enabled. SRAM exists in the
same "SRAM" region defined by the default system address map in the Armv8-M Architecture
Reference Manual. SRAM is Normal memory, write-back, write-allocate, read-allocate, and non-
shareable by the default system address map attributes.

The correct way to solve coherency in this situation using the two recommended solution options is:

1. The MPU is used to configure a non-cacheable region where the SRAM buffer is placed.
The MPU region is correctly aligned and padded to meet start and end address
alignment requirements, and region attributes are correctly configured.
No additional effort is required.
FSP provides the predefined .nocache section that meets these requirements.

2. The SRAM buffer is left to its default attributes, making it cacheable.
Regardless of whether write-back or write-through is used, the buffer start must be
aligned to a cache line and the buffer must be a length multiple of cache line size.

Unrelated data can never be mixed on cache lines if write-back is used. It
is best to follow this strict guideline even when write-through is used.

The cache lines of the buffer may already be dirty, especially if the buffer is
allocated in a stack or heap.
If write-back is used, cache maintenance is conducted in order.

Invalidate buffer.
CM85 provides buffer to DMAC and starts DMAC.
DMAC writes to buffer.
CM85 waits for DMAC to complete.
Invalidate buffer.
CM85 reads from buffer.

The first invalidation is to remove dirty lines, which may already exist from stack
or heap allocation. The data does not need to be written back and can be
discarded without a clean.

If this is not done, an eviction (effectively an automatic clean and
invalidate by the hardware) will cause stale data to be written back to the
buffer and destroy newly written DMAC data.

The second invalidation is to remove speculatively read cache lines, which may
have been cached before the DMAC write completed.

If this is not done, the CM85 will read stale data from the buffer that has
been prematurely cached.

Write-through may also use this sequence, although the first invalidate should be
a no-op since no lines can be dirty and no stale data should be written back by an
eviction.
The CMSIS cache maintenance functions should be used to perform cache
maintenance, since they include necessary memory barriers.

The second solution is shown in the D-Cache Enabled scenarios here where write-back is used and a
bus master performs writing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 32 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Other Information

Cache ECC with FSP

By default, FSP disables ECC for the caches and TCM with OFS1.INITECCEN. For best performance, it
is recommended to keep ECC for cache and TCM disabled. If enabling is desired, please consult the
reference material to understand the consequences of enabling ECC for cache and TCM, which are
too numerous to describe here. The automatic hardware cache invalidation performed by the CM85
is compatible with ECC.

MPU Cacheability Attributes

Cacheable or Non-Cacheable
Allocation Policies

Read Allocate
Write Allocate

Write Policy
Write Back or Write Through

Transient or Non-Transient

For D-Cache, Shareable or Non-Shareable also affects whether an address is Cacheable or Non-
Cacheable. A Shareable address is forced to Non-Cacheable for D-Cache. I-Cache is not influenced by
the Shareability properties and will always follow the MPU cacheability attributes. The Transient
attribute is of limited utility and can mostly be ignored. Clean cache lines that are marked Transient
are preferred for eviction before clean cache lines marked Non-Transient. Dirty cache lines whether
marked Transient or Non-Transient are evicted with the same priority.

See the CM85 Technical Reference Manual reference material for further information.

Cache Behavior with CCR and MSCR

x = [I, D]

CCR.xC (S or NS) MSCR.xCACTIVE Behavior

1 1 Allocate, Lookup

0 1 No Allocate, Lookup (Reset
Behavior)

X 0 No Allocate, No Lookup

This behavior is applicable to Cortex-M55 and Cortex-M85. If you have previous experience with a
Cortex-M7 device, this cache behavior is different since MSCR.xCACTIVE bits were introduced for
CM55 and CM85. No CM7 or CM55 core is offered by any current RA devices. The new addition of the
MSCR.xCACTIVE bits allow for cache power control, and by allowing a third cache behavioral state of
lookups without allocation, cleaning the D-Cache after disabling it becomes less error prone since
dirty cache lines cannot be made stale before being cleaned, by writes occurring after D-Cache is
disabled like on CM7. The MSCR.xCACTIVE bits have a reset value of 1, so the caches are powered by
default and lookups are possible. Until the automatic hardware cache invalidation which begins after
reset finishes, lookups and allocations do not occur even if CCR.xC is set, and cache maintenance
operations are no-op. The MSCR.xCACTIVE bits should generally never be cleared to 0.

Cache Errata

Consult the latest Renesas Technical Updates (TU) and Arm Cortex-M85 Errata documents.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 33 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > Other Information

These are example errata to demonstrate the possibility of issues with cache usage at the time of
this writing.

Cortex-M85 AT640 and Cortex-M85 with FPU AT641

Software Developer Errata Notice

Date of issue: April 16, 2024

Document version: 14.0

Document ID: SDEN-2236668

2682779

After deactivating the instruction cache, self-modified code might not be executed

correctly

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r0p1, r0p2. Fixed in r1p0

3175626

AXI hang due to dependency between read data channel and write response channel

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r0p1, r0p2, r1p0. Fixed in r1p1

3190818

Under limited circumstances, LDM to normal non-cacheable AXI location cannot complete

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r0p1, r0p2, and r1p0. Fixed in r1p1

Currently available RA8D1, RA8M1, and RA8T1 devices use the r0p2 variant of the core, so they are
affected by these errata.

Erratum 2682779 should not require a workaround, since I-Cache will never be powered off in most
circumstances.

FSP added workarounds for 3175626 and 3190818 in v5.3.0.

2.3.9 References

Note
Cross-reference documents from multiple sources and consult with colleagues and other support channels for
maximum confidence.

Renesas

Generally, consult these categories of documents for the most recent and further information than
this overview may provide.

RA Datasheets

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 34 / 5,560

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > References

RA Hardware User Manuals (HWM, HWUM, UM)
RA Application Notes (AN)
RA Knowledge Base Articles (KB)
RA Technical Updates (TU)
RA Example Projects

RA8D1

1. RA8D1 Product Page
2. RA8D1 Datasheet
3. RA8D1 User's Manual: Hardware

RA8M1

1. RA8M1 Product Page
2. RA8M1 Datasheet
3. RA8M1 User's Manual: Hardware

RA8T1

1. RA8T1 Product Page
2. RA8T1 Datasheet
3. RA8T1 User's Manual: Hardware

BSP Usage Notes

1. Limited D-Cache Support
2. Non-Cacheable Buffer Placement Example

Arm

Note
Arm links appended with "latest" may not actually resolve to the most recent document, because of issues with
the Arm documentation website. Always check that the document you are accessing is truly the most recent
version using the version drop-down list box.

Armv8-M and Armv8.1-M Architectures

1. Armv8-M Architecture Reference Manual
2. Armv8-M Memory Model and Memory Protection User Guide
3. Armv8-M Exception Model User Guide

Cortex-M85

1. Cortex-M85 Product Page
2. Arm Cortex-M85 Processor Technical Reference Manual
3. Arm Cortex-M85 Processor Devices Generic User Guide
4. Cortex-M85 AT640 and Cortex-M85 with FPU AT641 Software Developer Errata Notice
5. Arm Cortex-M85 Processor Software Optimization Guide

CMSIS 6

1. CMSIS 6 GitHub Repository
2. CMSIS 6 Documentation
3. CMSIS 6 MPU API for Armv8-M

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 35 / 5,560

https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra8d1-480-mhz-arm-cortex-m85-based-graphics-microcontroller-helium-and-trustzone
https://www.renesas.com/us/en/document/dst/ra8d1-group-datasheet
https://www.renesas.com/us/en/document/mah/ra8d1-group-users-manual-hardware
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra8m1-480-mhz-arm-cortex-m85-based-microcontroller-helium-and-trustzone
https://www.renesas.com/us/en/document/dst/ra8m1-group-datasheet
https://www.renesas.com/us/en/document/mah/ra8m1-group-users-manual-hardware
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra8t1-480-mhz-arm-cortex-m85-based-motor-control-microcontroller-helium-and-trustzone
https://www.renesas.com/us/en/document/dst/ra8t1-group-datasheet
https://www.renesas.com/us/en/document/mah/ra8t1-group-users-manual-hardware
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/107565/latest
https://developer.arm.com/documentation/107706/latest
https://developer.arm.com/Processors/Cortex-M85
https://developer.arm.com/documentation/101924/latest
https://developer.arm.com/documentation/101928/latest
https://developer.arm.com/documentation/108872/latest
https://developer.arm.com/documentation/107950/latest
https://github.com/ARM-software/CMSIS_6
https://arm-software.github.io/CMSIS_6/latest/General/index.html
https://arm-software.github.io/CMSIS_6/latest/Core/group__mpu8__functions.html

Flexible Software Package

User’s Manual
Reference Materials > Cortex-M85 Caches > References

4. CMSIS 6 Cache API

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 36 / 5,560

https://arm-software.github.io/CMSIS_6/latest/Core/group__cache__functions__m7.html

Flexible Software Package

User’s Manual
Starting Development

Chapter 3 Starting Development

3.1 Starting Development Introduction
The wealth of resources available to learn about and use e² studio and FSP can be overwhelming on
first inspection, so this section provides a Starting Development Guide with a list of the most
important initial steps. Following these highly recommended first 11 steps will bring you up to speed
on the development environment in record time. Even experienced developers can benefit from the
use of this guide, to learn the terminology that might be unfamiliar or different from previous
environments.

1. Read the section What is e² studio?, up to but not including e² studio Prerequisites. This will
provide a description of the various windows and views to use e² studio to create a project,
add modules and threads, configure module properties, add code, and debug a project. It
also describes how to use key coding 'accelerators' like Developer Assist (to drag and drop
parameter populated API function calls right into your code), a context aware Autocomplete
(to easily find and select from suggested enumerations, functions, types, and many other
coding elements), and many other similar productivity enhancers.

2. Read the FSP Architecture, FSP Modules and FSP Stacks sections. These provide the basic
background on how FSP modules and stacks are used to construct your application.
Understanding their definitions and the theory behind how they combine will make it easier
to develop with FSP.

3. Read a few Modules sections to see how to use API function calls, structures, enumerations,
types and callbacks. These module guides provide the information you will use to
implement your project code.

4. After you have a Kit and you have downloaded and installed e² studio and FSP, you can
build and debug a simple project to test your installation, tool flow, and the kit. (If you do
not have a Kit or have not yet installed the development software, use the links included in
the e² studio Prerequisites for more information.) The simple Tutorial: Your First RA MCU
Project - Blinky will Blink an LED on and off. Follow the instructions for importing and
running this project in section Create a New Project for Blinky. It will use some of the key
steps for managing projects within e² studio and is a good way to learn the basics.

5. Once you have successfully run Blinky you have a good starting point for using FSP for more
complex projects. The Using HAL Drivers Tutorial, available at Tutorial: Using HAL Drivers -
Programming the WDT, shows how to create a project from scratch, using FSP API functions.
Do this next.

6. Several Hands-on Quick FSP Labs are available that cover key development topics with
short 15-minute Do it Yourself (DiY) activities targeting the EK-RA6M3. Topics covered
include code development accelerators like Developer Assistance, Autocomplete, Help,
Visual Expressions and using Example Projects. The complete list of available Quick FSP
Labs can be found here: https://en-
support.renesas.com/knowledgeBase/category/31087/subcategory/31090. Doing a couple
of these labs provides further details on using FSP, and is also good practice. Running these
labs is highly recommended.

7. The balance of the FSP Architecture sections (that is, those not called out in step 2 above)
contain additional reference material that may be helpful in the future. Scan them so you
know what they contain, in case you need them.

8. The balance of the e² studio User Guide, starting with the What is a Project? section up to,
but not including, Writing the Application section, provides a detailed description of each of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 37 / 5,560

https://en-support.renesas.com/knowledgeBase/category/31087/subcategory/31090
https://en-support.renesas.com/knowledgeBase/category/31087/subcategory/31090

Flexible Software Package

User’s Manual
Starting Development > Starting Development Introduction

the key steps, windows, and entries used to create, manage, configure, build and debug a
project. Much of this may be familiar after running through the tutorials and Quick Labs.
However, it is important to have a good grasp of what each of the configuration tabs are
used for as that is where the bulk of the project preparation work takes place prior to
writing code. Skim over this section as it may help with any questions in the future.

9. Read the Writing the Application section to get a short introduction to the steps used when
creating application code with FSP. It covers both RTOS-independent and RTOS-dependent
applications. It also includes a short description for several of the code accelerators you
should be familiar with by now. Using additional Quick FSP Labs is a good way to become
familiar with the application development process and links to them are included in the
appropriate places in this section. You can find the complete list of available Quick FSP Labs
here: https://en-support.renesas.com/knowledgeBase/19308277.

10. Scan the Debugging the Project section to see the steps required to download and start a
debug session.

11. Explore the additional material available on the following web pages and bookmark the
resources that look most valuable to you:

a. RA Landing Page: https://www.renesas.com/ra
b. FSP Landing Page: https://www.renesas.com/fsp
c. Example Projects on GitHub: https://github.com/renesas/ra-fsp-examples
d. Quick FSP Labs Listing: https://en-support.renesas.com/knowledgeBase/19308277
e. RA and FSP Knowledge Base (with articles of interest on RA and FSP): https://en-

support.renesas.com/knowledgeBase/category/31087
f. RA and FSP Renesas Rulz site (Community posted and answered questions):

https://renesasrulz.com/ra/
g. FSP Releases: https://github.com/renesas/fsp/releases
h. FSP Documentation: https://renesas.github.io/fsp
i. Online Technical Support: https://www.renesas.com/us/en/support/contact.html

3.2 e² studio User Guide
3.2.1 What is e² studio?

Renesas e² studio is a development tool encompassing code development, build, and debug. e²
studio is based on the open-source Eclipse IDE and the associated C/C++ Development Tooling
(CDT).

When developing for RA MCUs, e² studio hosts the Renesas Flexible Software Package (FSP). FSP
provides a wide range of time saving tools to simplify the selection, configuration, and management
of modules and threads, to easily implement complex applications. The time saving tools available in
e² studio and FSP include the following:

A Graphical User Interface (GUI) (see Adding Threads and Drivers) with numerous wizards
for configuring and auto-generating code
A context sensitive Autocomplete (see Tutorial: Using HAL Drivers - Programming the WDT)
feature that provides intelligent options for completing a programming element
A Developer Assistance tool for selection of and drag and drop placement of API functions
directly in application code
A Welcome Window with links to example projects, application notes and a variety of other
self-help support resources
An Information Icon from each module is provided in the graphic configuration viewer that
links to specific design resources, including code 'cheat sheets' that provide useful starting
points for common application implementations.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 38 / 5,560

https://en-support.renesas.com/knowledgeBase/19308277
https://www.renesas.com/ra
https://www.renesas.com/fsp
https://github.com/renesas/ra-fsp-examples
https://en-support.renesas.com/knowledgeBase/19308277
https://en-support.renesas.com/knowledgeBase/category/31087
https://en-support.renesas.com/knowledgeBase/category/31087
https://renesasrulz.com/ra/
https://github.com/renesas/fsp/releases
https://renesas.github.io/fsp
https://www.renesas.com/us/en/support/contact.html

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > What is e² studio?

Figure 6: e² studio Splash Screen

 e² studio organizes project work based on Perspectives, Views, Windows, Panes, and Pages
(sometimes called Tabs). A window is a section of the e² studio GUI that presents information on a
key topic. Windows often use tabs to select sub-topics. For example, an editor window might have a
tab available for each open file, so it is easy to switch back and forth between them. A window Pane
is a section of a window. Within a window, multiple Panes can be opened and viewed simultaneously,
as opposed to a tabbed window, where only individual content is displayed. A memory-display
Window, for example, might have multiple Panes that allow the data to be displayed in different
formats, simultaneously. A Perspective is a collection of Views and Windows typical for a specific
stage of development. The default perspectives are a C/C++ Perspective, an FSP Configuration
Perspective and a Debug Perspective. These provide specific Views, Windows, Tabs, and Panes
tailored for the common tasks needed during the specific development stage.

Figure 7: Default Perspective

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 39 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > What is e² studio?

 In addition to managing project development, selecting modules, configuring them and simplifying
code development, e² studio also hosts the engine for automatically generating code based on
module selections and configurations. The engine continually checks for dependencies and
automatically adds any needed lower level modules to the module stack. It also identifies any lower
level modules that require configuration (for example, an interrupt that needs to have a priority
assigned). It also provides a guide for selecting between multiple choices or options to make it easy
to complete a fully functional module stack.

The Generate Project Content function takes the selected and configured modules and automatically
generates the complete and correct configuration code. The code is added to the folders visible in
the Project Explorer window in e² studio. The configuration.xml file in the project folder holds all
the generated configuration settings. This file can be opened in the GUI-based RA Configuration
editor to make further edits and changes. Once a project has been generated, you can go back and
reconfigure any of the modules and settings if required using this editor.

Figure 8: Project Explorer Window showing generated folders and configuration.xml file

3.2.2 e² studio Prerequisites

3.2.2.1 Obtaining an RA MCU Kit

To develop applications with FSP, start with one of the Renesas RA MCU Evaluation Kits. The Renesas
RA MCU Evaluation Kits are designed to seamlessly integrate with e² studio.

Ordering information, Quick Start Guides, User Manuals, and other related documents for all RA MCU
Evaluation Kits are available at https://www.renesas.com/ra.

3.2.2.2 PC Requirements

The following are the minimum PC requirements to use e² studio:

Windows 10 with Intel i5 or i7, or AMD A10-7850K or FX
Memory: 8-GB DDR3 or DDR4 DRAM (16-GB DDR4/2400-MHz RAM is preferred)
Minimum 250-GB hard disk

3.2.2.3 Installing e² studio, platform installer and the FSP package

Detailed installation instructions for e² studio and FSP are available on the Renesas website
https://www.renesas.com/fsp. Review the release notes for e² studio to ensure that the e² studio
version supports the selected FSP version. The starting version of the installer includes all features of
the RA MCUs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 40 / 5,560

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > e² studio Prerequisites > Choosing a Toolchain

3.2.2.4 Choosing a Toolchain

e² studio can work with several toolchains and toolchain versions such as the GNU Arm compiler,
Arm AC6, and LLVM Embedded Toolchain for Arm. Versions of the GNU Arm and LLVM compilers
verified for use with FSP are included in the e² studio installer.

3.2.2.5 Licensing

FSP licensing includes full source code, limited to Renesas hardware only.

3.2.3 What is a Project?

In e² studio, all FSP applications are organized in RA MCU projects. Setting up an RA MCU project
involves:

1. Creating a Project
2. Configuring a Project

These steps are described in detail in the next two sections. When you have existing projects
already, after you launch e² studio and select a workspace, all projects previously saved in the
selected workspace are loaded and displayed in the Project Explorer window. Each project has an
associated configuration file named configuration.xml, which is located in the project's root directory.

Figure 9: e² studio Project Configuration file

Double-click on the configuration.xml file to open the RA MCU Project Editor. To edit the project
configuration, make sure that the FSP Configuration perspective is selected in the upper right
hand corner of the e² studio window. Once selected, you can use the editor to view or modify the
configuration settings associated with this project.

Figure 10: e² studio FSP Configuration Perspective

Note
Whenever the RA project configuration (that is, the configuration.xml file) is saved, a verbose RA Project Report
file (ra_cfg.txt) with all the project settings is generated. The format allows differences to be easily viewed using a
text comparison tool. The generated file is located in the project root directory.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 41 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > What is a Project?

Figure 11: RA Project Report

 The RA Project Editor has a number of tabs. The configuration steps and options for individual tabs
are discussed in the following sections.

Note
The tabs available in the RA Project Editor depend on the e² studio version and the layout may vary slightly,
however the functionality should be easy to follow..

Figure 12: RA Project Editor tabs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 42 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > What is a Project?

Click on the YouTube icon to visit the Renesas FSP playlist on YouTube
Click on the Support icon to visit RA support pages at Renesas.com
Click on the user manual (owl) icon to open the RA software package User's Manual

3.2.4 Creating a Project

During project creation, you specify the type of project, give it a project name and location, and
configure the project settings for version, target board, whether an RTOS is included, the toolchain
version, and the beginning template. This section includes easy-to-follow step-by-step instructions
for all of the project creation tasks. Once you have created the project, you can move to configuring
the project hardware (clocks, pins, interrupts) and the parameters of all the modules that are part of
your application.

3.2.4.1 Creating a New Project

For RA MCU applications, generate a new project using the following steps:

1. Click on File > New > RA C/C++ Project > Renesas RA.

Figure 13: New RA MCU Project

 Then click on the type of template for the type of project you are creating.

Figure 14: New Project Templates

2. Select a project name and location.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 43 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Creating a New Project

Figure 15: RA MCU Project Generator (Screen 1)

3. Click Next.

3.2.4.2 Selecting a Board and Toolchain

In the Project Configuration window select the hardware and software environment:

1. Select the FSP version.
2. Select the Board for your application. You can select an existing RA MCU Evaluation Kit or

select Custom User Board for any of the RA MCU devices with your own BSP definition.
3. Select the Device. The Device is automatically populated based on the Board selection.

Only change the Device when using the Custom User Board (Any Device) board
selection.

4. To add threads, select RTOS, or No RTOS if an RTOS is not being used.
5. The Toolchain selection defaults to GCC Arm Embedded.
6. Select the Toolchain version. This should default to the installed toolchain version.
7. Select the Debugger. The J-Link Arm Debugger is preselected.

8. Click Next.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 44 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Selecting a Board and Toolchain

Figure 16: RA MCU Project Generator (Screen 2)

Note
Click on the Help icon (?) for user guides, RA contents, and other documents.

3.2.4.3 Selecting Flat or Arm TrustZone Project

If you selected a device or tool based on an Arm® Cortex®-M33, you next select whether to use
Arm® TrustZone® technology in your project. For normal, non-TrustZone projects, select "Flat".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 45 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Selecting Flat or Arm TrustZone Project

Figure 17: Flat, Secure, or Non-Secure Project

 For more information on Arm TrustZone technology, see Primer: Arm TrustZone Project
Development.

3.2.4.4 Selecting a Project Template

In the next window, select the buiild artifact and RTOS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 46 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Selecting a Project Template

Figure 18: RA MCU Project Generator (Screen 3)

 In the next window, select a project template from the list of available templates. By default, this
screen shows the templates that are included in your current RA MCU pack. Once you have selected
the appropriate template, click Finish.

Note
If you want to develop your own application, select the basic template for your board, Bare Metal - Minimal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 47 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Selecting a Project Template

Figure 19: RA MCU Project Generator (Screen 4)

 When the project is created, e² studio displays a summary of the current project configuration in the
RA MCU Project Editor.

Figure 20: RA MCU Project Editor and available editor tabs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 48 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating a Project > Selecting a Project Template

 On the bottom of the RA MCU Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

With the Summary tab, you can see all they key characteristics of the project: board,
device, toolchain, and more.
With the BSP tab, you can change board specific parameters from the initial project
selection.
With the Clocks tab, you can configure the MCU clock settings for your project.
With the Pins tab, you can configure the electrical characteristics and functions of each
port pin.
With the Interrupts tab, you can add new user events/interrupts.
With the Event Links tab, you can configure events used by the Event Link Controller.
With the Stacks tab, you can add and configure FSP modules. For each module selected in
this tab, the Properties window provides access to the configuration parameters, interrupt
priorities, and pin selections.
The Components tab provides an overview of the selected modules. Although you can also
add drivers for specific FSP releases and application sample code here, this tab is normally
only used for reference.

The functions and use of each of these tabs is explained in detail in the next section.

3.2.5 Configuring a Project

Each of the configurable elements in an FSP project can be edited using the appropriate tab in the
RA Configuration editor window. Importantly, the initial configuration of the MCU after reset and
before any user code is executed is set by the configuration settings in the BSP, Clocks and Pins
tabs. When you select a project template during project creation, e² studio configures default values
that are appropriate for the associated board. You can change those default values as needed. The
following sections detail the process of configuring each of the project elements for each of the
associated tabs.

3.2.5.1 Summary Tab

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 49 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Summary Tab

Figure 21: Configuration Summary tab

 The Summary tab, seen in the above figure, identifies all the key elements and components of a
project. It shows the target board, the device, toolchain and FSP version. Additionally, it provides a
list of all the selected software components and modules used by the project. This is a more
convenient summary view when compared to the Components tab.

The summary tab also includes handy icons with links to the Renesas YouTube channel, the Renesas
support page and to the RA FSP User Manual that was downloaded during the installation process.

3.2.5.2 Configuring the BSP

The BSP tab shows the currently selected board (if any) and device. The Properties view is located in
the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 50 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring the BSP

Figure 22: Configuration BSP tab

 The Properties view shows the configurable options available for the BSP. These can be changed
as required. The BSP is the FSP layer above the MCU hardware. e² studio checks the entry fields to
flag invalid entries. For example, only valid numeric values can be entered for the stack size.

When you click the Generate Project Content button, the BSP configuration contents are written
to ra_cfg/fsp_cfg/bsp/bsp_cfg.h

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

3.2.5.3 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock UCLK has been changed so the resulting clock frequency is 60 MHz
instead of the required 48 MHz. This parameter is colored red.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 51 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Clocks

Figure 23: Configuration Clocks tab

 When you click the Generate Project Content button, the clock configuration contents are written
to: ra_gen/bsp_clock_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

3.2.5.4 Configuring Pins

The Pins tab provides flexible configuration of the MCU's pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in e² studio, select Window > Show View > Pin Configurator > Package
from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the EK-RA6M3, some peripherals connected on the
board are preselected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 52 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Pins

Figure 24: Pins Configuration

 The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P611 is already used by the CAC, and the attempt to connect this
port to the Serial Communications Interface (SCI) results in a dangling connection error. To fix this
error, select another port from the pin drop-down list or disable the CAC in the Pin Selection pane
on the left side of the tab.

Figure 25: e² studio Pin configurator

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 53 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Pins

The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

Figure 26: e² studio Pin configurator package view

 When you click the Generate Project Content button, the pin configuration contents are written
to: ra_gen\bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

To make it easy to share pinning information for your project, e² studio exports your pin
configuration settings to a csv format and copies the csv file to ra_gen/<MCU package>.csv.

3.2.5.5 Configuring Interrupts from the Stacks Tab

You can use the Properties view in the Stacks tab to enable interrupts by setting the interrupt
priority. Select the driver in the Stacks pane to view and edit its properties.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 54 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 27: Configuring Interrupts in the Stacks tab

Creating Interrupts from the Interrupts Tab

On the Interrupts tab, the user can bypass a peripheral interrupt set by FSP by setting a user-
defined ISR. This can be done by adding a new event via the New User Event button.

Figure 28: Configuring interrupt in Interrupt Tab

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 55 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 29: Adding user-defined event

 Enter the name of ISR for the new user event.

Figure 30: User-defined event ISR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 56 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 31: Using a user-defined event

3.2.5.6 Viewing Event Links

The Event Links tab can be used to view the Event Link Controller events. The events are sorted by
peripheral to make it easy to find and verify them.

Figure 32: Viewing Event Links

 Like the Interrupts tab, user-defined event sources and destinations (producers and consumers) can
be defined by clicking the relevant New User Event button. Once a consumer is linked to a
producer the link will appear in the Allocations section at the bottom.

Note
When selecting an ELC event to receive for a module (or when manually defining an event link), only the events
that are made available by the modules configured in the project will be shown.

3.2.6 Adding Threads and Drivers

Every RTOS-based RA Project includes at least one RTOS Thread and a stack of FSP modules running

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 57 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers

in that thread. The Stacks tab is a graphical user interface which helps you to add the right modules
to a thread and configure the properties of both the threads and the modules associated with each
thread. Once you have configured the thread, e² studio automatically generates the code reflecting
your configuration choices.

For any driver, or, more generally, any module that you add to a thread, e² studio automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Stacks pane, which e² studio populates with the selected modules and module
options for the selected thread.

The default view of the Stacks tab includes a Common Thread called HAL/Common. This thread
includes the driver for I/O control (IOPORT). The default stack is shown in the HAL/Common Stacks
pane. The default modules added to the HAL/Common driver are special in that FSP only requires a
single instance of each, which e² studio then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and stacks, see the following
sections:

Adding and Configuring HAL Drivers
Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver's configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

Note
Driver and module selections and configuration options are defined in the FSP pack and can therefore change
when the FSP version changes.

3.2.6.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Stacks pane. The Modules pane changes to
HAL/Common Stacks.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 58 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

Figure 33: e² studio Project configurator - Adding drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in FSP.

3. Select a driver from the menu New Stack > Driver.

Figure 34: Select a driver

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

e² studio adds the following files when you click the Generate Project Content button:

The selected driver module and its files to the ra/fsp directory
The main() function and configuration structures and header files for your application as
shown in the table below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 59 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling
generated and user code. When
called, the BSP already has
Initialized the MCU.

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

The configuration header files for all included modules are created or overwritten in this folder:
ra_cfg/fsp_cfg

3.2.6.2 Adding Drivers to a Thread and Configuring the Drivers

For an application that uses the RTOS, you can add one or more threads, and for each thread at least
one module that runs in the thread. You can select modules from the Driver dropdown menu. To add
modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 60 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 35: Adding a new RTOS Thread on the Stacks tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

Note
e² studio updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New Stack to see a list of modules and drivers.
HAL-level drivers can be added here.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 61 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 36: Adding Modules and Drivers to a thread

4. Select a module or driver from the list.

5. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is
highlighted in the Threads pane.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 62 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 37: Configuring Module or Driver properties

6. If needed, add another thread by clicking New Thread in the Threads pane.

When you press the Generate Project Content button for the example above, e² studio creates
the files as shown in the following table:

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling
generated and user code. When
called the BSP will have
initialized the MCU.

Yes

ra_gen/my_thread.c Generated thread "my_thread"
and configuration structures for
modules added to this thread.

Yes

ra_gen/my_thread.h Header file for thread
"my_thread"

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL Driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 63 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

src/my_thread_entry.c User entry point for thread
"my_thread". Add your code
here.

No

The configuration header files for all included modules and drivers are created or overwritten in the
following folders: ra_cfg/fsp_cfg/<header files>

3.2.6.3 Configuring Threads

If the application uses an RTOS, the Stacks tab can be used to simplify the creation of RTOS
threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

Figure 38: New Thread Properties

 The Properties view contains settings common for all Threads (Common) and settings for this
particular thread (Thread).

For this thread instance, the thread's name and properties (such as priority level or stack size) can
be easily configured. e² studio checks that the entries in the property field are valid. For example, it
will verify that the field Priority, which requires an integer value, only contains numeric values
between 0 and 9.

To add RTOS resources to a Thread, select a thread and click on New Object in the Thread Objects
pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 64 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Adding Threads and Drivers > Configuring Threads

Figure 39: Configuring Thread Object Properties

 Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

3.2.7 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all RA MCU projects are preselected (for example: BSP > BSP >
Board-specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the
modules selected in the Stacks tab are included automatically. You can include or exclude
additional modules by ticking the box next to the required component.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 65 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Reviewing and Adding Components

Figure 40: Components Tab

 Clicking the Generate Project Content button copies the .c and .h files for each selected
component into the following folders:

ra/fsp/inc/api
ra/fsp/inc/instances
ra/fsp/src/bsp
ra/fsp/src/<Driver_Name>

e² studio also creates configuration files in the ra_cfg/fsp_cfg folder with configuration options set in
the Stacks tab.

3.2.8 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Stacks tab,
you can add the application code that calls the Modules and drivers.

Note
To check your configuration, build the project once without errors before adding any of your own application code.

3.2.8.1 Coding Features

e² studio provides several efficiency improving features that help write code. Review these features
prior to digging into the code development step-by-step sections that follow.

Autocomplete

Autocomplete is a context aware coding accelerator that suggests possible completions for partially

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 66 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

typed-in code elements. If you can 'guess' the first part of a macro, for example, the Autocomplete
function can suggest options for completing the rest of the macro.

In the following example, a macro related to a BSP_IO setting needs to be found. After typing
BSP_IO_ in a source code file, pressing Ctrl + Space opens the Autocomplete list. This list shows a
selection of context aware options for completing the macro. Scroll through the window to find the
desired macro (in this case BSP_IO_LEVEL_HIGH) and click on it to add it to your code.

Figure 41: Autocomplete example

 Other code elements can use autocomplete too. Some of the more common uses for Autocomplete
include Enumerations, Types, and API functions - but try it in any situation you think the tool may
have enough context to determine what you might be looking for.

For a hands-on experience using Autocomplete use the Quick FSP Labs for Creating Blinky from
Scratch and Creating an RTC Blinky from Scratch. These 15-minute Do it Yourself labs take you
through the step-by-step process of using Autocomplete, Developer Assistance, and the Help
system.

Welcome Window

The e² studio Welcome window displays useful information and common links to assist in
development. Check out these resources to see what is available. They are updated with each
release, so check back to see what has been added after a new release.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 67 / 5,560

https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

Figure 42: Welcome window

Cheat Sheets

Cheat sheets are macro driven illustrations of some common tasks. They show, step-by-step, what
commands and menus are used. These will be populated with more examples on each release.
Cheat Sheets are available from the Help menu.

Figure 43: Cheat Sheets

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 68 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

Developer Assistance

FSP Developer Assistance provides developers with module and Application Programming Interface
(API) reference documentation in e² studio. After configuring the threads and software stacks for an
FSP project with the RA Configuration editor, Developer Assistance quickly helps you get started
writing C/C++ application code for the project using the configured stack modules.

1. Expand the project explorer to view Developer Assistance

Figure 44: Developer Assistance

2. Expand a stack module to show its APIs

Figure 45: Developer Assistance APIs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 69 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

3. Dragging and dropping an API from Develop Assistance to a source file helps to write source
code quickly.

Figure 46: Dragging and Dropping an API in Developer Assistance

 For a hands-on experience using Developer Assistance use the Quick FSP Labs for An Introduction to
Developer Assistance, Creating Blinky from Scratch and Creating an RTC Blinky from Scratch. These
15-minute Do it Yourself labs take you through the step-by-step process of using Autocomplete,
Developer Assistance, and the Help system.

Information Icon

Information icons are available on each module in the thread stack. Clicking on these icons opens a
module folder on GitHub that contains additional information on the module. An example information
Icon is shown below:

Figure 47: Information icon

IDE Help

A good source of additional information for many FSP topics is the Help system. To get to the Help
system, click on Help and then select Help Contents as seen below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 70 / 5,560

https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

Figure 48: Opening the Help System

 Once the Help system is open, select the RA Contents entry in the left side Guide-bar. Expand it to
see the main RA Topics.

Figure 49: RA Content Help

 You can also search for help topics by using the Search bar. Below is an example searching for
Visual Expressions, a helpful feature in the e² studio debugger.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 71 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Coding Features

Figure 50: e² studio Help from the Search Bar

 For a hands-on experience using the Help system use the Quick FSP Labs for An Introduction to
Developer Assistance, Creating Blinky from Scratch and Creating an RTC Blinky from Scratch. These
15-minute Do it Yourself labs take you through the step-by-step process of using Autocomplete,
Developer Assistance, and the Help system.

3.2.8.2 HAL Modules in FSP: A Practical Description

The FSP Architecture section describes FSP stacks, modules and interfaces in significant detail,
providing an understanding of the theory behind them. The following sections provides a quick and
practical introduction on how to use API functions when writing code and where in the API reference
sections you can find useful API related information.

Introduction to HAL Modules

In FSP, HAL module drivers provide convenient API functions that access RA processor peripheral
features. Module properties are defined in the RA GUI configurator, eliminating the tedious and error
prone process of setting peripheral control registers. When configuration is complete, the generator
automatically creates the code needed to implement the associated API functions. API functions are
the main way a developer interacts with the target processor and peripherals.

HAL Driver API Function Call Formats

HAL driver API functions all have a similar format. They all start with "R_" to indicate they are HAL
related functions. Next comes the module name followed by the function and any parameters. This
format is illustrated below:

R_<module>_<function>(<parameters>);

Here are some examples:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 72 / 5,560

https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > HAL Modules in FSP: A Practical Description

status = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

status = R_GPT_Start(&g_timer0_ctrl);

status = R_GPT_PeriodSet(&g_timer0_ctrl, period);

status = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

status = R_ADC_InfoGet(&g_adc0_ctrl, &adc_info);

HAL Driver API Call Reference Information

Each HAL module has a useful API Reference section that includes key details on each function. The
function prototype is presented first, showing the return type (usually fsp_status_t for HAL functions)
and the function parameters. A short description and any warnings or notes follow the function
definition. In some cases, a code snippet is included to illustrate use of the function. Finally, all
possible return values are provided to assist in debugging and error management.

Figure 51: Module Api Reference Section Example

3.2.8.3 RTOS-Independent Applications

To write application code:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 73 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > RTOS-Independent Applications

1. Add all drivers and modules in the Stacks tab and resolve all dependencies flagged by e²
studio such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.
3. In the Project Configuration view, click the Generate Project Content button.

4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/hal_data.c.

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

5. Add your application code here:

Figure 52: Adding user code to hal_entry.c

6. Build the project without errors by clicking on Project > Build Project.

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT.

The WDT example is a HAL level application which does not use an RTOS. The user guides for each
module also include basic application code that you can add to hal_entry.c.

3.2.8.4 RTOS Applications

To write RTOS-aware application code using RTOS, follow these steps:

1. Add a thread using the Stacks tab.
2. Provide a unique name for the thread in the Properties view for this thread.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 74 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > RTOS Applications

3. Configure all drivers and resources for this thread and resolve all dependencies flagged by
e² studio such as missing interrupts or drivers.

4. Configure the thread objects.
5. Provide unique names for each thread object in the Properties view for each object.
6. Add more threads if needed and repeat steps 1 to 5.
7. In the RA Project Editor, click the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the
source file.

Figure 53: Generated files for an RTOS application

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/my_thread_1.c and my_thread_2.c

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

9. Add your application code here:

Figure 54: Adding user code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 75 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > RTOS Applications

11. Build your project without errors by clicking on Project > Build Project.

3.2.8.5 Additional Resources for Application Development

Example Projects

A wide variety of Example Projects for FSP and RA MCUs is available on the GitHub site here:
https://github.com/renesas/ra-fsp-examples. Example projects are organized by target kit so it is
easy to find all the examples for your kit of choice.

Figure 55: FSP Example Projects Organized by Kit

 Projects are available as both downloadable zip files and as project source files. Typically, there is a
project for each module. New example projects are being added periodically, so check back if a
particular module isn't yet available.

Figure 56: A Selection of Example Projects Available on GitHub

Quick Labs

A variety of Hands-on Do It Yourself labs are available on the Renesas RA and FSP Knowledge Base.
Quick FSP Labs target the EK-RA6M3 kit and typically require only 15 minutes to complete. Each lab
covers a couple related development tools and techniques like Autocomplete, Developer Assistance,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 76 / 5,560

https://github.com/renesas/ra-fsp-examples

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Writing the Application > Additional Resources for Application Development

console I/O over RTT, and Visual Expressions, that can speed up the development process. A list of
all available Quick Labs can be found here: https://en-
support.renesas.com/knowledgeBase/19450948

3.2.9 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. On the drop-down list next to the debug icon, select Debug Configurations.

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

3. Connect the board to your PC via either a standalone Segger J-Link debugger, a Segger J-
Link On-Board (included on all RA EKs), or an E2 or E2 Lite and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the RA MCU
Kit.

3.2.10 Modifying Toolchain Settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 77 / 5,560

https://en-support.renesas.com/knowledgeBase/19450948
https://en-support.renesas.com/knowledgeBase/19450948

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within e² studio through the menu Project > Properties > C/C++
Build > Settings when the project is selected. The following screenshots show the settings dialogs
for the GNU Arm and LLVM toolchains. The dialog looks slightly different depending upon the
toolchain being used.

Figure 57: e² studio Project toolchain settings for GNU Arm

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 78 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Modifying Toolchain Settings

Figure 58: e² studio Project toolchain settings for LLVM

 The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/a6m3.ld).

3.2.11 Creating RA project with Arm Compiler 6 in e² studio

e² studio does not include the Arm Compiler 6 (AC6) toolchain by default. Follow the steps below to
integrate AC6 into e² studio and create an AC6 RA project.

Note
It is assumed that the user is already familiar with RA project creation in e² studio. e² studio does not include Arm
Compiler 6 (AC6) toolchain by default.

Steps 1 through 8 describe the process for integrating Arm Compiler 6 into e² studio.

1. Download, install, and configure license for the AC6 toolchain
(https://developer.arm.com/tools-and-software/embedded/arm-
compiler/downloads/version-6).

2. Launch e² studio.
3. Go to Window > Preferences > Toolchains.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 79 / 5,560

https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating RA project with Arm Compiler 6 in e² studio

4. Click Add.

Figure 59: Add Toolchain

5. Browse to the path where AC6 toolchain is installed and select the \bin folder. Click Next.

Figure 60: Browse to AC6 Compiler

6. Toolchain information in displayed. Click Finish.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 80 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating RA project with Arm Compiler 6 in e² studio

Figure 61: Toolchain Information

7. Click Apply and Close.

Figure 62: Apply and Close

8. Click Restart Eclipse when prompted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 81 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Creating RA project with Arm Compiler 6 in e² studio

Figure 63: Restart Eclipse

9. When creating a new RA C/C++ project, select ARM Compiler 6 included in the Toolchains
section.

Figure 64: Select Arm Compiler

3.2.12 Importing an Existing Project into e² studio

1. Start by opening e² studio.
2. Open an existing Workspace to import the project and skip to step d. If the workspace

doesn't exist, proceed with the following steps:

a. At the end of e² studio startup, you will see the Workspace Launcher Dialog box as
shown in the following figure.

Figure 65: Workspace Launcher dialog

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 82 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Importing an Existing Project into e² studio

b. Enter a new workspace name in the Workspace Launcher Dialog as shown in the
following figure. e² studio creates a new workspace with this name.

Figure 66: Workspace Launcher dialog - Select Workspace

c. Click Launch.

d. When the workspace is opened, you may see the Welcome Window. Click on the
Hide arrow button to proceed past the Welcome Screen as seen in the following
figure.

Figure 67: Workbench arrow button

3. You are now in the workspace that you want to import the project into. Click the File menu
in the menu bar, as shown in the following figure.

Figure 68: Menu and tool bar

4. Click Import on the File menu or in the menu bar, as shown in the following figure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 83 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Importing an Existing Project into e² studio

Figure 69: File drop-down menu

5. In the Import dialog box, as shown in the following figure, choose the General option, then
Existing Projects into Workspace, to import the project into the current workspace.

Figure 70: Project Import dialog with "Existing Projects into Workspace" option selected

6. Click Next.
7. To import the project, use either Select archive file or Select root directory.

a. Click Select archive file as shown in the following figure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 84 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Importing an Existing Project into e² studio

Figure 71: Import Existing Project dialog 1 - Select archive file

b. Click Select root directory as shown in the following figure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 85 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Importing an Existing Project into e² studio

Figure 72: Import Existing Project dialog 1 - Select root directory

8. Click Browse.
9. For Select archive file, browse to the folder where the zip file for the project you want to

import is located. For Select root directory, browse to the project folder that you want to
import.

10. Select the file for import. In our example, it is CAN_HAL_MG_AP.zip or CAN_HAL_MG_AP.
11. Click Open.

12. Select the project to import from the list of Projects, as shown in the following figure.

Figure 73: Import Existing Project dialog 2

13. Click Finish to import the project.

3.2.13 Using Semihosting in a Project

Note
printf requires use of the heap (BSP Tab -> Properties -> RA Common -> Heap size (bytes))

When using certain standard C I/O functions such as printf and scanf semihosting must be initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 86 / 5,560

Flexible Software Package

User’s Manual
Starting Development > e² studio User Guide > Using Semihosting in a Project

for them to work correctly with the Renesas Debug Virtual Console. In order to setup semihosting
a call to initialise_monitor_handles should be added somewhere in your application before any
semihosting related calls are made. Here is an example declaration and call:

extern void initialise_monitor_handles(void); /* Add this declaration before calling.

*/

initialise_monitor_handles(); /* Add this call to your application. */

3.3 Tutorial: Your First RA MCU Project - Blinky
3.3.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Flexible Platform by moving through the
steps of creating a simple application using e² studio and running that application on an RA MCU
board.

3.3.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the "Hello World" of microcontrollers. If the LED blinks you know that:

The toolchain is setup correctly and builds a working executable image for your chip.
The debugger has installed with working drivers and is properly connected to the board.
The board is powered up and its jumper and switch settings are probably correct.
The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the RA microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

Every board has at least one LED connected to a GPIO pin.
That one LED is always labelled LED1 on the silk screen.
Every BSP supports an API that returns a list of LEDs on a board, and their port and pin
assignments.

3.3.3 Prerequisites

To follow this tutorial, you need:

Windows based PC
e² studio
Flexible Software Package
An RA MCU board kit

3.3.4 Create a New Project for Blinky

The creation and configuration of an RA MCU project is the first step in the creation of an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 87 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

The base RA MCU pack includes a pre-written Blinky example application that is simple and works on
all Renesas RA MCU boards.

Follow these steps to create an RA MCU project:

1. In e² studio, click File > New > C/C++ Project > Renesas RA and select Renesas RA
C/C++ Project.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

Figure 74: e² studio Project Configuration window (part 1)

4. Select the board support package by selecting the name of your board from the Device
Selection drop-down list and click Next.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 88 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

Figure 75: e² studio Project Configuration window (part 2)

5. Select the build artifact and RTOS.

Figure 76: e² studio Project Configuration window (part 3)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 89 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

6. Select the Blinky template for your board and click Finish.

Figure 77: e² studio Project Configuration window (part 4)

 Once the project has been created, the name of the project will show up in the Project
Explorer window of e² studio. Now click the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

Figure 78: e² studio Project Configuration tab

 Your new project is now created, configured, and ready to build.

3.3.4.1 Details about the Blinky Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 90 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky > Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and click the Generate
Project Content button, all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

3.3.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by e² studio for the Blinky application.
The clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The Blinky
clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).

3.3.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by e² studio
for the Blinky application. The pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

3.3.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the Components tab:

r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the
HAL window for the respective driver (see Adding and Configuring HAL Drivers).

3.3.4.5 Where is main()?

The main function is located in < project >/ra_gen/main.c. It is one of the files that are generated
during the project creation stage and only contains a call to hal_entry(). For more information on
generated files, see Adding and Configuring HAL Drivers.

3.3.4.6 Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by e² studio when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:

1. Get the LED information for the selected board by bsp_leds_t structure.
2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be

observed.
4. Toggle the LED by writing to the GPIO pin with R_BSP_PinWrite((bsp_io_port_pin_t) pin,

pin_level);

3.3.5 Build the Blinky Project

Highlight the new project in the Project Explorer window by clicking on it and build it.

There are three ways to build a project:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 91 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Build the Blinky Project

1. Click on Project in the menu bar and select Build Project.
2. Click on the hammer icon.
3. Right-click on the project and select Build Project.

Figure 79: e² studio Project Explorer window

 Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

Figure 80: e² studio Project Build console

3.3.6 Debug the Blinky Project

3.3.6.1 Debug prerequisites

To debug the project on a board, you need

The board to be connected to e² studio
The debugger to be configured to talk to the board
The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller's flash. There are two ways to do this:

JTAG debugger
Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 92 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug prerequisites

Refer to your board's user manual to learn how to connect the JTAG debugger to e² studio.

3.3.6.2 Debug steps

To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Figure 81: e² studio Debug icon

 or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

Figure 82: e² studio Debugger Configurations selection option

2. Select your debugger configuration in the window. If it is not visible then it must be created
by clicking the New icon in the top left corner of the window. Once selected, the Debug
Configuration window displays the Debug configuration for your Blinky project.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 93 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug steps

Figure 83: e² studio Debugger Configurations window with Blinky project

3. Click Debug to begin debugging the application.

4. Extracting RA Debug.

3.3.6.3 Details about the Debug Process

In debug mode, e² studio executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to
the internal flash memory.

2. Setting a breakpoint at main().
3. Setting the stack pointer register to the stack.
4. Loading the program counter register with the address of the reset vector.
5. Displaying the startup code where the program counter points to.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 94 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Details about the Debug Process

Figure 84: e² studio Debugger memory window

3.3.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

Figure 85: e² studio Debugger Play icon

 The LEDs on the board marked LED1, LED2, and LED3 should now be blinking.

3.4 Tutorial: Using HAL Drivers - Programming the WDT
3.4.1 Application WDT

This tutorial illustrates the creation of a simple application that uses the Watchdog Timer module to
monitor program operation. The tutorial shows each step in the development process and in
particular identifies the auto-generated files and project structure created when using FSP and its
GUI based configurator. The level of detail provided here is more than is normally needed during
development but can be helpful in explaining how FSP works behind the scenes to simplify your
work.

This application makes use of the following FSP modules:

MCU Board Support Package
Watchdog (r_wdt)
I/O Port (r_ioport)

3.4.2 Creating a WDT Application Using the RA MCU FSP and e² studio

3.4.2.1 Using FSP and e² studio

The Flexible Software Package (FSP) from Renesas provides a complete driver library for developing
RA MCU applications. FSP provides Hardware Abstraction Layer (HAL) drivers, Board Support Package
(BSP) drivers for the developer to use to create applications. FSP is integrated into Renesas e² studio
based on eclipse providing build (editor, compiler and linker) and debug phases with an extended
GNU Debug (GDB) interface.

3.4.2.2 The WDT Application

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 95 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the RA MCU FSP and e² studio > The WDT Application

The flowchart for the WDT application is shown below.

Figure 86: WDT Application flow diagram

3.4.2.3 WDT Application flow

The main sections of the WDT application are:

1. The BSP initializes the clocks, pins and other elements of the MCU readying the application
to run.

2. main() calls hal_entry(). The function hal_entry() is created by FSP with a placeholder for
user code. The code for the WDT is added to this function.

3. Initialize the WDT, but do not start it.
4. Start the WDT by refreshing it.
5. In the first loop the red LED flashes 30 times and refreshes the watchdog each time the LED

state is changed.
6. In the second loop, the green LED flashes, but the program DOES NOT refresh the

watchdog. After the watchdog timeout period the device will reset which can be observed
by the red LED flashing again as the sequence repeats.

3.4.3 Creating the Project with e² studio

Start e² studio and choose a workspace folder in the Workspace Launcher. Configure a new RA MCU
project as follows.

1. Select File > New > RA C/C++ Project. Then select the template for the project.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 96 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e² studio

Figure 87: Creating a new project

2. In the e² studio Project Configuration (RA Project) window enter a project name, for
example, WDT_Application. In addition, select the toolchain. If you want to choose new
locations for the project unselect Use default location. Click Next.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 97 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e² studio

Figure 88: Project configuration (part 1)

3. This application runs on the EK-RA6M3 board. So, for the Board select EK-RA6M3.

This will automatically populate the Device drop-down with the correct device used on this
board. Select the Toolchain version. Select J-Link ARM as the Debugger. Click Next to
configure the project.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 98 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e² studio

Figure 89: Project configuration (part 2)

 The project template is now selected. As no RTOS is required select Bare Metal - Blinky.

Figure 90: Project configuration (part 3)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 99 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e² studio

4. Click Finish.

e² studio creates the project and opens the Project Explorer and Project Configuration
Settings views with the Summary page showing a summary of the project configuration.

3.4.4 Configuring the Project with e² studio

e² studio simplifies and accelerates the project configuration process by providing a GUI interface for
selecting the options to configure the project.

e² studio offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++, FSP Configuration and Debug. The
perspective can be changed by selecting a new one from the buttons at the top right.

Figure 91: Selecting a perspective

 The C/C++ perspective provides a layout selected for code editing. The FSP Configuration
perspective provides elements for configuring a RA MCU project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the FSP Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the RA Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of e² studio.

Figure 92: RA MCU Project Configuration Settings

 At the base of the Project Configuration view there are several tabs for configuring the project. A
project may require changes to some or all of these tabs. The tabs are shown below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 100 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio

Figure 93: Project Configuration Tabs

3.4.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the RA Hardware User's Manual for details on the WDT autostart mode.

3.4.4.2 Clocks Tab

The Clocks tab presents a graphical view of the clock tree of the device. The drop-down boxes in the
GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output frequency
for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 101 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio > Clocks Tab

Figure 94: Clock configuration

3.4.4.3 Interrupts Tab

The Interrupts tab is used to add new user events or interrupts. No new interrupts or events are
needed by the application, so no edits in this tab are required.

3.4.4.4 Event Links Tab

The Event Links tab is used to configure events used by the Event Link Controller (ELC). This
project doesn't use the ELC, so no edits in this tab are required.

3.4.4.5 Pins Tab

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

3.4.4.6 Stacks Tab

You can add any driver to the project using the Stacks tab. The HAL driver IO port pins are added
automatically by e² studio when the project is configured. The WDT application uses no RTOS
Resources, so you only need to add the HAL WDT driver.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 102 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio > Stacks Tab

Figure 95: Stacks tab

1. Click on the HAL/Common Panel in the Threads Window as indicated in the figure above.

The Stacks Panel becomes a HAL/Common Stacks panel and is populated with the
modules preselected by e² studio.

2. Click on New Stack to find a pop-up window with the available HAL level drivers.
3. Select WATCHDOG Driver on r_wdt.

Figure 96: Module Selection

 The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the Property
Window shows all configuration options for the selected module. The Property tab for the WDT
should be visible at the bottom left of the screen. If it is not visible, check that the FSP
Configuration perspective is selected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 103 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio > Stacks Tab

Figure 97: Module Properties

 All parameters can be left with their default values.

Figure 98: g_wdt WATCHDOG Driver on WDT properties

 With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock = 60 MHz / 8192 = 7.32 kHz

Cycle time = 1 / 7.324 kHz = 136.53 us

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 104 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio > Stacks Tab

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

Figure 99: Generate Project Content button

 e² studio generates the project files.

3.4.4.7 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view after they are added in the Stacks Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_ioport
2. HAL_Drivers -> r_wdt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 105 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e² studio > Components Tab

Figure 100: Component Selection

Note
The list of modules displayed in the Components tab depends on the installed FSP version.

3.4.5 WDT Generated Project Files

Clicking the Generate Project Content button performs the following tasks.

r_wdt folder and WDT driver contents created at:

ra/fsp/src

r_wdt_api.h created in:

ra/fsp/inc/api

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 106 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

r_wdt.h created in:

ra/fsp/inc/instances

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

ra_cfg/fsp_cfg/r_wdt_cfg.h

The above file's contents are based upon the Common settings in the g_wdt WATCHDOG Driver
on WDT Properties pane.

Figure 101: r_wdt_cfg.h contents

Warning
Do not edit any of these files as they are recreated every time the Generate Project Content
button is clicked and so any changes will be overwritten.

The r_ioport folder is not created at ra/fsp/src as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
ra_gen/hal_data.c–see later in this document for further details. For the same reason the other
IOPORT header files– ra/fsp/inc/api/r_ioport_api.handra/fsp/inc/instances/r_ioport.h–are not created as
they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files e² studio also generates
files containing configuration data for the WDT and a file where user code can safely be added.
These files are shown below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 107 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

Figure 102: WDT project files

3.4.5.1 WDT hal_data.h

The contents of hal_data.h are shown below.

/* generated HAL header file - do not edit */

#ifndef HAL_DATA_H_

 #define HAL_DATA_H_

 #include <stdint.h>

 #include "bsp_api.h"

 #include "common_data.h"

 #include "r_wdt.h"

 #include "r_wdt_api.h"

 #ifdef __cplusplus

extern "C"

{

 #endif

extern const wdt_instance_t g_wdt0;

 #ifndef NULL

void NULL(wdt_callback_args_t * p_args);

 #endif

extern wdt_instance_ctrl_t g_wdt0_ctrl;

extern const wdt_cfg_t g_wdt0_cfg;

void hal_entry(void);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 108 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

void g_hal_init(void);

 #ifdef __cplusplus

} /* extern "C" */

 #endif

#endif /* HAL_DATA_H_ */

 hal_data.h contains the header files required by the generated project. In addition this file includes
external references to the g_wdt0 instance structure which contains pointers to the configuration,
control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is clicked and must not be
edited.

3.4.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

/* generated HAL source file - do not edit */

#include "hal_data.h"

wdt_instance_ctrl_t g_wdt0_ctrl;

const wdt_cfg_t g_wdt0_cfg =

{

 .timeout = WDT_TIMEOUT_16384,

 .clock_division = WDT_CLOCK_DIVISION_8192,

 .window_start = WDT_WINDOW_START_100,

 .window_end = WDT_WINDOW_END_0,

 .reset_control = WDT_RESET_CONTROL_RESET,

 .stop_control = WDT_STOP_CONTROL_ENABLE,

 .p_callback = NULL,

};

/* Instance structure to use this module. */

const wdt_instance_t g_wdt0 =

{.p_ctrl = &g_wdt0_ctrl, .p_cfg = &g_wdt0_cfg, .p_api = &g_wdt_on_wdt};

void g_hal_init (void)

{

 g_common_init();

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 109 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

 hal_data.c contains g_wdt0_ctrl which is the control structure for this instance of the WDT HAL
driver. This structure should not be initialized as this is done by the driver when it is opened.

The contents of g_wdt0_cfg are populated in this file using the Watchdog Driver on g_wdt0 pane
in the Project Configuration Stacks tab. If the contents of this structure do not reflect the settings
made in the IDE, ensure the Project Configuration settings are saved before clicking the
Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

3.4.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.

/* generated main source file - do not edit*/

#include "hal_data.h"

int main (void)

{

 hal_entry();

 return 0;

}

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

3.4.5.4 WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

#include "hal_data.h"

#include "bsp_pin_cfg.h"

#include "r_ioport.h"

#define RED_LED_NO_OF_FLASHES 30

#define RED_LED_PIN BSP_IO_PORT_01_PIN_00

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 110 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

#define GREEN_LED_PIN BSP_IO_PORT_04_PIN_00

#define RED_LED_DELAY_MS 125

#define GREEN_LED_DELAY_MS 250

volatile uint32_t delay_counter;

volatile uint16_t loop_counter;

void R_BSP_WarmStart(bsp_warm_start_event_t event);

/**

*******************************/

void hal_entry (void)

{

 /* Allow the WDT to run when the debugger is connected */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 /* Flash the red LED and feed the WDT for a few seconds */

 for (loop_counter = 0; loop_counter < RED_LED_NO_OF_FLASHES; loop_counter++)

 {

 /* Turn red LED on */

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 R_BSP_SoftwareDelay(RED_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 R_BSP_SoftwareDelay(RED_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 }

 /* Flash green LED but STOP feeding the WDT. WDT should reset the

 * device */

 while (1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 111 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 {

 /* Turn green LED on */

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 R_BSP_SoftwareDelay(GREEN_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Turn green off */

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 R_BSP_SoftwareDelay(GREEN_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

/**

*******************************/

void R_BSP_WarmStart (bsp_warm_start_event_t event)

{

 if (BSP_WARM_START_RESET == event)

 {

#if BSP_FEATURE_FLASH_LP_VERSION != 0

 /* Enable reading from data flash. */

 R_FACI_LP->DFLCTL = 1U;

 /* Would normally have to wait for tDSTOP(6us) for data flash recovery. Placing the

enable here, before clock and

 * C runtime initialization, should negate the need for a delay since the

initialization will typically take more than 6us. */

#endif

 }

 if (BSP_WARM_START_POST_C == event)

 {

 /* C runtime environment and system clocks are setup. */

 /* Configure pins. */

 R_IOPORT_Open(&IOPORT_CFG_CTRL, &IOPORT_CFG_NAME);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 112 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 The WDT HAL driver API functions are defined in r_wdt.h. The WDT HAL driver is opened through the
open API call using the instance structure defined in r_wdt_api.h:

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 The first passed parameter is the pointer to the control structure g_wdt0_ctrl instantiated in
hal_data.c. The second parameter is the pointer to the configuration data g_wdto_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

3.4.6 Building and Testing the Project

Build the project in e² studio by clicking Build > Build Project or by clicking the build icon. The
project should build without errors.

To debug the project

1. Connect the USB cable between the target board debug port and host PC.
2. In the Project Explorer pane on the left side of e² studio, right-click on the WDT project

WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown
below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 113 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

Figure 103: Debug configuration

4. Click the Debug button. Click Yes to the debug perspective if asked.

5. The code should run the Reset_Handler() function.
6. Resume execution via Run > Resume. Execution will stop in main() at the call to

hal_entry().
7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats.

1. Stop the debugger in e² studio via Run > Terminate.
2. Click the reset button on the target board. The LEDs begin flashing.

3.5 Primer: Arm TrustZone Project Development
This section will introduce the user to the tools supporting Arm® TrustZone® technology
configuration for the RA Family of microcontrollers. It is intended to be read by development
engineers implementing RA Arm TrustZone projects for the first time. It will introduce basic concepts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 114 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development

followed by workflow and tooling functions designed to simplify and accelerate their first Arm
TrustZone development. A background knowledge of e² studio and RA device hardware is expected.

3.5.1 Target Device

RA Cortex®-M33 and Cortex®-M85 devices with Arm TrustZone security extension. As shown in the
following table, most RA devices that include TrustZone support also support Device Lifecycle
Management (DLM).

MCU Groups with TrustZone
and DLM

MCU Groups with TrustZone
and no DLM

MCU Groups with TrustZone
and Alternate DLM

RA4E1, RA4M2, RA4M3, RA6E1,
RA6M4, RA6M5, RA6T2

RA4E2, RA4T1, RA6E2, RA6T3 RA8M1

3.5.2 Renesas Implementation of Arm TrustZone Technology

The following section is supplied for reference only. For full details of TrustZone implementation,
refer to Arm documentation (https://developer.arm.com/ip-products/security-ip/trustzone) and the
MCU user manual.

Arm TrustZone technology divides the MCU and therefore the application into Secure and Non-
Secure partitions. Secure applications can access both Secure and Non-Secure memory and
resources. Non-Secure code can access Non-Secure memory and resources as well as Secure
resources through a set of so-called veneers located in the Non-Secure Callable (NSC) region. This
ensures a single access point for Secure code when called from the Non-Secure partition. The MCU
starts up in the Secure partition by default. The security state of the CPU can be either Secure or Non-
Secure.

The MCU code flash, data flash, and SRAM are divided into Secure (S) and Non-Secure (NS) regions.
Code flash and SRAM include a further region known as Non-Secure Callable (NSC). The method to
set these memory security attributes depends on whether the device supports DLM:

For devices that support DLM, memory security attributes are set into the non-volatile
memory through SCI or USB boot mode commands when the device lifecycle is Secure
Software Debug (SSD) state. The memory security attributes are loaded into the
Implementation Defined Attribution Unit (IDAU) peripheral and the memory controller
before application execution and cannot be updated by application code.
For devices that do not support DLM, memory security attributes are written to IDAU
registers at startup by application code using secure accesses.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 115 / 5,560

https://developer.arm.com/ip-products/security-ip/trustzone

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Renesas Implementation of Arm TrustZone Technology

Figure 104: Secure and Non-Secure Regions

 Note: All external memory accesses are considered to be Non-Secure.

Code Flash and SRAM can be divided into Secure, Non-Secure, and Non-Secure Callable. All secure
memory accesses from the Non-Secure region MUST go through the Non-Secure Callable gateway
and target a specific Secure Gateway (SG) assembler instruction. This forces access to Secure APIs
at a fixed location and prevents calls to sub-functions and so on. Failing to target an SG instruction
will generate a TrustZone exception.

TrustZone enabled compilers will manage generation of the NSC veneer automatically using CMSE
extensions.

3.5.2.1 Calling from Non-Secure to Secure

A new instruction SG (Secure Gateway) has been added to the Armv8-M architecture. This MUST be
the destination instruction for any branch within the Non-Secure Callable region. If an attempt is
made to branch to any other instruction from the Non-Secure partition, a TrustZone exception will be
thrown.

Figure 105: Calling from Non-Secure to Secure Functions

3.5.2.2 Calling from Secure to Non-Secure

Secure code uses B(L)XNS instructions to make direct calls to Non-Secure functions. While this is
certainly possible, it can create a security vulnerability in the application. It is also challenging for
the Secure application to determine the address of the non-secure function during build phase. From
the RA Tools and FSP point view, calling directly from Secure to Non-Secure via FSP API is not
supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 116 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Renesas Implementation of Arm TrustZone Technology > Calling from Secure to Non-Secure

Preference is for the Secure code to initialise as necessary from reset, then pass control to the Non-
Secure partition. It will manage any data transfers and so forth via FSP call-backs as security checks.
For example, secure data can be copied to Non-Secure RAM.

Figure 106: Calling from Secure to Non-Secure Functions

3.5.3 Workflow

Arm TrustZone MCU development normally consists of two projects within a workspace, Secure and
Non-Secure. General project workflows are described in the following sections. The Renesas project
generator also supports development with "Flat project" model with no Arm TrustZone awareness.

3.5.3.1 Secure Project

1. Start a new Secure project in e² studio.
2. Select and configure pins and drivers/stacks that need to be initialized and used in Secure

mode. This should be kept to a minimum to reduce the security attack surface.
3. Expose top of stacks as Non-Secure Callable (NSC) if they need to be accessed from Non-

Secure partition. Again, this should be kept to a minimum.
4. Generate project content and write Secure code such as key handling and opening drives as

needed.
5. Modify/remove any unnecessary "Guard" functions as needed to control access via NSC.
6. Build project.
7. A Non-Secure project will be needed before debugging. If necessary, prepare a "dummy"

Non-Secure project or replace R_BSP_NonSecureEnter(); with while(1); in hal_entry.c.

3.5.3.2 Non-Secure Project

1. Start a new Non-Secure project.
2. If you have access to the Secure project, choose this option. However, if you only have

access to a device with pre-programmed Secure code (commonly referred to as provisioned
device) choose "Secure Bundle".

3. Select and configure pins and drivers/stacks that need to be initialized and used in Non-
Secure mode.

4. Note that you can add NSC drivers and stacks as needed.
5. Generate project content and write Non-Secure code as needed
6. Access NSC drivers and Stacks via Guard functions.
7. Build and debug project.

3.5.3.3 Flat Project

A flat project does not technically use Arm TrustZone as the developer has made a decision to place
the entire application in Secure partition from restart.

Notes:

Any code placed in external memory (such as OSPI or QSPI) will be Non-Secure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 117 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Workflow > Flat Project

The Ethernet EDMAC is designed to be a Non-Secure bus master so associated Ethernet
RAM buffers will be placed in Non-Secure RAM. The tooling will automatically manage this.

The workflow is as follows:

1. Start a new Flat project.
2. Select and configure pins and drivers/stacks as needed.
3. Generate project content and write code as needed.
4. Build and debug project.

3.5.4 RA Project Generator (PG)

The RA project generators have been created to help users through setting up new TrustZone
enabled projects. User will be prompted for project settings such as Project Type (Secure, Non-
Secure, or Flat), compiler, RTOS and debugger. Care is needed when setting up a TrustZone project
to ensure that the connection between Secure and Non-Secure partitions are managed correctly.

Figure 107: Secure Project (following Arm notation as green)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 118 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG)

Figure 108: Non-Secure Project (following Arm notation as red)

Figure 109: Flat Project

3.5.4.1 Secure Project Set Up

All code, data, and peripherals in this project will be configured as Secure using the device Peripheral

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 119 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG) > Secure Project Set Up

Security Attribution (PSA) registers. Although it is very application specific, we recommend keeping
the Secure project code as small as possible to reduce the attack surface. For example, secure key
handling may be the only application code in the secure project.

Necessary values to set up the TrustZone memory partition (IDAU registers) will be automatically
calculated after the project is built to ensure they match the code and data size, keeping the attack
surface as small as possible.

Typically, ANSI C start up code (clearing of RAM, variable initialisation, etc) , clock, and secure
peripheral initialisation will occur in this project.

At the end of the Secure code, a call will be made to R_BSP_NonSecureEnter(); to pass control to the
Non-Secure partition.

Non-Secure Callable (NSC) "Guard" functions are added to the project and expose selected modules
to Non-Secure projects. User can add application-specific access checks as needed in these
functions.

Output of this project type will be an elf file that must be either pre-programmed (provisioned) into a
device or referenced by a Non-Secure project (via Secure bundle *.SBD) to build a final image.

This project type will NOT typically be debugged in isolation and will normally require a Non-Secure
project such as a call to a R_BSP_NonSecureEnter() to be made. This can be replaced with while(1); if
needed.

3.5.4.2 RTOS Support in TrustZone Project

Although the RTOS kernel and user tasks will reside in the Non-Secure partition, the Secure partition
needs to allocate stack space and so on. It is essential when starting a new RTOS project that the
TrustZone Secure RTOS-Minimal template is selected. This will add the Arm TrustZone Context RA
Port as below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 120 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG) > RTOS Support in TrustZone Project

Figure 110: Secure RTOS-Minimal Template

3.5.4.3 Peripheral Security Attribution

Each peripheral can be configured to be Secure or Non-Secure. Peripherals are divided into two
types.

Type-1 peripherals have one security attribute. Access to all registers is controlled by one security
attribute. The Type-1 peripheral security attribute is set in the PSARx (x = B to E) register by the
secure application.

Type-2 peripherals have the security attribute for each register or for each bit. Access to each
register or bit field is controlled according to these security attributes. The Type-2 peripheral security
attribute is set in the Security Attribution register in each module by the Secure application. For
more information about the Security Attribution register, see sections in the Appropriate MCU's
User's Manual for each peripheral.

Table 1. Secure and Non-Secure Peripherals

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 121 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG) > Peripheral Security Attribution

Type Peripheral

Type 1 SCI, SPI, USBFS, CAN, IIC, SCE9, DOC, SDHI,
SSIE, CTSU, CRC, CAC, TSN, ADC12, DAC12,
POEG, AGT, GPT, RTC, IWDT, WDT

Type 2 System control (Resets, LVD, Clock Generation
Circuit, Low Power Modes, Battery Backup
Function), FLASH CACHE, SRAM controller, CPU
CACHE, DMAC, DTC, ICU, MPU, BUS, Security
setting, ELC, I/O ports

Always Non-Secure CS Area Controller, QSPI, OSPI, ETHERC, EDMAC

FSP will initialise the arbitration registers during Secure project BSP start up. User code may also be
written to set or clear further arbitration. However care must be taken not to undermine FSP.

3.5.4.4 Non-Secure

All code, data, and peripherals in this project will be configured as Non-Secure. This project type
must be associated with a Secure project to enable access to secure code, peripherals, linker scripts
and others.

3.5.4.5 Flat Project Type

All code, data, and peripherals are configured in a Secure single partition except for the EDMAC RAM
buffers that will remain in the Non-Secure partition. Effectively, TrustZone is disabled.

3.5.4.6 Secure Connection to Non-Secure Project

When starting a new Non-Secure Project, the user will be prompted for either a Secure Project or
Secure Bundle. In each case, details of the linker settings, Non-Secure Callable functions, and Secure
peripherals will be read to enable the Non-Secure project setup.

Should the Secure project or bundle be rebuilt, the Non-Secure editor will detect this and prompt
user to regenerate the Non-Secure project configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 122 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG) > Secure Connection to Non-Secure Project

Figure 111: Secure Project or Bundle Selection

Secure Project (Combined)

A Secure project must reside in the same Workspace as the Non-Secure project and will typically be
used when a design engineer has access to both the Secure and Non-Secure project sources. This is
sometimes known as "Combined model".

A Secure .elf file will be referenced and included in the debug configuration for download to the
target device. The development engineer will have visibility of Secure and Non-Secure project source
code and configuration.

Secure Bundle (Split)

A Secure Bundle will ONLY include linker memory ranges, symbol references, and details of locked
Secure peripheral configuration settings but no access to Secure source code (API header files will be
included as necessary).

The Secure bundle file (*.SBD) must be supplied to the Non-Secure developer by the Secure project
developer.

The development engineer will typically not have access to the Secure project or .elf file which MUST
be pre-programmed or provisioned into the target MCU.

For devices that support DLM, the DLM state of the target device should then be switched to NSECSD
(see section 6.2) before the device is provided to the non-secure developer.

This is often referred to as "Split model" where a basic security set up is developed by a Secure team
and then passed to the Non-Secure team in the same facility or at a third party. The Non-Secure
team has no access to the Secure source code and cannot directly access Secure peripherals, data,
or APIs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 123 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > RA Project Generator (PG) > Debug Configurations

3.5.4.7 Debug Configurations

After each project type has been selected, a suitable debug configuration will be generated.

Non-Secure with Secure Project (Combined)

Both Secure and Non-Secure .elf files will be downloaded.

A debug configuration called <project name>_SSD will be generated.

Non-Secure with Secure Bundle (Split)

Only a Non-Secure elf will be downloaded. This configuration must be used with a pre-provisioned
device (Secure project pre-programmed into MCU Flash).

A debug configuration called <project name>_NSECSD will be generated.

Flat Debug

A single .elf file will be downloaded.

A debug configuration called <project name>_FLAT will be generated.

3.5.5 Secure Projects

As mentioned, Secure code will be called immediately after device reset and run ANSI C start up,
clock, interrupt vector table, and secure peripheral initialization before starting user code. All
selected peripheral configuration settings will be automatically initialised as Secure.

3.5.5.1 Secure Clock

Device clock settings are the possible exception in that they will be initialised in the Secure project
(to enable faster start up from reset) but can be set as Secure or Non-Secure as user application may
need to change settings during execution (for low-power mode and so on). The Secure and Non-
Secure FSP BSPs can both change the clock settings.

However, clock settings can be locked as Secure should the developer choose to do so.

Figure 112: Secure Clock Setting

3.5.5.2 Setting Drivers as NSC

Some driver and middleware stacks in the Secure project may need to be accessed by the Non-
Secure partition. To enable generation of NSC veneers, set "Non-Secure Callable" from the right-click
context menu for the selected modules in the Configurator.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 124 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Secure Projects > Setting Drivers as NSC

Note: It is only possible to "expose" top of stacks as NSC.

Figure 113: Generate NSC Veneers

 The top of the stack will be marked with a new icon and tool tip to signify NSC access.

3.5.5.3 Guard Functions

Access to NSC drivers from a Non-Secure project is possible through the Guard APIs. FSP will
automatically generate Guard functions for all the top of stack/driver APIs added to the project as
Non-Secure Callable.

User can choose to add further levels of access control or delete guard function if they wish to only
expose a limited range of APIs to a Non-Secure developer.

BSP_CMSE_NONSECURE_ENTRY fsp_err_t g_uart0_open_guard(

 uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg) {

 /* User can add security checks here */

 FSP_PARAMETER_NOT_USED(p_api_ctrl);

 FSP_PARAMETER_NOT_USED(p_cfg);

 return R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

}

For example, an SCI channel may be opened and configured for a desired baud rate by the Secure
developer, but only enable the Write API to the Non-Secure developer. In which case, all but
g_uart0_write_guard() could be deleted. CTRL structures are not required as they will be added on
the Secure side.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 125 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Secure Projects > Guard Functions

For example, the call from the Non-Secure partition would be as follows:

err = g_uart0_open_guard(0,0);

3.5.6 Non-Secure projects

Configuration of the project can continue as for other RA devices, but certain resources will be locked
if they have been previously set up as Secure.

The Non-Secure project will be called from the Secure project via R_BSP_NonSecureEnter();

3.5.6.1 Clock Set Up

You may recall that clocks can be set as Secure or Non-Secure. If they are set as Secure, settings will
only be available to view, and user will not be able to change them. The Override button will be
greyed. This is useful to preserve CGC sync with secure project by not overriding unless necessary. If
it is NOT set as Secure, user can choose to override the initial Secure settings

Figure 114: Clock Setting as Non-Secure

Figure 115: Clock Setting as Secure

3.5.6.2 Selecting NSC Drivers

Drivers declared as NSC in a Secure project can be selected and added to Non-Secure project and
will be decorated as before.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 126 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Non-Secure projects > Selecting NSC Drivers

Figure 116: Selecting NSC Drivers

3.5.6.3 Locked Resources

When a NSC Secure driver is added to a Non-Secure project, the configuration settings are locked
and are available for information only. A padlock is added for indication.

Figure 117: Locked Resources

3.5.6.4 Locked Channels

In a peripheral with multiple channels, for example, DMA, if a Non-Secure developer tries to select a
channel that has already been defined as Secure, the following error message type will be displayed.

Figure 118: Error Message when Selecting a Secure Channel

3.5.7 IDAU registers

Renesas RA TrustZone-enabled devices include a set of registers known as Implementation Defined
Attribution Unit (IDAU) that are used to set up partitions between Secure, Non-Secure Callable, and
Non-Secure regions.

For devices that use DLM, the IDAU registers can only be programmed during MCU boot mode and
NOT through the debug interfaces. Because of this, special debugger firmware has been developed
to manage bringing the device up in SCI boot mode to set up the IDAU registers (automatically

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 127 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers

drives MD pin) and then switch back to debug mode as needed.

Note: Please be aware of the extra signal connection (MD pin) needed on the debug interface
connector. The Renesas Evaluation Kit (EK) for your selected device is a good reference.

 The e² studio build phase automatically extracts the IDAU partition register settings from the Secure
.elf file and programs them into the device during debug connection, which can be observed in the
console.

This is an important phase of TrustZone development as the Secure partitions should be set as small
as possible to ensure that the security attack surface is as small as possible.

However, should the developer wish to make these partitions larger to accommodate, for example
during field firmware updates, const or data arrays should be placed in the Secure project as
needed.

Figure 119: RA TrustZone Device Current Status

 It is also possible to manually set up the partition registers through the Renesas Device Partition
Manager.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 128 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers

Figure 120: Renesas Device Partition Manager

In e² studio, when manually setting partitions, make sure to disable setting partitions in the debug
configuration to prevent the settings from being overridden when a debug session is launched.

3.5.7.1 SCI Boot Mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 129 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers > SCI Boot Mode

Example of MD mode pin connection to debugger connector (from EK schematic).

Figure 121: Example of MD Mode Pin Connection to Debugger Connector (from EK schematic

3.5.7.2 DLM States

Device lifecycle defines the current phase of the device and controls the capabilities of the debug
interface, the serial programming interface and Renesas test mode. The following illustration shows
the lifecycle definitions and capability in each lifecycle.

Figure 122: Lifecycle Stages

 Note: All authentication key exchange and transitioning to LCK_DBG, LCK_BOOT, RMA_REQ is only
managed by Renesas Flash Programmer (RFP) or other production programming tools, and NOT
within e² studio.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 130 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers > DLM States

Figure 123: Lifecycle Stages and Debug Levels

 There are three debug access levels. The debug access level changes according to the lifecycle
state.

DBG2: The debugger connection is allowed, and no restriction to access memories and
peripherals
DBG1: The debugger connection is allowed, and restricted to access only Non-Secure
memory regions and peripherals
DBG0: The debugger connection is not allowed

State transitions can be performed using the Renesas Flash Programmer (RFP, see section below) or
using the Renesas Device Partition Manager (limited number of states possible). It is possible to
secure transitions between states using authentication keys. For more information on DLM states
and transitions (device specific), please refer to device user manual.

3.5.7.3 Devices with Alternate DLM States

Some devices have an alternate implementation of Device Lifecycle Management (See Target Device
). While the concept is the same, the DLM states are a little different. The following illustration shows
the lifecycle definitions and capability in each lifecycle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 131 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers > Devices with Alternate DLM States

Figure 124: Lifecycle Stages

 Note: All authentication key exchange and transitioning to LCK_BOOT, and RMA_REQ is only
managed by Renesas Flash Programmer (RFP) or other production programming tools, and NOT
within e² studio.

Figure 125: Lifecycle Stages and Debug Levels

 There are three authentication levels. The available authentication levels change according to the
lifecycle state and determine the memory and resources that are accessible by the debugger.

AL2: The debugger connection is allowed, and no restriction to access memories and
peripherals
AL1: The debugger connection is allowed, and restricted to access only Non-Secure memory
regions and peripherals
AL0: The debugger connection is not allowed

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 132 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > IDAU registers > Devices with Alternate DLM States

State transitions can be performed using the Renesas Flash Programmer (RFP, see section below) or
using the Renesas Device Partition Manager (limited number of states possible). It is possible to
secure transitions between states using authentication keys. For more information on DLM states
and transitions (device specific), please refer to device user manual.

In addition to having different DLM States, these devices also handle memory partitioning differently.
Code Flash and Data Flash partitions are divided into secure and non-secure regions using SCI or
USB boot mode commands. All other memory regions are set in IDAU and SAU registers in the secure
application during the BSP startup procedure. All memory regions and peripherals that are
configured as non-secure must be accessed using an aliased non-secure address. This non-secure
address is calcualted by setting bit 28 in the address.

3.5.7.4 Devices without DLM

For devices that do not have DLM, the IDAU registers are programmed by secure application code at
startup. Devices without DLM do not support IDAU register programming using boot mode
commands.

3.5.8 Debug

By default, devices supporting DLM will be in SSD mode and so allow access to Secure and Non-
Secure partitions. In this mode both Secure and Non-Secure .elf files will be downloaded.

The current debugger status is displayed in the lower left corner and includes the DLM state (SSD or
NSECSD) and current partition (Secure, Non-Secure, or Non-Secure Callable) when the debugger is
stopped, for example.

Figure 126: Current Debugger Status

3.5.8.1 Non-Secure Debug

Once the device is transitioned to NSECSD mode, only Non-Secure Flash, RAM and Peripherals can
be accessed. In this mode, a Secure .elf must be pre-programmed (provisioned) into the device, and
only a Non-Secure .elf file will be downloaded.

When in NSECSD mode access to Secure elements will be blocked and data displayed as ????????.

In NSECSD mode, it is not possible to set breakpoints on Secure code or data.

It is not possible to step into Secure code; the debugger will perform a step-over of any Secure
function calls. Should the user press the Suspend button during execution, the debugger will stop at
the next Non-Secure code access.

Assuming Secure memory region finishes at 32K (0x8000) in NSECSD debug mode (colour coding

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 133 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Debug > Non-Secure Debug

added for indication only), memory will be displayed as shown in the following figure.

Figure 127: Memory Display in NSECSD Debug Mode

 Disassembly will be displayed as shown in the following figure.

Figure 128: Disassembly Display in NSECSD Debug Mode

3.5.9 Debugger support

Renesas E2, E2 Lite, and SEGGER J-Link are supported in e² studio for TrustZone projects.

Debugger Support for TrustZone Projects

Feature E2 Lite E2 J-Link J-Link OB ULINK IAR I-jet

JTAG Yes Yes Yes No Yes Yes

SWD Yes Yes Yes Yes Yes Yes

ETB trace Yes Yes Yes Yes Yes Yes

ETM trace No Yes Yes No Yes Yes

TrustZone
partition
programmin
g

Yes Yes Yes Yes No Yes

Non secure
debug

Yes Yes Yes Yes No Yes

e² studio Yes Yes Yes Yes No No

IAR EW Arm Yes Yes Yes Yes No Yes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 134 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Debugger support

Keil MDK Under
consideratio
n

Under
consideratio
n

Yes Yes Yes No

3.5.10 Third-Party IDEs

Third-party IDEs such as IAR Systems EWARM and Keil MDK (uVision) are supported by the RA Smart
Configurator (RASC).

In general, RASC offers the same configurator functionality as e² studio documented above. Project
generators are available to initialise workspaces in the target IDEs as well as setting up debug
configurations and so forth. However, there are some limitations that need to be noted especially
with regards to IDAU TrustZone partition register programming. See the specific RASC
documentation for usage details.

3.5.11 Renesas Flash Programmer (RFP)

Updated versions of Renesas Flash Programmer (RFP) are available to support setting of partitions,
DLM state and Authentication keys.

RFP can be downloaded free of charge on the Renesas web site.

A new mode has been added to Program Flash Options as shown in the following graphics.

Figure 129: RFP Program Flash Options

 Options to set partition boundaries are shown in the following figure.

Figure 130: RFP Partition Boundaries

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 135 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Renesas Flash Programmer (RFP)

 Options to set DLM state, Authentication keys, and Security settings are shown in the following
figure.

Figure 131: RFP DLM State, Authentication Keys, and Security Settings

 Great care is needed here as some DLM states can **permanently** turn off debug and boot mode
on the devices. Equally programming a security access authentication key can lead to permanently
locked devices if the key is lost.

3.5.12 Glossary

IDAU

Implementation Defined Attribute Unit. Used to program TrustZone partitions.

NSECSD

Non-Secure Software Development mode

SSD

Secure Software Development mode

NSC

Non-Secure Callable. Special Secure memory region used for Veneer to allow access to Secure APIs
from Non-Secure code.

Provisioned

Device with Secure code pre-programmed and DLM state set to NSECSD

Flat project

All code, data and peripherals are configured as secure with the exception of the EDMAC RAM buffer
which are placed in Non-Secure RAM due to the configuration of the internal bus masters.

Veneer

Code that resides in Non-Secure Callable region

Combined model

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 136 / 5,560

Flexible Software Package

User’s Manual
Starting Development > Primer: Arm TrustZone Project Development > Glossary

Development engineer has access to both Secure and Non-Secure project and source code

Split model

Development Engineer has access to only the Non-Secure partition. No visibility of Secure source
code. Secure code will be provisioned into device.

3.5.12.1 Configurator Icon Glossary

Figure 132: Configurator Icons

3.6 RASC User Guide for MDK and IAR
3.6.1 What is RASC?

The Renesas RA Smart Configurator (RASC) is a desktop application designed to configure device
hardware such as clock set up and pin assignment as well as initialization of FSP software
components for a Renesas RA microcontroller project when using a 3rd-party IDE and toolchain.

The RA Smart Configurator can currently be used with

1. Keil MDK and the Arm compiler toolchain.
2. IAR EWARM with IAR toolchain for Arm

Projects can be configured and the project content generated in the same way as in e² studio. Please
refer to Configuring a Project section for more details.

3.6.2 Using RA Smart Configurator with Keil MDK

3.6.2.1 Prerequisites

Keil MDK and Arm compiler are installed and licensed. Please refer to the RASC Release
notes for the version to be installed.
Import the RA device pack. Download the RA device pack archive file (ex:
MDK_Device_Packs_2.x.x.zip) from the FSP GitHub release page. Extract the archive file to
locate the RA device pack. To import the RA device pack, launch the PackInstaller.exe from
<keil_mdk_install_dir>\UV4. Select the menu item File > Import... and browse to the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 137 / 5,560

https://github.com/renesas/fsp/releases

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Prerequisites

extracted .pack file.
Verify that the latest updates for RA devices are included in Keil MDK. To verify, select the
menu "Packs" in Pack Installer and verify that the menu item Check for Updates on
Launch is selected. If not, select Check for Updates on Launch and relaunch Pack
Installer.
For flashing and debugging, the latest Segger J-Link DLL is installed into Keil MDK.
Install RASC and FSP using the Platform Installer from the GitHub release page.

3.6.2.2 Create new RA project

The following steps are required to create an RA project using Keil MDK, RASC and FSP:

1. Start the RA Smart Configurator.

2. Enter a project folder and project name.

Figure 133: RASC project settings

3. Select the target device and IDE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 138 / 5,560

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Create new RA project

Figure 134: Target device and IDE selection

4. The rest of the project generator and FSP configuration is the same as e² studio. Please
refer to the previous sections for details.

5. On completion of FSP configuration, press "Generate Project Content"

6. A new Keil MDK project file will be generated in the project path. Double click this file to
open MDK and continue development as usual.

Figure 135: uVision project workspace with imported project data

3.6.2.3 Modify existing RA project

Once an initial project has been generated and configured, it is also possible to make changes using
RASC as follows.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 139 / 5,560

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Modify existing RA project

Note
This setup only needs to be done once per project.

Set up the following links to RASC:

1. In Keil MDK uVision, select Tools > Customize Tools Menu....
2. Select the new icon and fill in the fields as follows for each tool:

a. RA Smart Configurator:
Menu item name: Enter: RA Smart Configurator
Command: Select "..." and navigate to rasc.exe
Initial Folder: Enter: $P
Arguments: Enter: configuration.xml

b. Device Partition Manager:
Menu item name: Enter: Device Partition Manager
Command: Select "..." and navigate to rasc.exe
Initial Folder: Enter: $P
Arguments: Enter: -application
com.renesas.cdt.ddsc.dpm.ui.dpmapplication configuration.xml "$L%L"

To reconfigure an existing project select Tools > RA Smart Configurator

To reconfigure the TrustZone partitions select Tools > Device Partition Manager

3.6.2.4 Build and Debug RA project

The project can be built by selecting the menu item Project > Build Target or tool bar item
Rebuild or the keyboard shortcut F7.

Assembler, Compiler, Linker and Debugger settings can be changed in Options for Target dialog,
which can be launched using the menu item Project > Options for Target, the tool bar item
Options for Target or the keyboard shortcut Alt+F7.

Figure 136: Options for Target

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 140 / 5,560

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Build and Debug RA project

 RASC will set up the uVision project to debug the selected device using J-Link or J-Link OB debugger
by default.

A Debug session can be started or stopped by selecting the menu item Debug > Start/Stop Debug
Session or keyboard shortcut CTRL+F5. When debugging for the first time, J-Link firmware update
may be needed if requested by the tool.

Refer to the documentation from Keil to get more information on the debug features in uVision. Note
that not all features supported by uVision debugger are implemented in the J-Link interface. Consult
SEGGER J-Link documentation for more information.

3.6.2.5 Notes and Restrictions

1. When debugging a TrustZone based project, the Secure project image MUST be
downloaded before the Non Secure project.

2. For TrustZone enabled devices, the user will need to manually set up the memory partitions
using the "Renesas Device Partition Manager" from inside RASC before downloading.

Figure 137: Renesas Device partition Manager

3. RA FSP contains a full set of drivers and middleware and may not be compatible with other
CMSIS packs from Keil, Arm or third parties.

4. Flash programming is currently only supported through the debugger connection.

3.6.3 Using RA Smart Configurator with IAR EWARM

IAR Systems Embedded Workbench for Arm (EWARM) includes support for Renesas RA devices.
These can be set up as bare metal designs within EWARM. However, most RA developers will want to
integrate RA FSP drivers and middleware into their designs. RASC will facilitate this.

RASC generates a "Project Connection" file that can be loaded directly into EWARM to update project
files.

3.6.3.1 Prerequisites

IAR EWARM installed and licensed. Pleae refer to the Release notes for the version to be
installed.
RASC and FSP Installed

3.6.3.2 Create new RA project

The following steps are required to create an RA project using IAR EWARM, RASC and FSP:

1. Start the RA Smart Configurator.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 141 / 5,560

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with IAR EWARM > Create new RA project

2. Enter a project folder and project name.

Figure 138: RASC project settings

3. Select the target device and IDE.

Figure 139: Target device and IDE selection

4. The rest of the project generator and FSP configuration operates the same as e² studio.
Refer to the previous sections for details.

5. On completion of FSP configuration, press Generate Project Content.
6. A new IAR EWARM project file will be generated in the project path. Double click this file to

open IAR EWARM and continue development as usual.
7. To Use RASC with EWARM, RASC needs to configured as a tool in EWARM by selecting the

menu item Tools > Configure Tools.... Select New to create a new tool in the dialog
shown and add the following information:

Menu Text: RA Smart Configurator
a. Command: Select Browse... and navigate to rasc.exe in the installed

RASC
b. Argument: configuration.xml

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 142 / 5,560

Flexible Software Package

User’s Manual
Starting Development > RASC User Guide for MDK and IAR > Using RA Smart Configurator with IAR EWARM > Create new RA project

c. Initial Directory: $PROJ_DIR$
d. Tool Available: Always

Menu Text: Device Partition Manager
a. Command: Select Browse... and navigate to rasc.exe in the installed

RASC
b. Argument: -application com.renesas.cdt.ddsc.dpm.ui.dpmapplication

configuration.xml "$TARGET_PATH$"
c. Initial Directory: $PROJ_DIR$
d. Tool Available: Always

8. RASC can now be re-launched from EWARM using the menu item Tools > RA Smart
Configurator.

9. A Project connection needs to be set up in EWARM to build the project. Select Project >
Add Project Connection in EWARM and select IAR Project Connection. Navigate to the
project folder and select buildinfo.ipcf and click Open. The project can now build in EWARM.

3.6.3.3 Notes and Restrictions

When starting a TrustZone enabled debug session Partition sizes are checked automatically.

If partition sizes are set correctly, the debug session will launch as normal.
If partition sizes need to be changed, IAR EWARM will prompt to run the Renesas Device
Partition Manager. Select Yes. The Device Partition Manager will start with the required
partition sizes prefilled.
Select Set TrustZone secure / non-secure boundaries as the only action.
Enter debugger details, if required.
Select Run to program the partitions.
Return to the IDE and relaunch the debug session

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 143 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture

Chapter 4 FSP Architecture

4.1 FSP Architecture Overview
This guide describes the Renesas Flexible Software Package (FSP) architecture and how to use the
FSP Application Programming Interface (API).

4.1.1 C99 Use

FSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

4.1.2 Doxygen

Doxygen is the default documentation tool used by FSP. You can find Doxygen comments throughout
the FSP source.

4.1.3 Weak Symbols

Weak symbols are used occasionally in FSP. They are used to ensure that a project builds even when
the user has not defined an optional function.

4.1.4 Memory Allocation

Dynamic memory allocation through use of the malloc() and free() functions are not used in FSP
modules; all memory required by FSP modules is allocated in the application and passed to the
module in a pointer. Exceptions are considered only for ports of 3rd party code that require dynamic
memory.

4.1.5 FSP Terms

Term Description Reference

BSP Short for Board Support
Package. In FSP, the BSP
provides just enough
foundation to allow other FSP
modules to work together
without issue.

MCU Board Support Package

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 144 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Module Modules can be peripheral
drivers, purely software, or
anything in between. Each
module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other modules.
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

FSP Modules

Driver A driver is a specific kind of
module that directly modifies
registers on the MCU.

-

Interface An interface contains API
definitions that can be shared
by modules with similar
features. Interfaces are
definitions only and do not add
to code size.

FSP Interfaces

Stacks The FSP architecture is
designed such that modules
work together to form a stack.
A stack consists of a top level
module and all its
dependencies.

FSP Stacks

Module Instance Single and independent
instantiation of a module. An
application may require two
GPT timers. Each of these
timers is a module instance of
the r_gpt module.

-

Application Code that is owned and
maintained by the user.
Application code may be based
on sample application code
provided by Renesas, but it is
the responsibility of the user to
maintain as necessary.

-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 145 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Callback Function This term refers to a function
that is called when an event
occurs. As an example, suppose
the user would like to be
notified every second based on
the RTC. As part of the RTC
configuration, a callback
function can be supplied that
will be jumped to during each
RTC interrupt. When a single
callback services multiple
events, the arguments contain
the triggering event. Callback
functions for interrupts should
be kept short and handled
carefully because when they
are called the MCU is still inside
of an interrupt, delaying any
pending interrupts.

-

4.2 FSP Modules
Modules are the core building block of FSP. Modules can do many different things, but all modules
share the basic concept of providing functionality upwards and requiring functionality from below.

Figure 140: Modules

 The amount of functionality provided by a module is determined based on functional use cases.
Common functionality required by multiple modules is often placed into a self-contained submodule
so it can be reused. Code size, speed and complexity are also considered when defining a module.

The simplest FSP application consists of one module with the Board Support Package (BSP) and the
user application on top.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 146 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Modules

Figure 141: Module with application

 The Board Support Package (BSP) is the foundation for FSP modules, providing functionality to
determine the MCU used as well as configuring clocks, interrupts and pins. For the sake of clarity,
the BSP will be omitted from further diagrams.

4.2.1 Module Sources

Some modules distributed alongside FSP originate from outside sources. A full list of sources for FSP
modules, including versions and hyperlinks, can be found in the Third Party Software section of the
release notes for each release.

4.2.2 Module Distribution

All modules distributed with FSP are packaged as CMSIS components in CMSIS packs. Each module
consists of source files and a tooling support file used to integrate the module with e² studio or
RASC. The tooling support file defines the configurations used to generate code in the ra_gen and
ra_cfg folders.

4.2.3 Module Versioning

Module versions can be seen on the Components tab of the FSP Configuration editor. The FSP
Configuration editor automatically selects compatible components.

All third party modules have a semantic version are versioned with their original semantic version
plus added metadata fsp.<fsp_semantic_version>. The metadata is added to reflect the tooling
support file added for the FSP configuration tool.

Third party modules versioned with +renesas.<counter> in the metadata have been forked and
updated for FSP. If +renesas.<counter> is not in the metadata, the third party code is unchanged
from its original source.

If changes are made to third party module source code to support FSP, the changes are pushed to a
public Renesas GitHub fork of the original source. Links to Renesas forks are provided in the Third
Party Software section of the release notes for each release.

Modules that originate from outside sources that do not have a semantic version are versioned with
the FSP version.

All modules that are part of FSP or integrated with FSP are tested as a package. Mixing versions is
not encouraged and may lead to support issues.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 147 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Stacks

4.3 FSP Stacks
When modules are layered atop one another, an FSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the SPI module (SPI (r_spi)) requires a module that provides the transfer interface (Transfer Interface
) to send or receive data without a CPU interrupt. The transfer interface requirement can be fulfilled
by the DTC driver module (Transfer (r_dtc)).

Through this methodology the same code can be shared by several modules simultaneously. The
example below illustrates how the same DTC module can be used with SPI (SPI (r_spi)), UART (UART
(r_sci_uart)) and SDHI (SD/MMC (r_sdhi)).

Figure 142: Stacks -- Shared DTC Module

 The ability to stack modules ensures the flexibility of the architecture as a whole. If multiple
modules include the same functionality issues arise when application features must work across
different user designs. To ensure that modules are reusable, any dependent modules must be
capable of being swapped out for other modules that provide the same features. The FSP
architecture provides this flexibility to swap modules in and out through the use of FSP interfaces.

4.4 FSP Interfaces
At the architecture level, interfaces are the way that modules provide common features. This
commonality allows modules that adhere to the same interface to be used interchangeably.
Interfaces can be thought of as a contract between two modules - the modules agree to work
together using the information that was established in the contract.

On RA hardware there is occasionally an overlap of features between different peripherals. For
example, I2C communications can be achieved through use of the IIC peripheral or the SCI
peripheral. However, there is a difference in the level of features provided by both peripherals; in I2C
mode the SCI peripheral will only support a subset of the capabilities of the fully-featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral (such as IIC) might not be available in the
interface. In most cases these features are still available through interface extensions.

In FSP design, interfaces are defined in header files. All interface header files are located in the folder

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 148 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces

ra/fsp/inc/api and end with *_api.h. Interface extensions are defined in header files in the folder
ra/fsp/inc/instances. The following sections detail what makes up an interface.

4.4.1 FSP Interface Enumerations

Whenever possible, interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i2c_master_addr_mode

{

 I2C_MASTER_ADDR_MODE_7BIT = 1, ///< Use 7-bit addressing mode

 I2C_MASTER_ADDR_MODE_10BIT = 2, ///< Use 10-bit addressing mode

} i2c_master_addr_mode_t;

Enumerations remove uncertainty when deciding what values are available for a parameter. FSP
enumeration options follow a strict naming convention where the name of the type is prefixed on the
available options. Combining the naming convention with the autocomplete feature available in e²
studio (Ctrl + Space) provides the benefits of rapid coding while maintaining high readability.

4.4.2 FSP Interface Callback Functions

Callback functions allow modules to asynchronously alert the user application when an event has
occurred, such as when a byte has been received over a UART channel or an IRQ pin is toggled. FSP
driver modules define and handle the interrupt service routines for RA MCU peripherals to ensure
any required hardware procedures are implemented. The interrupt service routines in FSP modules
then call the user-defined callbacks to allow the application to respond.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure is defined in the interface for the module and is
named <interface>_callback_args_t. The contents of the structure may vary depending on the
interface, but two members are common: event and p_context.

The event member is an enumeration defined in the interface used by the application to determine
why the callback was called. Using the UART example, the callback could be triggered for many
different reasons, including when a byte is received, all bytes have been transmitted, or a framing
error has occurred. The event member allows the application to determine which of these three
events has occurred and handle it appropriately.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or module instances; when the
callback occurs, the code handling the callback needs context information so that it can determine
which module instance the callback is for. For example, if the callback wanted to make an FSP API
call in the callback, then at a minimum the callback will need a reference to the relevant control
structure. To make this easy, the user can provide a pointer to the control structure as the
p_context. When the callback occurs, the control structure is passed in the p_context element of the
callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the
user's system. An example skeleton function for the flash interface callback is shown below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 149 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

void flash_callback (flash_callback_args_t * p_args)

{

 /* See what event caused this callback. */

 switch (p_args->event)

 {

 case FLASH_EVENT_ERASE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_WRITE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_BLANK:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_NOT_BLANK:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_ERR_DF_ACCESS:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_CF_ACCESS:

 {

 /* Handle error. */

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 150 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

 }

 case FLASH_EVENT_ERR_CMD_LOCKED:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_FAILURE:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_ONE_BIT:

 {

 /* Handle error. */

 break;

 }

 }

}

 When a module is not directly used in the user application (that is, it is not the top layer of the
stack), its callback function will be handled by the module above. For example, if a module requires
a UART interface module the upper layer module will control and use the UART's callback function. In
this case the user would not need to create a callback function for the UART module in their
application code.

4.4.3 FSP Interface Data Structures

At a minimum, all FSP interfaces include three data structures: a configuration structure, an API
structure, and an instance structure.

4.4.3.1 FSP Interface Configuration Structure

The configuration structure is used for the initial configuration of a module during the
<MODULE>_Open() call. The structure consists of members such as channel number, bitrate, and
operating mode.

The configuration structure is used purely as an input into the module. It may be stored and
referenced by the module, so the configuration structure and anything it references must persist as
long as the module is open.

The configuration structure is allocated for each module instance in files generated by the RA
Configuration editor.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 151 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Configuration Structure

When FSP stacks are used, it is also important to understand that configuration structures only have
members that apply to the current interface. If multiple layers in the same stack define the same
configuration parameters then it becomes difficult to know where to modify the option. For example,
the baud rate for a UART is only defined in the UART module instance. Any modules that use the
UART interface rely on the baud rate being provided in the UART module instance and do not offer it
in their own configuration structures.

4.4.3.2 FSP Interface API Structure

All interfaces include an API structure which contains function pointers for all the supported interface
functions. An example structure for the DAC is shown below.

typedef struct st_dac_api

{

 /** Initial configuration.

 *

 * @param[in] p_ctrl Pointer to control block. Must be declared by user. Elements

set here.

 * @param[in] p_cfg Pointer to configuration structure. All elements of this

structure must be set by user.

 */

 fsp_err_t (* open)(dac_ctrl_t * const p_ctrl, dac_cfg_t const * const p_cfg);

 /** Close the D/A Converter.

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 */

 fsp_err_t (* close)(dac_ctrl_t * const p_ctrl);

 /** Write sample value to the D/A Converter.

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 * @param[in] value Sample value to be written to the D/A Converter.

 */

 fsp_err_t (* write)(dac_ctrl_t * const p_ctrl, uint16_t value);

 /** Start the D/A Converter if it has not been started yet.

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 152 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

 */

 fsp_err_t (* start)(dac_ctrl_t * const p_ctrl);

 /** Stop the D/A Converter if the converter is running.

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 */

 fsp_err_t (* stop)(dac_ctrl_t * const p_ctrl);

} dac_api_t;

The API structure is what allows for modules to easily be swapped in and out for other modules that
are instances of the same interface. Let's look at an example application using the DAC interface
above.

RA MCUs have an internal DAC peripheral. If the DAC API structure in the DAC interface is not used
the application can make calls directly into the module. In the example below the application is
making calls to the R_DAC_Write() function which is provided in the r_dac module.

Figure 143: DAC Write example

 Now let's assume that the user needs more DAC channels than are available on the MCU and
decides to add an external DAC module named dac_external using I2C for communications. The
application must now distinguish between the two modules, adding complexity and further
dependencies to the application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 153 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

Figure 144: DAC Write with two write modules

 The use of interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed if the user's dac_external module implements the FSP DAC interface, so the
application no longer depends upon hard-coded module function names. Instead the application now
depends on the DAC interface API which can be implemented by any number of modules.

Figure 145: DAC Interface

4.4.3.3 FSP Interface Instance Structure

Every FSP interface also has an instance structure. The instance structure encapsulates everything
required to use the module:

A pointer to the instance API structure (FSP Instance API)
A pointer to the configuration structure
A pointer to the control structure

The instance structure is not required at the application layer. It is used to connect modules to their
dependencies (other than the BSP).

Instance structures have a standardized name of <interface>_instance_t. An example from the
Transfer Interface is shown below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 154 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Instance Structure

typedef struct st_transfer_instance

{

 transfer_ctrl_t * p_ctrl; ///< Pointer to the control structure for this

instance

 transfer_cfg_t const * p_cfg; ///< Pointer to the configuration structure

for this instance

 transfer_api_t const * p_api; ///< Pointer to the API structure for this

instance

} transfer_instance_t;

Note that when an instance structure variable is declared, the API is the only thing that is instance
specific, not module instance specific. This is because all module instances of the same module
share the same underlying module source code. If SPI is being used on SCI channels 0 and 2 then
both module instances use the same API while the configuration and control structures are typically
different.

4.5 FSP Instances
While interfaces dictate the features that are provided, instances actually implement those features.
Each instance is tied to a specific interface. Instances use the enumerations, data structures, and API
prototypes from the interface. This allows an application that uses an interface to swap out the
instance when needed.

On RA MCUs some peripherals are used to implement multiple interfaces. In the example below the
IIC and SPI peripherals map to only one interface each while the SCI peripheral implements three
interfaces.

Figure 146: Instances

 In FSP design, instances consist of the interface extension and API defined in the instance header
file located in the folder ra/fsp/inc/instances and the module source ra/fsp/src/<module>.

4.5.1 FSP Instance Control Structure

The control structure is used as a unique identifier for the module instance and contains memory
required by the module. Elements in the control structure are owned by the module and must not be
modified by the application. The user allocates storage for a control structure, often as a global
variable, then sends a pointer to it into the <MODULE>_Open() call for a module. At this point, the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 155 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Instances > FSP Instance Control Structure

module initializes the structure as needed. The user must then send in a pointer to the control
structure for all subsequent module calls.

4.5.2 FSP Interface Extensions

In some cases, instances require more information than is provided in the interface. This situation
can occur in the following cases:

An instance offers extra features that are not common to most instances of the interface.
An example of this is the start source selection of the GPT (Timer, General PWM (r_gpt)).
The GPT can be configured to start based on hardware events such as a falling edge on a
trigger pin. This feature is not common to all timers, so it is included in the GPT instance.
An interface must be very generic out of necessity. As an interface becomes more generic,
the number of possible instances increases. An example of an interface that must be
generic is a block media interface that abstracts functions required by a file system.
Possible instances include SD card, SPI Flash, SDRAM, USB, and many more.

The p_extend member provides this extension function.

Use of interface extensions is not always necessary. Some instances do not offer an extension since
all functionality is provided in the interface. In these cases the p_extend member can be set to NULL.
The documentation for each instance indicates whether an interface extension is available and
whether it is mandatory or optional.

4.5.2.1 FSP Extended Configuration Structure

When extended configuration is required it can be supplied through the p_extend parameter of the
interface configuration structure.

The extended configuration structure is part of the instance, but it is also still considered to be part
of the configuration structure. All usage notes about the configuration structure described in FSP
Interface Configuration Structure apply to the extended configuration structure as well.

The extended configuration structure and all typed structures and enumerations required to define it
make up the interface extension.

4.5.3 FSP Instance API

Each instance includes a constant global variable tying the interface API functions to the functions
provided by the module. The name of this structure is standardized as
g_<interface>_on_<instance>. Examples include g_spi_on_spi, g_transfer_on_dtc, and
g_adc_on_adc. This structure is available to be used through an extern in the instance header file
(r_spi.h, r_dtc.h, and r_adc.h respectively).

4.6 FSP API Standards
4.6.1 FSP Function Names

FSP functions start with the uppercase module name (<MODULE>). All modules have
<MODULE>_Open() and <MODULE>_Close() functions. The <MODULE>_Open() function must be
called before any of the other functions.

Other functions that will commonly be found are <MODULE>_Read(), <MODULE>_Write(),
<MODULE>_InfoGet(), and <MODULE>_StatusGet(). The <MODULE>_StatusGet() function provides

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 156 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP API Standards > FSP Function Names

a status that could change asynchronously, while <MODULE>_InfoGet() provides information that
cannot change after open or can only be updated by API calls. Example function names include:

R_SPI_Read(), R_SPI_Write(), R_SPI_WriteRead()
R_SDHI_StatusGet()
R_RTC_CalendarAlarmSet(), R_RTC_CalendarAlarmGet()
R_FLASH_HP_AccessWindowSet(), R_FLASH_HP_AccessWindowClear()

4.6.2 Use of const in API parameters

The const qualifier is used with API parameters whenever possible. An example case is shown below.

fsp_err_t R_FLASH_HP_Open(flash_ctrl_t * const p_api_ctrl, flash_cfg_t const * const

p_cfg);

In this example, flash_cfg_t is a structure of configuration parameters for the r_flash_hp module. The
parameter p_cfg is a pointer to this structure. The first const qualifier on p_cfg ensures the
flash_cfg_t structure cannot be modified by R_FLASH_HP_Open(). This allows the structure to be
allocated as a const variable and stored in ROM instead of RAM.

The const qualifier after the pointer star for both p_ctrl and p_cfg ensures the FSP function does not
modify the input pointer addresses. While not fool-proof by any means this does provide some extra
checking inside the FSP code to ensure that arguments that should not be altered are treated as
such.

4.6.3 FSP Version Information

The BSP provides a function R_FSP_VersionGet() which fills in a structure of type fsp_pack_version_t.
This can be used to determine the FSP version at runtime.

There are also FSP_VERSION_* macros in fsp_version.h that can be used to determine the FSP
version at build time.

4.7 FSP Build Time Configurations
All modules have a build-time configuration header file. Most configuration options are supplied at
run time, though options that are rarely used or apply to all instances of a module may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature.

All modules have a build time option to enable or disable parameter checking for the module. FSP
modules check function arguments for validity when possible, though this feature is disabled by
default to reduce code size. Enabling it can help catch parameter errors during development and
debugging. By default, each module's parameter checking configuration inherits the BSP parameter
checking setting (set on the BSP tab of the RA Configuration editor). Leaving each module's
parameter checking configuration set to Default (BSP) allows parameter checking to be enabled or
disabled globally in all FSP code through the parameter checking setting on the BSP tab.

If an error condition can reasonably be avoided it is only checked in a section of code that can be
disabled by disabling parameter checking. Most FSP APIs can only return FSP_SUCCESS if parameter
checking is disabled. An example of an error that cannot be reasonably avoided is the "bus busy"

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 157 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Build Time Configurations

error that occurs when another master is using an I2C bus. This type of error can be returned even if
parameter checking is disabled.

4.8 FSP File Structure
The high-level file structure of an FSP project is shown below.

ra_gen

ra

+---fsp

 +---inc

 | +---api

 | \---instances

 \---src

 +---bsp

 \---r_module

ra_cfg

+---fsp_cfg

 +---bsp

 +---driver

Directly underneath the base ra folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.

The ra_gen folder contains code generated by the RA Configuration editor. This includes global
variables for the control structure and configuration structure for each module.

The ra_cfg folder is where configuration header files are stored for each module. See FSP Build Time
Configurations for information on what is provided in these header files.

4.9 FSP TrustZone Support
TrustZone support for FSP is primarily handled in the RA Configuration Tool.

4.9.1 FSP TrustZone Projects

During development of a TrustZone project, users create an RA TrustZone Secure Project first,
followed by an RA TrustZone Non-secure Project that is linked to the RA TrustZone Secure Project.
Allocation of secure memory is handled automatically within the tooling. The non-secure project
starts at the required alignment boundary beyond the memory taken by the secure project.

4.9.2 Non-Secure Callable Guard Functions

The tooling generates guard functions for any module marked as Non-secure Callable. These guard

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 158 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP TrustZone Support > Non-Secure Callable Guard Functions

functions are owned by the application once generated, so they can be modified as necessary by the
secure application developer.

The default non-secure callable guard functions limit the configuration and control structure to the
structures generated in the secure project. They also check any input pointers to ensure the caller
does not overwrite secure memory.

4.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules

If the non-secure project needs a callback function from a non-secure callable module, the callback
can be registered after the module is opened using the callback_set() guard function.

4.9.4 Migrating TrustZone Project to newer FSP Version

The TrustZone projects can be migrated to newer FSP version as mentioned in the following
resource.

Migrating Projects to New FSP Version (Application Note)

Additional steps are required if newer FSP version introduces new guard function. In such case,
simply migrating the project would result in the build failure for non secure project. Following extra
steps are required:

If xxx_guard.c file in src folder of secure project was not modified earlier
1. Delete the xxx_guard.c file in secure project before generating the Project Files.
2. Generate Project contents and build the secure project.
3. Follow the steps in Application Note to migrate the Non-Secure project.

If xxx_guard.c file in src folder of secure project was modified earlier
1. Take the backup of existing xxx_guard.c file and delete it from src folder of secure

project before generating the Project Files.
2. Generate Project contents. It creates a new guard.c file. Compare the contents of

the older file and newly generated guard.c file.
3. Copy the modified code from the older file (i.e Security checks added by user) and

add it to newly generated file.
4. Follow the steps in Application Note to migrate the Non-Secure project.

4.9.5 Additional TrustZone Information

The following resources provide technical background, application notes and example projects that
demonstrate key TrustZone concepts and implementation procedures.

The Benefits of Using Arm® TrustZone® in Your Design (Brochure)
RA Arm® TrustZone® Tooling Primer (Application Note)
Renesas RA Family Security Design with Arm® TrustZone® - IP Protection (Application
Note)
Renesas RA Family Securing Data at Rest Using the Arm® TrustZone® (Application Note)

4.10 FSP Architecture in Practice
4.10.1 FSP Connecting Layers

FSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other interfaces. The user is then free to fulfill the
interface using the instance that best fits their needs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 159 / 5,560

https://www.renesas.com/us/en/document/apn/migrating-projects-new-fsp-version
https://www.renesas.com/us/en/document/whp/benefits-using-arm-trustzone-your-design
https://www.renesas.com/us/en/document/apn/ra-arm-trustzone-tooling-primer
https://www.renesas.com/us/en/document/scd/renesas-ra-family-security-design-arm-trustzone-ip-protection
https://www.renesas.com/us/en/document/apn/renesas-ra-securing-data-rest-using-arm-trustzone

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture in Practice > FSP Connecting Layers

Figure 147: Connecting layers

 In the image above interface Y is a dependency of interface X and has its own dependency on
interface Z. Interface X only has a dependency on interface Y. Interface X has no knowledge of
interface Z. This is a requirement for ensuring that layers can easily be swapped out.

4.10.2 Using FSP Modules in an Application

The typical use of an FSP module involves generating required module data then using the API in the
application.

4.10.2.1 Create a Module Instance in the RA Configuration Editor

The RA Configuration editor (available both in the Renesas e² studio IDE as well as through the
standalone RA Smart Configurator) provides a graphical user interface for setting the parameters of
the interface and instance configuration structures. It also automatically includes those structures
(once they are configured in the GUI) in application-specific header files that can be included in
application code.

The RA Configuration editor allocates storage for the control structures, all required configuration
structures, and the instance structure in generated files in the ra_gen folder. Use the Properties
window to set the values for the members of the configuration structures as needed. Refer to the
Configuration section of the module usage notes for documentation about the configuration options.

If the interface has a callback function option then the application must declare and define the
function. The return value is always of type void and the parameter to the function is a typed
structure of name <interface>_callback_args_t. Once the function has been defined, assign its name
to the p_callback member of the configuration structure. Callback function names can be assigned
through the Properties window for the selected module.

4.10.2.2 Use the Instance API in the Application

Call the module's <MODULE>_Open() function. Pass pointers to the generated control structure and
configuration structure. The names of these structures are based on the 'Name' field provided in the
configuration editor. The control structure is <Name>_ctrl and the configuration structure is
<Name>_cfg. An example <MODULE>_Open() call for an r_rtc module instance named g_clock is:

 R_RTC_Open(&g_clock_ctrl, &g_clock_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 160 / 5,560

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture in Practice > Using FSP Modules in an Application > Use the Instance API in the Application

Note
Each layer in the FSP Stack is responsible for calling the API functions of its dependencies. This means that users
are only responsible for calling the API functions at the layer at which they are interfacing. Using the example
above of a SPI module with a DTC dependency, the application uses only SPI APIs. The application starts by
calling R_SPI_Open(). Internally, the SPI module opens the DTC. It locates R_DTC_Open() by accessing the
dependent transfer interface function pointers from the pointers DTC instances (spi_cfg_t::p_transfer_tx and
spi_cfg_t::p_transfer_rx) to open the DTC.

Refer to the module usage notes for example code to help get started with any particular module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 161 / 5,560

Flexible Software Package

User’s Manual
API Reference

Chapter 5 API Reference
This section includes the FSP API Reference for the Module and Interface level functions.

 ▼BSP Common code shared by FSP drivers

 BSP I/O access This module provides basic read/write access to
port pins

 Common Error Codes

 ►MCU Board Support Package The BSP is responsible for getting the MCU from
reset to the user's application. Before reaching
the user's application, the BSP sets up the
stacks, heap, clocks, interrupts, C runtime
environment, and stack monitor

 ▼Modules Modules are the smallest unit of software
available in FSP. Each module implements one
interface

 ►Analog Analog Modules

 ►AI Artifical Intelligence Modules

 ►Audio Audio Modules

 ►Bootloader Bootloader Modules

 ►CapTouch CapTouch Modules

 ►Connectivity Connectivity Modules

 ►DSP DSP Modules

 ►Graphics Graphics Modules

 ►Input Input Modules

 ►Monitoring Monitoring Modules

 ►Motor Motor Modules

 ►Networking Networking Modules

 ►Power Power Modules

 ►RTOS RTOS Modules

 ►Security Security Modules

 ►Sensor Sensor Modules

 ►Storage Storage Modules

 ►System System Modules

 ►Timers Timers Modules

 ►Transfer Transfer Modules

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 162 / 5,560

Flexible Software Package

User’s Manual
API Reference

 ►TrustZone Arm TrustZone Modules

 ▼Interfaces FSP interfaces provide APIs for common
functionality. They can be implemented by one
or more modules. Modules can use other
modules as dependencies using this interface
layer

 ►Analog Analog Interfaces

 ►AI AI Interfaces

 ►Audio Audio Interfaces

 ►CapTouch CapTouch Interfaces

 ►Connectivity Connectivity Interfaces

 ►DSP DSP Interfaces

 ►Graphics Graphics Interfaces

 ►Input Input Interfaces

 ►Monitoring Monitoring Interfaces

 ►Motor Motor Interfaces

 ►Networking Networking Interfaces

 ►Power Power Interfaces

 ►Security Security Interfaces

 ►Sensor Sensor Interfaces

 ►Storage Storage Interfaces

 ►System System Interfaces

 ►Timers Timers Interfaces

 ►Transfer Transfer Interfaces

 BSP_SDRAM SDRAM initialization

5.1 BSP

Detailed Description

Common code shared by FSP drivers.

Modules

BSP I/O access

 This module provides basic read/write access to port pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 163 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP

Common Error Codes

MCU Board Support Package

 The BSP is responsible for getting the MCU from reset to the user's
application. Before reaching the user's application, the BSP sets up
the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

Data Structures

union fsp_pack_version_t

Macros

#define FSP_VERSION_MAJOR

#define FSP_VERSION_MINOR

#define FSP_VERSION_PATCH

#define FSP_VERSION_BUILD

#define FSP_VERSION_STRING

#define FSP_VERSION_BUILD_STRING

Data Structure Documentation

◆ fsp_pack_version_t

union fsp_pack_version_t

FSP Pack version structure

Data Fields

uint32_t version_id Version id

struct version_id_b_s version_id_b

Macro Definition Documentation

◆ FSP_VERSION_MAJOR

#define FSP_VERSION_MAJOR

FSP pack major version.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 164 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP

◆ FSP_VERSION_MINOR

#define FSP_VERSION_MINOR

FSP pack minor version.

◆ FSP_VERSION_PATCH

#define FSP_VERSION_PATCH

FSP pack patch version.

◆ FSP_VERSION_BUILD

#define FSP_VERSION_BUILD

FSP pack version build number (currently unused).

◆ FSP_VERSION_STRING

#define FSP_VERSION_STRING

Public FSP version name.

◆ FSP_VERSION_BUILD_STRING

#define FSP_VERSION_BUILD_STRING

Unique FSP version ID.

5.1.1 BSP I/O access
BSP

Functions

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

__STATIC_INLINE void R_BSP_PinCfg (bsp_io_port_pin_t pin, uint32_t cfg)

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 165 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Detailed Description

This module provides basic read/write access to port pins.

Enumerations

enum bsp_io_level_t

enum bsp_io_direction_t

enum bsp_io_port_t

enum bsp_io_port_pin_t

Enumeration Type Documentation

◆ bsp_io_level_t

enum bsp_io_level_t

Levels that can be set and read for individual pins

Enumerator

BSP_IO_LEVEL_LOW Low.

BSP_IO_LEVEL_HIGH High.

◆ bsp_io_direction_t

enum bsp_io_direction_t

Direction of individual pins

Enumerator

BSP_IO_DIRECTION_INPUT Input.

BSP_IO_DIRECTION_OUTPUT Output.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 166 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ bsp_io_port_t

enum bsp_io_port_t

Superset list of all possible IO ports.

Enumerator

BSP_IO_PORT_00 IO port 0.

BSP_IO_PORT_01 IO port 1.

BSP_IO_PORT_02 IO port 2.

BSP_IO_PORT_03 IO port 3.

BSP_IO_PORT_04 IO port 4.

BSP_IO_PORT_05 IO port 5.

BSP_IO_PORT_06 IO port 6.

BSP_IO_PORT_07 IO port 7.

BSP_IO_PORT_08 IO port 8.

BSP_IO_PORT_09 IO port 9.

BSP_IO_PORT_10 IO port 10.

BSP_IO_PORT_11 IO port 11.

BSP_IO_PORT_12 IO port 12.

BSP_IO_PORT_13 IO port 13.

BSP_IO_PORT_14 IO port 14.

◆ bsp_io_port_pin_t

enum bsp_io_port_pin_t

Superset list of all possible IO port pins.

Enumerator

BSP_IO_PORT_00_PIN_00 IO port 0 pin 0.

BSP_IO_PORT_00_PIN_01 IO port 0 pin 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 167 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_00_PIN_02 IO port 0 pin 2.

BSP_IO_PORT_00_PIN_03 IO port 0 pin 3.

BSP_IO_PORT_00_PIN_04 IO port 0 pin 4.

BSP_IO_PORT_00_PIN_05 IO port 0 pin 5.

BSP_IO_PORT_00_PIN_06 IO port 0 pin 6.

BSP_IO_PORT_00_PIN_07 IO port 0 pin 7.

BSP_IO_PORT_00_PIN_08 IO port 0 pin 8.

BSP_IO_PORT_00_PIN_09 IO port 0 pin 9.

BSP_IO_PORT_00_PIN_10 IO port 0 pin 10.

BSP_IO_PORT_00_PIN_11 IO port 0 pin 11.

BSP_IO_PORT_00_PIN_12 IO port 0 pin 12.

BSP_IO_PORT_00_PIN_13 IO port 0 pin 13.

BSP_IO_PORT_00_PIN_14 IO port 0 pin 14.

BSP_IO_PORT_00_PIN_15 IO port 0 pin 15.

BSP_IO_PORT_01_PIN_00 IO port 1 pin 0.

BSP_IO_PORT_01_PIN_01 IO port 1 pin 1.

BSP_IO_PORT_01_PIN_02 IO port 1 pin 2.

BSP_IO_PORT_01_PIN_03 IO port 1 pin 3.

BSP_IO_PORT_01_PIN_04 IO port 1 pin 4.

BSP_IO_PORT_01_PIN_05 IO port 1 pin 5.

BSP_IO_PORT_01_PIN_06 IO port 1 pin 6.

BSP_IO_PORT_01_PIN_07 IO port 1 pin 7.

BSP_IO_PORT_01_PIN_08 IO port 1 pin 8.

BSP_IO_PORT_01_PIN_09 IO port 1 pin 9.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 168 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_01_PIN_10 IO port 1 pin 10.

BSP_IO_PORT_01_PIN_11 IO port 1 pin 11.

BSP_IO_PORT_01_PIN_12 IO port 1 pin 12.

BSP_IO_PORT_01_PIN_13 IO port 1 pin 13.

BSP_IO_PORT_01_PIN_14 IO port 1 pin 14.

BSP_IO_PORT_01_PIN_15 IO port 1 pin 15.

BSP_IO_PORT_02_PIN_00 IO port 2 pin 0.

BSP_IO_PORT_02_PIN_01 IO port 2 pin 1.

BSP_IO_PORT_02_PIN_02 IO port 2 pin 2.

BSP_IO_PORT_02_PIN_03 IO port 2 pin 3.

BSP_IO_PORT_02_PIN_04 IO port 2 pin 4.

BSP_IO_PORT_02_PIN_05 IO port 2 pin 5.

BSP_IO_PORT_02_PIN_06 IO port 2 pin 6.

BSP_IO_PORT_02_PIN_07 IO port 2 pin 7.

BSP_IO_PORT_02_PIN_08 IO port 2 pin 8.

BSP_IO_PORT_02_PIN_09 IO port 2 pin 9.

BSP_IO_PORT_02_PIN_10 IO port 2 pin 10.

BSP_IO_PORT_02_PIN_11 IO port 2 pin 11.

BSP_IO_PORT_02_PIN_12 IO port 2 pin 12.

BSP_IO_PORT_02_PIN_13 IO port 2 pin 13.

BSP_IO_PORT_02_PIN_14 IO port 2 pin 14.

BSP_IO_PORT_02_PIN_15 IO port 2 pin 15.

BSP_IO_PORT_03_PIN_00 IO port 3 pin 0.

BSP_IO_PORT_03_PIN_01 IO port 3 pin 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 169 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_03_PIN_02 IO port 3 pin 2.

BSP_IO_PORT_03_PIN_03 IO port 3 pin 3.

BSP_IO_PORT_03_PIN_04 IO port 3 pin 4.

BSP_IO_PORT_03_PIN_05 IO port 3 pin 5.

BSP_IO_PORT_03_PIN_06 IO port 3 pin 6.

BSP_IO_PORT_03_PIN_07 IO port 3 pin 7.

BSP_IO_PORT_03_PIN_08 IO port 3 pin 8.

BSP_IO_PORT_03_PIN_09 IO port 3 pin 9.

BSP_IO_PORT_03_PIN_10 IO port 3 pin 10.

BSP_IO_PORT_03_PIN_11 IO port 3 pin 11.

BSP_IO_PORT_03_PIN_12 IO port 3 pin 12.

BSP_IO_PORT_03_PIN_13 IO port 3 pin 13.

BSP_IO_PORT_03_PIN_14 IO port 3 pin 14.

BSP_IO_PORT_03_PIN_15 IO port 3 pin 15.

BSP_IO_PORT_04_PIN_00 IO port 4 pin 0.

BSP_IO_PORT_04_PIN_01 IO port 4 pin 1.

BSP_IO_PORT_04_PIN_02 IO port 4 pin 2.

BSP_IO_PORT_04_PIN_03 IO port 4 pin 3.

BSP_IO_PORT_04_PIN_04 IO port 4 pin 4.

BSP_IO_PORT_04_PIN_05 IO port 4 pin 5.

BSP_IO_PORT_04_PIN_06 IO port 4 pin 6.

BSP_IO_PORT_04_PIN_07 IO port 4 pin 7.

BSP_IO_PORT_04_PIN_08 IO port 4 pin 8.

BSP_IO_PORT_04_PIN_09 IO port 4 pin 9.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 170 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_04_PIN_10 IO port 4 pin 10.

BSP_IO_PORT_04_PIN_11 IO port 4 pin 11.

BSP_IO_PORT_04_PIN_12 IO port 4 pin 12.

BSP_IO_PORT_04_PIN_13 IO port 4 pin 13.

BSP_IO_PORT_04_PIN_14 IO port 4 pin 14.

BSP_IO_PORT_04_PIN_15 IO port 4 pin 15.

BSP_IO_PORT_05_PIN_00 IO port 5 pin 0.

BSP_IO_PORT_05_PIN_01 IO port 5 pin 1.

BSP_IO_PORT_05_PIN_02 IO port 5 pin 2.

BSP_IO_PORT_05_PIN_03 IO port 5 pin 3.

BSP_IO_PORT_05_PIN_04 IO port 5 pin 4.

BSP_IO_PORT_05_PIN_05 IO port 5 pin 5.

BSP_IO_PORT_05_PIN_06 IO port 5 pin 6.

BSP_IO_PORT_05_PIN_07 IO port 5 pin 7.

BSP_IO_PORT_05_PIN_08 IO port 5 pin 8.

BSP_IO_PORT_05_PIN_09 IO port 5 pin 9.

BSP_IO_PORT_05_PIN_10 IO port 5 pin 10.

BSP_IO_PORT_05_PIN_11 IO port 5 pin 11.

BSP_IO_PORT_05_PIN_12 IO port 5 pin 12.

BSP_IO_PORT_05_PIN_13 IO port 5 pin 13.

BSP_IO_PORT_05_PIN_14 IO port 5 pin 14.

BSP_IO_PORT_05_PIN_15 IO port 5 pin 15.

BSP_IO_PORT_06_PIN_00 IO port 6 pin 0.

BSP_IO_PORT_06_PIN_01 IO port 6 pin 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 171 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_06_PIN_02 IO port 6 pin 2.

BSP_IO_PORT_06_PIN_03 IO port 6 pin 3.

BSP_IO_PORT_06_PIN_04 IO port 6 pin 4.

BSP_IO_PORT_06_PIN_05 IO port 6 pin 5.

BSP_IO_PORT_06_PIN_06 IO port 6 pin 6.

BSP_IO_PORT_06_PIN_07 IO port 6 pin 7.

BSP_IO_PORT_06_PIN_08 IO port 6 pin 8.

BSP_IO_PORT_06_PIN_09 IO port 6 pin 9.

BSP_IO_PORT_06_PIN_10 IO port 6 pin 10.

BSP_IO_PORT_06_PIN_11 IO port 6 pin 11.

BSP_IO_PORT_06_PIN_12 IO port 6 pin 12.

BSP_IO_PORT_06_PIN_13 IO port 6 pin 13.

BSP_IO_PORT_06_PIN_14 IO port 6 pin 14.

BSP_IO_PORT_06_PIN_15 IO port 6 pin 15.

BSP_IO_PORT_07_PIN_00 IO port 7 pin 0.

BSP_IO_PORT_07_PIN_01 IO port 7 pin 1.

BSP_IO_PORT_07_PIN_02 IO port 7 pin 2.

BSP_IO_PORT_07_PIN_03 IO port 7 pin 3.

BSP_IO_PORT_07_PIN_04 IO port 7 pin 4.

BSP_IO_PORT_07_PIN_05 IO port 7 pin 5.

BSP_IO_PORT_07_PIN_06 IO port 7 pin 6.

BSP_IO_PORT_07_PIN_07 IO port 7 pin 7.

BSP_IO_PORT_07_PIN_08 IO port 7 pin 8.

BSP_IO_PORT_07_PIN_09 IO port 7 pin 9.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 172 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_07_PIN_10 IO port 7 pin 10.

BSP_IO_PORT_07_PIN_11 IO port 7 pin 11.

BSP_IO_PORT_07_PIN_12 IO port 7 pin 12.

BSP_IO_PORT_07_PIN_13 IO port 7 pin 13.

BSP_IO_PORT_07_PIN_14 IO port 7 pin 14.

BSP_IO_PORT_07_PIN_15 IO port 7 pin 15.

BSP_IO_PORT_08_PIN_00 IO port 8 pin 0.

BSP_IO_PORT_08_PIN_01 IO port 8 pin 1.

BSP_IO_PORT_08_PIN_02 IO port 8 pin 2.

BSP_IO_PORT_08_PIN_03 IO port 8 pin 3.

BSP_IO_PORT_08_PIN_04 IO port 8 pin 4.

BSP_IO_PORT_08_PIN_05 IO port 8 pin 5.

BSP_IO_PORT_08_PIN_06 IO port 8 pin 6.

BSP_IO_PORT_08_PIN_07 IO port 8 pin 7.

BSP_IO_PORT_08_PIN_08 IO port 8 pin 8.

BSP_IO_PORT_08_PIN_09 IO port 8 pin 9.

BSP_IO_PORT_08_PIN_10 IO port 8 pin 10.

BSP_IO_PORT_08_PIN_11 IO port 8 pin 11.

BSP_IO_PORT_08_PIN_12 IO port 8 pin 12.

BSP_IO_PORT_08_PIN_13 IO port 8 pin 13.

BSP_IO_PORT_08_PIN_14 IO port 8 pin 14.

BSP_IO_PORT_08_PIN_15 IO port 8 pin 15.

BSP_IO_PORT_09_PIN_00 IO port 9 pin 0.

BSP_IO_PORT_09_PIN_01 IO port 9 pin 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 173 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_09_PIN_02 IO port 9 pin 2.

BSP_IO_PORT_09_PIN_03 IO port 9 pin 3.

BSP_IO_PORT_09_PIN_04 IO port 9 pin 4.

BSP_IO_PORT_09_PIN_05 IO port 9 pin 5.

BSP_IO_PORT_09_PIN_06 IO port 9 pin 6.

BSP_IO_PORT_09_PIN_07 IO port 9 pin 7.

BSP_IO_PORT_09_PIN_08 IO port 9 pin 8.

BSP_IO_PORT_09_PIN_09 IO port 9 pin 9.

BSP_IO_PORT_09_PIN_10 IO port 9 pin 10.

BSP_IO_PORT_09_PIN_11 IO port 9 pin 11.

BSP_IO_PORT_09_PIN_12 IO port 9 pin 12.

BSP_IO_PORT_09_PIN_13 IO port 9 pin 13.

BSP_IO_PORT_09_PIN_14 IO port 9 pin 14.

BSP_IO_PORT_09_PIN_15 IO port 9 pin 15.

BSP_IO_PORT_10_PIN_00 IO port 10 pin 0.

BSP_IO_PORT_10_PIN_01 IO port 10 pin 1.

BSP_IO_PORT_10_PIN_02 IO port 10 pin 2.

BSP_IO_PORT_10_PIN_03 IO port 10 pin 3.

BSP_IO_PORT_10_PIN_04 IO port 10 pin 4.

BSP_IO_PORT_10_PIN_05 IO port 10 pin 5.

BSP_IO_PORT_10_PIN_06 IO port 10 pin 6.

BSP_IO_PORT_10_PIN_07 IO port 10 pin 7.

BSP_IO_PORT_10_PIN_08 IO port 10 pin 8.

BSP_IO_PORT_10_PIN_09 IO port 10 pin 9.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 174 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_10_PIN_10 IO port 10 pin 10.

BSP_IO_PORT_10_PIN_11 IO port 10 pin 11.

BSP_IO_PORT_10_PIN_12 IO port 10 pin 12.

BSP_IO_PORT_10_PIN_13 IO port 10 pin 13.

BSP_IO_PORT_10_PIN_14 IO port 10 pin 14.

BSP_IO_PORT_10_PIN_15 IO port 10 pin 15.

BSP_IO_PORT_11_PIN_00 IO port 11 pin 0.

BSP_IO_PORT_11_PIN_01 IO port 11 pin 1.

BSP_IO_PORT_11_PIN_02 IO port 11 pin 2.

BSP_IO_PORT_11_PIN_03 IO port 11 pin 3.

BSP_IO_PORT_11_PIN_04 IO port 11 pin 4.

BSP_IO_PORT_11_PIN_05 IO port 11 pin 5.

BSP_IO_PORT_11_PIN_06 IO port 11 pin 6.

BSP_IO_PORT_11_PIN_07 IO port 11 pin 7.

BSP_IO_PORT_11_PIN_08 IO port 11 pin 8.

BSP_IO_PORT_11_PIN_09 IO port 11 pin 9.

BSP_IO_PORT_11_PIN_10 IO port 11 pin 10.

BSP_IO_PORT_11_PIN_11 IO port 11 pin 11.

BSP_IO_PORT_11_PIN_12 IO port 11 pin 12.

BSP_IO_PORT_11_PIN_13 IO port 11 pin 13.

BSP_IO_PORT_11_PIN_14 IO port 11 pin 14.

BSP_IO_PORT_11_PIN_15 IO port 11 pin 15.

BSP_IO_PORT_12_PIN_00 IO port 12 pin 0.

BSP_IO_PORT_12_PIN_01 IO port 12 pin 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 175 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_12_PIN_02 IO port 12 pin 2.

BSP_IO_PORT_12_PIN_03 IO port 12 pin 3.

BSP_IO_PORT_12_PIN_04 IO port 12 pin 4.

BSP_IO_PORT_12_PIN_05 IO port 12 pin 5.

BSP_IO_PORT_12_PIN_06 IO port 12 pin 6.

BSP_IO_PORT_12_PIN_07 IO port 12 pin 7.

BSP_IO_PORT_12_PIN_08 IO port 12 pin 8.

BSP_IO_PORT_12_PIN_09 IO port 12 pin 9.

BSP_IO_PORT_12_PIN_10 IO port 12 pin 10.

BSP_IO_PORT_12_PIN_11 IO port 12 pin 11.

BSP_IO_PORT_12_PIN_12 IO port 12 pin 12.

BSP_IO_PORT_12_PIN_13 IO port 12 pin 13.

BSP_IO_PORT_12_PIN_14 IO port 12 pin 14.

BSP_IO_PORT_12_PIN_15 IO port 12 pin 15.

BSP_IO_PORT_13_PIN_00 IO port 13 pin 0.

BSP_IO_PORT_13_PIN_01 IO port 13 pin 1.

BSP_IO_PORT_13_PIN_02 IO port 13 pin 2.

BSP_IO_PORT_13_PIN_03 IO port 13 pin 3.

BSP_IO_PORT_13_PIN_04 IO port 13 pin 4.

BSP_IO_PORT_13_PIN_05 IO port 13 pin 5.

BSP_IO_PORT_13_PIN_06 IO port 13 pin 6.

BSP_IO_PORT_13_PIN_07 IO port 13 pin 7.

BSP_IO_PORT_13_PIN_08 IO port 13 pin 8.

BSP_IO_PORT_13_PIN_09 IO port 13 pin 9.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 176 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_13_PIN_10 IO port 13 pin 10.

BSP_IO_PORT_13_PIN_11 IO port 13 pin 11.

BSP_IO_PORT_13_PIN_12 IO port 13 pin 12.

BSP_IO_PORT_13_PIN_13 IO port 13 pin 13.

BSP_IO_PORT_13_PIN_14 IO port 13 pin 14.

BSP_IO_PORT_13_PIN_15 IO port 13 pin 15.

BSP_IO_PORT_14_PIN_00 IO port 14 pin 0.

BSP_IO_PORT_14_PIN_01 IO port 14 pin 1.

BSP_IO_PORT_14_PIN_02 IO port 14 pin 2.

BSP_IO_PORT_14_PIN_03 IO port 14 pin 3.

BSP_IO_PORT_14_PIN_04 IO port 14 pin 4.

BSP_IO_PORT_14_PIN_05 IO port 14 pin 5.

BSP_IO_PORT_14_PIN_06 IO port 14 pin 6.

BSP_IO_PORT_14_PIN_07 IO port 14 pin 7.

BSP_IO_PORT_14_PIN_08 IO port 14 pin 8.

BSP_IO_PORT_14_PIN_09 IO port 14 pin 9.

BSP_IO_PORT_14_PIN_10 IO port 14 pin 10.

BSP_IO_PORT_14_PIN_11 IO port 14 pin 11.

BSP_IO_PORT_14_PIN_12 IO port 14 pin 12.

BSP_IO_PORT_14_PIN_13 IO port 14 pin 13.

BSP_IO_PORT_14_PIN_14 IO port 14 pin 14.

BSP_IO_PORT_14_PIN_15 IO port 14 pin 15.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 177 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ R_BSP_PinRead()

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

Read the current input level of the pin.

Parameters
[in] pin The pin

Return values
Current input level

◆ R_BSP_PinWrite()

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

Set a pin to output and set the output level to the level provided. If PFS protection is enabled,
disable PFS protection using R_BSP_PinAccessEnable() before calling this function.

Parameters
[in] pin The pin

[in] level The level

◆ R_BSP_PinCfg()

__STATIC_INLINE void R_BSP_PinCfg (bsp_io_port_pin_t pin, uint32_t cfg)

Configure a pin. If PFS protection is enabled, disable PFS protection using R_BSP_PinAccessEnable()
before calling this function.

Parameters
[in] pin The pin

[in] cfg Configuration for the pin
(PmnPFS register setting)

◆ R_BSP_PinAccessEnable()

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

Enable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 178 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ R_BSP_PinAccessDisable()

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Disable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

5.1.2 Common Error Codes
BSP

Detailed Description

All FSP modules share these common error codes.

Macros

#define FSP_PARAMETER_NOT_USED(p)

#define FSP_CPP_HEADER

#define FSP_HEADER

#define FSP_SECURE_ARGUMENT

Enumerations

enum fsp_err_t

Macro Definition Documentation

◆ FSP_PARAMETER_NOT_USED

#define FSP_PARAMETER_NOT_USED (p)

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

◆ FSP_CPP_HEADER

#define FSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 179 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

◆ FSP_HEADER

#define FSP_HEADER

FSP Header and Footer definitions

◆ FSP_SECURE_ARGUMENT

#define FSP_SECURE_ARGUMENT

Macro to be used when argument to function is ignored since function call is NSC and the
parameter is statically defined on the Secure side.

Enumeration Type Documentation

◆ fsp_err_t

enum fsp_err_t

Common error codes

Enumerator

FSP_ERR_ASSERTION A critical assertion has failed.

FSP_ERR_INVALID_POINTER Pointer points to invalid memory location.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_CHANNEL Selected channel does not exist.

FSP_ERR_INVALID_MODE Unsupported or incorrect mode.

FSP_ERR_UNSUPPORTED Selected mode not supported by this API.

FSP_ERR_NOT_OPEN Requested channel is not configured or API not
open.

FSP_ERR_IN_USE Channel/peripheral is running/busy.

FSP_ERR_OUT_OF_MEMORY Allocate more memory in the driver's cfg.h.

FSP_ERR_HW_LOCKED Hardware is locked.

FSP_ERR_IRQ_BSP_DISABLED IRQ not enabled in BSP.

FSP_ERR_OVERFLOW Hardware overflow.

FSP_ERR_UNDERFLOW

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 180 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

Hardware underflow.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_APPROXIMATION Could not set value to exact result.

FSP_ERR_CLAMPED Value had to be limited for some reason.

FSP_ERR_INVALID_RATE Selected rate could not be met.

FSP_ERR_ABORTED An operation was aborted.

FSP_ERR_NOT_ENABLED Requested operation is not enabled.

FSP_ERR_TIMEOUT Timeout error.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks supplied.

FSP_ERR_INVALID_ADDRESS Invalid address supplied.

FSP_ERR_INVALID_SIZE Invalid size/length supplied for operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_ERASE_FAILED Erase operation failed.

FSP_ERR_INVALID_CALL Invalid function call is made.

FSP_ERR_INVALID_HW_CONDITION Detected hardware is in invalid condition.

FSP_ERR_INVALID_FACTORY_FLASH Factory flash is not available on this MCU.

FSP_ERR_INVALID_STATE API or command not valid in the current state.

FSP_ERR_NOT_ERASED Erase verification failed.

FSP_ERR_SECTOR_RELEASE_FAILED Sector release failed.

FSP_ERR_NOT_INITIALIZED Required initialization not complete.

FSP_ERR_NOT_FOUND The requested item could not be found.

FSP_ERR_NO_CALLBACK_MEMORY Non-secure callback memory not provided for
non-secure callback.

FSP_ERR_BUFFER_EMPTY No data available in buffer.

FSP_ERR_INVALID_DATA Accuracy of data is not guaranteed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 181 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_INTERNAL Internal error.

FSP_ERR_WAIT_ABORTED Wait aborted.

FSP_ERR_FRAMING Framing error occurs.

FSP_ERR_BREAK_DETECT Break signal detects.

FSP_ERR_PARITY Parity error occurs.

FSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

FSP_ERR_QUEUE_UNAVAILABLE Can't open s/w queue.

FSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular
buffer.

FSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

FSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

FSP_ERR_MODE_FAULT Mode fault error.

FSP_ERR_READ_OVERFLOW Read overflow.

FSP_ERR_SPI_PARITY Parity error.

FSP_ERR_OVERRUN Overrun error.

FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.

FSP_ERR_CLOCK_ACTIVE Active clock source cannot be modified without
stopping first.

FSP_ERR_NOT_STABILIZED Clock has not stabilized after its been turned
on/off.

FSP_ERR_PLL_SRC_INACTIVE PLL initialization attempted when PLL source is
turned off.

FSP_ERR_OSC_STOP_DET_ENABLED Illegal attempt to stop LOCO when Oscillation
stop is enabled.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detection status flag is
set.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE Attempt to clear Oscillation Stop Detect Status
with PLL/MAIN_OSC active.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 182 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CLKOUT_EXCEEDED Output on target output clock pin exceeds
maximum supported limit.

FSP_ERR_USB_MODULE_ENABLED USB clock configure request with USB Module
enabled.

FSP_ERR_HARDWARE_TIMEOUT A register read or write timed out.

FSP_ERR_LOW_VOLTAGE_MODE Invalid clock setting attempted in low voltage
mode.

FSP_ERR_PE_FAILURE Unable to enter Programming mode.

FSP_ERR_CMD_LOCKED Peripheral in command locked state.

FSP_ERR_FCLK FCLK must be >= 4 MHz.

FSP_ERR_INVALID_LINKED_ADDRESS Function or data are linked at an invalid region
of memory.

FSP_ERR_BLANK_CHECK_FAILED Blank check operation failed.

FSP_ERR_INVALID_CAC_REF_CLOCK Measured clock rate < reference clock rate.

FSP_ERR_INVALID_RESULT The result of one or more calculations was +/-
infinity.

FSP_ERR_CLOCK_GENERATION Clock cannot be specified as system clock.

FSP_ERR_INVALID_TIMING_SETTING Invalid timing parameter.

FSP_ERR_INVALID_LAYER_SETTING Invalid layer parameter.

FSP_ERR_INVALID_ALIGNMENT Invalid memory alignment found.

FSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction parameter.

FSP_ERR_INVALID_LAYER_FORMAT Invalid color format in layer.

FSP_ERR_INVALID_UPDATE_TIMING Invalid timing for register update.

FSP_ERR_INVALID_CLUT_ACCESS Invalid access to CLUT entry.

FSP_ERR_INVALID_FADE_SETTING Invalid fade-in/fade-out setting.

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid gamma correction parameter.

FSP_ERR_JPEG_ERR JPEG error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 183 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_JPEG_SOI_NOT_DETECTED SOI not detected until EOI detected.

FSP_ERR_JPEG_SOF1_TO_SOFF_DETECTED SOF1 to SOFF detected.

FSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT Unprovided pixel format detected.

FSP_ERR_JPEG_SOF_ACCURACY_ERROR SOF accuracy error: other than 8 detected.

FSP_ERR_JPEG_DQT_ACCURACY_ERROR DQT accuracy error: other than 0 detected.

FSP_ERR_JPEG_COMPONENT_ERROR1 Component error 1: the number of SOF0
header components detected is other than 1,
3, or 4.

FSP_ERR_JPEG_COMPONENT_ERROR2 Component error 2: the number of components
differs between SOF0 header and SOS.

FSP_ERR_JPEG_SOF0_DQT_DHT_NOT_DETECTED SOF0, DQT, and DHT not detected when SOS
detected.

FSP_ERR_JPEG_SOS_NOT_DETECTED SOS not detected: SOS not detected until EOI
detected.

FSP_ERR_JPEG_EOI_NOT_DETECTED EOI not detected (default)

FSP_ERR_JPEG_RESTART_INTERVAL_DATA_NUMB
ER_ERROR

Restart interval data number error detected.

FSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size error detected.

FSP_ERR_JPEG_LAST_MCU_DATA_NUMBER_ERRO
R

Last MCU data number error detected.

FSP_ERR_JPEG_BLOCK_DATA_NUMBER_ERROR Block data number error detected.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH User provided buffer size not enough.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE JPEG Image size is not aligned with MCU.

FSP_ERR_CALIBRATE_FAILED Calibration failed.

FSP_ERR_IIRFA_ECC_1BIT 1-bit ECC error detected

FSP_ERR_IIRFA_ECC_2BIT 2-bit ECC error detected

FSP_ERR_IP_HARDWARE_NOT_PRESENT Requested IP does not exist on this device.

FSP_ERR_IP_UNIT_NOT_PRESENT Requested unit does not exist on this device.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 184 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

device.

FSP_ERR_NO_MORE_BUFFER No more buffer found in the memory block
pool.

FSP_ERR_ILLEGAL_BUFFER_ADDRESS Buffer address is out of block memory pool.

FSP_ERR_INVALID_WORKBUFFER_SIZE Work buffer size is invalid.

FSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

FSP_ERR_TOO_MANY_BUFFERS Number of buffer is too many.

FSP_ERR_NO_SUBSCRIBER_FOUND No message subscriber found.

FSP_ERR_MESSAGE_QUEUE_EMPTY No message found in the message queue.

FSP_ERR_MESSAGE_QUEUE_FULL No room for new message in the message
queue.

FSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

FSP_ERR_BUFFER_RELEASED Buffer has been released.

FSP_ERR_D2D_ERROR_INIT D/AVE 2D has an error in the initialization.

FSP_ERR_D2D_ERROR_DEINIT D/AVE 2D has an error in the initialization.

FSP_ERR_D2D_ERROR_RENDERING D/AVE 2D has an error in the rendering.

FSP_ERR_D2D_ERROR_SIZE D/AVE 2D has an error in the rendering.

FSP_ERR_ETHER_ERROR_NO_DATA No Data in Receive buffer.

FSP_ERR_ETHER_ERROR_LINK ETHERC/EDMAC has an error in the Auto-
negotiation.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_MODE As a Magic Packet is being detected, and
transmission/reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER_FUL
L

Transmit buffer is not empty.

FSP_ERR_ETHER_ERROR_FILTERING Detect multicast frame when multicast frame
filtering enable.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATION ETHERC/EDMAC has an error in the phy
communication.

FSP_ERR_ETHER_RECEIVE_BUFFER_ACTIVE Receive buffer is active.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 185 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_ETHER_PHY_ERROR_LINK PHY is not link up.

FSP_ERR_ETHER_PHY_NOT_READY PHY has an error in the Auto-negotiation.

FSP_ERR_QUEUE_FULL Queue is full, cannot queue another data.

FSP_ERR_QUEUE_EMPTY Queue is empty, no data to dequeue.

FSP_ERR_CTSU_SCANNING Scanning.

FSP_ERR_CTSU_NOT_GET_DATA Not processed previous scan data.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

FSP_ERR_CTSU_DIAG_NOT_YET Diagnosis of data collected no yet.

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE Diagnosis of LDO over voltage failed.

FSP_ERR_CTSU_DIAG_CCO_HIGH Diagnosis of CCO into 19.2uA failed.

FSP_ERR_CTSU_DIAG_CCO_LOW Diagnosis of CCO into 2.4uA failed.

FSP_ERR_CTSU_DIAG_SSCG Diagnosis of SSCG frequency failed.

FSP_ERR_CTSU_DIAG_DAC Diagnosis of non-touch count value failed.

FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE Diagnosis of LDO output voltage failed.

FSP_ERR_CTSU_DIAG_OVER_VOLTAGE Diagnosis of over voltage detection circuit
failed.

FSP_ERR_CTSU_DIAG_OVER_CURRENT Diagnosis of over current detection circuit
failed.

FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE Diagnosis of Current source value failed.

FSP_ERR_CTSU_DIAG_SENSCLK_GAIN Diagnosis of SENSCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_SUCLK_GAIN Diagnosis of SUCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY Diagnosis of SUCLK clock recovery function
failed.

FSP_ERR_CTSU_DIAG_CFC_GAIN Diagnosis of CFC oscillator gain failed.

FSP_ERR_CARD_INIT_FAILED

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 186 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

SD card or eMMC device failed to initialize.

FSP_ERR_CARD_NOT_INSERTED SD card not installed.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low or another
operation is ongoing.

FSP_ERR_CARD_NOT_INITIALIZED SD card was removed.

FSP_ERR_CARD_WRITE_PROTECTED Media is write protected.

FSP_ERR_TRANSFER_BUSY Transfer in progress.

FSP_ERR_RESPONSE Card did not respond or responded with an
error.

FSP_ERR_MEDIA_FORMAT_FAILED Media format failed.

FSP_ERR_MEDIA_OPEN_FAILED Media open failed.

FSP_ERR_CAN_DATA_UNAVAILABLE No data available.

FSP_ERR_CAN_MODE_SWITCH_FAILED Switching operation modes failed.

FSP_ERR_CAN_INIT_FAILED Hardware initialization failed.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress.

FSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup as a receive mailbox.

FSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is setup as a transmit mailbox.

FSP_ERR_CAN_MESSAGE_LOST Receive message has been overwritten or
overrun.

FSP_ERR_CAN_TRANSMIT_FIFO_FULL Transmit FIFO is full.

FSP_ERR_WIFI_CONFIG_FAILED WiFi module Configuration failed.

FSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed.

FSP_ERR_WIFI_TRANSMIT_FAILED Transmission failed.

FSP_ERR_WIFI_INVALID_MODE API called when provisioned in client mode.

FSP_ERR_WIFI_FAILED WiFi Failed.

FSP_ERR_WIFI_SCAN_COMPLETE Wifi scan has completed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 187 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_WIFI_AP_NOT_CONNECTED WiFi module is not connected to access point.

FSP_ERR_WIFI_UNKNOWN_AT_CMD DA16XXX Unknown AT command Error.

FSP_ERR_WIFI_INSUF_PARAM DA16XXX Insufficient parameter.

FSP_ERR_WIFI_TOO_MANY_PARAMS DA16XXX Too many parameters.

FSP_ERR_WIFI_INV_PARAM_VAL DA16XXX Wrong parameter value.

FSP_ERR_WIFI_NO_RESULT DA16XXX No result.

FSP_ERR_WIFI_RSP_BUF_OVFLW DA16XXX Response buffer overflow.

FSP_ERR_WIFI_FUNC_NOT_CONFIG DA16XXX Function is not configured.

FSP_ERR_WIFI_NVRAM_WR_FAIL DA16XXX NVRAM write failure.

FSP_ERR_WIFI_RET_MEM_WR_FAIL DA16XXX Retention memory write failure.

FSP_ERR_WIFI_UNKNOWN_ERR DA16XXX unknown error.

FSP_ERR_CELLULAR_CONFIG_FAILED Cellular module Configuration failed.

FSP_ERR_CELLULAR_INIT_FAILED Cellular module initialization failed.

FSP_ERR_CELLULAR_TRANSMIT_FAILED Transmission failed.

FSP_ERR_CELLULAR_FW_UPTODATE Firmware is uptodate.

FSP_ERR_CELLULAR_FW_UPGRADE_FAILED Firmware upgrade failed.

FSP_ERR_CELLULAR_FAILED Cellular Failed.

FSP_ERR_CELLULAR_INVALID_STATE API Called in invalid state.

FSP_ERR_CELLULAR_REGISTRATION_FAILED Cellular Network registration failed.

FSP_ERR_BLE_FAILED BLE operation failed.

FSP_ERR_BLE_INIT_FAILED BLE device initialization failed.

FSP_ERR_BLE_CONFIG_FAILED BLE device configuration failed.

FSP_ERR_BLE_PRF_ALREADY_ENABLED BLE device Profile already enabled.

FSP_ERR_BLE_PRF_NOT_ENABLED BLE device not enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 188 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_BLE_ABS_INVALID_OPERATION Invalid operation is executed.

FSP_ERR_BLE_ABS_NOT_FOUND Valid data or free space is not found.

FSP_ERR_CRYPTO_CONTINUE Continue executing function.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Hardware resource busy.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

FSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid index.

FSP_ERR_CRYPTO_SCE_RETRY Retry.

FSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verify is failed.

FSP_ERR_CRYPTO_SCE_ALREADY_OPEN HW SCE module is already opened.

FSP_ERR_CRYPTO_NOT_OPEN Hardware module is not initialized.

FSP_ERR_CRYPTO_UNKNOWN Some unknown error occurred.

FSP_ERR_CRYPTO_NULL_POINTER Null pointer input as a parameter.

FSP_ERR_CRYPTO_NOT_IMPLEMENTED Algorithm/size not implemented.

FSP_ERR_CRYPTO_RNG_INVALID_PARAM An invalid parameter is specified.

FSP_ERR_CRYPTO_RNG_FATAL_ERROR A fatal error occurred.

FSP_ERR_CRYPTO_INVALID_SIZE Size specified is invalid.

FSP_ERR_CRYPTO_INVALID_STATE Function used in an valid state.

FSP_ERR_CRYPTO_ALREADY_OPEN control block is already opened

FSP_ERR_CRYPTO_INSTALL_KEY_FAILED Specified input key is invalid.

FSP_ERR_CRYPTO_AUTHENTICATION_FAILED Authentication failed.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Failure to Init Cipher.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input date is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function call occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 189 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLICT Hardware resource is busy.

FSP_ERR_CRYPTO_RSIP_FATAL Hardware fatal error or unexpected return.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key type is illegal.

FSP_ERR_CRYPTO_RSIP_AUTHENTICATION Authentication failed.

FSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common is not opened.

FSP_ERR_CRYPTO_HAL_ERROR Cryoto HAL module returned an error.

FSP_ERR_CRYPTO_KEY_BUF_NOT_ENOUGH Key buffer size is not enough to generate a
key.

FSP_ERR_CRYPTO_BUF_OVERFLOW Attempt to write data larger than what the
buffer can hold.

FSP_ERR_CRYPTO_INVALID_OPERATION_MODE Invalid operation mode.

FSP_ERR_MESSAGE_TOO_LONG Message for RSA encryption is too long.

FSP_ERR_RSA_DECRYPTION_ERROR RSA Decryption error.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

Note
SF_CRYPTO APIs may return an error code
starting from 0x10000 which is of Crypto module.
Refer to sf_cryoto_err.h for Crypto error codes.

FSP_ERR_SENSOR_IN_STABILIZATION Sensor is stabilizing.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHE
D

Measurement is not finished.

FSP_ERR_COMMS_BUS_NOT_OPEN Bus is not open.

5.1.3 MCU Board Support Package
BSP

Functions

fsp_err_t R_FSP_VersionGet (fsp_pack_version_t *const p_version)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 190 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

void SystemInit (void)

void R_BSP_WarmStart (bsp_warm_start_event_t event)

void Reset_Handler (void)

void Default_Handler (void)

void NMI_Handler (void)

BSP_SECTION_FLASH_GAP
void

R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

uint32_t R_BSP_SourceClockHzGet (fsp_priv_source_clock_t clock)

__STATIC_INLINE IRQn_Type R_FSP_CurrentIrqGet (void)

__STATIC_INLINE uint32_t R_FSP_SystemClockHzGet (fsp_priv_clock_t clock)

__STATIC_INLINE uint32_t R_FSP_ClockDividerGet (uint32_t ckdivcr)

__STATIC_INLINE
bsp_unique_id_t const *

R_BSP_UniqueIdGet (void)

__STATIC_INLINE void R_BSP_FlashCacheDisable (void)

__STATIC_INLINE void R_BSP_FlashCacheEnable (void)

BSP_SECTION_FLASH_GAP
fsp_err_t

R_BSP_GroupIrqWrite (bsp_grp_irq_t irq,
void(*p_callback)(bsp_grp_irq_t irq))

BSP_SECTION_FLASH_GAP
void

R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

BSP_SECTION_FLASH_GAP
void

R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqClearPending (IRQn_Type irq)

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqCfg (IRQn_Type const irq, uint32_t priority, void
*p_context)

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqEnableNoClear (IRQn_Type const irq)

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqEnable (IRQn_Type const irq)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 191 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqDisable (IRQn_Type const irq)

BSP_SECTION_FLASH_GAP
void

R_BSP_IrqCfgEnable (IRQn_Type const irq, uint32_t priority, void
*p_context)

Detailed Description

The BSP is responsible for getting the MCU from reset to the user's application. Before reaching the
user's application, the BSP sets up the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP Features
BSP Clock Configuration
System Interrupts
Group Interrupts
External and Peripheral Interrupts
Error Logging
BSP Weak Symbols
Warm Start Callbacks
Sub Clock Stabilization Wait Callback
SDRAM Initialization
C Runtime Initialization
Register Protection
ID Codes
TrustZone Security Attribution Registers
Software Delay
Trignometric Function
Digital Signal Processing with 32-bit Multiply-Accumulator
Octal-SPI Clock Update
Limited D-Cache Support
Non-Cacheable Buffer Placement Example
Configuration

Overview
BSP Features

BSP Clock Configuration

All system clocks are set up during BSP initialization based on the settings in bsp_clock_cfg.h. These
settings are derived from clock configuration information provided from the RA Configuration editor
Clocks tab.

Clock configuration is performed prior to initializing the C runtime environment to speed up
the startup process, as it is possible to start up on a relatively slow (that is, 32 kHz) clock.
The BSP implements the required delays to allow the selected clock to stabilize.
The BSP will configure the CMSIS SystemCoreClock variable after clock initialization with the
current system clock frequency.

System Interrupts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 192 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

As RA MCUs are based on the Arm Cortex-M architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the Arm architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the "top" of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

Reset
NMI
Cortex-M4 Hard Fault Handler
Cortex-M4 MPU Fault Handler
Cortex-M4 Bus Fault Handler
Cortex-M4 Usage Fault Handler
Reserved
Reserved
Reserved
Reserved
Cortex-M4 SVCall Handler
Cortex-M4 Debug Monitor Handler
Reserved
Cortex-M4 PendSV Handler
Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the RA peripherals Data Transfer Controller (DTC) or
Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

IWDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected
NMI pin
RAM Parity Error
RAM ECC Error
MPU Bus Slave Error
MPU Bus Master Error
MPU Stack Error
TrustZone Filter Error A user may enable notification for one or more group interrupts by
registering a callback using the BSP API function R_BSP_GroupIrqWrite(). When an NMI
interrupt occurs, the NMI handler checks to see if there is a callback registered for the
cause of the interrupt and if so calls the registered callback function.

External and Peripheral Interrupts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 193 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

User configurable interrupts begin with slot 16. These may be external, or peripheral generated
interrupts.

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user-enabled events to NVIC interrupts. For an RA6M3 MCU, only 96 of these events may
be active at any one time, but the user has flexibility by choosing which events generate the active
event.

By allowing the user to select only the events they are interested in as interrupt sources, we are able
to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCI0 (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the RA
implementation there is a vector entry for each of the SCI0 events that we are interested in.

BSP Weak Symbols

You might wonder how the BSP is able to place ISR addresses in the NVIC table without the user
having explicitly defined one. All that is required by the BSP is that the interrupt event be given a
priority.

This is accomplished through the use of the 'weak' attribute. The weak attribute causes the
declaration to be emitted as a weak symbol rather than a global. A weak symbol is one that can be
overridden by an accompanying strong reference with the same name. When the BSP declares a
function as weak, user code can define the same function and it will be used in place of the BSP
function. By defining all possible interrupt sources as weak, the vector table can be built at compile
time and any user declarations (strong references) will be used at runtime.

Weak symbols are supported for ELF targets and also for a.out targets when using the GNU
assembler and linker.

Note that in CMSIS system.c, there is also a weak definition (and a function body) for the Warm Start
callback function R_BSP_WarmStart(). Because this function is defined in the same file as the weak
declaration, it will be called as the 'default' implementation. The function may be overridden by the
user by copying the body into their user application and modifying it as necessary. The linker
identifies this as the 'strong' reference and uses it.

Warm Start Callbacks

As the BSP is in the process of bringing up the board out of reset, there are three points where the
user can request a callback. These are defined as the 'Pre Clock Init', 'Post Clock Init' and 'Post C'
warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system.c into the
application code to get a callback. R_BSP_WarmStart() takes an event parameter of type
bsp_warm_start_event_t which describes the type of warm start callback being made.

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system.c. To use this function just copy this function into your own code and
modify it to meet your needs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 194 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Sub Clock Stabilization Wait Callback

When Sub-Clock oscillator is populated in the application, the BSP startup code waits for some
time(sub-clock stabilization time) to allow Sub-clock to stabilize. Enabling the watchdog (IWDT or
WDT) timer with Auto start mode in an application using Sub-clock may cause system to generate
Reset or NMI interrupt before reaching the application code if watchdog refresh register is not
updated in the configured refresh Window. To overcome this problem a weakly defined callback
R_BSP_SubClockStabilizeWait() can be overridden. Redefine the callback function in the application
code and add code to update the watchdog refresh register. R_BSP_SubClockStabilizeWait() takes a
parameter delay of type uint32_t which describes the time in milliseconds required to stabilize the
sub-clock.

Sub Clock Stabilization Wait After Reset callback

After Power-On-Reset, the BSP startup code may have to wait for some time(sub-clock stabilization
time) to allow Sub-clock to stabilize. This can cause problem to RTC in case device is to be reset
frequently. If Sub-Clock registers are not initialized during a reset, BSP actually does not have to wait
for Sub-clock to stabilize. To overcome this problem, a weakly defined callback
R_BSP_SubClockStabilizeWaitAfterReset() is provided. Reimplement the callback function in the
application code to determine whether BSP has to wait for stabilization time based on the current
reset type. R_BSP_SubClockStabilizeWaitAfterReset() takes a parameter delay of type uint32_t which
describes the time in milliseconds required to stabilize the sub-clock.

SDRAM Initialization

The BSP provides support for usage of external SDRAM modules on MCUs with SDRAM support.
SDRAM is enabled and configured in the BSP tab of the RA configuration editor. The default location
for initialization is in the 'Post C' warm start callback. If required, the call to R_BSP_SdramInit() can
be moved anywhere after clock and pin initialization, but it must only be called once after reset. The
BSP will not initialize any memory sections in the SDRAM. The user is responsible for initializing any
code or data stored in SDRAM.

Before entering Software Standby or Deep Software Standby, the user must call
R_BSP_SdramSelfRefreshEnable() to change from Auto-Refresh to Self-Refresh in order to perserve
data during the low power state. No SDRAM access is allowed after this function is called. The user
must not place FSP code or data or their wakeup interrupt handling functions into SDRAM to ensure
there are no issues around transitions into and out of Software Standby since SDRAM access will be
disabled then and trigger a fault if access is requested.

When resuming from Software Standby, the user must call R_BSP_SdramSelfRefreshDisable() to
change from Self-Refresh to Auto-Refresh and restore SDRAM access.

When resuming operation after Deep Software Standby or another situation where there is already
data present in the SDRAM modules that must be preserved, the user must call
R_BSP_SdramInit(false) before pin initialization and then call R_BSP_SdramSelfRefreshDisable() after
pins have been configured in order to resume operations with the SDRAM.

C Runtime Initialization

This BSP configuration allows the user to skip the FSP C runtime initialization code by setting the "C
Runtime Initialization" to "Disabled" on the BSP tab of the RA Configuration editor. Disabling this
option is useful in cases where a non-standard linker script is being used or other modifications to
the runtime initialization are desired. If this macro is disabled, the user must use the 'Post Clock Init'
event from the warm start (described above) to run their own runtime initialization code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 195 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Heap Allocation

The relatively low amount of on-chip SRAM available and lack of memory protection in an MCU
means that heap use must be very carefully controlled to avoid memory leaks, overruns and
attempted overallocation. Further, many RTOSes provide their own dynamic memory allocation
system. For these reasons the default heap size is set at 0 bytes, effectively disabling dynamic
memory. If it is required for an application setting a positive value to the "Heap size (bytes)" option
in the RA Common configurations on the BSP tab will allocate a heap.

Note
When using printf/sprintf (and other variants) to output floating point numbers a heap is required. A minimum size
of 0x1000 (4096) bytes is recommended when starting development in this case.

Error Logging

When error logging is enabled, the error logging function can be redefined on the command line by
defining FSP_ERROR_LOG(err) to the desired function call. The default function implementation is
FSP_ERROR_LOG(err)=fsp_error_log(err, FILE, LINE). This implementation uses the predefined
macros FILE and LINE to help identify the location where the error occurred. Removing the line from
the function call can reduce code size when error logging is enabled. Some compilers may support
other predefined macros like FUNCTION, which could be helpful for customizing the error logger.

Register Protection

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function doesn't have its register
protection settings inadvertently modified.

Each time R_BSP_RegisterProtectDisable() is called, the respective reference counter is incremented.

Each time R_BSP_RegisterProtectEnable() is called, the respective reference counter is decremented.

Both functions will only modify the protection state if their reference counter is zero.

 /* Enable writing to protected CGC registers */

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

 /* Insert code to modify protected CGC registers. */

 /* Disable writing to protected CGC registers */

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

Option-setting memory

Option-setting memory includes OFS registers OFS0 and OFS1, OSIS debugger ID code, and block
protections settings BPS and PBPS. Option-setting memory is MCU specific, and not all MCUs
implement all option-setting registers. Option-setting configurations available on the selected device
are configurable in the BSP properties. These configurations are placed in sections to be loaded at
the required flash address by the linker.

The ID code is a 16-byte value that can be used to protect the MCU from being connected to a
debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 196 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

ID code; please refer to the hardware manual for your device for available options.

On MCUs that support TrustZone, option-setting registers are placed in a different locations for Non-
Secure projects than for Secure or Flat projects. This is handled automatically by the BSP and linker
scripts.

All *_SEL registers default to allowing both Secure and Non-Secure access unless otherwise noted
here. If block protection is configured in a Secure project, the BSP sets the corresponding
configuration to Secure access only by updating the corresponding *_SEL register. Similarly, the LVD
related settings in the OFSn_SEL registers are automatically set to Secure if the corresponding LVD
monitor is used in the Secure project.

TrustZone Security Attribution Registers

On MCUs that support TrustZone, Security Attribution Registers for modules used in the Secure
project are configured to allow Secure access only as part of the startup code of the Secure project.
This logic is skipped for Flat projects.

Software Delay

Implements a blocking software delay. A delay can be specified in microseconds, milliseconds or
seconds. The delay is implemented based on the system clock rate.

 /* Delay at least 1 second. Depending on the number of wait states required for the

region of memory

 * that the software_delay_loop has been linked in this could take longer. The

default is 4 cycles per loop.

 * This can be modified by redefining DELAY_LOOP_CYCLES. BSP_DELAY_UNITS_SECONDS,

BSP_DELAY_UNITS_MILLISECONDS,

 * and BSP_DELAY_UNITS_MICROSECONDS can all be used with R_BSP_SoftwareDelay. */

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

Trignometric Function

Implements Trignometric math inline functions utilizing TFU hardware. These functions can calculate
sine, cosine, arctangent and hypotenuse. The trigonometric library functions sinf(), cosf(), atan2f(),
and hypotf() can be mapped to respective TFU functions by enabling TFU Mathlib property in FSP
Configuration tool. Extended functions sincosf() and atan2hypotf() are also available when the TFU
Mathlib property is enabled in the RA Configuration editor.

TFU functions are not reentrant. Disable the TFU Mathlib property in RA Configuration editor if
reentrant access to trigonometric library functions is required.

Note
Refer to the MCU hardware user's manual or datasheet to determine if it has TFU support.

Digital Signal Processing With 32-bit Multiply-Accumulator

Implements DSP (digital signal processing) functions via MACL (32-bit Multiply-Accumulator)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 197 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

hardware. These functions will support CMSIS DSP APIs to perform the calculation, the activation of
MACL can be controlled by stack MACL (rm_cmsis_dsp) in the RA Configuration editor.

When stack MACL (rm_cmsis_dsp) is added, the CMSIS DSP APIs will generate normal functions which
overrides weak functions of Arm and use hardware for calculating. When stack MACL (rm_cmsis_dsp)
is not added, CMSIS DSP APIs will perform the calculation by using software.

For examples, how to use the CMSIS DSP APIs refer to the link: https://github.com/ARM-
software/CMSIS-DSP/tree/main/Examples/ARM.

CMSIS APIs supported by MACL list:

No CMSIS DSP API MACL BSP API Description

1 arm_mult_q31 R_BSP_MaclMulQ31 Q31 vector
multiplication

2 arm_scale_q31 R_BSP_MaclScaleQ31 Multiplies a Q31 vector
by a scalar

3 arm_mat_mult_q31 R_BSP_MaclMatMultQ3
1

Q31 matrix
multiplication

4 arm_mat_vec_mult_q31 R_BSP_MaclMatVecMul
Q31

Q31 matrix and vector
multiplication

5 arm_mat_scale_q31 R_BSP_MaclMatScaleQ3
1

Q31 matrix scaling

6 arm_biquad_cascade_d
f1_q31

R_BSP_MaclBiquadCsd
Df1Q31

Processing function for
the Q31 Biquad
cascade filter

7 arm_conv_partial_q31 R_BSP_MaclConvPartial
Q31

Partial convolution of
Q31 sequences

8 arm_conv_q31 R_BSP_MaclConvQ31 Convolution of Q31
sequences

9 arm_correlate_q31 R_BSP_MaclCorrelateQ
31

Correlation of Q31
sequences

10 arm_fir_decimate_q31 R_BSP_MaclFirDecimat
eQ31

Processing function for
the Q31 FIR decimator

11 arm_fir_interpolate_q31 R_BSP_MaclFirInterpola
teQ31

Processing function for
the Q31 FIR
interpolator

12 arm_fir_q31 R_BSP_MaclFirQ31 Processing function for
Q31 FIR filter

13 arm_fir_sparse_q31 R_BSP_MaclFirSparseQ
31

Processing function for
the Q31 sparse FIR
filter

14 arm_lms_norm_q31 R_BSP_MaclLmsNormQ
31

Processing function for
Q31 normalized LMS
filter

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 198 / 5,560

https://github.com/ARM-software/CMSIS-DSP/tree/main/Examples/ARM
https://github.com/ARM-software/CMSIS-DSP/tree/main/Examples/ARM

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

15 arm_lms_q31 R_BSP_MaclLmsQ31 Processing function for
Q31 LMS filter

Note
Refer to the MCU hardware user's manual or datasheet to determine if it has MACL support.

Critical Section Macros

Implements a critical section. Some MCUs (MCUs with the BASEPRI register) support allowing high
priority interrupts to execute during critical sections. On these MCUs, interrupts with priority less
than or equal to BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION are not serviced in critical
sections. Interrupts with higher priority than BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION still
execute in critical sections.

 FSP_CRITICAL_SECTION_DEFINE;

 /* Store the current interrupt posture. */

 FSP_CRITICAL_SECTION_ENTER;

 /* Interrupts cannot run in this section unless their priority is less than

BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION. */

 /* Restore saved interrupt posture. */

 FSP_CRITICAL_SECTION_EXIT;

OctaClock Update

Supports changing the Octal-SPI Clock (OCTACLK) during runtime if supported by the MCU. The
OCTACLK source and clock divisor can be updated. It is user's responsibility to ensure the selected
clock source is running before attempting to update OCTACLK.

Sealing the Main Stack (TrustZone Secure Projects)

In TrustZone secure projects, the BSP seals the main stack by placing the value 0xFEF5EDA5 above
the stack top. For more information, refer to section 3.5 "Sealing a Stack" in "Secure software
guidelines for ARMv8-M": https://developer.arm.com/documentation/100720/0300.

Limited D-Cache Support
For MCUs with Cortex-M85 cores with D-Cache, limited support is available for enabling the D-Cache
and automatically configuring predefined non-cacheable regions via the MPU during BSP
initialization. For these MCUs, D-Cache is disabled by default because certain existing drivers do not
support data coherency with D-Cache enabled. Enabling the D-Cache requires that data coherency
be considered in any circumstance where a core interacts with other bus members.

Non-Cacheable Buffer Placement Example

The predefined non-cacheable regions configured by the MPU when D-Cache is enabled can be used
to contain data that should not be cached, ensuring data coherency for that data. To use the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 199 / 5,560

https://developer.arm.com/documentation/100720/0300

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

predefined non-cacheable regions, place the data into the corresponding non-cacheable section
defined by the linker script for the chosen toolchain. The predefined non-cacheable regions are not
initialized by the BSP.

Use one of the .nocache sections to place non-cacheable data.

uint8_t uncached_uninitialized_buffer_sram[1024] BSP_PLACE_IN_SECTION(".nocache");

Section names differ by data region and compiler. Names predefined by the BSP are shown below.

Region Name (GCC, IAR, LLVM) Name (AC6)

SRAM .nocache .bss.nocache

SDRAM .nocache_sdram .bss.nocache_sdram

Configuration
The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated when the project is built and/or when the Generate Project Content button is clicked in
the RA Configuration editor.

Build Time Configurations for fsp_common

The following build time configurations are defined in fsp_cfg/bsp/bsp_cfg.h:

Configuration Options Default Description

Main stack size (bytes) Value must be an
integer multiple of 8
and between 8 and
0xFFFFFFFF

0x400 Set the size of the main
program stack.

NOTE: This entry is for
the main stack. When
using an RTOS, thread
stacks can be
configured in the
properties for each
thread.

Heap size (bytes) Value must be 0 or an
integer multiple of 8
between 8 and
0xFFFFFFFF.

0 The main heap is
disabled by default. Set
the heap size to a
positive integer
divisible by 8 to enable
it.

A minimum of 4K
(0x1000) is
recommended if
standard library
functions are to be
used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 200 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

MCU Vcc (mV) Value must between 0
and 5500 (5.5V)

3300 Some peripherals
require different
settings based on the
supplied voltage.
Entering Vcc here (in
mV) allows the relevant
driver modules to
configure the
associated peripherals
accordingly.

Parameter checking Enabled
Disabled

Disabled When enabled,
parameter checking for
the BSP is turned on. In
addition, any modules
whose parameter
checking configuration
is set to 'Default (BSP)'
will perform parameter
checking as well.

Assert Failures Return FSP_ERR
_ASSERTION
Call
fsp_error_log
then Return FSP
_ERR_ASSERTIO
N
Use assert() to
Halt Execution
Disable checks
that would
return FSP_ERR
_ASSERTION

Return
FSP_ERR_ASSERTION

Define the behavior of
the FSP_ASSERT()
macro.

Error Log No Error Log
Errors Logged
via
fsp_error_log

No Error Log Specify error logging
behavior.

Clock Registers not
Reset Values during
Startup

Disabled
Enabled

Disabled If enabled, registers
are assumed to be set
to their reset value
during startup. Enable
this if another
application such as a
bootloader or Secure
project has already
configured the clocks
before the startup code
runs.

Main Oscillator
Populated

Populated
Not Populated

Populated Select whether or not
there is a main
oscillator (XTAL) on the
board. This setting can
be overridden in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 201 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

board_cfg.h.

PFS Protect Disabled
Enabled

Enabled Keep the PFS registers
locked when they are
not being modified. If
disabled they will be
unlocked during
startup.

C Runtime Initialization Enabled
Disabled

Enabled Select if the C runtime
initialization in the BSP
is to be used. If
disabled, use the BSP_
WARM_START_POST_CL
OCK event to run user
defined equivalent.

Early BSP Initialization Enabled
Disabled

Disabled Enable this option to
use BSP functions
before C runtime
initialization (BSP_WAR
M_START_RESET or BSP
_WARM_START_POST_C
LOCK).

Main Oscillator Clock
Source

External
Oscillator
Crystal or
Resonator

Crystal or Resonator Select the main
oscillator clock source.
This setting can be
overridden in
board_cfg.h

Subclock Populated Populated
Not Populated

Populated Select whether or not
there is a subclock
crystal on the board.
This setting can be
overridden in
board_cfg.h.

Subclock Drive (Drive
capacitance availability
varies by MCU)

Standard/Norm
al mode
Low/Low power
mode 1
Low power
mode 2
Low power
mode 3

Standard/Normal mode Select the subclock
oscillator drive
capacitance. This
setting can be
overridden in
board_cfg.h

Subclock Stabilization
Time (ms)

Value must between 0
and 10000

1000 Select the subclock
oscillator stabilization
time. This is only used
in the startup code if
the subclock is
selected as the system
clock on the Clocks tab
or if the HOCO FLL
function is enabled.
This setting can be
overridden in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 202 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

board_cfg.h

Modules

RA0E1

RA2A1

RA2A2

RA2E1

RA2E2

RA2E3

RA2L1

RA4E1

RA4E2

RA4M1

RA4M2

RA4M3

RA4T1

RA4W1

RA6E1

RA6E2

RA6M1

RA6M2

RA6M3

RA6M4

RA6M5

RA6T1

RA6T2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 203 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

RA6T3

RA8D1

RA8M1

RA8T1

Macros

#define BSP_IRQ_DISABLED

#define FSP_LOG_PRINT(X)

#define FSP_RETURN(err)

#define FSP_ERROR_LOG(err)

#define FSP_ASSERT(a)

#define FSP_ERROR_RETURN(a, err)

#define FSP_CRITICAL_SECTION_ENTER

#define FSP_CRITICAL_SECTION_EXIT

#define FSP_INVALID_VECTOR

#define BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(x)

#define BSP_STACK_ALIGNMENT

#define R_BSP_MODULE_START(ip, channel)

#define R_BSP_MODULE_STOP(ip, channel)

Enumerations

enum bsp_grp_irq_t

enum bsp_warm_start_event_t

enum fsp_priv_source_clock_t

enum bsp_delay_units_t

enum bsp_reg_protect_t

enum fsp_ip_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 204 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

enum fsp_signal_t

Variables

uint32_t SystemCoreClock BSP_SECTION_EARLY_INIT

Macro Definition Documentation

◆ BSP_IRQ_DISABLED

#define BSP_IRQ_DISABLED

Used to signify that an ELC event is not able to be used as an interrupt.

◆ FSP_LOG_PRINT

#define FSP_LOG_PRINT (X)

Macro that can be defined in order to enable logging in FSP modules.

◆ FSP_RETURN

#define FSP_RETURN (err)

Macro to log and return error without an assertion.

◆ FSP_ERROR_LOG

#define FSP_ERROR_LOG (err)

This function is called before returning an error code. To stop on a runtime error, define
fsp_error_log in user code and do required debugging (breakpoints, stack dump, etc) in this
function.

◆ FSP_ASSERT

#define FSP_ASSERT (a)

Default assertion calls FSP_ERROR_RETURN if condition "a" is false. Used to identify incorrect use of
API's in FSP functions.

◆ FSP_ERROR_RETURN

#define FSP_ERROR_RETURN (a, err)

All FSP error codes are returned using this macro. Calls FSP_ERROR_LOG function if condition "a" is
false. Used to identify runtime errors in FSP functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 205 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ FSP_CRITICAL_SECTION_ENTER

#define FSP_CRITICAL_SECTION_ENTER

This macro temporarily saves the current interrupt state and disables interrupts.

◆ FSP_CRITICAL_SECTION_EXIT

#define FSP_CRITICAL_SECTION_EXIT

This macro restores the previously saved interrupt state, reenabling interrupts.

◆ FSP_INVALID_VECTOR

#define FSP_INVALID_VECTOR

Used to signify that the requested IRQ vector is not defined in this system.

◆ BSP_CFG_HANDLE_UNRECOVERABLE_ERROR

#define BSP_CFG_HANDLE_UNRECOVERABLE_ERROR (x)

In the event of an unrecoverable error the BSP will by default call the __BKPT() intrinsic function
which will alert the user of the error. The user can override this default behavior by defining their
own BSP_CFG_HANDLE_UNRECOVERABLE_ERROR macro.

◆ BSP_STACK_ALIGNMENT

#define BSP_STACK_ALIGNMENT

Stacks (and heap) must be sized and aligned to an integer multiple of this number.

◆ R_BSP_MODULE_START

#define R_BSP_MODULE_START (ip, channel)

Cancels the module stop state.

Parameters
ip fsp_ip_t enum value for the module to be

stopped

channel The channel. Use channel 0 for modules
without channels.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 206 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_MODULE_STOP

#define R_BSP_MODULE_STOP (ip, channel)

Enables the module stop state.

Parameters
ip fsp_ip_t enum value for the module to be

stopped

channel The channel. Use channel 0 for modules
without channels.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 207 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_grp_irq_t

enum bsp_grp_irq_t

Which interrupts can have callbacks registered.

Enumerator

BSP_GRP_IRQ_IWDT_ERROR IWDT underflow/refresh error has occurred.

BSP_GRP_IRQ_WDT_ERROR WDT underflow/refresh error has occurred.

BSP_GRP_IRQ_LVD1 Voltage monitoring 1 interrupt.

BSP_GRP_IRQ_LVD2 Voltage monitoring 2 interrupt.

BSP_GRP_IRQ_VBATT VBATT monitor interrupt.

BSP_GRP_IRQ_OSC_STOP_DETECT Oscillation stop is detected.

BSP_GRP_IRQ_NMI_PIN NMI Pin interrupt.

BSP_GRP_IRQ_RAM_PARITY RAM Parity Error.

BSP_GRP_IRQ_RAM_ECC RAM ECC Error.

BSP_GRP_IRQ_MPU_BUS_SLAVE MPU Bus Slave Error.

BSP_GRP_IRQ_MPU_BUS_MASTER MPU Bus Master Error.

BSP_GRP_IRQ_MPU_STACK MPU Stack Error.

BSP_GRP_IRQ_TRUSTZONE MPU Stack Error.

BSP_GRP_IRQ_CACHE_PARITY MPU Stack Error.

BSP_GRP_IRQ_IWDT_ERROR IWDT underflow/refresh error has occurred.

BSP_GRP_IRQ_WDT_ERROR WDT underflow/refresh error has occurred.

BSP_GRP_IRQ_LVD1 Voltage monitoring 1 interrupt.

BSP_GRP_IRQ_LVD2 Voltage monitoring 2 interrupt.

BSP_GRP_IRQ_OSC_STOP_DETECT Oscillation stop is detected.

BSP_GRP_IRQ_NMI_PIN NMI Pin interrupt.

BSP_GRP_IRQ_MPU_BUS_TZF MPU Bus or TrustZone Filter Error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 208 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

BSP_GRP_IRQ_COMMON_MEMORY SRAM ECC or SRAM Parity Error.

BSP_GRP_IRQ_LOCKUP LockUp Error.

BSP_GRP_IRQ_IWDT_ERROR IWDT underflow/refresh error has occurred.

BSP_GRP_IRQ_WDT_ERROR WDT underflow/refresh error has occurred.

BSP_GRP_IRQ_LVD1 Voltage monitoring 1 interrupt.

BSP_GRP_IRQ_LVD2 Voltage monitoring 2 interrupt.

BSP_GRP_IRQ_OSC_STOP_DETECT Oscillation stop is detected.

BSP_GRP_IRQ_NMI_PIN NMI Pin interrupt.

BSP_GRP_IRQ_MPU_BUS_TZF MPU Bus or TrustZone Filter Error.

BSP_GRP_IRQ_COMMON_MEMORY SRAM ECC or SRAM Parity Error.

BSP_GRP_IRQ_LOCKUP LockUp Error.

BSP_GRP_IRQ_IWDT_ERROR IWDT underflow/refresh error has occurred.

BSP_GRP_IRQ_WDT_ERROR WDT underflow/refresh error has occurred.

BSP_GRP_IRQ_LVD1 Voltage monitoring 1 interrupt.

BSP_GRP_IRQ_LVD2 Voltage monitoring 2 interrupt.

BSP_GRP_IRQ_OSC_STOP_DETECT Oscillation stop is detected.

BSP_GRP_IRQ_NMI_PIN NMI Pin interrupt.

BSP_GRP_IRQ_MPU_BUS_TZF MPU Bus or TrustZone Filter Error.

BSP_GRP_IRQ_COMMON_MEMORY SRAM ECC or SRAM Parity Error.

BSP_GRP_IRQ_LOCKUP LockUp Error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 209 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_warm_start_event_t

enum bsp_warm_start_event_t

Different warm start entry locations in the BSP.

Enumerator

BSP_WARM_START_RESET Called almost immediately after reset. No C
runtime environment, clocks, or IRQs.

BSP_WARM_START_POST_CLOCK Called after clock initialization. No C runtime
environment or IRQs.

BSP_WARM_START_POST_C Called after clocks and C runtime environment
have been set up.

◆ fsp_priv_source_clock_t

enum fsp_priv_source_clock_t

Enumerator

FSP_PRIV_CLOCK_HOCO The high speed on chip oscillator.

FSP_PRIV_CLOCK_MOCO The middle speed on chip oscillator.

FSP_PRIV_CLOCK_LOCO The low speed on chip oscillator.

FSP_PRIV_CLOCK_MAIN_OSC The main oscillator.

FSP_PRIV_CLOCK_SUBCLOCK The subclock oscillator.

FSP_PRIV_CLOCK_PLL The PLL output.

FSP_PRIV_CLOCK_PLL1P The PLL1P output.

FSP_PRIV_CLOCK_PLL2 The PLL2 output.

FSP_PRIV_CLOCK_PLL2P The PLL2P output.

FSP_PRIV_CLOCK_PLL1Q The PLL1Q output.

FSP_PRIV_CLOCK_PLL1R The PLL1R output.

FSP_PRIV_CLOCK_PLL2Q The PLL2Q output.

FSP_PRIV_CLOCK_PLL2R The PLL2R output.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 210 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_delay_units_t

enum bsp_delay_units_t

Available delay units for R_BSP_SoftwareDelay(). These are ultimately used to calculate a total # of
microseconds

Enumerator

BSP_DELAY_UNITS_SECONDS Requested delay amount is in seconds.

BSP_DELAY_UNITS_MILLISECONDS Requested delay amount is in milliseconds.

BSP_DELAY_UNITS_MICROSECONDS Requested delay amount is in microseconds.

◆ bsp_reg_protect_t

enum bsp_reg_protect_t

The different types of registers that can be protected.

Enumerator

BSP_REG_PROTECT_CGC Enables writing to the registers related to the
clock generation circuit.

BSP_REG_PROTECT_OM_LPC_BATT Enables writing to the registers related to
operating modes, low power consumption, and
battery backup function.

BSP_REG_PROTECT_LVD Enables writing to the registers related to the
LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1,
LVD1SR, LVD2CR0, LVD2CR1, LVD2SR.

BSP_REG_PROTECT_SAR Enables writing to the registers related to the
security function.

◆ fsp_ip_t

enum fsp_ip_t

Available modules.

Enumerator

FSP_IP_CFLASH Code Flash.

FSP_IP_DFLASH Data Flash.

FSP_IP_RAM RAM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 211 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_IP_LVD Low Voltage Detection.

FSP_IP_CGC Clock Generation Circuit.

FSP_IP_LPM Low Power Modes.

FSP_IP_FCU Flash Control Unit.

FSP_IP_ICU Interrupt Control Unit.

FSP_IP_DMAC DMA Controller.

FSP_IP_DTC Data Transfer Controller.

FSP_IP_IOPORT I/O Ports.

FSP_IP_PFS Pin Function Select.

FSP_IP_ELC Event Link Controller.

FSP_IP_MPU Memory Protection Unit.

FSP_IP_MSTP Module Stop.

FSP_IP_MMF Memory Mirror Function.

FSP_IP_KEY Key Interrupt Function.

FSP_IP_CAC Clock Frequency Accuracy Measurement
Circuit.

FSP_IP_DOC Data Operation Circuit.

FSP_IP_CRC Cyclic Redundancy Check Calculator.

FSP_IP_SCI Serial Communications Interface.

FSP_IP_IIC I2C Bus Interface.

FSP_IP_SPI Serial Peripheral Interface.

FSP_IP_CTSU Capacitive Touch Sensing Unit.

FSP_IP_SCE Secure Cryptographic Engine.

FSP_IP_SLCDC Segment LCD Controller.

FSP_IP_AES Advanced Encryption Standard.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 212 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_IP_TRNG True Random Number Generator.

FSP_IP_FCACHE Flash Cache.

FSP_IP_SRAM SRAM.

FSP_IP_ADC A/D Converter.

FSP_IP_DAC 12-Bit D/A Converter

FSP_IP_TSN Temperature Sensor.

FSP_IP_DAAD D/A A/D Synchronous Unit.

FSP_IP_ACMPHS High Speed Analog Comparator.

FSP_IP_ACMPLP Low Power Analog Comparator.

FSP_IP_OPAMP Operational Amplifier.

FSP_IP_SDADC Sigma Delta A/D Converter.

FSP_IP_RTC Real Time Clock.

FSP_IP_WDT Watch Dog Timer.

FSP_IP_IWDT Independent Watch Dog Timer.

FSP_IP_GPT General PWM Timer.

FSP_IP_POEG Port Output Enable for GPT.

FSP_IP_OPS Output Phase Switch.

FSP_IP_AGT Asynchronous General-Purpose Timer.

FSP_IP_CAN Controller Area Network.

FSP_IP_IRDA Infrared Data Association.

FSP_IP_QSPI Quad Serial Peripheral Interface.

FSP_IP_USBFS USB Full Speed.

FSP_IP_SDHI SD/MMC Host Interface.

FSP_IP_SRC Sampling Rate Converter.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 213 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_IP_SSI Serial Sound Interface.

FSP_IP_DALI Digital Addressable Lighting Interface.

FSP_IP_ETHER Ethernet MAC Controller.

FSP_IP_EDMAC Ethernet DMA Controller.

FSP_IP_EPTPC Ethernet PTP Controller.

FSP_IP_PDC Parallel Data Capture Unit.

FSP_IP_GLCDC Graphics LCD Controller.

FSP_IP_DRW 2D Drawing Engine

FSP_IP_JPEG JPEG.

FSP_IP_DAC8 8-Bit D/A Converter

FSP_IP_USBHS USB High Speed.

FSP_IP_OSPI Octa Serial Peripheral Interface.

FSP_IP_CEC HDMI CEC.

FSP_IP_TFU Trigonometric Function Unit.

FSP_IP_IIRFA IIR Filter Accelerator.

FSP_IP_CANFD CAN-FD.

FSP_IP_ULPT Ultra Low Power Timer ULPT.

FSP_IP_SAU Serial Array Unit.

FSP_IP_IICA Serial Interface IICA.

FSP_IP_UARTA Serial Interface UARTA.

FSP_IP_TAU Timer Array Unit.

FSP_IP_TML 32-bit Interval Timer

FSP_IP_MACL 32-bit Multiply-Accumulator

FSP_IP_USBCC USB Type-C Controller.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 214 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ fsp_signal_t

enum fsp_signal_t

Signals that can be mapped to an interrupt.

Enumerator

FSP_SIGNAL_ADC_COMPARE_MATCH ADC COMPARE MATCH.

FSP_SIGNAL_ADC_COMPARE_MISMATCH ADC COMPARE MISMATCH.

FSP_SIGNAL_ADC_SCAN_END ADC SCAN END.

FSP_SIGNAL_ADC_SCAN_END_B ADC SCAN END B.

FSP_SIGNAL_ADC_WINDOW_A ADC WINDOW A.

FSP_SIGNAL_ADC_WINDOW_B ADC WINDOW B.

FSP_SIGNAL_AES_RDREQ AES RDREQ.

FSP_SIGNAL_AES_WRREQ AES WRREQ.

FSP_SIGNAL_AGT_COMPARE_A AGT COMPARE A.

FSP_SIGNAL_AGT_COMPARE_B AGT COMPARE B.

FSP_SIGNAL_AGT_INT AGT INT.

FSP_SIGNAL_CAC_FREQUENCY_ERROR CAC FREQUENCY ERROR.

FSP_SIGNAL_CAC_MEASUREMENT_END CAC MEASUREMENT END.

FSP_SIGNAL_CAC_OVERFLOW CAC OVERFLOW.

FSP_SIGNAL_CAN_ERROR CAN ERROR.

FSP_SIGNAL_CAN_FIFO_RX CAN FIFO RX.

FSP_SIGNAL_CAN_FIFO_TX CAN FIFO TX.

FSP_SIGNAL_CAN_MAILBOX_RX CAN MAILBOX RX.

FSP_SIGNAL_CAN_MAILBOX_TX CAN MAILBOX TX.

FSP_SIGNAL_CGC_MOSC_STOP CGC MOSC STOP.

FSP_SIGNAL_LPM_SNOOZE_REQUEST LPM SNOOZE REQUEST.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 215 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_LVD_LVD1 LVD LVD1.

FSP_SIGNAL_LVD_LVD2 LVD LVD2.

FSP_SIGNAL_VBATT_LVD VBATT LVD.

FSP_SIGNAL_LVD_VBATT LVD VBATT.

FSP_SIGNAL_ACMPHS_INT ACMPHS INT.

FSP_SIGNAL_ACMPLP_INT ACMPLP INT.

FSP_SIGNAL_CTSU_END CTSU END.

FSP_SIGNAL_CTSU_READ CTSU READ.

FSP_SIGNAL_CTSU_WRITE CTSU WRITE.

FSP_SIGNAL_DALI_DEI DALI DEI.

FSP_SIGNAL_DALI_CLI DALI CLI.

FSP_SIGNAL_DALI_SDI DALI SDI.

FSP_SIGNAL_DALI_BPI DALI BPI.

FSP_SIGNAL_DALI_FEI DALI FEI.

FSP_SIGNAL_DALI_SDI_OR_BPI DALI SDI OR BPI.

FSP_SIGNAL_DMAC_INT DMAC INT.

FSP_SIGNAL_DOC_INT DOC INT.

FSP_SIGNAL_DRW_INT DRW INT.

FSP_SIGNAL_DTC_COMPLETE DTC COMPLETE.

FSP_SIGNAL_DTC_END DTC END.

FSP_SIGNAL_EDMAC_EINT EDMAC EINT.

FSP_SIGNAL_ELC_SOFTWARE_EVENT_0 ELC SOFTWARE EVENT 0.

FSP_SIGNAL_ELC_SOFTWARE_EVENT_1 ELC SOFTWARE EVENT 1.

FSP_SIGNAL_EPTPC_IPLS EPTPC IPLS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 216 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_EPTPC_MINT EPTPC MINT.

FSP_SIGNAL_EPTPC_PINT EPTPC PINT.

FSP_SIGNAL_EPTPC_TIMER0_FALL EPTPC TIMER0 FALL.

FSP_SIGNAL_EPTPC_TIMER0_RISE EPTPC TIMER0 RISE.

FSP_SIGNAL_EPTPC_TIMER1_FALL EPTPC TIMER1 FALL.

FSP_SIGNAL_EPTPC_TIMER1_RISE EPTPC TIMER1 RISE.

FSP_SIGNAL_EPTPC_TIMER2_FALL EPTPC TIMER2 FALL.

FSP_SIGNAL_EPTPC_TIMER2_RISE EPTPC TIMER2 RISE.

FSP_SIGNAL_EPTPC_TIMER3_FALL EPTPC TIMER3 FALL.

FSP_SIGNAL_EPTPC_TIMER3_RISE EPTPC TIMER3 RISE.

FSP_SIGNAL_EPTPC_TIMER4_FALL EPTPC TIMER4 FALL.

FSP_SIGNAL_EPTPC_TIMER4_RISE EPTPC TIMER4 RISE.

FSP_SIGNAL_EPTPC_TIMER5_FALL EPTPC TIMER5 FALL.

FSP_SIGNAL_EPTPC_TIMER5_RISE EPTPC TIMER5 RISE.

FSP_SIGNAL_FCU_FIFERR FCU FIFERR.

FSP_SIGNAL_FCU_FRDYI FCU FRDYI.

FSP_SIGNAL_GLCDC_LINE_DETECT GLCDC LINE DETECT.

FSP_SIGNAL_GLCDC_UNDERFLOW_1 GLCDC UNDERFLOW 1.

FSP_SIGNAL_GLCDC_UNDERFLOW_2 GLCDC UNDERFLOW 2.

FSP_SIGNAL_GPT_CAPTURE_COMPARE_A GPT CAPTURE COMPARE A.

FSP_SIGNAL_GPT_CAPTURE_COMPARE_B GPT CAPTURE COMPARE B.

FSP_SIGNAL_GPT_COMPARE_C GPT COMPARE C.

FSP_SIGNAL_GPT_COMPARE_D GPT COMPARE D.

FSP_SIGNAL_GPT_COMPARE_E GPT COMPARE E.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 217 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_GPT_COMPARE_F GPT COMPARE F.

FSP_SIGNAL_GPT_COUNTER_OVERFLOW GPT COUNTER OVERFLOW.

FSP_SIGNAL_GPT_COUNTER_UNDERFLOW GPT COUNTER UNDERFLOW.

FSP_SIGNAL_GPT_AD_TRIG_A GPT AD TRIG A.

FSP_SIGNAL_GPT_AD_TRIG_B GPT AD TRIG B.

FSP_SIGNAL_OPS_UVW_EDGE OPS UVW EDGE.

FSP_SIGNAL_ICU_IRQ0 ICU IRQ0.

FSP_SIGNAL_ICU_IRQ1 ICU IRQ1.

FSP_SIGNAL_ICU_IRQ2 ICU IRQ2.

FSP_SIGNAL_ICU_IRQ3 ICU IRQ3.

FSP_SIGNAL_ICU_IRQ4 ICU IRQ4.

FSP_SIGNAL_ICU_IRQ5 ICU IRQ5.

FSP_SIGNAL_ICU_IRQ6 ICU IRQ6.

FSP_SIGNAL_ICU_IRQ7 ICU IRQ7.

FSP_SIGNAL_ICU_IRQ8 ICU IRQ8.

FSP_SIGNAL_ICU_IRQ9 ICU IRQ9.

FSP_SIGNAL_ICU_IRQ10 ICU IRQ10.

FSP_SIGNAL_ICU_IRQ11 ICU IRQ11.

FSP_SIGNAL_ICU_IRQ12 ICU IRQ12.

FSP_SIGNAL_ICU_IRQ13 ICU IRQ13.

FSP_SIGNAL_ICU_IRQ14 ICU IRQ14.

FSP_SIGNAL_ICU_IRQ15 ICU IRQ15.

FSP_SIGNAL_ICU_SNOOZE_CANCEL ICU SNOOZE CANCEL.

FSP_SIGNAL_IIC_ERI IIC ERI.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 218 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_IIC_RXI IIC RXI.

FSP_SIGNAL_IIC_TEI IIC TEI.

FSP_SIGNAL_IIC_TXI IIC TXI.

FSP_SIGNAL_IIC_WUI IIC WUI.

FSP_SIGNAL_IOPORT_EVENT_1 IOPORT EVENT 1.

FSP_SIGNAL_IOPORT_EVENT_2 IOPORT EVENT 2.

FSP_SIGNAL_IOPORT_EVENT_3 IOPORT EVENT 3.

FSP_SIGNAL_IOPORT_EVENT_4 IOPORT EVENT 4.

FSP_SIGNAL_IOPORT_EVENT_B IOPORT EVENT B.

FSP_SIGNAL_IOPORT_EVENT_C IOPORT EVENT C.

FSP_SIGNAL_IOPORT_EVENT_D IOPORT EVENT D.

FSP_SIGNAL_IOPORT_EVENT_E IOPORT EVENT E.

FSP_SIGNAL_IWDT_UNDERFLOW IWDT UNDERFLOW.

FSP_SIGNAL_JPEG_JDTI JPEG JDTI.

FSP_SIGNAL_JPEG_JEDI JPEG JEDI.

FSP_SIGNAL_KEY_INT KEY INT.

FSP_SIGNAL_PDC_FRAME_END PDC FRAME END.

FSP_SIGNAL_PDC_INT PDC INT.

FSP_SIGNAL_PDC_RECEIVE_DATA_READY PDC RECEIVE DATA READY.

FSP_SIGNAL_POEG_EVENT POEG EVENT.

FSP_SIGNAL_QSPI_INT QSPI INT.

FSP_SIGNAL_RTC_ALARM RTC ALARM.

FSP_SIGNAL_RTC_PERIOD RTC PERIOD.

FSP_SIGNAL_RTC_CARRY RTC CARRY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 219 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_SCE_INTEGRATE_RDRDY SCE INTEGRATE RDRDY.

FSP_SIGNAL_SCE_INTEGRATE_WRRDY SCE INTEGRATE WRRDY.

FSP_SIGNAL_SCE_LONG_PLG SCE LONG PLG.

FSP_SIGNAL_SCE_PROC_BUSY SCE PROC BUSY.

FSP_SIGNAL_SCE_RDRDY_0 SCE RDRDY 0.

FSP_SIGNAL_SCE_RDRDY_1 SCE RDRDY 1.

FSP_SIGNAL_SCE_ROMOK SCE ROMOK.

FSP_SIGNAL_SCE_TEST_BUSY SCE TEST BUSY.

FSP_SIGNAL_SCE_WRRDY_0 SCE WRRDY 0.

FSP_SIGNAL_SCE_WRRDY_1 SCE WRRDY 1.

FSP_SIGNAL_SCE_WRRDY_4 SCE WRRDY 4.

FSP_SIGNAL_SCI_AM SCI AM.

FSP_SIGNAL_SCI_ERI SCI ERI.

FSP_SIGNAL_SCI_RXI SCI RXI.

FSP_SIGNAL_SCI_RXI_OR_ERI SCI RXI OR ERI.

FSP_SIGNAL_SCI_TEI SCI TEI.

FSP_SIGNAL_SCI_TXI SCI TXI.

FSP_SIGNAL_SDADC_ADI SDADC ADI.

FSP_SIGNAL_SDADC_SCANEND SDADC SCANEND.

FSP_SIGNAL_SDADC_CALIEND SDADC CALIEND.

FSP_SIGNAL_SDHIMMC_ACCS SDHIMMC ACCS.

FSP_SIGNAL_SDHIMMC_CARD SDHIMMC CARD.

FSP_SIGNAL_SDHIMMC_DMA_REQ SDHIMMC DMA REQ.

FSP_SIGNAL_SDHIMMC_SDIO SDHIMMC SDIO.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 220 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_SPI_ERI SPI ERI.

FSP_SIGNAL_SPI_IDLE SPI IDLE.

FSP_SIGNAL_SPI_RXI SPI RXI.

FSP_SIGNAL_SPI_TEI SPI TEI.

FSP_SIGNAL_SPI_TXI SPI TXI.

FSP_SIGNAL_SRC_CONVERSION_END SRC CONVERSION END.

FSP_SIGNAL_SRC_INPUT_FIFO_EMPTY SRC INPUT FIFO EMPTY.

FSP_SIGNAL_SRC_OUTPUT_FIFO_FULL SRC OUTPUT FIFO FULL.

FSP_SIGNAL_SRC_OUTPUT_FIFO_OVERFLOW SRC OUTPUT FIFO OVERFLOW.

FSP_SIGNAL_SRC_OUTPUT_FIFO_UNDERFLOW SRC OUTPUT FIFO UNDERFLOW.

FSP_SIGNAL_SSI_INT SSI INT.

FSP_SIGNAL_SSI_RXI SSI RXI.

FSP_SIGNAL_SSI_TXI SSI TXI.

FSP_SIGNAL_SSI_TXI_RXI SSI TXI RXI.

FSP_SIGNAL_TRNG_RDREQ TRNG RDREQ.

FSP_SIGNAL_USB_FIFO_0 USB FIFO 0.

FSP_SIGNAL_USB_FIFO_1 USB FIFO 1.

FSP_SIGNAL_USB_INT USB INT.

FSP_SIGNAL_USB_RESUME USB RESUME.

FSP_SIGNAL_USB_USB_INT_RESUME USB USB INT RESUME.

FSP_SIGNAL_WDT_UNDERFLOW WDT UNDERFLOW.

FSP_SIGNAL_ULPT_COMPARE_A ULPT COMPARE A.

FSP_SIGNAL_ULPT_COMPARE_B ULPT COMPARE B.

FSP_SIGNAL_ULPT_INT ULPT INT.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 221 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Function Documentation

◆ R_FSP_VersionGet()

fsp_err_t R_FSP_VersionGet (fsp_pack_version_t *const p_version)

Get the FSP version based on compile time macros.

Parameters
[out] p_version Memory address to return

version information to.

Return values
FSP_SUCCESS Version information stored.

FSP_ERR_ASSERTION The parameter p_version is NULL.

◆ SystemInit()

void SystemInit (void)

Initialize the MCU and the runtime environment.

◆ R_BSP_WarmStart()

void R_BSP_WarmStart (bsp_warm_start_event_t event)

This function is called at various points during the startup process. This function is declared as a
weak symbol higher up in this file because it is meant to be overridden by a user implemented
version. One of the main uses for this function is to call functional safety code during the startup
process. To use this function just copy this function into your own code and modify it to meet your
needs.

Parameters
[in] event Where the code currently is

in the start up process

This function is called at various points during the startup process. This implementation uses the
event that is called right before main() to set up the pins.

Parameters
[in] event Where at in the start up

process the code is currently
at

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 222 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ Reset_Handler()

BSP_SECTION_FLASH_GAP void Reset_Handler (void)

MCU starts executing here out of reset. Main stack pointer is set up already.

◆ Default_Handler()

BSP_SECTION_FLASH_GAP void Default_Handler (void)

Default exception handler.

◆ NMI_Handler()

BSP_SECTION_FLASH_GAP void NMI_Handler (void)

Non-maskable interrupt handler. This exception is defined by the BSP, unlike other system
exceptions, because there are many sources that map to the NMI exception.

◆ R_BSP_SoftwareDelay()

BSP_SECTION_FLASH_GAP void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

Delay for at least the specified duration in units and return.

Parameters
[in] delay The number of 'units' to

delay.

[in] units The 'base'
(bsp_delay_units_t) for the
units specified. Valid values
are:
BSP_DELAY_UNITS_SECONDS
, BSP_DELAY_UNITS_MILLISE
CONDS, BSP_DELAY_UNITS_
MICROSECONDS.
For example:
At 1 MHz one cycle takes 1
microsecond (.000001
seconds).
At 12 MHz one cycle takes
1/12 microsecond or 83
nanoseconds.
Therefore one run through b
sp_prv_software_delay_loop(
) takes: ~ (83 *
BSP_DELAY_LOOP_CYCLES)
or 332 ns. A delay of 2 us
therefore requires

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 223 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

2000ns/332ns or 6 loops.

The 'theoretical' maximum delay that may be obtained is determined by a full 32 bit loop count
and the system clock rate. @120MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 120000000) = 143
seconds. @32MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 32000000) = 536 seconds

Note that requests for very large delays will be affected by rounding in the calculations and the
actual delay achieved may be slightly longer. @32 MHz, for example, a request for 532 seconds will
be closer to 536 seconds.

Note also that if the calculations result in a loop_cnt of zero, the bsp_prv_software_delay_loop()
function is not called at all. In this case the requested delay is too small (nanoseconds) to be
carried out by the loop itself, and the overhead associated with executing the code to just get to
this point has certainly satisfied the requested delay.

Note
This function calls bsp_cpu_clock_get() which ultimately calls R_CGC_SystemClockFreqGet() and therefore
requires that the BSP has already initialized the CGC (which it does as part of the Sysinit). Care should be taken to
ensure this remains the case if in the future this function were to be called as part of the BSP initialization.
This function will delay for at least the specified duration. Due to overhead in calculating the correct number of
loops to delay, very small delay values (generally 1-5 microseconds) may be significantly longer than specified.
Approximate overhead for this function is as follows:

CM4: 20-50 cycles
CM33: 10-60 cycles
CM23: 75-200 cycles

If more accurate microsecond timing must be performed in software it is recommended to use
bsp_prv_software_delay_loop() directly. In this case, use BSP_DELAY_LOOP_CYCLES or
BSP_DELAY_LOOPS_CALCULATE() to convert a calculated delay cycle count to a number of software delay
loops.
Delays may be longer than expected when compiler optimization is turned off.

Warning
The delay will be longer than specified on CM23 devices when the core clock is greater than
32 MHz. Setting BSP_DELAY_LOOP_CYCLES to 6 will improve accuracy at 48 MHz but will
result in shorter than expected delays at lower speeds.

◆ R_BSP_SourceClockHzGet()

uint32_t R_BSP_SourceClockHzGet (fsp_priv_source_clock_t clock)

Gets the frequency of a source clock.

Parameters
[in] clock Pointer to Octaclk setting

structure which provides
information regarding
Octaclk source and divider
settings to be applied.

Returns
Frequency of requested clock in Hertz.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 224 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_FSP_CurrentIrqGet()

__STATIC_INLINE IRQn_Type R_FSP_CurrentIrqGet (void)

Return active interrupt vector number value

Returns
Active interrupt vector number value

◆ R_FSP_SystemClockHzGet()

__STATIC_INLINE uint32_t R_FSP_SystemClockHzGet (fsp_priv_clock_t clock)

Gets the frequency of a system clock.

Returns
Frequency of requested clock in Hertz.

◆ R_FSP_ClockDividerGet()

__STATIC_INLINE uint32_t R_FSP_ClockDividerGet (uint32_t ckdivcr)

Converts a clock's CKDIVCR register value to a clock divider (Eg: SPICKDIVCR).

Returns
Clock Divider

◆ R_BSP_UniqueIdGet()

__STATIC_INLINE bsp_unique_id_t const* R_BSP_UniqueIdGet (void)

Get unique ID for this device.

Returns
A pointer to the unique identifier structure

◆ R_BSP_FlashCacheDisable()

__STATIC_INLINE void R_BSP_FlashCacheDisable (void)

Disables the flash cache.

◆ R_BSP_FlashCacheEnable()

__STATIC_INLINE void R_BSP_FlashCacheEnable (void)

Enables the flash cache.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 225 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_GroupIrqWrite()

BSP_SECTION_FLASH_GAP fsp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq, void(*)(bsp_grp_irq_t
irq) p_callback)

Register a callback function for supported interrupts. If NULL is passed for the callback argument
then any previously registered callbacks are unregistered.

Parameters
[in] irq Interrupt for which to

register a callback.

[in] p_callback Pointer to function to call
when interrupt occurs.

Return values
FSP_SUCCESS Callback registered

FSP_ERR_ASSERTION Callback pointer is NULL

◆ R_BSP_RegisterProtectEnable()

BSP_SECTION_FLASH_GAP void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

Enable register protection. Registers that are protected cannot be written to. Register protection is
enabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_protect Registers which have write

protection enabled.

◆ R_BSP_RegisterProtectDisable()

BSP_SECTION_FLASH_GAP void R_BSP_RegisterProtectDisable (bsp_reg_protect_t
regs_to_unprotect)

Disable register protection. Registers that are protected cannot be written to. Register protection is
disabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_unprotect Registers which have write

protection disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 226 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_IrqClearPending()

BSP_SECTION_FLASH_GAP void R_BSP_IrqClearPending (IRQn_Type irq)

Clear the interrupt status flag (IR) for a given interrupt and clear the NVIC pending interrupt.

Parameters
[in] irq Interrupt for which to clear

the IR bit. Note that the
enums listed for IRQn_Type
are only those for the Cortex
Processor Exceptions
Numbers.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

◆ R_BSP_IrqCfg()

BSP_SECTION_FLASH_GAP void R_BSP_IrqCfg (IRQn_Type const irq, uint32_t priority, void *
p_context)

Sets the interrupt priority and context.

Parameters
[in] irq The IRQ to configure.

[in] priority NVIC priority of the interrupt

[in] p_context The interrupt context is a
pointer to data required in
the ISR.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 227 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_IrqEnableNoClear()

BSP_SECTION_FLASH_GAP void R_BSP_IrqEnableNoClear (IRQn_Type const irq)

Enable the IRQ in the NVIC (Without clearing the pending bit).

Parameters
[in] irq The IRQ to enable. Note that

the enums listed for
IRQn_Type are only those for
the Cortex Processor
Exceptions Numbers.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

◆ R_BSP_IrqEnable()

BSP_SECTION_FLASH_GAP void R_BSP_IrqEnable (IRQn_Type const irq)

Clears pending interrupts in both ICU and NVIC, then enables the interrupt.

Parameters
[in] irq Interrupt for which to clear

the IR bit and enable in the
NVIC. Note that the enums
listed for IRQn_Type are only
those for the Cortex
Processor Exceptions
Numbers.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 228 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_IrqDisable()

BSP_SECTION_FLASH_GAP void R_BSP_IrqDisable (IRQn_Type const irq)

Disables interrupts in the NVIC.

Parameters
[in] irq The IRQ to disable in the

NVIC. Note that the enums
listed for IRQn_Type are only
those for the Cortex
Processor Exceptions
Numbers.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

◆ R_BSP_IrqCfgEnable()

BSP_SECTION_FLASH_GAP void R_BSP_IrqCfgEnable (IRQn_Type const irq, uint32_t priority, void *
p_context)

Sets the interrupt priority and context, clears pending interrupts, then enables the interrupt.

Parameters
[in] irq Interrupt number.

[in] priority NVIC priority of the interrupt

[in] p_context The interrupt context is a
pointer to data required in
the ISR.

Warning
Do not call this function for system exceptions where the IRQn_Type value is < 0.

Variable Documentation

◆ BSP_SECTION_EARLY_INIT

uint32_t SystemCoreClock BSP_SECTION_EARLY_INIT

System Clock Frequency (Core Clock)

5.1.3.1 RA0E1
BSP » MCU Board Support Package

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 229 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA0E1

Detailed Description

Build Time Configurations for ra0e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 230 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA0E1

or Software
Standby

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.88 V
2.91 V
2.62 V
2.33 V
1.86 V
1.65 V

1.86 V

Enable or disable Flash
Read Protection

Enabled
Disabled

Disabled

Flash Read Protection
Start

Value must be an
integer between 0x01
and 0x3F (ROM)

0x01

Flash Read Protection
End

Value must be an
integer between 0x01
and 0x3F

0x3F

P206/RES pin selection PORT(P206)
RES input

RES input

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillation
Stabilization Time

2^8/X1
2^9/X1
2^10/X1
2^11/X1
2^13/X1
2^15/X1
2^17/X1
2^18/X1

2^18/X1

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 231 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA0E1

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

Macro Definition Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 232 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA0E1

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ icu_event_t

enum icu_event_t

Fixed vector enumeration

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.2 RA2A1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2a1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 233 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset

Stop WDT after a reset
(register-start mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 234 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 235 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 236 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 237 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 238 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.3 RA2A2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2a2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is IWDT is stopped after a

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 239 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-

Stop WDT after a reset
(register-start mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 240 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Internal Clock Supply
Architecture Type

Type B
Type A

Type A

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 241 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

reset
HOCO
oscillation is
disabled after
reset

low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 242 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 243 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 244 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A2

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.4 RA2E1
BSP » MCU Board Support Package

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 245 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

Detailed Description

Build Time Configurations for ra2e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 246 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

Snooze mode,
or Software
Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Internal Clock Supply
Architecture Type

Type B
Type A

Type A

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor

Voltage monitor 0 reset
is disabled after reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 247 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

0 reset is
disabled after
reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 248 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 249 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 250 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 251 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.5 RA2E2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2e2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 252 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 253 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Internal Clock Supply
Architecture Type

Type B
Type A

Type A

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 254 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an 0x400DFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 255 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 256 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 257 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E2

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.6 RA2E3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2e3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock 1 128

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 258 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

Frequency Divisor 16
32
64
128
256

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75% 0% (no window end

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 259 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

50%
25%
0% (no window
end position)

position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Internal Clock Supply
Architecture Type

Type B
Type A

Type A

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000

0x000FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 260 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

and 0x200FFFFC (RAM)

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 261 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 262 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 263 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E3

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.7 RA2L1
BSP » MCU Board Support Package

Functions

bsp_power_mode_t R_BSP_PowerModeSet (bsp_power_mode_t mode)

Detailed Description

Build Time Configurations for ra2l1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 264 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after

Stop WDT after a reset
(register-start mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 265 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

a reset (register-
start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Internal Clock Supply
Architecture Type

Type B
Type A

Type A

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO
oscillation is

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 266 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

enabled after
reset
HOCO
oscillation is
disabled after
reset

the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and

0x200FFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 267 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Power

DC-DC Regulator Disabled
Enabled
Enabled at
startup

Disabled To use the DCDC
regulator an external
inductor and capacitor
must be connected as
specified in chapter 40
of the RA2L1 manual.
In addition the supply
voltage must be above
2.4V and ICLK must be
2 MHz or higher.

When set to 'Enabled
at startup' the BSP will
switch to the DCDC
regulator during

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 268 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

startup using the
voltage range specified
below.

DC-DC Supply Range 2.4V to 2.7V
2.7V to 3.6V
3.6V to 4.5V
4.5V to 5.5V

2.7V to 3.6V Set this to the
expected MCU supply
voltage (Vcc) at startup
when using the DCDC
regulator.

Enable inline BSP IRQ
functions

Enabled
Disabled

Disabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 269 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

Unlocked.

Fill Flash Gap Do not fill gap
Fill gap

Do not fill gap A section of code flash
exists between the end
of the vector table
(near the start of flash)
and the ROM registers
(at address 0x400).
Selecting 'Fill gap' will
assume a compiler
optimization for size
and fill this area with a
preselected set
functions in order to
reduce the amount of
code flash used by FSP.
If you would like to fill
this area with your own
code or data, select 'Do
not fill gap' and
manually place items in
the section '.flash_gap'.

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end of
this file.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum icu_event_t

enum elc_peripheral_t

enum bsp_power_mode_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 270 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

◆ bsp_power_mode_t

enum bsp_power_mode_t

Voltage regulator mode

Enumerator

BSP_POWER_MODE_DCDC_2V4_TO_2V7 DCDC mode; 2.4V to 2.7V supply.

BSP_POWER_MODE_DCDC_2V7_TO_3V6 DCDC mode; 2.7V to 3.6V supply.

BSP_POWER_MODE_DCDC_3V6_TO_4V5 DCDC mode; 3.6V to 4.5V supply.

BSP_POWER_MODE_DCDC_4V5_TO_5V5 DCDC mode; 4.5V to 5.5V supply.

BSP_POWER_MODE_LDO LDO mode.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 271 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

◆ R_BSP_PowerModeSet()

bsp_power_mode_t R_BSP_PowerModeSet (bsp_power_mode_t mode)

Select either the LDO or DCDC regulator and/or update the MCU supply voltage range. Returns the
previously selected mode.

Note
DCDC mode has the following limitations:

Supply voltage must be 2.4V or greater
Low- and Subosc-speed modes are not available
Software Standby is not available Ensure these limitations are respected before entering DCDC mode.
If supply voltage may drop below 2.4V during operation, configure a LVD channel to interrupt or reset
the MCU near this threshold to switch back to the LDO.

Switching to DCDC mode temporarily disables all interrupts and blocks for 22 microseconds; switching to LDO
from DCDC temporarily disables all peripherals and interrupts and blocks for 60 microseconds.
If the supply voltage falls outside the range originally specified when starting the DCDC regulator, call this
function again with the updated supply voltage.

Returns
The previously selected power mode.

5.1.3.8 RA4E1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 272 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 273 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 274 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 275 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 276 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security

VDSEL setting
loads from

VDSEL setting loads
from OFS1_SEC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 277 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

Attribution OFS1_SEC
VDSEL setting
loads from
OFS1

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

Block Protection Settings (BPS)

BPS Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register

Permanent Block Protection Settings (PBPS)

PBPS Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 278 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 279 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.9 RA4E2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4e2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State

Secure State Value for SCB->AIRCR
register bit

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 280 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

Secure State BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are config.bsp.fsp.tz.stbra Defines whether

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 281 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

msar.both Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 282 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 283 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 284 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

enabled
Reset is
enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 285 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Flash Block 0
Flash Block 1
Flash Block 2
Flash Block 3
Flash Block 4
Flash Block 5
Flash Block 6
Flash Block 7
Flash Block 8
Flash Block 9

0U Configure Block
Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Flash Block 0
Flash Block 1
Flash Block 2
Flash Block 3
Flash Block 4
Flash Block 5
Flash Block 6
Flash Block 7
Flash Block 8
Flash Block 9

0U Configure Permanent
Block Protection
Register 0

Clocks

HOCO FLL Function Enabled Disabled Setting this option to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 286 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

Disabled Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 287 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 288 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E2

5.1.3.10 RA4M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 289 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

enabled
Reset is
enabled

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 290 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 291 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 292 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least
4.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 293 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.11 RA4M2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4m2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 294 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 295 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

Secure State secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 296 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

Secure State are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 297 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25% 100% (no window start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 298 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

50%
75%
100% (no
window start
position)

position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 299 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA 0U Configure Block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 300 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

Configuration tool for
available options.

Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 301 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

4291 cycles
8163 cycles

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.12 RA4M3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4m3_fsp

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 302 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 303 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution Both Secure Both Secure and Non- Defines whether the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 304 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Register A and Non-Secure
State
Secure State

Secure State Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 305 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 306 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 307 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V

2.80 V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 308 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 309 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 310 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.13 RA4T1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4t1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 311 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 312 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request Both Secure Secure State Value for SCB->AIRCR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 313 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

Accessibility and Non-Secure
State
Secure State

register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 314 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

Disable
Uninitialized
Non-Secure
Application
Fallback

secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 315 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

Reset is
enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 316 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 317 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

TFU Mathlib Disabled
Enabled

Enabled If enabled,
trigonometric library
functions sinf, cosf,
atan2f, and hypotf are
replaced with hardware
accelerated TFU
functions. Disable this
if reentrant access to
these functions is
required.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 318 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4T1

access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 319 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

5.1.3.14 RA4W1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4w1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 320 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

Stop Control Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset

Voltage monitor 0 reset
is disabled after reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 321 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

Voltage monitor
0 reset is
disabled after
reset

Voltage Detection 0
Level

2.82 V
2.51 V
1.90 V

1.90 V

HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

config.bsp.fsp.OFS1.ho
co_osc.disabled

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

PC0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 322 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least
4.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 323 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 324 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.15 RA6E1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 325 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 326 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request Both Secure Secure State Value for SCB->AIRCR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 327 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

Accessibility and Non-Secure
State
Secure State

register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 328 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25% 100% (no window start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 329 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

50%
75%
100% (no
window start
position)

position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 330 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA 0U Configure Block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 331 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

Configuration tool for
available options.

Protection Register 0

BPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 332 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 333 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.16 RA6E2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6e2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 334 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 335 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

Secure State secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 336 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

Secure State are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 337 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25% 100% (no window start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 338 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

50%
75%
100% (no
window start
position)

position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 339 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 340 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 341 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E2

access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 342 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

5.1.3.17 RA6M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 343 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting

Stop counting when
entering Sleep mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 344 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

when entering
Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 345 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 346 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex Value must be a 32 FFFFFFFFFFFFFFFFFFFF Set the ID Code for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 347 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

Characters) character long hex
string

FFFFFFFFFFFF locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.18 RA6M2
BSP » MCU Board Support Package

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 348 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

Build Time Configurations for ra6m2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

SDRAM

SDRAM > Timings

tRAS (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles

6 cycles Row Active Interval

tRCD (cycles) 1 cycles
2 cycles
3 cycles
4 cycles

3 cycles Row Column Latency

tRP (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

3 cycles Row Precharge Interval

tWR (cycles) 1 cycles
2 cycles

2 cycles Write Recovery Interval

tCL (cycles) 1 cycles
2 cycles
3 cycles

3 cycles Column Latency

tRFC (cycles) tRFC must be between
2 and 4096 cycles

937 Auto-Refresh Request
Interval Setting

tREFW (cycles) Refer to the RA
Configuration tool for
available options.

8 cycles Auto-Refresh Cycle/Self-
Refresh Clearing Cycle
Count Setting.

SDRAM > Initialization

Auto-Refresh Interval
(ARFI)

Refer to the RA
Configuration tool for
available options.

10 cycles Specifies the interval at
which the auto-refresh
commands are issued
in the SDRAM
initialization sequence.

Auto-Refresh Count
(ARFC)

Refer to the RA
Configuration tool for
available options.

8 times Specifies the number of
times auto-refresh is to
be performed in the
SDRAM initialization
sequence.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 349 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

Precharge Cycle Count
(PRC)

3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles
9 cycles
10 cycles

3 cycles Specifies the number of
precharged cycles in
the SDRAM
initialization sequence.

SDRAM Support Enabled
Disabled

Disabled If enabled, SDRAM will
be initialized and
configured by the BSP
with the provided
settings.

Address Multiplex Shift 8-bit shift
9-bit shift
10-bit shift
11-bit shift

9-bit shift Selects the size of the
shift towards the lower
half of the row address
in row address/column
address multiplexing.

Endian Mode Little Endian
Big Endian

Little Endian Specifies the
endianness of the
SDRAM address space.
See HWM for full list of
constraints when using
Big Endian.

Continuous Access
Mode

Enabled
Disabled

Enabled If enabled, SDRAM
continuous access
mode will be enabled.

Bus Width 8-bit
16-bit

16-bit Specifies the data bus
width for SDRAM.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128

128

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 350 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

256

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512

128

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 351 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

2048
8192

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC0 End Value must be an 0xFFFFFFFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 352 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

integer between
0x00000003 and
0xFFFFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 353 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 354 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

2147 cycles
4291 cycles
8163 cycles

default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 355 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.19 RA6M3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

SDRAM

SDRAM > Timings

tRAS (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles

6 cycles Row Active Interval

tRCD (cycles) 1 cycles
2 cycles
3 cycles
4 cycles

3 cycles Row Column Latency

tRP (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

3 cycles Row Precharge Interval

tWR (cycles) 1 cycles
2 cycles

2 cycles Write Recovery Interval

tCL (cycles) 1 cycles
2 cycles

3 cycles Column Latency

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 356 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

3 cycles

tRFC (cycles) tRFC must be between
2 and 4096 cycles

937 Auto-Refresh Request
Interval Setting

tREFW (cycles) Refer to the RA
Configuration tool for
available options.

8 cycles Auto-Refresh Cycle/Self-
Refresh Clearing Cycle
Count Setting.

SDRAM > Initialization

Auto-Refresh Interval
(ARFI)

Refer to the RA
Configuration tool for
available options.

10 cycles Specifies the interval at
which the auto-refresh
commands are issued
in the SDRAM
initialization sequence.

Auto-Refresh Count
(ARFC)

Refer to the RA
Configuration tool for
available options.

8 times Specifies the number of
times auto-refresh is to
be performed in the
SDRAM initialization
sequence.

Precharge Cycle Count
(PRC)

3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles
9 cycles
10 cycles

3 cycles Specifies the number of
precharged cycles in
the SDRAM
initialization sequence.

SDRAM Support Enabled
Disabled

Disabled If enabled, SDRAM will
be initialized and
configured by the BSP
with the provided
settings.

Address Multiplex Shift 8-bit shift
9-bit shift
10-bit shift
11-bit shift

9-bit shift Selects the size of the
shift towards the lower
half of the row address
in row address/column
address multiplexing.

Endian Mode Little Endian
Big Endian

Little Endian Specifies the
endianness of the
SDRAM address space.
See HWM for full list of
constraints when using
Big Endian.

Continuous Access
Mode

Enabled
Disabled

Enabled If enabled, SDRAM
continuous access
mode will be enabled.

Bus Width 8-bit
16-bit

16-bit Specifies the data bus
width for SDRAM.

OFS0 register settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 357 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 358 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0 2.94 V 2.80 V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 359 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

Level 2.87 V
2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

Memory Region 0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between

0x200FFFFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 360 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

0x1FF00003 and
0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 361 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 362 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.20 RA6M4
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m4_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 363 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 364 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 365 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 366 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock 1 128

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 367 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Frequency Divisor 16
32
64
128
256

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 368 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 369 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 370 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 371 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.21 RA6M5
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m5_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 372 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure Both Secure and Non- Defines whether

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 373 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

and Non-Secure
State
Secure State

Secure State SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 374 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Secure State (BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure

Both Secure and Non-
Secure State

Defines whether the
battery backup

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 375 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

State
Secure State

registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset

IWDT is stopped after a
reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 376 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

(Autostart
mode)

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)

Stop WDT after a reset
(register-start mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 377 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Stop WDT after
a reset (register-
start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after

Voltage monitor 0 reset
is disabled after reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 378 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

reset
Voltage monitor
0 reset is
disabled after
reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 379 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait 3 cycles 8163 cycles Number of cycles to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 380 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Time 35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.22 RA6T1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 381 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6t1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting Stop counting when in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 382 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering

Stop counting when
entering Sleep mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 383 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU

Enable or disable PC
Region 0

Enabled
Disabled

Disabled

PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable PC
Region 1

Enabled
Disabled

Disabled

PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

Enable or disable
Memory Region 0

Enabled
Disabled

Disabled

Memory Region 0 Start Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

Memory Region 0 End Value must be an 0x00FFFFFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 384 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

integer between
0x00000003 and
0x00FFFFFF

Enable or disable
Memory Region 1

Enabled
Disabled

Disabled

Memory Region 1 Start Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

Memory Region 1 End Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

Enable or disable
Memory Region 2

Enabled
Disabled

Disabled

Memory Region 2 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

Memory Region 2 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

Enable or disable
Memory Region 3

Enabled
Disabled

Disabled

Memory Region 3 Start Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

Memory Region 3 End Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 385 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 386 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

string This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.23 RA6T2
BSP » MCU Board Support Package

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 387 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

Build Time Configurations for ra6t2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 388 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 389 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 390 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no

100% (no window start
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 391 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%

100% (no window start
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 392 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

100% (no
window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

LVDAS setting
loads from
OFS1_SEC
LVDAS setting
loads from
OFS1

LVDAS setting loads
from OFS1_SEC

PGA0 Pseudo-
Differential Input
Enable Security
Attribution

PGADEN.PGA0
setting loads
from OFS1_SEC
PGADEN.PGA0
setting loads
from OFS1

PGADEN.PGA0 setting
loads from OFS1_SEC

PGA1 Pseudo-
Differential Input
Enable Security
Attribution

PGADEN.PGA1
setting loads
from OFS1_SEC
PGADEN.PGA1
setting loads
from OFS1

PGADEN.PGA1 setting
loads from OFS1_SEC

PGA2 Pseudo-
Differential Input
Enable Security
Attribution

PGADEN.PGA2
setting loads
from OFS1_SEC
PGADEN.PGA2
setting loads
from OFS1

PGADEN.PGA2 setting
loads from OFS1_SEC

PGA3 Pseudo-
Differential Input
Enable Security
Attribution

PGADEN.PGA3
setting loads
from OFS1_SEC
PGADEN.PGA3
setting loads
from OFS1

PGADEN.PGA3 setting
loads from OFS1_SEC

OFS1 register settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 393 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

PGA0 Pseudo-
Differential Input
Enable

Disabled (single-
ended input)
after reset
Enabled after
reset

Disabled (single-ended
input) after reset

PGA1 Pseudo-
Differential Input
Enable

Disabled (single-
ended input)
after reset
Enabled after
reset

Disabled (single-ended
input) after reset

PGA2 Pseudo-
Differential Input
Enable

Disabled (single-
ended input)
after reset
Enabled after
reset

Disabled (single-ended
input) after reset

PGA3 Pseudo-
Differential Input
Enable

Disabled (single-
ended input)
after reset
Enabled after
reset

Disabled (single-ended
input) after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Enable inline BSP IRQ Enabled Enabled Using static inline

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 394 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

functions Disabled functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

TFU Mathlib Disabled
Enabled

Enabled If enabled,
trigonometric library
functions sinf, cosf,
atan2f, and hypotf are
replaced with hardware
accelerated TFU
functions. Disable this
if reentrant access to
these functions is
required.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 395 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T2

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.24 RA6T3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6t3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 396 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

SRAM ECC Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby RAM Regions 7-0 are
all Secure.
Region 7 is Non-

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 397 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request Both Secure Secure State Value for SCB->AIRCR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 398 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

Accessibility and Non-Secure
State
Secure State

register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Cache Accessibility Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 399 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

Disable
Uninitialized
Non-Secure
Application
Fallback

secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 400 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

Reset is
enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings > WDT

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 401 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 402 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

TFU Mathlib Disabled
Enabled

Enabled If enabled,
trigonometric library
functions sinf, cosf,
atan2f, and hypotf are
replaced with hardware
accelerated TFU
functions. Disable this
if reentrant access to
these functions is
required.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 403 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T3

access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 404 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

5.1.3.25 RA8D1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra8d1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

SDRAM

SDRAM > Timings

tRAS (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles

6 cycles Row Active Interval

tRCD (cycles) 1 cycles
2 cycles
3 cycles
4 cycles

3 cycles Row Column Latency

tRP (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

3 cycles Row Precharge Interval

tWR (cycles) 1 cycles
2 cycles

2 cycles Write Recovery Interval

tCL (cycles) 1 cycles
2 cycles
3 cycles

3 cycles Column Latency

tRFC (cycles) tRFC must be between
2 and 4096 cycles

937 Auto-Refresh Request
Interval Setting

tREFW (cycles) Refer to the RA
Configuration tool for
available options.

8 cycles Auto-Refresh Cycle/Self-
Refresh Clearing Cycle
Count Setting.

SDRAM > Initialization

Auto-Refresh Interval
(ARFI)

Refer to the RA
Configuration tool for
available options.

10 cycles Specifies the interval at
which the auto-refresh
commands are issued
in the SDRAM
initialization sequence.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 405 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Auto-Refresh Count
(ARFC)

Refer to the RA
Configuration tool for
available options.

8 times Specifies the number of
times auto-refresh is to
be performed in the
SDRAM initialization
sequence.

Precharge Cycle Count
(PRC)

3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles
9 cycles
10 cycles

3 cycles Specifies the number of
precharged cycles in
the SDRAM
initialization sequence.

SDRAM Support Enabled
Disabled

Disabled If enabled, SDRAM will
be initialized and
configured by the BSP
with the provided
settings.

Address Multiplex Shift 8-bit shift
9-bit shift
10-bit shift
11-bit shift

9-bit shift Selects the size of the
shift towards the lower
half of the row address
in row address/column
address multiplexing.

Endian Mode Little Endian
Big Endian

Little Endian Specifies the
endianness of the
SDRAM address space.
See HWM for full list of
constraints when using
Big Endian.

Continuous Access
Mode

Enabled
Disabled

Enabled If enabled, SDRAM
continuous access
mode will be enabled.

Bus Width 8-bit
16-bit
32-bit

16-bit Specifies the data bus
width for SDRAM.

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 406 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM0 Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMCR0,
SRAMECCRGN0,
SRAMESCLR.CLR00,
and SRAMESCLR.CLR01
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

SRAM1 Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMCR1, and
SRAMESCLR.CLR1 are
write accessible for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 407 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
STBRAMCR, and
SRAMESCLR.CLRS are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register C

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
SDRAM/CSC Control
registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure

Secure State Value for SCB->AIRCR
register bit

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 408 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

State
Secure State

SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Graphics Power
Domain Security
Attribution

Both Secure
and Non-Secure
State
Secure State

Secure State Defines whether the
PDCTRGD register is
write accessible for the
Non-secure application.

This setting is only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 409 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset (Register-
start mode)
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset (Register-start
mode)

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25% 100% (no window start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 410 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

50%
75%
100% (no
window start
position)

position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Deep Sleep, or
Software
Standby

Stop counting when in
Sleep, Deep Sleep, or
Software Standby

OFS0 register settings > WDT0

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 411 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

PVDAS setting
loads from
OFS1_SEC
PVDAS setting
loads from
OFS1

PVDAS setting loads
from OFS1_SEC

Voltage Detection 0
Low Power
Consumption Security
Attribution

PVDLPSEL
setting loads
from OFS1_SEC
PVDLPSEL
setting loads
from OFS1

PVDLPSEL setting loads
from OFS1_SEC

WDT/IWDT Software
Debug Control Security
Attribution

SWDBG setting
loads from
OFS1_SEC
SWDBG setting
loads from
OFS1

SWDBG setting loads
from OFS1_SEC

Tightly Coupled
Memory (TCM)/Cache
ECC Security
Attribution

INITECCEN
setting loads
from OFS1_SEC
INITECCEN
setting loads
from OFS1

INITECCEN setting
loads from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset

Voltage monitor 0 reset
is disabled after reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 412 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Voltage monitor
0 reset is
disabled after
reset

Voltage Detection 0
Level

2.85 V
2.58 V
2.15 V
2.00 V
1.90 V
1.80 V
1.70 V
1.60 V

1.60 V

Voltage Detection 0
Low Power
Consumption

Voltage monitor
0 Low Power
Consumption
Enabled
Voltage monitor
0 Low Power
Consumption
Disabled

Voltage monitor 0 Low
Power Consumption
Disabled

Enable or disable the
low power consumption
function of LVD0 during
Deep Software Standby
1 and Deep Software
Standby 2.

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

WDT/IWDT Software
Debug Control

Enabled (WDT
and IWDT
operation is
halted when
the CPU is in
the debug
state)
Disabled (WDT
and IWDT
continue
operating while
the CPU is in
the debug
state)

Disabled (WDT and
IWDT continue
operating while the
CPU is in the debug
state)

Tightly Coupled
Memory (TCM)/Cache
ECC

Enable ECC
function for
TCM and Cache
Disable ECC
function for
TCM and Cache

Disable ECC function
for TCM and Cache

OFS2 register settings

DCDC Disabled
Enabled

Enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 413 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

BPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 3

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

PBPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 3

First Stage Bootloader (FSBL)

First Stage Bootloader (FSBL) > FSBL Control 0 (FSBLCTRL0)

FSBLEN Enabled
Disabled

Disabled FSBL enable

FSBLSKIPSW Enabled
Disabled

Disabled FSBL skip enable for
software reset

FSBLSKIPDS Enabled
Disabled

Disabled FSBL skip enable for
deep software standby
reset

FSBLCLK 120 MHz
240 MHz

240 MHz Clock frequency
selection during FSBL
execution.

First Stage Bootloader (FSBL) > FSBL Control 1 (FSBLCTRL1)

FSBLEXMDFSBLEN CRC boot
without report
CRC boot with
report
measurement

Secure boot with report
measurement

FSBL execution mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 414 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

Secure boot
without report
Secure boot
with report
measurement

First Stage Bootloader (FSBL) > FSBL Control 2 (FSBLCTRL2)

PORTPN Refer to the RA
Configuration tool for
available options.

PORTn15 FSBL error notification
port pin number

PORTGN Refer to the RA
Configuration tool for
available options.

None FSBL error notification
port group name

First Stage Bootloader (FSBL) > Code Certificates (SACCn)

SACC0 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 0

SACC1 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 1

FSBL Measurement
Report Address (SAMR)

Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of
measurement report

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 415 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

available.

Clock Settling Delay Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays for clocking
scaling and transitions
to ensure voltage
supply stability. See
the RA8D1 HWM
(R01UH0995EJ0100)
section 8.11.1 for
details.

Sleep Mode Entry and
Exit Delays

Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays before and after
entering sleep modes
to ensure voltage
supply stability. This is
not required if you do
not intend to run
CPUCLK over 100MHz.
See RA8D1 HWM
(R01UH0995EJ0100)
Section 10.8.10 for
details.

RTOS Sleep on Idle Enabled
Disabled

Disabled Setting this option to
Enabled will allow
RTOS ports to enter
CPU Sleep mode while
idle. This should not be
used when CPUCLK is
configured over
120MHz. See RA8M1
HWM
(R01UH0994EJ0100)
Section 10.7.10 for
details.

MSTP Change Delays Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays after setting a
MSTP bit to ensure
voltage supply
stability. This is not
required if you do not
intend to run CPUCLK
over 120MHz. See
RA8D1 HWM
(R01UH0995EJ0100)
Section 10.4 for details.

Settling Delay (us) Unit must be a non-
negative integer

150 Specifies the length of
the delay to be used
for the Clock settling,
Sleep mode, and MSTP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 416 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

change delays.

Cache settings

Data cache Enabled
Disabled

Disabled Enable limited D-Cache
support. See BSP usage
notes for limitations.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 417 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8D1

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.1.3.26 RA8M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra8m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

SDRAM

SDRAM > Timings

tRAS (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles

6 cycles Row Active Interval

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 418 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

tRCD (cycles) 1 cycles
2 cycles
3 cycles
4 cycles

3 cycles Row Column Latency

tRP (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

3 cycles Row Precharge Interval

tWR (cycles) 1 cycles
2 cycles

2 cycles Write Recovery Interval

tCL (cycles) 1 cycles
2 cycles
3 cycles

3 cycles Column Latency

tRFC (cycles) tRFC must be between
2 and 4096 cycles

937 Auto-Refresh Request
Interval Setting

tREFW (cycles) Refer to the RA
Configuration tool for
available options.

8 cycles Auto-Refresh Cycle/Self-
Refresh Clearing Cycle
Count Setting.

SDRAM > Initialization

Auto-Refresh Interval
(ARFI)

Refer to the RA
Configuration tool for
available options.

10 cycles Specifies the interval at
which the auto-refresh
commands are issued
in the SDRAM
initialization sequence.

Auto-Refresh Count
(ARFC)

Refer to the RA
Configuration tool for
available options.

8 times Specifies the number of
times auto-refresh is to
be performed in the
SDRAM initialization
sequence.

Precharge Cycle Count
(PRC)

3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles
9 cycles
10 cycles

3 cycles Specifies the number of
precharged cycles in
the SDRAM
initialization sequence.

SDRAM Support Enabled
Disabled

Disabled If enabled, SDRAM will
be initialized and
configured by the BSP
with the provided
settings.

Address Multiplex Shift 8-bit shift
9-bit shift

9-bit shift Selects the size of the
shift towards the lower

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 419 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

10-bit shift
11-bit shift

half of the row address
in row address/column
address multiplexing.

Endian Mode Little Endian
Big Endian

Little Endian Specifies the
endianness of the
SDRAM address space.
See HWM for full list of
constraints when using
Big Endian.

Continuous Access
Mode

Enabled
Disabled

Enabled If enabled, SDRAM
continuous access
mode will be enabled.

Bus Width 8-bit
16-bit
32-bit

16-bit Specifies the data bus
width for SDRAM.

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 420 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM0 Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMCR0,
SRAMECCRGN0,
SRAMESCLR.CLR00,
and SRAMESCLR.CLR01
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

SRAM1 Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMCR1, and
SRAMESCLR.CLR1 are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
STBRAMCR, and
SRAMESCLR.CLRS are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 421 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

Secure State (BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register C

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
SDRAM/CSC Control
registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup Both Secure Both Secure and Non- Defines whether the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 422 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

Accessibility and Non-Secure
State
Secure State

Secure State battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application
Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been
programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset (Register-
start mode)
IWDT is
automatically

IWDT is stopped after a
reset (Register-start
mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 423 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

activated after
a reset
(Autostart
mode)

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Deep Sleep, or
Software
Standby

Stop counting when in
Sleep, Deep Sleep, or
Software Standby

OFS0 register settings > WDT0

Start Mode Select Automatically
activate WDT
after a reset

Stop WDT after a reset
(register-start mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 424 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request

NMI
Reset

Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

PVDAS setting
loads from
OFS1_SEC
PVDAS setting
loads from
OFS1

PVDAS setting loads
from OFS1_SEC

Voltage Detection 0
Low Power
Consumption Security

PVDLPSEL
setting loads
from OFS1_SEC

PVDLPSEL setting loads
from OFS1_SEC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 425 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

Attribution PVDLPSEL
setting loads
from OFS1

WDT/IWDT Software
Debug Control Security
Attribution

SWDBG setting
loads from
OFS1_SEC
SWDBG setting
loads from
OFS1

SWDBG setting loads
from OFS1_SEC

Tightly Coupled
Memory (TCM)/Cache
ECC Security
Attribution

INITECCEN
setting loads
from OFS1_SEC
INITECCEN
setting loads
from OFS1

INITECCEN setting
loads from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.85 V
2.58 V
2.15 V
2.00 V
1.90 V
1.80 V
1.70 V
1.60 V

1.60 V

Voltage Detection 0
Low Power
Consumption

Voltage monitor
0 Low Power
Consumption
Enabled
Voltage monitor
0 Low Power
Consumption
Disabled

Voltage monitor 0 Low
Power Consumption
Disabled

Enable or disable the
low power consumption
function of LVD0 during
Deep Software Standby
1 and Deep Software
Standby 2.

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

WDT/IWDT Software
Debug Control

Enabled (WDT
and IWDT

Disabled (WDT and
IWDT continue

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 426 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

operation is
halted when
the CPU is in
the debug
state)
Disabled (WDT
and IWDT
continue
operating while
the CPU is in
the debug
state)

operating while the
CPU is in the debug
state)

Tightly Coupled
Memory (TCM)/Cache
ECC

Enable ECC
function for
TCM and Cache
Disable ECC
function for
TCM and Cache

Disable ECC function
for TCM and Cache

OFS2 register settings

DCDC Disabled
Enabled

Enabled

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

BPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 3

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

PBPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 3

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 427 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

First Stage Bootloader (FSBL)

First Stage Bootloader (FSBL) > FSBL Control 0 (FSBLCTRL0)

FSBLEN Enabled
Disabled

Disabled FSBL enable

FSBLSKIPSW Enabled
Disabled

Disabled FSBL skip enable for
software reset

FSBLSKIPDS Enabled
Disabled

Disabled FSBL skip enable for
deep software standby
reset

FSBLCLK 120 MHz
240 MHz

240 MHz Clock frequency
selection during FSBL
execution.

First Stage Bootloader (FSBL) > FSBL Control 1 (FSBLCTRL1)

FSBLEXMDFSBLEN CRC boot
without report
CRC boot with
report
measurement
Secure boot
without report
Secure boot
with report
measurement

Secure boot with report
measurement

FSBL execution mode

First Stage Bootloader (FSBL) > FSBL Control 2 (FSBLCTRL2)

PORTPN Refer to the RA
Configuration tool for
available options.

PORTn15 FSBL error notification
port pin number

PORTGN Refer to the RA
Configuration tool for
available options.

None FSBL error notification
port group name

First Stage Bootloader (FSBL) > Code Certificates (SACCn)

SACC0 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 0

SACC1 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 1

FSBL Measurement
Report Address (SAMR)

Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of
measurement report

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 428 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Clock Settling Delay Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays for clocking
scaling and transitions
to ensure voltage
supply stability. See
the RA8M1 HWM
(R01UH0994EJ0100)
section 8.11.1 for
details.

Sleep Mode Entry and
Exit Delays

Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays before and after
entering sleep modes
to ensure voltage
supply stability. This is
not required if you do
not intend to run
CPUCLK over 120MHz.
See RA8M1 HWM
(R01UH0994EJ0100)
Section 10.7.10 for
details.

RTOS Sleep on Idle Enabled
Disabled

Disabled Setting this option to
Enabled will allow
RTOS ports to enter
CPU Sleep mode while
idle. This should not be
used when CPUCLK is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 429 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

configured over
120MHz. See RA8M1
HWM
(R01UH0994EJ0100)
Section 10.7.10 for
details.

MSTP Change Delays Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays after setting a
MSTP bit to ensure
voltage supply
stability. This is not
required if you do not
intend to run CPUCLK
over 120MHz. See
RA8M1 HWM
(R01UH0994EJ0100)
Section 10.4 for details.

Settling Delay (us) Unit must be a non-
negative integer

150 Specifies the length of
the delay to be used
for the Clock settling,
Sleep mode, and MSTP
change delays.

Cache settings

Data cache Enabled
Disabled

Disabled Enable limited D-Cache
support. See BSP usage
notes for limitations.

Enable inline BSP IRQ
functions

Enabled
Disabled

Enabled Using static inline
functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 430 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8M1

cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 431 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

5.1.3.27 RA8T1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra8t1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

SDRAM

SDRAM > Timings

tRAS (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles

6 cycles Row Active Interval

tRCD (cycles) 1 cycles
2 cycles
3 cycles
4 cycles

3 cycles Row Column Latency

tRP (cycles) 1 cycles
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles

3 cycles Row Precharge Interval

tWR (cycles) 1 cycles
2 cycles

2 cycles Write Recovery Interval

tCL (cycles) 1 cycles
2 cycles
3 cycles

3 cycles Column Latency

tRFC (cycles) tRFC must be between
2 and 4096 cycles

937 Auto-Refresh Request
Interval Setting

tREFW (cycles) Refer to the RA
Configuration tool for
available options.

8 cycles Auto-Refresh Cycle/Self-
Refresh Clearing Cycle
Count Setting.

SDRAM > Initialization

Auto-Refresh Interval
(ARFI)

Refer to the RA
Configuration tool for

10 cycles Specifies the interval at
which the auto-refresh

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 432 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

available options. commands are issued
in the SDRAM
initialization sequence.

Auto-Refresh Count
(ARFC)

Refer to the RA
Configuration tool for
available options.

8 times Specifies the number of
times auto-refresh is to
be performed in the
SDRAM initialization
sequence.

Precharge Cycle Count
(PRC)

3 cycles
4 cycles
5 cycles
6 cycles
7 cycles
8 cycles
9 cycles
10 cycles

3 cycles Specifies the number of
precharged cycles in
the SDRAM
initialization sequence.

SDRAM Support Enabled
Disabled

Disabled If enabled, SDRAM will
be initialized and
configured by the BSP
with the provided
settings.

Address Multiplex Shift 8-bit shift
9-bit shift
10-bit shift
11-bit shift

9-bit shift Selects the size of the
shift towards the lower
half of the row address
in row address/column
address multiplexing.

Endian Mode Little Endian
Big Endian

Little Endian Specifies the
endianness of the
SDRAM address space.
See HWM for full list of
constraints when using
Big Endian.

Continuous Access
Mode

Enabled
Disabled

Enabled If enabled, SDRAM
continuous access
mode will be enabled.

Bus Width 8-bit
16-bit
32-bit

16-bit Specifies the data bus
width for SDRAM.

Security

Security > Exceptions

Exception Response Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 433 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

valid when building
projects with
TrustZone.

BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM Accessibility

SRAM0 Protection Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMCR0,
SRAMECCRGN0,
SRAMESCLR.CLR00,
and SRAMESCLR.CLR01
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

SRAM1 Protection Both Secure Both Secure and Non- Defines whether

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 434 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

and Non-Secure
State
Secure State

Secure State SRAMCR1, and
SRAMESCLR.CLR1 are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Standby SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
STBRAMCR, and
SRAMESCLR.CLRS are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS Accessibility

Bus Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Bus Security Attribution
Register C

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
SDRAM/CSC Control
registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 435 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

System Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

System Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Battery Backup
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

Flash Bank Select
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
BANKSEL register is
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Uninitialized Non-
Secure Application
Fallback

Enable
Uninitialized
Non-Secure
Application

Enable Uninitialized
Non-Secure Application
Fallback

If enabled, the secure
application checks if
the non-secure
application has been

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 436 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

Fallback
Disable
Uninitialized
Non-Secure
Application
Fallback

programmed in non-
secure flash before
branching. If the non-
secure application has
not been programmed,
then the secure
application branches to
an infinite loop in non-
secure RAM. This
prevents an issue
where the debugger
may not connect if the
MCU is configured in
the NSECSD lifecycle
state.

OFS0 register settings

OFS0 register settings > Independent WDT

Start Mode IWDT is
stopped after a
reset (Register-
start mode)
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is stopped after a
reset (Register-start
mode)

Timeout Period 128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt
Request Select

NMI request or
interrupt

Reset is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 437 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

request is
enabled
Reset is
enabled

Stop Control Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Deep Sleep, or
Software
Standby

Stop counting when in
Sleep, Deep Sleep, or
Software Standby

OFS0 register settings > WDT0

Start Mode Select Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

Timeout Period 1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

Clock Frequency
Division Ratio

4
64
128
512
2048
8192

128

Window End Position 75%
50%
25%
0% (no window
end position)

0% (no window end
position)

Window Start Position 25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

Reset Interrupt NMI Reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 438 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

Request Reset

Stop Control Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1_SEL register settings

Voltage Detection 0
Level Security
Attribution

VDSEL setting
loads from
OFS1_SEC
VDSEL setting
loads from
OFS1

VDSEL setting loads
from OFS1_SEC

Voltage Detection 0
Circuit Start Security
Attribution

PVDAS setting
loads from
OFS1_SEC
PVDAS setting
loads from
OFS1

PVDAS setting loads
from OFS1_SEC

Voltage Detection 0
Low Power
Consumption Security
Attribution

PVDLPSEL
setting loads
from OFS1_SEC
PVDLPSEL
setting loads
from OFS1

PVDLPSEL setting loads
from OFS1_SEC

WDT/IWDT Software
Debug Control Security
Attribution

SWDBG setting
loads from
OFS1_SEC
SWDBG setting
loads from
OFS1

SWDBG setting loads
from OFS1_SEC

Tightly Coupled
Memory (TCM)/Cache
ECC Security
Attribution

INITECCEN
setting loads
from OFS1_SEC
INITECCEN
setting loads
from OFS1

INITECCEN setting
loads from OFS1_SEC

OFS1 register settings

Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

Voltage Detection 0
Level

2.85 V
2.58 V
2.15 V

1.60 V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 439 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

2.00 V
1.90 V
1.80 V
1.70 V
1.60 V

Voltage Detection 0
Low Power
Consumption

Voltage monitor
0 Low Power
Consumption
Enabled
Voltage monitor
0 Low Power
Consumption
Disabled

Voltage monitor 0 Low
Power Consumption
Disabled

Enable or disable the
low power consumption
function of LVD0 during
Deep Software Standby
1 and Deep Software
Standby 2.

HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

WDT/IWDT Software
Debug Control

Enabled (WDT
and IWDT
operation is
halted when
the CPU is in
the debug
state)
Disabled (WDT
and IWDT
continue
operating while
the CPU is in
the debug
state)

Disabled (WDT and
IWDT continue
operating while the
CPU is in the debug
state)

Tightly Coupled
Memory (TCM)/Cache
ECC

Enable ECC
function for
TCM and Cache
Disable ECC
function for
TCM and Cache

Disable ECC function
for TCM and Cache

OFS2 register settings

DCDC Disabled
Enabled

Enabled

Block Protection Settings (BPS)

BPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

BPS1 Refer to the RA 0U Configure Block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 440 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

Configuration tool for
available options.

Protection Register 1

BPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

BPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 3

Permanent Block Protection Settings (PBPS)

PBPS0 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

PBPS1 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 1

PBPS2 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

PBPS3 Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 3

First Stage Bootloader (FSBL)

First Stage Bootloader (FSBL) > FSBL Control 0 (FSBLCTRL0)

FSBLEN Enabled
Disabled

Disabled FSBL enable

FSBLSKIPSW Enabled
Disabled

Disabled FSBL skip enable for
software reset

FSBLSKIPDS Enabled
Disabled

Disabled FSBL skip enable for
deep software standby
reset

FSBLCLK 120 MHz
240 MHz

240 MHz Clock frequency
selection during FSBL
execution.

First Stage Bootloader (FSBL) > FSBL Control 1 (FSBLCTRL1)

FSBLEXMDFSBLEN CRC boot
without report
CRC boot with
report
measurement
Secure boot
without report
Secure boot
with report
measurement

Secure boot with report
measurement

FSBL execution mode

First Stage Bootloader (FSBL) > FSBL Control 2 (FSBLCTRL2)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 441 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

PORTPN Refer to the RA
Configuration tool for
available options.

PORTn15 FSBL error notification
port pin number

PORTGN Refer to the RA
Configuration tool for
available options.

None FSBL error notification
port group name

First Stage Bootloader (FSBL) > Code Certificates (SACCn)

SACC0 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 0

SACC1 Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of code
certificate 1

FSBL Measurement
Report Address (SAMR)

Must be an integer
between 0 and
0xFFFFFFFF.

0xFFFFFFFF Start address of
measurement report

Clocks

HOCO FLL Function Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Clock Settling Delay Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays for clocking
scaling and transitions
to ensure voltage
supply stability. See

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 442 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

the RA8T1 HWM
(R01UH0996EJ0100)
section 8.11.1 for
details.

Sleep Mode Entry and
Exit Delays

Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays before and after
entering sleep modes
to ensure voltage
supply stability. This is
not required if you do
not intend to run
CPUCLK over 120MHz.
See RA8T1 HWM
(R01UH0996EJ0100)
Section 10.7.10 for
details.

RTOS Sleep on Idle Enabled
Disabled

Disabled Setting this option to
Enabled will allow
RTOS ports to enter
CPU Sleep mode while
idle. This should not be
used when CPUCLK is
configured over
120MHz. See RA8M1
HWM
(R01UH0994EJ0100)
Section 10.7.10 for
details.

MSTP Change Delays Enabled
Disabled

Enabled Setting this option to
Enabled will insert
delays after setting a
MSTP bit to ensure
voltage supply
stability. This is not
required if you do not
intend to run CPUCLK
over 120MHz. See
RA8T1 HWM
(R01UH0996EJ0100)
Section 10.4 for details.

Settling Delay (us) Unit must be a non-
negative integer

150 Specifies the length of
the delay to be used
for the Clock settling,
Sleep mode, and MSTP
change delays.

Cache settings

Data cache Enabled
Disabled

Disabled Enable limited D-Cache
support. See BSP usage
notes for limitations.

Enable inline BSP IRQ Enabled Enabled Using static inline

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 443 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

functions Disabled functions will slightly
increase code size, but
will slightly decrease
cycles taken in ISRs in
return.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Macros

#define BSP_ELC_PERIPHERAL_MASK

Enumerations

enum elc_event_t

enum elc_peripheral_t

Macro Definition Documentation

◆ BSP_ELC_PERIPHERAL_MASK

#define BSP_ELC_PERIPHERAL_MASK

Positions of event link set registers (ELSRs) available on this MCU

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 444 / 5,560

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA8T1

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list is device specific.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

Note
This list is device specific.

5.2 Modules

Detailed Description

Modules are the smallest unit of software available in FSP. Each module implements one interface.

For more information on FSP Modules and Interfaces review FSP Modules, FSP Stacks and FSP
Interfaces in the FSP Architecture section of this manual.

Note
Not all modules are available for all MCUs. For more information, see the User's Manual for the specific MCU.

Organization of Module Sections

Each module within FSP has a detailed Users' Guide listed below. Each guide typically includes the
following content:

Functions: A list of all the API functions associated with the module
Detailed Description: A short description of the module and the peripherals used
Overview: An operational summary and a list of high level features provided by the module
Configuration: A description of module specific settings available in the configuration tool
including clock and pin configurations
Usage Notes: Module specific documentation and limitations
Examples: Illustrative code snippets that help the user better understand API use and
operation
Data Structure and Enumeration: Definitions for data structures, enumerations and similar
elements used by the module API
Function Documentation: Details on each API function, including the function prototype, a
function summary, a simple use example, list of return values and links to documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules

for any needed parameter definitions

Modules

Analog

 Analog Modules.

AI

 Artifical Intelligence Modules.

Audio

 Audio Modules.

Bootloader

 Bootloader Modules.

CapTouch

 CapTouch Modules.

Connectivity

 Connectivity Modules.

DSP

 DSP Modules.

Graphics

 Graphics Modules.

Input

 Input Modules.

Monitoring

 Monitoring Modules.

Motor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules

 Motor Modules.

Networking

 Networking Modules.

Power

 Power Modules.

RTOS

 RTOS Modules.

Security

 Security Modules.

Sensor

 Sensor Modules.

Storage

 Storage Modules.

System

 System Modules.

Timers

 Timers Modules.

Transfer

 Transfer Modules.

TrustZone

 Arm TrustZone Modules.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog

5.2.1 Analog
Modules

Detailed Description

Analog Modules.

Modules

ADC (r_adc)

 Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs.
This module implements the ADC Interface.

ADC (r_adc_b)

 Driver for the ADC_B peripheral on RA MCUs. This module
implements the ADC Interface.

ADC (r_adc_d)

 Driver for ADC_D version of the ADC12 peripheral on RA MCUs. This
module implements the ADC Interface.

Comparator, High-Speed (r_acmphs)

 Driver for the ACMPHS peripheral on RA MCUs. This module
implements the Comparator Interface.

Comparator, Low-Power (r_acmplp)

 Driver for the ACMPLP peripheral on RA MCUs. This module
implements the Comparator Interface.

DAC (r_dac)

 Driver for the DAC12 peripheral on RA MCUs. This module
implements the DAC Interface.

DAC8 (r_dac8)

 Driver for the DAC8 peripheral on RA MCUs. This module implements
the DAC Interface.

Operational Amplifier (r_opamp)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog

 Driver for the OPAMP peripheral on RA MCUs. This module
implements the OPAMP Interface.

SDADC Channel Configuration (r_sdadc)

 Driver for the SDADC24 peripheral on RA MCUs. This module
implements the ADC Interface.

SDADC_B Channel Configuration (r_sdadc_b)

 Driver for the SDADC_B peripheral on RA MCUs. This module
implements the ADC Interface.

5.2.1.1 ADC (r_adc)
Modules » Analog

Functions

fsp_err_t R_ADC_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_ADC_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_channel_cfg)

fsp_err_t R_ADC_CallbackSet (adc_ctrl_t *const p_api_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

fsp_err_t R_ADC_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_ScanGroupStart (adc_ctrl_t *p_ctrl, adc_group_mask_t
group_id)

fsp_err_t R_ADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_ADC_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t
*const p_data)

fsp_err_t R_ADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_ADC_SampleStateCountSet (adc_ctrl_t *p_ctrl, adc_sample_state_t
*p_sample)

fsp_err_t R_ADC_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

fsp_err_t R_ADC_Close (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t offset)

Detailed Description

Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs. This module implements the ADC
Interface.

Overview
Features

The ADC module supports the following features:

12, 14, or 16 bit maximum resolution depending on the MCU
Configure scans to include:

Multiple analog channels
Temperature sensor channel
Voltage sensor channel

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)
External scan triggers from the ADTRGn port pins

Configurable scan mode:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously
Group scan mode, where channels are grouped into group A and group B. The
groups can be assigned different start triggers, and group A can be given priority
over group B. When group A has priority over group B, a group A trigger suspends
an ongoing group B scan.

Supports adding and averaging converted samples
Optional callback when scan completes
Sample and hold support
Double-trigger support
Hardware comparator with interrupt and event output

Configuration

Build Time Configurations for r_adc

The following build time configurations are defined in fsp_cfg/r_adc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Disabled included in the build.

Configurations for Analog > ADC (r_adc)

This module can be added to the Stacks tab via New Stack > Analog > ADC (r_adc). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_adc0 Module name

Unit Unit must be a non-
negative integer

0 Specifies the ADC Unit
to be used.

Resolution MCU Specific Options Specifies the
conversion resolution
for this unit.

Alignment MCU Specific Options Specifies the
conversion result
alignment.

Clear after read Off
On

On Specifies if the result
register will be
automatically cleared
after the conversion
result is read.

Mode Single Scan
Continuous
Scan
Group Scan

Single Scan Specifies the mode that
this ADC unit is used in.

Double-trigger Disabled
Enabled
Enabled
(extended
mode)

Disabled When enabled, the
scan-end interrupt for
Group A is only thrown
on every second scan.
Extended double-
trigger mode (single-
scan only) triggers on
both ELC events,
allowing (for example)
a scan on two different
timer compare match
values.

In group mode Group B
is unaffected.

Input

Input > Sample and Hold

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Sample and Hold
Channels (Available
only on selected MCUs)

Channel 0
Channel 1
Channel 2

Specifies if this channel
is included in the
Sample and Hold Mask.

Sample Hold States
(Applies only to
channels 0, 1, 2)

Must be a valid non-
negative integer with
configurable value 4 to
255

24 Specifies the updated
sample-and-hold count
for the channel
dedicated sample-and-
hold circuit

Input > Window Compare

Input > Window Compare > Window A

Enable Disabled
Enabled

Disabled Enable or disable
comparison with
Window A.

Channels to compare
(channel availability
varies by MCU and
unit)

Refer to the RA
Configuration tool for
available options.

Select channels to be
compared to Window
A.

Channel comparison
mode (channel
availability varies by
MCU and unit)

Refer to the RA
Configuration tool for
available options.

Checking a box sets
the comparison mode
for that channel to
Greater Than or Inside
Window depending on
whether Window Mode
is disabled or enabled
(respectively). If left
unchecked the
comparison mode will
likewise be Less Than
or Outside Window
(respectively).

Lower Reference Must be a positive
16-bit integer.

0 Set the lower
comparison value.

Upper Reference Must be a positive
16-bit integer.

0 Set the upper
comparison value.

Input > Window Compare > Window B

Enable Disabled
Enabled

Disabled Enable or disable
comparison with
Window B.

Channel to compare
(channel availability
varies by MCU and
unit)

Refer to the RA
Configuration tool for
available options.

Channel 0 Select a channel to be
compared to Window
B.

Comparison mode Less Than or
Outside
Window
Greater Than or
Inside Window

module.driver.adc.com
pare.window_b.mode

Select the comparison
mode for Window B.
For each option, the
first condition applies
when Window Mode is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

disabled and the
second option applies
when Window Mode is
enabled.

Lower Reference Must be a positive
16-bit integer.

0 Set the lower
comparison value.

Upper Reference Must be a positive
16-bit integer.

0 Set the upper
comparison value.

Window Mode Disabled
Enabled

Disabled When disabled, ADC
values will be
compared only with the
lower reference on
each comparator.
When enabled, both
the lower and upper
reference values will be
used to create a
comparison window.

Event Output OR
XOR
AND

OR Select how comparison
results should be
composited for event
output.

Channel Scan Mask
(channel availability
varies by MCU)

Refer to the RA
Configuration tool for
available options.

In Normal mode of
operation, this bitmask
field specifies the
channels that are
enabled in that ADC
unit. In group mode,
this field specifies
which channels belong
to group A.

Group B Scan Mask
(channel availability
varies by MCU)

Refer to the RA
Configuration tool for
available options.

In group mode, this
field specifies which
channels belong to
group B.

Add/Average Count MCU Specific Options Specifies if addition or
averaging needs to be
done for any of the
channels in this unit.

Reference Voltage
control

MCU Specific Options Specify
VREFH/VREFADC
output voltage control.

Addition/Averaging
Mask (channel
availability varies by
MCU and unit)

Refer to the RA
Configuration tool for
available options.

Select channels to
include in the
Addition/Averaging
Mask

Interrupts

Normal/Group A MCU Specific Options Specifies the trigger

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Trigger type to be used for this
unit. Triggers that
specify ADC Unit must
be selected for correct
ADC unit to operate
correctly.

Group B Trigger MCU Specific Options Specifies the trigger for
Group B scanning in
group scanning mode.
This event is also used
to trigger Group A in
extended double-
trigger mode. Triggers
that specify ADC Unit
must be selected for
correct ADC unit to
operate correctly.

Group Priority (Valid
only in Group Scan
Mode)

Group A cannot
interrupt Group
B
Group A can
interrupt Group
B; Group B scan
restarts at next
trigger
Group A can
interrupt Group
B; Group B scan
restarts
immediately
Group A can
interrupt Group
B; Group B scan
restarts
immediately
and scans
continuously

Group A cannot
interrupt Group B

Determines whether an
ongoing group B scan
can be interrupted by a
group A trigger,
whether it should abort
on a group A trigger, or
if it should pause to
allow group A scan and
restart immediately
after group A scan is
complete.

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the ADC scan
completes.

Scan End Interrupt
Priority

MCU Specific Options Select scan end
interrupt priority.

Scan End Group B
Interrupt Priority

MCU Specific Options Select group B scan
end interrupt priority.

Window Compare A
Interrupt Priority

MCU Specific Options Select Window
Compare A interrupt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

priority.

Window Compare B
Interrupt Priority

MCU Specific Options Select Window
Compare B interrupt
priority.

Extra

ADC Ring Buffer MCU Specific Options ADC Ring Buffer to be
used only with DMAC
transfers, keep this
property disabled for
normal ADC operations.
When enabled, ADC
converted data is
stored in ADBUF
registers in place of
ADDR registers. The
read API will not read
from this location for
normal ADC operations.

Clock Configuration

The ADC clock is PCLKC if the MCU has PCLKC, or PCLKD otherwise.

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA0E1 ICLK

RA2A1 PCLKD

RA2A2 PCLKD

RA2E1 PCLKD

RA2E2 PCLKD

RA2E3 PCLKD

RA2L1 PCLKD

RA4E1 PCLKC

RA4E2 PCLKC

RA4M1 PCLKC

RA4M2 PCLKC

RA4M3 PCLKC

RA4T1 PCLKC

RA4W1 PCLKC

RA6E1 PCLKC

RA6E2 PCLKC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

RA6M1 PCLKC

RA6M2 PCLKC

RA6M3 PCLKC

RA6M4 PCLKC

RA6M5 PCLKC

RA6T1 PCLKC

RA6T3 PCLKC

RA8D1 PCLKC

RA8M1 PCLKC

RA8T1 PCLKC

The ADC clock must be at least 1 MHz when the ADC is used. Many MCUs also have PCLK ratio
restrictions when the ADC is used. For details on PCLK ratio restrictions, reference the footnotes in
the second table of the Clock Generation Circuit chapter of the MCU User's Manual (for example,
Table 9.2 "Specifications of the clock generation circuit for the internal clocks" in the RA6M3 manual
R01UH0886EJ0100).

Pin Configuration

The ANxxx pins are analog input channels that can be used with the ADC.

ADTRG0 and ADTRG1 can be used to start scans with an external trigger for unit 0 and 1
respectively. When external triggers are used, ADC scans begin on the falling edge of the ADTRG
pin.

Usage Notes
Sample Hold

Enabling the sample and hold functionality reduces the maximum scan frequency because the
sample and hold time is added to each scan. Refer to the hardware manual for details on the sample
and hold time.

ADC Operational Modes

The driver supports three operation modes: single-scan, continuous-scan, and group-scan modes. In
each mode, analog channels are converted in ascending order of channel number, followed by scans
of the temperature sensor and voltage sensor if they are included in the mask of channels to scan.

Single-scan Mode

In single scan mode, one or more specified channels are scanned once per trigger.

Continuous-scan Mode

In continuous scan mode, a single trigger is required to start the scan. Scans continue until
R_ADC_ScanStop() is called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Note
1) To help ensure a responsive system, developers should consider system clock speed, ADCLK speed, and callback
processing time. In particular, using a scan-end callback with a high scan rate relative to core clocks (for example,
in continuous scan mode) may result in constant or high-frequency interrupts and is not recommended.
2) On some MCUs, scanning the temperature sensor or internal reference voltage in continuous or group scan
modes is prohibited. Check the "ADC12 specifications" section of the device's User Manual to see if this restriction
applies.

Group-scan Mode

Group-scan mode allows the application to allocate channels to one of two groups (A and B).
Conversion begins when the specified ELC start trigger for that group is received.

With the priority configuration parameter, you can optionally give group A priority over group B. If
group A has priority over group B, a group B scan is interrupted when a group A scan trigger occurs.
The following options exist for group B when group A has priority:

To restart the interrupted group B scan after the group A scan completes.
To wait for another group B trigger and forget the interrupted scan.
To continuously scan group B and suspend scanning group B only when a group A trigger is
received.
Note

If this option is selected, group B scanning begins immediately after R_ADC_ScanCfg(). Group A scan
triggers must be enabled by R_ADC_ScanStart() and can be disabled by R_ADC_ScanStop(). Group B
scans can only be disabled by reconfiguring the group A priority to a different mode.

Double-triggering

When double-triggering is enabled a single channel is selected to be scanned twice before an
interrupt is thrown. The first scan result when using double-triggering is always saved to the selected
channel's data register. The second result is saved to the data duplexing register
(ADC_CHANNEL_DUPLEX).

Double-triggering uses Group A; only one channel can be selected when enabled. No other scanning
is possible on Group A while double-trigger mode is selected. In addition, any special ADC channels
(such as temperature sensors or voltage references) are not valid double-trigger channels.

When extended double-triggering is enabled, both ADC input (ELC) events are routed to Group A.
The interrupt is still thrown after every two scans regardless of the triggering event(s). While the first
and second scan are saved to the selected ADC data register and the ADC duplexing register as
before, scans associated with event A and B are additionally copied into duplexing register A and B,
respectively (ADC_CHANNEL_DUPLEX_A and ADC_CHANNEL_DUPLEX_B).

When Interrupts Are Not Enabled

If interrupts are not enabled, the R_ADC_StatusGet API can be used to poll the ADC to determine
when the scan has completed. The read API function is used to access the converted ADC result. This
applies to both normal scans and calibration scans for MCUs that support calibration.

Window Compare Function

The ADC contains comparators that allow scan data to be compared to user-provided reference
values. When a value meets the configured condition an interrupt and/or an ELC event can be
produced.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Each unit has two configurable comparison units, Window A and Window B. Window A allows for
configuring multiple simultaneous channels to compare while Window B only allows one channel at a
time.

The window compare function can be configured both through the RA Configuration tool and at
runtime by providing a pointer to an adc_window_cfg_t struct to adc_channel_cfg_t::p_window_cfg
when calling R_ADC_ScanCfg. The available comparison modes are shown below:

Window setting Channel mode 0 Channel mode 1

Disabled Scan < Low Ref Scan > Low Ref

Enabled (Scan < Low Ref) OR (Scan >
High Ref)

Low Ref < Scan < High Ref

Note
The window setting applies to all channels configured on a unit.

Event Output Function

To use the event output of compare function, Set the mode of operation to Single Scan Mode. The
compare function can be configured by enabling both Window A and Window B. Select the channel of
Window A. Select Window B channel to NOT SELECTED. Set the upper and lower reference values for
both Window A and Window B.

Note
When using ADC12 in Snooze Mode, both Compare Window A and Compare Window B must be enabled.

Sample-State Count Setting

The application program can modify the setting of the sample-state count for analog channels by
calling the R_ADC_SampleStateCountSet() API function. The application program only needs to
modify the sample-state count settings from their default values to increase the sampling time. This
can be either because the impedance of the input signal is too high to secure sufficient sampling
time under the default setting or if the ADCLK is too slow. To modify the sample-state count for a
given channel, set the channel number and the number of states when calling the
R_ADC_SampleStateCountSet() API function. Valid sample state counts are 7-255.

Note
Although the hardware supports a minimum number of sample states of 5, some MCUs require 7 states, so the
minimum is set to 7. At the lowest supported ADC conversion clock rate (1 MHz), these extra states will lead to, at
worst case, a 2 microsecond increase in conversion time. At 60 MHz the extra states will add 33.4 ns to the
conversion time.

If the sample state count needs to be changed for multiple channels, the application program must
call the R_ADC_SampleStateCountSet() API function repeatedly, with appropriately modified
arguments for each channel.

If the ADCLK frequency changes, the sample states may need to be updated.

Sample States for Temperature Sensor and Internal Voltage Reference

Sample states for the temperature sensor and the internal reference voltage are calculated during
R_ADC_ScanCfg() based on the ADCLK frequency at the time. The sample states for the temperature
sensor and internal voltage reference cannot be updated with R_ADC_SampleStateCountSet(). If the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

ADCLK frequency changes, call R_ADC_ScanCfg() before using the temperature sensor or internal
reference voltage again to ensure the sampling time for the temperature sensor and internal voltage
reference is optimal.

Selecting Reference Voltage

The ADC high-potential and low-potential reference voltages may be configured for selected MCU's.
Please refer to the RA Configuration editor in e² studio for further details.

Note
When using VREFADC, a stabilization time of 1500us is required after call for R_ADC_Open(). Consult Section
32.6 "Selecting Reference Voltage" in the RA2A1 User's Manual (R01UH0888EJ0100) for details.
When the internal reference voltage is selected as the high-potential reference voltage, the Low-power A/D
Conversion mode will automatically be selected. Consult Section 29.6 "Selecting Reference Voltage" in the RA2E1
User's Manual (R01UH0852EJ0110) for details.

Using the Temperature Sensor with the ADC

The ADC HAL module supports reading the data from the on-chip temperature sensor. The value
returned from the sensor can be converted into degrees Celsius or Fahrenheit in the application
program using the following formula, T = (Vs - V1)/slope + T1, where:

T: Measured temperature (degrees C)
Vs: Voltage output by the temperature sensor at the time of temperature measurement
(Volts)
T1: Temperature experimentally measured at one point (degrees C)
V1: Voltage output by the temperature sensor at the time of measurement of T1 (Volts)
T2: Temperature at the experimental measurement of another point (degrees C)
V2: Voltage output by the temperature sensor at the time of measurement of T2 (Volts)
Slope: Temperature gradient of the temperature sensor (V/degrees C); slope = (V2 - V1)/
(T2 - T1)

Note
The slope value can be obtained from the hardware manual for each device in the Electrical Characteristics
Chapter - TSN Characteristics Table, Temperature slope entry.

Reading CTSU TSCAP with ADC

Some MCUs support reading CTSU TSCAP with ADC. CTSU TSCAP is connected to ADC0 channel 16.
Use existing enums for channel 16 to set sample states for the sensor connected to CTSU TSCAP,
enable scanning of CTSU TSCAP, and read results for CTSU TSCAP.

Usage Notes for ADC16

Calibration

Calibration is required to use the ADC16 peripheral. When using this driver on an MCU that has
ADC16, call R_ADC_Calibrate() after open, and prior to any other function.

Range of ADC16 Results

The range of the ADC16 is from 0 (lowest) to 0x7FFF (highest) when used in single-ended mode. This
driver only supports single ended mode.

Limitations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Developers should be aware of the following limitations when using the ADC:

When using the Window Compare function:
Only Single Scan mode may be configured when match or mismatch ELC events
are used.
When one compare window is configured to check the temperature sensor or
voltage reference the other window cannot be used.
Both windows cannot reference the same channel.
When using ADC in Snooze Mode, both Window A and Window B must be enabled.

Examples
Basic Example

This is a basic example of minimal use of the ADC in an application.

/* A channel configuration is generated by the RA Configuration editor based on the

options selected. If additional

 * configurations are desired additional adc_channel_cfg_t elements can be defined

and passed to R_ADC_ScanCfg. */

const adc_channel_cfg_t g_adc0_channel_cfg =

{

 .scan_mask = ADC_MASK_CHANNEL_0 | ADC_MASK_CHANNEL_1,

 .scan_mask_group_b = 0,

 .priority_group_a = (adc_group_a_t) 0,

 .add_mask = 0,

 .sample_hold_mask = 0,

 .sample_hold_states = 0,

};

void adc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable channels. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* In software trigger mode, start a scan by calling R_ADC_ScanStart(). In other

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

modes, enable external

 * triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t channel1_conversion_result;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result);

 assert(FSP_SUCCESS == err);

}

Temperature Sensor Example

This example shows how to calculate the MCU temperature using the ADC and the temperature
sensor.

#define ADC_EXAMPLE_CALIBRATION_DATA_RA6M1 (0x7D5)

#define ADC_EXAMPLE_VCC_MICROVOLT (3300000)

#define ADC_EXAMPLE_TEMPERATURE_RESOLUTION (12U)

#define ADC_EXAMPLE_REFERENCE_CALIBRATION_TEMPERATURE (127)

void adc_temperature_example (void)

{

 /* The following example calculates the temperature on an RA6M1 device using the

data provided in the section

 * 44.3.1 "Preparation for Using the Temperature Sensor" of the RA6M1 manual

R01UH0884EJ0100. */

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 assert(FSP_SUCCESS == err);

 /* Enable temperature sensor. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* In software trigger mode, start a scan by calling R_ADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t temperature_conversion_result;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_TEMPERATURE,

&temperature_conversion_result);

 assert(FSP_SUCCESS == err);

 /* If the MCU does not provide calibration data, use the value in the hardware

manual or determine it

 * experimentally. */

 /* Get Calibration data from the MCU if available. */

 int32_t reference_calibration_data;

 adc_info_t adc_info;

 (void) R_ADC_InfoGet(&g_adc0_ctrl, &adc_info);

 reference_calibration_data = (int32_t) adc_info.calibration_data;

 /* NOTE: The slope of the temperature sensor varies from sensor to sensor. Renesas

recommends calculating

 * the slope of the temperature sensor experimentally.

 *

 * This example uses the typical slope provided in Table 52.38 "TSN characteristics"

in the RA6M1 manual

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 * R01UM0011EU0050. */

 int32_t slope_uv_per_c = BSP_FEATURE_ADC_TSN_SLOPE;

 /* Formula for calculating temperature copied from section 44.3.1 "Preparation for

Using the Temperature Sensor"

 * of the RA6M1 manual R01UH0884EJ0100:

 *

 * In this MCU, the TSCDR register stores the temperature value (CAL127) of the

temperature sensor measured

 * under the condition Ta = Tj = 127 C and AVCC0 = 3.3 V. By using this value as the

sample measurement result

 * at the first point, preparation before using the temperature sensor can be

omitted.

 *

 * If V1 is calculated from CAL127,

 * V1 = 3.3 * CAL127 / 4096 [V]

 *

 * Using this, the measured temperature can be calculated according to the following

formula.

 *

 * T = (Vs - V1) / Slope + 127 [C]

 * T: Measured temperature (C)

 * Vs: Voltage output by the temperature sensor when the temperature is measured (V)

 * V1: Voltage output by the temperature sensor when Ta = Tj = 127 C and AVCC0 = 3.3

V (V)

 * Slope: Temperature slope given in Table 52.38 / 1000 (V/C)

 */

 int32_t v1_uv = (ADC_EXAMPLE_VCC_MICROVOLT >> ADC_EXAMPLE_TEMPERATURE_RESOLUTION)

*

 reference_calibration_data;

 int32_t vs_uv = (ADC_EXAMPLE_VCC_MICROVOLT >> ADC_EXAMPLE_TEMPERATURE_RESOLUTION)

*

 temperature_conversion_result;

 int32_t temperature_c = (vs_uv - v1_uv) / slope_uv_per_c +

ADC_EXAMPLE_REFERENCE_CALIBRATION_TEMPERATURE;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 /* Expect room temperature, break if temperature is outside the range of 20 C to 25

C. */

 if ((temperature_c < 20) || (temperature_c > 25))

 {

 __BKPT(0);

 }

}

Double-Trigger Example

This example demonstrates reading data from a double-trigger scan. A flag is used to wait for a
callback event. Two scans must occur before the callback is called. These results are read via
R_ADC_Read using the selected channel enum value as well as ADC_CHANNEL_DUPLEX.

volatile bool scan_complete_flag = false;

void adc_callback (adc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 scan_complete_flag = true;

}

void adc_double_trigger_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable double-trigger channel. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable scan triggering from ELC events. */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. Two scans must be triggered before a callback

occurs. */

 scan_complete_flag = false;

 while (!scan_complete_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 {

 /* Wait for callback to set flag. */

 }

 /* Read converted data from both scans. */

 uint16_t channel1_conversion_result_0;

 uint16_t channel1_conversion_result_1;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result_0);

 assert(FSP_SUCCESS == err);

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_DUPLEX,

&channel1_conversion_result_1);

 assert(FSP_SUCCESS == err);

}

ADC-DMAC Repeat-Block Transfer Example

This example demonstrates writing multiple data from DAC peripheral to ADC channels and storing
the data in memory through DMAC using Repeat-Block Transfer mode. It creates single block to
multiple ring buffer type of transfer topology. Ping-Pong mechanism is used to read the data from
memory in between the transfers. This example is valid only for MCUs that have ADBUF.

 #define ADC_DMAC_EXAMPLE_DATA_LOW (0U)

 #define ADC_DMAC_EXAMPLE_DATA_HIGH (0x000FU)

 #define ADC_DMAC_EXAMPLE_DELAY_1000_MS (1000U)

 #define ADC_DMAC_EXAMPLE_NUM_PING_PONG_BUFFERS (2)

static uint16_t g_adc_dmac_example_buffer[ADC_DMAC_EXAMPLE_NUM_PING_PONG_BUFFERS][

 ADC_DMAC_EXAMPLE_ADC_CHANNELS_PER_BLOCK][ADC_DMAC_EXAMPLE_SAMPLES_PER_CHANNEL];

// Destination buffer for DMAC transfers

static volatile uint16_t g_adc_dmac_example_ping_pong_index = 0U;

static volatile void * gp_read_data;

/* DMAC callback */

void adc_dmac_callback (dmac_callback_args_t * p_args)

{

 (void) p_args;

 /* Store the pointer to the last buffer that was written

 * An array of data for the first enabled channel is at

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0],

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 * an array of data for the next channel is at

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][1][0], etc.

 */

 gp_read_data =

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0];

 /* Select the other ping-pong buffer which is free for writing */

 g_adc_dmac_example_ping_pong_index = !g_adc_dmac_example_ping_pong_index;

 /* Reset the destination pointer and DMAC peripheral */

 R_DMAC_Reset(&g_transfer0_ctrl,

 NULL,

 (void *)

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0],

 ADC_DMAC_EXAMPLE_SAMPLES_PER_CHANNEL);

 FSP_PARAMETER_NOT_USED(gp_read_data);

}

void adc_dmac_repeat_block_transfer_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open ADC Module and configure the channels */

 /* Enable the ADBUF property from configurations */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Open DMAC channel for repeat-block transfer with following configurations

 * (1) Destination address as

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0]

 * (2) Enable end of transfer interrupt

 * (3) Configure source address mode as incremented and destination address mode as

offset addition,

 * fixed to address of ADBUF register by configurator with ADC-DMAC module

 * (4) Configure source buffer size as total size of source buffer - Refer RA6M4

Hardware Manual R01UH0890EJ0110,

 * section 16.2.15 for source buffer size limitations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 * (5) Configure transfer mode as Repeat-Block mode

 * (6) Refer RA6M4 Hardware Manual R01UH0890EJ0110,

 * section 16.2.16 for total number of blocks which decides destination buffer size

 * (7) Number of blocks is determined by the samples per channel property for ADC-

DMAC module

 * (8) Size of block is determined using the enabled ADC channels in the

configurator when using ADC-DMAC-module

 * (9) Configure DMAC activation source as A/D scan end interrupt

 */

 err = R_DMAC_Open(&g_transfer0_ctrl, &g_transfer0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_DMAC_Enable(&g_transfer0_ctrl);

 assert(FSP_SUCCESS == err);

 uint16_t count = ADC_DMAC_EXAMPLE_DATA_LOW;

 adc_status_t adc_status;

 /* Trigger the ADC scan for "count" times, this can be replaced by triggering the

ADC using a timer */

 while (count <= (uint16_t) ADC_DMAC_EXAMPLE_DATA_HIGH)

 {

 /* Scan the data with ADC channels*/

 err = R_ADC_ScanStart(&g_adc0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for conversion to complete */

 uint16_t timeout = UINT16_MAX;

 adc_status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while ((ADC_STATE_SCAN_IN_PROGRESS == adc_status.state) && (timeout > 0U))

 {

 timeout--;

 R_ADC_StatusGet(&g_adc0_ctrl, &adc_status);

 }

 R_BSP_SoftwareDelay(ADC_DMAC_EXAMPLE_DELAY_1000_MS, BSP_DELAY_UNITS_MICROSECONDS);

 count++;

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

Window Compare Example

This example shows how to configure the window compare function at runtime as well as how to
handle events and obtain comparison results through a callback.

adc_window_cfg_t g_adc0_window_cfg =

{

 /* Enable Window A and Window B; enable Window mode */

 .compare_cfg =

 (adc_compare_cfg_t) (ADC_COMPARE_CFG_A_ENABLE | ADC_COMPARE_CFG_B_ENABLE |

ADC_COMPARE_CFG_WINDOW_ENABLE),

 /* Compare scan values from Channels 0 and 1 */

 .compare_mask = ADC_MASK_CHANNEL_0 | ADC_MASK_CHANNEL_1,

 /* Set Channel 1 condition to be inside the window instead of outside */

 .compare_mode_mask = ADC_MASK_CHANNEL_1,

 /* Set reference voltage levels for Window A */

 .compare_ref_low = ADC_SCAN_MAX / 3,

 .compare_ref_high = ADC_SCAN_MAX * 2 / 3,

 /* Configure Window B to compare Channel 2 (inside window) */

 .compare_b_channel = ADC_WINDOW_B_CHANNEL_2,

 .compare_b_mode = ADC_WINDOW_B_MODE_GREATER_THAN_OR_INSIDE,

 /* Set reference voltage levels for Window B */

 .compare_b_ref_low = ADC_SCAN_MAX / 4,

 .compare_b_ref_high = ADC_SCAN_MAX * 3 / 4,

};

void adc0_callback (adc_callback_args_t * p_args)

{

 if (ADC_EVENT_WINDOW_COMPARE_A == p_args->event)

 {

 /* Get channel that met the comparison criteria */

 adc_channel_t channel = p_args->channel;

 /* Process event here */

 FSP_PARAMETER_NOT_USED(channel);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

 else if (ADC_EVENT_WINDOW_COMPARE_B == p_args->event)

 {

 /* Process Window B events here */

 }

 else

 {

 /* ... */

 }

}

void adc_window_compare_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the ADC module */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 assert(FSP_SUCCESS == err);

 /* Set the window compare configuration in the channel config */

 g_adc0_channel_runtime_cfg.p_window_cfg = &g_adc0_window_cfg;

 /* The window compare function is configured as part of the scan configuration */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_runtime_cfg);

 assert(FSP_SUCCESS == err);

 /* Main program loop - scan the ADC every second */

 while (1)

 {

 /* Start a scan */

 err = R_ADC_ScanStart(&g_adc0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Delay; any compare events will be handled by the callback */

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

}

Data Structures

struct adc_sample_state_t

struct adc_window_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

struct adc_extended_cfg_t

struct adc_channel_cfg_t

struct adc_instance_ctrl_t

Enumerations

enum adc_mask_t

enum adc_add_t

enum adc_clear_t

enum adc_vref_control_t

enum adc_sample_state_reg_t

enum adc_compare_cfg_t

enum adc_window_b_channel_t

enum adc_window_b_mode_t

enum adc_group_a_t

enum adc_double_trigger_t

enum adc_start_source_t

Data Structure Documentation

◆ adc_sample_state_t

struct adc_sample_state_t

ADC sample state configuration

Data Fields

adc_sample_state_reg_t reg_id Sample state register ID.

uint8_t num_states Number of sampling states for
conversion. Ch16-20/21 use the
same value.

◆ adc_window_cfg_t

struct adc_window_cfg_t

ADC Window Compare configuration

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

uint32_t compare_mask Channel mask to compare with
Window A.

uint32_t compare_mode_mask Per-channel condition mask for
Window A.

adc_compare_cfg_t compare_cfg Window Compare configuration.

uint16_t compare_ref_low Window A lower reference
value.

uint16_t compare_ref_high Window A upper reference
value.

uint16_t compare_b_ref_low Window B lower reference
value.

uint16_t compare_b_ref_high Window A upper reference
value.

adc_window_b_channel_t compare_b_channel Window B channel.

adc_window_b_mode_t compare_b_mode Window B condition setting.

◆ adc_extended_cfg_t

struct adc_extended_cfg_t

Extended configuration structure for ADC.

Data Fields

adc_add_t add_average_count Add or average samples.

adc_clear_t clearing Clear after read.

adc_start_source_t trigger Trigger source for ADC.

adc_start_source_t trigger_group_b Trigger source for ADC group B;
valid only for group mode.

adc_double_trigger_t double_trigger_mode Double-trigger mode setting.

adc_vref_control_t adc_vref_control VREFADC output voltage
control.

uint8_t enable_adbuf Enable ADC Ring Buffer, Valid
only to use along with DMAC
transfer.

IRQn_Type window_a_irq IRQ number for Window
Compare A interrupts.

IRQn_Type window_b_irq IRQ number for Window
Compare B interrupts.

uint8_t window_a_ipl Priority for Window Compare A
interrupts.

uint8_t window_b_ipl Priority for Window Compare B
interrupts.

◆ adc_channel_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

struct adc_channel_cfg_t

ADC channel(s) configuration

Data Fields

uint32_t scan_mask Channels/bits: bit 0 is ch0; bit
15 is ch15.

uint32_t scan_mask_group_b Valid for group modes.

uint32_t add_mask Valid if add enabled in Open().

adc_window_cfg_t * p_window_cfg Pointer to Window Compare
configuration.

adc_group_a_t priority_group_a Valid for group modes.

uint8_t sample_hold_mask Channels/bits 0-2.

uint8_t sample_hold_states Number of states to be used for
sample and hold. Affects
channels 0-2.

◆ adc_instance_ctrl_t

struct adc_instance_ctrl_t

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_mask_t

enum adc_mask_t

For ADC Scan configuration adc_channel_cfg_t::scan_mask, adc_channel_cfg_t::scan_mask_group_b
, adc_channel_cfg_t::add_mask and adc_channel_cfg_t::sample_hold_mask. Use bitwise OR to
combine these masks for desired channels and sensors.

Enumerator

ADC_MASK_OFF No channels selected.

ADC_MASK_CHANNEL_0 Channel 0 mask.

ADC_MASK_CHANNEL_1 Channel 1 mask.

ADC_MASK_CHANNEL_2 Channel 2 mask.

ADC_MASK_CHANNEL_3 Channel 3 mask.

ADC_MASK_CHANNEL_4 Channel 4 mask.

ADC_MASK_CHANNEL_5 Channel 5 mask.

ADC_MASK_CHANNEL_6 Channel 6 mask.

ADC_MASK_CHANNEL_7 Channel 7 mask.

ADC_MASK_CHANNEL_8 Channel 8 mask.

ADC_MASK_CHANNEL_9 Channel 9 mask.

ADC_MASK_CHANNEL_10 Channel 10 mask.

ADC_MASK_CHANNEL_11 Channel 11 mask.

ADC_MASK_CHANNEL_12 Channel 12 mask.

ADC_MASK_CHANNEL_13 Channel 13 mask.

ADC_MASK_CHANNEL_14 Channel 14 mask.

ADC_MASK_CHANNEL_15 Channel 15 mask.

ADC_MASK_CHANNEL_16 Channel 16 mask.

ADC_MASK_CHANNEL_17 Channel 17 mask.

ADC_MASK_CHANNEL_18 Channel 18 mask.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

ADC_MASK_CHANNEL_19 Channel 19 mask.

ADC_MASK_CHANNEL_20 Channel 20 mask.

ADC_MASK_CHANNEL_21 Channel 21 mask.

ADC_MASK_CHANNEL_22 Channel 22 mask.

ADC_MASK_CHANNEL_23 Channel 23 mask.

ADC_MASK_CHANNEL_24 Channel 24 mask.

ADC_MASK_CHANNEL_25 Channel 25 mask.

ADC_MASK_CHANNEL_26 Channel 26 mask.

ADC_MASK_CHANNEL_27 Channel 27 mask.

ADC_MASK_CHANNEL_28 Channel 28 mask.

ADC_MASK_TEMPERATURE Temperature sensor channel mask.

ADC_MASK_VOLT Voltage reference channel mask.

ADC_MASK_SENSORS All sensor channel mask.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_add_t

enum adc_add_t

ADC data sample addition and averaging options

Enumerator

ADC_ADD_OFF Addition turned off for channels/sensors.

ADC_ADD_TWO Add two samples.

ADC_ADD_THREE Add three samples.

ADC_ADD_FOUR Add four samples.

ADC_ADD_SIXTEEN Add sixteen samples.

ADC_ADD_AVERAGE_TWO Average two samples.

ADC_ADD_AVERAGE_FOUR Average four samples.

ADC_ADD_AVERAGE_EIGHT Average eight samples.

ADC_ADD_AVERAGE_SIXTEEN Add sixteen samples.

◆ adc_clear_t

enum adc_clear_t

ADC clear after read definitions

Enumerator

ADC_CLEAR_AFTER_READ_OFF Clear after read off.

ADC_CLEAR_AFTER_READ_ON Clear after read on.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_vref_control_t

enum adc_vref_control_t

Enumerator

ADC_VREF_CONTROL_VREFH VREFAMPCNT reset value. VREFADC Output
voltage is Hi-Z.

ADC_VREF_CONTROL_1_5V_OUTPUT BGR turn ON. VREFADC Output voltage is 1.5
V.

ADC_VREF_CONTROL_2_0V_OUTPUT BGR turn ON. VREFADC Output voltage is 2.0
V.

ADC_VREF_CONTROL_2_5V_OUTPUT BGR turn ON. VREFADC Output voltage is 2.5
V.

ADC_VREF_CONTROL_AVCC0_AVSS0 High potential is AVCC0, low potential is
AVSS0.

ADC_VREF_CONTROL_VREFH0_AVSS0 High potential is VREFH0, low potential is
AVSS0.

ADC_VREF_CONTROL_IVREF_AVSS0 High potential is internal reference voltage, low
potential is AVSS0. When the high potential is
set to the internal reference voltage, wait 5 us
after R_ADC_Open() to start an ADC
measurement.

ADC_VREF_CONTROL_AVCC0_VREFL0 High potential is AVCC0, low potential is
VREFL0.

ADC_VREF_CONTROL_VREFH0_VREFL0 High potential is VREFH0, low potential is
VREFL0.

ADC_VREF_CONTROL_IVREF_VREFL0 High potential is internal reference voltage, low
potential is VREFL0. When the high potential is
set to the internal reference voltage, wait 5 us
after R_ADC_Open() to start an ADC
measurement.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_sample_state_reg_t

enum adc_sample_state_reg_t

ADC sample state registers

Enumerator

ADC_SAMPLE_STATE_CHANNEL_0 Sample state register channel 0.

ADC_SAMPLE_STATE_CHANNEL_1 Sample state register channel 1.

ADC_SAMPLE_STATE_CHANNEL_2 Sample state register channel 2.

ADC_SAMPLE_STATE_CHANNEL_3 Sample state register channel 3.

ADC_SAMPLE_STATE_CHANNEL_4 Sample state register channel 4.

ADC_SAMPLE_STATE_CHANNEL_5 Sample state register channel 5.

ADC_SAMPLE_STATE_CHANNEL_6 Sample state register channel 6.

ADC_SAMPLE_STATE_CHANNEL_7 Sample state register channel 7.

ADC_SAMPLE_STATE_CHANNEL_8 Sample state register channel 8.

ADC_SAMPLE_STATE_CHANNEL_9 Sample state register channel 9.

ADC_SAMPLE_STATE_CHANNEL_10 Sample state register channel 10.

ADC_SAMPLE_STATE_CHANNEL_11 Sample state register channel 11.

ADC_SAMPLE_STATE_CHANNEL_12 Sample state register channel 12.

ADC_SAMPLE_STATE_CHANNEL_13 Sample state register channel 13.

ADC_SAMPLE_STATE_CHANNEL_14 Sample state register channel 14.

ADC_SAMPLE_STATE_CHANNEL_15 Sample state register channel 15.

ADC_SAMPLE_STATE_CHANNEL_16_TO_31 Sample state register channel 16 to 31.

◆ adc_compare_cfg_t

enum adc_compare_cfg_t

ADC comparison settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_window_b_channel_t

enum adc_window_b_channel_t

ADC Window B channel

◆ adc_window_b_mode_t

enum adc_window_b_mode_t

ADC Window B comparison mode

◆ adc_group_a_t

enum adc_group_a_t

ADC action for group A interrupts group B scan. This enumeration is used to specify the priority
between Group A and B in group mode.

Enumerator

ADC_GROUP_A_PRIORITY_OFF Group A ignored and does not interrupt
ongoing group B scan.

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER Group A interrupts Group B(single scan) which
restarts at next Group B trigger.

ADC_GROUP_A_GROUP_B_RESTART_SCAN Group A interrupts Group B(single scan) which
restarts immediately after Group A scan is
complete.

ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN Group A interrupts Group B(continuous scan)
which continues scanning without a new Group
B trigger.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ adc_double_trigger_t

enum adc_double_trigger_t

ADC double-trigger mode definitions

Enumerator

ADC_DOUBLE_TRIGGER_DISABLED Double-triggering disabled.

ADC_DOUBLE_TRIGGER_ENABLED Double-triggering enabled.

ADC_DOUBLE_TRIGGER_ENABLED_EXTENDED Double-triggering enabled on both ADC ELC
events.

◆ adc_start_source_t

enum adc_start_source_t

ADC Trigger synchronous start source Note: not all sources are available for all MCUs or channels.
See User Manual for more information.

Enumerator

ADC_START_SOURCE_DISABLED ELC/GPT Start source disabled (For use with
software start)

ADC_START_SOURCE_ASYNC_EXTERNAL External Trigger Input.

ADC_START_SOURCE_ELC_AD0 ELC_AD0 (Converter 0 and Converter 1)

ADC_START_SOURCE_ELC_AD1 ELC_AD1 (Converter 0 and Converter 1)

ADC_START_SOURCE_ELC_AD01 ELC_AD0 and ELC_AD1 (Converter 0) also
ELC_AD0 and ELC_AD1 (Converter 1)

ADC_START_SOURCE_GPT_A0_A4 GTADTRA0 (Converter 0) and GTADTRA4
(Converter 1)

ADC_START_SOURCE_GPT_B0_B4 GTADTRB0 (Converter 0) and GTADTRB4
(Converter 1)

ADC_START_SOURCE_GPT_A1_A5 GTADTRA1 (Converter 0) and GTADTRB5
(Converter 1)

ADC_START_SOURCE_GPT_B1_B5 GTADTRB1 (Converter 0) and GTADTRB5
(Converter 1)

ADC_START_SOURCE_GPT_A2_A6 GTADTRA2 (Converter 0) and GTADTRA6
(Converter 1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

ADC_START_SOURCE_GPT_B2_B6 GTADTRB2 (Converter 0) and GTADTRB6
(Converter 1)

ADC_START_SOURCE_GPT_A3_A7 GTADTRA3 (Converter 0) and GTADTRA7
(Converter 1)

ADC_START_SOURCE_GPT_B3_B7 GTADTRB3 (Converter 0) and GTADTRB7
(Converter 1)

ADC_START_SOURCE_GPT_AB0_AB4 GTADTRA/B0 (Converter 0) and GTADTRA/B4
(Converter 1)

ADC_START_SOURCE_GPT_AB1_AB5 GTADTRA/B1 (Converter 0) and GTADTRA/B5
(Converter 1)

ADC_START_SOURCE_GPT_AB2_AB6 GTADTRA/B2 (Converter 0) and GTADTRA/B6
(Converter 1)

ADC_START_SOURCE_GPT_AB3_AB7 GTADTRA/B3 (Converter 0) and GTADTRA/B7
(Converter 1)

Function Documentation

◆ R_ADC_Open()

fsp_err_t R_ADC_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Sets the operational mode, trigger sources, interrupt priority, and configurations for the peripheral
as a whole. If interrupt is enabled, the function registers a callback function pointer for notifying the
user whenever a scan has completed.

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

FSP_ERR_IRQ_BSP_DISABLED A callback is provided, but the interrupt is
not enabled.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested unit does not exist on this
MCU.

FSP_ERR_INVALID_HW_CONDITION The ADC clock must be at least 1 MHz

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_ScanCfg()

fsp_err_t R_ADC_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_channel_cfg)

Configures the ADC scan parameters. Channel specific settings are set in this function. Pass a
pointer to adc_channel_cfg_t to p_channel_cfg.

Note
This starts group B scans if adc_channel_cfg_t::priority_group_a is set to
ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN.

Return values
FSP_SUCCESS Channel specific settings applied.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_CallbackSet()

fsp_err_t R_ADC_CallbackSet (adc_ctrl_t *const p_api_ctrl, void(*)(adc_callback_args_t *)
p_callback, void const *const p_context, adc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
adc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_ScanStart()

fsp_err_t R_ADC_ScanStart (adc_ctrl_t * p_ctrl)

Starts a software scan or enables the hardware trigger for a scan depending on how the triggers
were configured in the R_ADC_Open call. If the unit was configured for ELC or external hardware
triggering, then this function allows the trigger signal to get to the ADC unit. The function is not
able to control the generation of the trigger itself. If the unit was configured for software triggering,
then this function starts the software triggered scan.

Precondition
Call R_ADC_ScanCfg after R_ADC_Open before starting a scan.
On MCUs that support calibration, call R_ADC_Calibrate and wait for calibration to complete
before starting a scan.

Return values
FSP_SUCCESS Scan started (software trigger) or hardware

triggers enabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

FSP_ERR_IN_USE Another scan is still in progress (software
trigger).

◆ R_ADC_ScanGroupStart()

fsp_err_t R_ADC_ScanGroupStart (adc_ctrl_t * p_ctrl, adc_group_mask_t group_id)

adc_api_t::scanStart is not supported on the ADCH. Use scanStart instead.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_ScanStop()

fsp_err_t R_ADC_ScanStop (adc_ctrl_t * p_ctrl)

Stops the software scan or disables the unit from being triggered by the hardware trigger (ELC or
external) based on what type of trigger the unit was configured for in the R_ADC_Open function.
Stopping a hardware triggered scan via this function does not abort an ongoing scan, but prevents
the next scan from occurring. Stopping a software triggered scan aborts an ongoing scan.

Return values
FSP_SUCCESS Scan stopped (software trigger) or hardware

triggers disabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

◆ R_ADC_StatusGet()

fsp_err_t R_ADC_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Provides the status of any scan process that was started, including scans started by ELC or external
triggers and calibration scans on MCUs that support calibration.

Return values
FSP_SUCCESS Module status stored in the provided pointer

p_status

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_Read()

fsp_err_t R_ADC_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data)

Reads conversion results from a single channel or sensor.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_Read32()

fsp_err_t R_ADC_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const p_data
)

Reads conversion results from a single channel or sensor register into a 32-bit result.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

◆ R_ADC_SampleStateCountSet()

fsp_err_t R_ADC_SampleStateCountSet (adc_ctrl_t * p_ctrl, adc_sample_state_t * p_sample)

Sets the sample state count for individual channels. This only needs to be set for special use cases.
Normally, use the default values out of reset.

Note
The sample states for the temperature and voltage sensor are set in R_ADC_ScanCfg.

Return values
FSP_SUCCESS Sample state count updated.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_InfoGet()

fsp_err_t R_ADC_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel and the total number of bytes to be
read in order to read the results of the configured channels and return the ELC Event name. If no
channels are configured, then a length of 0 is returned.

Also provides the temperature sensor slope and the calibration data for the sensor if available on
this MCU. Otherwise, invalid calibration data of 0xFFFFFFFF will be returned.

Note
In group mode, information is returned for group A only. Calculating information for group B is not currently
supported.

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_Close()

fsp_err_t R_ADC_Close (adc_ctrl_t * p_ctrl)

This function ends any scan in progress, disables interrupts, and removes power to the A/D
peripheral.

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc)

◆ R_ADC_Calibrate()

fsp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_ctrl, void const * p_extend)

Initiates calibration of the ADC on MCUs that require calibration. This function must be called
before starting a scan on MCUs that require calibration.

Calibration is complete when the callback is called with ADC_EVENT_CALIBRATION_COMPLETE or
when R_ADC_StatusGet returns ADC_STATUS_IDLE. Reference Figure 32.35 "Software flow and
operation example of calibration operation." in the RA2A1 manual R01UH0888EJ0100.

ADC calibration time: 12 PCLKB + 774,930 ADCLK. (Reference Table 32.16 "Required calibration
time (shown as the number of ADCLK and PCLKB cycles)" in the RA2A1 manual R01UH0888EJ0100.
The lowest supported ADCLK is 1MHz.

Calibration will take a minimum of 24 milliseconds at 32 MHz PCLKB and ADCLK. This wait could
take up to 780 milliseconds for a 1 MHz PCLKD (ADCLK).

Parameters
[in] p_ctrl Pointer to the instance

control structure

[in] p_extend Unused argument. Pass
NULL.

Return values
FSP_SUCCESS Calibration successfully initiated.

FSP_ERR_INVALID_HW_CONDITION A scan is in progress or hardware triggers
are enabled.

FSP_ERR_UNSUPPORTED Calibration not supported on this MCU.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_OffsetSet()

fsp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t offset)

adc_api_t::offsetSet is not supported on the ADC.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

5.2.1.2 ADC (r_adc_b)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

Modules » Analog

Functions

fsp_err_t R_ADC_B_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_ADC_B_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_scan_cfg)

fsp_err_t R_ADC_B_CallbackSet (adc_ctrl_t *const p_api_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

fsp_err_t R_ADC_B_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_B_ScanGroupStart (adc_ctrl_t *p_ctrl, adc_group_mask_t
group_mask)

fsp_err_t R_ADC_B_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_B_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_ADC_B_Read (adc_ctrl_t *p_ctrl, adc_channel_t const channel_id,
uint16_t *const p_data)

fsp_err_t R_ADC_B_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const channel_id,
uint32_t *const p_data)

fsp_err_t R_ADC_B_FifoRead (adc_ctrl_t *p_ctrl, adc_group_mask_t const
group_mask, adc_b_fifo_read_t *const p_data)

fsp_err_t R_ADC_B_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_ADC_B_Close (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_B_Calibrate (adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t R_ADC_B_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t offset)

Detailed Description

Driver for the ADC_B peripheral on RA MCUs. This module implements the ADC Interface.

Overview
Features

The ADC_B module supports the following features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

16 bit resolution
Selectable data format (16, 14, 12, and 10-bit)
Configurable high-speed and high-accuracy conversion methods
Configure scans to include:

Multiple analog channels
Temperature sensor channel
Reference Voltage sensor channel
Self-Diagnostic channel

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)
External scan triggers from the ADTRGn port pins

Configurable scan modes:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously
Synchronous scan mode, where A/D converters operate synchronously

Variable sampling time
Self-calibration
Channel-dedicated sample-and-hold circuits
Supports adding and averaging converted samples
Limiter clip function
User offset adjustment function
User gain adjustment function
Built-in FIFO
Channel-dedicated programable gain amplifier (PGA):

Support single-ended or pseudo-differential input
2.5x to 13.33x gain (1.5x to 5.56x for pseudo-differential inputs)

Optional callback when scan completes, FIFO data is ready, an error occurrs, or other
conditions are triggered.

Configuration
Virtual Channels and Scan Groups

A virtual channel is a group of registers that stores the A/D conversion configuration for a single
analog pin. Each virtual channel has a number of options including the channel for conversion,
settings for conversion, data processing method and so on.

To perform A/D conversion of an analog pin, the channel associated with the pin must first be
assigned to a virtual channel. That virtual channel is then assigned to a scan group, which brings
together one or more virtual channels to be converted in sequence with a specified conversion unit.

Note
Analog channels may be assigned to more than one virtual channel. However, a virtual channel can be assigned to
only one scan group. When performing A/D conversion on one analog channel in different scan groups or when
converting a channel several times within the same scan group, assign several virtual channels to one analog
channel.
To avoid data being overwritten, when converting a channel multiple times within the same scan group use
R_ADC_B_FifoRead() instead of R_ADC_B_Read().

Configuring a Scan

To perform A/D conversion of a scan group the following should be configured:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

Assign the analog channel for conversion to a virtual channel.
Assign the virtual channel to a scan group.
Assign the scan group to an A/D Converter.

Note
Up to 8 virtual channels can be assigned to a scan group. If more than 8 channels are assigned to a group, only the
lowest 8 will be targeted for A/D conversion.

Build Time Configurations for r_adc_b

The following build time configurations are defined in fsp_cfg/r_adc_b_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

bsp If selected, code for
parameter checking is
included in the build.

Note
The instance configurations available in this driver are too numerous to list here. Please refer to the RA
Configuration editor in e² studio for further details.

Clock Configuration

The ADC_B conversion clock source may be configured to use PCLKC, PCLKA, or GPT with a
selectable division ratio. The ADC_B clock may operate between 25 MHz at a minimum and 60 MHz
at a maximum.

Pin Configuration

The ANxxx pins are analog input channels that can be used with the ADC_B.

ADTRG0 and ADTRG1 can be used to start scans with an external trigger. When external triggers are
used, ADC_B scans begin on the falling edge of the ADTRG pin.

Usage Notes
Limitations

Developers should be aware of the following limitations when using R_ADC_B:

Except for Group Priority Operation, if ADC0 or ADC1 are currently performing an A/D
conversion operation, attempting to start another scan group that uses the same A/D
converter will be ignored. This also applies to starting multiple groups at one time. When
Group Priority Operation is not enabled, only the lowest numbered group will be started (for
each ADC converter), other groups will be ignored.

Self-Calibration

Calibration is required to use this peripheral; call R_ADC_B_Calibrate() after R_ADC_B_ScanCfg() and
prior to any other function. Self-Calibration should be performed any time ADC operating
characteristics are modified, including after reset, releasing module-stop, when returning from
software standby or deep software standby mode, each time the ADC ScanCfg function is called, and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

any time ADC related clocks are updated.

Note
Self-calibration is a non-blocking operation. The application should wait for an
ADC_EVENT_CALIBRATION_COMPLETE callback before using other ADC_B functionality.
The self-calibration process will disable hardware triggers that were previously enabled.

ADC_B Operation Modes

The driver supports two primary operational modes, single-scan and continuous-scan. In single scan
mode, one or more groups are scanned once per trigger. In continuous scan mode, one or more
groups are started with a single trigger. Scans continue until R_ADC_B_ScanStop() is called. In each
mode, analog groups and virtual channels are converted in ascending order.

Single Scan Mode

Assign any selected analog input or analog channel to any scan group, and convert the
selected analog input only once per scan group for each start condition.
By selecting the scan start conditions for each scan group individually, A/D conversion for
each scan group can be started at different times.

Continuous Scan Mode

Assign any selected analog input or analog channel to any scan group and repeat A/D
conversion in scan group units after the first start condition. Conversion continues until the
driver is closed.

Background Continuous Scan Mode

Assign any selected analog input or analog channel of the extended analog function to any
scan group and repeat A/D conversion in scan group units after the first start condition. The
A/D conversion is performed in the background until the driver is closed. In Background
Continuous Scan Mode, if the A/D conversion data will be acquired at the point a start
condition is entered.

Note
Background Continuous Scan Mode is only available for Hybrid Mode

Synchronous-Scan Mode

When synchronous operation is enabled all A/D conversions are guaranteed to begin and end based
on a user-configured period. When both conversion units are selected for synchronous scan they run
from the same period, allowing for consistent timing of simultaneous conversions. Consult section
36.3.17 "Synchronous Operation" in the RA6T2 User's Manual (R01UH0951EJ0100) for details.

ADC_B Conversion Methods

Note
The ADC peripheral supports specific high-speed, high-precision, and normal-precision channels. See Table 46.34
"A/D conversion characteristics" in the RA6T2 User's Manual (R01UH0951EJ0100) for details about what
conversion methods are supported by specific physical channels.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

Successive Approximation Register (SAR) Mode

A/D Converter samples the signal source once, and convert by Successive Approximation
Register method.
Fast A/D conversion
Up to 8 channels per 1 scan group.
Support only single-ended input (excludeing Self-diagnosis function)
Requires Digital Filter Selection to be disabled

Oversampling Mode

A/D Converter oversamples the signal source, and converts analog to digital by Noise
Shaping Successive Approximation Register method.
High-accuracy A/D conversion
Support up to 8 channels per 1 scan group
Support single-ended input and differential input
Requires Digital Filter Selection to be enabled

Hybrid Mode

A/D Converter oversamples the signal source, and converts analog to digital by Noise
Shaping Successive Approximation Register method.
Background Continuous Scan Mode operation enables both high-precision A/D conversion
and fast conversion.
Support up to 4 channels per 1 scan group
Support single-ended input and differential input
Requires Digital Filter Selection to be enabled

Digital Filter Selection

The following characteristics of the digital filter for the A/D converter unit may be selected:

Sinc3 Filter (Over Sampling = 8)
Minimum Phase Filter (Group Delay < 5)

Note
The digital filter must be disabled for ADC units configured to use Successive Approximation Register (SAR) Mode
The digital filter must be enabled for ADC units configured to use Oversampling Mode or Hybrid Mode

Sample-and-Hold

Enabling sample-and-hold on one or more channels instructs the ADC to perform sampling on all
channels as soon as a group scan is started. Internal circuitry holds the sampled voltages until the
conversion unit is ready.

Note
Each sample-and-hold unit is connected to two analog channels (0/1, 2/3 etc). When this function is enabled on
both members of a pair only one of the two may be scanned at a time.
Enabling sample-and-hold functionality reduces maximum scan frequency because the sample hold time is added to
each scan. Refer to the hardware manual for details on the sample-and-hold time. Consult section 46.4 "ADC
Characteristics" in the RA6T2 User's Manual (R01UH0951EJ0100) for details.
If you use the channel-dedicated sample-and-hold circuits in Hybrid mode, the virtual channels and the scan
groups are constrained. A dummy channel must be configured as last within the group. The A/D conversion data of
the channel used as the dummy conversion channel is not guaranteed. See Operation in Hybrid Mode with Channel-
dedicated Sample-and-hold Curcuit section in the User Manual for more information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

Self-Diagnosis

ADC_B has a built-in self-diagnosis function that can be used to confirm the unit is working correctly.
One of three self-diagnosis voltages can be converted and compared to reference values. A self-
diagnosis conversion produces a signed data value indicating the ideal A/D converter result.
Reference values for 16-bit data format are shown below.

Self-diagnosis mode Expected reference data Accuracy Error

Self-diagnosis mode 1 0x0000 A/D conversion result becomes
+1 or more when a positive
accuracy error occurs and -1 or
less when a negative accuracy
error occurs.

Self-diagnosis mode 1 0x8000 A/D conversion result becomes
greater than or equal to
reference data when an
accuracy error occurs.

Self-diagnosis mode 1 0x7FFF A/D conversion result becomes
less than or equal to reference
data when an accuracy error
occurs.

Add/Average Funtion

The ADC can be configured to automatically add or average a number of conversions into a single
result. When enabled only the result of the operation is returned.

Note
When the A/D-converted value addition/average function is used, overflow of conversion data may occur. However,
in certain conditions overflow may not be detected. See the A/D Conversion Overflow section below for details.

Data Format

The A/D converter in this peripheral has a resolution of 16 bits. When 14-bit or 12-bit data format is
selected, the lower 2 or 4 bits (respectively) of the A/D conversion result are extended for data
processing, error calibration (Self-Calibration), gain/offset adjustment and the averaging function
before rounding is applied.

Limiter Clip

The limit clipping function allows for setting upper and lower bounds on converted data. When the
A/D conversion data exceeds the specified upper limit value, it is clipped to the upper limit value. If
the A/D conversion data falls below the specified lower limit, it is clipped to the lower limit value.

The upper and lower limits are set in one of eight table entries. To perform limit clip functionality,
each virtual channel may (optionally) have one of these entries assigned. Interrupts may be enabled
for when limiter clip conditions are triggered.

Note
When 14-/12-/10-bit is selected as the data length of the A/D conversion data, the lower bits are cut based on the
data-format selection. When 16-bit format is selected, the data length is not rounded.

Using the Temperature Sensor with the ADC_B

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

The ADC_B HAL module supports reading the data from the on-chip temperature sensor. The value
returned from the sensor can be converted into degrees Celsius or Fahrenheit in the application
program using the following formula:

T = (Vs - V1)/slope + T1

T: Measured temperature (degrees C)
Vs: Voltage output by the temperature sensor at the time of measurement (Volts)
T1: Temperature experimentally measured at one point (degrees C)
V1: Voltage output by the temperature sensor at the time of measurement of T1 (Volts)
slope: Temperature gradient of the temperature sensor (V/degrees C), given as (V2 - V1) /
(T2 - T1)

T2: Temperature at the experimental measurement of another point (degrees C)
V2: Voltage output by the temperature sensor at the time of measurement of T2
(Volts)

Note
The slope value can be obtained from the hardware manual for each device in the Electrical Characteristics
Chapter - TSN Characteristics Table, Temperature slope entry.

User Offset and Gain

The user offset adjustment function adds or subtracts a constant value to or from the A/D conversion
data. Virtual channels select an offset from a table of values specified by the user.

The user gain adjustment function multiplies the A/D conversion data by an arbitrary coefficient
value. As with offset adjustment, virtual channels may select a gain value from a table specified by
the user.

Note
When the offset or gain adjusting functions are used overflow of A/D conversion data may occur. See the A/D
Conversion Overflow section below for details.
When 14-/12-/10-bit is selected as the data length of converted data the lower bits of offset values are cut based on
the data-format selection.

FIFO

The FIFOs consist of 8 stages and can hold up to 8 A/D conversion data. One FIFO is implemented for
each scan group. Each FIFO acts as a ring buffer and data will be lost if the FIFO is not read as
needed. Interrupts may be enabled for a specific data storage threshold and on overrun.

Programmable Gain Amplifier

ADC has built-in Programmable Gain Amplifier (PGA). The PGA amplifies an external analog input
signal and outputs it to A/D converter, Channel-dedicated sample-and-hold circuit, and High-Speed
Analog Comparator (ACMPHS). PGA units are channel specific and utilize two analog input pins per
unit. Please refer to the RA Configuration editor in e² studio or the hardware manual for further
details.

Note
When PGA is used, the analog input pin assigned to PGAVSS pin cannot be input to A/D conversion or Channel-
dedicated sample-and-hold circuit.

Single-ended input

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

In single-ended input mode, PGA amplifies the input from PGAIN pin with the specified gain, between
×2.000 to ×13.333. When operating the PGA in single-ended input mode, PGAIN should be
connected to the signal source and PGAVSS should be connected to the analog ground (AVSS0). The
input voltage to PGAIN must not exceed the range specified in the Electrical Characteristics.

Pseudo-differential input

In pseudo differential input mode, PGA amplifies the difference between PGAIN pin and PGAVSS pin
with the specified gain and output the voltage obtained by adding the offset of 0.5 * AVcc. Settable
gains are ×1.500, ×2.333, ×4.000, and ×5.667.

When operating the PGA in Pseudo Differential Input Mode, PGAIN should be connected to the signal
source, and PGAVSS should be connected to the reference ground of the signal source. The inputs to
PGAIN and PGAVSS pins must not exceed the range specified in the Electrical Characteristics.

When Interrupts Are Not Enabled

Interrupts are enabled by default. If scan-complete interrupts are disabled,@ ref
R_ADC_B_StatusGet() can be used to poll the ADC_B driver to determine when the scan has
completed. R_ADC_B_Read() is used to access the converted ADC_B result.

A/D Conversion Overflow

A/D conversion overflow is detected when converted data exceeds the range that can be handled in
the specified data format. When overflow occurs, data is restricted to the upper or lower limit value
of the specified data format. Overflow is detected in the following cases:

When the input to the A/D converter exceeds VREFH0 or falls below VREFL0
When overflow occurs by the internal processing (calculation) for the A/D conversion data
due to the following: – Gain Error and Offset Error Calibration – User Gain/Offset adjustment
function – When using A/D-Converted Value Addition/Averaging Function – Data Formatting
Process

Examples
Basic Example

This is a basic example of minimal use of the ADC_B in an application.

/* A channel configuration is generated by the RA Configuration editor based on the

options selected. If additional

 * configurations are desired additional adc_channel_cfg_t elements can be defined

and passed to R_ADC_B_ScanCfg. */

extern const adc_b_scan_cfg_t g_adc_b0_scan_cfg;

void adc_b_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

 err = R_ADC_B_Open(&g_adc_b0_ctrl, &g_adc_b0_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable channels. */

 err = R_ADC_B_ScanCfg(&g_adc_b0_ctrl, &g_adc_b0_scan_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ADC_B_Calibrate(&g_adc_b0_ctrl, NULL);

 assert(FSP_SUCCESS == err);

 /* Wait for calibration to complete */

 adc_status_t status = {.state = ADC_STATE_CALIBRATION_IN_PROGRESS};

 while ((ADC_STATE_IDLE != status.state) &&

 (FSP_SUCCESS == err))

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 err = R_ADC_B_StatusGet(&g_adc_b0_ctrl, &status);

 }

 assert(FSP_SUCCESS == err);

 /* Start one or more scan groups by calling R_ADC_B_ScanGroupStart(). Alternatively,

all scan groups may be started

 * by calling R_ADC_B_ScanCfg(). */

 (void) R_ADC_B_ScanGroupStart(&g_adc_b0_ctrl, ADC_GROUP_MASK_0);

 /* Wait for conversion to complete. */

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_IDLE != status.state)

 {

 (void) R_ADC_B_StatusGet(&g_adc_b0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t channel_0_conversion_result;

 err = R_ADC_B_Read(&g_adc_b0_ctrl, ADC_CHANNEL_0, &channel_0_conversion_result);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct adc_b_fifo_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

struct adc_b_fifo_read_t

struct adc_b_group_cfg_t

struct adc_b_scan_cfg_t

struct adc_b_isr_cfg_t

struct adc_b_extended_cfg_t

struct adc_b_instance_ctrl_t

Enumerations

enum adc_b_clock_source_t

enum adc_b_clock_divider_t

enum adc_b_converter_mode_t

enum adc_b_conversion_method_t

enum adc_b_data_format_t

enum adc_b_virtual_channel_t

enum adc_b_channel_mask_t

enum adc_b_limit_clip_table_id_t

enum adc_b_unit_id_t

enum adc_b_unit_mask_t

enum adc_b_add_avg_mode_t

enum adc_b_add_avg_count_t

enum adc_b_gpt_trigger_t

enum adc_b_external_trigger_t

enum adc_b_self_diagnosis_mode_t

enum adc_b_sample_and_hold_mask_t

enum adc_b_pga_gain_t

enum adc_b_digital_filter_selection_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

enum adc_b_sampling_state_table_id_t

enum adc_b_user_gain_table_id_t

enum adc_b_user_offset_table_selection_id_t

Data Structure Documentation

◆ adc_b_fifo_data_t

struct adc_b_fifo_data_t

ADC FIFO data type

Data Fields

uint32_t data: 16 Conversion Data.

uint32_t __pad0__: 8

adc_channel_t physical_channel: 7 Channel number for data.

uint32_t err: 1 Error bit.

◆ adc_b_fifo_read_t

struct adc_b_fifo_read_t

ADC FIFO Read data structure

Data Fields

uint8_t count Number of valid FIFO data read.

adc_b_fifo_data_t fifo_data[8] FIFO data.

◆ adc_b_group_cfg_t

struct adc_b_group_cfg_t

ADC Group configuration data

Data Fields

adc_group_id_t scan_group_id Scan Group ID.

adc_b_unit_id_t converter_selection Converter selection.

bool scan_group_enable Scan Group enable state.

uint8_t virtual_channel_count Virtual Channel count.

bool scan_end_interrupt_enable Scan End Interrupt enable.

adc_b_external_trigger_t external_trigger_enable_mask External Trigger mask.

elc_peripheral_t elc_trigger_enable_mask ELC Trigger mask.

adc_b_gpt_trigger_t gpt_trigger_enable_mask GPT Trigger mask.

uint8_t conversion_start_delay Conversion start delay.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

uint32_t self_diagnosis_mask Self-Diagnosis register data.

bool limit_clip_interrupt_enable Limiter Clip interrupt enable.

adc_b_virtual_channel_cfg_t ** p_virtual_channels Pointer to virtual channel
configuration array of size
virtual_channel_count.

◆ adc_b_scan_cfg_t

struct adc_b_scan_cfg_t

ADC Scan Group configuraiton

Data Fields

uint8_t group_count Group Count.

adc_b_group_cfg_t ** p_adc_groups Pointer to ADC group
configuration data.

◆ adc_b_isr_cfg_t

struct adc_b_isr_cfg_t

ADC ISR configuration structure

Data Fields

uint8_t calibration_end_ipl_adc_0 Calibration end IPL for A/D
converter unit 0.

uint8_t calibration_end_ipl_adc_1 Calibration end IPL for A/D
converter unit 1.

uint8_t conversion_error_ipl_adc_0 Conversion error IPL for A/D
converter unit 0.

uint8_t conversion_error_ipl_adc_1 Conversion error IPL for A/D
converter unit 1.

uint8_t fifo_overflow_ipl FIFO Overflow IPL.

uint8_t fifo_read_ipl_group_0 FIFO Read threshold request IPL
for Group 0.

uint8_t fifo_read_ipl_group_1 FIFO Read threshold request IPL
for Group 1.

uint8_t fifo_read_ipl_group_2 FIFO Read threshold request IPL
for Group 2.

uint8_t fifo_read_ipl_group_3 FIFO Read threshold request IPL
for Group 3.

uint8_t fifo_read_ipl_group_4 FIFO Read threshold request IPL
for Group 4.

uint8_t fifo_read_ipl_group_5678 FIFO Read threshold request IPL
for Groups 5, 6, 7, and 8.

uint8_t limit_clip_ipl Limiter Clip IPL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

uint8_t overflow_error_ipl_adc_0 Overflow error IPL for A/D
converter unit 0.

uint8_t overflow_error_ipl_adc_1 Overflow error IPL for A/D
converter unit 1.

uint8_t scan_end_ipl_group_0 Scan End IPL for A/D Group 0.

uint8_t scan_end_ipl_group_1 Scan End IPL for A/D Group 1.

uint8_t scan_end_ipl_group_2 Scan End IPL for A/D Group 2.

uint8_t scan_end_ipl_group_3 Scan End IPL for A/D Group 3.

uint8_t scan_end_ipl_group_4 Scan End IPL for A/D Group 4.

uint8_t scan_end_ipl_group_5678 Scan End IRQ for A/D Groups 5,
6, 7, and 8.

IRQn_Type calibration_end_irq_adc_0 Calibration end IRQ for A/D
converter unit 0.

IRQn_Type calibration_end_irq_adc_1 Calibration end IRQ for A/D
converter unit 1.

IRQn_Type conversion_error_irq_adc_0 Conversion error IRQ for A/D
converter unit 0.

IRQn_Type conversion_error_irq_adc_1 Conversion error IRQ for A/D
converter unit 1.

IRQn_Type fifo_overflow_irq FIFO Overflow IRQ.

IRQn_Type fifo_read_irq_group_0 FIFO Read threshold request
IRQ for Group 0.

IRQn_Type fifo_read_irq_group_1 FIFO Read threshold request
IRQ for Group 1.

IRQn_Type fifo_read_irq_group_2 FIFO Read threshold request
IRQ for Group 2.

IRQn_Type fifo_read_irq_group_3 FIFO Read threshold request
IRQ for Group 3.

IRQn_Type fifo_read_irq_group_4 FIFO Read threshold request
IRQ for Group 4.

IRQn_Type fifo_read_irq_group_5678 FIFO Read threshold request
IRQ for Groups 5, 6, 7, and 8.

IRQn_Type limit_clip_irq Limiter Clip IRQ.

IRQn_Type overflow_error_irq_adc_0 Overflow error IRQ for A/D
converter unit 0.

IRQn_Type overflow_error_irq_adc_1 Overflow error IRQ for A/D
converter unit 1.

IRQn_Type scan_end_irq_group_0 Scan End IRQ for A/D Group 0.

IRQn_Type scan_end_irq_group_1 Scan End IRQ for A/D Group 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

IRQn_Type scan_end_irq_group_2 Scan End IRQ for A/D Group 2.

IRQn_Type scan_end_irq_group_3 Scan End IRQ for A/D Group 3.

IRQn_Type scan_end_irq_group_4 Scan End IRQ for A/D Group 4.

IRQn_Type scan_end_irq_group_5678 Scan End IRQ for A/D Groups 5,
6, 7, and 8.

◆ adc_b_extended_cfg_t

struct adc_b_extended_cfg_t

ADC extended configuration data

Data Fields

adc_b_pga_gain_t pga_gain[4] PGA Gain selection.

union adc_b_extended_cfg_t __unnamed__

union adc_b_extended_cfg_t adc_filter_selection[2]

union adc_b_extended_cfg_t __unnamed__

union adc_b_extended_cfg_t __unnamed__

union adc_b_extended_cfg_t __unnamed__

uint32_t scan_group_enable Scan Group enable register
data.

union adc_b_extended_cfg_t __unnamed__

union adc_b_extended_cfg_t __unnamed__

uint16_t fifo_interrupt_enable_mask FIFO interrupt enable register
data.

union adc_b_extended_cfg_t __unnamed__

union adc_b_extended_cfg_t __unnamed__

uint32_t calibration_adc_state Calibration State register data.

uint32_t calibration_sample_and_hold Calibration Sample and Hold
register data.

const adc_b_isr_cfg_t * p_isr_cfg Pointer to ISR configuration.

union adc_b_extended_cfg_t __unnamed__

uint8_t sample_and_hold_enable_mask Sample and Hold enable
register data.

uint32_t sample_and_hold_config_012 Sample and Hold configuration
register data.

uint32_t sample_and_hold_config_456 Sample and Hold configuration
register data.

uint32_t conversion_state ADC 0/1 Successive
Approximation Time
Configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

int32_t user_offset_tables[8] User Offset Table register data.

uint32_t user_gain_tables[8] User Gain Table register data.

uint32_t limiter_clip_interrupt_enable_m
ask

Limiter clip interrupt enable
register data.

uint32_t limiter_clip_tables[8] Limiter clip Table register data.

◆ adc_b_instance_ctrl_t

struct adc_b_instance_ctrl_t

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Data Fields

adc_b_converter_state_t adc_state

 ADC 0 converter State.

uint32_t cached_adtrgenr

 Cached conversion peripheral trigger bits, used when starting and
stopping scans.

uint32_t cached_adsystr

 Cached conversion software start bits, used when starting and
stopping scans.

uint32_t trigger_disable_wait_cycles

 ADC clock cycles required to wait after disabling trigger input.

adc_cfg_t const * p_cfg

 Boolean to verify that the Unit has been initialized.

void(* p_callback)(adc_callback_args_t *)

 Pointer to callback that is called when an adc_b_event_t occurs.

adc_callback_args_t * p_callback_memory

 Pointer to non-secure memory that can be used to pass arguments

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 501 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

to a callback in non-secure memory.

void const * p_context

 User defined context passed into callback function.

uint32_t initialized

 Initialized status of ADC_B.

uint32_t opened

 Open status of ADC_B.

Enumeration Type Documentation

◆ adc_b_clock_source_t

enum adc_b_clock_source_t

ADC Clock source selection

Enumerator

ADC_B_CLOCK_SOURCE_PCLKC ADC Clock Source PCLKC.

ADC_B_CLOCK_SOURCE_GPT ADC Clock Source GPT.

ADC_B_CLOCK_SOURCE_PCLKA ADC Clock Source PCLKA.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_clock_divider_t

enum adc_b_clock_divider_t

ADC clock divider selection

Enumerator

ADC_B_CLOCK_DIV_1 ADC Clock Division 1/1.

ADC_B_CLOCK_DIV_2 ADC Clock Division 1/2.

ADC_B_CLOCK_DIV_3 ADC Clock Division 1/3.

ADC_B_CLOCK_DIV_4 ADC Clock Division 1/4.

ADC_B_CLOCK_DIV_5 ADC Clock Division 1/5.

ADC_B_CLOCK_DIV_6 ADC Clock Division 1/6.

ADC_B_CLOCK_DIV_7 ADC Clock Division 1/7.

ADC_B_CLOCK_DIV_8 ADC Clock Division 1/8.

◆ adc_b_converter_mode_t

enum adc_b_converter_mode_t

ADC_B Conversion Mode

Enumerator

ADC_B_CONVERTER_MODE_SINGLE_SCAN Single scan mode.

ADC_B_CONVERTER_MODE_CONTINUOUS_SCAN Continuous scan mode.

ADC_B_CONVERTER_MODE_BACKGROUND_SCAN

Background continuous scan mode (Valid for
Hybrid mode only)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_conversion_method_t

enum adc_b_conversion_method_t

ADC_B Conversion Method

Enumerator

ADC_B_CONVERSION_METHOD_SAR SAR conversion method.

ADC_B_CONVERSION_METHOD_OVERSAMPLE Oversampling conversion method.

ADC_B_CONVERSION_METHOD_HYBRID Hybrid conversion method.

◆ adc_b_data_format_t

enum adc_b_data_format_t

ADC_B data data format definitions

Enumerator

ADC_B_DATA_FORMAT_16_BIT 16 bit adc_b data format

ADC_B_DATA_FORMAT_14_BIT 14 bit adc_b data format

ADC_B_DATA_FORMAT_12_BIT 12 bit adc_b data format

ADC_B_DATA_FORMAT_10_BIT 10 bit adc_b data format

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 504 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_virtual_channel_t

enum adc_b_virtual_channel_t

ADC channels

Enumerator

ADC_B_VIRTUAL_CHANNEL_0 ADC B virtual channel 0.

ADC_B_VIRTUAL_CHANNEL_1 ADC B virtual channel 1.

ADC_B_VIRTUAL_CHANNEL_2 ADC B virtual channel 2.

ADC_B_VIRTUAL_CHANNEL_3 ADC B virtual channel 3.

ADC_B_VIRTUAL_CHANNEL_4 ADC B virtual channel 4.

ADC_B_VIRTUAL_CHANNEL_5 ADC B virtual channel 5.

ADC_B_VIRTUAL_CHANNEL_6 ADC B virtual channel 6.

ADC_B_VIRTUAL_CHANNEL_7 ADC B virtual channel 7.

ADC_B_VIRTUAL_CHANNEL_8 ADC B virtual channel 8.

ADC_B_VIRTUAL_CHANNEL_9 ADC B virtual channel 9.

ADC_B_VIRTUAL_CHANNEL_10 ADC B virtual channel 10.

ADC_B_VIRTUAL_CHANNEL_11 ADC B virtual channel 11.

ADC_B_VIRTUAL_CHANNEL_12 ADC B virtual channel 12.

ADC_B_VIRTUAL_CHANNEL_13 ADC B virtual channel 13.

ADC_B_VIRTUAL_CHANNEL_14 ADC B virtual channel 14.

ADC_B_VIRTUAL_CHANNEL_15 ADC B virtual channel 15.

ADC_B_VIRTUAL_CHANNEL_16 ADC B virtual channel 16.

ADC_B_VIRTUAL_CHANNEL_17 ADC B virtual channel 17.

ADC_B_VIRTUAL_CHANNEL_18 ADC B virtual channel 18.

ADC_B_VIRTUAL_CHANNEL_19 ADC B virtual channel 19.

ADC_B_VIRTUAL_CHANNEL_20 ADC B virtual channel 20.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

ADC_B_VIRTUAL_CHANNEL_21 ADC B virtual channel 21.

ADC_B_VIRTUAL_CHANNEL_22 ADC B virtual channel 22.

ADC_B_VIRTUAL_CHANNEL_23 ADC B virtual channel 23.

ADC_B_VIRTUAL_CHANNEL_24 ADC B virtual channel 24.

ADC_B_VIRTUAL_CHANNEL_25 ADC B virtual channel 25.

ADC_B_VIRTUAL_CHANNEL_26 ADC B virtual channel 26.

ADC_B_VIRTUAL_CHANNEL_27 ADC B virtual channel 27.

ADC_B_VIRTUAL_CHANNEL_28 ADC B virtual channel 28.

ADC_B_VIRTUAL_CHANNEL_29 ADC B virtual channel 29.

ADC_B_VIRTUAL_CHANNEL_30 ADC B virtual channel 30.

ADC_B_VIRTUAL_CHANNEL_31 ADC B virtual channel 31.

ADC_B_VIRTUAL_CHANNEL_32 ADC B virtual channel 32.

ADC_B_VIRTUAL_CHANNEL_33 ADC B virtual channel 33.

ADC_B_VIRTUAL_CHANNEL_34 ADC B virtual channel 34.

ADC_B_VIRTUAL_CHANNEL_35 ADC B virtual channel 35.

ADC_B_VIRTUAL_CHANNEL_36 ADC B virtual channel 36.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_channel_mask_t

enum adc_b_channel_mask_t

ADC channel mask

Enumerator

ADC_B_CHANNEL_MASK_0 Channel 0.

ADC_B_CHANNEL_MASK_1 Channel 1.

ADC_B_CHANNEL_MASK_2 Channel 2.

ADC_B_CHANNEL_MASK_3 Channel 3.

ADC_B_CHANNEL_MASK_4 Channel 4.

ADC_B_CHANNEL_MASK_5 Channel 5.

ADC_B_CHANNEL_MASK_6 Channel 6.

ADC_B_CHANNEL_MASK_7 Channel 7.

ADC_B_CHANNEL_MASK_8 Channel 8.

ADC_B_CHANNEL_MASK_9 Channel 9.

ADC_B_CHANNEL_MASK_10 Channel 10.

ADC_B_CHANNEL_MASK_11 Channel 11.

ADC_B_CHANNEL_MASK_12 Channel 12.

ADC_B_CHANNEL_MASK_13 Channel 13.

ADC_B_CHANNEL_MASK_14 Channel 14.

ADC_B_CHANNEL_MASK_15 Channel 15.

ADC_B_CHANNEL_MASK_16 Channel 16.

ADC_B_CHANNEL_MASK_17 Channel 17.

ADC_B_CHANNEL_MASK_18 Channel 18.

ADC_B_CHANNEL_MASK_19 Channel 19.

ADC_B_CHANNEL_MASK_20 Channel 20.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

ADC_B_CHANNEL_MASK_21 Channel 21.

ADC_B_CHANNEL_MASK_22 Channel 22.

ADC_B_CHANNEL_MASK_23 Channel 23.

ADC_B_CHANNEL_MASK_24 Channel 24.

ADC_B_CHANNEL_MASK_25 Channel 25.

ADC_B_CHANNEL_MASK_26 Channel 26.

ADC_B_CHANNEL_MASK_27 Channel 27.

ADC_B_CHANNEL_MASK_28 Channel 28.

ADC_B_CHANNEL_MASK_DIAGNOSIS Self-Diagnosis Channel.

ADC_B_CHANNEL_MASK_TEMPERATURE Temperature sensor channel.

ADC_B_CHANNEL_MASK_VOLT Voltage Reference channel.

ADC_B_CHANNEL_MASK_DAC0 DAC 0 Channel.

ADC_B_CHANNEL_MASK_DAC1 DAC 1 Channel.

ADC_B_CHANNEL_MASK_DAC2 DAC 2 Channel.

ADC_B_CHANNEL_MASK_DAC3 DAC 3 Channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_limit_clip_table_id_t

enum adc_b_limit_clip_table_id_t

ADC limiter clipping table id selection options

Enumerator

ADC_B_LIMIT_CLIP_TABLE_SELECTION_NONE Limiter Clip Disabled.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_0 Limiter Clip Table 0.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_1 Limiter Clip Table 1.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_2 Limiter Clip Table 2.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_3 Limiter Clip Table 3.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_4 Limiter Clip Table 4.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_5 Limiter Clip Table 5.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_6 Limiter Clip Table 6.

ADC_B_LIMIT_CLIP_TABLE_SELECTION_7 Limiter Clip Table 7.

◆ adc_b_unit_id_t

enum adc_b_unit_id_t

ADC unit selection options

Enumerator

ADC_B_UNIT_ID_0 ADC Unit ID 0.

ADC_B_UNIT_ID_1 ADC Unit ID 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_unit_mask_t

enum adc_b_unit_mask_t

ADC unit selection options

Enumerator

ADC_B_UNIT_MASK_0 ADC Unit Mask 0.

ADC_B_UNIT_MASK_1 ADC Unit Mask 1.

ADC_B_UNIT_MASK_UNDEFINED ADC Unit Mask Unknown.

◆ adc_b_add_avg_mode_t

enum adc_b_add_avg_mode_t

ADC data sample addition and averaging options

Enumerator

ADC_B_ADD_AVERAGE_OFF Add/Average turned off for channels/sensors.

ADC_B_ADD_AVERAGE_ADDITION_ENABLE Addition Mode Enabled.

ADC_B_ADD_AVERAGE_AVERAGE_ENABLE Average Mode Enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_add_avg_count_t

enum adc_b_add_avg_count_t

ADC data sample addition and averaging options

Enumerator

ADC_B_ADD_AVERAGE_1 Addition turned off for channels/sensors.

ADC_B_ADD_AVERAGE_2 Add/Average 2 samples.

ADC_B_ADD_AVERAGE_4 Add/Average 4 samples.

ADC_B_ADD_AVERAGE_8 Add/Average 8 samples.

ADC_B_ADD_AVERAGE_16 Add/Average 16 samples.

ADC_B_ADD_AVERAGE_32 Add/Average 32 samples.

ADC_B_ADD_AVERAGE_64 Add/Average 64 samples.

ADC_B_ADD_AVERAGE_128 Add/Average 128 samples.

ADC_B_ADD_AVERAGE_256 Add/Average 256 samples.

ADC_B_ADD_AVERAGE_512 Add/Average 512 samples.

ADC_B_ADD_AVERAGE_1024 Add/Average 1024 samples.

◆ adc_b_gpt_trigger_t

enum adc_b_gpt_trigger_t

ADC GPT Trigger options

Enumerator

ADC_B_GPT_TRIGGER_NONE GPT Trigger Disabled.

ADC_B_GPT_TRIGGER_A0 GPT Trigger A0.

ADC_B_GPT_TRIGGER_A1 GPT Trigger A1.

ADC_B_GPT_TRIGGER_A2 GPT Trigger A2.

ADC_B_GPT_TRIGGER_A3 GPT Trigger A3.

ADC_B_GPT_TRIGGER_A4 GPT Trigger A4.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

ADC_B_GPT_TRIGGER_A5 GPT Trigger A5.

ADC_B_GPT_TRIGGER_A6 GPT Trigger A6.

ADC_B_GPT_TRIGGER_A7 GPT Trigger A7.

ADC_B_GPT_TRIGGER_A8 GPT Trigger A8.

ADC_B_GPT_TRIGGER_A9 GPT Trigger A9.

ADC_B_GPT_TRIGGER_B0 GPT Trigger B0.

ADC_B_GPT_TRIGGER_B1 GPT Trigger B1.

ADC_B_GPT_TRIGGER_B2 GPT Trigger B2.

ADC_B_GPT_TRIGGER_B3 GPT Trigger B3.

ADC_B_GPT_TRIGGER_B4 GPT Trigger B4.

ADC_B_GPT_TRIGGER_B5 GPT Trigger B5.

ADC_B_GPT_TRIGGER_B6 GPT Trigger B6.

ADC_B_GPT_TRIGGER_B7 GPT Trigger B7.

ADC_B_GPT_TRIGGER_B8 GPT Trigger B8.

ADC_B_GPT_TRIGGER_B9 GPT Trigger B9.

◆ adc_b_external_trigger_t

enum adc_b_external_trigger_t

ADC External Trigger options

Enumerator

ADC_B_EXTERNAL_TRIGGER_NONE External Trigger Disabled.

ADC_B_EXTERNAL_TRIGGER_ADTRG0 External Trigger ADTRG0 Selection.

ADC_B_EXTERNAL_TRIGGER_ADTRG1 External Trigger ADTRG1 Selection.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_self_diagnosis_mode_t

enum adc_b_self_diagnosis_mode_t

ADC Self-Diagnosis mode options

Enumerator

ADC_B_SELF_DIAGNOSIS_DISABLED Self-Diagnosis Disabled.

ADC_B_SELF_DIAGNOSIS_MODE_1 Self-Diagnosis Mode 1.

ADC_B_SELF_DIAGNOSIS_MODE_2 Self-Diagnosis Mode 2.

ADC_B_SELF_DIAGNOSIS_MODE_3 Self-Diagnosis Mode 3.

◆ adc_b_sample_and_hold_mask_t

enum adc_b_sample_and_hold_mask_t

ADC Sample-and-Hold unit enable mask

Enumerator

ADC_B_SAMPLE_AND_HOLD_MASK_NONE Sample-and-Hold Disabled.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_0 Sample-and-Hold Unit 0.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_1 Sample-and-Hold Unit 1.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_2 Sample-and-Hold Unit 2.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_4 Sample-and-Hold Unit 3.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_5 Sample-and-Hold Unit 4.

ADC_B_SAMPLE_AND_HOLD_MASK_UNIT_6 Sample-and-Hold Unit 5.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_pga_gain_t

enum adc_b_pga_gain_t

ADC PGA Gain

Enumerator

ADC_B_PGA_GAIN_DISABLED PGA Gain Disabled.

ADC_B_PGA_GAIN_DIFFERENTIAL_1_500 PGA Gain Setting 1.500.

ADC_B_PGA_GAIN_DIFFERENTIAL_2_333 PGA Gain Setting 2.333.

ADC_B_PGA_GAIN_DIFFERENTIAL_4_000 PGA Gain Setting 4.000.

ADC_B_PGA_GAIN_DIFFERENTIAL_5_667 PGA Gain Setting 5.667.

ADC_B_PGA_GAIN_SINGLE_ENDED_2_500 PGA Gain Setting 2.500.

ADC_B_PGA_GAIN_SINGLE_ENDED_2_667 PGA Gain Setting 2.667.

ADC_B_PGA_GAIN_SINGLE_ENDED_2_857 PGA Gain Setting 2.857.

ADC_B_PGA_GAIN_SINGLE_ENDED_3_077 PGA Gain Setting 3.077.

ADC_B_PGA_GAIN_SINGLE_ENDED_3_333 PGA Gain Setting 3.333.

ADC_B_PGA_GAIN_SINGLE_ENDED_3_636 PGA Gain Setting 3.636.

ADC_B_PGA_GAIN_SINGLE_ENDED_4_000 PGA Gain Setting 4.000.

ADC_B_PGA_GAIN_SINGLE_ENDED_4_444 PGA Gain Setting 4.444.

ADC_B_PGA_GAIN_SINGLE_ENDED_5_000 PGA Gain Setting 5.000.

ADC_B_PGA_GAIN_SINGLE_ENDED_5_714 PGA Gain Setting 5.714.

ADC_B_PGA_GAIN_SINGLE_ENDED_6_667 PGA Gain Setting 6.667.

ADC_B_PGA_GAIN_SINGLE_ENDED_8_000 PGA Gain Setting 8.000.

ADC_B_PGA_GAIN_SINGLE_ENDED_10_000 PGA Gain Setting 10.000.

ADC_B_PGA_GAIN_SINGLE_ENDED_13_333 PGA Gain Setting 13.333.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_digital_filter_selection_t

enum adc_b_digital_filter_selection_t

ADC Digital Filter Selection

Enumerator

ADC_B_DIGITAL_FILTER_MODE_SINC3 Digital filter Sinc3 filter (Oversampling Rate =
8)

ADC_B_DIGITAL_FILTER_MODE_PHASE Digital filter Minimum phase filter (Group delay
< 2)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_sampling_state_table_id_t

enum adc_b_sampling_state_table_id_t

ADC Sampling State table selection options

Enumerator

ADC_B_SAMPLING_STATE_TABLE_0 Sampling State Table 0.

ADC_B_SAMPLING_STATE_TABLE_1 Sampling State Table 1.

ADC_B_SAMPLING_STATE_TABLE_2 Sampling State Table 2.

ADC_B_SAMPLING_STATE_TABLE_3 Sampling State Table 3.

ADC_B_SAMPLING_STATE_TABLE_4 Sampling State Table 4.

ADC_B_SAMPLING_STATE_TABLE_5 Sampling State Table 5.

ADC_B_SAMPLING_STATE_TABLE_6 Sampling State Table 6.

ADC_B_SAMPLING_STATE_TABLE_7 Sampling State Table 7.

ADC_B_SAMPLING_STATE_TABLE_8 Sampling State Table 8.

ADC_B_SAMPLING_STATE_TABLE_9 Sampling State Table 9.

ADC_B_SAMPLING_STATE_TABLE_10 Sampling State Table 10.

ADC_B_SAMPLING_STATE_TABLE_11 Sampling State Table 12.

ADC_B_SAMPLING_STATE_TABLE_12 Sampling State Table 13.

ADC_B_SAMPLING_STATE_TABLE_13 Sampling State Table 14.

ADC_B_SAMPLING_STATE_TABLE_14 Sampling State Table 15.

ADC_B_SAMPLING_STATE_TABLE_15 Sampling State Table 16.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_user_gain_table_id_t

enum adc_b_user_gain_table_id_t

ADC User Gain table options

Enumerator

ADC_B_USER_GAIN_TABLE_SELECTION_DISABLE
D

User Gain disabled.

ADC_B_USER_GAIN_TABLE_SELECTION_0 User Gain table 0.

ADC_B_USER_GAIN_TABLE_SELECTION_1 User Gain table 1.

ADC_B_USER_GAIN_TABLE_SELECTION_2 User Gain table 2.

ADC_B_USER_GAIN_TABLE_SELECTION_3 User Gain table 3.

ADC_B_USER_GAIN_TABLE_SELECTION_4 User Gain table 4.

ADC_B_USER_GAIN_TABLE_SELECTION_5 User Gain table 5.

ADC_B_USER_GAIN_TABLE_SELECTION_6 User Gain table 6.

ADC_B_USER_GAIN_TABLE_SELECTION_7 User Gain table 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ adc_b_user_offset_table_selection_id_t

enum adc_b_user_offset_table_selection_id_t

ADC User Offset table options

Enumerator

ADC_B_USER_OFFSET_TABLE_SELECTION_DISAB
LED

User Offset disabled.

ADC_B_USER_OFFSET_TABLE_SELECTION_0 User Offset table 0.

ADC_B_USER_OFFSET_TABLE_SELECTION_1 User Offset table 1.

ADC_B_USER_OFFSET_TABLE_SELECTION_2 User Offset table 2.

ADC_B_USER_OFFSET_TABLE_SELECTION_3 User Offset table 3.

ADC_B_USER_OFFSET_TABLE_SELECTION_4 User Offset table 4.

ADC_B_USER_OFFSET_TABLE_SELECTION_5 User Offset table 5.

ADC_B_USER_OFFSET_TABLE_SELECTION_6 User Offset table 6.

ADC_B_USER_OFFSET_TABLE_SELECTION_7 User Offset table 7.

Function Documentation

◆ R_ADC_B_Open()

fsp_err_t R_ADC_B_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Sets the operational mode, trigger sources, interrupt priority, and configurations for the peripheral
as a whole. If provided, the function registers a callback function pointer for notifying the user
whenever a scan has completed, error has occurred, FIFO read request is generated, or other ADC
interrupt event occurrs. Implements adc_api_t::open.

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_ScanCfg()

fsp_err_t R_ADC_B_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_scan_cfg)

Configures the ADC_B scan parameters. Channel specific settings are set in this function. Pass a
pointer to adc_b_scan_cfg_t to p_channel_cfg. Implements adc_api_t::scanCfg.

Note
This starts group B scans if adc_b_scan_cfg_t::priority_group_a is set to
ADC_B_GROUP_A_GROUP_B_CONTINUOUS_SCAN.

Return values
FSP_SUCCESS Channel specific settings applied.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_INVALID_STATE Invalid Scan Configuration.

FSP_ERR_INVALID_CHANNEL Invalid configured channel for group
converter id.

◆ R_ADC_B_CallbackSet()

fsp_err_t R_ADC_B_CallbackSet (adc_ctrl_t *const p_api_ctrl, void(*)(adc_callback_args_t *)
p_callback, void const *const p_context, adc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
adc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_ScanStart()

fsp_err_t R_ADC_B_ScanStart (adc_ctrl_t * p_ctrl)

Enables the hardware trigger for a scan depending on how the triggers were configured in the
R_ADC_B_ScanCfg call. If the unit was configured for ELC, GPT, or external hardware triggering,
then this function allows the trigger signal to get to the ADC unit. The function is not able to control
the generation of the trigger itself. If the unit was configured for software triggering, This function
was added to this ADC version for compatability with r_adc driver. For additional flexibility, it is
recommended to use R_ADC_B_ScanGroupStart.

Precondition
Call R_ADC_B_ScanCfg after R_ADC_B_Open before starting a scan.
Call R_ADC_B_Calibrate and wait for calibration to complete before starting a scan.

Return values
FSP_SUCCESS Scan started (software trigger) or hardware

triggers enabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_INVALID_ARGUMENT No hardware triggers configured for groups.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

FSP_ERR_INVALID_STATE Calibration required.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 520 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_ScanGroupStart()

fsp_err_t R_ADC_B_ScanGroupStart (adc_ctrl_t * p_ctrl, adc_group_mask_t group_mask)

Starts a software scan or enables the hardware trigger for a scan depending on how triggers were
configured. If the group was configured for ELC, GPT, or external hardware triggering then this
function allows the trigger signal to get to the ADC unit. The function itself is not able to control the
generation of peripheral triggers. If the unit was configured for software triggering, then this
function starts the software triggered scan.

Note
Except for Group Priority Operation, if ADC0 or ADC1 are currently performing an A/D conversion operation,
attempting to start another scan group that uses the same A/D converter will be ignored. This also applies to
starting multiple groups at one time. When Group Priority Operation is not enabled, only the lowest numbered
group will be started (for each ADC converter), other groups will be ignored.

Precondition
Call R_ADC_B_ScanCfg after R_ADC_B_Open before starting a scan.
Call R_ADC_B_Calibrate and wait for calibration to complete before starting a scan.

Return values
FSP_SUCCESS Scan started (software trigger) or hardware

triggers enabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_INVALID_ARGUMENT An invalid group has been provided.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

FSP_ERR_INVALID_STATE Calibration required.

◆ R_ADC_B_ScanStop()

fsp_err_t R_ADC_B_ScanStop (adc_ctrl_t * p_ctrl)

Disables the hardware trigger for a scan and immediately stops all active converters. This function
will abortall active conversions.

Return values
FSP_SUCCESS All scans stopped.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_INVALID_ARGUMENT No hardware triggers configured for groups.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_StatusGet()

fsp_err_t R_ADC_B_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Provides the status of any scan process that was started, including scans started by ELC or external
triggers and calibration scans on MCUs that support calibration.

Return values
FSP_SUCCESS Module status stored in the provided pointer

p_status

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_B_Read()

fsp_err_t R_ADC_B_Read (adc_ctrl_t * p_ctrl, adc_channel_t const channel_id, uint16_t *const
p_data)

Reads conversion results from a single channel or sensor.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_INVALID_DATA Accuracy of data cannot be guaranteed.
ADC requires calibration or SAR timing
settings are irregular.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

FSP_ERR_INVALID_CHANNEL Invalid channel provided.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_Read32()

fsp_err_t R_ADC_B_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const channel_id, uint32_t *const
p_data)

Reads conversion results from a single channel or sensor register into a 32-bit result.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_INVALID_DATA Accuracy of data cannot be guaranteed.
ADC requires calibration or SAR timing
settings are irregular.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

FSP_ERR_INVALID_CHANNEL Invalid channel provided.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

adc_api_t::read

◆ R_ADC_B_FifoRead()

fsp_err_t R_ADC_B_FifoRead (adc_ctrl_t * p_ctrl, adc_group_mask_t const group_mask,
adc_b_fifo_read_t *const p_data)

Reads conversion results from FIFO for the given group mask.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

FSP_ERR_INVALID_ARGUMENT Invalid group provided.

FSP_ERR_UNDERFLOW FIFO empty.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_InfoGet()

fsp_err_t R_ADC_B_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Provides the temperature sensor slope and the calibration data for the sensor if available on this
MCU. Otherwise, invalid calibration data of 0xFFFFFFFF will be returned.

Return values
FSP_SUCCESS Info is read into p_adc_info.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit not initialized.

◆ R_ADC_B_Close()

fsp_err_t R_ADC_B_Close (adc_ctrl_t * p_ctrl)

This function ends any scan in progress, disables interrupts, and removes power to the A/D
peripheral.

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_b)

◆ R_ADC_B_Calibrate()

fsp_err_t R_ADC_B_Calibrate (adc_ctrl_t *const p_ctrl, void const * p_extend)

Initiates calibration of the ADC_B. This function must be called before starting a scan and again
whenever ADC_B configuration or state is changed.

Note
Self-calibration is a non-blocking operation. The application should wait for an
ADC_EVENT_CALIBRATION_COMPLETE callback before using other ADC_B functionality.
The self-calibration process will disable hardware triggers that were previously enabled.

Parameters
[in] p_ctrl Pointer to the instance

control structure

[in] p_extend Unused argument.

Return values
FSP_SUCCESS Calibration successfully initiated.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_B_OffsetSet()

fsp_err_t R_ADC_B_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t offset
)

adc_api_t::offsetSet is not supported on the ADC_B.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

5.2.1.3 ADC (r_adc_d)
Modules » Analog

Functions

fsp_err_t R_ADC_D_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_ADC_D_ScanCfg (adc_ctrl_t *p_ctrl, void const *const
p_channel_cfg)

fsp_err_t R_ADC_D_CallbackSet (adc_ctrl_t *const p_api_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

fsp_err_t R_ADC_D_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_D_ScanGroupStart (adc_ctrl_t *p_ctrl, adc_group_mask_t
group_id)

fsp_err_t R_ADC_D_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_D_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_ADC_D_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint16_t *const p_data)

fsp_err_t R_ADC_D_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_ADC_D_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_ADC_D_Close (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_D_Calibrate (adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t R_ADC_D_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t offset)

fsp_err_t R_ADC_D_SnoozeModePrepare (adc_ctrl_t *const p_ctrl)

fsp_err_t R_ADC_D_SnoozeModeExit (adc_ctrl_t *const p_ctrl)

Detailed Description

Driver for ADC_D version of the ADC12 peripheral on RA MCUs. This module implements the ADC
Interface.

Overview
Features

The ADC module supports the following features:

8-, 10-, or 12-bit maximum resolution depending on the MCU
Configure scans to include:

Single channel or Scan channels
Temperature sensor channel
Voltage sensor channel

Configurable scan start trigger:
Software scan triggers with no-wait mode or wait mode
Hardware scan triggers with no-wait mode or wait mode (timer expiration, for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

example)
Configurable scan mode:

One-shot scan mode, where each trigger starts a single scan
Sequential scan mode, where all channels are scanned continuously

Optional callback when scan completes
Generated an interrupt request when ADLL <= ADCRn <= ADUL
Generated an interrupt request when ADUL < ADCRn or ADLL > ADCRn

Test mode support
Checking whether the ADC_D converter is operating normally

Configuration

Build Time Configurations for r_adc_d

The following build time configurations are defined in fsp_cfg/r_adc_d_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Internal Reference
Voltage Support

Enabled
Disabled

Disabled Enable Internal
Reference Voltage
support for the ADC
module.

Snooze Mode Support Enabled
Disabled

Disabled Enable Snooze Mode
Support.

Interrupt Support Enabled
Disabled

Enabled Enable Scan End
Interrupt support for
the ADC module.

Configurations for Analog > ADC (r_adc_d)

This module can be added to the Stacks tab via New Stack > Analog > ADC (r_adc_d).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_adc0 Module name

Resolution 12-Bit
10-Bit
8-Bit

12-Bit Specifies the
conversion resolution
for this unit.

Conversion operation One-shot
Sequential

One-shot Specifies the
conversion operation
mode.

Operation trigger Wait
No-wait

Wait Specifies the operation
trigger mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

Operation voltage Normal 1
Normal 2
Low voltage 1
Low voltage 2

Normal 1 Specifies operation
voltage mode.

Conversion Clock (fAD) PCLK
PCLK/2
PCLK/4
PCLK/8
PCLK/16
PCLK/32

PCLK Specifies divider for
conversion clock (fAD).

Input

Channel Selection
Mode

Select
Scan

Select Specifies the channel
selection mode.

A/D Input channel Refer to the RA
Configuration tool for
available options.

Channel 0 (channels
0-3 in scan mode)

Specifies the input
channels.

Negative Side
Reference Voltage

VSS
VREFL0

VSS Selection of the
Negative Side
Reference Voltage.

Positive Side Reference
Voltage

VCC
VREFH0
Internal
Reference
Voltage

VCC Selection of the
Positive Side Reference
Voltage.

Interrupts

Interrupts > Conversion Result upper/lower bound value setting

Generates an interrupt
request (INTAD)

The interrupt
signal is output
when the ADLL
register <= the
ADCRn register
<= the ADUL
register
The interrupt
signal is output
when the
ADCRn register
< the ADLL
register or the
ADUL register <
the ADCRn
register

The interrupt signal is
output when the ADLL
register <= the ADCRn
register <= the ADUL
register

Specify condition
generates an
interrupt(INTAD) after
each time the ADC
scan completes.

Upper bound (ADUL)
value

Must be a valid integer 255 Specify the upper limit
conversion value that
corresponds to the
condition to generate
an interrupt request
(INTAD).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

Lower bound (ADLL)
value

Must be a valid integer 0 Specify the lower limit
conversion value that
corresponds to the
condition to generate
an interrupt request
(INTAD).

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the ADC scan
completes.

Scan End Interrupt
Priority

MCU Specific Options Select scan end
interrupt priority.

Start trigger source MCU Specific Options Specifies the trigger
type to be used for this
unit.

Clock Configuration

The ADC_D conversion clock source may be configured to use ICLK with a selectable division ratio.

The ADC_D clock must be at least 1 MHz when the ADC is used.

Pin Configuration

The ANxxx pins are analog input channels that can be used with the ADC_D.

Usage Notes
ADC_D Operational Conversion

The driver supports two operation conversion mode: One-shot scan and Sequential scan modes. For
each time conversion, ADC peripheral only converts for each a pin or group of pins depending on
channels selection mode, it can be changed to another pin or group of other pins by calling
R_ADC_D_ScanCfg().

Oneshot-scan Mode

In One-shot scan mode, one or group specified channels are scanned once per trigger.

Sequential-scan Mode

In Sequential scan mode, a single trigger is required to start the scan. Scans continue until
R_ADC_D_ScanStop() is called.

When Interrupt Is Not Enabled

If interrupts are not enabled, the R_ADC_D_StatusGet API can be used to poll the ADC to determine
when the scan has completed. The read API function is used to access the converted ADC result.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

When Interrupt Is Enabled

An interrupt is generated depend on setting condition of converted ADC result is in range or out of
range of Upper Bound Value (ADUL) and Low Bound Value (ADLL). Please refer to "Figure ADRCK Bit
Interrupt Signal Generation Range" in RA0E1 User's Manual (R01UH1040EJ0100).

Selecting Reference Voltage

The ADC_D positive and negative side reference voltages may be configured for selected MCU's.
Please refer to the RA Configuration editor in e2 studio for further details.

Note
When the internal reference voltage is selected as the positive side reference voltage. Please refer condition as
below

Select operation voltage is low-voltage mode 1 or 2.
The conversion clock (fAD) must be range 1 to 2 MHZ.
Do not setting select internal reference voltage or temperature sensor channel as an A/D conversion
channel.

Selecting Internal Reference Voltage or Temperature Sensor channel

When the internal reference voltage or temperature sensor output voltage is selected as the target
for A/D conversion, please setting operation voltage is normal mode 2 or low-voltage mode 2.

Note
when using operation voltage is low-voltage mode 2, setting a conversion clock (fAD) is less than or equal 16 MHz.

Selecting Conversion Clock

Range for frequency of Conversion Clock (fAD) depends on frequency of ICK. Please refer table as
below.

Frequency of ICLK Frequency of Conversion Clock (fAD)

4 MHz < ICLK <= 32 MHz ICLK to ICLK/32

1 MHz <= fCLK <= 4 MHz ICLK to ICLK/4

Selecting Operation Voltage

The operation voltage is selectable depending on the analog input channel, VREFH0 voltage,
operation mode, and ICLK. For detail, refer table A/D Conversion Time Selection in Section A/D
Converter (ADC) in RA0E1 User's Manual (R01UH1040EJ0100).

Note
When operation voltage is low-voltage modes 1 or 2 in the Electrical Characteristics section in RA0E1 User's
Manual (R01UH1040EJ0100), setting frequency of ICLK should be used with a frequency less than or equal 24
MHz.

ADC_D conversion in Test Mode

The conversion target for testing can be selected by using the Input > A/D Input channel property
in the module configuration.

Note
For more details on the method of checking, refer to section 25.8 "Testing of the A/D Converter" in RA0E1 User's

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

Manual (R01UH1040EJ0100).

Using the Temperature Sensor with the ADC_D

The ADC_D HAL module supports reading the data from the on-chip temperature sensor. The value
returned from the sensor can be converted into degrees Celsius or Fahrenheit in the application
program using the following formula, T = (Vs - V1)/slope + T1, where:

T: Measured temperature (degrees C)
Vs: Voltage output by the temperature sensor at the time of temperature measurement
(Volts)
T1: Temperature experimentally measured at one point (degrees C)
V1: Voltage output by the temperature sensor at the time of measurement of T1 (Volts)
T2: Temperature at the experimental measurement of another point (degrees C)
V2: Voltage output by the temperature sensor at the time of measurement of T2 (Volts)
Slope: Temperature gradient of the temperature sensor (V/degrees C); slope = (V2 - V1)/
(T2 - T1)

Note
The slope value can be obtained for each in the Electrical Characteristics Chapter - TSN Characteristics Table,
Temperature slope entry.

For the setting flow, see section 25.6.5. "Example of Using the ADC12 when Selecting the
Temperature Sensor Output Voltage or Internal Reference Voltage, and Software Trigger No-wait
Mode and One-shot Conversion Mode" in RA0E1 User's Manual (R01UH1040EJ0100).

Examples
Basic Example

This is a basic example of minimal use of the ADC_D in an application.

/* A channel configuration is generated by the RA Configuration editor based on the

options selected. If additional

 * configurations are desired additional adc_d_channel_cfg_t elements can be defined

and passed to R_ADC_D_ScanCfg. */

adc_d_channel_cfg_t g_adc_d0_channel_cfg =

{

 .channel_input = ADC_CHANNEL_0,

};

void adc_d_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ADC_D_Open(&g_adc_d0_ctrl, &g_adc_d0_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

 assert(FSP_SUCCESS == err);

 /* Enable channels. */

 err = R_ADC_D_ScanCfg(&g_adc_d0_ctrl, &g_adc_d0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* In software trigger mode, start a scan by calling R_ADC_D_ScanStart(). In other

modes, enable hardware

 * triggers by calling R_ADC_D_ScanStart(). */

 (void) R_ADC_D_ScanStart(&g_adc_d0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_D_StatusGet(&g_adc_d0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t channel1_conversion_result;

 err = R_ADC_D_Read(&g_adc_d0_ctrl, ADC_CHANNEL_0, &channel1_conversion_result);

 assert(FSP_SUCCESS == err);

}

Temperature Sensor Example

This example shows how to calculate the MCU temperature using the ADC_D and the temperature
sensor.

#define ADC_D_EXAMPLE_TEMPERATURE_VOLTAGE_V1 (1050000)

#define ADC_D_EXAMPLE_VCC_MICROVOLT (3300000)

#define ADC_D_EXAMPLE_TEMPERATURE_RESOLUTION (12)

#define ADC_D_EXAMPLE_ADC_TEST_TEMPERATURE_CELSIUS_T1 (25)

#define ADC_PRV_COEFFICIENT (0.5)

void adc_d_temperature_example (void)

{

 /* The following example calculates the temperature using the data provided in the

section

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

 * "Temperature Sensor (TSN)" in RA0E1 User's Manual (R01UH1040EJ0100). */

 fsp_err_t err = FSP_SUCCESS;

 /* Using normal mode 2 when configure temperature channel */

 g_adc_d0_cfg_extend.operation_voltage = ADC_D_VOLTAGE_MODE_NORMAL_2;

 g_adc_d0_cfg_extend.operation_trigger = ADC_D_TRIGGER_MODE_NO_WAIT;

 /* Initializes the module. */

 err = R_ADC_D_Open(&g_adc_d0_ctrl, &g_adc_d0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure temperature channel */

 g_adc_d0_channel_cfg.channel_input = ADC_CHANNEL_TEMPERATURE;

 /* Enable temperature sensor. */

 err = R_ADC_D_ScanCfg(&g_adc_d0_ctrl, &g_adc_d0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Start of A/D conversion */

 (void) R_ADC_D_ScanStart(&g_adc_d0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_D_StatusGet(&g_adc_d0_ctrl, &status);

 }

 /* The 1st conversion result cannot be used. See Table 25.18 "Setup when temperature

sensor output voltage and

 * internal reference voltage is selected" in RA0E1 User's Manual (R01UH1040EJ0100).

*/

 /* Start of A/D conversion */

 (void) R_ADC_D_ScanStart(&g_adc_d0_ctrl);

 /* Wait for conversion to complete. */

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_D_StatusGet(&g_adc_d0_ctrl, &status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

 }

 /* Read converted data. */

 uint16_t temperature_conversion_result;

 err = R_ADC_D_Read(&g_adc_d0_ctrl, ADC_CHANNEL_0,

&temperature_conversion_result);

 assert(FSP_SUCCESS == err);

 /* If the MCU does not provide calibration data, use the value in the hardware

manual or determine it

 * experimentally. */

 /* Get Calibration data from the MCU if available. */

 adc_info_t adc_info;

 (void) R_ADC_D_InfoGet(&g_adc_d0_ctrl, &adc_info);

 /* NOTE: The slope of the temperature sensor varies from sensor to sensor. Renesas

recommends calculating

 * the slope of the temperature sensor experimentally.

 *

 * This example uses the typical slope provided in Table "TSN characteristics" in

the user manual */

 int32_t slope_uv_per_c = BSP_FEATURE_ADC_TSN_SLOPE;

 /* Formula for calculating temperature copied from section "Temperature Sensor

(TSN)"

 * of the user manual:

 *

 * Using this, the measured temperature can be calculated according to the following

formula.

 *

 * T = (Vs - V1) / Slope + T1 [C]

 * T: Measured temperature (C)

 * Vs: Voltage output by the temperature sensor when the temperature is measured (V)

 * V1: Voltage output by T1(25 C) is 1.05 V. Refer table "TSN characteristics" in

the user manual

 * Slope: Temperature slope given in table "TSN characteristics" -3.3 mV/C

 * T1: Temperature of T1 is 25 C.Refer table "TSN characteristics" in the user

manual

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

 */

 int32_t v1_uv = ADC_D_EXAMPLE_TEMPERATURE_VOLTAGE_V1;

 /* Refer to chapter "Input Voltage and Conversion Results" in the user manual */

 int32_t vs_uv =

 (int32_t) (((temperature_conversion_result - ADC_PRV_COEFFICIENT) *

ADC_D_EXAMPLE_VCC_MICROVOLT) /

 ADC_D_EXAMPLE_TEMPERATURE_RESOLUTION);

 int32_t temperature_c =

 (int32_t) ((vs_uv - v1_uv) / slope_uv_per_c +

ADC_D_EXAMPLE_ADC_TEST_TEMPERATURE_CELSIUS_T1);

 /* Expect room temperature, break if temperature is outside the range of 20 C to 25

C. */

 if ((temperature_c < 20) || (temperature_c > 25))

 {

 __BKPT(0);

 }

}

Data Structures

struct adc_d_channel_cfg_t

struct adc_d_extended_cfg_t

struct adc_d_instance_ctrl_t

Enumerations

enum adc_d_channel_mode_t

enum adc_d_voltage_mode_t

enum adc_d_clock_div_t

enum adc_d_trigger_source_t

enum adc_d_trigger_mode_t

enum adc_d_conversion_mode_t

enum adc_d_boundary_t

enum adc_d_negative_vref_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

enum adc_d_positive_vref_t

Data Structure Documentation

◆ adc_d_channel_cfg_t

struct adc_d_channel_cfg_t

ADC_D channel(s) configuration

◆ adc_d_extended_cfg_t

struct adc_d_extended_cfg_t

Extended configuration structure for ADC.

Data Fields

adc_d_channel_mode_t channel_mode ADC_D channels mode setting.

adc_d_voltage_mode_t operation_voltage Voltage mode setting.

adc_d_clock_div_t conversion_clockdiv Divider for conversion clock
(fAD) setting.

adc_d_trigger_source_t trigger_source Trigger source hardware and
software setting.

adc_d_trigger_mode_t operation_trigger Operation mode wait/no wait
setting.

adc_d_conversion_mode_t conversion_operation Sequential/one-shot conversion
setting.

adc_d_boundary_t upper_lower_bound Upper limit and lower limit
conversion setting.

adc_d_negative_vref_t negative_vref Negative side reference voltage
setting.

adc_d_positive_vref_t positive_vref Positive side reference voltage
setting.

uint8_t upper_bound_limit Setting upper limit conversion
value.

uint8_t lower_bound_limit Setting lower limit conversion
value.

◆ adc_d_instance_ctrl_t

struct adc_d_instance_ctrl_t

ADC_D instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ adc_d_channel_mode_t

enum adc_d_channel_mode_t

ADC_D channels mode selection

Enumerator

ADC_D_CHANNEL_MODE_SELECT Select mode.

ADC_D_CHANNEL_MODE_SCAN Scan mode.

◆ adc_d_voltage_mode_t

enum adc_d_voltage_mode_t

Operation voltage mode selection

Enumerator

ADC_D_VOLTAGE_MODE_NORMAL_1 Normal 1.

ADC_D_VOLTAGE_MODE_NORMAL_2 Normal 2.

ADC_D_VOLTAGE_MODE_LOW_1 Low voltage 1.

ADC_D_VOLTAGE_MODE_LOW_2 Low voltage 2.

◆ adc_d_clock_div_t

enum adc_d_clock_div_t

Divider for Conversion Clock (fAD)

Enumerator

ADC_D_CLOCK_DIV_32 ADC_D clock division ICLK/32.

ADC_D_CLOCK_DIV_16 ADC_D clock division ICLK/16.

ADC_D_CLOCK_DIV_8 ADC_D clock division ICLK/8.

ADC_D_CLOCK_DIV_4 ADC_D clock division ICLK/4.

ADC_D_CLOCK_DIV_2 ADC_D clock division ICLK/2.

ADC_D_CLOCK_DIV_1 ADC_D clock division ICLK/1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ adc_d_trigger_source_t

enum adc_d_trigger_source_t

Selection trigger signal

Enumerator

ADC_D_TRIGGER_SOURCE_TAU0_TMI01 Timer channel 01 count or capture end
interrupt signal.

ADC_D_TRIGGER_SOURCE_RTC_ALARM_OR_PERI
OD

Realtime clock interrupt signal.

ADC_D_TRIGGER_SOURCE_TML0_ITL0 32-bit interval timer interrupt signal

ADC_D_TRIGGER_SOURCE_ELC Event input from ELC.

ADC_D_TRIGGER_SOURCE_SOFTWARE Software trigger, this option is controlled by bit
ADCS, ADCE.

◆ adc_d_trigger_mode_t

enum adc_d_trigger_mode_t

Select trigger mode

Enumerator

ADC_D_TRIGGER_MODE_NO_WAIT Trigger no-wait mode.

ADC_D_TRIGGER_MODE_WAIT Trigger wait mode.

◆ adc_d_conversion_mode_t

enum adc_d_conversion_mode_t

Select conversion operation mode

Enumerator

ADC_D_CONVERSION_MODE_SEQUENTIAL Continuous conversion mode.

ADC_D_CONVERSION_MODE_ONESHOT Single conversion mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 538 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ adc_d_boundary_t

enum adc_d_boundary_t

Select the upper limit and lower limit conversion result values

Enumerator

ADC_D_BOUNDARY_IN_RANGE The interrupt signal (INTAD) is output in range
ADLL and AULL.

ADC_D_BOUNDARY_OUT_OF_RANGE The interrupt signal (INTAD) is output out of
range ADLL and AULL.

◆ adc_d_negative_vref_t

enum adc_d_negative_vref_t

The negative side reference voltage selection

Enumerator

ADC_D_NEGATIVE_VREF_VSS Supplied from VSS.

ADC_D_NEGATIVE_VREF_VREFL0 Supplied from VREFL0.

◆ adc_d_positive_vref_t

enum adc_d_positive_vref_t

The positive side reference voltage selection

Enumerator

ADC_D_POSITIVE_VREF_VCC Supplied from VSS.

ADC_D_POSITIVE_VREF_VREFH0 Supplied from VREFH0.

ADC_D_POSITIVE_VREF_IVREF Supplied from the internal reference voltage.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_Open()

fsp_err_t R_ADC_D_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Initialize the ADC_D peripheral. If interrupt is enabled, the function registers a callback function for
notifying the user when a scan has completed. Implements adc_api_t::open.

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

FSP_ERR_IRQ_BSP_DISABLED A callback is provided, but the interrupt is
not enabled.

FSP_ERR_INVALID_HW_CONDITION Invalid configuration corresponds to
condition HardWare UM.

◆ R_ADC_D_ScanCfg()

fsp_err_t R_ADC_D_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_channel_cfg)

Configures the ADC_D scan parameters. Channel specific settings are set in this function. Pass a
pointer to adc_d_channel_cfg_t to p_channel_cfg.

Return values
FSP_SUCCESS Channel specific settings applied.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_INVALID_HW_CONDITION Invalid configuration corresponds to
condition HardWare UM.

FSP_ERR_INVALID_STATE Invalid Scan Configuration.

FSP_ERR_INVALID_CHANNEL Channel is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_CallbackSet()

fsp_err_t R_ADC_D_CallbackSet (adc_ctrl_t *const p_api_ctrl, void(*)(adc_callback_args_t *)
p_callback, void const *const p_context, adc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
adc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_ASSERTION A required pointer is NULL.

◆ R_ADC_D_ScanStart()

fsp_err_t R_ADC_D_ScanStart (adc_ctrl_t * p_ctrl)

Starts a software scan or enables the hardware trigger no-wait mode for a scan depending on how
the triggers were configured in the R_ADC_D_Open call. If the unit was configured for ELC or
interrupt hardware triggering, then this function allows the trigger signal to get to the ADC_D. The
function is not able to control the generation of the trigger itself. If the ADC_D was configured for
software triggering, then this function starts the software triggered scan.

Precondition
Call R_ADC_D_ScanCfg after R_ADC_D_Open before starting a scan.

Return values
FSP_SUCCESS Scan started (software trigger) or hardware

triggers no-wait mode enabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

FSP_ERR_NOT_INITIALIZED ADC_D is not initialized.

◆ R_ADC_D_ScanGroupStart()

fsp_err_t R_ADC_D_ScanGroupStart (adc_ctrl_t * p_ctrl, adc_group_mask_t group_id)

adc_api_t::scanStart is not supported on the ADC_D. Use scanStart instead.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_ScanStop()

fsp_err_t R_ADC_D_ScanStop (adc_ctrl_t * p_ctrl)

Disables the hardware trigger for a scan or select mode and immediately stops converters. This
function will abort conversions.

Return values
FSP_SUCCESS Scan stopped (software trigger) or hardware

triggers disabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

◆ R_ADC_D_StatusGet()

fsp_err_t R_ADC_D_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Provides the status of any scan process that was started, including scans started by ELC or
interrupts triggers.

Note
In Hardware no-wait mode, ADCS retains the value 1 after conversion end.

Return values
FSP_SUCCESS Module status stored in the provided pointer

p_status.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_Read()

fsp_err_t R_ADC_D_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data
)

Reads conversion results from a channel or sensor.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_NOT_INITIALIZED Unit is not initialized.

FSP_ERR_INVALID_MODE Invalid configuration for channel_mode.

◆ R_ADC_D_Read32()

fsp_err_t R_ADC_D_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Reads conversion results from a select/scan channel or sensor register into a 32-bit result.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

FSP_ERR_NOT_INITIALIZED ADC_D is not initialized.

FSP_ERR_INVALID_MODE Invalid configuration for channel_mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_InfoGet()

fsp_err_t R_ADC_D_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Get information of address ADCR to reading the data, determine the size of data that must be read,
size data of each transfer, name of the ELC event for the peripheral, name of the peripheral in the
ELC list

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

FSP_ERR_NOT_INITIALIZED ADC_D is not initialized.

◆ R_ADC_D_Close()

fsp_err_t R_ADC_D_Close (adc_ctrl_t * p_ctrl)

This function ends any scan or select mode in progress, disables interrupts, and removes power to
the A/D peripheral.

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

◆ R_ADC_D_Calibrate()

fsp_err_t R_ADC_D_Calibrate (adc_ctrl_t *const p_ctrl, void const * p_extend)

adc_api_t::calibrate is not supported on the ADC_D.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_OffsetSet()

fsp_err_t R_ADC_D_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t offset
)

adc_api_t::offsetSet is not supported on the ADC_D.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_ADC_D_SnoozeModePrepare()

fsp_err_t R_ADC_D_SnoozeModePrepare (adc_ctrl_t *const p_ctrl)

Prepare ADC_D to enter snooze mode via a hardware trigger. This function must be called
immediately before entering software standby mode in order to allow the configured hardware
trigger to transition the MCU from software standby mode to snooze mode and perform an ADC
conversion.

Supported modes for requesting snooze mode via hardware trigger:

channel_mode = ADC_D_CHANNEL_MODE_SELECT, conversion_operation =
ADC_D_CONVERSION_MODE_ONESHOT
channel_mode = ADC_D_CHANNEL_MODE_SCAN, conversion_operation =
ADC_D_CONVERSION_MODE_ONESHOT

Parameters
[in] p_ctrl Pointer to the ADC control

block

Return values
FSP_SUCCESS ADC is configured to request Snooze mode.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN ADC_D is not open.

FSP_ERR_INVALID_MODE ADC is in an invalid mode for requesting
Snooze mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > ADC (r_adc_d)

◆ R_ADC_D_SnoozeModeExit()

fsp_err_t R_ADC_D_SnoozeModeExit (adc_ctrl_t *const p_ctrl)

After exiting snooze mode, if the ADC_D module was in snooze mode, then this function must be
called in order to restore ADC operation to normal mode.

Parameters
[in] p_ctrl Pointer to the ADC control

block

Return values
FSP_SUCCESS ADC is configured to request Snooze mode.

FSP_ERR_INVALID_MODE ADC is in an invalid mode for requesting
Snooze mode.

5.2.1.4 Comparator, High-Speed (r_acmphs)
Modules » Analog

Functions

fsp_err_t R_ACMPHS_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t
const *const p_cfg)

fsp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPHS_Close (comparator_ctrl_t *p_ctrl)

Detailed Description

Driver for the ACMPHS peripheral on RA MCUs. This module implements the Comparator Interface.

Overview
Features

The ACMPHS HAL module supports the following features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

Callback on rising edge, falling edge or both
Configurable debounce filter
Option for comparator output on VCOUT, CMPOUTn1, or CMPOUT0121 pin
ELC event output

Note
1. This output pin is not available on all MCUs.

Configuration
Build Time Configurations for r_acmphs

The following build time configurations are defined in fsp_cfg/r_acmphs_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Analog > Comparator, High-Speed (r_acmphs)

This module can be added to the Stacks tab via New Stack > Analog > Comparator, High-Speed
(r_acmphs).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comparator0 Module name.

Channel Value must be a non-
negative integer

0 Select the hardware
channel.

Trigger Edge Selector Rising
Falling
Both Edge

Both Edge The trigger specifies
when a comparator
callback event should
occur. Unused if the
interrupt priority is
disabled or the callback
is NULL.

Noise Filter No Filter
8
16
32

No Filter Select the PCLK divisor
for the hardware digital
debounce filter. Larger
divisors provide a
longer debounce and
take longer for the
output to update.

Maximum status retries
(CMPMON)

Must be a valid non-
negative integer
between 2 and 32-bit
maximum value

1024 Maximum number of
status retries.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

Output Polarity Not Inverted
Inverted

Not Inverted When enabled
comparator output is
inverted. This affects
the output read from
R_ACMPHS_StatusGet()
, the pin output level,
and the edge trigger.

Pin Output Disabled
Enabled

Disabled Turn this on to enable
the CMPOUTn signal for
this channel. The
CMPOUTn signal for
each channel is OR'd
together and the result
is output to VCOUT.
More pin output
options are available
on select MCUs.

Callback Name must be a valid
C symbol

NULL Define this function in
the application. It is
called when the Trigger
event occurs.

Comparator Interrupt
Priority

MCU Specific Options Select the interrupt
priority for the
comparator interrupt.

Analog Input Voltage
Source (IVCMP)

MCU Specific Options Select the Analog input
voltage source.
Channel mentioned in
the options represents
channel in ACMPHS

Reference Voltage
Input Source (IVREF)

MCU Specific Options Select the Analog
reference voltage
source. Channel
mentioned in the
options represents
channel in ACMPHS

Clock Configuration

The ACMPHS peripheral is clocked from PCLKB. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

Comparator output can be enabled or disabled on each channel individually. The VCOUT pin is a
logical OR of all comparator outputs.

The IVCMPn pins are used as comparator inputs. The IVREFn pins are used as comparator reference
values.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

Noise Filter

When the noise filter is enabled, the ACMPHP0/ACMPHP1 signal is sampled three times based on the
sampling clock selected. The filter clock frequency is determined by PCLKB and the
comparator_filter_t setting.

Output Polarity

If output polarity is configured as "Inverted" then the VCOUT signal will be inverted and the
R_ACMPHS_StatusGet() will return an inverted status.

Limitations

Once the analog comparator is configured, the program must wait for the stabilization time
to elapse before using the comparator.
When the noise filter is not enabled the hardware requires software debouncing of the
output (two consecutive equal values). This is automatically managed in
R_ACMPHS_StatusGet but may result in delay or an API error in rare edge cases.
Constraints apply on the simultaneous use of ACMPHS analog input and ADC analog input.
Refer to the "Usage Notes" section in your MCU's User's Manual for the ADC unit(s) for more
details.
To allow ACMPHS0 to cancel Software Standby mode or enter Snooze, set the CSTEN bit to
1 and the CDFS bits to 00 in the CMPCTL0 register.

Examples
Basic Example

The following is a basic example of using the ACMPHS to detect when the analog voltage input to
IVCMP rises above the analog voltage input to IVREF. A GPIO output acts as the comparator input
and is externally connected to the IVCMP input of the ACMPHS. An analog voltage input should also
be supplied to the IVREF input pin.

#define ADC_PGA_BYPASS_VALUE (0x9999)

/* Connect this control pin to the IVCMP input of the comparator. This can be any

GPIO pin

 * that is not input only. */

#define ACMPHS_EXAMPLE_CONTROL_PIN (BSP_IO_PORT_05_PIN_03)

volatile uint32_t g_comparator_events = 0U;

/* This callback is called when a comparator event occurs. */

void acmphs_example_callback (comparator_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_comparator_events++;

}

void acmphs_example ()

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Disable pin register write protection, if enabled */

 R_BSP_PinAccessEnable();

 /*

 * Start with the IVCMP pin low. This example assumes the comparator is configured

to trigger

 * when the voltage of the analog input to IVCMP rises above voltage of the analog

input to

 * IVREF.

 */

 (void) R_BSP_PinWrite(ACMPHS_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_LOW);

 /* Initialize the ACMPHS module */

 err = R_ACMPHS_Open(&g_comparator_ctrl, &g_comparator_cfg);

 assert(FSP_SUCCESS == err);

 /*

 * If an ADC PGA exists for the analog input pin, then the PGA must be manually

configured in order for the pin to be used as

 * an IVCMP input. This procedure is slightly different depending on the MCU (See

below).

 */

#if BSP_MCU_GROUP_RA6M3

 /* The following applies for MCUs with the ADC peripheral:

 *

 * Bypass the PGA on ADC unit 0.

 * (See Table 50.2 "Input source configuration of the ACMPHS" in the RA6M3 User's

Manual (R01UH0886EJ0100)) */

 R_BSP_MODULE_START(FSP_IP_ADC, 0);

 R_ADC0->ADPGACR = ADC_PGA_BYPASS_VALUE;

 R_ADC0->ADPGADCR0 = 0;

#elif BSP_MCU_GROUP_RA6T2

 /* The following applies for MCUs with the ADC_B peripheral:

 *

 * Configure PGA on ADC unit 0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

 * (See Table 36.11 "PGA Settings and Available Related Functions" in the RA6T2

User's Manual (R01UH0951EJ0100)) */

 R_BSP_MODULE_START(FSP_IP_ADC, 0);

 R_ADC_B->ADPGACR[0] = R_ADC_B0_ADPGACR_PGAGEN_Msk;

#endif

 /* Wait for the minimum stabilization wait time before enabling output. */

 comparator_info_t info;

 R_ACMPHS_InfoGet(&g_comparator_ctrl, &info);

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

 /* Enable the comparator output */

 (void) R_ACMPHS_OutputEnable(&g_comparator_ctrl);

 /* Set the IVCMP pin high. */

 (void) R_BSP_PinWrite(ACMPHS_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_HIGH);

 while (0 == g_comparator_events)

 {

 /* Wait for interrupt. */

 }

 comparator_status_t status;

 /* Check status of comparator, Status will be COMPARATOR_STATE_OUTPUT_HIGH */

 (void) R_ACMPHS_StatusGet(&g_comparator_ctrl, &status);

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

◆ R_ACMPHS_Open()

fsp_err_t R_ACMPHS_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const p_cfg
)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An input pointer is NULL

FSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.

FSP_ERR_ALREADY_OPEN The control block is already open or the
hardware lock is taken.

◆ R_ACMPHS_InfoGet()

fsp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl, comparator_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, High-Speed (r_acmphs)

◆ R_ACMPHS_OutputEnable()

fsp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
FSP_SUCCESS Comparator output is enabled.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPHS_StatusGet()

fsp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
FSP_SUCCESS Operating status of the comparator is

provided in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_TIMEOUT The debounce filter is off and 2 consecutive
matching values were not read within 1024
attempts.

◆ R_ACMPHS_Close()

fsp_err_t R_ACMPHS_Close (comparator_ctrl_t * p_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

5.2.1.5 Comparator, Low-Power (r_acmplp)
Modules » Analog

Functions

fsp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t
const *const p_cfg)

fsp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPLP_Close (comparator_ctrl_t *p_ctrl)

Detailed Description

Driver for the ACMPLP peripheral on RA MCUs. This module implements the Comparator Interface.

Overview
Features

The ACMPLP HAL module supports the following features:

Normal mode or window mode
Callback on rising edge, falling edge or both
Configurable debounce filter
Option for comparator output on VCOUT pin
ELC event output

Configuration
Build Time Configurations for r_acmplp

The following build time configurations are defined in fsp_cfg/r_acmplp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Reference Voltage
Selection for ACMPLP1

IVREF0
IVREF1

IVREF1 ACMPLP1 may
optionally be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

(Standard mode only) configured to use
IVREF0 as a reference
input instead of
IVREF1. Note that if
IVREF0 is selected,
ACMPLP0 and ACMPLP1
must use the same
setting for IVREF.

Configurations for Analog > Comparator, Low-Power (r_acmplp)

This module can be added to the Stacks tab via New Stack > Analog > Comparator, Low-Power
(r_acmplp).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comparator0 Module name.

Channel Value must be a non-
negative integer

0 Select the hardware
channel.

Mode Standard
Window

Standard In standard mode,
comparator output is
high if VCMP > VREF. In
window mode,
comparator output is
high if VCMP is outside
the range of VREF0 to
VREF1.

Trigger Rising
Falling
Both Edge

Both Edge The trigger specifies
when a comparator
callback event should
occur. Unused if the
interrupt priority is
disabled or the callback
is NULL.

Filter No sampling
(bypass)
Sampling at
PCLKB
Sampling at
PCLKB/8
Sampling at
PCLKB/32

No sampling (bypass) Select the PCLK divisor
for the hardware digital
debounce filter. Larger
divisors provide a
longer debounce and
take longer for the
output to update.

Output Polarity Not Inverted
Inverted

Not Inverted When enabled
comparator output is
inverted. This affects
the output read from
R_ACMPLP_StatusGet(),
the pin output level,
and the edge trigger.

Pin Output (VCOUT) Disabled Disabled Turn this on to include

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

Enabled the output from this
comparator on VCOUT.
The comparator output
on VCOUT is OR'd with
output from all other
ACMPHS and ACMPLP
comparators.

Vref (Standard mode
only)

Enabled
Disabled

Disabled If reference voltage
selection is enabled
then internal reference
voltage is used as
comparator input

Callback Name must be a valid
C symbol

NULL Define this function in
the application. It is
called when the Trigger
event occurs.

Comparator Interrupt
Priority

MCU Specific Options Select the interrupt
priority for the
comparator interrupt.

Analog Input Voltage
Source (IVCMP)

MCU Specific Options Select the comparator
input source. Only
options for the
configured channel are
valid.

Reference Voltage
Input Source (IVREF)

MCU Specific Options Select the comparator
reference voltage
source.

If channel 1 is
seleected and the
'Reference Voltage
Selection (ACMPLP1)'
config option is set to
IVREF0, select one of
the Channel 0 options.
In all other cases, only
options for the
configured channel are
valid.

Clock Configuration

The ACMPLP peripheral is clocked from PCLKB. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

Comparator output can be enabled or disabled on each channel individually. The VCOUT pin is a
logical OR of all comparator outputs.

The CMPINn pins are used as comparator inputs. The CMPREFn pins are used as comparator
reference values.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 556 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

Usage Notes

Figure 148: ACMPLP Standard Mode Operation

Noise Filter

When the noise filter is enabled, the ACMPLP0/ACMPLP1 signal is sampled three times based on the
sampling clock selected. The filter clock frequency is determined by PCLKB and the
comparator_filter_t setting.

Output Polarity

If output polarity is configured as "Inverted" then the VCOUT signal will be inverted and the
R_ACMPLP_StatusGet() will return an inverted status.

Window Mode

In window mode, the comparator indicates if the analog input voltage falls within the window (low
and high reference voltage) or is outside the window.

Figure 149: ACMPLP Window Mode Operation

Limitations

Once the analog comparator is configured, the program must wait for the stabilization time
to elapse before using the comparator.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 557 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

Low speed is not supported by the ACMPLP driver.

Examples
Basic Example

The following is a basic example of minimal use of the ACMPLP. The comparator is configured to
trigger a callback when the input rises above the internal reference voltage (VREF). A GPIO output
acts as the comparator input and is externally connected to the CMPIN input of the ACMPLP.

/* Connect this control pin to the VCMP input of the comparator. This can be any GPIO

pin

 * that is not input only. */

#define ACMPLP_EXAMPLE_CONTROL_PIN (BSP_IO_PORT_04_PIN_08)

volatile uint32_t g_comparator_events = 0U;

/* This callback is called when a comparator event occurs. */

void acmplp_example_callback (comparator_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_comparator_events++;

}

void acmplp_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Disable pin register write protection, if enabled */

 R_BSP_PinAccessEnable();

 /* Start with the VCMP pin low. This example assumes the comparator is configured to

trigger

 * when VCMP rises above VREF. */

 (void) R_BSP_PinWrite(ACMPLP_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_LOW);

 /* Initialize the ACMPLP module */

 err = R_ACMPLP_Open(&g_comparator_ctrl, &g_comparator_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for the minimum stabilization wait time before enabling output. */

 comparator_info_t info;

 R_ACMPLP_InfoGet(&g_comparator_ctrl, &info);

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 558 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

 /* Enable the comparator output */

 (void) R_ACMPLP_OutputEnable(&g_comparator_ctrl);

 /* Set VCMP low. */

 (void) R_BSP_PinWrite(ACMPLP_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_HIGH);

 while (0 == g_comparator_events)

 {

 /* Wait for interrupt. */

 }

 comparator_status_t status;

 /* Check status of comparator, Status will be COMPARATOR_STATE_OUTPUT_HIGH */

 (void) R_ACMPLP_StatusGet(&g_comparator_ctrl, &status);

}

Enumerations

enum acmplp_input_t

enum acmplp_reference_t

Enumeration Type Documentation

◆ acmplp_input_t

enum acmplp_input_t

Enumerator

ACMPLP_INPUT_AMPO Not available on all MCUs.

ACMPLP_INPUT_CMPIN_1 Not available on all MCUs.

◆ acmplp_reference_t

enum acmplp_reference_t

Enumerator

ACMPLP_REFERENCE_CMPREF_1 Not available on all MCUs.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 559 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

◆ R_ACMPLP_Open()

fsp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const p_cfg)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An input pointer is NULL

FSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.
p_cfg->p_callback is not NULL, but ISR is not
enabled. ISR must be enabled to use
callback function.

FSP_ERR_ALREADY_OPEN The control block is already open or the
hardware lock is taken.

FSP_ERR_IN_USE The channel is already in use.

◆ R_ACMPLP_InfoGet()

fsp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl, comparator_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 560 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Comparator, Low-Power (r_acmplp)

◆ R_ACMPLP_OutputEnable()

fsp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
FSP_SUCCESS Comparator output is enabled.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPLP_StatusGet()

fsp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
FSP_SUCCESS Operating status of the comparator is

provided in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPLP_Close()

fsp_err_t R_ACMPLP_Close (comparator_ctrl_t * p_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

5.2.1.6 DAC (r_dac)
Modules » Analog

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 561 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

Functions

fsp_err_t R_DAC_Open (dac_ctrl_t *p_api_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t R_DAC_Write (dac_ctrl_t *p_api_ctrl, uint16_t value)

fsp_err_t R_DAC_Start (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Stop (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Close (dac_ctrl_t *p_api_ctrl)

Detailed Description

Driver for the DAC12 peripheral on RA MCUs. This module implements the DAC Interface.

Overview
Features

The DAC module outputs one of 4096 voltage levels between the positive and negative reference
voltages.

Supports setting left-justified or right-justified 12-bit value format for the 16-bit input data
registers
Supports output amplifiers on selected MCUs
Supports charge pump on selected MCUs
Supports synchronization with the Analog-to-Digital Converter (ADC) module

Configuration
Note

For MCUs supporting more than one channel, the following configuration options are shared by all the DAC
channels:

Synchronize with ADC
Data Format
Charge Pump

Build Time Configurations for r_dac

The following build time configurations are defined in fsp_cfg/r_dac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Analog > DAC (r_dac)

This module can be added to the Stacks tab via New Stack > Analog > DAC (r_dac). Non-secure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 562 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_dac0 Module name.

Channel Value must be an
integer greater than or
equal to 0

0 Specify the hardware
channel.

Synchronize with ADC MCU Specific Options Enable DA/AD
synchronization.

Data Format Right Justified
Left Justified

Right Justified Specify the DAC data
format.

Output Amplifier MCU Specific Options Enable the DAC output
amplifier.

Charge Pump (Requires
MOCO active)

MCU Specific Options Enable the DAC charge
pump.

Internal Output MCU Specific Options Enable DAC output to
internal modules.

ELC Trigger Source MCU Specific Options ELC event source that
will trigger the DAC to
start a conversion.

Reference Voltage MCU Specific Options Select the DAC
reference voltage.

Clock Configuration

The DAC peripheral module uses PCLKB as its clock source.

Pin Configuration

The DAn pins are used as analog outputs. Each DAC channel has one output pin.

The AVCC0 and AVSS0 pins are power and ground supply pins for the DAC and ADC.

The VREFH and VREFL pins are top and ground voltage reference pins for the DAC and ADC.

Usage Notes
Charge Pump

The charge pump must be enabled when using DAC pin output while operating at AVCC < 2.7V.

Note
The MOCO must be running to use the charge pump.
If the DAC output is to be routed to an internal signal, do not enable the charge pump.

Output to Internal Modules

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 563 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

The DAC output can be used as an analog input to other peripherals on the MCU (eg. ACMPHS, ADC)
without outputting the voltage to an external pin.

On some MCUs this functionality must be enabled during configuration using
dac_extended_cfg_t::internal_output_enabled. When internal output is enabled, the DAC output will
be routed to internal modules. If the DAC output amplifier is enabled or when internal output is
disabled, the output will be routed to the DAC output pin (DAn).

Synchronization with ADC

When ADC synchronization is enabled and an ADC conversion is in progress, if a DAC conversion is
started it will automatically be delayed until after the ADC conversion is complete.

Limitations

For MCUs supporting ADC unit 1:
Once synchronization between DAC and ADC unit 1 is turned on during
R_DAC_Open synchronization cannot be turned off by the driver. In order to
desynchronize DAC with ADC unit 1, manually clear DAADSCR.DAADST to 0 when
the ADCSR.ADST bit is 0 and ADC unit 1 is halted.
The DAC module can only be synchronized with ADC unit 1.
For MCUs having more than 1 DAC channel, both channels are synchronized with
ADC unit 1 if synchronization is enabled.

Examples
Basic Example

This is a basic example of minimal use of the R_DAC in an application. This example shows how this
driver can be used for basic Digital to Analog Conversion operations.

void basic_example (void)

{

 fsp_err_t err;

 uint16_t value;

 /* Pin configuration: Output enable DA0 as Analog. */

 /* Initialize the DAC channel */

 err = R_DAC_Open(&g_dac_ctrl, &g_dac_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 value = (uint16_t) DAC_EXAMPLE_VALUE_ABC;

 err = R_DAC_Write(&g_dac_ctrl, value);

 assert(FSP_SUCCESS == err);

 err = R_DAC_Start(&g_dac_ctrl);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 564 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

}

Data Structures

struct dac_instance_ctrl_t

struct dac_extended_cfg_t

Enumerations

enum dac_ref_volt_sel_t

Data Structure Documentation

◆ dac_instance_ctrl_t

struct dac_instance_ctrl_t

DAC instance control block.

◆ dac_extended_cfg_t

struct dac_extended_cfg_t

DAC extended configuration

Data Fields

bool enable_charge_pump Enable DAC charge pump
available on selected MCUs.

bool output_amplifier_enabled Output amplifier enable
available on selected MCUs.

bool internal_output_enabled Internal output enable available
on selected MCUs.

dac_data_format_t data_format Data format.

dac_ref_volt_sel_t ref_volt_sel Reference voltage selection.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 565 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

◆ dac_ref_volt_sel_t

enum dac_ref_volt_sel_t

DAC Reference voltage selection.

Enumerator

DAC_VREF_NONE No reference voltage selected.

DAC_VREF_AVCC0_AVSS0 Select AVCC0/AVSS0.

DAC_VREF_IVREF_AVSS0 Select Internal reference voltage/AVSS0.

DAC_VREF_VREFH_VREFL Select VREFH/VREFL.

Function Documentation

◆ R_DAC_Open()

fsp_err_t R_DAC_Open (dac_ctrl_t * p_api_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual. Implements dac_api_t::open.
Configures a single DAC channel, starts the channel, and provides a handle for use with the DAC
API Write and Close functions. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. One or both of the following
parameters may be NULL: p_api_ctrl
or p_cfg

2. data_format value in p_cfg is out of
range.

3. Extended configuration structure is
set to NULL for MCU supporting
charge pump.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel ID requested in p_cfg may not
available on the devices.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 566 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

◆ R_DAC_Write()

fsp_err_t R_DAC_Write (dac_ctrl_t * p_api_ctrl, uint16_t value)

Write data to the D/A converter and enable the output if it has not been enabled.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

◆ R_DAC_Start()

fsp_err_t R_DAC_Start (dac_ctrl_t * p_api_ctrl)

Start the D/A conversion output if it has not been started.

Return values
FSP_SUCCESS The channel is started successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_IN_USE Attempt to re-start a channel.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

◆ R_DAC_Stop()

fsp_err_t R_DAC_Stop (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
FSP_SUCCESS The control is successfully stopped.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 567 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC (r_dac)

◆ R_DAC_Close()

fsp_err_t R_DAC_Close (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

5.2.1.7 DAC8 (r_dac8)
Modules » Analog

Functions

fsp_err_t R_DAC8_Open (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t R_DAC8_Write (dac_ctrl_t *const p_ctrl, uint16_t value)

fsp_err_t R_DAC8_Start (dac_ctrl_t *const p_ctrl)

fsp_err_t R_DAC8_Stop (dac_ctrl_t *const p_ctrl)

fsp_err_t R_DAC8_Close (dac_ctrl_t *const p_ctrl)

Detailed Description

Driver for the DAC8 peripheral on RA MCUs. This module implements the DAC Interface.

Overview
Features

The DAC8 module outputs one of 256 voltage levels between the positive and negative reference
voltages. DAC8 on selected MCUs have below features

Charge pump control
Synchronization with the Analog-to-Digital Converter (ADC) module
Multiple Operation Modes

Normal
Real-Time (Event Link)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 568 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

Configuration
Note

For MCUs supporting more than one channel, the following configuration options are shared by all the DAC8
channels:

Synchronize with ADC
Charge Pump

Build Time Configurations for r_dac8

The following build time configurations are defined in fsp_cfg/r_dac8_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Analog > DAC8 (r_dac8)

This module can be added to the Stacks tab via New Stack > Analog > DAC8 (r_dac8).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_dac8_0 Module name.

Channel Value must be an
integer greater than or
equal to 0

0 Specify the hardware
channel.

D/A A/D Synchronous
Conversion

MCU Specific Options Synchronize the DAC8
update with the ADC to
reduce interference
with A/D conversions.

DAC Mode MCU Specific Options Select the DAC
operating mode

Real-time Trigger Event MCU Specific Options Specify the event used
to trigger conversion in
Real-time mode. This
setting is only valid
when Real-time mode
is enabled.

Charge Pump (Requires
MOCO active)

MCU Specific Options Enable the DAC charge
pump.

Clock Configuration

The DAC8 peripheral module uses the PCLKB as its clock source.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 569 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

The DA8_n pins are used as analog outputs. Each DAC8 channel has one output pin.

The AVCC0 and AVSS0 pins are power and ground supply and reference pins for the DAC8.

Usage Notes
Charge Pump

The charge pump must be enabled when using DAC8 pin output while operating at AVCC < 2.7V.

Note
The MOCO must be running to use the charge pump.
If DAC8 output is to be routed to an internal signal, do not enable the charge pump.

Synchronization with ADC

When ADC synchronization is enabled and an ADC conversion is in progress, if a DAC8 conversion is
started it will automatically be delayed until after the ADC conversion is complete.

Real-time Mode

When Real-time mode is selected, the DAC8 will perform a conversion each time the selected ELC
event is received.

Limitations

Synchronization between DAC8 and ADC is activated when calling R_DAC8_Open. At this
point synchronization cannot be deactivated by the driver. In order to desynchronize DAC8
with ADC, manually clear DACADSCR.DACADST to 0 while the ADCSR.ADST bit is 0 and the
ADC is halted.
For MCUs having more than 1 DAC8 channel, both channels are synchronized with ADC if
synchronization is enabled.

Examples
Basic Example

This is a basic example of minimal use of the R_DAC8 in an application. This example shows how this
driver can be used for basic 8 bit Digital to Analog Conversion operations.

dac8_instance_ctrl_t g_dac8_ctrl;

dac_cfg_t g_dac8_cfg =

{

 .channel = 0U,

 .ad_da_synchronized = false,

 .p_extend = &g_dac8_cfg_extend

};

void basic_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 570 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

 fsp_err_t err;

 uint16_t value;

 /* Pin configuration: Output enable DA8_0(RA2A1) as Analog. */

 /* Initialize the DAC8 channel */

 err = R_DAC8_Open(&g_dac8_ctrl, &g_dac8_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 value = (uint8_t) DAC8_EXAMPLE_VALUE_ABC;

 /* Write value to DAC module */

 err = R_DAC8_Write(&g_dac8_ctrl, value);

 assert(FSP_SUCCESS == err);

 /* Start DAC8 conversion */

 err = R_DAC8_Start(&g_dac8_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct dac8_instance_ctrl_t

struct dac8_extended_cfg_t

Enumerations

enum dac8_mode_t

Data Structure Documentation

◆ dac8_instance_ctrl_t

struct dac8_instance_ctrl_t

DAC8 instance control block. DO NOT INITIALIZE.

◆ dac8_extended_cfg_t

struct dac8_extended_cfg_t

DAC8 extended configuration

Data Fields

bool enable_charge_pump Enable DAC charge pump.

dac8_mode_t dac_mode DAC mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 571 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

Enumeration Type Documentation

◆ dac8_mode_t

enum dac8_mode_t

Enumerator

DAC8_MODE_NORMAL DAC Normal mode.

DAC8_MODE_REAL_TIME DAC Real-time (event link) mode.

Function Documentation

◆ R_DAC8_Open()

fsp_err_t R_DAC8_Open (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual.

Implements dac_api_t::open.

Configures a single DAC channel. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION One or both of the following parameters
may be NULL: p_ctrl or p_cfg

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT An invalid channel was requested.

FSP_ERR_NOT_ENABLED Setting DACADSCR is not enabled when
ADCSR.ADST = 0.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 572 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

◆ R_DAC8_Write()

fsp_err_t R_DAC8_Write (dac_ctrl_t *const p_ctrl, uint16_t value)

Write data to the D/A converter.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

FSP_ERR_OVERFLOW Data overflow when data value exceeds
8-bit limit.

◆ R_DAC8_Start()

fsp_err_t R_DAC8_Start (dac_ctrl_t *const p_ctrl)

Start the D/A conversion output.

Return values
FSP_SUCCESS The channel is started successfully.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

FSP_ERR_IN_USE Attempt to re-start a channel.

◆ R_DAC8_Stop()

fsp_err_t R_DAC8_Stop (dac_ctrl_t *const p_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
FSP_SUCCESS The control is successfully stopped.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 573 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > DAC8 (r_dac8)

◆ R_DAC8_Close()

fsp_err_t R_DAC8_Close (dac_ctrl_t *const p_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

5.2.1.8 Operational Amplifier (r_opamp)
Modules » Analog

Functions

fsp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const
*const p_cfg)

fsp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t
*const p_info)

fsp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

fsp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

fsp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t
*const p_status)

fsp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t
const cmd, opamp_trim_args_t const *const p_args)

fsp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the OPAMP peripheral on RA MCUs. This module implements the OPAMP Interface.

Overview
The OPAMP HAL module provides a high level API for signal amplification applications and supports

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 574 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

the OPAMP peripheral available on RA MCUs.

Features

Low power or high-speed mode
Start by software or AGT compare match
Stop by software or ADC conversion end (stop by ADC conversion end only supported on op-
amp channels configured to start by AGT compare match)
Trimming available on some MCUs (see hardware manual)

Configuration

Build Time Configurations for r_opamp

The following build time configurations are defined in fsp_cfg/r_opamp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Analog > Operational Amplifier (r_opamp)

This module can be added to the Stacks tab via New Stack > Analog > Operational Amplifier
(r_opamp).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_opamp0 Module name.

AGT Start Trigger
Configuration (N/A
unless AGT Start
Trigger is Selected for
the Channel)

AGT1 Compare
Match Starts
OPAMPs 0 and
2 if configured
for AGT Start,
AGT0 Compare
Match Starts
OPAMPs 1 and
3 if configured
for AGT Start
AGT1 Compare
Match Starts
OPAMPs 0 and
1 if configured
for AGT Start,
AGT0 Compare
Match Starts
OPAMPs 2 and
3 if configured
for AGT Start
AGT1 Compare

AGT1 Compare Match
Starts all OPAMPs
configured for AGT
Start

Configure which AGT
channel event triggers
which op-amp channel.
The AGT compare
match event only starts
the op-amp channel if
the AGT Start trigger is
selected in the Trigger
configuration for the
channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 575 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

Match Starts all
OPAMPs
configured for
AGT Start

Power Mode MCU Specific Options Configure the op-amp
based on power or
speed requirements.
This setting affects the
minimum required
stabilization time.
Middle speed is not
available for all MCUs.

Trigger Channel 0 MCU Specific Options Select the event
triggers to start or stop
op-amp channel 0. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 1 MCU Specific Options Select the event
triggers to start or stop
op-amp channel 1. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 2 Software Start
Software Stop
AGT Start
Software Stop
AGT Start ADC
Stop

Software Start
Software Stop

Select the event
triggers to start or stop
op-amp channel 2. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 3 MCU Specific Options Select the event
triggers to start or stop
op-amp channel 3. If
the event trigger is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 576 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

OPAMP AMP0OS MCU Specific Options Select output to
connect to AMP0O pin

OPAMP AMP0PS MCU Specific Options Select input to connect
to AMP0+ pin

OPAMP AMP0MS MCU Specific Options Select input to connect
to AMP0- pin

OPAMP AMP1PS MCU Specific Options Select input to connect
to AMP1+ pin

OPAMP AMP1MS MCU Specific Options Select input to connect
to AMP1- pin

OPAMP AMP2PS MCU Specific Options Select input to connect
to AMP2+ pin

OPAMP AMP2MS MCU Specific Options Select input to connect
to AMP2- pin

Clock Configuration

The OPAMP runs on PCLKB.

Pin Configuration

To use the OPAMP HAL module, the port pins for the channels receiving the analog input must be set
as inputs on the Pins tab of the RA Configuration editor.

Refer to the most recent FSP Release Notes for any additional operational limitations for this module.

Usage Notes
Trimming the OPAMP

On MCUs that support trimming, the op-amp trim register is set to the factory default after
the Open API is called.
This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default trim values.
Supported on selected MCUs. See hardware manual for details.
Not supported if configured for low power mode (OPAMP_MODE_LOW_POWER).
This function is not reentrant. Only one side of one op-amp can be trimmed at a time.
Complete the procedure for one side of one channel before calling the trim API with the
command OPAMP_TRIM_CMD_START again.

The trim procedure works as follows:
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Connect a fixed voltage to the Pch (+) input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 577 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

Connect the Nch (-) input to the op-amp output to create a voltage follower.
Ensure the op-amp is operating and stabilized.
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and
save the value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the
next step).
If A <= B, call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and
save the value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the
next step).
If A <= B, call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Examples

Basic Example

This is a basic example of minimal use of the R_OPAMP in an application. The example demonstrates
configuring OPAMP channel 0 for high speed mode, starting the OPAMP and reading the status of the
OPAMP channel running. It also verifies that the stabilization wait time is the expected time for
selected power mode

#define OPAMP_EXAMPLE_CHANNEL (0U)

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 578 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

}

Trim Example

This example demonstrates the typical trimming procedure for opamp channel 0 using
R_OPAMP_Trim() API.

#ifndef OPAMP_EXAMPLE_CHANNEL

 #define OPAMP_EXAMPLE_CHANNEL (0U)

#endif

#ifndef OPAMP_EXAMPLE_ADC_CHANNEL

 #define OPAMP_EXAMPLE_ADC_CHANNEL (ADC_CHANNEL_2)

#endif

#define ADC_SCAN_END_DELAY (100U)

#define OPAMP_TRIM_LOOP_COUNT (5)

#define ADC_SCAN_END_MAX_TIMEOUT (0xFFFF)

uint32_t g_callback_event_counter = 0;

opamp_trim_args_t trim_args_ch =

{

 .channel = OPAMP_EXAMPLE_CHANNEL,

 .input = OPAMP_TRIM_INPUT_PCH

};

/* This callback is called when ADC Scan Complete event is generated. */

void adc_callback (adc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_callback_event_counter++;

}

void trimming_example (void)

{

 fsp_err_t err;

 /* On RA2A1, configure negative feedback and put DAC12 signal on AMP0+ Pin. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 579 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

 g_opamp_cfg_extend.plus_input_select_opamp0 = OPAMP_PLUS_INPUT_AMPPS7;

 g_opamp_cfg_extend.minus_input_select_opamp0 = OPAMP_MINUS_INPUT_AMPMS7;

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

 /* Call trim() for the Pch (+) side input */

 trim_procedure(&trim_args_ch);

 assert(FSP_SUCCESS == err);

 trim_args_ch.input = OPAMP_TRIM_INPUT_NCH;

 /* Call trim() for the Nch (-) side input */

 trim_procedure(&trim_args_ch);

}

void trim_procedure (opamp_trim_args_t * trim_args)

{

 fsp_err_t err;

 /* Call trim() for the selected channel and input with command OPAMP_TRIM_CMD_START.

*/

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_START, trim_args);

 assert(FSP_SUCCESS == err);

 /* Measure the fixed voltage connected to the channel input using the SAR ADC and

save the value

 * (referred to as result_a later in this procedure). */

 /* Reset the ADC callback counter */

 g_callback_event_counter = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 580 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

 err = R_ADC_ScanStart(&g_adc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for ADC scan complete flag */

 uint32_t timeout = ADC_SCAN_END_MAX_TIMEOUT;

 while (g_callback_event_counter == 0 && timeout != 0)

 {

 timeout--;

 }

 if (0 == timeout)

 {

 err = FSP_ERR_TIMEOUT;

 assert(FSP_SUCCESS == err);

 }

 uint16_t result_a;

 err = R_ADC_Read(&g_adc_ctrl, OPAMP_EXAMPLE_ADC_CHANNEL, &result_a);

 assert(FSP_SUCCESS == err);

 /* Iterate over the following loop 5 times: */

 /* Call trim() with command OPAMP_TRIM_CMD_NEXT_STEP for the selected channel and

given input. */

 uint8_t count = OPAMP_TRIM_LOOP_COUNT;

 while (count > 0)

 {

 count--;

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_NEXT_STEP, trim_args);

 assert(FSP_SUCCESS == err);

 /* Reset the ADC callback counter */

 g_callback_event_counter = 0;

 /* Read converted value after trim completes. */

 err = R_ADC_ScanStart(&g_adc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for ADC scan complete flag */

 timeout = ADC_SCAN_END_MAX_TIMEOUT;

 while (g_callback_event_counter == 0 && timeout != 0)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 581 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

 timeout--;

 }

 if (0 == timeout)

 {

 err = FSP_ERR_TIMEOUT;

 assert(FSP_SUCCESS == err);

 }

 uint16_t result_b;

 err = R_ADC_Read(&g_adc_ctrl, OPAMP_EXAMPLE_ADC_CHANNEL, &result_b);

 assert(FSP_SUCCESS == err);

 /* Measure the op-amp output using the SAR ADC (referred to as result_b in the next

step). */

 /* If result_a <= result_b, call trim() for the selected channel and input with

command OPAMP_TRIM_CMD_CLEAR_BIT. */

 if (result_a <= result_b)

 {

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_CLEAR_BIT, trim_args);

 assert(FSP_SUCCESS == err);

 }

 }

}

Data Structures

struct opamp_extended_cfg_t

struct opamp_instance_ctrl_t

Macros

#define OPAMP_MASK_CHANNEL_0

Enumerations

enum opamp_trigger_t

enum opamp_agt_link_t

enum opamp_mode_t

enum opamp_plus_input_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 582 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

enum opamp_minus_input_t

enum opamp_output_t

Variables

const opamp_api_t g_opamp_on_opamp

Data Structure Documentation

◆ opamp_extended_cfg_t

struct opamp_extended_cfg_t

OPAMP configuration extension. This extension is required and must be provided in
opamp_cfg_t::p_extend.

Data Fields

opamp_agt_link_t agt_link Configure which AGT links are
paired to which channel. Only
applies to channels if OPAMP_T
RIGGER_AGT_START_SOFTWAR
E_STOP or OPAMP_TRIGGER_AG
T_START_ADC_STOP is selected
for the channel.

opamp_mode_t mode Low power, middle speed, or
high speed mode.

opamp_trigger_t trigger_channel_0 Start and stop triggers for
channel 0.

opamp_trigger_t trigger_channel_1 Start and stop triggers for
channel 1.

opamp_trigger_t trigger_channel_2 Start and stop triggers for
channel 2.

opamp_trigger_t trigger_channel_3 Start and stop triggers for
channel 3.

opamp_plus_input_t plus_input_select_opamp0 OPAMP0+ connection.

opamp_minus_input_t minus_input_select_opamp0 OPAMP0- connection.

opamp_output_t output_select_opamp0 OPAMP0O connection.

opamp_plus_input_t plus_input_select_opamp1 OPAMP1+ connection.

opamp_minus_input_t minus_input_select_opamp1 OPAMP1- connection.

opamp_plus_input_t plus_input_select_opamp2 OPAMP2+ connection.

opamp_minus_input_t minus_input_select_opamp2 OPAMP2- connection.

◆ opamp_instance_ctrl_t

struct opamp_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 583 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

OPAMP instance control block. DO NOT INITIALIZE. Initialized in opamp_api_t::open().

Macro Definition Documentation

◆ OPAMP_MASK_CHANNEL_0

#define OPAMP_MASK_CHANNEL_0

Version of code that implements the API defined in this file

Enumeration Type Documentation

◆ opamp_trigger_t

enum opamp_trigger_t

Start and stop trigger for the op-amp.

Enumerator

OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE
_STOP

Start and stop with APIs.

OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP Start by AGT compare match and stop with
API.

OPAMP_TRIGGER_AGT_START_ADC_STOP Start by AGT compare match and stop after
ADC conversion.

◆ opamp_agt_link_t

enum opamp_agt_link_t

Which AGT timer starts the op-amp. Only applies to channels if
OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP or OPAMP_TRIGGER_AGT_START_ADC_STOP is
selected for the channel. If OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE_STOP is selected for a
channel, then no AGT compare match event will start that op-amp channel.

Enumerator

OPAMP_AGT_LINK_AGT1_OPAMP_0_2_AGT0_OPA
MP_1_3

OPAMP channel 0 and 2 are started by AGT1
compare match. OPAMP channel 1 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_AGT0_OPA
MP_2_3

OPAMP channel 0 and 1 are started by AGT1
compare match. OPAMP channel 2 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_2_3 All OPAMP channels are started by AGT1
compare match.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 584 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

◆ opamp_mode_t

enum opamp_mode_t

Op-amp mode.

Enumerator

OPAMP_MODE_LOW_POWER Low power mode.

OPAMP_MODE_MIDDLE_SPEED Middle speed mode (not supported on all
MCUs)

OPAMP_MODE_HIGH_SPEED High speed mode.

◆ opamp_plus_input_t

enum opamp_plus_input_t

Options to connect AMPnPS pins.

Enumerator

OPAMP_PLUS_INPUT_NONE No Connection.

OPAMP_PLUS_INPUT_AMPPS0 Set AMPPS0. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS1 Set AMPPS1. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS2 Set AMPPS2. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS3 Set AMPPS3. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS7 Set AMPPS7. See hardware manual for channel
specific options.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 585 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

◆ opamp_minus_input_t

enum opamp_minus_input_t

Options to connect AMPnMS pins.

Enumerator

OPAMP_MINUS_INPUT_NONE No Connection.

OPAMP_MINUS_INPUT_AMPMS0 Set AMPMS0. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS1 Set AMPMS1. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS2 Set AMPMS2. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS3 Set AMPMS3. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS4 Set AMPMS4. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS7 Set AMPMS7. See hardware manual for channel
specific options.

◆ opamp_output_t

enum opamp_output_t

Options to connect AMP0OS pin.

Enumerator

OPAMP_OUTPUT_NONE No Connection.

OPAMP_OUTPUT_AMPOS0 Set AMPOS0. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS1 Set AMPOS1. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS2 Set AMPOS2. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS3 Set AMPOS3. See hardware manual for channel
specific options.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 586 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

Function Documentation

◆ R_OPAMP_Open()

fsp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const *const p_cfg)

Applies power to the OPAMP and initializes the hardware based on the user configuration.
Implements opamp_api_t::open.

The op-amp is not operational until the opamp_api_t::start is called. If the op-amp is configured to
start after AGT compare match, the op-amp is not operational until opamp_api_t::start and the
associated AGT compare match event occurs.

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open and before opamp_api_t::start.

Example:

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION An input pointer is NULL.

FSP_ERR_ALREADY_OPEN Control block is already opened.

FSP_ERR_INVALID_ARGUMENT An attempt to configure OPAMP in middle
speed mode on MCU that does not support
middle speed mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 587 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

◆ R_OPAMP_InfoGet()

fsp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements opamp_api_t::infoGet.

Example:
 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us,

BSP_DELAY_UNITS_MICROSECONDS);

Return values
FSP_SUCCESS information on opamp_power_mode

stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 588 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

◆ R_OPAMP_Start()

fsp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

If the OPAMP is configured for hardware triggers, enables hardware triggers. Otherwise, starts the
op-amp. Implements opamp_api_t::start.

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open and before opamp_api_t::start.

Example:

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Op-amp started or hardware triggers

enabled successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

◆ R_OPAMP_Stop()

fsp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

Stops the op-amp. If the OPAMP is configured for hardware triggers, disables hardware triggers.
Implements opamp_api_t::stop.

Return values
FSP_SUCCESS Op-amp stopped or hardware triggers

disabled successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 589 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

◆ R_OPAMP_StatusGet()

fsp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t *const p_status)

Provides the operating status for each op-amp in a bitmask. This bit is set when operation begins,
before the stabilization wait time has elapsed. Implements opamp_api_t::statusGet.

Return values
FSP_SUCCESS Operating status of each op-amp provided

in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_OPAMP_Trim()

fsp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

On MCUs that support trimming, the op-amp trim register is set to the factory default after open().
This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default factory trim values.

Not supported on all MCUs. See hardware manual for details. Not supported if configured for low
power mode (OPAMP_MODE_LOW_POWER).

This function is not reentrant. Only one side of one op-amp can be trimmed at a time. Complete the
procedure for one side of one channel before calling trim() with command
OPAMP_TRIM_CMD_START again.

Implements opamp_api_t::trim.

Reference: Section 37.9 "User Offset Trimming" RA2A1 hardware manual R01UM0008EU0130. The
trim procedure works as follows:

Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Connect a fixed voltage to the Pch (+) input.
Connect the Nch (-) input to the op-amp output to create a voltage follower.
Ensure the op-amp is operating and stabilized.
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_NEXT_STEP.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 590 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > Operational Amplifier (r_opamp)

Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_UNSUPPORTED Trimming is not supported on this MCU.

FSP_ERR_INVALID_STATE The command is not valid in the current
state of the trim state machine.

FSP_ERR_INVALID_ARGUMENT The requested channel is not operating or
the trim procedure is not in progress for this
channel/input combination.

FSP_ERR_INVALID_MODE Trim is not allowed in low power mode.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_OPAMP_Close()

fsp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

Stops the op-amps. Implements opamp_api_t::close.

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

Variable Documentation

◆ g_opamp_on_opamp

const opamp_api_t g_opamp_on_opamp

OPAMP Implementation of OPAMP interface.

5.2.1.9 SDADC Channel Configuration (r_sdadc)
Modules » Analog

Functions

fsp_err_t R_SDADC_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 591 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

fsp_err_t R_SDADC_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_extend)

fsp_err_t R_SDADC_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_SDADC_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_ScanGroupStart (adc_ctrl_t *p_ctrl, adc_group_mask_t
group_id)

fsp_err_t R_SDADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_SDADC_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint16_t *const p_data)

fsp_err_t R_SDADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t const offset)

fsp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t R_SDADC_Close (adc_ctrl_t *p_ctrl)

Detailed Description

Driver for the SDADC24 peripheral on RA MCUs. This module implements the ADC Interface.

Overview
Features

The SDADC module supports the following features:

24 bit maximum resolution
Configure scans to include:

Multiple analog channels
Outputs of OPAMP0 (P side) and OPAMP1 (N side) of SDADC channel 4

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)

Configurable scan mode:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously

Supports averaging converted samples
Optional callback when single conversion, entire scan, or calibration completes
Supports reading converted data
Sample and hold support

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 592 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

Selecting an ADC

All RA MCUs have an ADC (r_adc). Only select RA MCUs have an SDADC. When selecting between
them, consider these factors. Refer to the hardware manual for details.

ADC SDADC

Availability Available on all RA MCUs. Available on select RA MCUs.

Resolution The ADC has a maximum
resolution of 12, 14, or 16 bits
depending on the MCU.

The SDADC has a maximum
accuracy of 24 bits.

Number of Channels The ADC has more channels
than the SDADC.

The SDADC 5 channels, one of
which is tied to OPAMP0 and
OPAMP1.

Frequency The ADC sampling time is
shorter (more samples per
second).

The SDADC sampling time is
longer (fewer samples per
second).

Settling Time The ADC does not have a
settling time when switching
between channels.

The SDADC requires a settling
time when switching between
channels.

Configuration

Build Time Configurations for r_sdadc

The following build time configurations are defined in fsp_cfg/r_sdadc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Analog > ADC (r_sdadc)

This module can be added to the Stacks tab via New Stack > Analog > ADC (r_sdadc).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_adc0 Module name.

Mode Single Scan
Continuous
Scan

Continuous Scan In single scan mode, all
channels are converted
once per start trigger,
and conversion stops
after all enabled
channels are scanned.
In continuous scan
mode, conversion
starts after a start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 593 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

trigger, then continues
until stopped in
software.

Resolution 16 Bit
24 Bit

24 Bit Select 24-bit or 16-bit
resolution.

Alignment Right
Left

Right Select left or right
alignment.

Trigger MCU Specific Options Select conversion start
trigger. Conversion can
be started in software,
or conversion can be
started when a
hardware event occurs
if the hardware event is
linked to the SDADC
peripheral using the
ELC API.

Vref Source Internal
External

Internal Vref can be source
internally and output
on the SBIAS pin, or
Vref can be input from
VREFI.

Vref Voltage 0.8 V
1.0 V
1.2 V
1.4 V
1.6 V
1.8 V
2.0 V
2.2 V
2.4 V

1.0 V Select Vref voltage. If
Vref is input externally,
the voltage on VREFI
must match the
voltage selected within
3%.

Callback Name must be a valid
C symbol

NULL Enter the name of the
callback function to be
called when conversion
completes or a scan
ends.

Conversion End
Interrupt Priority

MCU Specific Options [Required] Select the
interrupt priority for
the conversion end
interrupt.

Scan End Interrupt
Priority

MCU Specific Options [Optional] Select the
interrupt priority for
the scan end interrupt.

Calibration End
Interrupt Priority

MCU Specific Options [Optional] Select the
interrupt priority for
the calibration end
interrupt.

Configurations for Analog > SDADC Channel Configuration (r_sdadc)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 594 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

Configuration Options Default Description

Input Differential
Single Ended

Differential Select differential or
single-ended input.

Stage 1 Gain 1
2
3
4
8

1 Select the gain for
stage 1 of the PGA.
Must be 1 for single-
ended input.

Stage 2 Gain 1
2
4
8

1 Select the gain for
stage 2 of the PGA.
Must be 1 for single-
ended input.

Oversampling Ratio 64
128
256
512
1024
2048

256 Select the
oversampling ratio for
the PGA. Must be 256
for single-ended input.

Polarity (Valid for
Single-Ended Input
Only)

Positive
Negative

Positive Select positive or
negative polarity for
single-ended input.
VBIAS (1.0 V typical) is
connected on the
opposite input.

Conversions to Average
per Result

Do Not Average
(Interrupt after
Each
Conversion)
Average 8
Average 16
Average 32
Average 64

Do Not Average
(Interrupt after Each
Conversion)

Select the number of
conversions to average
for each result. The AD
C_EVENT_CONVERSION
_END event occurs
after each average, or
after each individual
conversion if averaging
is disabled.

Invert (Valid for
Negative Single-Ended
Input Only)

Result Not
Inverted
Result Inverted

Result Not Inverted Select whether to
invert negative single-
ended input. When the
result is inverted, the
lowest measurable
voltage gives a result
of 0, and the highest
measurable voltage
gives a result of
2^resolution - 1.

Number of Conversions
Per Scan

Refer to the RA
Configuration tool for
available options.

1 Number of conversions
on this channel before
AUTOSCAN moves to
the next channel.
When all conversions of
all channels are
complete, the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 595 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

ADC_EVENT_SCAN_END
event occurs.

Clock Configuration

The SDADC clock clock is configurable on the clocks tab.

The SDADC clock must be 4 MHz when the SDADC is used.

Pin Configuration

The ANSDnP (n = 0-3) pins are analog input channels that can be used with the SDADC.

Usage Notes
Scan Procedure

In this document, the term "scan" refers to the AUTOSCAN feature of the SDADC, which works as
follows:

1. Conversions are performed on enabled channels in ascending order of channel number. All
conversions required for a single channel are completed before the sequencer moves to the
next channel.

2. Conversions are performed at the rate (in Hz) of the SDADC oversampling clock frequency /
oversampling ratio (configured per channel). FSP uses the normal mode SDADC
oversampling clock frequency.

3. If averaging is enabled for the channel, the number of conversions to average are
performed before each conversion end interrupt occurs.

4. If the number of conversions for the channel is more than 1, SDADC performs the number of
conversions requested. These are performed consecutively. There is a settling time
associated with switching channels. Performing all of the requested conversions for each
channel at a time avoids this settling time after the first conversion.

If averaging is enabled for the channel, each averaged result counts as a single conversion.

5. Continues to the next enabled channel only after completing all conversions requested.
6. After all enabled channels are scanned, a scan end interrupt occurs. The driver supports

single-scan and continuous scan operation modes.
Single-scan mode performs one scan per trigger (hardware trigger or software
start using R_SDADC_ScanStart).
In continuous scan mode, the scan is restarted after each scan completes. A single
trigger is required to start continuous operation of the SDADC.

When Interrupts Are Not Enabled

If interrupts are not enabled, the R_SDADC_StatusGet() API can be used to poll the SDADC to
determine when the scan has completed. The R_SDADC_Read() API function is used to access the
converted SDADC result. This applies to both normal scans and calibration scans.

Calibration

Calibration is required to use the SDADC if any channel is configured for differential mode. Call
R_SDADC_Calibrate() after open, and prior to any other function, then wait for a calibration complete

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 596 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

event before using the SDADC. R_SDADC_Calibrate() should not be called if all channels are
configured for single-ended mode.

Examples
Basic Example

This is a basic example of minimal use of the SDADC in an application.

void sdadc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_SDADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Calibrate all differential channels. */

 sdadc_calibrate_args_t calibrate_args;

 calibrate_args.mode = SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET;

 calibrate_args.channel = ADC_CHANNEL_0;

 err = R_SDADC_Calibrate(&g_adc0_ctrl, &calibrate_args);

 assert(FSP_SUCCESS == err);

 /* Wait for calibration to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* In software trigger mode, start a scan by calling R_SDADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_SDADC_ScanStart(). */

 (void) R_SDADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 597 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint32_t channel1_conversion_result;

 R_SDADC_Read32(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result);

}

Using DTC or DMAC with the SDADC

If desired, the DTC or DMAC can be used to store each conversion result in a circular buffer. An
example configuration is below.

/* Example DTC transfer settings to used with SDADC. */

/* The transfer length should match the total number of conversions per scan. This

example assumes the SDADC is

 * configured to scan channel 1 three times, then channel 2 and channel 4 once, for a

total of 5 conversions. */

#define SDADC_EXAMPLE_TRANSFER_LENGTH (5)

uint32_t g_sdadc_example_buffer[SDADC_EXAMPLE_TRANSFER_LENGTH];

transfer_info_t g_sdadc_transfer_info DTC_TRANSFER_INFO_ALIGNMENT =

{

 .transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED,

 .transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_DESTINATION,

 .transfer_settings_word_b.irq = TRANSFER_IRQ_END,

 .transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED,

 .transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED,

 .transfer_settings_word_b.mode = TRANSFER_MODE_REPEAT,

 /* NOTE: The data transferred will contain a 24-bit converted value in bits 23:0.

Bit 24 contains a status flag

 * indicating if the result overflowed or not. Bits 27:25 contain the channel number

+ 1. The settings for

 * resolution and alignment and ignored when DTC or DMAC is used. */

 .transfer_settings_word_b.size = TRANSFER_SIZE_4_BYTE,

 /* NOTE: It is strongly recommended to enable averaging on all channels or no

channels when using DTC with SDADC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 598 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

 * because the result register is different when averaging is used. If averaging is

enabled on all channels,

 * set transfer_info_t::p_src to &R_SDADC->ADAR. */

 .p_src = (void const *) &R_SDADC0->ADCR,

 .p_dest = &g_sdadc_example_buffer[0],

 .length = SDADC_EXAMPLE_TRANSFER_LENGTH,

};

void sdadc_dtc_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_SDADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Calibrate all differential channels. */

 sdadc_calibrate_args_t calibrate_args;

 calibrate_args.mode = SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET;

 calibrate_args.channel = ADC_CHANNEL_0;

 err = R_SDADC_Calibrate(&g_adc0_ctrl, &calibrate_args);

 assert(FSP_SUCCESS == err);

 /* Wait for calibration to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* In software trigger mode, start a scan by calling R_SDADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_SDADC_ScanStart(). */

 (void) R_SDADC_ScanStart(&g_adc0_ctrl);

 /* After each conversion, the converted data is transferred to the next index in

g_sdadc_example_buffer. After

 * the entire scan completes, the index in g_sdadc_example_buffer resets. The data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 599 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

in g_sdadc_example_buffer

 * is:

 * - g_sdadc_example_buffer[0] = SDADC channel 1 conversion 0

 * - g_sdadc_example_buffer[1] = SDADC channel 1 conversion 1

 * - g_sdadc_example_buffer[2] = SDADC channel 1 conversion 2

 * - g_sdadc_example_buffer[3] = SDADC channel 2 conversion 0

 * - g_sdadc_example_buffer[4] = SDADC channel 4 conversion 0

 // At any point in the application after the first scan completes, the most

recent data for channel 2 can be read

 * from the buffer like this. Shifting removes the unrelated bits in the result

register and propagates the sign

 * bit so the value can be interpreted as a signed result. This assumes channel 2 is

configured in differential

 * mode. */

 int32_t channel_2_data = (int32_t) (g_sdadc_example_buffer[3] << 8) >> 8;

 FSP_PARAMETER_NOT_USED(channel_2_data);

}

Data Structures

struct sdadc_calibrate_args_t

struct sdadc_channel_cfg_t

struct sdadc_scan_cfg_t

struct sdadc_extended_cfg_t

struct sdadc_instance_ctrl_t

Enumerations

enum sdadc_vref_src_t

enum sdadc_vref_voltage_t

enum sdadc_channel_input_t

enum sdadc_channel_stage_1_gain_t

enum sdadc_channel_stage_2_gain_t

enum sdadc_channel_oversampling_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 600 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

enum sdadc_channel_polarity_t

enum sdadc_channel_average_t

enum sdadc_channel_inversion_t

enum sdadc_channel_count_formula_t

enum sdadc_calibration_t

Data Structure Documentation

◆ sdadc_calibrate_args_t

struct sdadc_calibrate_args_t

Structure to pass to the adc_api_t::calibrate p_extend argument.

Data Fields

adc_channel_t channel Which channel to calibrate.

sdadc_calibration_t mode Calibration mode.

◆ sdadc_channel_cfg_t

struct sdadc_channel_cfg_t

SDADC per channel configuration.

◆ sdadc_scan_cfg_t

struct sdadc_scan_cfg_t

SDADC active channel configuration

Data Fields

uint32_t scan_mask Channels/bits: bit 0 is ch0; bit
15 is ch15.

◆ sdadc_extended_cfg_t

struct sdadc_extended_cfg_t

SDADC configuration extension. This extension is required and must be provided in
adc_cfg_t::p_extend.

Data Fields

uint8_t conv_end_ipl Conversion end interrupt
priority.

IRQn_Type conv_end_irq

sdadc_vref_src_t vref_src Source of Vref (internal or
external)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 601 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

sdadc_vref_voltage_t vref_voltage Voltage of Vref, required for
both internal and external Vref.
If Vref is from an external
source, the voltage must match
the specified voltage within
3%.

sdadc_channel_cfg_t const * p_channel_cfgs[SDADC_MAX_N
UM_CHANNELS]

Configuration for each channel,
set to NULL if unused.

◆ sdadc_instance_ctrl_t

struct sdadc_instance_ctrl_t

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Enumeration Type Documentation

◆ sdadc_vref_src_t

enum sdadc_vref_src_t

Source of Vref.

Enumerator

SDADC_VREF_SRC_INTERNAL Vref is internally sourced, can be output as
SBIAS.

SDADC_VREF_SRC_EXTERNAL Vref is externally sourced from the VREFI pin.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 602 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ sdadc_vref_voltage_t

enum sdadc_vref_voltage_t

Voltage of Vref.

Enumerator

SDADC_VREF_VOLTAGE_800_MV Vref is 0.8 V.

SDADC_VREF_VOLTAGE_1000_MV Vref is 1.0 V.

SDADC_VREF_VOLTAGE_1200_MV Vref is 1.2 V.

SDADC_VREF_VOLTAGE_1400_MV Vref is 1.4 V.

SDADC_VREF_VOLTAGE_1600_MV Vref is 1.6 V.

SDADC_VREF_VOLTAGE_1800_MV Vref is 1.8 V.

SDADC_VREF_VOLTAGE_2000_MV Vref is 2.0 V.

SDADC_VREF_VOLTAGE_2200_MV Vref is 2.2 V.

SDADC_VREF_VOLTAGE_2400_MV Vref is 2.4 V (only valid for external Vref)

◆ sdadc_channel_input_t

enum sdadc_channel_input_t

Per channel input mode.

Enumerator

SDADC_CHANNEL_INPUT_DIFFERENTIAL Differential input.

SDADC_CHANNEL_INPUT_SINGLE_ENDED Single-ended input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 603 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ sdadc_channel_stage_1_gain_t

enum sdadc_channel_stage_1_gain_t

Per channel stage 1 gain options.

Enumerator

SDADC_CHANNEL_STAGE_1_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_1_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_1_GAIN_3 Gain of 3 (only valid for stage 1)

SDADC_CHANNEL_STAGE_1_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_1_GAIN_8 Gain of 8.

◆ sdadc_channel_stage_2_gain_t

enum sdadc_channel_stage_2_gain_t

Per channel stage 2 gain options.

Enumerator

SDADC_CHANNEL_STAGE_2_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_2_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_2_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_2_GAIN_8 Gain of 8.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 604 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ sdadc_channel_oversampling_t

enum sdadc_channel_oversampling_t

Per channel oversampling ratio.

Enumerator

SDADC_CHANNEL_OVERSAMPLING_64 Oversampling ratio of 64.

SDADC_CHANNEL_OVERSAMPLING_128 Oversampling ratio of 128.

SDADC_CHANNEL_OVERSAMPLING_256 Oversampling ratio of 256.

SDADC_CHANNEL_OVERSAMPLING_512 Oversampling ratio of 512.

SDADC_CHANNEL_OVERSAMPLING_1024 Oversampling ratio of 1024.

SDADC_CHANNEL_OVERSAMPLING_2048 Oversampling ratio of 2048.

◆ sdadc_channel_polarity_t

enum sdadc_channel_polarity_t

Per channel polarity, valid for single-ended input only.

Enumerator

SDADC_CHANNEL_POLARITY_POSITIVE Positive-side single-ended input.

SDADC_CHANNEL_POLARITY_NEGATIVE Negative-side single-ended input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 605 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ sdadc_channel_average_t

enum sdadc_channel_average_t

Per channel number of conversions to average before conversion end callback.

Enumerator

SDADC_CHANNEL_AVERAGE_NONE Do not average (callback for each conversion)

SDADC_CHANNEL_AVERAGE_8 Average 8 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_16 Average 16 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_32 Average 32 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_64 Average 64 samples for each conversion end
callback.

◆ sdadc_channel_inversion_t

enum sdadc_channel_inversion_t

Per channel polarity, valid for negative-side single-ended input only.

Enumerator

SDADC_CHANNEL_INVERSION_OFF Do not invert conversion result.

SDADC_CHANNEL_INVERSION_ON Invert conversion result.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 606 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ sdadc_channel_count_formula_t

enum sdadc_channel_count_formula_t

Select a formula to specify the number of conversions. The following symbols are used in the
formulas:

N: Number of conversions
n: sdadc_channel_cfg_t::coefficient_n, do not set to 0 if m is 0
m: sdadc_channel_cfg_t::coefficient_m, do not set to 0 if n is 0

Either m or n must be non-zero.

Enumerator

SDADC_CHANNEL_COUNT_FORMULA_EXPONENTI
AL

N = 32 * (2 ^ n - 1) + m * 2 ^ n.

SDADC_CHANNEL_COUNT_FORMULA_LINEAR N = (32 * n) + m.

◆ sdadc_calibration_t

enum sdadc_calibration_t

Calibration mode.

Enumerator

SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET Use internal reference to calibrate offset and
gain.

SDADC_CALIBRATION_EXTERNAL_OFFSET Use external reference to calibrate offset.

SDADC_CALIBRATION_EXTERNAL_GAIN Use external reference to calibrate gain.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 607 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_Open()

fsp_err_t R_SDADC_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Applies power to the SDADC and initializes the hardware based on the user configuration. As part
of this initialization, the SDADC clock is configured and enabled. If an interrupt priority is non-zero,
enables an interrupt which will call a callback to notify the user when a conversion, scan, or
calibration is complete. R_SDADC_Calibrate() must be called after this function before using the
SDADC if any channels are used in differential mode. Implements adc_api_t::open().

Note
This function delays at least 2 ms as required by the SDADC power on procedure.

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_ALREADY_OPEN Control block is already open.

FSP_ERR_IRQ_BSP_DISABLED A required interrupt is disabled

◆ R_SDADC_ScanCfg()

fsp_err_t R_SDADC_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_extend)

Configures the enabled channels of the ADC. Pass a pointer to sdadc_scan_cfg_t to p_extend.
Implements adc_api_t::scanCfg().

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 608 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_InfoGet()

fsp_err_t R_SDADC_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel, the total number of results to be
read in order to read the results of all configured channels, the size of each result, and the ELC
event enumerations. Implements adc_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_ScanStart()

fsp_err_t R_SDADC_ScanStart (adc_ctrl_t * p_ctrl)

If the SDADC is configured for hardware triggers, enables hardware triggers. Otherwise, starts a
scan. Implements adc_api_t::scanStart().

Return values
FSP_SUCCESS Scan started or hardware triggers enabled

successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_IN_USE A conversion or calibration is in progress.

◆ R_SDADC_ScanGroupStart()

fsp_err_t R_SDADC_ScanGroupStart (adc_ctrl_t * p_ctrl, adc_group_mask_t group_id)

adc_api_t::scanStart is not supported on the SDADC. Use scanStart instead.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 609 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_ScanStop()

fsp_err_t R_SDADC_ScanStop (adc_ctrl_t * p_ctrl)

If the SDADC is configured for hardware triggers, disables hardware triggers. Otherwise, stops any
in-progress scan started by software. Implements adc_api_t::scanStop().

Return values
FSP_SUCCESS Scan stopped or hardware triggers disabled

successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_StatusGet()

fsp_err_t R_SDADC_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Returns the status of a scan started by software, including calibration scans. It is not possible to
determine the status of a scan started by a hardware trigger. Implements
adc_api_t::scanStatusGet().

Return values
FSP_SUCCESS No software scan or calibration is in

progress.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 610 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_Read()

fsp_err_t R_SDADC_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data
)

Reads the most recent conversion result from a channel. Truncates 24-bit results to the upper 16
bits. Implements adc_api_t::read().

Note
The result stored in p_data is signed when the SDADC channel is configured in differential mode.
Do not use this API if the conversion end interrupt (SDADC0_ADI) is used to trigger the DTC unless the interrupt
mode is set to TRANSFER_IRQ_EACH.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_Read32()

fsp_err_t R_SDADC_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Reads the most recent conversion result from a channel. Implements adc_api_t::read32().

Note
The result stored in p_data is signed when the SDADC channel is configured in differential mode. When the
SDADC is configured for 24-bit resolution and right alignment, the sign bit is bit 23, and the upper 8 bits are 0.
When the SDADC is configured for 16-bit resolution and right alignment, the sign bit is bit 15, and the upper 16
bits are 0.
Do not use this API if the conversion end interrupt (SDADC0_ADI) is used to trigger the DTC unless the interrupt
mode is set to TRANSFER_IRQ_EACH.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 611 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_OffsetSet()

fsp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Sets the offset. Offset is applied after stage 1 of the input channel. Offset can only be applied when
the channel is configured for differential input. Implements adc_api_t::offsetSet().

Note: The offset is cleared if adc_api_t::calibrate() is called. The offset can be re-applied if
necessary after the the callback with event ADC_EVENT_CALIBRATION_COMPLETE is called.

Parameters
[in] p_ctrl See p_instance_ctrl in

adc_api_t::offsetSet().

[in] reg_id See reg_id in
adc_api_t::offsetSet().

[in] offset Must be between -15 and 15,
offset (mV) = 10.9376 mV *
offset_steps / stage 1 gain.

Return values
FSP_SUCCESS Offset updated successfully.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_IN_USE A conversion or calibration is in progress.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 612 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC Channel Configuration (r_sdadc)

◆ R_SDADC_Calibrate()

fsp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_ctrl, void const * p_extend)

Requires sdadc_calibrate_args_t passed to p_extend. Calibrates the specified channel. Calibration is
not required or supported for single-ended mode. Calibration must be completed for differential
mode before using the SDADC. A callback with the event ADC_EVENT_CALIBRATION_COMPLETE is
called when calibration completes. Implements adc_api_t::calibrate().

During external offset calibration, apply a differential voltage of 0 to ANSDnP - ANSDnN, where n is
the input channel and ANSDnP is OPAMP0 for channel 4 and ANSDnN is OPAMP1 for channel 4.
Complete external offset calibration before external gain calibration.

During external gain calibration apply a voltage between 0.4 V / total_gain and 0.8 V / total_gain.
The differential voltage applied during calibration is corrected to a conversion result of 0x7FFFFF,
which is the maximum possible positive differential measurement.

This function clears the offset value. If offset is required after calibration, it must be reapplied after
calibration is complete using adc_api_t::offsetSet.

Return values
FSP_SUCCESS Calibration began successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_IN_USE A conversion or calibration is in progress.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_Close()

fsp_err_t R_SDADC_Close (adc_ctrl_t * p_ctrl)

Stops any scan in progress, disables interrupts, and powers down the SDADC peripheral.
Implements adc_api_t::close().

Note
This function delays at least 3 us as required by the SDADC24 stop procedure.

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

5.2.1.10 SDADC_B Channel Configuration (r_sdadc_b)
Modules » Analog

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 613 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

Functions

fsp_err_t R_SDADC_B_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_SDADC_B_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_extend)

fsp_err_t R_SDADC_B_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_SDADC_B_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_B_ScanGroupStart (adc_ctrl_t *p_ctrl, adc_group_mask_t
group_id)

fsp_err_t R_SDADC_B_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_B_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_SDADC_B_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint16_t *const p_data)

fsp_err_t R_SDADC_B_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_SDADC_B_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t const offset)

fsp_err_t R_SDADC_B_Calibrate (adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t R_SDADC_B_Close (adc_ctrl_t *p_ctrl)

Detailed Description

Driver for the SDADC_B peripheral on RA MCUs. This module implements the ADC Interface.

Overview
Features

The SDADC_B module supports the following features:

24 bit maximum resolution
Configure scans to include:

Multiple analog channels
Configurable sampling mode:

4 kHz sampling mode
8 kHz sampling mode
8 kHz/4 kHz Hybrid sampling mode

Configurable Cut-off frequency of high-pass filter
Configurable preamplifier gain for each channel
Configurable phase adjustment for each channel

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 614 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

Optional callback when conversion completes or zero-cross is detected
Supports reading converted data
Supports positive and negative input voltage

Selecting an ADC

All RA MCUs have an ADC (r_adc). Only select RA MCUs have an SDADC_B. When selecting between
them, consider these factors. Refer to the hardware manual for details.

ADC SDADC_B

Availability Available on all RA MCUs. Available on select RA MCUs.

Resolution The ADC has a maximum
resolution of 12, 14, or 16 bits
depending on the MCU.

The SDADC_B has a maximum
accuracy of 24 bits.

Number of Channels The ADC has 4 channels. The SDADC_B has up to 7
channels.

Frequency The ADC sampling time is
shorter (more samples per
second).

The SDADC sampling time is
longer (fewer samples per
second).

Configuration

Build Time Configurations for r_sdadc_b

The following build time configurations are defined in fsp_cfg/r_sdadc_b_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Clock Configuration

The SDADC_B clock is configurable on the clocks tab.

The SDADC_B clock must be 12 MHz, 12.8 MHz or 16 MHz when the SDADC_B is used.

Pin Configuration

The ANINn/ANIPn (n = 0-6) pins are analog input channels that can be used with the SDADC_B.

Virtual Channel Configuration

When 8KHz/4KHz Hybrid Mode is enabled, selected Virtual Channels 0 to 3 are converted at
an 8KHz rate and corresponding Virtual Channels 4 to 7 are converted at a 4KHz rate.
In some locations, 4KHz Hybrid Mode conversions may be referred to 'Type 2'. All other
conversions may be referred to as 'Type 1'. The SDADC_B driver abstracts 'Type 1' and
'Type 2' and populates the user callback arguments with a mask of converted channel IDs.
It is the responsibility of the application to know the configuration of provided channel IDs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 615 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

Configuration of enabled virtual channels corresponding to Sampling mode is subject to
below constraints:

Analog input n (n = 0 to 3) must be configured for Virtual Channel m (m = 4 to 7)
if corresponding Analog input n is configured for Virtual Channel n and Hybrid
mode is enabled
Analog input 4 to 6 cannot be configured for Virtual Channel 4 to 6 when Hybrid
mode is enabled
Virtual Channel 7 can only be configured when Hybrid mode is enabled

Usage Notes
Cut-off frequency of HPF

Cut-off frequency of HPF (High Pass Filter) is selectable by setting SDADHPFCR.COF bit. Value of cut-
off frequency of HPF corresponding to each COF value is as below table:

COF 4 kHz
sampling

mode
fos = 1.5

MHz

4 kHz
sampling

mode
fos = 1.6

MHz

8 kHz
sampling

mode
fos = 3.0

MHz

8 kHz
sampling

mode
fos = 3.2

MHz

8 kHz/4 kHz
hybrid

sampling
mode

fos = 3.0
MHz

8 kHz/4 kHz
hybrid

sampling
mode

fos = 3.2
MHz

COF 0 0.607 Hz 0.647 Hz 1.214 Hz 1.295 Hz 1.214 Hz 1.295 Hz

COF 1 1.214 Hz 1.295 Hz 2.427 Hz 2.589 Hz 2.427 Hz 2.589 Hz

COF 2 2.427 Hz 2.589 Hz 4.855 Hz 5.179 Hz 4.855 Hz 5.179 Hz

COF 3 4.855 Hz 5.179 Hz 9.710 Hz 10.357 Hz 1.214 Hz
(Type 1)
0.607 Hz
(Type 2)

1.295 Hz
(Type 1)
0.647 Hz
(Type 2)

Channel ID used in driver

Channel ID input to R_SDADC_B_Read and R_SDADC_B_Read32 API and Channel Mask provided to
user callback is the virtual channel ID and does not necessarily correspond to a physical input
channel number. When Hybrid sampling mode is enabled, reading conversion result for channel 4 to
7 returns the 4 kHz conversion (Type 2) result of corresponding channel 0 to 3.

Scan Procedure

Operation of 24-bit Sigma-Delta A/D Converter is as below:

1. Conversions are performed on enabled channels in ascending order of channel number
after software trigger is started using R_SDADC_B_ScanStart() API.

2. Conversions are performed at the rate (in Hz) of the SDADC_B sampling clock frequency.
3. The user callback function will be invoked after enabled channels are scanned.
4. If zero-cross detection interrupt is enabled, a zero-cross detection interrupt occurs in

synchronization with the rising edge of the SDADC conversion end interrupt.

Triggering ELC Events with SDADC_B

The interrupt signals SDADC_B can trigger the start of other peripherals. The Event Link
Controller (r_elc) guide provides a list of all available peripherals.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 616 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

Note
When using ELC events to directly read converted data, it is the responsibility of the application to
ensure that the stabilization period of 80 conversions has passed since starting the converter by using
R_SDADC_B_StatusGet() API.

Limitations

After powering on, an internal setup time is necessary. During this time
R_SDADC_B_StatusGet() will return ADC_STATE_CALIBRATION_IN_PROGRESS.
SDADC_B does not operate in software standby mode. To reduce current comsumption,
stop and close the SDADC_B module before entering software standby.
After stopping the conversion using R_SDADC_B_ScanStop() API, it is necessary to wait at
least 1.4us before performing conversion again.

Examples
Basic Example

This is a basic example of minimal use of the SDADC_B in an application.

void sdadc_b_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_SDADC_B_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* In software trigger mode, start a scan by calling R_SDADC_B_ScanStart(). In other

modes, enable external

 * triggers by calling R_SDADC_B_ScanStart(). */

 (void) R_SDADC_B_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_CALIBRATION_IN_PROGRESS;

 while (ADC_STATE_CALIBRATION_IN_PROGRESS == status.state)

 {

 R_SDADC_B_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint32_t channel1_conversion_result;

 R_SDADC_B_Read32(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 617 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

}

Using DTC or DMAC with the SDADC_B

If desired, the DTC or DMAC can be used to store each conversion result in a circular buffer. An
example configuration is below.

/* Example DTC transfer settings to used with SDADC_B. */

/* The transfer length should match the total number of conversions per scan. This

example assumes the SDADC_B is

 * configured to scan all 7 channels. */

#define SDADC_B_EXAMPLE_TRANSFER_LENGTH (7)

uint32_t g_sdadc_b_example_buffer[SDADC_B_EXAMPLE_TRANSFER_LENGTH];

transfer_info_t g_sdadc_b_transfer_info DTC_TRANSFER_INFO_ALIGNMENT =

{

 .transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED,

 .transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_DESTINATION,

 .transfer_settings_word_b.irq = TRANSFER_IRQ_END,

 .transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED,

 .transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED,

 .transfer_settings_word_b.mode = TRANSFER_MODE_REPEAT,

 /* NOTE: The data transferred will contain a 24-bit converted value in bits 23:0.

The settings for

 * resolution and alignment are ignored when DTC or DMAC is used. */

 .transfer_settings_word_b.size = TRANSFER_SIZE_4_BYTE,

 .p_src = (void const *) &R_SDADC_B->SDADCR0,

 .p_dest = &g_sdadc_b_example_buffer[0],

 .length = SDADC_B_EXAMPLE_TRANSFER_LENGTH,

};

void sdadc_b_dtc_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_SDADC_B_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 618 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

 assert(FSP_SUCCESS == err);

 /* Start a scan by calling R_SDADC_B_ScanStart(). */

 (void) R_SDADC_B_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_CALIBRATION_IN_PROGRESS;

 while (ADC_STATE_CALIBRATION_IN_PROGRESS == status.state)

 {

 R_SDADC_B_StatusGet(&g_adc0_ctrl, &status);

 }

 /* After each conversion, the converted data is transferred to the next index in

g_sdadc_b_example_buffer. After

 * the entire scan completes, the index in g_sdadc_b_example_buffer resets. The data

in g_sdadc_b_example_buffer

 * is:

 * - g_sdadc_b_example_buffer[0] = SDADC_B channel 0

 * - g_sdadc_b_example_buffer[1] = SDADC_B channel 1

 * - g_sdadc_b_example_buffer[2] = SDADC_B channel 2

 * - g_sdadc_b_example_buffer[3] = SDADC_B channel 3

 * - g_sdadc_b_example_buffer[4] = SDADC_B channel 4

 * - g_sdadc_b_example_buffer[5] = SDADC_B channel 5

 * - g_sdadc_b_example_buffer[6] = SDADC_B channel 6

 // At any point in the application after the first scan completes, the most

recent data for channel 2 can be read

 * from the buffer like this. Conversion data is signed integer value. */

 int32_t channel_2_data = (int32_t) g_sdadc_b_example_buffer[2];

 FSP_PARAMETER_NOT_USED(channel_2_data);

}

Data Structures

struct sdadc_b_scan_cfg_t

struct sdadc_b_extended_cfg_t

struct sdadc_b_instance_ctrl_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 619 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

enum sdadc_b_oper_clk_t

enum sdadc_b_channel_mode_t

enum sdadc_b_channel_power_t

enum sdadc_b_samp_mode_t

enum sdadc_b_channel_gain_t

enum sdadc_b_channel_hpf_t

enum sdadc_b_resolution_t

enum sdadc_b_zc_channel_t

enum sdadc_b_zc_output_mode_t

enum sdadc_b_zc_falling_edge_detection_t

enum sdadc_b_zc_rising_edge_detection_t

enum sdadc_b_cutoff_t

Data Structure Documentation

◆ sdadc_b_scan_cfg_t

struct sdadc_b_scan_cfg_t

SDADC_B active channel configuration.

Data Fields

union sdadc_b_scan_cfg_t __unnamed__

sdadc_b_cutoff_t hpf_cutoff Cut-off frequency of HPF.

sdadc_b_channel_gain_t gain_setting[SDADC_B_MAX_NU
M_CHANNELS - 1]

Gain setting.

sdadc_b_channel_hpf_t hpf_setting[SDADC_B_MAX_NU
M_CHANNELS]

High pass filter on-off.

uint16_t phase_adjustment[SDADC_B_M
AX_NUM_CHANNELS]

Phase adjustment for each
channels.

◆ sdadc_b_extended_cfg_t

struct sdadc_b_extended_cfg_t

SDADC configuration extension. This extension is required and must be provided in
adc_cfg_t::p_extend.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 620 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

sdadc_b_oper_clk_t oper_clk Operating clock of the digital
block.

sdadc_b_samp_mode_t sampling_mode Sampling mode select.

sdadc_b_scan_cfg_t const * p_channel_cfg Pointer to original channel
config data.

uint8_t conv_end_ipl Conversion end interrupt
priority.

IRQn_Type conv_end_irq Conversion type 1 end IRQ
number.

IRQn_Type conv_end_irq2 Conversion type 2 end IRQ
number.

uint8_t zc_ipl Zero-cross detection 0 interrupt
priority.

IRQn_Type zc_irq Zero-cross detection 0 IRQ
number.

uint8_t zc_ipl2 Zero-cross detection 1 interrupt
priority.

IRQn_Type zc_irq2 Zero-cross detection 1 IRQ
number.

union sdadc_b_extended_cfg_t __unnamed__

◆ sdadc_b_instance_ctrl_t

struct sdadc_b_instance_ctrl_t

SDADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Data Fields

adc_cfg_t const * p_cfg

uint32_t opened Boolean to verify that the Unit
has been initialized.

uint32_t channel_mask Channel mask to keep track of
channels enabled in scanCfg.

struct sdadc_b_instance_ctrl_t results

uint32_t setup_time_cnt Period of 80 conversions for
internal setup time.

uint8_t calibration_complete Calibration is completed if set.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 621 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ sdadc_b_oper_clk_t

enum sdadc_b_oper_clk_t

Operating clock of the digital block.

Enumerator

SDADC_B_CLOCK_DISABLE Disable operating clock.

SDADC_B_CLOCK_IS_12MHZ Clock frequency is 12MHz or 12.8MHz.

SDADC_B_CLOCK_IS_16MHZ Clock frequency is 16MHz.

◆ sdadc_b_channel_mode_t

enum sdadc_b_channel_mode_t

Per channel operation mode.

Enumerator

SDADC_B_ELECTRIC_CHARGE_RESET Electric charge reset.

SDADC_B_NORMAL_OPERATION Normal operation.

◆ sdadc_b_channel_power_t

enum sdadc_b_channel_power_t

Per channel power-on control.

Enumerator

SDADC_B_CHANNEL_POWER_OFF Power off.

SDADC_B_CHANNEL_POWER_ON Power on.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 622 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ sdadc_b_samp_mode_t

enum sdadc_b_samp_mode_t

Sampling mode select.

Enumerator

SDADC_B_4KHZ_SAMPLING_MODE 4 kHz sampling mode

SDADC_B_8KHZ_SAMPLING_MODE 8 kHz sampling mode

SDADC_B_HYBRID_SAMPLING_MODE 8 kHz / 4 kHz hybird sampling mode

◆ sdadc_b_channel_gain_t

enum sdadc_b_channel_gain_t

Per channel preamplifier gain options.

Enumerator

SDADC_B_CHANNEL_GAIN_1 Gain of 1.

SDADC_B_CHANNEL_GAIN_2 Gain of 2.

SDADC_B_CHANNEL_GAIN_4 Gain of 4.

SDADC_B_CHANNEL_GAIN_8 Gain of 8.

SDADC_B_CHANNEL_GAIN_16 Gain of 16.

SDADC_B_CHANNEL_GAIN_32 Gain of 32.

◆ sdadc_b_channel_hpf_t

enum sdadc_b_channel_hpf_t

Per channel HPF bypass.

Enumerator

SDADC_B_CHANNEL_HPF_ENABLE HPF enable.

SDADC_B_CHANNEL_HPF_DISABLE HPF disable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 623 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ sdadc_b_resolution_t

enum sdadc_b_resolution_t

SDADC data resolution definitions

Enumerator

SDADC_B_RESOLUTION_24_BIT 24 bit resolution

SDADC_B_RESOLUTION_16_BIT 16 bit resolution

◆ sdadc_b_zc_channel_t

enum sdadc_b_zc_channel_t

Zero-cross detection channel

Enumerator

SDADC_B_ZC_CHANNEL_2_OR_3 Detect channel 2 (ZCCTL0) or channel 3
(ZCCTL1)

SDADC_B_ZC_CHANNEL_1_OR_0 Detect channel 1 (ZCCTL0) or channel 0
(ZCCTL1)

◆ sdadc_b_zc_output_mode_t

enum sdadc_b_zc_output_mode_t

Zero-cross detection output mode.

Enumerator

SDADC_B_ZC_PULSE_OUTPUT_MODE Pulse output mode.

SDADC_B_ZC_LEVEL_OUTPUT_MODE Level output mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 624 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ sdadc_b_zc_falling_edge_detection_t

enum sdadc_b_zc_falling_edge_detection_t

Zero-cross detection output mode.

Enumerator

SDADC_B_ZC_FALLING_EDGE_DETECTION_DISAB
LE

Disabled.

SDADC_B_ZC_FALLING_EDGE_DETECTION_ENAB
LE

Enabled.

◆ sdadc_b_zc_rising_edge_detection_t

enum sdadc_b_zc_rising_edge_detection_t

Zero-cross detection output mode.

Enumerator

SDADC_B_ZC_RISING_EDGE_DETECTION_DISABL
E

Disabled.

SDADC_B_ZC_RISING_EDGE_DETECTION_ENABLE

Enabled.

◆ sdadc_b_cutoff_t

enum sdadc_b_cutoff_t

HPF cut off. The enum value is to set to SDADHPFCR register. See Table 31.8 Cut-off frequency of
HPF of the manual R01UH1005EJ0051

Enumerator

SDADC_B_CUTOFF_00B Cut-off frequency 0.

SDADC_B_CUTOFF_01B Cut-off frequency 1.

SDADC_B_CUTOFF_10B Cut-off frequency 2.

SDADC_B_CUTOFF_11B Cut-off frequency 3.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 625 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ R_SDADC_B_Open()

fsp_err_t R_SDADC_B_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Applies power to the SDADC_B and initializes the hardware based on the user configuration.
Enabling interrupts which will call a callback to notify the user when a conversion is completed or a
zero-cross is detected. Implements adc_api_t::open().

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_ALREADY_OPEN Control block is already open.

FSP_ERR_INVALID_CHANNEL Invalid channel configuration

◆ R_SDADC_B_ScanCfg()

fsp_err_t R_SDADC_B_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_extend)

Configures the enabled channels of the ADC. Implements adc_api_t::scanCfg().

Note
This function is not compatible with Hybrid Mode operation.

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_MODE Hybrid mode channel configuration is
invalid

FSP_ERR_INVALID_CHANNEL Invalid channel configuration

FSP_ERR_INVALID_STATE Converter operation must be stopped
before reconfiguring

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 626 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ R_SDADC_B_InfoGet()

fsp_err_t R_SDADC_B_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel, the total number of results to be
read in order to read the results of all configured channels, the size of each result, and the ELC
event enumerations. Implements adc_api_t::infoGet().

Return values
FSP_SUCCESS Conversion is started successfully.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

◆ R_SDADC_B_ScanStart()

fsp_err_t R_SDADC_B_ScanStart (adc_ctrl_t * p_ctrl)

adc_api_t::scanStart().

Return values
FSP_SUCCESS Conversion is started successfully.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

◆ R_SDADC_B_ScanGroupStart()

fsp_err_t R_SDADC_B_ScanGroupStart (adc_ctrl_t * p_ctrl, adc_group_mask_t group_id)

adc_api_t::scanGroupStart is not supported on the SDADC_B. Use scanStart instead.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 627 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ R_SDADC_B_ScanStop()

fsp_err_t R_SDADC_B_ScanStop (adc_ctrl_t * p_ctrl)

adc_api_t::scanStop().

Note
According to Hardware specification, after stopping the conversion, it is necessary to wait at least 1.4us before
performing conversion again.

Return values
FSP_SUCCESS Conversion is started successfully.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

◆ R_SDADC_B_StatusGet()

fsp_err_t R_SDADC_B_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Returns the status of a scan including calibration scans. Implements adc_api_t::scanStatusGet().

Return values
FSP_SUCCESS Module status stored in the provided pointer

p_status

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 628 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ R_SDADC_B_Read()

fsp_err_t R_SDADC_B_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const
p_data)

Reads the most recent conversion result from a channel. Truncates 24-bit results to the upper 16
bits. When the SDADC_B is configured for 16-bit resolution, the sign bit is bit 15 and the upper 16
bits are 0. Implements adc_api_t::read().

Note
The result stored in p_data is signed.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_DATA Result buffer has not been updated with
valid data.

◆ R_SDADC_B_Read32()

fsp_err_t R_SDADC_B_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Reads the most recent conversion result from a channel. Implements adc_api_t::read32().

Note
The result stored in p_data is signed.
When the SDADC is configured for 24-bit resolution, the upper 8 bits are sign extended.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_DATA Result buffer has not been updated with
valid data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 629 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Analog > SDADC_B Channel Configuration (r_sdadc_b)

◆ R_SDADC_B_OffsetSet()

fsp_err_t R_SDADC_B_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t
const offset)

adc_api_t::offsetSet is not supported on the SDADC_B.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_SDADC_B_Calibrate()

fsp_err_t R_SDADC_B_Calibrate (adc_ctrl_t *const p_ctrl, void const * p_extend)

Calibration is performed automatically each time a scan is started. adc_api_t::calibrate is not
supported on the SDADC_B.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_SDADC_B_Close()

fsp_err_t R_SDADC_B_Close (adc_ctrl_t * p_ctrl)

Stops any scan in progress, disables interrupts, and powers down the SDADC_B peripheral.
Implements adc_api_t::close().

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

5.2.2 AI
Modules

Detailed Description

Artifical Intelligence Modules.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 630 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI

Modules

Reality AI Data Collector (rm_rai_data_collector)

 Middleware to implement the Data Collector for Reality AI
applications. This module implements the Data Collector Interface.

Reality AI Data Shipper (rm_rai_data_shipper)

 Middleware to implement the Data Shipper for Reality AI
applications. This module implements the Data Shipper Interface.

5.2.2.1 Reality AI Data Collector (rm_rai_data_collector)
Modules » AI

Functions

fsp_err_t RM_RAI_DATA_COLLECTOR_Open (rai_data_collector_ctrl_t *const
p_api_ctrl, rai_data_collector_cfg_t const *const p_cfg)

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotChannelRegister
(rai_data_collector_ctrl_t *const p_api_ctrl, uint8_t channel, void
const *p_src)

fsp_err_t RM_RAI_DATA_COLLECTOR_BufferReset (rai_data_collector_ctrl_t
*const p_api_ctrl)

fsp_err_t RM_RAI_DATA_COLLECTOR_BufferRelease (rai_data_collector_ctrl_t
*const p_api_ctrl)

fsp_err_t RM_RAI_DATA_COLLECTOR_ChannelBufferGet
(rai_data_collector_ctrl_t *const p_api_ctrl, uint8_t channel, void
**pp_buf)

fsp_err_t RM_RAI_DATA_COLLECTOR_ChannelWrite (rai_data_collector_ctrl_t
*const p_api_ctrl, uint8_t channel, const void *p_buf, uint32_t len)

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotStart (rai_data_collector_ctrl_t
*const p_api_ctrl)

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotStop (rai_data_collector_ctrl_t
*const p_api_ctrl)

fsp_err_t RM_RAI_DATA_COLLECTOR_Close (rai_data_collector_ctrl_t *const
p_api_ctrl)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 631 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

Middleware to implement the Data Collector for Reality AI applications. This module implements the
Data Collector Interface.

Overview
Data Collector is to abstract the collection of data from sensors so that data samples are
accumulated into fixed length frames before being made available to application. Support of
"snapshot" mode and "data feed" mode are required to accommodate for background and
cooperative data collection. Each mode supports 8 sensor channels maximally. Each sensor channel
will be captured into a separate frame buffer. Frame buffers shall have the same amount of data
samples, however, data type can be different(int32_t, float, uint8_t etc). Users have to make sure
that frame buffers will be filled up at the same rate.

When all frame buffers are filled up, they will be provided to the application via data ready callback.
After they are consumed, application has to release them by calling
RM_RAI_DATA_COLLECTOR_BufferRelease(). For seamless operation, PING-PONG buffer will be used.
Ideally buffers will be released before the other set of buffers are filled up. However, it is possible
that frame buffers will overrun due to the fact that application may take longer time to process the
data in some cases. If it happens, application will be notified with a buffer-overrun event via the error
callback. No intervention is required from user side in this case. Buffer overrun will disappear when
frame buffers are released. However, if not all sensor channels are configured to work at the same
pace, application will get a buffer-out-of-sync error. Users have to reconfigure sensor channels and
ensure all of them will work at the same pace. If sensor channels can't work at the same rate, then
multiple data collector instances are required.

Features

Snapshot mode and data feed mode are supported
Maximally 8 sensors are supported for each mode
Mix mode is supported (both snapshot mode and data feed mode are enabled)

Snapshot Mode

Snapshot mode will periodically pull data from the user-specified places and save to designated
frame buffers. It requires a DTC module and a timer module. DTC will work in chain mode, which
enables data collection from various, potentially non-linear and different-sized sources. Timer, either
General PWM Timer (GPT) or Asynchronous General Purpose Timer, provides activation source for
DTC to work periodically. To select this activation source, relevant interrupt has to be configured in
the timer module. Application has to start the timer to enable DTC after sensor source addresses are
registered.

Data Feed Mode

Data feed mode will require data producer to push data directly to the designated frame buffer
whenever data is ready. Data can be pushed synchronously or asynchronously. Synchronous mode is
for use cases that the data producer has a short amount of data to be copied to the frame buffer.
Asynchronous mode is to use DTC/DMAC for data transfer. Application has to add DTC/DMAC
modules and initialize transfer descriptors for asynchronous transfer.

Usage Notes

1. Do not add DTC stack and timer stack to data collector instance for data feed mode.
2. Users must take care to make sure all channels of a data collector instance will work at the

same pace.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 632 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

3. Interrupt priority level of the timer stack in the data collector instance must be higher
(numerically lower) than that of RM COMMS USB PCDC GPT Overflow interrupt.

Configuration
Build Time Configurations for rm_rai_data_collector

The following build time configurations are defined in fsp_cfg/rm_rai_data_collector_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Max Number Of
Channels

Value must be a
positive integer less
than or equal to 16

16 Max number of
channels.

Configurations for AI > Data Collector (rm_rai_data_collector)

This module can be added to the Stacks tab via New Stack > AI > Data Collector
(rm_rai_data_collector).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_rai_data_collector0 Module name.

ID Value must be a
positive integer.

0 Instance ID

Frame Buffer Length Value must be a
positive integer greater
than 0

100 Length of frame buffers
in data samples.

Data Ready Callback Name must be a valid
C symbol

rai_data_collector0_call
back

Callback function on
data ready.

Error Callback Name must be a valid
C symbol

rai_data_collector0_err
or_callback

Callback function for
error events.

Data Feed Mode

Data Feed Mode > Channel 0

Name Must be valid C
variable name

dc0_data_feed_ch0 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 1

Name Must be valid C
variable name

dc0_data_feed_ch1 Channel name

Data Type MCU Specific Options Channel Data Type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 633 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

Data Feed Mode > Channel 2

Name Must be valid C
variable name

dc0_data_feed_ch2 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 3

Name Must be valid C
variable name

dc0_data_feed_ch3 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 4

Name Must be valid C
variable name

dc0_data_feed_ch4 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 5

Name Must be valid C
variable name

dc0_data_feed_ch5 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 6

Name Must be valid C
variable name

dc0_data_feed_ch6 Channel name

Data Type MCU Specific Options Channel Data Type

Data Feed Mode > Channel 7

Name Must be valid C
variable name

dc0_data_feed_ch7 Channel name

Data Type MCU Specific Options Channel Data Type

Channels Value must be an
integer between 0 and
8

0 Number of Data Feed
Mode channels.

Snapshot Mode

Snapshot Mode > Channel 0

Name Must be valid C
variable name

dc0_snapshot_ch0 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 1

Name Must be valid C
variable name

dc0_snapshot_ch1 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 2

Name Must be valid C dc0_snapshot_ch2 Channel name

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 634 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

variable name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 3

Name Must be valid C
variable name

dc0_snapshot_ch3 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 4

Name Must be valid C
variable name

dc0_snapshot_ch4 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 5

Name Must be valid C
variable name

dc0_snapshot_ch5 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 6

Name Must be valid C
variable name

dc0_snapshot_ch6 Channel name

Data Type MCU Specific Options Channel Data Type

Snapshot Mode > Channel 7

Name Must be valid C
variable name

dc0_snapshot_ch7 Channel name

Data Type MCU Specific Options Channel Data Type

Channels Value must be an
integer between 0 and
8

0 Number of snapshot
mode channels.

DTC Transfer Count Value must be a
positive integer greater
than 0

1 DTC transfer count on
each activation

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Snapshot Mode Example

extern rai_data_collector_cfg_t g_dc_cfg;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 635 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

extern rai_data_collector_instance_t g_dc_ctrl;

static rai_data_collector_frame_buffer_t g_frame_buf[DC_TEST_CHAN_COUNT];

static uint8_t g_sensor_buf[DC_TEST_CHAN_COUNT][DC_TEST_CHAN_BUFFER_LEN];

static bool g_data_ready = false;

static bool g_exit = false;

static rai_data_collector_error_event_t g_dc_error_event =

RAI_DATA_COLLECTOR_ERROR_TYPE_NONE;

static rai_data_collector_callback_args_t g_data_ready_callback_arg;

/* Data ready callback called when all sensor data are ready. */

void data_ready_callback_test (const rai_data_collector_callback_args_t * p_args)

{

 /* Time consuming job should be done in the application. Just save a copy here. */

 g_data_ready_callback_arg.frame_buf_len = p_args->frame_buf_len;

 g_data_ready_callback_arg.frames = p_args->frames;

 g_data_ready_callback_arg.instance_id = p_args->instance_id;

 for (uint8_t i = 0; i < p_args->frames; i++)

 {

 g_frame_buf[i] = p_args->p_frame_buf[i];

 }

 g_data_ready_callback_arg.p_frame_buf = g_frame_buf;

 g_data_ready = true;

}

/* Error callback when there is buffer overflow. */

void error_callback_test (const rai_data_collector_error_callback_args_t * p_args)

{

 g_dc_error_event |= p_args->event;

}

void rm_rai_data_collector_snapshot_mode_example ()

{

 fsp_err_t err;

 err = RM_RAI_DATA_COLLECTOR_Open(&g_dc_ctrl, &g_dc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 for (uint8_t i = 0; i < DC_TEST_CHAN_COUNT; i++)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 636 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

 {

 RM_RAI_DATA_COLLECTOR_SnapshotChannelRegister(&g_dc_ctrl, i, g_sensor_buf[i]);

 assert(FSP_SUCCESS == err);

 }

 err = RM_RAI_DATA_COLLECTOR_SnapshotStart(&g_dc_ctrl);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Process error event */

 if (RAI_DATA_COLLECTOR_ERROR_TYPE_BUF_OUT_OF_SYNC & g_dc_error_event)

 {

 /* Error! Please reconfigure sensors to make sure they all work at the same pace.*/

 g_dc_error_event = RAI_DATA_COLLECTOR_ERROR_TYPE_NONE;

 }

 if (g_data_ready)

 {

 /* Process collected data saved in g_frame_buf. */

 do_data_process(g_data_ready_callback_arg.instance_id,

 g_data_ready_callback_arg.frames,

 g_data_ready_callback_arg.frame_buf_len,

 g_data_ready_callback_arg.p_frame_buf);

 g_data_ready = false;

 /* Release buffer when done */

 RM_RAI_DATA_COLLECTOR_BufferRelease(&g_dc_ctrl);

 }

 } while (!g_exit);

 err = RM_RAI_DATA_COLLECTOR_SnapshotStop(&g_dc_ctrl);

 assert(FSP_SUCCESS == err);

 err = RM_RAI_DATA_COLLECTOR_Close(&g_dc_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Feed Synchronous Mode Example

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 637 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

The data collector callback functions from the first example apply to this example as well.

extern const timer_cfg_t g_timer1_cfg;

extern gpt_instance_ctrl_t g_timer1_ctrl;

static uint8_t

g_data_feed_sync_mode_buf[DC_TEST_CHAN_COUNT][DC_TEST_CHAN_BUFFER_LEN];

void timer_callback (const timer_callback_args_t * p_args)

{

 fsp_err_t err;

 FSP_PARAMETER_NOT_USED(p_args);

 for (uint8_t i = 0; i < DC_TEST_CHAN_COUNT; i++)

 {

 err = RM_RAI_DATA_COLLECTOR_ChannelWrite(&g_dc_ctrl,

 i,

 (void *)

g_data_feed_sync_mode_buf[i],

 DC_TEST_CHAN_BUFFER_LEN);

 assert(FSP_SUCCESS == err);

 }

}

void rm_rai_data_collector_data_feed_mode_synchronous_example ()

{

 fsp_err_t err;

 err = RM_RAI_DATA_COLLECTOR_Open(&g_dc_ctrl, &g_dc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 R_GPT_Open(&g_timer1_ctrl, &g_timer1_cfg);

 R_GPT_Reset(&g_timer1_ctrl);

 R_GPT_Start(&g_timer1_ctrl);

 do

 {

 /* Process error event */

 if (RAI_DATA_COLLECTOR_ERROR_TYPE_BUF_OUT_OF_SYNC & g_dc_error_event)

 {

 /* Error! Please reconfigure sensors to make sure they all work at the same pace.*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 638 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

 g_dc_error_event = RAI_DATA_COLLECTOR_ERROR_TYPE_NONE;

 }

 if (g_data_ready)

 {

 /* Process collected data saved in g_frame_buf */

 do_data_process(g_data_ready_callback_arg.instance_id,

 g_data_ready_callback_arg.frames,

 g_data_ready_callback_arg.frame_buf_len,

 g_data_ready_callback_arg.p_frame_buf);

 g_data_ready = false;

 /* Release buffer when done */

 RM_RAI_DATA_COLLECTOR_BufferRelease(&g_dc_ctrl);

 }

 } while (!g_exit);

 R_GPT_Stop(&g_timer1_ctrl);

 R_GPT_Close(&g_timer1_ctrl);

 err = RM_RAI_DATA_COLLECTOR_Close(&g_dc_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Feed Asynchronous Mode Example

Note
The data collector callback functions from the first example apply to this example as well.

extern const transfer_cfg_t g_dmac_cfg[DC_TEST_CHAN_COUNT];

extern dmac_instance_ctrl_t g_dmac_ctrl[DC_TEST_CHAN_COUNT];

static uint16_t g_data_feed_async_mode_cnt[DC_TEST_CHAN_COUNT];

static uint8_t * g_data_feed_async_mode_buf[DC_TEST_CHAN_COUNT];

void dma_callback (const dmac_callback_args_t * p_args)

{

 uint8_t chan = *(uint8_t *) p_args->p_context;

 g_data_feed_async_mode_cnt[chan]++;

 if (DC_TEST_REQUIRED_FRAME_LEN == g_data_feed_async_mode_cnt[chan])

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 639 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

 fsp_err_t err =

 RM_RAI_DATA_COLLECTOR_ChannelBufferGet(&g_dc_ctrl, chan, (void **)

&g_data_feed_async_mode_buf[chan]);

 assert(FSP_SUCCESS == err);

 g_data_feed_async_mode_cnt[chan] = 0;

 }

 g_dmac_cfg[chan].p_info->p_dest = g_data_feed_async_mode_buf[chan] +

g_data_feed_async_mode_cnt[chan];

 g_dmac_cfg[chan].p_info->length = 1;

 R_DMAC_Reconfigure(&g_dmac_ctrl[chan], g_dmac_cfg[chan].p_info);

}

void rm_rai_data_collector_data_feed_mode_asynchronous_example ()

{

 fsp_err_t err;

 err = RM_RAI_DATA_COLLECTOR_Open(&g_dc_ctrl, &g_dc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 for (uint8_t i = 0; i < DC_TEST_CHAN_COUNT; i++)

 {

 RM_RAI_DATA_COLLECTOR_ChannelBufferGet(&g_dc_ctrl, i, (void **)

&g_data_feed_async_mode_buf[i]);

 assert(FSP_SUCCESS == err);

 g_dmac_cfg[i].p_info->p_dest = g_data_feed_async_mode_buf[i];

 g_dmac_cfg[i].p_info->p_src = g_sensor_buf[i];

 g_dmac_cfg[i].p_info->length = 1;

 R_DMAC_Open(&g_dmac_ctrl[i], &g_dmac_cfg[i]);

 R_DMAC_Enable(&g_dmac_ctrl[i]);

 }

 do

 {

 /* Process error event */

 if (RAI_DATA_COLLECTOR_ERROR_TYPE_BUF_OUT_OF_SYNC & g_dc_error_event)

 {

 /* Error! Please reconfigure sensors to make sure they all work at the same pace.*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 640 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

 g_dc_error_event = RAI_DATA_COLLECTOR_ERROR_TYPE_NONE;

 }

 if (g_data_ready)

 {

 /* Process collected data saved in g_frame_buf */

 do_data_process(g_data_ready_callback_arg.instance_id,

 g_data_ready_callback_arg.frames,

 g_data_ready_callback_arg.frame_buf_len,

 g_data_ready_callback_arg.p_frame_buf);

 g_data_ready = false;

 /* Release buffer when done */

 RM_RAI_DATA_COLLECTOR_BufferRelease(&g_dc_ctrl);

 }

 } while (!g_exit);

 for (uint8_t i = 0; i < DC_TEST_CHAN_COUNT; i++)

 {

 R_DMAC_Disable(&g_dmac_ctrl[i]);

 R_DMAC_Close(&g_dmac_ctrl[i]);

 }

 err = RM_RAI_DATA_COLLECTOR_Close(&g_dc_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rai_data_collector_instance_ctrl_t

Data Structure Documentation

◆ rai_data_collector_instance_ctrl_t

struct rai_data_collector_instance_ctrl_t

RAI_DATA_COLLECTOR instance control block. Initialization occurs when
RM_RAI_DATA_COLLECTOR_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 641 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

◆ RM_RAI_DATA_COLLECTOR_Open()

fsp_err_t RM_RAI_DATA_COLLECTOR_Open (rai_data_collector_ctrl_t *const p_api_ctrl,
rai_data_collector_cfg_t const *const p_cfg)

Opens and configures the Data Collector module.

Implements rai_data_collector_api_t::open().

Return values
FSP_SUCCESS Data Collector successfully configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_RAI_DATA_COLLECTOR_SnapshotChannelRegister()

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotChannelRegister (rai_data_collector_ctrl_t *const
p_api_ctrl, uint8_t channel, void const * p_src)

Config transfer src address for snapshot mode channel

Implements rai_data_collector_api_t::snapshotChannelRegister().

Return values
FSP_SUCCESS Src addresses are set.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 642 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

◆ RM_RAI_DATA_COLLECTOR_BufferReset()

fsp_err_t RM_RAI_DATA_COLLECTOR_BufferReset (rai_data_collector_ctrl_t *const p_api_ctrl)

Reset to discard accumulated data and start with PING buffer.

Note
Application must stop data transfer on all channels first.

Implements rai_data_collector_api_t::bufferReset().

Return values
FSP_SUCCESS Data Collector module internal buffers reset.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

◆ RM_RAI_DATA_COLLECTOR_BufferRelease()

fsp_err_t RM_RAI_DATA_COLLECTOR_BufferRelease (rai_data_collector_ctrl_t *const p_api_ctrl)

Release frame buffer

Implements rai_data_collector_api_t::bufferRelease().

Return values
FSP_SUCCESS Buffer released.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

◆ RM_RAI_DATA_COLLECTOR_ChannelBufferGet()

fsp_err_t RM_RAI_DATA_COLLECTOR_ChannelBufferGet (rai_data_collector_ctrl_t *const p_api_ctrl,
uint8_t channel, void ** pp_buf)

Get channel destination buffer address for asynchronous data transfer.

Implements rai_data_collector_api_t::channelBufferGet().

Return values
FSP_SUCCESS Buffer avaialble.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 643 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

◆ RM_RAI_DATA_COLLECTOR_ChannelWrite()

fsp_err_t RM_RAI_DATA_COLLECTOR_ChannelWrite (rai_data_collector_ctrl_t *const p_api_ctrl,
uint8_t channel, const void * p_buf, uint32_t len)

Synchronouse data transfer using CPU copy.

Implements rai_data_collector_api_t::channelWrite().

Return values
FSP_SUCCESS Data copy completed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

◆ RM_RAI_DATA_COLLECTOR_SnapshotStart()

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotStart (rai_data_collector_ctrl_t *const p_api_ctrl)

Starts snapshot mode channels

Implements rai_data_collector_api_t::snapshotStart().

Return values
FSP_SUCCESS Snapshot mode started.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

FSP_ERR_UNSUPPORTED No snapshot mode channel

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 644 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Collector (rm_rai_data_collector)

◆ RM_RAI_DATA_COLLECTOR_SnapshotStop()

fsp_err_t RM_RAI_DATA_COLLECTOR_SnapshotStop (rai_data_collector_ctrl_t *const p_api_ctrl)

Stops snapshot mode channels

Implements rai_data_collector_api_t::snapshotStop().

Return values
FSP_SUCCESS Snapshot mode stopped.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

FSP_ERR_UNSUPPORTED No snapshot mode channel

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_RAI_DATA_COLLECTOR_Close()

fsp_err_t RM_RAI_DATA_COLLECTOR_Close (rai_data_collector_ctrl_t *const p_api_ctrl)

Closes Data Collector module instance.

Implements rai_data_collector_api_t::close().

Return values
FSP_SUCCESS Data Collector module closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

5.2.2.2 Reality AI Data Shipper (rm_rai_data_shipper)
Modules » AI

Functions

fsp_err_t RM_RAI_DATA_SHIPPER_Open (rai_data_shipper_ctrl_t *const
p_api_ctrl, rai_data_shipper_cfg_t const *const p_cfg)

fsp_err_t RM_RAI_DATA_SHIPPER_Read (rai_data_shipper_ctrl_t *const
p_api_ctrl, void *const p_buf, uint32_t *const buf_len)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 645 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Shipper (rm_rai_data_shipper)

fsp_err_t RM_RAI_DATA_SHIPPER_Write (rai_data_shipper_ctrl_t *const
p_api_ctrl, rai_data_shipper_write_params_t const *p_write_params)

fsp_err_t RM_RAI_DATA_SHIPPER_Close (rai_data_shipper_ctrl_t *const
p_api_ctrl)

Detailed Description

Middleware to implement the Data Shipper for Reality AI applications. This module implements the
Data Shipper Interface.

Overview
RAI Data Shipper is mainly for sending data collected by RAI Data Collector to PC so that they can be
used for Reality AI model training. It utilizes the Communicatons Middleware Interface and all
communications are fully asynchronous. The data being transported may be any combination of the
following:

Sensor data
System events/errors
Debug data and diagnostic information, including RAI runtime output

Sensor data is provided by Data Collector instance via the data ready callback. System events and
debug data are prepared by application. A callback is used to notify application that communcation
is finished. Sensor data buffers must be released if they are not used. Error flag will be set if there is
any error during data transmission.

Note
Debug data, diagnostic information, and associated events are provided for debug purposes only and are not
tracked by upstream Reality AI tools.

Features

1. The RAI Data Shipper module supports up to 8 Data Collector instances.
2. The RAI Data Shipper module supports the following interface:

RM_COMMS_UART with/without CRC-8
RM_COMMS_USB_PCDC with/without CRC-8

Configuration
Build Time Configurations for rm_rai_data_shipper

The following build time configurations are defined in fsp_cfg/rm_rai_data_shipper_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Max Number Of DC
Instances

Value must be a
positive integer

8 Max number of DC
instances to be sent.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 646 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Shipper (rm_rai_data_shipper)

between 1 and 8

Configurations for AI > Data Shipper (rm_rai_data_shipper)

This module can be added to the Stacks tab via New Stack > AI > Data Shipper
(rm_rai_data_shipper).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rai_data_shipper0 Module name

Frame Rate Divider Value must be non-
negative

0 Skip write requests

Callback Name must be a valid
C symbol

rai_data_shipper0_callb
ack

A user callback
function on data sent
or error.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Limitations

1. 2-way communication hasn't been supported yet - data is always sent from device to host.
2. Users shall take care to avoid race condition in the case of multiple data collector instances.
3. To use RM COMMS USB PCDC with Full Speed mode and DMA, frame buffer length needs to

be multiple of 2 when 8-bit channel is used.
4. To use RM COMMS USB PCDC with High Speed mode and DMA, frame buffer length needs to

be multiple of 2 when 16-bit channel is used. If 8-bit channel is used, its frame buffer length
needs to be a multiple of 4.

5. RAI Data Collector (snapshot mode) and RM COMMS USB PCDC must use different timers.
They are independent of each other.

Examples
Basic Example

This is a basic example of minimal use of the Data Shipper implementation in an application.

void RM_RAI_DATA_SHIPPER_example();

void data_shipper_callback(rai_data_shipper_callback_args_t * p_args);

extern rai_data_shipper_cfg_t g_ds_cfg;

extern rai_data_shipper_instance_t g_ds_ctrl;

static bool g_exit = false;

extern bool g_data_ready;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 647 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Shipper (rm_rai_data_shipper)

extern rai_data_collector_callback_args_t g_data_ready_callback_arg;

void RM_RAI_DATA_SHIPPER_example ()

{

 fsp_err_t err;

 err = RM_RAI_DATA_SHIPPER_Open(&g_ds_ctrl, &g_ds_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!g_exit)

 {

 if (g_data_ready)

 {

 rai_data_shipper_write_params_t g_write_params;

 g_write_params.p_sensor_data = &g_data_ready_callback_arg;

 /* Application is responsible to initialize diagnostic information and events.- */

 /* Application has no diagnostic information/events to report. */

 g_write_params.diagnostic_data_len = 0;

 g_write_params.events = 0;

 g_write_params.p_diagnostic_data = NULL;

 err = RM_RAI_DATA_SHIPPER_Write(&g_ds_ctrl, &g_write_params);

 assert(FSP_SUCCESS == err);

 g_data_ready = false;

 }

 }

 err = RM_RAI_DATA_SHIPPER_Close(&g_ds_ctrl);

 assert(FSP_SUCCESS == err);

}

/* Called when all sensor data are sent or there is an error */

void data_shipper_callback (rai_data_shipper_callback_args_t * p_args)

{

 if (RM_COMMS_EVENT_ERROR == p_args->result)

 {

 /* Communication error */

 }

 /* Release sensor buffers if they are not being used by any other modules. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 648 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Shipper (rm_rai_data_shipper)

 /* RM_RAI_DATA_COLLECTOR_BufferRelease(g_dc_ctrl); */

}

Data Structures

struct rai_data_shipper_instance_ctrl_t

Data Structure Documentation

◆ rai_data_shipper_instance_ctrl_t

struct rai_data_shipper_instance_ctrl_t

RAI_DATA_SHIPPER instance control block. Initialization occurs when
RM_RAI_DATA_SHIPPER_Open() is called.

Function Documentation

◆ RM_RAI_DATA_SHIPPER_Open()

fsp_err_t RM_RAI_DATA_SHIPPER_Open (rai_data_shipper_ctrl_t *const p_api_ctrl,
rai_data_shipper_cfg_t const *const p_cfg)

Opens and configures the Data Shipper module.

Implements rai_data_shipper_api_t::open().

Return values
FSP_SUCCESS Data Shipper successfully configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_RAI_DATA_SHIPPER_Read()

fsp_err_t RM_RAI_DATA_SHIPPER_Read (rai_data_shipper_ctrl_t *const p_api_ctrl, void *const
p_buf, uint32_t *const buf_len)

Read data.

Implements rai_data_shipper_api_t::read().

Return values
FSP_ERR_UNSUPPORTED Data Shipper module read not supported

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 649 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > AI > Reality AI Data Shipper (rm_rai_data_shipper)

◆ RM_RAI_DATA_SHIPPER_Write()

fsp_err_t RM_RAI_DATA_SHIPPER_Write (rai_data_shipper_ctrl_t *const p_api_ctrl,
rai_data_shipper_write_params_t const * p_write_params)

Write data. Note this function may be called in ISR.

Implements rai_data_shipper_api_t::write().

Return values
FSP_SUCCESS Tx buf list created and transmission starts,

or write request skipped.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

◆ RM_RAI_DATA_SHIPPER_Close()

fsp_err_t RM_RAI_DATA_SHIPPER_Close (rai_data_shipper_ctrl_t *const p_api_ctrl)

Closes Data Shipper module instance.

Implements rai_data_shipper_api_t::close().

Return values
FSP_SUCCESS Data Shipper module closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

5.2.3 Audio
Modules

Detailed Description

Audio Modules.

Modules

ADPCM Decoder (rm_adpcm_decoder)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 650 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio

 Middleware to implement the ADPCM Audio Decoder. This module
implements the ADPCM Decoder Interface.

Audio Playback PWM (rm_audio_playback_pwm)

 Driver for the Audio Playback middleware on RA MCUs. This module
implements the AUDIO PLAYBACK Interface.

5.2.3.1 ADPCM Decoder (rm_adpcm_decoder)
Modules » Audio

Functions

fsp_err_t RM_ADPCM_DECODER_Open (adpcm_decoder_ctrl_t *p_ctrl,
adpcm_decoder_cfg_t const *const p_cfg)

fsp_err_t RM_ADPCM_DECODER_Decode (adpcm_decoder_ctrl_t *const p_ctrl,
void const *p_src, void *p_dest, uint32_t src_len_bytes)

fsp_err_t RM_ADPCM_DECODER_Reset (adpcm_decoder_ctrl_t *p_ctrl)

fsp_err_t RM_ADPCM_DECODER_Close (adpcm_decoder_ctrl_t *p_ctrl)

Detailed Description

Middleware to implement the ADPCM Audio Decoder. This module implements the ADPCM Decoder
Interface.

Overview
Features

The ADPCM Audio Decoder has the following key features:

Decodes 4-bit ADPCM input to 16-bit PCM output

Configuration
Build Time Configurations for rm_adpcm_decoder

The following build time configurations are defined in fsp_cfg/rm_adpcm_decoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 651 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > ADPCM Decoder (rm_adpcm_decoder)

Disabled included in the build.

Configurations for Audio > ADPCM Decoder (rm_adpcm_decoder)

This module can be added to the Stacks tab via New Stack > Audio > ADPCM Decoder
(rm_adpcm_decoder).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_adpcm_decoder0 Module name.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the ADPCM Audio Decoder implementation in an
application.

void rm_adpcm_decoder_example ()

{

 /* Open the ADPCM audio decoder instance. */

 fsp_err_t err = RM_ADPCM_DECODER_Open(&g_adpcmdec_ctrl, &g_adpcmdec_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Decode the data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl, g_adpcm_stream1, g_pcm_stream,

ADPCM_BUFFER_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Reset the ADPCM audio decoder instance before decoding a new stream. */

 err = RM_ADPCM_DECODER_Reset(&g_adpcmdec_ctrl);

 assert(FSP_SUCCESS == err);

 /* Decode the first chunk of ADPCM data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl, g_adpcm_stream2, g_pcm_stream,

(ADPCM_BUFFER_SIZE_BYTES/2));

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 652 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > ADPCM Decoder (rm_adpcm_decoder)

 /* Decode the second chunk of ADPCM data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl,

&g_adpcm_stream2[ADPCM_BUFFER_SIZE_BYTES/2],

 g_pcm_stream, (ADPCM_BUFFER_SIZE_BYTES/2));

 assert(FSP_SUCCESS == err);

}

Data Structures

struct adpcm_decoder_instance_ctrl_t

Data Structure Documentation

◆ adpcm_decoder_instance_ctrl_t

struct adpcm_decoder_instance_ctrl_t

RM_ADPCM_DECODER instance control block. DO NOT INITIALIZE. Initialized in
adpcm_decoder_api_t::open().

Function Documentation

◆ RM_ADPCM_DECODER_Open()

fsp_err_t RM_ADPCM_DECODER_Open (adpcm_decoder_ctrl_t * p_ctrl, adpcm_decoder_cfg_t const
*const p_cfg)

Initializes ADPCM audio decoder device.

Implements adpcm_decoder_api_t::open().

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 653 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > ADPCM Decoder (rm_adpcm_decoder)

◆ RM_ADPCM_DECODER_Decode()

fsp_err_t RM_ADPCM_DECODER_Decode (adpcm_decoder_ctrl_t *const p_ctrl, void const * p_src,
void * p_dest, uint32_t src_len_bytes)

Decodes 4bit ADPCM data to 16bit PCM data. It reads ADPCM data from area pointed by inputAddr
pointer, decodes the number of samples specified and stores the decoded data in buffer pointed
with outputAddr pointer.

Implements adpcm_decoder_api_t::decode().

Return values
FSP_SUCCESS Decode operation successfully completed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ RM_ADPCM_DECODER_Reset()

fsp_err_t RM_ADPCM_DECODER_Reset (adpcm_decoder_ctrl_t * p_ctrl)

This function resets the ADPCM decoder device.

Implements adpcm_decoder_api_t::reset().

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ RM_ADPCM_DECODER_Close()

fsp_err_t RM_ADPCM_DECODER_Close (adpcm_decoder_ctrl_t * p_ctrl)

This function closes the ADPCM decoder device.

Implements adpcm_decoder_api_t::close().

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 654 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

5.2.3.2 Audio Playback PWM (rm_audio_playback_pwm)
Modules » Audio

Functions

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Open (audio_playback_ctrl_t *const
p_api_ctrl, audio_playback_cfg_t const *const p_cfg)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Close (audio_playback_ctrl_t *const
p_api_ctrl)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Start (audio_playback_ctrl_t *const
p_api_ctrl)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Stop (audio_playback_ctrl_t *const
p_api_ctrl)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Play (audio_playback_ctrl_t *const
p_api_ctrl, void const *const p_buffer, uint32_t length)

Detailed Description

Driver for the Audio Playback middleware on RA MCUs. This module implements the AUDIO
PLAYBACK Interface.

Overview
Features

The Audio Playback with PWM middleware is used to play audio streams at user selected playback
rate using Pulse Width Modulation hardware on GPT or AGT timers. This module can play 16-bit or
32-bit(available on selected MCUs) uncompressed, unsigned PCM audio stream when AGT is selected
as PWM interface, and can play 32-bit uncompressed, unsigned PCM audio stream when GPT is used
as PWM interface. Note some MCUs have 16-bit GPT timers/channels. In this case audio stream still
needs to be 32 bits because the duty cycle register is 32-bit - just the upper 16 bits are ignored. The
application code is expected to convert the signed PCM data to unsigned PCM data and scale it with
the playback rate before starting the playback.

Configuration
Build Time Configurations for rm_audio_playback_pwm

The following build time configurations are defined in fsp_cfg/rm_audio_playback_pwm_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 655 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

DMAC Support Enabled
Disabled

Disabled Select if DMAC will be
used.

Configurations for Audio > Audio Playback PWM (rm_audio_playback_pwm)

This module can be added to the Stacks tab via New Stack > Audio > Audio Playback PWM
(rm_audio_playback_pwm).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_rm_audio_playback0 Module name.

Playback Speed (Hz) Must be an integer and
greater than 0

44100 Enter playback sample
rate in Hz.

Interrupts

Callback Name must be a valid
C symbol

g_rm_audio_playback0_
callback

A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the playback
completes.

PWM Output Pin Pin A
Pin B

Pin A Select which timer
output pin should be
used for audio output.

Clock Configuration

The Audio Playback with PWM module does not require a specific clock configuration.

Pin Configuration

Configure the PWM output pins for selected PWM HAL layer peripheral (AGT/GPT). One of the
following pins needs to be selected and enabled as PWM output for selected channel n,

If GPT is used as PWM interface,

GTIOCAn
GTIOCBn

If AGT is used as PWM interface,

AGTOAn
AGTOBn

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 656 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

DMAC/DTC Integration

DMAC/DTC is used as a lower level transfer instance with this module and is operated in Normal
mode to transfer 16 bit or 32 bit data from the audio stream buffer to the PWM peripheral AGT or
GPT respectively. Destination address for transfer instance needs to be the Duty Cycle setting
register GTCCR for GPT as PWM driver or AGTMA/AGTCMB in case of AGT as PWM driver. The Audio
Playback with PWM module internally configures 'Transfer Size' as 2 Bytes if AGT is used for PWM
generation, otherwise it configures 'Transfer Size" as 4 Bytes if GPT or AGTW is used for PWM
generation. Refer the hardware manual to check whether the MCU supports AGT or the AGTW
peripheral.

Examples
Basic Example

This is a basic example of minimal use of the RM_AUDIO_PLAYBACK_PWM in an application. This
example shows how this driver can be used for playing a 16 bit uncompressed PCM audio from a
single input buffer.

int16_t play_buffer[AUDIO_EXAMPLE_LENGTH];

uint32_t g_audio_callback_counter = 0;

void g_audio_example_counter_callback (audio_playback_callback_args_t * p_args)

{

 if (AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE == (p_args->event))

 {

 g_audio_callback_counter++;

 }

}

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the Audio Playback module for playing an audio stream. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

&g_audio_playback_pwm_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the 16 Bit PCM audio stream to play next */

 err = RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, play_buffer,

AUDIO_EXAMPLE_LENGTH);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 657 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

 /* Start to the play the selected audio stream*/

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait till the playback is completed */

 while (g_audio_callback_counter == 0)

 {

 ;

 }

 /* Stop playing. */

 err = RM_AUDIO_PLAYBACK_PWM_Stop(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

Streaming Example

This is an example of using Audio Playback module to play audio stream. This application uses a
double buffer to store PCM sine wave data. It starts playing in the main loop, then loads the next
buffer if it is ready in the callback. If the next buffer is not ready, a flag is set in the callback so the
application knows to restart playing in the main loop. This example also demonstrates conversion of
signed PCM format data to unsigned PWM format data along with scaling the data samples for
optimum PWM wave generation.

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ (22050U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_PERIOD_VALUE_AT_22050HZ (0x11B7U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK (1024U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ (800U)

#define AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER (1024U)

#define AUDIO_PLAYBACK_PWM_EXAMPLE_CONVERT_TO_PWM_SAMPLES (32768U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_DATA_BIT_SIZE (16U)

int16_t g_stream_src[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

q15_t g_pwm_sample[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

q15_t g_pwm_scaled_sample[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

uint32_t g_buffer_index = 0;

volatile bool g_send_data_in_main_loop = true;

volatile bool g_data_ready = false;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 658 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

/* Example callback called when Audio Playback is ready for more data. */

void rm_audio_playback_example_callback (audio_playback_callback_args_t * p_args)

{

 /* Start playing next stream if data is ready. */

 if (AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE == (p_args->event))

 {

 if (g_data_ready)

 {

 /* Reload data and handle errors. */

 rm_audio_playback_example_play();

 }

 else

 {

 /* Data was not ready yet, send it in the main loop. */

 g_send_data_in_main_loop = true;

 }

 }

}

/* Load the next stream and check for error condition. */

void rm_audio_playback_example_play (void)

{

 /* Set the playback stream */

 fsp_err_t err;

 err =

 RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, (int16_t *)

&g_pwm_scaled_sample[g_buffer_index][0],

(AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK * sizeof(int16_t)));

 if (FSP_SUCCESS == err)

 {

 /* Switch the buffer after data is sent. */

 g_buffer_index = !g_buffer_index;

 /* Allow loop to calculate next buffer. */

 g_data_ready = false;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 659 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

 }

 else

 {

 /* The

 * application must wait until the audio playback is completed. In this example, the

 * callback sets data or resets the flag g_send_data_in_main_loop. */

 }

}

/* Calculate samples. This example is just a sine wave. For this type of data, it

would be better to calculate

 * one period and loop it. This example should be updated for the audio data used by

the application. */

void rm_audio_playback_example_calculate_samples (uint32_t buffer_index)

{

 static uint32_t t = 0U;

 /* Create a sine wave. Using formula sample = sin(2 * pi * tone_frequency * t /

sampling_frequency) */

 uint32_t freq = AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t i = 0; i < AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK; i

+= 1)

 {

 float input = (((float) (freq * t)) * (float) M_TWOPI) /

AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 t++;

 /* Store sample. */

 int16_t sample = (int16_t) ((INT16_MAX * sinf(input)));

 g_stream_src[buffer_index][i] = sample;

 }

 /* Convert signed PCM data to unsigned PCM data as PWM needs unsigned input. */

 arm_offset_q15(&g_stream_src[buffer_index][0],

 (q15_t) (INT16_MAX + 1),

 &g_pwm_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 660 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

 /* Scale the data by the selected period for the timer (calculated for equivalent

playback rate) */

 arm_scale_q15(&g_pwm_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_PERIOD_VALUE_AT_22050HZ,

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_DATA_BIT_SIZE,

 &g_pwm_scaled_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK);

 /* Data is ready to be sent in the interrupt. */

 g_data_ready = true;

}

void rm_audio_playback_streaming_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module.

 * Configure the following pins in the pin configurator for PWM output:

 * - If the GPT timer is used for generation of PWM waves configure GTIOCAn or

GTIOCBn pin and enable the output

 * to these pins through the GPT module properties for desired channel n.

 * - Otherwise, if AGT is used for generation of PWM waves configure AGTOAn or

AGTOBn pin and enable the output to

 * to these pins through the AGT module properties for desired channel n.

 * Configure the DMAC/DTC destination address as following:

 * - If the GPT timer is used for generation of PWM waves, configure DMAC/DTC

destination address to the address of

 * GTCCRC register (&R_GPTn->GTCCR[2]) if PWM output pin is GTIOCA otherwise

configure to the address of GTCCRD

 * register (&R_GPTn->GTCCR[3]) if PWM output pin is GTIOCB for desired GPT channel

n.

 * - If the AGT timer is used for generation of PWM waves, configure DMAC/DTC

destination address as the address of

 * AGTCMA register (&R_AGTn->AGTCMA) if PWM output pin is AGTOA otherwise the

address of AGTCMB register

 * (&R_AGTn->AGTCMB) if the PWM output pin is AGTOB for desired AGT channel n.

 * Configure the DMAC/DTC transfer size as 4 Bytes if PWM interface is GPT timer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 661 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

otherwise configure transfer size as 2 Bytes if

 * PWM interface is AGT timer. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

&g_audio_playback_pwm_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start timer and transfer modules. */

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Prepare data in a buffer that is not currently used for transmission. */

 rm_audio_playback_example_calculate_samples(g_buffer_index);

 /* Send data in main loop the first time, and if it was not ready in the interrupt.

*/

 if (g_send_data_in_main_loop)

 {

 /* Clear flag. */

 g_send_data_in_main_loop = false;

 /* Reload data and handle errors. */

 rm_audio_playback_example_play();

 }

 /* If the next buffer is ready, wait for the data to be sent in the interrupt. */

 while (g_data_ready)

 {

 /* Do nothing. */

 }

 }

}

Data Structures

struct audio_playback_pwm_instance_ctrl_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 662 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

◆ audio_playback_pwm_instance_ctrl_t

struct audio_playback_pwm_instance_ctrl_t

AUDIO_PLAYBACK_PWM instance control block. DO NOT MODIFY. Initialization occurs when
RM_AUDIO_PLAYBACK_PWM_Open() is called.

Data Fields

void(* p_callback)(audio_playback_callback_args_t *p_args)

void * p_context

audio_playback_cfg_t const
*

p_cfg

 Pointer to the configuration structure.

uint32_t open

 Used by driver to check if the control structure is valid.

timer_instance_t const * p_lower_lvl_timer

 Timer API used to generate sampling frequency and GPT/AGT API
used to access PWM hardware.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer API used to transfer data each sampling frequency.

Field Documentation

◆ p_callback

void(* audio_playback_pwm_instance_ctrl_t::p_callback) (audio_playback_callback_args_t *p_args)

Callback called when play is complete.

◆ p_context

void* audio_playback_pwm_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in audio_playback_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 663 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

Function Documentation

◆ RM_AUDIO_PLAYBACK_PWM_Open()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Open (audio_playback_ctrl_t *const p_api_ctrl,
audio_playback_cfg_t const *const p_cfg)

Opens and configures the Audio Playback with PWM driver. Sets playback speed and transfer rate
to read the audio buffer.

Example:

 /* Initialize the Audio Playback module for playing an audio stream. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

&g_audio_playback_pwm_cfg);

Return values
FSP_SUCCESS Audio Playback module successfully

configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL.

◆ RM_AUDIO_PLAYBACK_PWM_Close()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Close (audio_playback_ctrl_t *const p_api_ctrl)

Closes the module driver. Enables module stop mode.

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function will close all the lower level HAL drivers as well.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 664 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

◆ RM_AUDIO_PLAYBACK_PWM_Start()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Start (audio_playback_ctrl_t *const p_api_ctrl)

Start the PWM HAL driver (AGT or GPT) and timer HAL (AGT or GPT) drivers.

Example:
 /* Start to the play the selected audio stream*/

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Audio playback hardware started

successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not open. This function calls

timer_api_t::start

◆ RM_AUDIO_PLAYBACK_PWM_Stop()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Stop (audio_playback_ctrl_t *const p_api_ctrl)

Stop the PWM HAL driver (AGT or GPT) and timer HAL driver (AGT or GPT).

Example:
 /* Stop playing. */

 err = RM_AUDIO_PLAYBACK_PWM_Stop(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Audio playback hardware stopped

successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not open. This function calls

timer_api_t::stop

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 665 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Audio > Audio Playback PWM (rm_audio_playback_pwm)

◆ RM_AUDIO_PLAYBACK_PWM_Play()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Play (audio_playback_ctrl_t *const p_api_ctrl, void const
*const p_buffer, uint32_t length)

Play a single audio buffer by input samples to the PWM HAL (AGT or GPT) at the sampling
frequency configured by the timer.

Example:
 /* Set the 16 Bit PCM audio stream to play next */

 err = RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, play_buffer,

AUDIO_EXAMPLE_LENGTH);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Buffer playback began successfully.

FSP_ERR_ASSERTION The parameter p_ctrl or p_buffer is
NULL or buffer length is greater than
0x10000.

FSP_ERR_NOT_OPEN Driver not open.. This function calls

transfer_api_t::reset

5.2.4 Bootloader
Modules

Detailed Description

Bootloader Modules.

Modules

MCUboot Port (rm_mcuboot_port)

 MCUboot Port for RA MCUs.

5.2.4.1 MCUboot Port (rm_mcuboot_port)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 666 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Modules » Bootloader

MCUboot Port for RA MCUs.

Overview
Note

The MCUboot Port does not provide any interfaces to the user. Consult the MCUboot documentation at https://mcu-
tools.github.io/mcuboot/ for further information.

Configuration
Build Time Configurations for MCUboot

The following build time configurations are defined in mcu-
tools/include/mcuboot_config/mcuboot_config.h:

Configuration Options Default Description

General

Custom
mcuboot_config.h

Manual Entry Add a path to your
custom
mcuboot_config.h file.
It can be used to
override some or all of
the configurations
defined here, and to
define additional
configurations.

Upgrade Mode Swap
Overwrite Only
Overwrite Only
Fast
Direct XIP

Overwrite Only Swap supports A/B
image swapping with
rollback. Other modes
with simpler code path,
which only supports
overwriting the existing
image with the update
image (Overwrite Only)
or running the newest
image directly from its
flash partition (Direct
XIP), are also available.

Validate Primary Image Enabled
Disabled

Enabled Always check the
signature of the image
in the primary slot
before booting, even if
no upgrade was
performed. This is
recommended if the
boot time penalty is
acceptable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 667 / 5,560

https://mcu-tools.github.io/mcuboot/
https://mcu-tools.github.io/mcuboot/

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Downgrade Prevention
(Overwrite Only)

Enabled
Disabled

Disabled Prevent downgrades by
enforcing incrementing
version numbers. When
this option is set, any
upgrade must have
greater major version
or greater minor
version with equal
major version. This
mechanism only
protects against some
attacks against version
downgrades (for
example, a JTAG could
be used to write an
older version).

Number of Images Per
Application

1
2 (TrustZone)

1 Number of separately
updateable images.

Watchdog Feed Manual Entry This function might be
implemented if the OS /
HW watchdog is
enabled while doing a
swap upgrade and the
time it takes for a
swapping is long
enough to cause an
unwanted reset. If
implementing this, the
OS main.c must also
enable the watchdog (if
required)!

Measured Boot Enabled
Disabled

Disabled Copies the boot data
into the secure RAM,
intended to be used by
the secure App.

Data Sharing Enabled
Disabled

Disabled Copies the user data
into the secure RAM,
intended to be used by
the secure App.

Signing and Encryption Options

Signing and Encryption Options > TrustZone

Boot Record (Image 2) String length must be
12 characters or less.

Create CBOR encoded
boot record TLV for
Image 2. Represents
the role of the software
component (e.g. CoFM
for coprocessor
firmware). [max. 12
characters]

Custom (Image 2) Manual Entry --confirm Add any custom

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 668 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

options to pass to
imgtool.py here. --pad
places a trailer on the
image that indicates
that the image should
be considered an
upgrade. Writing this
image in the secondary
slot will then cause the
bootloader to upgrade
to it. --confirm marks
the image as
confirmed, which
causes the upgrade to
be permanent.

Signature Type None
ECDSA P-256
RSA 2048
RSA 3072

ECDSA P-256 Configure the signature
type.

Boot Record String length must be
12 characters or less.

Create CBOR encoded
boot record TLV.
Represents the role of
the software
component (e.g. CoFM
for coprocessor
firmware). [max. 12
characters]

Custom Manual Entry --confirm Add any custom
options to pass to
imgtool.py here. --pad
places a trailer on the
image that indicates
that the image should
be considered an
upgrade. Writing this
image in the secondary
slot will then cause the
bootloader to upgrade
to it. --confirm marks
the image as
confirmed, which
causes the upgrade to
be permanent.

Python Manual Entry python Name of the python
command to use.
Default is python, but
can be updated to
python3 for Linux or an
absolute path if
needed.

Encryption Scheme ECIES-P256
RSA-OAEP (RSA

Encryption Disabled Choose the encryption
scheme.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 669 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

2048 only)
Encryption
Disabled

Flash Layout

Flash Layout > TrustZone

Non-Secure Callable
Region Size (Bytes)

Value must be an
integer multiple of the
1024.

0x0 Size of the Non-Secure
Callable region of the
Secure image.

Non-Secure Flash Area
Size (Bytes) (TrustZone
Non-Secure)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x0 Size of the Non-Secure
region. This must be
non-zero for all
TrustZone projects to
ensure memory is
partitioned correctly,
even if the Secure and
Non-Secure regions are
treated as a single
image. If the Non-
Secure region can be
updated separately,
this size must account
for the header and
trailer.

Non-Secure Callable
RAM Region Size
(Bytes)

Value must be an
integer multiple of the
1024.

0x0 Size of the Non-Secure
Callable RAM region of
the Secure image.

Non-Secure RAM
Region Size (Bytes)
(TrustZone Non-
Secure)

Value must be an
integer multiple of the
8192.

0x0 Size of the Non-Secure
RAM region. This must
be non-zero for all
TrustZone projects to
ensure memory is
partitioned correctly,
even if the Secure and
Non-Secure regions are
treated as a single
image.

Image 2 Header Size
(Bytes)

Manual Entry 0x200 Size of the flash
reserved for the
application image
header for Image 2.

Bootloader Flash Area
Size (Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x20000 Size of the flash
reserved for the
bootloader.

Image 1 Header Size
(Bytes)

Manual Entry 0x200 Size of the flash
reserved for the
application image
header. Must meet
minimum VTOR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 670 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

alignment
requirements for the
core (0x200 for all RA
MCUs).

Image 1 Flash Area
Size (Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x20000 Size of the application
image 1, including the
header and trailer. For
TrustZone projects,
enter the combined
size of the Secure and
Non-Secure Callable
regions if the Non-
Secure image can be
updated separately, or
enter the size of the
entire image slot if
Secure, Non-Secure
Callable, and Non-
Secure regions are
updated as a single
image.

Scratch Flash Area Size
(Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x0 Size of the scratch
area. Only required for
swap update method.

Flash Configuration

Dual Bank Mode MCU Specific Options Enable dual bank mode
for Direct XIP.

Data Sharing

Maximum Measured
Boot Record Size
(Bytes)

Value must be an
integer.

0x64 Maximum size of the
boot record.

Shared Data Size
(Bytes)

Value must be an
integer.

0x380 Size of the shared RAM
area. Required for
Measured Boot.

Shared Data Address Value must be an
integer

0x20000000 Shared RAM start
address. Required for
Measured Boot.

Clock Configuration

This module does not use peripheral clocks.
For best performance it is recommended to use the fastest clock settings supported by the
device in order to reduce boot times.
The bootloader must not disable the MOCO prior to calling the application. If the
bootloader disables the MOCO, then operation cannot be guaranteed.

Pin Configuration

This module does not use I/O pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 671 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Usage Notes
Getting Started: Creating an MCUboot Project

Start by creating a new project in e² studio or RASC. Select 'Flat (Non TrustZone) Project' template
for non TrustZone based projects. For TrustZone based projects, select 'TrustZone Secure Project'
template and set the clock circuit under the clocks tab to secure. On the Stacks tab, add New >
Bootloader > MCUboot. Resolve any constraint errors and edit configurations as desired. Add either
the example keys or generate your own key. The MCUboot key generation tool is provided at ra/mcu-
tools/MCUboot/scripts/imgtool.py and documented at https://github.com/mcu-
tools/mcuboot/blob/master/docs/imgtool.md. Install the following required python packages to use
imgtool.py: https://github.com/mcu-tools/mcuboot/blob/master/scripts/requirements.txt.

In src/hal_entry.c, drag in Developer Assistance > HAL/Common > MCUboot > Quick Setup > Call
Quick Setup. Add a call to mcuboot_quick_setup() in the application and make any desired updates.

Note
MCUboot will contain either the verification public key or its hash. During production it is necessary to
permanently lock the flash region where MCUboot is programmed to prevent the keys or the code from being
modified.

Getting Started: Signing Tool Prerequisite

To use the MCUboot signing tool, ensure you have Python 3.x installed on your system. Then install
the Python packages required for the signing tool with the following command (modifying the path
as needed depending on current directory):

pip3 install --user -r ra/mcu-tools/MCUboot/scripts/requirements.txt

Getting Started: Converting a Project to an MCUboot Image

MCUboot application images must execute from the image slot defined by the MCUboot project.
They are also limited to a single downloadable flash region. All of this is handled by specifying a
BootloaderDataFile in the FSP Configuration tool.

Any existing project can be converted to an MCUboot image.

1. If the project was created with a version prior to FSP v3.0.0, update the linker script to the
v3.0.0 version before using it as an MCUboot application image.

2. Right click the project to convert in e² studio or RASC and select Properties.
3. Open C/C++ Build and select Build Variables.
4. Click Add...
5. For Variable Name, enter BootloaderDataFile. For Type, select File. Browse to the *.bld file

created alongside the *.elf file for the associated MCUboot project.
6. Click OK, then Apply and Close.

To convert a TrustZone image, follow the steps above for both the Secure project and the Non-
Secure project.

MCUboot application images must also be signed to work with MCUboot. At a minimum, this involves
adding a SHA and MCUboot specific constant data called boot magic in the image trailer.

Signing can be done on the as a post-build step in e² studio. To sign the image as a post-build step:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 672 / 5,560

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/scripts/requirements.txt

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

1. If Linux is used to develop the application image, change the MCUboot property Signing >
Python to python3.

2. Build the bootloader project to generate the *.bld file. Make sure to build the bootloader
project on the same computer as the application image to ensure the path to the signing
script is correct.

3. Define environment variables in the Properties of the application image project in e² studio.
a. Right click the application image project, and select Properties.
b. Select C/C++ Build > Environment on the left.
c. Click Add...
d. Define the following environment variables one at a time:

MCUBOOT_IMAGE_VERSION: Set to the version of the application image.
MCUBOOT_IMAGE_SIGNING_KEY: Set the path to the key used for signing.
If signing is not required, do not set this variable. If example keys are
used, set MCUBOOT_IMAGE_SIGNING_KEY as follows (replace
<boot_project> with the bootloader project path):

ECC: <boot_project>/ra/mcu-tools/MCUboot/root-ec-p256.pem
RSA 2K: <boot_project>/ra/mcu-tools/MCUboot/root-
rsa-2048.pem
RSA 3K: <boot_project>/ra/mcu-tools/MCUboot/root-
rsa-3072.pem

MCUBOOT_IMAGE_ENC_KEY: Set the path to the key used for encryption.
If encryption is not required, do not set this variable. If example keys are
used, set MCUBOOT_IMAGE_ENC_KEY as follows (replace <boot_project>
with the bootloader project path):

ECIES: <boot_project>/ra/mcu-tools/MCUboot/enc-
ec256-pub.pem
RSA 2K: <boot_project>/ra/mcu-tools/MCUboot/enc-
rsa2048-pub.pem

MCUBOOT_APP_BIN_CONVERTER: Optional. Set to path to objcopy, arm-
none-eabi-objcopy, fromelf, or ielftool. Not required if one of these tools is
on the path.

4. Build the project.
5. The signed image is output next to the application <project>.elf file with the name

<project>bin.signed.

Getting Started: Download and Debug

For projects that do not use TrustZone, debug the MCUboot project using the default configuration.
Before running, load the signed image to the address specified in the signing comment in ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h. This can be done with the Load Ancillary File button
when debugging in e² studio. Upgrade images can be loaded to the upgrade image slots using the
same method.

Note
e² studio projects targeting RA8 devices that do not use TrustZone must disable the "Set TrustZone secure/non-
secure boundaries" setting (Debug Configurations > Debugger > Connection Settings > TrustZone > Set
TrustZone secure/non-secure boundaries).

For TrustZone projects, debug using the Secure project to ensure the IDAU is partitioned correctly
when debugging in e² studio. Make the following modifications before debugging in e² studio:

1. In the Debug Configurations for your project, on the Startup tab, click Add... to add the
MCUboot project *.elf file (Image and Symbols), and optionally the Non-Secure project *.elf
file.

2. For the Secure and Non-Secure project *.elf file, load Symbols Only.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 673 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

3. After starting to debug, load the signed Secure image and the signed Non-Secure image
into the addresses specified in the signing comment in ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h. This can be done with the Load Ancillary
File button when debugging in e² studio. Upgrade images can be loaded to the upgrade
image slots using the same method.

Confirming Upgrade in Swap Mode

In Swap Mode operation, if the upgrade image is signed with the –pad option, MCUboot will install
that image as a temporary update where if nothing else is done, a reboot will cause MCUboot to
revert to the image version that was swapped out during the upgrade. In order for the updated
image to prevent this reversion and make the update permanent, the boot_set_confirmed() must be
called from the application.

To avail this capability in the application image, from the Stacks tab, add New > Bootloader >
MCUboot Image Utilities (Swap Mode). Resolve any constraint errors and edit configurations as
desired.

In src/hal_entry.c, drag in Developer Assistance > HAL/Common > MCUboot Image Utilities > Quick
Setup > Confirm Primary Image. Add a call to boot_set_confirmed() in the application and confirm
the image in the primary slot.

XIP Mode operation

XIP mode is enabled selecting "Direct XIP" as the Upgrade Mode option in the configurator or by
defining "MCUBOOT_DIRECT_XIP" in the mcuboot config file. The linker script defines the symbol
"XIP_SECONDARY_SLOT_IMAGE" by default to 0. To link an application to the secondar slot in XIP
mode, set XIP_SECONDARY_SLOT_IMAGE to 1 in the application linker script. Direct XIP mode does
not support TrustZone projects.

Dual Bank operation

MCUboot can be used with Dual bank mode (with Flash HP or Flash LP) to leverage the advantages of
dual bank flash operation. When Dual Bank mode is enabled, only the XIP upgrade mode can be
used.

Note
Unlike in normal XIP Mode operation, the linker script symbol "XIP_SECONDARY_SLOT_IMAGE" must be
undefined in Dual Bank mode. An example flash layout in this configuration for a 1 MB is shown below. Note that
there are 2 copies of the bootloader, one in Bank 0 and another in Bank 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 674 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Figure 150: MCUboot Dual Bank layout of Flash HP for 1 MB Memory

 For this example layout, the following files are generated when Dual Bank mode with XIP is enabled:

1. Bootloader Project: srec file linked to address 0 and includes the OFS region.
2. Application Project (Primary): signed bin file linked to address 0x20000.
3. Application Project (Secondary): signed bin file linked to address 0x20000.

With Flash HP in Dual Bank mode, the available flash memory is split into two halves and referred to
as Bank 0 and 1. In this example Bank 0 would span from address 0x0 - 0x7FFFF and Bank 1 from
0x200000 - 0x27FFFF. In Linear mode, it is possible to program the Bank 1 area by programming to
0x80000 - 0xFFFFF.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 675 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Figure 151: MCUboot Dual Bank layout of Flash LP for 512 KB Memory

 With Flash LP in Dual Bank mode, the available flash memory is also split into two bank areas and
referred to as Bank 0 and 1. In this example Bank 0 would span from address 0x0 - 0x3FFFF and
Bank 1 from 0x40000 - 0x7FFFF. In Linear mode, it is possible to program the Bank 1 area by
programming to 0x40000 - 0x7FFFF.

Programming in Dual Bank Mode with Flash HP

The bootloader must be duplicated in Dual Bank mode. Bank 0 can be programmed using the srec
file generated from the MCUboot project; this will also program the OFS region which contains the
dual bank enable bit, so it must either be programmed last if each file is programmed independently.
Another option is to combine all images: MCUboot in Bank 0, primary image, MCUboot in Bank 1 (no
OFS), and secondary image (optional). To program MCUboot to Bank 1, offset MCUboot by half the
flash size and cut off the OFS region (0x0100A100 to address 0x0100A2FF on CM33 MCUs that
support dual bank). Using srec-cat for a 1 MB flash MCU (0x80000 flash per bank), an example
command to create the bootloader image for Bank 1: "srec_cat MCUboot_dualbank.srec -crop 0
0x80000 -offset 0x80000 -o MCUboot_dualbank_offset.srec". The application project for Bank 1 can
be similarly offset using srec_cat: "srec_cat app1.bin.signed -binary -offset 0xA0000 -o
app1_offset.srec", where 0xA0000 is 0x80000 (half the flash) + 0x20000 (MCUboot size). The signed
binary file for Bank 0 can be converted to srec format using srec_cat: "srec_cat app0.bin.signed
-binary -offset 0x20000 -o app0.srec"

To combine all the files into one srec file, use "srec_cat MCUboot_dualbank.srec
MCUboot_dualbank_offset.srec app0.srec app1_offset.srec -o combined_srec".

Programming in Dual Bank Mode with Flash LP

To use Dual Bank Mode with Flash LP, enable Dual Bank Mode (Flash LP) in the MCUboot stack under
Property > Common > General.

Similar to Dual Bank Mode with Flash HP, the bootloader must also be duplicated in Dual Bank mode.
But the MCUBoot project does not need to be programmed last, because Flash LP does not use the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 676 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

OFS region to enable/disable the dual bank mode.

External Memory Support

QSPI
QSPI support for secondary image storage can be enabled in the configurator. The bootloader
expects the QSPI memory to be pre-configured by user code in the bootloader for read/write
operation. The bootloader code operates under the assumption that the user has configured the QSPI
in Extended-SPI mode and that R_QSPI_Open() has been called prior to invoking boot_go();. For
example, on the EK_RA6M4 which has the MX25L25645G QSPI flash, after adding the QSPI module to
the project, calling the following snippet will configure the QSPI for read/write operation:

/* Status Register (SREG) payload size */

define SREG_SIZE 0x03

define QSPI_COMMAND_WRITE_STATUS_REGISTER 0x01

define QSPI_DEFAULT_SR1 0x40

define QSPI_DEFAULT_SR2 0x00

/* Status register payload */

uint8_t data_sreg[SREG_SIZE] = {QSPI_COMMAND_WRITE_STATUS_REGISTER,

QSPI_DEFAULT_SR1, QSPI_DEFAULT_SR2};

R_QSPI_Open(&g_qspi0_ctrl, &g_qspi0_cfg);

/* Configure for Extended SPI Read/Write Mode */

R_QSPI_DirectWrite(&g_qspi0_ctrl, &(g_qspi0_cfg.write_enable_command), 1, false);

R_QSPI_DirectWrite(&g_qspi0_ctrl, data_sreg, SREG_SIZE, false);

For a more detailed example on how to initialize the QSPI device, refer to the QSPI module. The QSPI
sector size must be the same as that of the MCU internal flash
(BSP_FEATURE_FLASH_HP_CF_REGION1_BLOCK_SIZE) for swap mode operation.

OSPI_B
OSPI_B support for secondary image storage can be enabled in the configurator for RA8: The
bootloader expects the OSPI memory to be pre-configured by user code in the bootloader for
read/write operation. The bootloader code operates under the assumption that the user has
initialized the OSPI_B by calling R_OSPI_B_Open() prior to invoking boot_go();.

MCUboot Memory Map

For single image projects with no external memory support, the default memory map looks like:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 677 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Figure 152: MCUboot Memory Map

 For projects with 2 separately updateable images (used for TrustZone applications where the Secure
and Non-Secure images can be updated separately), the default memory map with no external
memory support looks like:

Figure 153: MCUboot Memory Map (TrustZone)

 For single image projects with QSPI, the default memory map looks like:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 678 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

Figure 154: MCUboot Memory Map with QSPI

MCUboot verification options

MCUboot in FSP supports the following secure image verification options

1. Hash verification only (SHA256).
2. Hash and signature verification (ECDSA-P256, RSA-2048 and RSA-3072).
3. Hash, signature verification and image encryption (ECIES-P256 and RSA-OAEP-2048 with

AES-128).
4. Hash and image encryption only.

MCUboot also supports signature verification using EdDSA-25519 and image encryption using AES-
KW-128 and AES-KW-256 but those are currently not supported in FSP.

Limitations

MCUboot swap mode is not functional with OSPI_B external storage.

Notes

When encryption is enabled, MCUboot requires the image in the primary slot to be unencrypted.
Only the image loaded in the secondary slot can be encrypted.

MCUboot Crypto Stack Options

The following crypto stacks can be used with MCUboot in FSP:

1. MbedTLS, which is hardware accelerated on all RA devices. On the RA2 which has an AES
engine only, ECC/RSA/SHA operations are in software.

2. TinyCrypt (S/W Only) can be used with all devices.
3. TinyCrypt (H/W Accelerated) has AES operations accelerated for the RA2 family only. When

using MCUboot without encryption there is no difference between using this or the S/W only
version.

4. SCE9 Protected Mode on devices that have the SCE9 (eg: RA6M4, RA4M3, RA4M2)

MbedTLS provides the best performance for MCUBoot signature verification on the RA6 and RA4
devices but has a much larger code footprint compared to TinyCrypt. For RA2 devices TinyCrypt is
the best option.

MCUboot boot time

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 679 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

The time from Reset to executing the application will depend on how quickly MCUboot finishes
execution. This is dependent on a variety of factors including

1. The crypto algorithms chosen for image verification and whether hardware acceleration is
enabled. Hardware accelerated SHA256 will be the fastest while encryption enabled modes
will be the slowest.

2. The operating clock speeds.
3. Whether flash programming was required.

Reducing boot time on SCE9 devices

On devices that have the SCE9, it is possible to reduce the time taken for EC-P256 signature
verification by setting the Initialization property for the SCE9 module to only initialize the crypto
primitives required for EC-P256 verification. Note that this feature is only supported for EC-P256
currently. Enabling it for any other algorithm will cause a runtime failure.

Using SCE9 Protected Mode Crypto Stack

Using this crypto stack with MCUBoot provides additional security by ensuring that any keys that are
used were securely provisioned for the specific device. The Application Note "Installing and Updating
Secure Keys for RA Family" (R11AN0496) provides detailed steps on how to go about installing these
keys. Since the section "Preparing Keys for Installation and Update Using RFP" document currently
only provides information on how to install an AES key, this section will provide information on how
to install an ECC public key. These steps can be used to install the public keys used for image
verification or the keys used for image encryption.

Note
When using the SCE9 Protected Mode Stack with MCUboot it is required that the public keys in the format
described in the "MCUboot Example Keys" module in the stack is also provided in the project.

Installing public keys used for signature verification

1. Generate an ECC key pair. There are various ways to do this but you can use openSSL to do
so: "openssl ecparam -name secp256k1 -genkey -noout -out my_ecc_secp256k1_key.pem".

2. Once the key is generated, in order to install the public key using RFP (Renesas Flash
Programmer) the user needs to have their own UFPK (User Factory Programming Key) and
W-UFPK (Wrapped User Factory Programming Key). Refer to R11AN0496 on how to obtain
these keys.

3. Once the UFPK and W-UFPK are available, we need to extract the public key from the pem
file. The public key can be viewed by using "openssl ec -noout -text -in
my_ecc_secp256k1_key.pem". Note that when the ECC public key is printed out this way, it
will contain a 0x04 ASN.1 prefix at the start, which should be discarded.

4. Use the rfp-util.exe utility from the RFP installation folder to wrap the public key using the
UFPK and W-UFPK into a format that can be installed by RFP and the factory bootloader on
the MCU.

5. Use RFP as described in R11AN0496 to install the key to the location of mcuboot_sce9_key
section.

These are examples that install the default keys provided with MCUboot in ra/mcu-tools/MCUboot/.
The examples assume that UFPK and W-UFPK are already available.

 //Print out the EC-P256 Public Key using openSSL

C:\ openssl ec -noout -text -in root-ec-p256.pem

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 680 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

read EC key

Private-Key: (256 bit)

priv:

 d7:98:d5:2f:83:01:24:3b:d3:54:2b:7e:55:ed:4c:

 74:61:19:00:b0:f9:50:5a:82:4f:e1:e8:ec:06:3b:

 cf:f1

pub:

 04:2a:cb:40:3c:e8:fe:ed:5b:a4:49:95:a1:a9:1d:

 ae:e8:db:be:19:37:cd:14:fb:2f:24:57:37:e5:95:

 39:88:d9:94:b9:d6:5a:eb:d7:cd:d5:30:8a:d6:fe:

 48:b2:4a:6a:81:0e:e5:f0:7d:8b:68:34:cc:3a:6a:

 fc:53:8e:fa:c1

ASN1 OID: prime256v1

NIST CURVE: P-256

//Use the public key (ignore the 0x04 ASN.1 prefix) in the RFP command line to

convert the public key into an installable format

C:\ "C:\Program Files (x86)\Renesas Electronics\Programming Tools\Renesas Flash

Programmer V3.08\rfp-util.exe" /genkey /ufpk "C:\ufpk.key" /wufpk

"C:\ufpk.key_enc.key" /key "2acb403ce8feed5ba44995a1a91daee8dbbe1937cd14fb2f245737e59

53988d994b9d65aebd7cdd5308ad6fe48b24a6a810ee5f07d8b6834cc3a6afc538efac1" /userkey

"16" /output "C:\ECC_pub_install.rkey"

// From the bootloader map file determine the address of mcuboot_sce9_key section

Use RFP to install "ECC_pub_install.rkey" as described in "Installing and Updating

Secure Keys for RA Family" (R11AN0496) to the address where the mcuboot_sce9_key

section is located.

 //Print out the RSA-2048 Public Key using openSSL

C:\ openssl asn1parse -in root-rsa-2048.pem

 0:d=0 hl=4 l=1187 cons: SEQUENCE

 4:d=1 hl=2 l= 1 prim: INTEGER :00

 7:d=1 hl=4 l= 257 prim: INTEGER :D106081A18442C18E8FBFDF70DA34F1FBBEE5EF

9AAD24B18D35AE96D188019F9F09C341BCBF3BC74DB42E78C7F10537E435E0D572C44D167080F0DBB5CEE

ECB399DFE04D840BAA774160ED152849A701B43C10E6698C2F5FAC414D9E5C14DFF2F8CF3D1E6FE75BBAB

4A9C8887E473C94C37767544BAA8D3835CA62617EB7E115DB7773D4BE7B7221896924FBF8656E643EC80E

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 681 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

D785D55C4AE4530D2FFFB7FDF31339833FA3AED20FA76A9DF9FEB8CEFA2ABEAFB8E0FA823754F43EE12BD

0D3085818F65E4CC8888131AD5FB08217F28A692723F3AB873E931A1DFEE8F81A246659F81CABDCCE681B

666435ECFA0D119DAF5C3AA7D167C647EFB14B2C62E1D1C9

 268:d=1 hl=2 l= 3 prim: INTEGER :010001

 273:d=1 hl=4 l= 256 prim: INTEGER :46A11421C52B5BFF3AD2D37924999745F0D9D62

BE505D42C5A56B0E39550CBF641D07667221E8502B38842F79D83E5C2977EF3610E6B5E9AC3055B2D8174

967505BCB96D57FE1D26D8E7A894EA9D209A99CD6624856BC22240F17C09D3B1960EE2F61BFFE9EE3277B

F4E539D9395FCA983F717EA4AFB2166E9FE2E0A25A87A9CAC06B57F8726B8FF42F68A9E9D9AF2963C9F8F

BA626886462342513EB249E64226609A9170C80A4F21CFE0BF27C10E26A0C26BEB36DF6D6C716F94C2ECA

559490F5429967E64BBB2FE991441EE06F17484D2BF91F6EE090A0F3B235BE01E19FC5894B1557D36ECE5

54AB91DF3B3836B244014DC131A61E55F41D9BA2737177C5

 533:d=1 hl=3 l= 129 prim: INTEGER :FF7D8F5BE67045C74A5CC8FE4159315D477AC64

5F2EE64D73C4690B8E2D665082B4AA0051F5978E7FE9DD3DF4A009AE333A911F29297B73EF6208C8C1D33

E6DF7DA08729A32AF6849765CFF6C17E7FA16661445AAF8CBAF198777A2BCFF3AF90FD8CCE18AC2D452CE

204CCEB01FA085E0B701FCA7020F60B3F7CC1578E38F59B

 665:d=1 hl=3 l= 129 prim: INTEGER :D170BF82EDAE6F933A1170678EAF4AD9DE0B953

C803EC21B01C312C2484E507E182454B6DAA5CB610500F7333E0D4C8B0AB97F3CA3761B41D056031BE032

1B787BFC917079A069B9CDF6D6A2B5AA3A899707702C23B5FC60332D7FF3EC655D9A9817A2A95B2498F25

0576D6A17278E707953F9D1EE45BD0ED2E9F774AF111E6B

 797:d=1 hl=3 l= 129 prim: INTEGER :A43087E1D27CD28B19A1F955549FC256A4EA24E

3AD144160050F8050210F110CA7EDA45AC663D48C9B17C8A255C77FC2855FA0F617F9423D472571CD55B3

162B086C1290D29878A68B3955E5C941C739ED36931C0877536891C82E8E5B6CCAA64E1BA013410B32CA7

E52017301E9325965D65FC7D4398A857DFE69AE1FEB4103

 929:d=1 hl=3 l= 128 prim: INTEGER :5043C1614FED75DD1A77EC78037AB258E47BD3E

9A7CC655F2C41B242BAAB28B5EA52A214A19EC05EA22848945EC781FA175617A9098C0DCE1F2597736B6C

4892D811673B8FA126638AC77A6248F4C01252CB0AF61F8972FAFB2208D356595292188F964B091EF16E8

BD3B59EDED8CE01D4BD96141A18A7E7B274EFDCCBEAE799

 1060:d=1 hl=3 l= 128 prim: INTEGER :287481FC814FF38A3E47CABFE05BB7C1DCA3180

48FE4F21FEBD875E4DB3FD65227ACB9BAD31B3E0EF388B2DB27EF48712C0F0B0252988F88D0E9B8C44A78

65B942AF3006EE15AF1B634DCF14239A838EAC000DC93BC947F6A937E524400E16ACC48A118C819514BF8

51F549F3DF5BCC73693D45ED2E91685687F424B101837C9

//Use the public key in the RFP command line to convert the public key into an

installable format. Note that for RSA, the public modulus has to be concatenated to

the public exponent (typically 65537 in 32 bits 00010001 as shown in the asn1parse

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 682 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

output above) and then padded with 4 words of 0.

C:\ "C:\Program Files (x86)\Renesas Electronics\Programming Tools\Renesas Flash

Programmer V3.08\rfp-util.exe" /genkey /ufpk "C:\ufpk.key" /wufpk

"C:\ufpk.key_enc.key" /key "D106081A18442C18E8FBFDF70DA34F1FBBEE5EF9AAD24B18D35AE96D1

88019F9F09C341BCBF3BC74DB42E78C7F10537E435E0D572C44D167080F0DBB5CEEECB399DFE04D840BAA

774160ED152849A701B43C10E6698C2F5FAC414D9E5C14DFF2F8CF3D1E6FE75BBAB4A9C8887E473C94C37

767544BAA8D3835CA62617EB7E115DB7773D4BE7B7221896924FBF8656E643EC80ED785D55C4AE4530D2F

FFB7FDF31339833FA3AED20FA76A9DF9FEB8CEFA2ABEAFB8E0FA823754F43EE12BD0D3085818F65E4CC88

88131AD5FB08217F28A692723F3AB873E931A1DFEE8F81A246659F81CABDCCE681B666435ECFA0D119DAF

5C3AA7D167C647EFB14B2C62E1D1C900010001000000000000000000000000" /userkey "0C" /output

"C:\RSA_pub_install.rkey"

// From the bootloader map file determine the address of mcuboot_sce9_key section

Use RFP to install "RSA_pub_install.rkey" as described in "Installing and Updating

Secure Keys for RA Family" (R11AN0496) to the address where the mcuboot_sce9_key

section is located.

 //Print out the RSA-3072 Public Key using openSSL

C:\ openssl asn1parse -in root-rsa-3072.pem

 0:d=0 hl=4 l=1764 cons: SEQUENCE

 4:d=1 hl=2 l= 1 prim: INTEGER :00

 7:d=1 hl=4 l= 385 prim: INTEGER :B42C0E985810A4A758997C01DD082A283433F89

61A34205D45C8712625E5D296EA7BB115AAA68A63228B2D4E8173BF6E15688C1AF4EF2A8F8C229E71574B

DE0F7E72D37AB8A71D44AD8700835CFD730572463F8BF91000D86ECC85EDF949DB783680493876DD5F540

4DA8C34A72B13256FD1154FADC2E1A5D24E570C7E9C9BBA4E68B2E02502AA00D3B4CC2F78E5BE47671FC8

6E226C5E61B69ACDE5A8BA7A80131B172E96EDCFB39BE41CE8ADA7F63A51665E998E87EE6025F88DBECEA

4A8CA936CD7BFD473338D4485CC7330089C4DB2AA5A6C6F7BABB7B37CC3FBE7CAC4F89A6FCBBB5B82E77A

E819FD2F1122FB7F768C6B94A4094FA56A7751EBA77EDA8706EEDCBED1EA1A401D1BFF1AB1517C12B0F3F

683019CE70C99BFAC685872A4B05985EE85AC2A22F4CF1508801F0DD01EA0A094C8F7FA65DD52E8963723

305736E69DF40C4A05751FAD01CAB76D8C4374060A81F30162FFF7F55FAFE72B0EF881B565DD01D99F071

78A18CF236E886591B57BD3B02DAF93666374AC5AE673DE3B

 396:d=1 hl=2 l= 3 prim: INTEGER :010001

 401:d=1 hl=4 l= 385 prim: INTEGER :98C34E30AF629528EABF605C781B671B257FF74

2D5BEE2BE12DFEBC80B93FC6547354F256EC6BC4967CD97C19B931779701F6FC39F6F75A7B68AD7CA83D8

E8D43C4381B9E8FC909D5D803CD824AD24AC3683077857D9D0CDB1CC29B6678ACED1F36BFC292AE771DF5

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 683 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

C2A2D7CAB4CA374378590CB392A2686A17518EB9822930B7955DE6C9C14D12DD852D05963E96FD73CC1BF

005AA185B8D5CA15CFA6AB4E186F9AA5A2340838F631B44D2A9FAAECE3EF869BA9192779DEFDF2EBC41F9

38F249EABFFB1EB8DB49A9F61DF86242059E6D1E8D579C6D980CBFFF68AE36AAE6F5ED50AE29E3A35B5E1

CFEB78731906E4F47CD7748CCC9B0F37BC73A9A459AD78E092C49231276878465B15967FFB3B93788C085

DA6ABBFE405819561DE7C4B16BF17C653098176DC45D0CE29F99E6A188217FD6187C7E120F6AB0FD4D867

32143C0C98C23CDCDE8FB766B221DC202B08FD227CE176F2E4A946F0E25BB184A9CF2778FCF0FBF3D5574

932BF07020DDC866C5A1370D46EC039FCDC87CE9F5CDA42A1

 790:d=1 hl=3 l= 193 prim: INTEGER :E5BF240823A33C7AD9D931818534A0F1A5C45A8

6B178CE710D5B7203B26E35D38E28CBEAAFF1F47B34523EF3CC5C6E6FF3CD0FA8CF814601C4CD7D46B524

0208FE1D68271ED0780172B651AAE357319C67D51927A69A910E819AB35959DE16767CB3FF35B2ADF9FCE

CE943EA4A81337C498823C9241B7F9A491021D5DE8697EA0FC365C114E899E0616C86E20028BC1A61FC45

DA3E7DEC687528EEEEF9C83E879CBC5CC5AE02FFF66CF4D3879910F15B5005ABA73DAAA1E30308B0A16CF

FD4F1

 986:d=1 hl=3 l= 193 prim: INTEGER :C8C2B1D568DC756EC05384E6328598EDDC1C822

9E10731277BBCF98609DA6EC9C56AE751A408B1FC8053D06D3F9431015E36BE8FC579E89CBBC4254B9898

B4E389E37F30A7D1B6ED387384DC1CED18FEDE59138337EDAEFD5F7193ABFBCB847B34E2F313BFB5FD2BA

9698596E6E428F59D6F09A994ECCB885EAE9BF414B71C3F2F4BD22978340824A43D1B434844DF6768BC32

7CB934117043A84D159575AEB038BC07D5B9650D25F5D6365CB0B1F06C7B16873C500F3912F8AFB5FA42D

DB5EB

 1182:d=1 hl=3 l= 192 prim: INTEGER :0B2C1F6171F23737B62E54B4FAB853774CDB5E9

79C3BC6B642B306B95D4CF4BB23F7A1EAF8C1686531672A7E8A9A9818439FDE3A1455320555FFB42EE312

2C3329C05E5740AD5C989D6E764C3C1FFA5EA3C1FE262A78EBC2EBD48D123447938A11886349C635A5A98

20FD9E8A3D4E29F11A8582D28DF597634455F8FD9F16BA3CB3E724D5069FB49A91330FFFE87FC95BFDC17

BD843A756BA2FEE9979F77F86A79D9C31D2DD82180674E04975C7F316D8257B4403EC47478E8A5DC890D1

6E7D1

 1377:d=1 hl=3 l= 192 prim: INTEGER :543B63F3BF6868190CB6BE16FB7194459049A1C

F426C0B129ED71DF6402216C3AF81F8060805E1EFA844023A2427E01BCBD4BA45863C6CFD7DC681436386

06B7453E5F3A21DF5A99D34A9C9EE1C014F1B286BB2A1E082A9882381C1657B1FF26D67CB6323E08746DA

249F4D3E89228214D69AE2B29A1E48F95F23ADAC0EA46FEB7B05F4028FFE3BEC3EE23872A46435996D707

73CF1CEA8828CAEF74B3DDC96A849357D23354139D2EB52EDFDAFEFD79F676F04CBCE67632E086909AACF

D6AFB

 1572:d=1 hl=3 l= 193 prim: INTEGER :BD64D5B1F4FB1B37B0C423C57CA8E4261EE5F9A

2D72F069EDD39922BE0BC66863CB21BDA51BC2517C885AB0ED380EBBF19D6E440626A9EACAED005F8C539

E7F1235E7F7B7ECD53BC3470676FD22510800877A91675EB3CCCF574105EF081BBB3C022E564C3B956DBE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 684 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

D3E3FF1FC12AEA027205EE84301C5C25A439C519424B64227FF87FE38DC9F64E04E718810D4F09522287E

17164FE3AD1AD94B2D4E09EBE974EEF55FB9E1287E824C7EA5A30D4A4EAF71669CFF8AD9DAD95859F3BFF

DD182

//Use the public key in the RFP command line to convert the public key into an

installable format. Note that for RSA, the public modulus has to be concatenated to

the public exponent (typically 65537 in 32 bits 00010001 as shown in the asn1parse

output above) and then padded with 4 words of 0.

C:\ "C:\Program Files (x86)\Renesas Electronics\Programming Tools\Renesas Flash

Programmer V3.08\rfp-util.exe" /genkey /ufpk "C:\ufpk.key" /wufpk

"C:\ufpk.key_enc.key" /key "B42C0E985810A4A758997C01DD082A283433F8961A34205D45C871262

5E5D296EA7BB115AAA68A63228B2D4E8173BF6E15688C1AF4EF2A8F8C229E71574BDE0F7E72D37AB8A71D

44AD8700835CFD730572463F8BF91000D86ECC85EDF949DB783680493876DD5F5404DA8C34A72B13256FD

1154FADC2E1A5D24E570C7E9C9BBA4E68B2E02502AA00D3B4CC2F78E5BE47671FC86E226C5E61B69ACDE5

A8BA7A80131B172E96EDCFB39BE41CE8ADA7F63A51665E998E87EE6025F88DBECEA4A8CA936CD7BFD4733

38D4485CC7330089C4DB2AA5A6C6F7BABB7B37CC3FBE7CAC4F89A6FCBBB5B82E77AE819FD2F1122FB7F76

8C6B94A4094FA56A7751EBA77EDA8706EEDCBED1EA1A401D1BFF1AB1517C12B0F3F683019CE70C99BFAC6

85872A4B05985EE85AC2A22F4CF1508801F0DD01EA0A094C8F7FA65DD52E8963723305736E69DF40C4A05

751FAD01CAB76D8C4374060A81F30162FFF7F55FAFE72B0EF881B565DD01D99F07178A18CF236E886591B

57BD3B02DAF93666374AC5AE673DE3B00010001000000000000000000000000" /userkey "0E"

/output "C:\RSA_3072_pub_install.rkey"

// From the bootloader map file determine the address of mcuboot_sce9_key section

Use RFP to install "RSA_3072_pub_install.rkey" as described in "Installing and

Updating Secure Keys for RA Family" (R11AN0496) to the address where the

mcuboot_sce9_key section is located.

Examples
Basic Example

This is an example of using MCUboot in an application.

void rm_mcuboot_port_example (void)

{

#ifdef MCUBOOT_USE_MBED_TLS

 /* Initialize mbedtls. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 685 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Bootloader > MCUboot Port (rm_mcuboot_port)

 mbedtls_platform_context ctx = {0};

 assert(0 == mbedtls_platform_setup(&ctx));

#elif defined(MCUBOOT_USE_TINYCRYPT)

 /* Initialize TinyCrypt port. */

 assert(FSP_SUCCESS == RM_TINCYRYPT_PORT_Init());

#else

 /* Initialize SCE9 Protected Mode driver. */

 sce_instance_ctrl_t sce_ctrl;

 const sce_cfg_t sce_cfg =

 {.lifecycle = SCE_SSD};

 assert(FSP_SUCCESS == R_SCE_Open(&sce_ctrl, &sce_cfg));

#endif

 /* (Optional) To check for updates, call boot_set_pending. */

 bool update = 0;

 if (update)

 {

 boot_set_pending(0);

 }

 /* Verify the boot image and get its location. */

 struct boot_rsp rsp;

 assert(0 == boot_go(&rsp));

 /* Enter the application. */

 RM_MCUBOOT_PORT_BootApp(&rsp);

}

5.2.5 CapTouch
Modules

Detailed Description

CapTouch Modules.

Modules

CTSU (r_ctsu)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 686 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch

 This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It
implements the CTSU Interface.

Touch (rm_touch)

 This module supports the Capacitive Touch Sensing Unit (CTSU). It
implements the Touch Middleware Interface.

5.2.5.1 CTSU (r_ctsu)
Modules » CapTouch

Functions

fsp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const
p_cfg)

 Opens and configures the CTSU driver module. Implements
ctsu_api_t::open. More...

fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should
be run, check the scan is complete before executing. Implements
ctsu_api_t::scanStart. More...

fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

 This function gets the sensor values as scanned by the CTSU. If initial
offset tuning is enabled, The first several calls are used to tuning for
the sensors. Implements ctsu_api_t::dataGet. More...

fsp_err_t R_CTSU_OffsetTuning (ctsu_ctrl_t *const p_ctrl)

 This function tunes the offset register(SO). Call after the
measurement is completed. If the return value is
FSP_ERR_CTSU_INCOMPLETE_TUNING, tuning is not complete.
Execute the measurement and this function call routine until the
return value becomes FSP_SUCCESS. It is recommended to run this
routine after R_CTSU_Open(). It can be recalled and tuned again.
When the automatic judgement is enabled, after the offset tuning is
completed,the baseline initialization bit flag is set. Implements
ctsu_api_t::offsetTuning. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 687 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t *const p_ctrl)

 This function scan stops the sensor as scanning by the CTSU.
Implements ctsu_api_t::scanStop. More...

fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

fsp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

 Disables specified CTSU control block. Implements ctsu_api_t::close.
More...

fsp_err_t R_CTSU_SpecificDataGet (ctsu_ctrl_t *const p_ctrl, uint16_t
*p_specific_data, ctsu_specific_data_type_t specific_data_type)

 This function gets the sensor specific data values as scanned by the
CTSU. Call this function after calling the R_CTSU_DataGet() function.
More...

fsp_err_t R_CTSU_DataInsert (ctsu_ctrl_t *const p_ctrl, uint16_t *p_insert_data)

 This function inserts the value of the second argument as the
measurement result value. Call this function after calling the
R_CTSU_DataInsert() function. Implements ctsu_api_t::dataInsert.
More...

fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

 Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.
More...

Detailed Description

This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It implements the CTSU Interface
.

Overview
The capacitive touch sensing unit HAL driver (r_ctsu) provides an API to control the CTSU peripheral.
This module performs capacitance measurement based on various settings defined by the
configuration. This module is configured via the QE for Capacitive Touch.

Features

Supports multiple scan modes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 688 / 5,560

https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Self-capacitance multi scan mode (CTSU2 support active shield)
Mutual-capacitance full scan mode
Mutual-capacitance parallel scan mode (CTSU2)
Current Measurement mode (CTSU2)
Diagnosis scan mode

Scans may be started by software or an external trigger
Returns measured capacitance data on scan completion
Support DTC transfer of scanned data
Supports TrustZone
Corrects accuracy for temperature drift (CTSU2)

Configuration
Note

This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once
the tool is installed click Help -> Help Contents in e² studio and search for "QE".

Build Time Configurations for r_ctsu

The following build time configurations are defined in fsp_cfg/r_ctsu_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for using DTC Enabled
Disabled

Disabled Enable DTC support for
the CTSU module.

Interrupt priority level MCU Specific Options Priority level of all
CTSU interrupt (CSTU_
WR,CTSU_RD,CTSU_FN)

Configurations for CapTouch > CTSU (r_ctsu)

This module can be added to the Stacks tab via New Stack > CapTouch > CTSU (r_ctsu). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Scan Start Trigger MCU Specific Options CTSU Scan Start
Trigger Select

Interrupt Configuration

The first R_CTSU_Open function call sets CTSU peripheral interrupts. The user should provide a
callback function to be invoked at the end of the CTSU scan sequence. The callback argument will
contain information about the scan status.

Clock Configuration

The CTSU peripheral module uses PCLKB as its clock source. You can set the PCLKB frequency using
the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 689 / 5,560

https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Note
The CTSU Drive pulse will be calculated and set by the tooling depending on the selected transfer rate.

Pin Configuration

The TSn pins are sensor pins for the CTSU.

The TSCAP pin is used for an internal low-pass filter and must be connected to an external
decoupling capacitor.

Usage Notes
The CTSU module is a CTSU driver for the Touch module. The CTSU module assumes the access from
the Touch middleware layer, and it is also accessible from an user application.
CTSU and CTSU2 are functionally different, so CTSU and CTSU2 are described in this application note
as below.
Common description for CTSU and CTSU2 -> CTSU
Description only for CTSU -> CTSU1
Description only for CTSU2 -> CTSU2
Without mention, it means the common description for CTSU and CTSU2.

Functions

The CTSU module supports the following functions.

Measurements and Obtaining Data

Measurements can be started by a software trigger or by an external event triggered by the Event
Link Controller (ELC).
As the measurement process is carried out by the CTSU2 peripheral, it does not use up main
processor processing time.
The CTSU module processes INTCTSUWR and INTCTSURD if generated during a measurement. The
data transfer controller (DTC) can also be used for these processes.
When the measurement complete interrupt (INTCTSUFN) process is complete, the application is
notified in a callback function. Make sure you obtain the measurement results before the next
measurement is started as internal processes are also executed when a measurement is completed.
Start the measurement with API function R_CTSU_ScanStart().
Obtain the measurement results with API function R_CTSU_DataGet().

Sensor ICO Correction function

The CTSU2 peripheral has a built-in correction circuit to handle the potential microvariations related
to the manufacturing process of the sensor ICO MCU.
The module temporarily transitions to the correction process during initialization after power is
turned on. In the correction process, the correction circuit is used to generate a correction coefficient
(factor) to ensure accurate sensor measurement values.
When temperature correction is enabled, an external resistor connected to a TS terminal is used to
periodically update the correction coefficient. By using an external resistor that is not dependent on
temperature, you can even correct the temperature drift of the sensor ICO.

Initial Offset Adjustment

The CTSU2 peripheral was designed with a built-in offset current circuit in consideration of the
amount of change in current due to touch. The offset current circuit cancels enough of the parasitic

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 690 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

capacitance for it to fit within the sensor ICO dynamic range.
This module automatically adjusts the offset current setting. As the adjustment uses the normal
measurement process, the combination of R_CTSU_ScanStart() and R_CTSU_DataGet() or the
combination of R_CTSU_ScanStart() and R_CTSU_OffsetTuning() must be repeated several times after
startup. Because the ctsu_element_cfg_t member "so" is the starting point for adjustments, you can
set the appropriate value for "so" in order to reduce the number of times the two functions must be
run to complete the adjustment. Normally, the value used for "so" is a value adjusted by QE for
Capacitive Touch.
R_CTSU_OffsetTuning() was added in FSP 3.8.0. This API can also be used for initial offset
adjustment, and offset adjustment can be performed again at any time. See example code of
R_CTSU_OffsetTuning() for details.

Mode Default target value

Self-capacitance 15360 (37.5%)

Self-capacitance using active shield 6144 (15%)

Mutual-capacitance 10240 (20%)

The percentage is for the CCO's input limit. 100% is the measured value 40960.
The default target value is based on 526us(CTSU1) or 256us(CTSU2).
When the measurement time is changed, the target value is adjusted by the ratio with the base
time.

Example of target value in combination of CTSUSNUM and CTSUSDPA.
CTSU1 (CTSU clock = 32MHz, Self-capacitance mode)

Target value CTSUSNUM CTSUSDPA Measurement time

15360 0x3 0x7 526usec

30720 0x7 0x7 1052usec

30720 0x3 0xF 1052usec

7680 0x1 0x7 263usec

7680 0x3 0x3 263usec

The measurement time changes depending on the combination of CTSUSNUM and CTSUSDPA.
In the above table, CTSUPRRTIO is the recommended value of 3, and CSTUPRMODE is the
recommended value of 2.
When changing CTSUPRRATIO and CTSUPRMODE from the recommended values, follow the
Hardware Manual for the measurement time.

CTSU2 (Self-capacitance mode)

Target value Target value (multi
frequency)

CTSUSNUM Measurement time

7680 15360 (128us + 128us) 0x7 128usec

15360 30720 (256us + 256us) 0xF 256usec

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 691 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

3840 7680 (64us + 64us) 0x3 64usec

The measurement time changes depending on CTSUSNUM.
If STCLK cannot be set to 0.5MHz, it will not support the table above.
When setting STCLK to other than 0.5MHz because the CTSU clock is not an integer, follow the
hardware manual for the measurement time.

Random Pulse Frequency Measurement (CTSU1)

The CTSU1 peripheral measures at one drive frequency.
The drive frequency determines the amperage to the electrode and generally uses the value tuned
with QE for Capacitive Touch.
The drive frequency is calculated as below.
It is determined by PCLK frequency input to CTSU, CTSU Count Source Select bit(CTSUCLK), and
CTSU Sensor Drive pulse Division Control bit(CTSUSDPA). For example, If it is set PCLK =32MHz,
CTSUCLK = PLCK/2, and CTSUSDPA = 1/16, then drive frequency is 0.5MHz. CTSUSDPA can change
for each TS port.

Figure 155: Drive Frequency Settings

 The actual drive pulse is phase-shifted and frequency-spread with respect to the clock based on the
drive frequency as a measure against external environmental noise. This module is fixed at
initialization and sets the following.
CTSUSOFF = 0,CTSUSSMOD = 0,CTSUSSCNT = 3

Multi-frequency Measurements (CTSU2)

The CTSU2 peripheral can measure in one of four drive frequencies to avoid synchronous noise.
With the default settings, the module takes measurements at three different frequencies. After
standardizing the results obtained at the three frequencies in accordance with the first frequency
reference value, the measured value is determined based on majority in a process referred to as
"normalization."
The three values standardized to the first frequency reference value are called correction data.
You can get the three correction data with R_CTSU_SpecificDataGet().

Figure 156: Multi-frequency Measurements

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 692 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 Drive frequency is determined based on the config settings. The module sets registers according to
the config settings, and sets the three drive frequencies.
Drive frequency is calculated in the following equation:
(PCLKB frequency / CLK / STCLK) x SUMULTIn / 2 / SDPA : n = 0, 1, 2
The figure below shows the settings for generating a 2MHz drive frequency when the PCLKB
frequency is 32 MHz. SDPA can be set for each touch interface configuration.

Figure 157: Drive Frequency Settings

Shield Function(CTSU2)

The CTSU2 peripheral has a built-in function that outputs a shield signal in phase with the drive pulse
from the shield terminal and the non-measurement terminal in order to shield against external
influences while suppressing any increase in parasitic capacitance. This function can only be used
during self-capacitance measurements.
This module allows the user to set a shield for each touch interface configuration.
For example, for the electrode configuration shown in , the members of ctsu_cfg_t should be set as
follows. Other members have been omitted for the example.
.txvsel = CTSU_TXVSEL_INTERNAL_POWER,
.txvsel2 = CTSU_TXVSEL_MODE,
.md = CTSU_MODE_SELF_MULTI_SCAN,
.posel = CTSU_POSEL_SAME_PULSE,
.ctsuchac0 = 0x0F,
.ctsuchtrc0 = 0x08,

Figure 158: Example of Shield Electrode Structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 693 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Measurement Error Message

When the CTSU2 peripheral detects an abnormal measurement, it sets the status register bit to 1.
In the measurement complete interrupt process, the module reads ICOMP1, ICOMP0, and SENSOVF
of the status register and notifies the results in the callback function. The status register is reset
after the contents are read. For more details on abnormal measurements, refer to "member event"
in the ctsu_callback_args_t callback function argument.

Moving Average

This function calculates the moving average of the measured results.
Set the number of times the moving average should be calculated in the config settings.

Diagnosis Function

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. This diagnosis
function provides the API for diagnosing the inner circuit.
The diagnostic requirements are different for CTSU1 and CTSU2 providing 5 types of diagnosis for
CTSU1 and 9 types for CTSU2.
The diagnosis function is executed by calling the API function. This is executed independently from
the other measurements and does not affect them.
To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.
For CTSU1, a 27pF condenser should be connected externally.
For CTSU2, Diagnosis function uses the ADC module.
If an error occurs in the ADC module used for Diagnosis mode, return FSP_ERR_ABORTED as the
return value of R_CTSU_DataGet().
If an ADC error is returned, exit the function so as not to measure or close the ADC.
See ADC (r_adc) for ADC module errors.
Please pay particular attention to the following three points.

1. Be sure to measure the ADC module when using the Diagnosis mode function of the CTSU
module. Therefore, in order for the user to use it with Dignosis, please close the user's ADC.
After closing, please use the Diagnosis mode function of the CTSU module.

2. When creating an application with RTOS, please be careful about the scheduling of the
CTSU module's Diagnosis mode function task and the user's ADC task.

3. If FSP_ERR_ABORTED occurs, please call the user's ADC again when using the user's ADC.

Measurement Mode

This module supports all three modes offered by the CTSU2 peripheral: self-capacitance, mutual-
capacitance, and current measurement modes. The temperature correction mode is also offered as a
mode for updating the correction coefficient.

Self-capacitance Mode

The self-capacitance mode is used to measure the capacitance of each terminal (TS).
The CTSU2 peripheral measures the terminals in ascending order according to the TS numbers, then
stores the data. For example, even if you want to use TS5, TS8, TS2, TS3 and TS6 in your application
in that order, they will still be measured and stored in the order of TS2, TS3, TS5, TS6, and TS8.
Therefore, you will need to reference buffer indexes [2], [4], [0], [1], and [3].

[CTSU1]
In default settings, the measurement period for each TS is wait-time plus approximately 526us.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 694 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Figure 159: Self-capacitance Measurement Period (CTSU1)

 [CTSU2]
In default settings, the measurement period for each TS is approximately 576us.

Figure 160: Self-capacitance Measurement Period (CTSU2)

Mutual-Capacitance Mode

The mutual-capacitance mode is used to measure the capacitance generated between the receive
TS (Rx) and transmit TS (Tx), and therefore requires at least two terminals.
The CTSU2 peripheral measures all specified combinations of Rx and Tx. For example, when Rx is
TS1 and TS3, and Tx is TS2, TS7 and TS4, the combinations are measured in the following order and
the data is stored.
TS3-TS2, TS3-TS4, TS3-TS7, TS10-TS2, TS10-TS4, TS10-TS7
To measure the mutual-capacitance generated between electrodes, the CTSU2 peripheral performs
the measurement process on the same electrode twice.
The mutual-capacitance is obtained by inverting the phase relationship of the pulse output and
switched capacitor in the primary and secondary measurements, and calculating the difference
between the two measurements. This module does not calculate the difference, but outputs the
secondary measured result.
[CTSU1]
In default settings, the measurement period for each TS is twice of wait-time plus approximately
526us.
[CTSU2]
In default settings, the measurement period for each TS is approximately 1152us.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 695 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Figure 161: Mutual-capacitance Measurement Period

Mutual-capacitance parallel scan mode(CTSU2)

This mode provides fast measurement time by parallel scanning the RX lines with a CFC circuit.
Operation is otherwise identical to normal CTSU mutual scanning.

Scan Order
The hardware scans all RX pins simultaneously for each TX pin.
For example, if sensors TS10, TS11, and TS03 are specified as RX sensors, and
sensors TS02, TS07, and TS04 are specified as TX sensors, the hardware will scan
them in the following sensor-pair order:
TS02-(TS03, TS10, TS11), TS04-(TS03, TS10, TS11), TS07-(TS03, TS10, TS11)

Element
An element refers to the index of a sensor-pair within the scan order. Using the
previous example, TS07-TS10 is element 7.

Scan Time
Because the RX lines are scanned in parallel, CFC mutual-capacitance scan is the
same amount of times faster than a basic mutual matrix scan as the number of RX
lines. In other words, on a matrix with N receive lines, CFC mutual scanning is N
times faster than basic mutual scanning. Set CTSU_MODE_MUTUAL_CFC_SCAN to
"md" of ctsu_cfg_t.
Also, add the number of matrix used for this measurement to
CTSU_CFG_NUM_MUTUAL_ELEMENTS. In addition, set the number of
CTSU_CFG_NUM_CFC and CTSU_CFG_NUM_CFC_TX.
For details, refer to the configuration and sample application output by QE for
Capacitive Touch.

Current Measurement Mode(CTSU2)

The current measurement mode is used to measure the minute current input to the TS terminal. The
order of measurement and data storage is the same as that of the self-capacitance mode. As this
does not involve the switched capacitor operation, the measurement is only performed once. The
measurement period for one TS under default settings is approximately 256us. The current
measurement mode requires a longer stable wait time than the other modes, so the SST is set to 63.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 696 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Figure 162: Current Measurement Period

Temperature Correction Mode(CTSU2)

The temperature correction mode is used to periodically update the correction coefficient using an
external resistor connected to a TS terminal. This involves three processes as described below. Also
refer to the timing chart in Figure of Temperature Correction Measurement Timing Chart.

1. Measure the correction circuit. One set comprises twelve measurements.

2. Measure the current when TSCAP voltage is applied to the external resistor to create a
correction coefficient based on an external resistor that does not depend on temperature.
Execute the next measurement after the previous measurement set is completed (as
described in step 1).

3. Flow offset current to the external resistor and measure the voltage with the ADC. This will
adjust the RTRIM register and handle the temperature drift of the internal reference
resistor. In the config settings, set the number of times step 2 should be executed before
carrying out this measurement.

Figure 163: Temperature Correction Measurement Timing Chart

 Temperature correction uses the ADC module.
If an error occurs in the ADC module used for temperature correction, return FSP_ERR_ABORTED as
the return value of R_CTSU_DataGet().
If an ADC error is returned, exit the function so as not to measure or close the ADC.
See ADC (r_adc) for ADC module errors.
Please pay articular attention to the following three points.

1. When using the temperature correction of the CTSU module, be sure to measure the ADC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 697 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

module. Therefore, please close the user's ADC for use in temperature correction. After
closing, please use temperature correction of CTSU module.

2. When creating an RTOS, please be careful about the scheduling of the CTSU module's
temperature correction task and the user's ADC task when creating an application.

3. If FSP_ERR_ABORTED occurs, please call the user's ADC again when using the user's ADC.

Diagnosis Mode

The diagnosis mode is a mode in which various internal measurement values are scanned by using
this diagnosis function R_CTSU_Diagnosis().

Measurement Timing

Measurements are initiated by a software trigger or an external event which is triggered by the
Event Link Controller (ELC).
The most common method is using a timer to carry out periodic measurements. Make sure to set the
timer interval to allow the measurement and internal value update processes to complete before the
next measurement period. The measurement period differs according to touch interface
configuration and measurement mode.
The execution timing of software triggers and external triggers differ slightly.
Since a software trigger sets the start flag after setting the touch interface configuration with
R_CTSU_ScanStart(), there is a slight delay after the timer event occurrence. However, as the delay
is much smaller than the measurement period, a software trigger is recommended for most
instances as it is easy to set.
An external trigger is recommended for applications in which this slight delay is not acceptable or
that require low-power consumption operations. When using an external trigger with multiple touch
interface configurations, use R_CTSU_ScanStart() to set another touch interface configuration after
one measurement is completed.

TrustZone Support

In r_ctsu and rm_touch module, Non-Secure Callable Guard Functions are only generated from QE for
Capacitive Touch. QE can be used for tuning in secure or flat project, but not in non-secure project. If
you want to use in non-secure project, copy the output file from secure or flat project. Refer to QE
Help for more information.

Data flow

The flow of storing data in RAM is as follows.

(CTSU1)

1. Read registers and stored in RAM as raw data.
2. ICO correction calculation of raw data and stored in RAM as correction data.
3. The correction data is calculated by moving average and stored in RAM as measurement

results.

(CTSU2)

1. Reads a register and stores raw data measured at three different frequencies in RAM.
2. Three raw data is ICO-corrected, standardized to the fitst frequency reference value, and

stored in RAM as three correction data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 698 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

3. Three correction data are calculated by majority decision and moving average, and stored
in RAM as measurement results.

Add user's filter

There are two ways to add the user's filter.

1. Instead of filter calculation of R_CTSU_DataGet(), perform user filter calculation and use
R_CTSU_DataInsert() to input user filter calculation result.

2. Using the correction data obtained by R_CTSU_SpecificDataGet(), instead of majority
decision calculation and filter calculation of R_CTSU_DataGet(), perform user majority
decision calculation & filter calculation and use R_CTSU_DataInsert() to input user majority
decision calculation & filter calculation result.

Please check example.
User's filter additional Example

Examples
Basic Example

This is a basic example of minimal use of the CTSU in an application.

volatile bool g_scan_flag = false;

void ctsu_callback (ctsu_callback_args_t * p_args)

{

 if (CTSU_EVENT_SCAN_COMPLETE == p_args->event)

 {

 g_scan_flag = true;

 }

}

void ctsu_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 699 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Multi-configuration Example

This is a optional example of using both Self-capacitance and Mutual-capacitance configurations in
the same project.

void ctsu_optional_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS + (CTSU_CFG_NUM_MUTUAL_ELEMENTS * 2)];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 assert(FSP_SUCCESS == err);

 err = R_CTSU_Open(&g_ctsu_ctrl_mutual, &g_ctsu_cfg_mutual);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 R_CTSU_ScanStart(&g_ctsu_ctrl_mutual);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 700 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 err = R_CTSU_DataGet(&g_ctsu_ctrl_mutual, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Offset Adjustment Example

This is an example of offset adjustment using R_CTSU_OffsetTuning().
After completing R_CTSU_Open (), perform initial offset adjustment.
Offset adjustment is performed again when the parasitic capacitance changes significantly due to
changes in the surrounding environment and the count value becomes an abnormal value.

void ctsu_offsettuning_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 assert(FSP_SUCCESS == err);

 /* Initial offset tuning */

 do

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 701 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_OffsetTuning(&g_ctsu_ctrl);

 } while (FSP_SUCCESS != err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Re-offset tuning is performed when the parasitic capacitance changes

significantly due */

 /* to changes in the surrounding environment and the count value becomes an abnormal

value. */

 /*

 */

 /* if (abnormal value detection

conditions) */

 /* {

 */

 /* Re-offset tuning */

 do

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 702 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_OffsetTuning(&g_ctsu_ctrl);

 } while (FSP_SUCCESS != err);

 /* }

 */

 }

 }

}

Diagnosis function Example

This is a Diagnosis function example of using the configuration in the basic example.

void ctsu_diag_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 uint16_t dummy;

 R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 assert(FSP_SUCCESS == err);

 R_CTSU_Open(&g_ctsu_ctrl_diagnosis, &g_ctsu_cfg_diagnosis);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 703 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 assert(FSP_SUCCESS == err);

 R_CTSU_ScanStart(&g_ctsu_ctrl_diagnosis);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl_diagnosis, &dummy);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 err = R_CTSU_Diagnosis(&g_ctsu_ctrl_diagnosis);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 break;

 }

 }

 }

}

User's filter additional Example

This is a user's filter additiional example of using the configuration in the basic example.
To perform user's filter calculation, change the num_moving_average of the element in the target
ctsu_cfg_t to 1.

Perform user filter calculation and use R_CTSU_DataInsert() to input user filter calculation result.

void ctsu_user_filter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 uint16_t filter_data[CTSU_CFG_NUM_SELF_ELEMENTS];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 704 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 /* If you want to make a touch judgment, call RM_TOUCH_Open()instead of the

following. */

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* If you want to make a touch judgment, call RM_TOUCH_ScanStart()instead of the

following. */

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* User original function. */

 ctsu_user_filter(data, filter_data);

 err = R_CTSU_DataInsert(&g_ctsu_ctrl, filter_data);

 assert(FSP_SUCCESS == err);

 /* Call RM_TOUCH_DataGet() to make a touch decision. */

 }

 }

}

 Using the correction data obtained by R_CTSU_SpecificDataGet(). Perform user majority decision
calculation & filter calculation and use R_CTSU_DataInsert() to input user majority decision
calculation & filter calculation result.

void ctsu_user_majority_decition_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 705 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 uint16_t corr_data[CTSU_CFG_NUM_SELF_ELEMENTS * CTSU_CFG_NUM_SUMULTI];

 uint16_t filter_data[CTSU_CFG_NUM_SELF_ELEMENTS];

 /* If you want to make a touch judgment, call RM_TOUCH_Open()instead of the

following. */

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* If you want to make a touch judgment, call RM_TOUCH_ScanStart()instead of the

following. */

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 err = R_CTSU_SpecificDataGet(&g_ctsu_ctrl, corr_data,

CTSU_SPECIFIC_CORRECTION_DATA);

 assert(FSP_SUCCESS == err);

 /* User original function */

 ctsu_user_filter(corr_data, filter_data);

 err = R_CTSU_DataInsert(&g_ctsu_ctrl, filter_data);

 assert(FSP_SUCCESS == err);

 /* Call RM_TOUCH_DataGet() to make a touch decision. */

 }

 }

}

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 706 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

struct ctsu_ctsuwr_t

struct ctsu_self_buf_t

struct ctsu_mutual_buf_t

struct ctsu_correction_info_t

struct ctsu_instance_ctrl_t

Enumerations

enum ctsu_state_t

enum ctsu_tuning_t

enum ctsu_correction_status_t

enum ctsu_range_t

Data Structure Documentation

◆ ctsu_ctsuwr_t

struct ctsu_ctsuwr_t

CTSUWR write register value

Data Fields

uint16_t ctsussc Copy from (ssdiv << 8) by
Open API.

uint16_t ctsuso0 Copy from ((snum << 10) | so)
by Open API.

uint16_t ctsuso1 Copy from (sdpa << 8) by Open
API. ICOG and RICOA is set
recommend value.

◆ ctsu_self_buf_t

struct ctsu_self_buf_t

Scan buffer data formats (Self)

Data Fields

uint16_t sen Sensor counter data.

uint16_t ref Reference counter data (Not
used)

◆ ctsu_mutual_buf_t

struct ctsu_mutual_buf_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 707 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

Scan buffer data formats (Mutual)

Data Fields

uint16_t pri_sen Primary sensor data.

uint16_t pri_ref Primary reference data (Not
used)

uint16_t snd_sen Secondary sensor data.

uint16_t snd_ref Secondary reference data (Not
used)

◆ ctsu_correction_info_t

struct ctsu_correction_info_t

Correction information

Data Fields

ctsu_correction_status_t status Correction status.

ctsu_ctsuwr_t ctsuwr Correction scan parameter.

volatile ctsu_self_buf_t scanbuf Correction scan buffer.

uint16_t first_val 1st correction value

uint16_t second_val 2nd correction value

uint32_t first_coefficient 1st correction coefficient

uint32_t second_coefficient 2nd correction coefficient

uint32_t ctsu_clock CTSU clock [MHz].

◆ ctsu_instance_ctrl_t

struct ctsu_instance_ctrl_t

CTSU private control block. DO NOT MODIFY. Initialization occurs when R_CTSU_Open() is called.

Data Fields

uint32_t open

 Whether or not driver is open.

volatile ctsu_state_t state

 CTSU run state.

ctsu_cap_t cap

 CTSU Scan Start Trigger Select.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 708 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

ctsu_md_t md

 CTSU Measurement Mode Select(copy to cfg)

ctsu_tuning_t tuning

 CTSU Initial offset tuning status.

uint16_t num_elements

 Number of elements to scan.

uint16_t wr_index

 Word index into ctsuwr register array.

uint16_t rd_index

 Word index into scan data buffer.

uint8_t * p_element_complete_flag

 Pointer to complete flag of each element.
g_ctsu_element_complete_flag[] is set by Open API.

int32_t * p_tuning_diff

 Pointer to difference from base value of each element.
g_ctsu_tuning_diff[] is set by Open API.

uint16_t average

 CTSU Moving average counter.

uint16_t num_moving_average

 Copy from config by Open API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 709 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

uint8_t ctsucr1

 Copy from (atune1 << 3, md << 6) by Open API. CLK, ATUNE0, CSW,
and PON is set by HAL driver.

ctsu_ctsuwr_t * p_ctsuwr

 CTSUWR write register value. g_ctsu_ctsuwr[] is set by Open API.

ctsu_self_buf_t * p_self_raw

 Pointer to Self raw data. g_ctsu_self_raw[] is set by Open API.

uint16_t * p_self_corr

 Pointer to Self correction data. g_ctsu_self_corr[] is set by Open API.

ctsu_data_t * p_self_data

 Pointer to Self moving average data. g_ctsu_self_data[] is set by
Open API.

ctsu_mutual_buf_t * p_mutual_raw

 Pointer to Mutual raw data. g_ctsu_mutual_raw[] is set by Open API.

uint16_t * p_mutual_pri_corr

 Pointer to Mutual primary correction data. g_ctsu_self_corr[] is set by
Open API.

uint16_t * p_mutual_snd_corr

 Pointer to Mutual secondary correction data. g_ctsu_self_corr[] is set
by Open API.

ctsu_data_t * p_mutual_pri_data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 710 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 Pointer to Mutual primary moving average data.
g_ctsu_mutual_pri_data[] is set by Open API.

ctsu_data_t * p_mutual_snd_data

 Pointer to Mutual secondary moving average data.
g_ctsu_mutual_snd_data[] is set by Open API.

ctsu_correction_info_t * p_correction_info

 Pointer to correction info.

ctsu_txvsel_t txvsel

 CTSU Transmission Power Supply Select.

ctsu_txvsel2_t txvsel2

 CTSU Transmission Power Supply Select 2 (CTSU2 Only)

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 711 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

uint16_t self_elem_index

 self element index number for Current instance.

uint16_t mutual_elem_index

 mutual element index number for Current instance.

uint16_t ctsu_elem_index

 CTSU element index number for Current instance.

ctsu_cfg_t const * p_ctsu_cfg

 Pointer to initial configurations.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 712 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

IRQn_Type write_irq

 Copy from config by Open API. CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 Copy from config by Open API. CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 Copy from config by Open API. CTSU_CTSUFN interrupt vector.

void(* p_callback)(ctsu_callback_args_t *)

 Callback provided when a CTSUFN occurs.

uint8_t interrupt_reverse_flag

 Flag in which read interrupt and end interrupt are reversed.

ctsu_event_t error_status

 error status variable to send to QE for serial tuning.

ctsu_callback_args_t * p_callback_memory

 Pointer to non-secure memory that can be used to pass arguments
to a callback in non-secure memory.

void const * p_context

 Placeholder for user data.

bool serial_tuning_enable

 Flag of serial tuning status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 713 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

uint16_t serial_tuning_mutual_cnt

 Word index into ctsuwr register array.

uint16_t tuning_self_target_value

 Target self value for initial offset tuning.

uint16_t tuning_mutual_target_value

 Target mutual value for initial offset tuning.

Enumeration Type Documentation

◆ ctsu_state_t

enum ctsu_state_t

CTSU run state

Enumerator

CTSU_STATE_INIT Not open.

CTSU_STATE_IDLE Opened.

CTSU_STATE_SCANNING Scanning now.

CTSU_STATE_SCANNED Scan end.

◆ ctsu_tuning_t

enum ctsu_tuning_t

CTSU Initial offset tuning status

Enumerator

CTSU_TUNING_INCOMPLETE Initial offset tuning incomplete.

CTSU_TUNING_COMPLETE Initial offset tuning complete.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 714 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ ctsu_correction_status_t

enum ctsu_correction_status_t

CTSU Correction status

Enumerator

CTSU_CORRECTION_INIT Correction initial status.

CTSU_CORRECTION_RUN Correction scan running.

CTSU_CORRECTION_COMPLETE Correction complete.

CTSU_CORRECTION_ERROR Correction error.

◆ ctsu_range_t

enum ctsu_range_t

CTSU range definition

Enumerator

CTSU_RANGE_20UA 20uA mode

CTSU_RANGE_40UA 40uA mode

CTSU_RANGE_80UA 80uA mode

CTSU_RANGE_160UA 160uA mode

CTSU_RANGE_NUM number of range

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 715 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_Open()

fsp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Opens and configures the CTSU driver module. Implements ctsu_api_t::open.

Example:

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note
In the first Open, measurement for correction works, and it takes several tens of milliseconds.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 716 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_ScanStart()

fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should be run, check the scan is
complete before executing. Implements ctsu_api_t::scanStart.

Example:

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance or other.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 717 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_DataGet()

fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t * p_data)

This function gets the sensor values as scanned by the CTSU. If initial offset tuning is enabled, The
first several calls are used to tuning for the sensors. Implements ctsu_api_t::dataGet.

Example:

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

FSP_ERR_CTSU_DIAG_NOT_YET Diagnosis of data collected no yet.

FSP_ERR_ABORTED Operate error of Diagnosis ADC data
collection ,since ADC use other

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 718 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_OffsetTuning()

fsp_err_t R_CTSU_OffsetTuning (ctsu_ctrl_t *const p_ctrl)

This function tunes the offset register(SO). Call after the measurement is completed. If the return
value is FSP_ERR_CTSU_INCOMPLETE_TUNING, tuning is not complete. Execute the measurement
and this function call routine until the return value becomes FSP_SUCCESS. It is recommended to
run this routine after R_CTSU_Open(). It can be recalled and tuned again. When the automatic
judgement is enabled, after the offset tuning is completed,the baseline initialization bit flag is set.
Implements ctsu_api_t::offsetTuning.

Example:

 /* Initial offset tuning */

 do

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_OffsetTuning(&g_ctsu_ctrl);

 } while (FSP_SUCCESS != err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Re-offset tuning is performed when the parasitic capacitance changes

significantly due */

 /* to changes in the surrounding environment and the count value becomes an abnormal

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 719 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

value. */

 /*

 */

 /* if (abnormal value detection

conditions) */

 /* {

 */

 /* Re-offset tuning */

 do

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_OffsetTuning(&g_ctsu_ctrl);

 } while (FSP_SUCCESS != err);

 /* }

 */

 }

 }

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 720 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_ScanStop()

fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t *const p_ctrl)

This function scan stops the sensor as scanning by the CTSU. Implements ctsu_api_t::scanStop.

Return values
FSP_SUCCESS CTSU successfully scan stop.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ R_CTSU_CallbackSet()

fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl, void(*)(ctsu_callback_args_t *)
p_callback, void const *const p_context, ctsu_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
ctsu_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_CTSU_Close()

fsp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

Disables specified CTSU control block. Implements ctsu_api_t::close.

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 721 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_SpecificDataGet()

fsp_err_t R_CTSU_SpecificDataGet (ctsu_ctrl_t *const p_ctrl, uint16_t * p_specific_data,
ctsu_specific_data_type_t specific_data_type)

This function gets the sensor specific data values as scanned by the CTSU. Call this function after
calling the R_CTSU_DataGet() function.

By setting the third argument to CTSU_SPECIFIC_RAW_DATA, RAW data can be output from the
second argument.

By setting the third argument to CTSU_SPECIFIC_CCO_CORRECTION_DATA, the cco corrected data
can be output from the second argument.

By setting the third argument to CTSU_SPECIFIC_CORRECTION_DATA, the frequency corrected data
can be output from the second argument.

By setting the third argument to CTSU_SPECIFIC_SELECTED_FREQ, Get bitmap of the frequency
values used in majority decision from the second argument.(CTSU2 Only) The bitmap is shown as
follows.

2bit 1bit 0bit

3rd frequency value 2nd frequency value 1st frequency value

Implements ctsu_api_t::specificDataGet.

Example:

 err = R_CTSU_SpecificDataGet(&g_ctsu_ctrl, corr_data,

CTSU_SPECIFIC_CORRECTION_DATA);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

FSP_ERR_NOT_ENABLED CTSU_SPECIFIC_SELECTED_FREQ is not
enabled in CTSU1.(CTSU2 Only)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 722 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_DataInsert()

fsp_err_t R_CTSU_DataInsert (ctsu_ctrl_t *const p_ctrl, uint16_t * p_insert_data)

This function inserts the value of the second argument as the measurement result value. Call this
function after calling the R_CTSU_DataInsert() function. Implements ctsu_api_t::dataInsert.

Example:

 err = R_CTSU_DataInsert(&g_ctsu_ctrl, filter_data);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 723 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > CTSU (r_ctsu)

◆ R_CTSU_Diagnosis()

fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.

Example:

 err = R_CTSU_Diagnosis(&g_ctsu_ctrl_diagnosis);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE Diagnosis of LDO over voltage failed.

FSP_ERR_CTSU_DIAG_CCO_HIGH Diagnosis of CCO into 19.2uA failed.

FSP_ERR_CTSU_DIAG_CCO_LOW Diagnosis of CCO into 2.4uA failed.

FSP_ERR_CTSU_DIAG_SSCG Diagnosis of SSCG frequency failed.

FSP_ERR_CTSU_DIAG_DAC Diagnosis of non-touch count value failed.

FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE Diagnosis of LDO output voltage failed.

FSP_ERR_CTSU_DIAG_OVER_VOLTAGE Diagnosis of over voltage detection circuit
failed.

FSP_ERR_CTSU_DIAG_OVER_CURRENT Diagnosis of over current detection circuit
failed.

FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_SENSCLK_GAIN Diagnosis of SENSCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_SUCLK_GAIN Diagnosis of SUCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY Diagnosis of SUCLK clock recovery function
failed.

FSP_ERR_CTSU_DIAG_CFC_GAIN Diagnosis of CFC oscillator gain failed.

5.2.5.2 Touch (rm_touch)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 724 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Modules » CapTouch

Functions

fsp_err_t RM_TOUCH_Open (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const
p_cfg)

 Opens and configures the TOUCH Middle module. Implements
touch_api_t::open. More...

fsp_err_t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with RM_TOUCH_DataGet(). If a different control block scan
should be run, check the scan is complete before executing.
Implements touch_api_t::scanStart. More...

fsp_err_t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64_t
*p_button_status, uint16_t *p_slider_position, uint16_t
*p_wheel_position)

 Gets the 64-bit mask indicating which buttons are pressed. Also, this
function gets the current position of where slider or wheel is being
pressed. If initial offset tuning is enabled, The first several calls are
used to tuning for the sensors. Implements touch_api_t::dataGet.
More...

fsp_err_t RM_TOUCH_PadDataGet (touch_ctrl_t *const p_ctrl, uint16_t
*p_pad_rx_coordinate, uint16_t *p_pad_tx_coordinate, uint8_t
*p_pad_num_touch)

 This function gets the current position of pad is being pressed.
Implements touch_api_t::padDataGet , g_touch_on_ctsu. More...

fsp_err_t RM_TOUCH_ScanStop (touch_ctrl_t *const p_ctrl)

 Scan stop specified TOUCH control block. Implements
touch_api_t::scanStop. More...

fsp_err_t RM_TOUCH_CallbackSet (touch_ctrl_t *const p_api_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const
p_context, touch_callback_args_t *const p_callback_memory)

fsp_err_t RM_TOUCH_Close (touch_ctrl_t *const p_ctrl)

 Disables specified TOUCH control block. Implements
touch_api_t::close. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 725 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

fsp_err_t RM_TOUCH_SensitivityRatioGet (touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

 Get the touch sensitivity ratio. Implements
touch_api_t::sensitivityRatioGet. More...

fsp_err_t RM_TOUCH_ThresholdAdjust (touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

 Adjust the touch judgment threshold. Implements
touch_api_t::thresholdAdjust. More...

fsp_err_t RM_TOUCH_DriftControl (touch_ctrl_t *const p_ctrl, uint16_t
input_drift_freq)

 Control drift correction. Implements touch_api_t::driftControl. More...

Detailed Description

This module supports the Capacitive Touch Sensing Unit (CTSU). It implements the Touch
Middleware Interface.

Overview
The Touch Middleware uses the CTSU (r_ctsu) API and provides application-level APIs for scanning
touch buttons, sliders, and wheels. This module is configured via the QE for Capacitive Touch.

Features

Supports touch buttons (Self and Mutual), sliders, and wheels
Can retrieve the status of up to 64 buttons at once
Software and external triggering
Callback on scan end
Collects and calculates usable scan results:

Slider position from 1 to 100 (percent)
Wheel position from 1 to 360 (degrees)

Dynamic touch-judgment-threshold adjustment
Calculate the XY coordinates of the pad(CTSU2)
Optional (build time) support for real-time monitoring functionality through the QE tool over
UART
Optional (build time) support for tuning function through the QE Standalone Version tool
over UART
TrustZone Support

Configuration
Note

This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once
the tool is installed click Help -> Help Contents in e² studio and search for "QE".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 726 / 5,560

https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

This module supports the QE monitor function. The monitor determines whether to use debugger or
serial communications, determines the type of the information from QE and sends only the
necessary information. This module supports the serial tuning function with the standalone version
of QE. Generates a configuration configuration file by UART communication with QE.

Note
Multiple configurations can be defined within a single project allowing for different scan procedures or button
layouts.

Build Time Configurations for rm_touch

The following build time configurations are defined in fsp_cfg/rm_touch_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for QE
monitoring using UART

Enabled
Disabled

Disabled Enable SCI_UART
support for QE
monitoring.

Support for QE Tuning
using UART

Enabled
Disabled

Disabled Enable SCI_UART
support for QE Tuning.

Type of chattering
suppression

TypeA : Counter
of exceed
threshold is
hold within
hysteresis
range
TypeB : Counter
of exceed
threshold is
reset within
hysteresis
range.

TypeA : Counter of
exceed threshold is
hold within hysteresis
range

TypeA of chattering
suppression : Counter
of exceed threshold is
hold within hysteresis
range. / TypeB of
chattering suppression
: Counter of exceed
threshold is reset
within hysteresis
range.

Configurations for CapTouch > Touch (rm_touch)

This module can be added to the Stacks tab via New Stack > CapTouch > Touch (rm_touch). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Interrupt Configuration

Refer to the CTSU (r_ctsu) section for details.

Clock Configuration

Refer to the CTSU (r_ctsu) section for details.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 727 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Refer to the CTSU (r_ctsu) section for details.

Usage Notes
Measurements and Data Processing

The module determines whether the button has been touched based on the change in capacitance
and detects the position of the slider or wheel. This requires continued periodic measurements of
capacitance. When developing your application, make sure to periodically call
RM_TOUCH_ScanStart() and RM_TOUCH_DataGet(). For more details, refer to the sample application.

Button Touch Determination

Creating reference value and threshold

A touch button is not a mechanical button in which the ON/OF state is switched by hardware. The
ON/OFF state is determined via software.
First, a reference value is created based on measurement results in the non-touch state. The initial
reference value is the first measured value. The threshold is then determined with an arbitrary
offset. If a measured value exceeds the threshold, the button is determined to be in the ON state, if
it does not exceed the threshold, it is in the OFF state.
Processing for self-capacitance and mutual capacitance are basically the same. However, because
the amount of capacitance decreases when a mutual capacitance button is touched, the user needs
to set the threshold based on decreasing measured values to determine the ON/OFF state.
You can set the threshold for each button separately in the configuration settings (threshold in
touch_button_cfg_t). The following functions are also included to deal with issues such as chattering
suppression and changes in the external environment which affect actual touch recognition.

Positive Noise Filter/Negative Noise Filter

As a chattering countermeasure, you can confirm the ON/OFF state after a set number of
consecutive ON or OFF determinations.
In the configuration settings (on_freq and off_freq in touch_cfg_t) set the number of consecutive ON
or OFF states. You can do this for all buttons in the touch interface configuration. Be aware that,
although this is an effective solution to improving chattering, the greater the number of consecutive
states, the slower the response to actual touch.

Hysteresis

This is another chattering countermeasure. Offset the constant to the threshold after the state goes
to ON, and prevent chattering by using hysteresis as the OFF-to-ON and ON-to-OFF threshold.
You can set the hysteresis value for each button in the configuration settings (hysteresis in
touch_button_cfg_t). The larger the hysteresis, the more effective the countermeasure is in
suppressing chattering. However, keep in mind that this will make it more difficult to return the state
from ON-to-OFF of OFF-to-ON.

Drift Correction Process

As a countermeasure for changes in the external environment, the drift correction process refreshes
the reference value.
After averaging the measured value in the OFF state over a set period, if the button is in the touch
OFF state after a set period, the reference value is refreshed. The drift correction is only executed in
the OFF state and is cleared when touch ON is determined.
Set the period in the configuration settings (drift_freq in touch_cfg_t). You can do this for all buttons

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 728 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

in the touch interface configuration. This allows you to adjust the ability to determine the touch state
despite changes in the external environment.

Figure 164: Button Touch Determination

Press and hold cancel

Strong noise or other sudden environment changes can disable the drift correction process,
preventing return from the ON state. The press and hold cancel function implements the drift
correction process and returns the button from the ON state by forcibly turning the state to OFF after
a certain number of consecutive ON state periods.
Set the number of consecutive ON periods required for the press and hold cancel function to return
the button to the OFF state in the configuration settings (cancel_freq in touch_cfg_t). You can do this
for all buttons in the touch interface configuration.

Chattering suppression type (Build option)

This build option is a function to supplement the above functions (Positive Noise Filter/Negative
Noise Filter and Hysteresis) for performing touch judgment.
This build option changes the processing method for Counter of exceed threshold to TypeA or TypeB.
TypeA of chattering suppression : Counter of exceed threshold is hold within hysteresis range.
TypeB of chattering suppression : Counter of exceed threshold is reset within hysteresis range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 729 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Figure 165: Chattering suppression type

Touch Position Detection of Slider/Wheel

Configure a slider with multiple terminals to be measured (TS) physically arranged in a straight line.
Configure a wheel with multiple terminals physically arranged in a circle.
The touch position is calculated from the measured values of the TS in the configuration. The
calculation method for sliders and wheels is fundamentally the same.

1. Detect the maximum value (TS_MAX) among the terminals in the configuration.
2. Calculate the difference (d1, d2) between TS_MAX and the terminals on either side. (If the

TS_MAX terminal is at one end of the slider, use the values of the two terminals to the right
or left, accordingly.)

3. If the total of d1 and d2 exceeds the threshold, position calculation is initiated. If the total
amount does not exceed the threshold, the position calculation process is ended.

4. With TS_MAX as the middle position, the ratio of d1 to d2 is used to calculate the position.
The slider has a range of 1 to 100, and the while has a range of 1 to 360.

Slider Wheel

Electrode type Self capacitance only Self capacitance only

Number of electrodes 3-10 4+

Touch position output range 1-100 1-360

Default value (no touch) 0xFFFF 0xFFFF

Tuning the Touch Determination Adjustment

When QE tuning, a measurement is performed with a finger touching the button and the tuned
parameters are output in the configuration file. The setting value of the threshold is 60% of the touch
sensitivity between touch and non-touch state, and the setting value of the hysteresis coefficient is
5% of the threshold.
This module provides the functions for dynamic adjusting of these threshold and hysteresis
coefficient.
They are two functions as below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 730 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Adjusting the threshold and hysteresis coefficient to an arbitrary ratio.
Use RM_TOUCH_ThresholdAdjust().

When changing the touch determination threshold ratio from 60% QE set to 70% user specified, the
touch determination thresholds are as below.
If you want to make this setting, set the member of the second argument as follows. It is also
necessary to set the ratio of the amount of touch change and the hysteresis value.

*p_touch_sensitivity_ratio = 100,
old_threshold_ratio = 60,
new_threshold_ratio = 70,
new_hysteresis_ratio = 5

Figure 166: Example of changing the threshold ratio

Adjusting the threshold and hysteresis coefficient according to the current touch
sensitivity.
Use RM_TOUCH_SensitivityRatioGet(), RM_TOUCH_ThresholdAdjust(), and
RM_TOUCH_DriftControl().

When changing the kind of the overlay panel, the touch sensitivity differs from the one QE tuned.
Wanting to use the software as it is without re-tuning. If you use a thicker overlay than that at QE
tuning, the touch sensitivity decreases, and a touch may not be determined because of the same
touch determination threshold. This function adjusts the touch determination threshold based on the
ratio of the touch sensitivity after changing the overlay to the touch sensitivity at the QE tuning.

RM_TOUCH_SensitivityRatioGet() outputs the ratio of the current touch sensitivity assuming that the
touch sensitivity at the QE setting is 100%.
The following figure shows the case where an overlay panel is thinner and the touch sensitivity
increases.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 731 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Figure 167: Example of increase touch sensitivity for thin overlay panels

 Following figure shows the case where an overlay panel is thicker and the touch sensitivity
decreases.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 732 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Figure 168: Example of decrease touch sensitivity for thicker overlay panels

 RM_TOUCH_ThresholdAdjust() sets the new touch determination threshold and the hysteresis value
by using the touch sensitivity ratio obtained with RM_TOUCH_SensitivityRatioGet() as arguments.

Example of calculation 1:
The touch sensitivity ratio is 140%, and the threshold set by QE is 1500.
Threshold = 140 * 1500 / 100 = 2100

*p_touch_sensitivity_ratio = 140,
old_threshold_ratio = 60,
new_threshold_ratio = 60,
new_hysteresis_ratio = 5

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 733 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Figure 169: Example of calculation 1

 Example of calculation 2:
The touch sensitivity ratio is 60%, and the threshold set by QE is 1500.
Threshold = 60 * 1500 / 100 = 900

*p_touch_sensitivity_ratio = 60,
old_threshold_ratio = 60,
new_threshold_ratio = 60,
new_hysteresis_ratio = 5

Figure 170: Example of calculation 2

 RM_TOUCH_DriftContorol() set the second argument to 0 to stop the drift correction function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 734 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

When calculating the ratio of the touch change amount using RM_TOUCH_SensitivityRatioGet(), the
touch change amount decreases due to the thick overlay, and the threshold value is not exceeded
even if touched. Prevents the reference value from drifting.

Example of the application for adjustment using data flash without re-tuning or software
rewriting

Enable UART communication to PC and 'tuning mode'. In tuning mode, the MCU transmits the ratio of
the touch sensitivity in the touch state to the PC in real time. A user sends a command to decide the
ratio while monitoring on the PC. The MCU stores the received ratio in the data flash. Make sure that
the ratio stored in the data flash is read at the software activation, and the touch determination
threshold is adjusted based on this stored value.

Pad

Configure a pad with multiple terminals physically arranged in cross.
The current position is Calculated from the measured values of the CTSU mutual scanning in the
configuration.
Use RM_TOUCH_PadDataGet().
Pad is subject so some limitations:

Pad

Electrode type CFC mutual capacitance only

Number of electrodes RX(TS-CFC)3+, TX(Any TS)3+

Touch position output range rx_coodinate:(0 ~ rx_pixel), tx_coodinate:(0 ~
tx_pixsel)

Default value (no touch) rx_coodinate:0xFFFF, tx_coodinate:0xFFFF

Pixel range rx_pixel:(1 ~ 65535), tx_pixsel:(1 ~ 65535)

Pitch for each terminal can be set with QE. Pitch's default value is 64.
The relationship between pixel and pitch : Pixel = Pitch × number of TS - 1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 735 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Figure 171: Example of Pad

TrustZone Support

In r_ctsu and rm_touch module, Non-Secure Callable Guard Functions are only generated from QE for
Capacitive Touch. QE can be used for tuning in secure or flat project, but not in non-secure project. If
you want to use in non-secure project, copy the output file from secure or flat project. Refer to QE
Help for more information.

Examples
Basic Example

This is a basic example of minimal use of the TOUCH in an application.

void touch_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 RM_TOUCH_ScanStart(&g_touch_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 736 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 err = RM_TOUCH_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Multi Mode Example

This is a optional example of using both Self-capacitance and Mutual-capacitance. Refer to the Multi
Mode Example in CTSU usage notes.

void touch_optional_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

 assert(FSP_SUCCESS == err);

 err = RM_TOUCH_Open(&g_touch_ctrl_mutual, &g_touch_cfg_mutual);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 RM_TOUCH_ScanStart(&g_touch_ctrl);

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 RM_TOUCH_ScanStart(&g_touch_ctrl_mutual);

 while (0 == g_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 737 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 err = RM_TOUCH_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 err = RM_TOUCH_DataGet(&g_touch_ctrl_mutual, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Data Structures

struct touch_button_info_t

struct touch_slider_info_t

struct touch_wheel_info_t

struct touch_pad_info_t

struct touch_instance_ctrl_t

Data Structure Documentation

◆ touch_button_info_t

struct touch_button_info_t

Information of button

Data Fields

uint64_t status Touch result bitmap.

uint16_t * p_threshold Pointer to Threshold value
array.
g_touch_button_threshold[] is
set by Open API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 738 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

uint16_t * p_hysteresis Pointer to Hysteresis value
array.
g_touch_button_hysteresis[] is
set by Open API.

uint16_t * p_reference Pointer to Reference value
array.
g_touch_button_reference[] is
set by Open API.

uint16_t * p_on_count Continuous touch counter.
g_touch_button_on_count[] is
set by Open API.

uint16_t * p_off_count Continuous non-touch counter.
g_touch_button_off_count[] is
set by Open API.

uint32_t * p_drift_buf Drift reference value.
g_touch_button_drift_buf[] is set
by Open API.

uint16_t * p_drift_count Drift counter.
g_touch_button_drift_count[] is
set by Open API.

uint8_t on_freq Copy from config by Open API.

uint8_t off_freq Copy from config by Open API.

uint16_t drift_freq Copy from config by Open API.

uint16_t cancel_freq Copy from config by Open API.

◆ touch_slider_info_t

struct touch_slider_info_t

Information of slider

Data Fields

uint16_t * p_position Calculated Position data.
g_touch_slider_position[] is set
by Open API.

uint16_t * p_threshold Copy from config by Open API.
g_touch_slider_threshold[] is set
by Open API.

◆ touch_wheel_info_t

struct touch_wheel_info_t

Information of wheel

Data Fields

uint16_t * p_position Calculated Position data.
g_touch_wheel_position[] is set
by Open API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 739 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

uint16_t * p_threshold Copy from config by Open API.
g_touch_wheel_threshold[] is
set by Open API.

◆ touch_pad_info_t

struct touch_pad_info_t

Information of pad

Data Fields

uint16_t * p_rx_coordinate RX coordinate.

uint16_t * p_tx_coordinate TX coordinate.

uint16_t * p_num_touch number of touch

uint16_t * p_threshold Coordinate calculation
threshold value.

uint16_t * p_base_buf ScanData Base Value Buffer.

uint16_t * p_rx_pixel X coordinate resolution.

uint16_t * p_tx_pixel Y coordinate resolution.

uint8_t * p_max_touch Maximum number of touch
judgments used by the pad.

int32_t * p_drift_buf Drift reference value.
g_touch_button_drift_buf[] is set
by Open API.

uint16_t * p_drift_count Drift counter.
g_touch_button_drift_count[] is
set by Open API.

uint8_t num_drift Copy from config by Open API.

◆ touch_instance_ctrl_t

struct touch_instance_ctrl_t

TOUCH private control block. DO NOT MODIFY. Initialization occurs when RM_TOUCH_Open() is
called.

Data Fields

uint32_t open Whether or not driver is open.

touch_button_info_t binfo Information of button.

touch_slider_info_t sinfo Information of slider.

touch_wheel_info_t winfo Information of wheel.

bool serial_tuning_enable Flag of serial tuning status.

touch_pad_info_t pinfo Information of pad.

touch_cfg_t const * p_touch_cfg Pointer to initial configurations.

ctsu_instance_t const * p_ctsu_instance Pointer to CTSU instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 740 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

Function Documentation

◆ RM_TOUCH_Open()

fsp_err_t RM_TOUCH_Open (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

Opens and configures the TOUCH Middle module. Implements touch_api_t::open.

Example:

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

Return values
FSP_SUCCESS TOUCH successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_TOUCH_ScanStart()

fsp_err_t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with RM_TOUCH_DataGet(). If a different control block scan should be run, check the scan is
complete before executing. Implements touch_api_t::scanStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance or other.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 741 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

◆ RM_TOUCH_DataGet()

fsp_err_t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64_t * p_button_status, uint16_t *
p_slider_position, uint16_t * p_wheel_position)

Gets the 64-bit mask indicating which buttons are pressed. Also, this function gets the current
position of where slider or wheel is being pressed. If initial offset tuning is enabled, The first several
calls are used to tuning for the sensors. Implements touch_api_t::dataGet.

Note
FSP v4.0.0 or later,

The value of 'Secondary - Primary' is modified from uint16_t to int16_t. When the value of 'Secondary -
Primary' is larger than 32767 and less than -32767, this API return FSP_ERR_INVALID_DATA.
An upper limit is set for the value of Secondary. When the value of Secondary is larger than 45000, this
API return FSP_ERR_INVALID_DATA.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_DATA Accuracy of data is not guaranteed.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

◆ RM_TOUCH_PadDataGet()

fsp_err_t RM_TOUCH_PadDataGet (touch_ctrl_t *const p_ctrl, uint16_t * p_pad_rx_coordinate,
uint16_t * p_pad_tx_coordinate, uint8_t * p_pad_num_touch)

This function gets the current position of pad is being pressed. Implements
touch_api_t::padDataGet , g_touch_on_ctsu.

Note
FSP v4.0.0 or later,

The value of 'Secondary - Primary' is modified from uint16_t to int16_t. When the value of 'Secondary -
Primary' is larger than 32767 and less than -32767, this API return FSP_ERR_INVALID_DATA.
An upper limit is set for the value of Secondary. When the value of Secondary is larger than 45000, this
API return FSP_ERR_INVALID_DATA.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_DATA Accuracy of data is not guaranteed.

FSP_ERR_CTSU_SCANNING Scanning this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 742 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

◆ RM_TOUCH_ScanStop()

fsp_err_t RM_TOUCH_ScanStop (touch_ctrl_t *const p_ctrl)

Scan stop specified TOUCH control block. Implements touch_api_t::scanStop.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_TOUCH_CallbackSet()

fsp_err_t RM_TOUCH_CallbackSet (touch_ctrl_t *const p_api_ctrl, void(*)(touch_callback_args_t *)
p_callback, void const *const p_context, touch_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
touch_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ RM_TOUCH_Close()

fsp_err_t RM_TOUCH_Close (touch_ctrl_t *const p_ctrl)

Disables specified TOUCH control block. Implements touch_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 743 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > CapTouch > Touch (rm_touch)

◆ RM_TOUCH_SensitivityRatioGet()

fsp_err_t RM_TOUCH_SensitivityRatioGet (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t *
p_touch_sensitivity_info)

Get the touch sensitivity ratio. Implements touch_api_t::sensitivityRatioGet.

Return values
FSP_SUCCESS Successfully touch sensitivity ratio got.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

◆ RM_TOUCH_ThresholdAdjust()

fsp_err_t RM_TOUCH_ThresholdAdjust (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t *
p_touch_sensitivity_info)

Adjust the touch judgment threshold. Implements touch_api_t::thresholdAdjust.

Return values
FSP_SUCCESS Successfully touch judgment threshold was

adjusted.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_TOUCH_DriftControl()

fsp_err_t RM_TOUCH_DriftControl (touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Control drift correction. Implements touch_api_t::driftControl.

Return values
FSP_SUCCESS Successfully drift correction was controlled.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 744 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity

5.2.6 Connectivity
Modules

Detailed Description

Connectivity Modules.

Modules

Azure RTOS USBX Port (rm_usbx_port)

CAN (r_can)

 Driver for the CAN peripheral on RA MCUs. This module implements
the CAN Interface.

CAN FD (r_canfd)

 Driver for the CANFD peripheral on RA MCUs. This module
implements the CAN Interface.

CEC (r_cec)

 Driver for the CEC peripheral on RA MCUs. This module implements
the CEC Interface.

I2C Communication Device (rm_comms_i2c)

 Middleware to implement the I2C communications interface. This
module implements the Communicatons Middleware Interface.

I2C Master (r_iic_b_master)

 I2C Driver for the IIC/I3C peripheral on RA MCUs. This module
implements the I2C Master Interface.

I2C Master (r_iic_master)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Master (r_iica_master)

 Driver for the IICA peripheral on RA MCUs. This module implements
the I2C Master Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 745 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity

I2C Master (r_sau_i2c)

 Driver for the SAU peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Master (r_sci_b_i2c)

 Driver for the SCI_B peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Master (r_sci_i2c)

 Driver for the SCI peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Slave (r_iic_b_slave)

 Driver for the IIC/I3C peripheral on RA MCUs. This module
implements the I2C Slave Interface.

I2C Slave (r_iic_slave)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Slave Interface.

I2C Slave (r_iica_slave)

 Driver for the IICA peripheral on RA MCUs. This module implements
the I2C Slave Interface.

I2S (r_ssi)

 Driver for the SSIE peripheral on RA MCUs. This module implements
the I2S Interface.

I3C (r_i3c)

 Driver for the I3C peripheral on RA MCUs. This module implements
the I3C Interface.

LIN (r_sci_b_lin)

 Driver for the SCI peripheral on RA MCUs. This module implements
the LIN Interface.

SMBUS Communication Device (rm_comms_smbus)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 746 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity

 Middleware to implement the SMBUS communications interface. This
module implements the Communicatons Middleware Interface.

SMCI (r_sci_smci)

 Driver for the SCI peripheral on RA MCUs. This module implements
the SMCI Interface.

SPI (r_sau_spi)

 Driver for the SAU peripheral on RA MCUs. This module implements
the SPI Interface.

SPI (r_sci_b_spi)

 Driver for the SCI peripheral on RA MCUs. This module implements
the SPI Interface.

SPI (r_sci_spi)

 Driver for the SCI peripheral on RA MCUs. This module implements
the SPI Interface.

SPI (r_spi)

 Driver for the SPI peripheral on RA MCUs. This module implements
the SPI Interface.

SPI (r_spi_b)

 Driver for the SPI peripheral on RA MCUs. This module implements
the SPI Interface.

UART (r_sau_uart)

 UART driver for the SAU peripheral on RA MCUs. This module
implements the UART Interface.

UART (r_sci_b_uart)

 Driver for the SCI peripheral on RA MCUs. This module implements
the UART Interface.

UART (r_sci_uart)

 Driver for the SCI peripheral on RA MCUs. This module implements

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 747 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity

the UART Interface.

UART (r_uarta)

 Driver for the UARTA peripheral on RA MCUs. This module
implements the UART Interface.

UART Communication Device (rm_comms_uart)

 Middleware to implement a generic communications interface over
UART. This module implements the Communicatons Middleware
Interface.

USB (r_usb_basic)

 Driver for the USB peripheral on RA MCUs. This module implements
the USB Interface.

USB Composite (r_usb_composite)

USB HCDC (r_usb_hcdc)

 This module provides a USB Host Communications Device Class
(HCDC) driver. It implements the USB HCDC Interface.

USB HHID (r_usb_hhid)

 This module provides a USB Host Human Interface Device Class
Driver (HHID). It implements the USB HHID Interface.

USB HMSC (r_usb_hmsc)

 This module provides a USB Host Mass Storage Class (HMSC) driver.
It implements the USB HMSC Interface.

USB Host Vendor class (r_usb_hvnd)

USB PCDC (r_usb_pcdc)

 This module provides a USB Peripheral Communications Device Class
Driver (PCDC). It implements the USB PCDC Interface.

USB PHID (r_usb_phid)

 This module is USB Peripheral Human Interface Device Class Driver
(PHID). It implements the USB PHID Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 748 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity

USB PMSC (r_usb_pmsc)

 This module provides a USB Peripheral Mass Storage Class (PMSC)
driver. It implements the USB PMSC Interface.

USB PPRN (r_usb_pprn)

 This module is USB Peripheral Printer Device Class Driver (PPRN). It
implements the USB PPRN Interface.

USB Peripheral Vendor class (r_usb_pvnd)

USB_PCDC Communication Device (rm_comms_usb_pcdc)

 Middleware to implement a generic communications interface over
USB_PCDC. This module implements the Communicatons Middleware
Interface.

5.2.6.1 Azure RTOS USBX Port (rm_usbx_port)
Modules » Connectivity

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
This USB driver works by combining USBX and r_usb_basic module.

How to Configuration
Using a class other than Composite(Pereipheral), HMSC and OTG.

The following describes how to configure USBX using PCDC as an example.

Select [New Stack]->[Connectivity]->[Azure RTOS PCDC]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 749 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Figure 172: Select USB Device Class

Select the USB pipe to use.

Figure 173: Select using USB Pipe

Using Composite (Peripheral)

Select [New Stack]->[Connectivity]->[USB Composite]

Figure 174: Select USB Composite

The following is displayed when selecting [USB Composite].

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 750 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Figure 175: USB Composite Stack

Select the supported 2 device classes as follows.

Figure 176: Select Device Classes

Delete the "g_basic1" instance manually.

Figure 177: Delete USB Basic instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 751 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Using HMSC.

Since HMSC is used in a different way from other USBX modules, the usage is described below.

Select [New Stack]->[Storage]->[Azure RTOS FileX on USBX]

Figure 178: Select USB Device Class

The following is displayed when selecting Filex on USBX.

Figure 179: FileX on USBX Stack

Using OTG.

The following describes how to configure USBX OTG.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 752 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

When using CDC / HID class
[New Stack]->[Connectivity]->[Azure RTOS USBX OTG CDC] or [Azure RTOS USBX
OTG HID])

When using MSC class
[New Stack]->[Storage]->[Azure RTOS FileX on USBX])
[New]->[Azure RTOS USBX OTG MSC]

Select [New Stack]->[Input] -> [External IRQ(r_icu)]

Be sure to select "r_icu" in OTG. The "r_icu" is used to detect the attaching of A cable.

Figure 180: Select USB Device Class for OTG

Be sure to set the following to each item in "r_icu".
Set "7" to "Channel" item.
Set "Both Edges" to "Trigger" item.
Set "Enabled" to "Digital Filtering" item.
Set "usb_otg_irq_callback" to "Callback" item.

Figure 181: Select USB Device Class for OTG

Be sure to set the following to each item in "r_usb_basic".
Set "Full Speed" to "USB Speed" item.
Set "USB_IP0 Port" to "USB Module Number".
Set "Not Supported" to "USBFS Resume Priority".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 753 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Figure 182: Select USB Device Class

Set the following pins for USB (r_usb_basic)
VBUSEN
VBUS
EXICEN

Figure 183: USB Pin Setting

Set the following pins for IRQ (r_icu)
IRQ07

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 754 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Figure 184: IRQ Pin Setting

Using Hub

When the user uses the following device class, the user can use USB Hub.
Host Communication Device Class (HCDC)
Host Human Interface Device Class (HHID)
Host Mass Storage Class (HMSC)
Host Printer Class (HPRN)

Also be sure to set the pipe number to the following items. Can not specify "NO USE" to the
following items when using Hub.

Bulk In Pipe 2
Bulk Out Pipe 2
Interrupt In Pipe 2
Interrupt In PIpe 3

Note

Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.
The following are notes on using the ux_host_class_cdc_acm_read function or the
ux_device_class_cdc_acm_read function

Please specify a multiple of MaxPacketSize to the 3rd argument(requested_length)
since if the value of the 3rd argument is not multiple of MaxPacketSize, all data
sent by USB Host or USB Peripheral may not be received correctly.
Please specify start address of the area allocated a size larger than 3rd
argument(requested_length) to the 2nd argument(data_pointer or buffer).

There is no stack for the Hub; please select the stack for USB Host even when using the
Hub.
Depending on the Hub used, it may be necessary to supply power to the Hub.
HUVC does not support USB Hub.

HMSC uses FileX.

For more information on FileX, please refer to the following URL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 755 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

https://docs.microsoft.com/en-us/azure/rtos/filex/

OTG

Be able to set UX_OTG_HOST_REQUEST_FLAG in USB Peripheral mode or call
ux_host_stack_role_swap() function in USB Host mode when data other than control transfer
is not being transferred.
Register the callback function for the application using R_USB_OtgCallbackSet() function.
This callback function is called when switching the operation
mode(UX_OTG_MODE_IDLE/UX_OTG_MODE_SLAVE/UX_OTG_MODE_HOST).
Use R_USB_OtgSRP() function when doing SRP(Session Request Protocol). The
R_USB_OtgSRP() function does not support VBUS pulsing.
After starting up MCU, USB is initialized as USB peripheral mode until connecting A cable.
Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.
When A cable is connected, USB module is initialized as USB Host mode.
Call R_ICU_ExternalIrqOpen() and R_ICU_ExternalIrqEnable() function in the application
program since the IRQ interrupt is used to detect attaching or detaching of A cable.
Add the OTG descriptor in the configuration descriptor in each descriptor file.

Offset Field Size Value Description

0 bLength 1 5 Size of Descriptor

1 bDescriptor Type 1 9 OTG type = 9

2 bmAttribute 1 3 or 2 D1: HNP support
D0: SRP support

3 bcdOTG 2 0x200 Binary Code
Descimal

Known Issues

There is compatibility issue for FileX on USBX stack in FSP 5.0.0 while importing from FSP
4.6.0 or earlier. Please refer to "GitHub Issue" about this workaround.

Limitations

This USB driver does not support the multiple device class in Host mode.

Please call the initialization function in the application program.

Please be sure to call R_USB_Open() function after calling the following functions.

Peripheral
PCDC / PHID / PAUD / PPRN / DFU / OTG

ux_system_initialize
ux_device_stack_initialize
ux_device_stack_class_register

PMSC
ux_system_initialize
ux_device_stack_initialize

Host
HCDC / HHID / HPRN / HUVC / OTG

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 756 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

ux_system_initialize
ux_host_stack_initialize

HMSC
ux_system_initialize
ux_host_stack_initialize
fx_system_initialize

Set the value for 1000 Ticks per second in the "Timer Ticks Per Second" item.

Figure 185: Specify value of Timer Ticks Per Second

Set the Thread priority to a value of 21.

Figure 186: Specify value of Thread priority

Call the following functions in the following order after calling the R_USB_Close() function.
Peripheral

PCDC / PHID / PPRN
ux_device_stack_class_unregister
ux_device_stack_uninitialize

PMSC
ux_device_stack_uninitialize

Host
ux_host_stack_uninitialize

USBX Composite (Peripheral) supports the following composite device.
PCDC + PMSC

USBX Composite (PCDC + PMSC) has the following notes.
When the user select "Safely Remove Hardware and Eject Media" on Windows and
eject the mass storage (PMSC), the Windows Explorer for PMSC does not
disappear. But PMSC driver works properly.
PMSC may not work properly when USBX Composite Device(PCDC+PMSC) is
connected to linux machine (USB Host).If the user encounter this issue, please
update Linux OS.

The FAT file format that HMSC supports is FAT32, FAT16 and FAT12.
When using USBX HMSC, please be sure to check the "fx" checkbox(red frame) of the pack
the user is using in the "Components" tab(green frame) as shown below.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 757 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Figure 187: Check the fx checkbox

When using USBX HPRN, if the internal buffer of the printer is full, USB data transfer speed
drops significantly.
When using USBX HHID, please use Wired device.
USBX HUVC driver does not support Full-speed.
USBX HUVC driver does not support the following APIs.

ux_host_class_video_transfer_buffers_add
ux_host_class_video_read

Note the following when using ux_host_class_video_transfer_buffer_add fucntion (USBX
HUVC API)

Please call ux_host_class_video_transfer_buffer_add fucntion after cofirming that
the callback function for data reception completion is called when calling this API
again. This callback function is registerd by
ux_host_class_video_transfer_callback_set function in the application program.
Please specify a 4-byte alignment address for the 2nd argument (buffer) of
ux_host_class_video_transfer_buffer_add fucntion when using DMA transfer.

Note the following when using ux_host_class_video_start fucntion (USBX HUVC API)
Please be sure to confirm return value of the
ux_host_class_video_max_payload_get function is less than or equal to 1024. If the
return value is greater than 1024, start video streaming by referring to the
following.

channel.ux_host_class_video_parameter_channel_bandwidth_selection = 1
024;
status = ux_host_class_video_ioctl(video, UX_HOST_CLASS_VIDEO_IOCTL_C
HANNEL_START, &channel);

The USBHS module does not support the high-bandwidth isochronous transfer (image
below), the maximum packet size for isochronous transfer is 1024 bytes and supports only
one transaction per microframe.

Figure 188: High Bandwidth Isochronous Transfer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 758 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

This module does not support the MCU(RA4M1 and RA2A1) since the RAM size is small.
Please specify the correct framework size to the 2nd
argument(device_framework_length_high_speed) and the 4th
argument(device_framework_length_full_speed) in "ux_device_stack_initialize" function. If
incorrect size is specified, USB driver does not work properly.
The following is the limitation when using OTG.

The user can not use High-speed module(USB_IP1).
The DMA transfer is not supported.
The MSC is not supported.
The user can not use USB Hub.

The followings are the limitation when using USB Hub.
The USB driver allocates USB PIPE9 for USB Hub. The user can not specify "USB
PIPE9" when using USB Hub.
The user can not connect the Hub device under the Hub down port.
For HCDC, the user can not connect more than 2 CDC devices to USB Hub.
For HPRN, the user can not connect more than 2 PRN devices to USB Hub.
For HHID, the user can not connect more than 3 HID devices to USB Hub.
For HMSC, the user can not connect more than 3 MSC devices to USB Hub.

The user can not use USB PIPE1, PIPE2, PIPE3, PIPE8 and PIPE9 when using the follwoing
MCU.

RA6E2
RA4E2

Please use USB Host DFU tool described in the chapter "USB Device DFU Class" in the
following page.

https://learn.microsoft.com/en-us/azure/rtos/usbx/usbx-device-stack-supplemental-2

USBX DFU can upgrade the firmware only once after resetting MCU.
USBX DFU does not support the upload feature.

ux_device_class_cdc_acm_read() API, throughput/speed may be similar in following cases.

Read operation in double buffer mode when compared to single buffer mode.
Read operation in continuous transfer mode when compared to non-continious
transfer mode.

Because of the USBX CDC device stack limits the read transfer size buffer to single packet
(ie. wMaxPacketSize as per Full-speed or High-speed USB port). Please refer Azure RTOS
USBX documentation for more information.

ux_host_class_cdc_acm_write() and ux_host_class_cdc_acm_read() API, throughput/speed on
high-speed port may be similar for CPU read and write operation in double buffer mode
when compared to single buffer mode because of the FSP driver limits the maximum
transfer request length size to 512 bytes (UX_FSP_MAX_BULK_PAYLOAD).
ux_host_class_cdc_acm_write() and ux_host_class_cdc_acm_read() API, throughput/speed
may be less for DMA read and write operation when compared to CPU mode because of the
FSP driver limits the maximum transfer request length size to 512
bytes(UX_FSP_MAX_BULK_PAYLOAD).
ux_host_class_cdc_acm_write() and ux_host_class_cdc_acm_read() API, throughput/speed
may be less for DMA read and write operation compared to USB FreeRTOS HCDC DMA
because of the FSP driver limits the maximum transfer request length size to 512 bytes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 759 / 5,560

https://learn.microsoft.com/en-us/azure/rtos/usbx/usbx-device-stack-supplemental-2

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

(UX_FSP_MAX_BULK_PAYLOAD).

Descriptor
Templates for USBX descriptors can be found in ra/fsp/src/rm_usbx_port folder. Also, please be sure
to use your vendor ID.
Change the descriptor.c.template file for each class as follows if High-speed mode is used.

rm_usbx_pcdc_descriptor.c.template

Comment on lines 108 and 243.
Delete the "//" on lines 109 and 242.

rm_usbx_pmsc_descriptor.c.template

Comment on lines 78 and 153.
Delete the "//" on lines 79 and 152.

rm_usbx_paud_descriptor.c.template

Comment on lines 167 and 485.
Delete the "//" on lines 168 and 486.

There are two types of templates for PHID descriptor.
Keyboard templates should be referred to rm_usbx_phid_descriptor_keyboard.c.template.
Mouse templates should be referred to rm_usbx_phid_descriptor_mouse.c.template.

Examples
USBX PCDC Example

PCDC loopback example is as follows.

 #define VALUE_105 (105)

 #define VALUE_2 (2)

 #define VALUE_103 (103)

 #define VALUE_93 (93)

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_cdc = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 760 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

}

/**

 * End of function ux_cdc_device0_instance_activate

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 * Description : Clear instance

 * Arguments : void * cdc_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_cdc = UX_NULL;

}

/**

 * End of function ux_cdc_device0_instance_deactivate

 **/

/**

 * Function Name : apl_status_change_cb

 * Description : USB callback function for USB status change

 * Arguments : ULONG status : USB status

 * Return value : UX_SUCCESS

 **/

UINT apl_status_change_cb (ULONG status)

{

 switch (status)

 {

 case UX_DEVICE_ATTACHED:

 g_attach = USB_YES;

 break;

 case UX_DEVICE_REMOVED:

 g_attach = USB_NO;

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 761 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 default:

 break;

 }

 return UX_SUCCESS;

}

/**

 * End of function apl_status_change_cb

 **/

/**

 * Function Name : usbx_pcdc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_pcdc_sample (void)

{

 fsp_err_t err;

 uint32_t ret;

 uint32_t size;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_device_stack_initialize(g_device_framework_hi_speed,

 VALUE_103,

 g_device_framework_full_speed,

 VALUE_93,

 g_string_framework,

 VALUE_105,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_activate =

ux_cdc_device0_instance_activate;

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_deactivate =

 ux_cdc_device0_instance_deactivate;

 ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 762 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 _ux_device_class_cdc_acm_entry,

 1,

 0x00,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 if (USB_YES == g_attach)

 {

 while (g_cdc == UX_NULL)

 {

 ;

 }

 ret = _ux_device_class_cdc_acm_read(g_cdc, g_buf, DATA_LEN,

&g_actual_length);

 if (UX_SUCCESS == ret)

 {

 size = g_actual_length;

 _ux_device_class_cdc_acm_write(g_cdc, g_buf, size,

&g_actual_length);

 }

 }

 }

 }

}

/**

 * End of function usbx_pcdc_sample

 **/

USBX HCDC Example

The main functions of the HCDC loopback example are as follows:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 763 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

1. Virtual UART control settings are configured by transmitting the class request
SET_LINE_CODING to the CDC device.

2. Sends receive (Bulk In transfer) requests to a CDC peripheral device and receives data.
3. Loops received data back to the peripheral by means of Bulk Out transfers.

The main loop performs loopback processing in which data received from a CDC peripheral device is
transmitted unaltered back to the peripheral.

 #define VALUE_100 (100)

UINT ux_host_usr_event_notification (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

{

 FSP_PARAMETER_NOT_USED(host_class);

 if (UX_FSP_DEVICE_INSERTION == event) /* Check if there is a device insertion. */

 {

 p_cdc_acm = (UX_HOST_CLASS_CDC_ACM *) instance;

 if (UX_HOST_CLASS_CDC_DATA_CLASS !=

 p_cdc_acm->ux_host_class_cdc_acm_interface->ux_interface_descriptor.bInte

rfaceClass)

 {

 if (UX_NULL != p_cdc_acm->ux_host_class_cdc_acm_next_instance)

 {

 /* It seems the DATA class is on the second interface. Or we hope ! */

 p_cdc_acm = p_cdc_acm->ux_host_class_cdc_acm_next_instance;

 /* Check again this interface, if this is not the data interface, we give up. */

 if

(p_cdc_acm->ux_host_class_cdc_acm_interface->ux_interface_descriptor.bInterfaceClass

!=

 UX_HOST_CLASS_CDC_DATA_CLASS)

 {

 /* We did not find a proper data interface. */

 p_cdc_acm = UX_NULL;

 }

 }

 }

 if (p_cdc_acm != UX_NULL)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 764 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 tx_event_flags_set(&g_cdcacm_activate_event_flags0, CDCACM_FLAG, TX_OR);

 }

 }

 else if (event == UX_FSP_DEVICE_REMOVAL) /* Check if there is a device removal. */

 {

 tx_event_flags_set(&g_cdcacm_activate_event_flags0, ~CDCACM_FLAG, TX_AND);

 p_cdc_acm = UX_NULL;

 }

 else

 {

 /* None */

 }

 return UX_SUCCESS;

}

void buffer_clear (uint8_t * p)

{

 uint16_t counter;

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 *p = 0U;

 }

}

/**

 * Function Name : usbx_hcdc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

/* CDCACM Host Thread entry function */

void usbx_hcdc_sample (void)

{

 uint32_t status;

 ULONG actual_flags;

 uint16_t counter = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 765 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 g_write_buf[counter] = (uint8_t) counter;

 }

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(ux_host_usr_event_notification);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

 tx_event_flags_get(&g_cdcacm_activate_event_flags0, CDCACM_FLAG, TX_OR,

&actual_flags, TX_WAIT_FOREVER);

 if (UX_NULL != p_cdc_acm)

 {

 if (0 == g_is_communicate)

 {

 tx_thread_sleep(VALUE_100);

 g_is_communicate = 1;

 }

 if (UX_NULL != p_cdc_acm)

 {

 status = ux_host_class_cdc_acm_write(p_cdc_acm, g_write_buf,

DATA_LEN, &g_write_actual_length);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_write_actual_length))

 {

 g_read_actual_length = 0;

 buffer_clear(g_read_buf);

 if (UX_NULL != p_cdc_acm)

 {

 status = ux_host_class_cdc_acm_read(p_cdc_acm, g_read_buf,

DATA_LEN, &g_read_actual_length);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_read_actual_length))

 {

 for (counter = 0; counter < DATA_LEN; counter++)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 766 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 if ((uint8_t) counter != g_read_buf[counter])

 {

 while (1)

 {

 ;

 }

 }

 } /* for */

 }

 } /* UX_NULL != p_cdc_acm */

 }

 } /* UX_NULL != p_cdc_acm */

 }

 }

}

USBX PMSC Example

PMSC storage example is as follows.

const rm_block_media_cfg_t g_rm_block_media0_cfg =

{.p_extend = NULL, .p_callback = NULL, .p_context = NULL, };

rm_block_media_info_t g_rm_block_info0 =

{.sector_size_bytes = STRG_MEDIASIZE, .num_sectors = STRG_TOTALSECT, .reentrant =

false, .write_protected = false, };

rm_block_media_instance_t g_rm_block_media0 =

{.p_api = &g_rm_block_media_on_user_media, .p_ctrl = &g_rm_block_info0, .p_cfg =

&g_rm_block_media0_cfg, };

/**

 * Function Name : usbx_pmsc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_pmsc_sample (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 767 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

{

 fsp_err_t err;

 UINT ret;

 ULONG size;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_device_stack_initialize(g_device_framework_hi_speed,

 60,

 g_device_framework_full_speed,

 50,

 g_string_framework,

 93,

 g_language_id_framework,

 2,

 UX_NULL);

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 ;

 }

 }

}

USBX HMSC Example

HMSC storage example is as follows. See usbx_hmsc_sample for the basic operation of HMSC. Also,
please refer to usbx_hmsc_sample_format for the format of the USB memory.

#define UX_STORAGE_BUFFER_SIZE (64 * 1024)

#define EVENT_USB_PLUG_IN (1UL << 0)

#define EVENT_USB_PLUG_OUT (1UL << 1)

#define MEMPOOL_SIZE (63488)

#define DATA_LEN (2048)

#define VALUE_32 (32)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 768 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

#define VALUE_100 (100)

#define VALUE_200 (200)

#define VALUE_256 (256)

#define VALUE_1024 (1024)

#define DEVICE_INSERTION (0x01U)

#define DEVICE_REMOVAL (0x02U)

static uint16_t g_read_buf[UX_STORAGE_BUFFER_SIZE];

static uint16_t g_write_buf[UX_STORAGE_BUFFER_SIZE];

static FX_FILE g_file;

static UCHAR g_fx_media0_media_memory[UX_STORAGE_BUFFER_SIZE];

static uint8_t g_ux_pool_memory[MEMPOOL_SIZE];

static FX_MEDIA * g_p_media = UX_NULL;

TX_EVENT_FLAGS_GROUP g_usb_plug_events;

UINT usb_host_plug_event_notification(ULONG usb_event, UX_HOST_CLASS * host_class,

VOID * instance);

UINT ux_system_host_storage_fx_media_get(UX_HOST_CLASS_STORAGE * instance,

 UX_HOST_CLASS_STORAGE_MEDIA **

p_storage_media,

 FX_MEDIA ** p_fx_media);

static UINT apl_change_function (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

{

 UINT status = UX_SUCCESS;

 UX_HOST_CLASS * class;

 UX_HOST_CLASS_STORAGE * storage;

 UX_HOST_CLASS_STORAGE_MEDIA * storage_media;

 FSP_PARAMETER_NOT_USED(host_class);

 FSP_PARAMETER_NOT_USED(instance);

 /* Check if there is a device insertion. */

 if (DEVICE_INSERTION == event)

 {

 status = ux_host_stack_class_get(_ux_system_host_class_storage_name, &class);

 if (UX_SUCCESS != status)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 769 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 return status;

 }

 status = ux_host_stack_class_instance_get(class, 0, (void **) &storage);

 if (UX_SUCCESS != status)

 {

 return status;

 }

 if (UX_HOST_CLASS_INSTANCE_LIVE != storage->ux_host_class_storage_state)

 {

 return UX_ERROR;

 }

 storage_media = class->ux_host_class_media;

 g_p_media = &storage_media->ux_host_class_storage_media;

 tx_event_flags_set(&g_usb_plug_events, EVENT_USB_PLUG_IN, TX_OR);

 }

 else if (DEVICE_REMOVAL == event) /* Check if there is a device removal. */

 {

 g_p_media = UX_NULL;

 tx_event_flags_set(&g_usb_plug_events, EVENT_USB_PLUG_OUT, TX_OR);

 }

 else

 {

 /* None */

 }

 return status;

}

/**

 * Function Name : usbx_hmsc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_hmsc_sample (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 770 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ULONG actual_length = 0;

 ULONG actual_flags;

 UINT tx_return;

 UINT fx_return;

 uint16_t data_count = 0;

 FX_MEDIA * p_media = UX_NULL;

 CHAR volume[VALUE_32];

 fx_system_initialize();

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(apl_change_function);

 tx_event_flags_create(&g_usb_plug_events, (CHAR *) "USB Plug Event Flags");

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

 // Wait until device inserted.

 tx_return = tx_event_flags_get(&g_usb_plug_events,

 EVENT_USB_PLUG_IN,

 TX_OR_CLEAR,

 &actual_flags,

 TX_WAIT_FOREVER);

 if (TX_SUCCESS != tx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Get the pointer to FileX Media Control Block for a USB flash device

 p_media = g_p_media;

 // Retrieve the volume name of the opened media from the Data sector

 fx_return = fx_media_volume_get(p_media, volume, FX_DIRECTORY_SECTOR);

 if (FX_SUCCESS == fx_return)

 {

 // Set the default directory in the opened media, arbitrary name called "firstdir"

 fx_directory_default_set(p_media, "firstdir");

 // Suspend this thread for 200 time-ticks

 tx_thread_sleep(VALUE_100);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 771 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 // Try to open the file, 'counter.txt'.

 fx_return = fx_file_open(p_media, &g_file, "counter.txt",

(FX_OPEN_FOR_READ | FX_OPEN_FOR_WRITE));

 if (FX_SUCCESS != fx_return)

 {

 // The 'counter.txt' file is not found, so create a new file

 fx_return = fx_file_create(p_media, "counter.txt");

 if (FX_SUCCESS != fx_return)

 {

 break;

 }

 // Open that file

 fx_return = fx_file_open(p_media, &g_file, "counter.txt",

(FX_OPEN_FOR_READ | FX_OPEN_FOR_WRITE));

 if (FX_SUCCESS != fx_return)

 {

 break;

 }

 }

 // Already open a file, then read the file in blocks

 // Set a specified byte offset for reading

 fx_return = fx_file_seek(&g_file, 0);

 if (FX_SUCCESS == fx_return)

 {

 fx_return = fx_file_read(&g_file, g_read_buf, DATA_LEN,

&actual_length);

 if ((FX_SUCCESS == fx_return) || (FX_END_OF_FILE == fx_return))

 {

 if (data_count == VALUE_1024)

 {

 // empty file

 data_count = 0;

 }

 for (uint16_t data_max_count = data_count; data_count < (data_max_count +

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 772 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

VALUE_256); data_count++)

 {

 g_write_buf[data_count] = data_count;

 }

 // Set the specified byte offset for writing

 fx_return = fx_file_seek(&g_file, 0);

 if (FX_SUCCESS == fx_return)

 {

 // Write the file in blocks

 fx_return = fx_file_write(&g_file, g_write_buf, DATA_LEN);

 if (FX_SUCCESS == fx_return)

 {

 }

 else

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 }

 }

 }

 else

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Close already opened file

 fx_return = fx_file_close(&g_file);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 tx_thread_sleep(VALUE_200);

 }

 else

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 773 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 /* flush the media */

 fx_return = fx_media_flush(p_media);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 /* close the media */

 fx_return = fx_media_close(p_media);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Wait for unplugging the USB

 tx_event_flags_get(&g_usb_plug_events, EVENT_USB_PLUG_OUT, TX_OR_CLEAR,

&actual_flags, TX_WAIT_FOREVER);

 } // while(1)

}

void usbx_hmsc_sample_format (void)

{

 ULONG actual_flags;

 UINT tx_return;

 UINT status = UX_SUCCESS;

 FX_MEDIA * p_media = UX_NULL;

 fx_system_initialize();

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(apl_change_function);

 tx_event_flags_create(&g_usb_plug_events, (CHAR *) "USB Plug Event Flags");

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 // Wait until device inserted.

 tx_return = tx_event_flags_get(&g_usb_plug_events, EVENT_USB_PLUG_IN,

TX_OR_CLEAR, &actual_flags, TX_WAIT_FOREVER);

 if (TX_SUCCESS != tx_return)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 774 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Get the pointer to FileX Media Control Block for a USB flash device

 p_media = g_p_media;

 memset(g_fx_media0_media_memory, 0x00, sizeof(g_fx_media0_media_memory));

 status = fx_media_format(p_media, // Pointer to

FileX media control block.

 p_media->fx_media_driver_entry, // Driver entry

 p_media->fx_media_driver_info, // Pointer to

Block Media Driver

 g_fx_media0_media_memory, // Media buffer

pointer

 p_media->fx_media_memory_size, // Media buffer

size

 "sample", // Volume Name

 p_media->fx_media_number_of_FATs, // Number of

FATs

 p_media->fx_media_root_directory_entries, // Directory

Entries

 p_media->fx_media_hidden_sectors, // Hidden

sectors

 (ULONG) p_media->fx_media_total_sectors, // Total sectors

 p_media->fx_media_bytes_per_sector, // Sector size

 p_media->fx_media_sectors_per_cluster, // Sectors per

cluster

 p_media->fx_media_heads, // Heads (disk

media)

 p_media->fx_media_sectors_per_track);

 if ((uint8_t) FX_SUCCESS != status)

 {

 __BKPT(0);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 775 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

USBX PHID Example

PHID keyboard example is as follows.

/**

 * Function Name : usbx_phid_keyboard_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_phid_keyboard_sample (void)

{

 UX_SLAVE_CLASS_HID_EVENT hid_event;

 UCHAR key;

 fsp_err_t err;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_device_stack_initialize(NULL,

 0,

 g_device_framework_full_speed,

#if defined(APL_OUT_TRANSFER)

 VALUE_59,

#else /* defined(APL_OUT_TRANSFER) */

 VALUE_52,

#endif /* defined(APL_OUT_TRANSFER) */

 g_string_framework,

 VALUE_53,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 g_ux_device_class_hid_parameter.ux_slave_class_hid_instance_activate =

ux_hid_instance_activate;

 g_ux_device_class_hid_parameter.ux_slave_class_hid_instance_deactivate =

ux_hid_instance_deactivate;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_address =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 776 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

g_apl_report;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_length =

REPORT_DESCRIPTOR_LENGTH;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_callback =

apl_hid_set_report_cb;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_id = 0;

#if defined(APL_OUT_TRANSFER)

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_receiver_initialize

=

 ux_device_class_hid_receiver_initialize;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_receiver_event_max_

number = 16;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_receiver_event_max_

length = DATA_LEN;

#endif /* defined(APL_OUT_TRANSFER) */

 ux_device_stack_class_register(_ux_system_slave_class_hid_name,

 _ux_device_class_hid_entry,

 1,

 0x00,

 (void *) &g_ux_device_class_hid_parameter);

 /* Set the first key to 'a' which is 04. */

 key = 0x04;

 /* reset the HID event structure. */

 ux_utility_memory_set(&hid_event, 0, sizeof(UX_SLAVE_CLASS_HID_EVENT));

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 if (USB_NO == g_suspend)

 {

 while (UX_NULL == g_hid)

 {

 /* Then wait. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 777 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 tx_thread_sleep(10);

 }

 /* 5sec wait */

 usb_cpu_delay_xms((uint16_t) VALUE_5000);

 /* Then insert a key into the keyboard event. Length is fixed to 8. */

 hid_event.ux_device_class_hid_event_length = 8;

 /* First byte is a modifier byte. */

 hid_event.ux_device_class_hid_event_buffer[0] = 0;

 /* Second byte is reserved. */

 hid_event.ux_device_class_hid_event_buffer[1] = 0;

 /* The 6 next bytes are keys. We only have one key here. */

 hid_event.ux_device_class_hid_event_buffer[2] = key;

 if (UX_NULL != g_hid)

 {

 /* Set the keyboard event. */

 ux_device_class_hid_event_set(g_hid, &hid_event);

 }

 /* Next event has the key depressed. */

 hid_event.ux_device_class_hid_event_buffer[2] = 0;

 /* Length is fixed to 8. */

 hid_event.ux_device_class_hid_event_length = 8;

 if (UX_NULL != g_hid)

 {

 /* Set the keyboard event. */

 ux_device_class_hid_event_set(g_hid, &hid_event);

 /* Are we at the end of alphabet ? */

 if (key != (0x04 + 26))

 {

 /* Next key. */

 key++;

 }

 else

 {

 /* Start over again. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 778 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 key = 0x04;

 }

 }

#if defined(APL_OUT_TRANSFER)

 if (UX_NULL != g_hid)

 {

 status = ux_device_class_hid_receiver_event_get(g_hid,

&hid_out_event);

 if (UX_SUCCESS == status)

 {

 for (i = 0; i < hid_out_event.ux_device_class_hid_received_event_length; i++)

 {

 g_out_buf[i] =

*(hid_out_event.ux_device_class_hid_received_event_data + i);

 }

 ux_device_class_hid_receiver_event_free(g_hid);

 }

 }

#endif /* defined(APL_OUT_TRANSFER) */

 }

 else

 {

 if (USB_NO == g_remote_wakeup)

 {

 tx_thread_sleep(VALUE_10000);

 /* Remote wakeup processing */

 g_remote_wakeup = USB_YES;

 ux_device_stack_host_wakeup();

 }

 }

 }

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 779 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

USBX HHID Example

HHID user interface example is as follows.

void keyboard_update_task (ULONG thread_input)

{

 ULONG usbx_return_value;

 /* keyboard button masks, set by ux_host_class_hid_keyboard_buttons_get call */

 ULONG keyboard_key = 0;

 /* keyboard state masks, set by ux_host_class_hid_keyboard_buttons_get call */

 ULONG keyboard_state = 0;

#if defined(UX_HOST_CLASS_HID_INTERRUPT_OUT_SUPPORT)

 UX_HOST_CLASS_HID_KEYBOARD * keyboard_instance;

 ULONG i;

 UX_HOST_CLASS_HID_CLIENT_REPORT client_report;

 UX_HOST_CLASS_HID_REPORT hid_report;

 for (i = 0; i < (OUT_DATA_LEN / 4); i++)

 {

 g_buf[i] = i;

 }

#endif /* defined(UX_HOST_CLASS_HID_INTERRUPT_OUT_SUPPORT) */

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 if (UX_NULL != hid_keyboard_client)

 {

 usbx_return_value = ux_host_class_hid_keyboard_key_get(

 (UX_HOST_CLASS_HID_KEYBOARD *)

hid_keyboard_client->ux_host_class_hid_client_local_instance,

 &keyboard_key,

 &keyboard_state);

 if ((usbx_return_value == UX_SUCCESS) || (usbx_return_value == UX_NO_KEY_PRESS))

 {

 hid_devices_info.device_connected = KEYBOARD_DEVICE;

 hid_devices_info.key = keyboard_key;

 hid_devices_info.keyboard_status = keyboard_state;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 780 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* Clear the states for next read */

 keyboard_key = 0;

 keyboard_state = 0;

 /* copy the keyboard states to queue */

 tx_queue_send(&device_parameters, &hid_devices_info, TX_NO_WAIT);

#if defined(UX_HOST_CLASS_HID_INTERRUPT_OUT_SUPPORT)

 hid_report.ux_host_class_hid_report_id = 0;

 hid_report.ux_host_class_hid_report_type =

UX_HOST_CLASS_HID_REPORT_TYPE_OUTPUT;

 hid_report.ux_host_class_hid_report_byte_length = OUT_DATA_LEN;

 client_report.ux_host_class_hid_client_report = &hid_report;

 client_report.ux_host_class_hid_client_report_buffer = g_buf;

 client_report.ux_host_class_hid_client_report_length = OUT_DATA_LEN;

 client_report.ux_host_class_hid_client_report_flags =

UX_HOST_CLASS_HID_REPORT_RAW;

 keyboard_instance =

 (UX_HOST_CLASS_HID_KEYBOARD *)

hid_keyboard_client->ux_host_class_hid_client_local_instance;

 /* HID Out Transfer */

 ux_host_class_hid_report_set((UX_HOST_CLASS_HID *)

keyboard_instance->ux_host_class_hid_keyboard_hid,

 &client_report);

#endif /* defined(UX_HOST_CLASS_HID_INTERRUPT_OUT_SUPPORT) */

 }

 }

 tx_thread_sleep(10);

 }

}

void mouse_update_task (ULONG thread_input)

{

 /* mouse button masks, set by ux_host_class_hid_mouse_buttons_get call */

 ULONG mouse_buttons;

 /* X co-ordinate displacement of mouse */

 SLONG mouse_x_position = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 781 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* Y co-ordinate displacement of mouse */

 SLONG mouse_y_position = 0;

 /* variable to hold USBX return values */

 ULONG usbx_return_value;

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 if (UX_SUCCESS != hid_mouse_client)

 {

 usbx_return_value = ux_host_class_hid_mouse_buttons_get(

 (UX_HOST_CLASS_HID_MOUSE *)

hid_mouse_client->ux_host_class_hid_client_local_instance,

 &mouse_buttons);

 if (UX_SUCCESS == usbx_return_value)

 {

 usbx_return_value = ux_host_class_hid_mouse_position_get(

 (UX_HOST_CLASS_HID_MOUSE *)

hid_mouse_client->ux_host_class_hid_client_local_instance,

 &mouse_x_position,

 &mouse_y_position);

 }

 if (UX_SUCCESS == usbx_return_value)

 {

 hid_devices_info.device_connected = MOUSE_DEVICE;

 hid_devices_info.key = mouse_buttons;

 hid_devices_info.mouse_direction_X = mouse_x_position;

 hid_devices_info.mouse_direction_Y = mouse_y_position;

 tx_queue_send(&device_parameters, &hid_devices_info, TX_NO_WAIT);

 }

 }

 tx_thread_sleep(10);

 }

}

void usbx_hhid_sample (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 782 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

{

 uint8_t i;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(ux_system_host_hid_change_function);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 tx_thread_create(&keyboard_update,

 (CHAR *) "keyboard_update_task",

 keyboard_update_task,

 (ULONG) NULL,

 &keyboard_update_stack,

 2048,

 22,

 2,

 1,

 TX_AUTO_START);

 tx_thread_create(&mouse_update,

 (CHAR *) "mouse_update_task",

 mouse_update_task,

 (ULONG) NULL,

 &mouse_update_stack,

 1024,

 22,

 2,

 1,

 TX_AUTO_START);

 while (1)

 {

 for (i = 0; i < UX_HOST_CLASS_HID_MAX_CLIENTS; i++)

 {

 /* Check whether the instance registered? through USB HID device insertion callback?

*/

 if (UX_NULL != hid_class_keyboard_instance[i])

 {

 UX_HOST_CLASS_HID_CLIENT * hid_client =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 783 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

hid_class_keyboard_instance[i]->ux_host_class_hid_client;

 hid_keyboard_client = hid_client;

 tx_thread_sleep(10);

 }

 /* Check whether the instance registered? through USB HID device insertion callback?

*/

 if (UX_NULL != hid_class_mouse_instance[i])

 {

 UX_HOST_CLASS_HID_CLIENT * hid_client =

hid_class_mouse_instance[i]->ux_host_class_hid_client;

 hid_mouse_client = hid_client;

 tx_thread_sleep(10);

 }

 /* If multiple similar type devices are connected, allow them one by one share data

with application */

 tx_thread_sleep(10);

 }

 }

}

USBX PAUD Example

PAUD example is as follows.

#define VALUE_275 (275)

#define VALUE_226 (226)

#define VALUE_93 (93)

#define VALUE_2 (2)

#define STACK_SIZE (1024U)

#define NUM_OF_FRAME (8U)

#define USB_MAX_PACKET_SIZE_IN (200U)

#define USB_MAX_PACKET_SZIE_OUT (192U)

#define USB_APL_ON (1U)

#define USB_APL_OFF (0U)

/*** Please enable the following macro when supporting High-speed. ***/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 784 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

// #define APL_AUDIO_20

/***/

static uint8_t g_read_buf[NUM_OF_FRAME][USB_MAX_PACKET_SZIE_OUT];

static uint8_t g_write_buf[USB_MAX_PACKET_SIZE_IN];

static UX_DEVICE_CLASS_AUDIO * volatile g_p_audio = UX_NULL;

static volatile uint8_t g_read_wp = 0U;

static volatile uint32_t g_read_alternate_setting = USB_APL_OFF;

static volatile uint32_t g_write_alternate_setting = USB_APL_OFF;

static volatile uint8_t g_apl_usb_status = USB_APL_DETACH;

#ifdef APL_AUDIO_20

static UX_DEVICE_CLASS_AUDIO20_CONTROL_GROUP g_audio20_control_group;

static UX_DEVICE_CLASS_AUDIO20_CONTROL g_audio20_control[2];

#else /* APL_AUDIO_20 */

static UX_DEVICE_CLASS_AUDIO10_CONTROL_GROUP g_audio_control_group;

static UX_DEVICE_CLASS_AUDIO10_CONTROL g_audio_control[2];

#endif /* APL_AUDIO_20 */

/**

 * Function Name : apl_status_change_cb

 * Description : USB callback function for USB status change

 * Arguments : ULONG status : USB status

 * Return value : UX_SUCCESS

 **/

static UINT apl_status_change_cb (ULONG status)

{

 switch (status)

 {

 case UX_DEVICE_ATTACHED:

 {

 g_apl_usb_status = USB_APL_DEFAULT;

 break;

 }

 case UX_DEVICE_CONFIGURED:

 {

 g_apl_usb_status = USB_APL_CONFIGURED;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 785 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 break;

 }

 case UX_DEVICE_REMOVED:

 {

 g_apl_usb_status = USB_APL_DETACH;

 g_read_wp = 0U;

 g_read_alternate_setting = USB_APL_OFF;

 g_write_alternate_setting = USB_APL_OFF;

 break;

 }

 case UX_DEVICE_SUSPENDED:

 {

 if (USB_APL_CONFIGURED == g_apl_usb_status)

 {

 g_apl_usb_status = USB_APL_SUSPEND;

 }

 break;

 }

 case UX_DEVICE_RESUMED:

 {

 if (USB_APL_SUSPEND == g_apl_usb_status)

 {

 g_apl_usb_status = USB_APL_CONFIGURED;

 }

 break;

 }

 default:

 {

 break;

 }

 }

 return UX_SUCCESS;

}

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 786 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * End of function apl_status_change_cb

 **/

/**

 * Function Name : apl_audio_read_instance_activate

 * Description : Get instance

 * Arguments : void * p_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void apl_audio_instance_activate (void * p_instance)

{

 /* Save the CDC instance. */

 g_p_audio = (UX_DEVICE_CLASS_AUDIO *) p_instance;

}

/**

 * End of function apl_audio_read_instance_activate

 **/

/**

 * Function Name : apl_audio_read_instance_deactivate

 * Description : Clear instance

 * Arguments : void * p_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

static void apl_audio_instance_deactivate (void * p_instance)

{

 FSP_PARAMETER_NOT_USED(p_instance);

 g_p_audio = UX_NULL;

}

/**

 * End of function apl_audio_read_instance_deactivate

 **/

#ifdef APL_AUDIO_20

/**

 * Function Name : apl_audio20_request_process

 * Description : Audio20 Control Request Processing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 787 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Arguments : UX_DEVICE_CLASS_AUDIO * : Pointer to Audio instance

 * : UX_SLAVE_TRANSFER * : Pointer to UX_SLAVE_TRANSFER structure

 * Return value : UX_SUCCESS

 **/

static UINT apl_audio20_request_process (UX_DEVICE_CLASS_AUDIO * p_audio,

UX_SLAVE_TRANSFER * p_transfer)

{

 UINT ux_err;

 uint8_t i;

 uint8_t number;

 ux_err = ux_device_class_audio20_control_process(p_audio, p_transfer,

&g_audio20_control_group);

 if (UX_SUCCESS == ux_err)

 {

 /* Request handled, check changes */

 number = (uint8_t)

g_audio20_control_group.ux_device_class_audio20_control_group_controls_nb;

 for (i = 0; i < number; i++)

 {

 switch (g_audio20_control[i].ux_device_class_audio20_control_changed)

 {

 case UX_DEVICE_CLASS_AUDIO20_CONTROL_MUTE_CHANGED:

 {

 g_control_mute[i] =

g_audio20_control[i].ux_device_class_audio20_control_mute[0];

 break;

 }

 case UX_DEVICE_CLASS_AUDIO20_CONTROL_VOLUME_CHANGED:

 {

 g_control_volume[i] =

g_audio20_control[i].ux_device_class_audio20_control_volume[0];

 break;

 }

 default:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 788 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 break;

 }

 }

 }

 }

 return UX_SUCCESS;

}

/**

 * End of function apl_audio20_request_process

 **/

#else /* APL_AUDIO_20 */

/**

 * Function Name : apl_audio10_request_process

 * Description : Audio10 Control Request Processing

 * Arguments : UX_DEVICE_CLASS_AUDIO * : Pointer to Audio instance

 * : UX_SLAVE_TRANSFER * : Pointer to UX_SLAVE_TRANSFER structure

 * Return value : UX_SUCCESS

 **/

static UINT apl_audio10_request_process (UX_DEVICE_CLASS_AUDIO * p_audio,

UX_SLAVE_TRANSFER * p_transfer)

{

 UINT ux_err;

 uint8_t i;

 uint8_t number;

 ux_err = ux_device_class_audio10_control_process(p_audio, p_transfer,

&g_audio_control_group);

 if (UX_SUCCESS == ux_err)

 {

 /* Request handled, check changes */

 number = (uint8_t)

g_audio_control_group.ux_device_class_audio10_control_group_controls_nb;

 for (i = 0; i < number; i++)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 789 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 switch (g_audio_control[i].ux_device_class_audio10_control_changed)

 {

 case UX_DEVICE_CLASS_AUDIO10_CONTROL_MUTE_CHANGED:

 {

 g_control_mute[i] =

g_audio_control[i].ux_device_class_audio10_control_mute[0];

 break;

 }

 case UX_DEVICE_CLASS_AUDIO10_CONTROL_VOLUME_CHANGED:

 {

 g_control_volume[i] =

g_audio_control[i].ux_device_class_audio10_control_volume[0];;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 }

 return UX_SUCCESS;

}

/**

 * End of function apl_audio10_request_process

 **/

#endif /* APL_AUDIO_20 */

/**

 * Function Name : apl_audio_read_change

 * Description : Callback function called when switching alternate setting value of

OUT transfer

 * Arguments : UX_DEVICE_CLASS_AUDIO_STREAM * : Pointer to

UX_DEVICE_CLASS_AUDIO_STREAM structure

 * : ULONG : Alternate Setting Value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 790 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Return value : UX_SUCCESS

 **/

static void apl_audio_read_change (UX_DEVICE_CLASS_AUDIO_STREAM * p_stream, ULONG

alternate_setting)

{

 UINT ux_err;

 if (USB_APL_ON == alternate_setting)

 {

 ux_device_class_audio_reception_start(p_stream);

 }

 else

 {

 if (USB_APL_ON == g_read_alternate_setting)

 {

 /* Alternate Setting 1 --> 0 */

 g_read_wp = 0U;

 }

 }

 g_read_alternate_setting = alternate_setting;

}

/**

 * End of function apl_audio_read_change

 **/

/**

 * Function Name : apl_audio_read_done

 * Description : Callback function called when completing of OUT transfer reception

 * Arguments : UX_DEVICE_CLASS_AUDIO_STREAM * : Pointer to

UX_DEVICE_CLASS_AUDIO_STREAM structure

 * : ULONG : Actual Length

 * Return value : UX_SUCCESS

 **/

static void apl_audio_read_done (UX_DEVICE_CLASS_AUDIO_STREAM * p_stream, ULONG

actual_length)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 791 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 UINT ux_err;

 UCHAR * p_buffer;

 ULONG length;

 UINT i;

 FSP_PARAMETER_NOT_USED(actual_length);

 if (USB_APL_ON == g_read_alternate_setting)

 {

 ux_err = ux_device_class_audio_read_frame_get(p_stream, &p_buffer, &length);

 if (UX_SUCCESS == ux_err)

 {

 for (i = 0; i < length; i++)

 {

 g_read_buf[g_read_wp][i] = *(p_buffer + i);

 }

 g_read_wp++;

 g_read_wp %= NUM_OF_FRAME;

 ux_device_class_audio_read_frame_free(p_stream);

 }

 }

}

/**

 * End of function apl_audio_read_done

 **/

/**

 * Function Name : apl_audio_write_change

 * Description : Callback function called when switching alternate setting value of

IN transfer

 * Arguments : UX_DEVICE_CLASS_AUDIO_STREAM * : Pointer to

UX_DEVICE_CLASS_AUDIO_STREAM structure

 * : ULONG : Alternate Setting Value

 * Return value : UX_SUCCESS

 **/

static void apl_audio_write_change (UX_DEVICE_CLASS_AUDIO_STREAM * p_stream, ULONG

alternate_setting)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 792 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

{

 UINT ux_err;

 if (USB_APL_ON == alternate_setting)

 {

 ux_err = ux_device_class_audio_frame_write(p_stream, g_write_buf,

USB_MAX_PACKET_SIZE_IN);

 if (UX_SUCCESS == ux_err)

 {

 ux_device_class_audio_transmission_start(p_stream);

 }

 }

 g_write_alternate_setting = alternate_setting;

}

/**

 * End of function apl_audio_write_change

 **/

/**

 * Function Name : apl_audio_write_done

 * Description : Callback function called when completing of IN transfer transmission

 * Arguments : UX_DEVICE_CLASS_AUDIO_STREAM * : Pointer to

UX_DEVICE_CLASS_AUDIO_STREAM structure

 * : ULONG : Actual Length

 * Return value : None

 **/

static void apl_audio_write_done (UX_DEVICE_CLASS_AUDIO_STREAM * p_stream, ULONG

actual_length)

{

 FSP_PARAMETER_NOT_USED(actual_length);

 if (USB_APL_ON == g_write_alternate_setting)

 {

 ux_device_class_audio_frame_write(p_stream, g_write_buf,

USB_MAX_PACKET_SIZE_IN);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 793 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

/**

 * End of function apl_audio_write_done

 **/

/**

 * Function Name : usbx_paudio_apl_init

 * Description : Initialization processing

 * Arguments : None

 * Return value : None

 **/

void usbx_paudio_apl_init (void)

{

 fsp_err_t err;

 UINT ux_err;

 uint16_t i = 0;

 UX_DEVICE_CLASS_AUDIO_STREAM_PARAMETER audio_stream_parameter[2];

 UX_DEVICE_CLASS_AUDIO_PARAMETER audio_parameter;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_device_stack_initialize(g_device_framework_hi_speed,

 VALUE_275,

 g_device_framework_full_speed,

 VALUE_226,

 g_string_framework,

 VALUE_93,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 /* Read Initialization */

 audio_stream_parameter[0].ux_device_class_audio_stream_parameter_callbacks.ux_dev

ice_class_audio_stream_change =

 apl_audio_read_change;

 audio_stream_parameter[0].ux_device_class_audio_stream_parameter_callbacks.ux_dev

ice_class_audio_stream_frame_done =

 apl_audio_read_done;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 794 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

audio_stream_parameter[0].ux_device_class_audio_stream_parameter_thread_stack_size

= STACK_SIZE;

 audio_stream_parameter[0].ux_device_class_audio_stream_parameter_max_frame_buffer

_nb = NUM_OF_FRAME;

 audio_stream_parameter[0].ux_device_class_audio_stream_parameter_max_frame_buffer

_size = USB_MAX_PACKET_SZIE_OUT;

 audio_stream_parameter[0].ux_device_class_audio_stream_parameter_thread_entry

 =

 ux_device_class_audio_read_thread_entry;

 /* Write Initialization */

 audio_stream_parameter[1].ux_device_class_audio_stream_parameter_callbacks.ux_dev

ice_class_audio_stream_change =

 apl_audio_write_change;

 audio_stream_parameter[1].ux_device_class_audio_stream_parameter_callbacks.ux_dev

ice_class_audio_stream_frame_done =

 apl_audio_write_done;

audio_stream_parameter[1].ux_device_class_audio_stream_parameter_thread_stack_size

= STACK_SIZE;

 audio_stream_parameter[1].ux_device_class_audio_stream_parameter_max_frame_buffer

_nb = NUM_OF_FRAME;

 audio_stream_parameter[1].ux_device_class_audio_stream_parameter_max_frame_buffer

_size = USB_MAX_PACKET_SIZE_IN;

 audio_stream_parameter[1].ux_device_class_audio_stream_parameter_thread_entry

 =

 ux_device_class_audio_write_thread_entry;

 audio_parameter.ux_device_class_audio_parameter_callbacks.ux_slave_class_audio_in

stance_activate =

 apl_audio_instance_activate;

 audio_parameter.ux_device_class_audio_parameter_callbacks.ux_slave_class_audio_in

stance_deactivate =

 apl_audio_instance_deactivate;

 audio_parameter.ux_device_class_audio_parameter_callbacks.ux_device_class_audio_c

ontrol_process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 795 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

#ifdef APL_AUDIO_20

 = apl_audio20_request_process;

#else

 = apl_audio10_request_process;

#endif

 audio_parameter.ux_device_class_audio_parameter_streams_nb = 2;

 audio_parameter.ux_device_class_audio_parameter_streams =

&audio_stream_parameter[0];

 ux_err =

 ux_device_stack_class_register(_ux_system_slave_class_audio_name,

 _ux_device_class_audio_entry,

 1,

 0x00,

 (void *) &audio_parameter);

 if (UX_SUCCESS != ux_err)

 {

 USB_APL_AUDIO_ERROR();

 }

#ifdef APL_AUDIO_20

 g_audio20_control[0].ux_device_class_audio20_control_cs_id = 0x10;

 g_audio20_control[0].ux_device_class_audio20_control_sampling_frequency = 48000;

 g_audio20_control[0].ux_device_class_audio20_control_fu_id = 5;

 g_audio20_control[0].ux_device_class_audio20_control_mute[0] = 0;

 g_audio20_control[0].ux_device_class_audio20_control_volume_min[0] = 0;

 g_audio20_control[0].ux_device_class_audio20_control_volume_max[0] = 100;

 g_audio20_control[0].ux_device_class_audio20_control_volume[0] = 50;

 g_audio20_control[1].ux_device_class_audio20_control_cs_id = 0x10;

 g_audio20_control[1].ux_device_class_audio20_control_sampling_frequency = 48000;

 g_audio20_control[1].ux_device_class_audio20_control_fu_id = 8;

 g_audio20_control[1].ux_device_class_audio20_control_mute[0] = 0;

 g_audio20_control[1].ux_device_class_audio20_control_volume_min[0] = 0;

 g_audio20_control[1].ux_device_class_audio20_control_volume_max[0] = 200;

 g_audio20_control[1].ux_device_class_audio20_control_volume[0] = 100;

 g_audio20_control_group.ux_device_class_audio20_control_group_controls_nb = 2;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 796 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 g_audio20_control_group.ux_device_class_audio20_control_group_controls =

&g_audio20_control[0];

#else /* APL_AUDIO_20 */

 g_audio_control[0].ux_device_class_audio10_control_fu_id = 5;

 g_audio_control[0].ux_device_class_audio10_control_mute[0] = 0;

 g_audio_control[0].ux_device_class_audio10_control_volume[0] = 0;

 g_audio_control[0].ux_device_class_audio10_control_volume_min[0] = 0;

 g_audio_control[0].ux_device_class_audio10_control_volume_max[0] = 0x80;

 g_audio_control[0].ux_device_class_audio10_control_volume_res[0] = 0x40;

 g_audio_control[1].ux_device_class_audio10_control_fu_id = 8;

 g_audio_control[1].ux_device_class_audio10_control_mute[0] = 0x10;

 g_audio_control[1].ux_device_class_audio10_control_volume[0] = 0x00;

 g_audio_control[1].ux_device_class_audio10_control_volume_min[0] = 0;

 g_audio_control[1].ux_device_class_audio10_control_volume_max[0] = 0xF0;

 g_audio_control[1].ux_device_class_audio10_control_volume_res[0] = 0x80;

 g_audio_control_group.ux_device_class_audio10_control_group_controls_nb = 2;

 g_audio_control_group.ux_device_class_audio10_control_group_controls =

&g_audio_control[0];

#endif /* APL_AUDIO_20 */

 for (i = 0; i < USB_MAX_PACKET_SIZE_IN; i++)

 {

 g_write_buf[i] = (UCHAR) (i & 0xFF);

 }

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS != err)

 {

 USB_APL_AUDIO_ERROR();

 }

}

/**

 * End of function usbx_paudio_apl_init

 **/

/**

 * Function Name : usbx_paudio_apl

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 797 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Description : Application task for USB Audio

 * Arguments : none

 * Return value : none

 **/

void usbx_paud_sample (void)

{

 usbx_paudio_apl_init();

 while (1)

 {

 switch (g_apl_usb_status)

 {

 case USB_APL_CONFIGURED:

 {

 /* Application Processing */

 break;

 }

 case USB_APL_DETACH:

 {

 break;

 }

 case USB_APL_SUSPEND:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

}

USBX PPRN Example

PPRN example is as follows.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 798 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

Note: Define "2" to "DEMO_PROTOCOL" macro when supporting IN transfer and define "1" to
"DEMO_PROTOCOL" macro when not supporting IN transfer.

/**

 * Macro definitions

 **/

#define DEMO_PROTOCOL (1U) /* 1-Uni-dir, 2-Bi-dir */

#define DEMO_STACK_SIZE 1024

/* USBx device configuration settings */

#define DEVICE_FRAME_LENGTH_HIGH_SPEED (53U) + ((DEMO_PROTOCOL > 1) ? 7 : 0) /*

Length of g_device_framework_hi_speed[] */

#define DEVICE_FRAME_LENGTH_FULL_SPEED (43U) + ((DEMO_PROTOCOL > 1) ? 7 : 0) /*

Length of g_device_framework_full_speed[] */

#define STRING_FRAMEWORK_LENGTH (53U) /* Length of g_string_framework[]. If edit

g_string_framework[], need to change this value. */

#define LANGUAGE_ID_FRAME_WORK_LENGTH (2U)

#define CONFIG_NUMB (1U)

#define INTERFACE_NUMB0 (0x00)

#define INTERFACE_NUMB1 (0x01)

#define MEMPOOL_SIZE (18432U)

#define BYTE_SIZE (4U)

#define DATA_LEN (512U)

#define MAX_PACKET_SIZE_HS (512U)

#define MAX_PACKET_SIZE_FS (64U)

#define PRINTER_DEVICE_ID_LENGTH (91U) /* Length of printer_device_id[]. If edit

printer_device_id[], need to change this value. */

/**

 * Exported global variables and functions (to be accessed by other files)

 **/

extern uint8_t g_device_framework_full_speed[];

extern uint8_t g_device_framework_hi_speed[];

extern uint8_t g_string_framework[];

extern uint8_t g_language_id_framework[];

extern uint8_t printer_device_id[];

static union _PRINTER_PORT_STATUS

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 799 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

{

 struct

 {

 uint8_t reserved : 3;

 uint8_t not_error : 1;

 uint8_t select : 1;

 uint8_t paper_empty : 1;

 } bm;

 uint8_t value;

} device_printer_port_status;

static struct TEST_DATA_STRUCT

{

 uint32_t mem_usage_max;

 uint32_t mem_usage;

} test_data = {0, 0};

/**

 * Global functions and variables

 **/

extern uint32_t usb_peri_usbx_initialize(uint32_t dcd_io);

/**

 * Private global variables and functions

 **/

static void ux_printer_instance_activate(void * printer_instance);

static void ux_printer_instance_deactivate(void * printer_instance);

static void ux_printer_soft_reset(void * printer_instance);

/* Mempool size of 18k is required for USBX device class pre built libraries

 * and it is valid only if it with default USBX configurations. */

static uint32_t g_ux_pool_memory[(MEMPOOL_SIZE + DEMO_STACK_SIZE * 3) / BYTE_SIZE];

static UX_DEVICE_CLASS_PRINTER_PARAMETER device_printer_parameter;

static UX_DEVICE_CLASS_PRINTER * device_printer = UX_NULL;

static uint8_t device_printer_buffer[DATA_LEN];

uint8_t _ux_system_slave_class_prn_name[] = "ux_device_class_printer";

/* Define local function prototypes. */

void demo_thread_entry(uint32_t thread_input);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 800 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

void printer_read_thread_entry(uint32_t thread_input);

void printer_write_thread_entry(uint32_t thread_input);

/* Define global data structures. */

static TX_THREAD demo_thread;

static TX_THREAD printer_read_thread;

#if DEMO_PROTOCOL > 1

static TX_THREAD printer_write_thread;

#endif

/**

 * Function Name : ux_printer_instance_activate

 * Description : Get instance

 * Arguments : void * printer_instance : Pointer to the area store the instance

pointer

 * Return value : none

 **/

static void ux_printer_instance_activate (void * printer_instance)

{

 if (device_printer == UX_NULL)

 {

 device_printer = (UX_DEVICE_CLASS_PRINTER *) printer_instance;

 ux_device_class_printer_ioctl(device_printer,

 UX_DEVICE_CLASS_PRINTER_IOCTL_PORT_STATUS_SET,

 (void *) device_printer_port_status.value);

 }

}

/**

 * End of function ux_printer_instance_activate

 **/

/**

 * Function Name : ux_printer_instance_deactivate

 * Description : Clear instance

 * Arguments : void * printer_instance : Pointer to the area store the instance

pointer

 * Return value : none

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 801 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 **/

static void ux_printer_instance_deactivate (void * printer_instance)

{

 if ((void *) device_printer == printer_instance)

 {

 device_printer = UX_NULL;

 }

}

/**

 * End of function ux_printer_instance_deactivate

 **/

/**

 * Function Name : ux_printer_soft_reset

 * Description : This function does nothing in particular.

 * Arguments : void * printer_instance : Pointer to the area store the instance

pointer

 * Return value : none

 **/

static void ux_printer_soft_reset (void * printer_instance)

{

}

/**

 * End of function ux_printer_soft_reset

 **/

/**

 * Function Name : usbx_pprn_sample

 * Description : Initialization for Peripheral Printer

 * Arguments : none

 * Return value : none

 **/

void usbx_pprn_sample (void)

{

/* To check ux api return status */

 UINT status = UX_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 802 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

/* To check fsp api return status */

 fsp_err_t err = FSP_SUCCESS;

 uint8_t * stack_pointer;

 uint8_t * memory_pointer;

 /* ux_system_initialization */

 stack_pointer = (uint8_t *) g_ux_pool_memory;

 memory_pointer = stack_pointer + DEMO_STACK_SIZE * 3;

 ux_system_initialize(memory_pointer, MEMPOOL_SIZE, UX_NULL, 0x00);

 /* ux_device stack initialization */

 ux_device_stack_initialize(g_device_framework_hi_speed,

 DEVICE_FRAME_LENGTH_HIGH_SPEED,

 g_device_framework_full_speed,

 DEVICE_FRAME_LENGTH_FULL_SPEED,

 g_string_framework,

 STRING_FRAMEWORK_LENGTH,

 g_language_id_framework,

 LANGUAGE_ID_FRAME_WORK_LENGTH,

 UX_NULL);

 /* Set the parameters for callback when insertion/extraction of a printer device. */

 _ux_utility_memory_set(&device_printer_parameter, 0, sizeof

(device_printer_parameter));

 _ux_utility_short_put_big_endian(printer_device_id, PRINTER_DEVICE_ID_LENGTH);

 device_printer_port_status.value = UX_DEVICE_CLASS_PRINTER_SELECT |

UX_DEVICE_CLASS_PRINTER_NOT_ERROR;

 device_printer_parameter.ux_device_class_printer_device_id =

printer_device_id;

 device_printer_parameter.ux_device_class_printer_instance_activate =

ux_printer_instance_activate;

 device_printer_parameter.ux_device_class_printer_instance_deactivate =

ux_printer_instance_deactivate;

 device_printer_parameter.ux_device_class_printer_soft_reset =

ux_printer_soft_reset;

 /* ux_device stack class registration */

 ux_device_stack_class_register(_ux_system_slave_class_prn_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 803 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 _ux_device_class_printer_entry,

 CONFIG_NUMB,

 INTERFACE_NUMB0,

 (void *) &device_printer_parameter);

 /* Open usb driver */

 R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 /* Create the main demo thread. */

 tx_thread_create(&demo_thread,

 "tx demo",

 demo_thread_entry,

 0,

 stack_pointer,

 DEMO_STACK_SIZE,

 20,

 20,

 1,

 TX_AUTO_START);

 stack_pointer += DEMO_STACK_SIZE;

 /* Create the printer read thread. */

 tx_thread_create(&printer_read_thread,

 "read_thread",

 printer_read_thread_entry,

 0,

 stack_pointer,

 DEMO_STACK_SIZE,

 20,

 20,

 1,

 TX_AUTO_START);

 stack_pointer += DEMO_STACK_SIZE;

#if DEMO_PROTOCOL > 1

 /* Create the main demo thread. */

 tx_thread_create(&printer_write_thread,

 "write_thread",

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 804 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 printer_write_thread_entry,

 0,

 stack_pointer,

 DEMO_STACK_SIZE,

 20,

 20,

 1,

 TX_AUTO_START);

#endif

}

/**

 * End of function usbx_pprn_sample

 **/

/**

 * Function Name : apl_mem_usage_update

 * Description : Update memory usage

 * Arguments : none

 * Return value : none

 **/

static void apl_mem_usage_update (void)

{

 uint32_t mem_total;

 /* Update memory usage. */

 mem_total = _ux_system->ux_system_regular_memory_pool_size + (uint32_t) (

 (uint8_t *) _ux_system->ux_system_regular_memory_pool_start -

 (uint8_t *) _ux_system);

 test_data.mem_usage = mem_total - _ux_system->ux_system_regular_memory_pool_free;

#ifdef UX_ENABLE_MEMORY_STATISTICS

 test_data.mem_usage_max = mem_total -

_ux_system->ux_system_regular_memory_pool_min_free;

#else /* Not accurate, there could be alloc/free between checks. */

 if (test_data.mem_usage > test_data.mem_usage_max)

 {

 test_data.mem_usage_max = test_data.mem_usage;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 805 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 }

#endif

}

/**

 * End of function apl_mem_usage_update

 **/

/**

 * Function Name : apl_minus

 * Description : Adjust timer

 * Arguments : uint32_t v_origin

 * : uint32_t v_minus

 * : uint32_t wrap

 * Return value : Adjusted Tick Value

 **/

static uint32_t apl_minus (uint32_t v_origin, uint32_t v_minus, uint32_t wrap)

{

 if (v_origin >= v_minus)

 {

 return v_origin - v_minus;

 }

 else

 {

 return v_origin + (wrap - v_minus);

 }

}

/**

 * End of function apl_mem_usage_update

 **/

/**

 * Function Name : demo_thread_entry

 * Description : Printer Demo Thread

 * Arguments : uint32_t thread_input

 * Return value : none

 **/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 806 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

void demo_thread_entry (uint32_t thread_input)

{

 uint32_t tick0, tick1, diff;

 uint32_t pmem = 0;

 uint8_t port_status = device_printer_port_status.value;

 /* Not currently using thread_input. */

 FSP_PARAMETER_NOT_USED(thread_input);

 /* Standalone stack: run tasks in application thread loop. */

 while (1)

 {

 /* Update memory usage. */

 apl_mem_usage_update();

 /* Let other threads to run. */

 tx_thread_sleep(1);

 /* Do status change check. */

 if (device_printer &&

 (port_status != device_printer_port_status.value))

 {

 ux_device_class_printer_ioctl(device_printer,

 UX_DEVICE_CLASS_PRINTER_IOCTL_PORT_STATUS_SET,

 (void *) device_printer_port_status.value);

 port_status = device_printer_port_status.value;

 }

 /* Check time passed and update speed every 1s. */

 tick1 = tx_time_get();

 diff = apl_minus(tick1, tick0, 0xFFFFFFFF);

 if (diff < TX_TIMER_TICKS_PER_SECOND)

 {

 continue;

 }

 tick0 = tick1;

 /* Print results. */

 if ((pmem != test_data.mem_usage_max))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 807 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 pmem = test_data.mem_usage_max;

 }

 }

}

/**

 * End of function demo_thread_entry

 **/

/**

 * Function Name : printer_read_thread_entry

 * Description : USB read operation and echo back the first part of user input on

serial terminal.

 * Arguments : uint32_t thread_input

 * Return value : none

 **/

void printer_read_thread_entry (uint32_t thread_input)

{

 UINT status;

 uint32_t actual_length;

 UINT i;

 /* Not currently using thread_input. */

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 if (device_printer == UX_NULL)

 {

 /* Wait a while before next check. */

 tx_thread_sleep(10);

 continue;

 }

 status = ux_device_class_printer_read(device_printer, device_printer_buffer,

DATA_LEN, &actual_length);

 if (status != UX_SUCCESS)

 {

 continue;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 808 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 }

 if (actual_length == 0)

 {

 continue;

 }

 }

}

/**

 * End of function printer_read_thread_entry

 **/

/**

 * Function Name : printer_write_thread_entry

 * Description : Periodically checks the printer status.

 * Arguments : uint32_t thread_input

 * Return value : none

 **/

void printer_write_thread_entry (uint32_t thread_input)

{

 uint8_t port_status = device_printer_port_status.value;

 /* Not currently using thread_input. */

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 /* Wait 2s. */

 tx_thread_sleep(TX_TIMER_TICKS_PER_SECOND * 2);

 if (device_printer &&

 (port_status != device_printer_port_status.value))

 {

 /* Send status and other information here. */

 port_status = device_printer_port_status.value;

 }

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 809 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

USBX HPRN Example

HPRN example is as follows.

#include "r_usb_basic.h"

#include "r_usb_basic_cfg.h"

#include "ux_api.h"

#include "ux_system.h"

#include "ux_host_class_printer.h"

/**

 * Macro definitions

 ***/

#define DATA_LEN (1030U)

#define MAX_REQUEST_SIZE (2048U)

#define MEMPOOL_SIZE (18432)

#define HPRN_FLAG ((uint32_t) 0x0001)

#define VALUE_4 (4)

#define MOD_VAL (50)

#define READ_LEN (64)

#define WAIT_TIME (50)

#define SUCCESS (0U)

#define UX_FSP_DEVICE_INSERTION (0x01U)

#define UX_FSP_DEVICE_REMOVAL (0x02U)

#define RESET_VALUE (0x00)

/* Private function */

static UINT ux_host_usr_event_notification(ULONG event, UX_HOST_CLASS * host_class,

VOID * instance);

/* A pointer to store Printer instance. */

static UX_HOST_CLASS_PRINTER * p_printer = UX_NULL;

static ULONG g_write_actual_length = RESET_VALUE;

static ULONG g_read_actual_length = RESET_VALUE;

static uint8_t g_read_buf[DATA_LEN] = {RESET_VALUE};

static uint8_t g_read_buf1[DATA_LEN] = {RESET_VALUE};

static uint8_t g_write_buf[DATA_LEN] = {RESET_VALUE};

static uint32_t g_ux_pool_memory[MEMPOOL_SIZE / VALUE_4];

/* HPRN Thread entry function */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 810 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

void hprn_thread_entry (void)

{

 uint32_t status = RESET_VALUE;

 ULONG actual_flags = RESET_VALUE;

 uint16_t count = RESET_VALUE;

 ULONG port_status = RESET_VALUE;

 /* ux_system_initialization */

 ux_system_initialize(g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, RESET_VALUE);

 /* ux host stack initialization */

 ux_host_stack_initialize(ux_host_usr_event_notification);

 /* Open usb driver */

 R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 /*Fill the write buffer*/

 for (count = RESET_VALUE; count < DATA_LEN; count++)

 {

 g_write_buf[count] = (uint8_t) count;

 }

 while (true)

 {

 /* retrieves event flags from the specified event flags group.*/

 tx_event_flags_get(&g_printer_activate_event_flags0, HPRN_FLAG, TX_OR,

&actual_flags, TX_WAIT_FOREVER);

 if (UX_NULL != p_printer)

 {

 /* GET_PORT_STATUS */

 ux_host_class_printer_status_get(p_printer, &port_status);

 /*Send the data to device*/

 ux_host_class_printer_write(p_printer, g_write_buf, DATA_LEN,

&g_write_actual_length);

 /* Clear the buffer */

 memset(g_read_buf, RESET_VALUE, sizeof(g_read_buf));

 /* USB receives the data echoed back */

 ux_host_class_printer_read(p_printer, g_read_buf, MAX_REQUEST_SIZE,

&g_read_actual_length);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 811 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /*compare loop-back data*/

 if (SUCCESS != (memcmp(g_read_buf, g_write_buf, sizeof(g_read_buf))))

 {

 return;

 }

 tx_thread_sleep(WAIT_TIME);

 }

 }

}

static UINT ux_host_usr_event_notification (ULONG event, UX_HOST_CLASS * host_class,

VOID * instance)

{

 if (_ux_utility_memory_compare(_ux_system_host_class_printer_name, host_class,

_ux_utility_string_length_get(_ux_system_host_class_printer_name)) ==

 UX_SUCCESS)

 {

 /* Check if there is a device insertion. */

 if (UX_FSP_DEVICE_INSERTION == event)

 {

 p_printer = (UX_HOST_CLASS_PRINTER *) instance;

 if (UX_NULL != p_printer)

 {

 /* This sets or clears event flags in an event flags group */

 tx_event_flags_set(&g_printer_activate_event_flags0, HPRN_FLAG,

TX_OR);

 }

 }

 /* Check if there is a device removal */

 else if (UX_FSP_DEVICE_REMOVAL == event)

 {

 /* This sets or clears event flags in an event flags group */

 tx_event_flags_set(&g_printer_activate_event_flags0, ~HPRN_FLAG, TX_AND);

 p_printer = UX_NULL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 812 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 }

 else

 {

 /*do nothing */

 }

 }

 return UX_SUCCESS;

}

USBX HUVC Example

HUVC example is as follows.

/**

 * Macro definitions

 **

***********************************/

 #define RESET_VALUE (0x00)

 #define MEMPOOL_SIZE (18432)

 #define VALUE_4 (4)

 #define EVENTFLAG_USB_DEVICE_INSERTED (0x01)

/* Define the number of buffers used in this demo. */

 #define MAX_NUM_BUFFERS 2

 #define USBFS_ISO_PIPE_MAX_PAKCET_SIZE (256)

/**

 * Private function prototypes

 **

***********************************/

VOID uvc_transfer_request_done_callback(UX_TRANSFER * transfer_request);

VOID uvc_parameter_interval_list(UX_HOST_CLASS_VIDEO * video);

UINT uvc_parameter_frame_list(UX_HOST_CLASS_VIDEO * video);

VOID uvc_parameter_list(UX_HOST_CLASS_VIDEO * video);

VOID uvc_process_function(UX_HOST_CLASS_VIDEO * video);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 813 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

UINT ux_host_usr_event_notification(ULONG event, UX_HOST_CLASS * host_class, VOID *

instance);

/**

 * Private global variables

 **

***********************************/

static uint32_t g_ux_pool_memory[MEMPOOL_SIZE / VALUE_4];

/* video class instance */

UX_HOST_CLASS_VIDEO * volatile video_host_class;

TX_EVENT_FLAGS_GROUP g_device_insert_eventflag;

TX_SEMAPHORE g_data_received_semaphore;

/* video buffer */

UCHAR g_video_buffer[10 * 1024];

/* Name string of VS types */

struct

{

 int type;

 char * name;

} vs_type_name[] =

{

 {UX_HOST_CLASS_VIDEO_VS_UNDEFINED, "UX_HOST_CLASS_VIDEO_VS_UNDEFINED" },

 {UX_HOST_CLASS_VIDEO_VS_INPUT_HEADER, "UX_HOST_CLASS_VIDEO_VS_INPUT_HEADER"

},

 {UX_HOST_CLASS_VIDEO_VS_OUTPUT_HEADER, "UX_HOST_CLASS_VIDEO_VS_OUTPUT_HEADER"

},

 {UX_HOST_CLASS_VIDEO_VS_STILL_IMAGE_FRAME,

"UX_HOST_CLASS_VIDEO_VS_STILL_IMAGE_FRAME" },

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_UNCOMPRESSED,

"UX_HOST_CLASS_VIDEO_VS_FORMAT_UNCOMPRESSED" },

 {UX_HOST_CLASS_VIDEO_VS_FRAME_UNCOMPRESSED,

"UX_HOST_CLASS_VIDEO_VS_FRAME_UNCOMPRESSED" },

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_MJPEG, "UX_HOST_CLASS_VIDEO_VS_FORMAT_MJPEG"

},

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 814 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {UX_HOST_CLASS_VIDEO_VS_FRAME_MJPEG, "UX_HOST_CLASS_VIDEO_VS_FRAME_MJPEG" },

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_MPEG2TS, "UX_HOST_CLASS_VIDEO_VS_FORMAT_MPEG2TS"

},

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_DV, "UX_HOST_CLASS_VIDEO_VS_FORMAT_DV" },

 {UX_HOST_CLASS_VIDEO_VS_COLORFORMAT, "UX_HOST_CLASS_VIDEO_VS_COLORFORMAT" },

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_FRAME_BASED,

"UX_HOST_CLASS_VIDEO_VS_FORMAT_FRAME_BASED" },

 {UX_HOST_CLASS_VIDEO_VS_FRAME_FRAME_BASED,

"UX_HOST_CLASS_VIDEO_VS_FRAME_FRAME_BASED" },

 {UX_HOST_CLASS_VIDEO_VS_FORMAT_STREAM_BASED,

"UX_HOST_CLASS_VIDEO_VS_FORMAT_STREAM_BASED" }

};

/* HUVC Thread entry function */

void usbx_huvc_sample (void)

{

 uint32_t status = RESET_VALUE;

 ULONG actual_flags = RESET_VALUE;

 fsp_err_t err = FSP_SUCCESS;

 /* ux_system_initialization */

 status = ux_system_initialize(g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL,

RESET_VALUE);

 if (UX_SUCCESS != status)

 {

 while (1)

 {

 ;

 }

 }

 /* ux host stack initialization */

 status = ux_host_stack_initialize(ux_host_usr_event_notification);

 if (UX_SUCCESS != status)

 {

 while (1)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 815 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ;

 }

 }

 /* Open usb driver */

 err = R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS != err)

 {

 while (1)

 {

 ;

 }

 }

 tx_event_flags_create(&g_device_insert_eventflag, (CHAR *) "Device Insert Event

Flags");

 tx_semaphore_create(&g_data_received_semaphore, "payload semaphore", 0);

 while (1)

 {

 /* Suspend here until a USBX Host Class Instance gets ready. */

 tx_event_flags_get(&g_device_insert_eventflag,

 EVENTFLAG_USB_DEVICE_INSERTED,

 TX_OR,

 (ULONG *) &actual_flags,

 TX_WAIT_FOREVER);

 /* This delay is required for now to get valid ISO IN UX_ENDPOINT instance. */

 tx_thread_sleep(100);

 if (UX_NULL != video_host_class)

 {

 uvc_process_function(video_host_class);

 }

 }

}

/* USBX Host event notification callback function */

UINT ux_host_usr_event_notification (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 816 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

{

 if (UX_SUCCESS ==

 _ux_utility_memory_compare(_ux_system_host_class_video_name, host_class,

_ux_utility_string_length_get(_ux_system_host_class_video_name)))

 {

 if (UX_DEVICE_INSERTION == event) /* Check if there is a device insertion. */

 {

 video_host_class = instance;

 /* Set the event flag to let application know the device insertion. */

 tx_event_flags_set(&g_device_insert_eventflag,

EVENTFLAG_USB_DEVICE_INSERTED, TX_OR);

 }

 else if (UX_DEVICE_REMOVAL == event)

 {

 /* Clear the event flag in case the camera was removed before the application could

clear it. */

 tx_event_flags_set(&g_device_insert_eventflag, (ULONG)

~EVENTFLAG_USB_DEVICE_INSERTED, TX_AND);

 video_host_class = NULL;

 }

 }

 return UX_SUCCESS;

}

/* Video data received callback function. */

VOID uvc_transfer_request_done_callback (UX_TRANSFER * transfer_request)

{

 /* This is the callback function invoked by UVC class after a packet of

 * data is received. */

 /* The actual number of bytes being received into the data buffer is

 * recorded in tranfer_request -> ux_transfer_request_actual_length. */

 /* Since this callback function executes in the USB host controller

 * thread, a semaphore is released so the application can pick up the

 * video data in application thread. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 817 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 FSP_PARAMETER_NOT_USED(transfer_request);

 tx_semaphore_put(&g_data_received_semaphore);

}

/* Show the interval types */

VOID uvc_parameter_interval_list (UX_HOST_CLASS_VIDEO * video)

{

 UX_HOST_CLASS_VIDEO_FRAME_DESCRIPTOR frame_descriptor;

 ULONG min_frame_interval;

 ULONG max_frame_interval;

 ULONG frame_interval_step;

 int i;

 /* Make the descriptor machine independent. */

 _ux_utility_descriptor_parse(video->ux_host_class_video_current_frame_address,

 _ux_system_class_video_frame_descriptor_structure,

 UX_HOST_CLASS_VIDEO_FRAME_DESCRIPTOR_ENTRIES,

 (UCHAR *) &frame_descriptor);

 /* Check the frame interval type. */

 if (0 == frame_descriptor.bFrameIntervalType)

 {

 /* Frame interval type is continuous. */

 min_frame_interval =

_ux_utility_long_get(video->ux_host_class_video_current_frame_address + 26);

 max_frame_interval =

_ux_utility_long_get(video->ux_host_class_video_current_frame_address + 30);

 frame_interval_step =

_ux_utility_long_get(video->ux_host_class_video_current_frame_address + 34);

 FSP_PARAMETER_NOT_USED(min_frame_interval);

 FSP_PARAMETER_NOT_USED(max_frame_interval);

 FSP_PARAMETER_NOT_USED(frame_interval_step);

 }

}

/* Show the frame resolutions */

UINT uvc_parameter_frame_list (UX_HOST_CLASS_VIDEO * video)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 818 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ULONG frame_index;

 UX_HOST_CLASS_VIDEO_PARAMETER_FRAME_DATA frame_parameter;

 UINT status = UX_SUCCESS;

 /* frame resolutions */

 for (frame_index = 1; frame_index <= video->ux_host_class_video_number_frames;

frame_index++)

 {

 /* Get frame data for current frame index. */

 frame_parameter.ux_host_class_video_parameter_frame_requested = frame_index;

 status = _ux_host_class_video_frame_data_get(video, &frame_parameter);

 if (UX_SUCCESS != status)

 {

 return status;

 }

 /* Save the current frame index. */

 video->ux_host_class_video_current_frame = frame_index;

 uvc_parameter_interval_list(video);

 }

 return status;

}

/* Show the device parameters */

VOID uvc_parameter_list (UX_HOST_CLASS_VIDEO * video)

{

 ULONG format_index;

 UX_HOST_CLASS_VIDEO_PARAMETER_FORMAT_DATA format_parameter;

 UINT status = UX_SUCCESS;

 int i;

 /* format types */

 for (format_index = 1; format_index <= video->ux_host_class_video_number_formats;

format_index++)

 {

 /* Get format data for current format index. */

 format_parameter.ux_host_class_video_parameter_format_requested =

format_index;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 819 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 status = _ux_host_class_video_format_data_get(video, &format_parameter);

 if (UX_SUCCESS == status)

 {

 /* Save number of frames in the video instance. */

 video->ux_host_class_video_number_frames =

format_parameter.ux_host_class_video_parameter_number_frame_descriptors;

 uvc_parameter_frame_list(video);

 }

 }

}

VOID uvc_process_function (UX_HOST_CLASS_VIDEO * video)

{

 /* This demo uses two buffers. One buffer is used by video device while the

 * application consumes data in the other buffer. */

 UCHAR * buffer_ptr[MAX_NUM_BUFFERS];

 /* Index variable keeping track of the current buffer being used by the video

device. */

 ULONG buffer_index;

 /* Maximum buffer requirement reported by the video device. */

 ULONG max_buffer_size;

 UINT status;

 ULONG actual_flags;

 UINT frame_count;

 UX_HOST_CLASS_VIDEO_PARAMETER_CHANNEL channel;

 /* List parameters */

 uvc_parameter_list(video);

 /* Set video parameters. This setting value is a dummy.

 * Depending on the application, set the necessary parameters. */

 status = ux_host_class_video_frame_parameters_set(video,

UX_HOST_CLASS_VIDEO_VS_FORMAT_MJPEG, 176, 144, 333333);

 /* Set the user callback function of video class. */

 ux_host_class_video_transfer_callback_set(video,

uvc_transfer_request_done_callback);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 820 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* Find out the maximum memory buffer size for the video configuration

 * set above. */

 max_buffer_size = ux_host_class_video_max_payload_get(video);

 /* USBFS's Max Packet Size is 256 */

 if (0 == g_basic0_cfg.module_number) /* 0 : USBFS */

 {

 if (max_buffer_size > USBFS_ISO_PIPE_MAX_PAKCET_SIZE)

 {

 max_buffer_size = USBFS_ISO_PIPE_MAX_PAKCET_SIZE;

 }

 }

 /* Clear semaphore to zero */

 while (1)

 {

 if (TX_NO_INSTANCE == tx_semaphore_get(&g_data_received_semaphore, 0))

 {

 break;

 }

 }

 if (0 == g_basic0_cfg.module_number) /* 0 : USBFS */

 {

 video->ux_host_class_video_transfer_request_start_index = 0;

 video->ux_host_class_video_transfer_request_end_index = 0;

 channel.ux_host_class_video_parameter_format_requested =

video->ux_host_class_video_current_format;

 channel.ux_host_class_video_parameter_frame_requested =

video->ux_host_class_video_current_frame;

 channel.ux_host_class_video_parameter_frame_interval_requested =

 video->ux_host_class_video_current_frame_interval;

 channel.ux_host_class_video_parameter_channel_bandwidth_selection =

max_buffer_size;

 status = ux_host_class_video_ioctl(video,

UX_HOST_CLASS_VIDEO_IOCTL_CHANNEL_START, &channel);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 821 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 else

 {

 /* Start video transfer. */

 status = ux_host_class_video_start(video);

 if (UX_SUCCESS != status)

 {

 /* Setting these to zero is a hack since we're mixing old and new APIs (new API does

this and is required for reads). */

 video->ux_host_class_video_transfer_request_start_index = 0;

 video->ux_host_class_video_transfer_request_end_index = 0;

 channel.ux_host_class_video_parameter_format_requested =

 video->ux_host_class_video_current_format;

 channel.ux_host_class_video_parameter_frame_requested =

 video->ux_host_class_video_current_frame;

 channel.ux_host_class_video_parameter_frame_interval_requested =

 video->ux_host_class_video_current_frame_interval;

 channel.ux_host_class_video_parameter_channel_bandwidth_selection = 1024;

 status = ux_host_class_video_ioctl(video,

UX_HOST_CLASS_VIDEO_IOCTL_CHANNEL_START, &channel);

 }

 }

 /* Allocate space for video buffer. */

 for (buffer_index = 0; buffer_index < MAX_NUM_BUFFERS; buffer_index++)

 {

 buffer_ptr[buffer_index] = &g_video_buffer[max_buffer_size * buffer_index];

 }

 buffer_index = 0;

 frame_count = 0;

 while (1)

 {

 /* Add the buffer back for video transfer. */

 ux_host_class_video_transfer_buffer_add(video, buffer_ptr[buffer_index]);

 /* Increment the buffer_index, and wrap to zero if it exceeds the

 * maximum number of buffers. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 822 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 buffer_index = (buffer_index + 1);

 if (buffer_index >= MAX_NUM_BUFFERS)

 {

 buffer_index = 0;

 }

 /* Suspend here until a transfer callback is called. */

 status = tx_semaphore_get(&g_data_received_semaphore, 100);

 if (TX_SUCCESS != status)

 {

 /* Check camera status */

 status = tx_event_flags_get(&g_device_insert_eventflag,

 EVENTFLAG_USB_DEVICE_INSERTED,

 TX_OR,

 (ULONG *) &actual_flags,

 0);

 if (TX_SUCCESS == status)

 {

 /* Stop video transfer. */

 ux_host_class_video_stop(video);

 }

 break;

 }

 /* Received data. The callback function needs to obtain the actual

 * number of bytes received, so the application routine can read the

 * correct amount of data from the buffer. */

 /* Application can now consume video data while the video device stores

 * the data into the other buffer. */

 frame_count++;

 }

}

USBX DFU Example

DFU example is as follows.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 823 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

/**

 * Macro definitions

 **/

#define CDCACM_FLAG ((ULONG) 0x0001)

#define CDCACM_ACTIVATE_FLAG ((ULONG) 0x0004)

#define CDCACM_DEACTIVATE_FLAG ((ULONG) 0x0008)

#define DFU_FLAG ((ULONG) 0x0001)

#define DFU_ACTIVATE_FLAG ((ULONG) 0x0004)

#define DFU_DEACTIVATE_FLAG ((ULONG) 0x0008)

#define DFU_DETACH_REQUEST_FLAG ((ULONG) 0x0200)

#define RESET_VALUE (0U)

#define CONFIG_NUMB1 (1U)

#define CONFIG_NUMB0 (0U)

#define INTERFACE_NUMB0 (0U)

#define INTERFACE_NUMB1 (1U)

#define INTERFACE_NUMB2 (2U)

#define DFU_DEVICE_FRAME_LENGTH_FULL_SPEED (45U)

#define DFU_STRING_FRAMEWORK_LENGTH (94U)

#define DFU_FIRM_UPDATE_MAX_TRY (1U)

/**

 * Exported global variables and functions (to be accessed by other files)

 **/

extern uint8_t g_device_framework_full_speed[];

extern uint8_t g_device_framework_hi_speed[];

extern uint8_t g_language_id_framework[];

extern uint8_t g_string_framework[];

extern uint8_t g_dfu_device_framework_full_speed[];

extern uint8_t g_dfu_string_framework[];

extern uint32_t usb_peri_usbx_initialize(uint32_t dcd_io);

/**

 * Global functions and variables

 **/

UINT usbx_status_callback(ULONG status);

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 824 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Private global variables and functions

 **/

static void ux_cdc_device0_instance_activate(void * cdc_instance);

static void ux_cdc_device0_instance_deactivate(void * cdc_instance);

static void usbx_pcdc_operations(void);

/* Mempool size of 18k is required for USBX device class pre built libraries

 * and it is valid only if it with default USBX configurations. */

static uint32_t g_ux_pool_memory[MEMPOOL_SIZE / BYTE_SIZE];

static UX_SLAVE_CLASS_CDC_ACM_PARAMETER g_ux_device_class_cdc_acm0_parameter;

static UX_SLAVE_CLASS_CDC_ACM * g_cdc;

static ULONG g_actual_length;

static uint8_t g_buf[DATA_LEN];

static UX_SLAVE_CLASS_DFU_PARAMETER g_ux_device_class_dfu_parameter;

static UX_SLAVE_CLASS_DFU * g_dfu;

static UINT g_dfu_firmware_update_done_count = 0;

static void dfu_register_function(UINT if_num);

static void mode_change_dfu_to_cdc(void);

static void mode_change_cdc_to_dfu(void);

static UINT dfu_dammy_write(VOID * dfu, ULONG block_number, UCHAR * data_pointer,

ULONG length, ULONG * media_status);

static UINT dfu_dammy_get_status(VOID * dfu, ULONG * media_status);

static UINT dfu_dammy_notify(VOID * dfu, ULONG notification);

/* PCDC ACM & DFU Thread entry function */

void pcdc_dfu_thread_entry (void)

{

 /* To check ux api return status */

 UINT status = UX_SUCCESS;

 /* To check fsp api return status */

 fsp_err_t err = FSP_SUCCESS;

 ULONG actual_flags = 0x0000;

 UX_SLAVE_CLASS_DFU * dfu;

 UCHAR state;

 /* ux_system_initialization */

 status = ux_system_initialize(g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 825 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

RESET_VALUE);

 /* ux_device stack initialization */

 status = ux_device_stack_initialize(g_device_framework_hi_speed,

 DEVICE_FRAME_LENGTH_HIGH_SPEED,

 g_device_framework_full_speed,

 DEVICE_FRAME_LENGTH_FULL_SPEED,

 g_string_framework,

 STRING_FRAMEWORK_LENGTH,

 g_language_id_framework,

 LANGUAGE_ID_FRAME_WORK_LENGTH,

 &usbx_status_callback);

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_activate =

ux_cdc_device0_instance_activate;

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_deactivate =

 ux_cdc_device0_instance_deactivate;

 /* ux_device stack class registration */

 status = ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

 _ux_device_class_cdc_acm_entry,

 CONFIG_NUMB1,

 INTERFACE_NUMB0,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 /* ux_device stack class registration (DFU)*/

 dfu_register_function(INTERFACE_NUMB2); /* Input : IF number */

 /* Open usb driver */

 err = R_USB_Open(&g_basic1_ctrl, &g_basic1_cfg);

 /* wait for enumeration event */

 status = tx_event_flags_get(&g_cdcacm_event_flags0, CDCACM_ACTIVATE_FLAG, TX_OR,

&actual_flags, TX_WAIT_FOREVER);

 if ((actual_flags & CDCACM_ACTIVATE_FLAG) && (TX_SUCCESS == status))

 {

 /* do nothing */

 }

 else if (!(actual_flags & CDCACM_ACTIVATE_FLAG))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 826 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* do nothing */

 }

 /* usb pcdc operations will echo the user input on serial terminal*/

 while (true)

 {

 state = ux_device_class_dfu_state_get(dfu);

 if (UX_SYSTEM_DFU_STATE_APP_IDLE == state)

 {

 usbx_pcdc_operations();

 }

 tx_thread_sleep(1);

 tx_event_flags_get(&g_cdcacm_event_flags0, CDCACM_FLAG, TX_OR, &actual_flags,

TX_WAIT_FOREVER);

 if (actual_flags & CDCACM_FLAG)

 {

 if (actual_flags & DFU_DETACH_REQUEST_FLAG)

 {

 state = ux_device_class_dfu_state_get(dfu);

 if (UX_SYSTEM_DFU_STATE_APP_DETACH == state)

 {

 mode_change_cdc_to_dfu();

 }

 else if (UX_SYSTEM_DFU_STATE_DFU_MANIFEST_WAIT_RESET == state)

 {

 mode_change_dfu_to_cdc();

 }

 tx_event_flags_set(&g_cdcacm_event_flags0,

~(DFU_DETACH_REQUEST_FLAG), TX_AND);

 }

 }

 tx_thread_sleep(100);

 }

}

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 827 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Function Name : usbx_pcdc_operations

 * Description : In this function, it performs the usb write/read operation and echo

back the user input on serial terminal

 * Arguments : none

 * Return value : none

 **/

static void usbx_pcdc_operations (void)

{

 UX_SLAVE_CLASS_DFU * dfu;

 UCHAR state;

 UINT status = UX_SUCCESS;

 uint32_t data_size = RESET_VALUE;

 volatile UX_SLAVE_DEVICE * device;

 device = &_ux_system_slave->ux_system_slave_device;

 /* Wait until usb device is configured to slave */

 if (device->ux_slave_device_state != UX_DEVICE_CONFIGURED)

 {

 return;

 }

 /* Clear the buffer */

 memset(g_buf, RESET_VALUE, sizeof(g_buf));

 /* USB Reads the input data from the user from serial terminal */

 status = ux_device_class_cdc_acm_read(g_cdc, g_buf, DATA_LEN, &g_actual_length);

 /* update the data length from the read input */

 data_size = g_actual_length;

 state = ux_device_class_dfu_state_get(dfu);

 if (UX_SYSTEM_DFU_STATE_APP_DETACH == state)

 {

 return;

 }

 /* Write back the read data on to the serial terminal */

 status = ux_device_class_cdc_acm_write(g_cdc, g_buf, data_size,

&g_actual_length);

 if (g_actual_length == device->ux_slave_device_descriptor.bMaxPacketSize0)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 828 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 /* 0-Length-Packet */

 ux_device_class_cdc_acm_write(g_cdc, g_buf, 0, &g_actual_length);

 }

}

/**

 * End of function usbx_pcdc_operations

 **/

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_cdc = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_ACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_cdc_device0_instance_activate

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 *

 * Description : Clear instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_cdc = UX_NULL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 829 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_DEACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_cdc_device0_instance_deactivate

 **/

/**

 * Function Name : ux_dfu_device0_instance_activate

 * Description : Get instance

 * Arguments : void * dfu_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_dfu_device0_instance_activate (void * dfu_instance)

{

 /* Save the DFU instance. */

 g_dfu = (UX_SLAVE_CLASS_DFU *) dfu_instance;

 tx_event_flags_set(&g_dfu_event_flags0, DFU_ACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_dfu_device0_instance_activate

 **/

/**

 * Function Name : ux_dfu_device0_instance_deactivate

 * Description : Clear dfu_instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_dfu_device0_instance_deactivate (void * dfu_instance)

{

 FSP_PARAMETER_NOT_USED(dfu_instance);

 g_dfu = UX_NULL;

 tx_event_flags_set(&g_dfu_event_flags0, DFU_DEACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_dfu_device0_instance_deactivate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 830 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 **/

/**

 * Function Name : usbx_status_callback

 * Description : Callback on device state change

 * Arguments : ULONG status : New USB Device Status

 * Return value : 0

 **/

UINT usbx_status_callback (ULONG status)

{

 UX_SLAVE_CLASS_DFU * dfu;

 UCHAR state;

 switch (status)

 {

 case UX_DEVICE_ATTACHED:

 {

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_FLAG, TX_OR);

 break;

 }

 case UX_DEVICE_REMOVED:

 {

 tx_event_flags_set(&g_cdcacm_event_flags0, ~CDCACM_FLAG, TX_AND);

 break;

 }

 case UX_DEVICE_FORCE_DISCONNECT:

 {

 state = ux_device_class_dfu_state_get(dfu);

 if ((UX_SYSTEM_DFU_STATE_APP_DETACH == state) ||

 (UX_SYSTEM_DFU_STATE_DFU_MANIFEST_WAIT_RESET == state))

 {

 tx_event_flags_set(&g_cdcacm_event_flags0, DFU_DETACH_REQUEST_FLAG,

TX_OR);

 }

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 831 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 default:

 {

 /* do nothing */

 break;

 }

 }

 return 0;

}

/**

 * Function Name : dfu_register_function

 * Description : Register the DFU class device

 * Arguments : UINT if_num : Interface number

 * Return value : none

 **/

static void dfu_register_function (UINT if_num)

{

 UINT status = UX_SUCCESS;

g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_instance_activate =

ux_dfu_device0_instance_activate;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_instance_deactivate

=

 ux_dfu_device0_instance_deactivate;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_framework =

 g_dfu_device_framework_full_speed;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_framework_length =

 DFU_DEVICE_FRAME_LENGTH_FULL_SPEED;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_write =

dfu_dammy_write;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_get_status =

dfu_dammy_get_status;

 g_ux_device_class_dfu_parameter.ux_slave_class_dfu_parameter_notify =

dfu_dammy_notify;

 status =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 832 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ux_device_stack_class_register(_ux_system_slave_class_dfu_name,

 ux_device_class_dfu_entry,

 CONFIG_NUMB1,

 if_num,

 (void *) &g_ux_device_class_dfu_parameter);

 if (UX_SUCCESS != status)

 {

 while (1)

 {

 tx_thread_sleep(1);

 }

 }

}

/**

 * End of function dfu_register_function

 **/

/**

 * Function Name : dfu_dammy_write

 * Description : Write firmware data to media (e.g. non-volatile memory)

 * Arguments : VOID *dfu, ULONG block_number, UCHAR * data_pointer, ULONG length,

ULONG *media_status

 * Return value : UX_SUCCESS (or write err result)

 **/

static UINT dfu_dammy_write (VOID * dfu, ULONG block_number, UCHAR * data_pointer,

ULONG length, ULONG * media_status)

{

 return UX_SUCCESS;

}

/**

 * End of function dfu_dammy_write

 **/

/**

 * Function Name : dfu_dammy_get_status

 * Description : Outputs the status of writing firmware data to media (e.g. non-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 833 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

volatile memory)

 * Arguments : VOID *dfu, ULONG *media_status

 * Return value : UX_SUCCESS

 **/

static UINT dfu_dammy_get_status (VOID * dfu, ULONG * media_status)

{

 *media_status = UX_SLAVE_CLASS_DFU_MEDIA_STATUS_OK;

 return UX_SUCCESS;

}

/**

 * End of function dfu_dammy_get_status

 **/

/**

 * Function Name : dfu_dammy_notify

 * Description : Notifications about transferring firmware data to applications

 * Arguments : VOID *dfu, ULONG notification

 * Return value : UX_SUCCESS

 **/

static UINT dfu_dammy_notify (VOID * dfu, ULONG notification)

{

 return UX_SUCCESS;

}

/**

 * End of function dfu_dammy_notify

 **/

/**

 * Function Name : mode_change_cdc_to_dfu

 * Description : Switch from normal mode (CDC+DFU) to DFU mode.

 * Arguments : none

 * Return value : none

 **/

static void mode_change_cdc_to_dfu (void)

{

 INT err;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 834 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 UX_SLAVE_CLASS_DFU * dfu;

 UCHAR state;

 UINT status;

 if (DFU_FIRM_UPDATE_MAX_TRY <= g_dfu_firmware_update_done_count)

 {

 return;

 }

 err = R_USB_Close(&g_basic1_ctrl);

 if (FSP_SUCCESS != err)

 {

 while (1)

 {

 ;

 }

 }

 status = ux_device_stack_class_unregister(_ux_system_slave_class_cdc_acm_name,

_ux_device_class_cdc_acm_entry);

 status = ux_device_stack_class_unregister(_ux_system_slave_class_dfu_name,

_ux_device_class_dfu_entry);

 status = ux_device_stack_uninitialize();

 status = ux_device_stack_initialize(UX_NULL,

 UX_NULL,

 g_dfu_device_framework_full_speed,

 DFU_DEVICE_FRAME_LENGTH_FULL_SPEED,

 g_dfu_string_framework,

 DFU_STRING_FRAMEWORK_LENGTH,

 g_language_id_framework,

 LANGUAGE_ID_FRAME_WORK_LENGTH,

 &usbx_status_callback);

 dfu_register_function(INTERFACE_NUMB0); /* Input : IF number */

 err = R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS != err)

 {

 while (1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 835 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 ;

 }

 }

}

/**

 * End of function mode_change_cdc_to_dfu

 **/

/**

 * Function Name : mode_change_dfu_to_cdc

 * Description : Switches from DFU mode to normal mode (CDC+DFU).

 * Arguments : none

 * Return value : none

 **/

static void mode_change_dfu_to_cdc (void)

{

 UX_SLAVE_CLASS_DFU * dfu;

 UCHAR state;

 UINT status;

 INT err;

 if (DFU_FIRM_UPDATE_MAX_TRY <= g_dfu_firmware_update_done_count)

 {

 return;

 }

 g_dfu_firmware_update_done_count++;

 err = R_USB_Close(&g_basic0_ctrl);

 if (FSP_SUCCESS != err)

 {

 while (1)

 {

 ;

 }

 }

 status = ux_device_stack_class_unregister(_ux_system_slave_class_dfu_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 836 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

_ux_device_class_dfu_entry);

 status = ux_device_stack_uninitialize();

 status = ux_device_stack_initialize(g_device_framework_hi_speed,

 DEVICE_FRAME_LENGTH_HIGH_SPEED,

 g_device_framework_full_speed,

 DEVICE_FRAME_LENGTH_FULL_SPEED,

 g_string_framework,

 STRING_FRAMEWORK_LENGTH,

 g_language_id_framework,

 LANGUAGE_ID_FRAME_WORK_LENGTH,

 &usbx_status_callback);

 status = ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

 _ux_device_class_cdc_acm_entry,

 CONFIG_NUMB1,

 INTERFACE_NUMB0,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 dfu_register_function(INTERFACE_NUMB2); /* Input:IF number */

 err = R_USB_Open(&g_basic1_ctrl, &g_basic1_cfg);

 if (FSP_SUCCESS != err)

 {

 while (1)

 {

 ;

 }

 }

}

USBX Composite Example

USBX Composite (PCDC + PMSC) example is as follows.

/* Mempool size of 14k is required for USBX device class pre built libraries

 * and it is valid only if it with default USBX configurations. */

static uint32_t g_ux_pool_memory[MEMPOOL_SIZE / BYTE_SIZE];

static ULONG actual_flags = RESET_VALUE;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 837 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

/* Mempool size of 18k is required for USBX device class pre built libraries

 * and it is valid only if it with default USBX configurations. */

static uint32_t g_ux_pool_memory[MEMPOOL_SIZE / BYTE_SIZE];

static UX_SLAVE_CLASS_CDC_ACM_PARAMETER g_ux_device_class_cdc_acm0_parameter;

static UX_SLAVE_CLASS_CDC_ACM * g_cdc;

static ULONG g_actual_length;

static uint8_t g_buf[DATA_LEN];

static bool b_print_status = false;

/* Private function declarations. */

UINT usbx_status_callback(ULONG status);

static void ux_cdc_device0_instance_activate(void * cdc_instance);

static void ux_cdc_device0_instance_deactivate(void * cdc_instance);

static void usb_connection_status_check(void);

static void usbx_pcdc_operations(void);

/**

 * Function Name : usbx_composite_pcdc_mmsc_sample

 * Description : Application Thread entry function

 * Arguments : none

 * Return value : none

 **/

void usbx_composite_pcdc_mmsc_sample (void)

{

 /* ux_system_initialization */

 ux_system_initialize(g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, RESET_VALUE);

 /* ux_device stack initialization */

 ux_device_stack_initialize(g_device_framework_hi_speed,

 DEVICE_FRAME_LENGTH_HIGH_SPEED,

 g_device_framework_full_speed,

 DEVICE_FRAME_LENGTH_FULL_SPEED,

 g_string_framework,

 STRING_FRAMEWORK_LENGTH,

 g_language_id_framework,

 LANGUAGE_ID_FRAME_WORK_LENGTH,

 &usbx_status_callback);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 838 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* The activate command is used when the host has sent a SET_CONFIGURATION command

 * and this interface has to be mounted. Both Bulk endpoints have to be mounted

 * and the cdc_acm thread needs to be activated. */

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_activate =

ux_cdc_device0_instance_activate;

 /* The deactivate command is used when the device has been extracted.

 * The device endpoints have to be dismounted and the cdc_acm thread canceled. */

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_deactivate =

 ux_cdc_device0_instance_deactivate;

 /* ux_device stack class registration */

 ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

 _ux_device_class_cdc_acm_entry,

 CONFIG_NUMB,

 INTERFACE_NUMB0,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 /* Open usb driver */

 R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 /* Wait until device inserted.*/

 tx_event_flags_get(&g_msc_event_flags0, USB_MSC_PLUG_IN, TX_AND_CLEAR,

&actual_flags, TX_WAIT_FOREVER);

 if (USB_MSC_PLUG_IN == actual_flags)

 {

 ; /* USB MSC device is plugged in */

 }

 /* Reset the event flag */

 actual_flags = RESET_VALUE;

 while (true)

 {

 /* Check if USB is plugged out.*/

 tx_event_flags_get(&g_msc_event_flags0, USB_MSC_PLUG_OUT, TX_AND_CLEAR,

&actual_flags, TX_NO_WAIT);

 if (USB_MSC_PLUG_OUT == (actual_flags & USB_MSC_PLUG_OUT))

 {

 /* Reset the event flag */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 839 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 actual_flags = RESET_VALUE;

 }

 /* Check if USB is plugged in. */

 tx_event_flags_get(&g_msc_event_flags0, USB_MSC_PLUG_IN, TX_AND_CLEAR,

&actual_flags, TX_NO_WAIT);

 if (USB_MSC_PLUG_IN == (actual_flags & USB_MSC_PLUG_IN))

 {

 /* Reset the event flag */

 actual_flags = RESET_VALUE;

 }

 usbx_pcdc_operations();

 tx_thread_sleep(1);

 }

}

/**

 * End of function usbx_composite_pcdc_mmsc_sample

 **/

/**

 * Function Name : usbx_status_callback

 * Description : In this function, usb callback events will be captured into one

variable.

 * Arguments : ULONG status : USB status. Whenever any event occurred, status gets

update.

 * Return value : UX_SUCCESS

 **/

UINT usbx_status_callback (ULONG status)

{

 switch (status)

 {

 case UX_DEVICE_ATTACHED:

 {

 /* Set USB PLUG-IN event.*/

 tx_event_flags_set(&g_msc_event_flags0, USB_MSC_PLUG_IN, TX_OR);

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_FLAG, TX_OR);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 840 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 break;

 }

 case UX_DEVICE_REMOVED:

 {

 /* Set USB PLUG-OUT event.*/

 tx_event_flags_set(&g_msc_event_flags0, USB_MSC_PLUG_OUT, TX_OR);

 tx_event_flags_set(&g_cdcacm_event_flags0, ~CDCACM_FLAG, TX_AND);

 break;

 }

 default:

 {

 /* do nothing */

 break;

 }

 }

 return 0;

}

/**

 * End of function usbx_status_callback

 **/

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_cdc = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_ACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_cdc_device0_instance_activate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 841 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 * Description : Clear instance

 * Arguments : void * cdc_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_cdc = UX_NULL;

 tx_event_flags_set(&g_cdcacm_event_flags0, CDCACM_DEACTIVATE_FLAG, TX_OR);

}

/**

 * End of function ux_cdc_device0_instance_deactivate

 **/

/**

 * Function Name : usb_connection_status_check

 * Description : In this function, checks the USB device status

 * and notifies the user by printing the status message

 * Arguments : none

 * Return value : none

 **/

static void usb_connection_status_check (void)

{

 ULONG actual_flags = RESET_VALUE;

 /* wait for usb connection event */

 tx_event_flags_get(&g_cdcacm_event_flags0, CDCACM_FLAG, TX_OR, &actual_flags,

TX_WAIT_FOREVER);

 if (actual_flags & CDCACM_FLAG)

 {

 if (true != b_print_status)

 {

 b_print_status = true; // flag is updated

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 842 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 }

 else

 {

 /* do nothing */

 }

 }

 else

 {

 b_print_status = false; // clear the flag

 while (!(actual_flags & CDCACM_FLAG))

 {

 ; /* wait until the event update */

 }

 }

}

/**

 * End of function usb_connection_status_check

 **/

/**

 * Function Name : usbx_pcdc_operations

 * Description : In this function, it performs the usb write/read operation

 * and echo back the user input on serial terminal

 * Arguments : none

 * Return value : none

 **/

static void usbx_pcdc_operations (void)

{

 uint32_t data_size = RESET_VALUE;

 volatile UX_SLAVE_DEVICE * device;

 device = &_ux_system_slave->ux_system_slave_device;

 /* Verify the status of usb */

 usb_connection_status_check();

 tx_event_flags_get(&g_cdcacm_event_flags0, CDCACM_ACTIVATE_FLAG, TX_OR,

&actual_flags, TX_WAIT_FOREVER);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 843 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 /* USB writes the display message on serial terminal */

 ux_device_class_cdc_acm_write(g_cdc,

 (UCHAR *) "\r\nEnter any Key to echo back the

entered data \r\nUser Input :",

 WRITE_DATA_LEN,

 &g_actual_length);

 /* Clear the buffer */

 memset(g_buf, RESET_VALUE, sizeof(g_buf));

 /* USB Reads the input data from the user from serial terminal */

 ux_device_class_cdc_acm_read(g_cdc, g_buf, DATA_LEN, &g_actual_length);

 /* update the data length from the read input */

 data_size = g_actual_length;

 /* Write back the read data on to the serial terminal */

 ux_device_class_cdc_acm_write(g_cdc, g_buf, data_size, &g_actual_length);

}

/**

 * End of function usbx_pcdc_operations

 **/

USBX OTG Example

OTG example is as follows.

#define VALUE_108 (108)

#define VALUE_105 (105)

#define VALUE_98 (98)

#define VALUE_2 (2)

static volatile ULONG g_apl_status_peri = 0;

volatile uint8_t g_apl_state = UX_DEVICE_REMOVED;

static volatile ULONG g_apl_usb_mode = UX_OTG_MODE_IDLE;

static volatile ULONG g_change_device_mode = UX_OTG_MODE_IDLE;

static UX_HOST_CLASS_CDC_ACM * g_p_cdc_acm_host = UX_NULL;

static UX_SLAVE_CLASS_CDC_ACM * volatile g_p_cdc_peri = UX_NULL;

/**

 * Function Name : apl_status_change_cb

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 844 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Description : USB callback function for USB status change

 * Arguments : ULONG status : USB status

 * Return value : UX_SUCCESS

 **/

UINT apl_status_change_cb (ULONG status)

{

 // Debug OTG-A Detach

 if ((UX_DEVICE_REMOVED == g_apl_status_peri) && (UX_DEVICE_RESUMED == status))

 {

 return UX_SUCCESS;

 }

 g_apl_status_peri = status;

 return UX_SUCCESS;

}

/**

 * End of function apl_status_change_cb

 **/

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_p_cdc_peri = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

}

/**

 * End of function ux_cdc_device0_instance_activate

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 * Description : Clear instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 845 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Arguments : void * cdc_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_p_cdc_peri = UX_NULL;

}

/* USB OTG Application */

/**

 * Function Name : apl_device_swich_complete_cb

 * Description : Callback function called when switcning Host or Peri

 * Arguments : UX_OTG_MODE_SLAVE/UX_OTG_MODE_HOST/UX_OTG_MODE_IDLE

 * Return value : none

 **/

void apl_device_swich_complete_cb (ULONG mode)

{

 if (UX_OTG_MODE_SLAVE == mode)

 {

 _ux_system_otg->ux_system_otg_slave_role_swap_flag = 0;

 }

 g_change_device_mode = mode;

}

/**

 * Function Name : otg_host_apl

 * Description : OTG sample program

 * Arguments : none

 * Return value : none

 **/

void apl_otg_sample (void)

{

 uint8_t is_host_request_flag = USB_NO;

 uint8_t is_host_apl_complete = USB_NO;

 fsp_err_t err;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 846 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 // B device initialization

 ux_device_stack_initialize(UX_NULL,

 UX_NULL,

 g_device_framework_full_speed,

 VALUE_98,

 g_string_framework,

 VALUE_105,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_activate =

ux_cdc_device0_instance_activate;

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_deactivate =

 ux_cdc_device0_instance_deactivate;

 ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

 _ux_device_class_cdc_acm_entry,

 1,

 0x00,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 // A device initialization

 ux_host_stack_initialize(ux_host_usr_event_notification);

 R_USB_OtgCallbackSet(&g_basic0_ctrl, apl_device_swich_complete_cb);

#if defined(APL_USB_OTG_A_DEVICE)

 err = R_ICU_ExternalIrqOpen(&g_external_irq0_ctrl, &g_external_irq0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ICU_ExternalIrqEnable(&g_external_irq0_ctrl);

 assert(FSP_SUCCESS == err);

#endif

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS != err)

 {

 while (1)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 847 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 ;

 }

 }

#if defined(APL_USB_OTG_A_DEVICE)

 while (1)

 {

 if (UX_OTG_MODE_HOST == g_change_device_mode)

 {

 break;

 }

 }

#endif /* defined(APL_USB_OTG_A_DEVICE) */

 while (1)

 {

 if (g_change_device_mode != g_apl_usb_mode)

 {

 g_apl_usb_mode = g_change_device_mode;

 switch (g_apl_usb_mode)

 {

 case UX_OTG_MODE_HOST:

 {

 is_host_request_flag = USB_NO;

 if (USB_NO == is_host_apl_complete)

 {

 otg_host_apl();

 is_host_apl_complete = USB_YES;

 }

 break;

 }

 case UX_OTG_MODE_SLAVE:

 {

 is_host_apl_complete = USB_NO;

 if (USB_NO == is_host_request_flag)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 848 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 err = otg_peri_apl();

 if (0 == err)

 {

 if (UX_OTG_FEATURE_A_HNP_SUPPORT ==

 (_ux_system_otg->ux_system_otg_slave_set_feature_flag

& UX_OTG_FEATURE_A_HNP_SUPPORT))

 {

 _ux_system_otg->ux_system_otg_slave_role_swap_flag =

UX_OTG_HOST_REQUEST_FLAG;

 is_host_request_flag = USB_YES;

 }

 }

 }

 break;

 }

 default:

 {

 /* UX_MODE_IDLE */

 is_host_request_flag = USB_NO;

 is_host_apl_complete = USB_NO;

 break;

 }

 }

 }

 }

}

/**

 * End of function apl_otg_sample

 **/

/* USB Host Application */

/**

 * Function Name : ux_host_usr_event_notification

 * Description : Callback function called when completing USB event

 * Arguments : ULONG event : Completed USB Event

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 849 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * : UX_HOST_CLASS *host_class : Pointer to UX_HOST_CLASS structure

 * : VOID * instance : Pointer to HCDC instance

 * Return value : UX_SUCCESS

 **/

UINT ux_host_usr_event_notification (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

{

 (void) host_class;

 if (UX_DEVICE_INSERTION == event) /* Check if there is a device insertion. */

 {

 g_p_cdc_host = (UX_HOST_CLASS_CDC_ACM *) instance;

 if (UX_HOST_CLASS_CDC_DATA_CLASS !=

 g_p_cdc_host->ux_host_class_cdc_acm_interface->ux_interface_descriptor.bI

nterfaceClass)

 {

 /* It seems the DATA class is on the second interface. Or we hope ! */

 g_p_cdc_host = g_p_cdc_host->ux_host_class_cdc_acm_next_instance;

 /* Check again this interface, if this is not the data interface, we give up. */

 if (UX_HOST_CLASS_CDC_DATA_CLASS !=

 g_p_cdc_host->ux_host_class_cdc_acm_interface->ux_interface_descriptor.

bInterfaceClass)

 {

 /* We did not find a proper data interface. */

 g_p_cdc_host = UX_NULL;

 }

 }

 if (UX_NULL != g_p_cdc_host)

 {

 g_host_apl_event = UX_DEVICE_INSERTION;

 }

 tx_thread_wait_abort(&new_thread0);

 }

 else if ((UX_DEVICE_REMOVAL == event) || (UX_DEVICE_DISCONNECTION == event)) /*

Check if there is a device removal. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 850 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 g_host_apl_event = UX_DEVICE_REMOVAL;

 g_p_cdc_host = UX_NULL;

 }

 return UX_SUCCESS;

}

/**

 * End of function ux_host_usr_event_notification

 **/

/**

 * Function Name : otg_host_apl

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void otg_host_apl (void)

{

 ULONG status;

 m

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 g_write_buf_host[counter] = (uint8_t) counter;

 }

 g_host_apl_event = 0;

 while (1)

 {

 if (UX_DEVICE_INSERTION == g_host_apl_event)

 {

 g_host_apl_event = 0;

 for (countor = 0; countor < 5000; countor++)

 {

 if (0 == g_is_communicate)

 {

 tx_thread_sleep(100);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 851 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 g_is_communicate = 1;

 }

 g_write_actual_length = 0;

 status = ux_host_class_cdc_acm_write(g_p_cdc_host,

 g_write_buf_host,

 DATA_LEN,

&g_write_actual_length_host);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_write_actual_length_host))

 {

 g_read_actual_length_host = 0;

 buffer_clear(g_host_read_buf);

 status = ux_host_class_cdc_acm_read(g_p_cdc_host,

 g_read_buf_host,

 DATA_LEN,

 &g_read_actual_length_host);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_read_actual_length_host))

 {

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 if ((uint8_t) counter != g_read_buf_host[counter])

 {

 while (1)

 {

 ;

 }

 }

 }

 }

 else

 {

 break;

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 852 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 else

 {

 break;

 }

 }

 }

 else if (UX_DEVICE_REMOVAL == g_host_apl_event)

 {

 g_host_apl_event = 0;

 break;

 }

 }

}

/**

 * End of function otg_host_apl

 **/

/* USB Peripheral Application */

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_p_cdc_peri = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

}

/**

 * End of function ux_cdc_device0_instance_activate

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 * Description : Clear instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 853 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 * Arguments : void * cdc_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_p_cdc_peri = UX_NULL;

}

/**

 * End of function ux_cdc_device0_instance_deactivate

 **/

/**

 * Function Name : otg_peri_apl

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

uint8_t otg_peri_apl (void)

{

 UINT ret;

 ULONG size;

 uint16_t counter = 0;

 g_apl_status_peri = 0;

 for (counter = 0; counter < 5000;)

 {

 if (UX_DEVICE_CONFIGURED == g_apl_status_peri)

 {

 while (g_p_cdc_peri == UX_NULL)

 {

 ;

 }

 ret = _ux_device_class_cdc_acm_read(g_p_cdc_peri, g_buf_peri, DATA_LEN,

&g_actual_length_peri);

 if (UX_SUCCESS == ret)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 854 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > Azure RTOS USBX Port (rm_usbx_port)

 {

 size = g_actual_length_peri;

 ux_device_class_cdc_acm_write(g_p_cdc_peri, g_buf_peri, size,

&g_actual_length_peri);

 counter++;

 }

 }

 else if (UX_DEVICE_REMOVED == g_apl_status_peri)

 {

 if (0 != counter)

 {

 break;

 }

 }

 }

 if (5000 == counter)

 {

 return APL_SUCCESS;

 }

 return APL_ERROR;

}

/**

 * End of function otg_peri_apl

 **/

5.2.6.2 CAN (r_can)
Modules » Connectivity

Functions

fsp_err_t R_CAN_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const
p_cfg)

fsp_err_t R_CAN_Close (can_ctrl_t *const p_api_ctrl)

fsp_err_t R_CAN_Write (can_ctrl_t *const p_api_ctrl, uint32_t mailbox,
can_frame_t *const p_frame)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 855 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

fsp_err_t R_CAN_Read (can_ctrl_t *const p_api_ctrl, uint32_t mailbox,
can_frame_t *const p_frame)

fsp_err_t R_CAN_ModeTransition (can_ctrl_t *const p_api_ctrl,
can_operation_mode_t operation_mode, can_test_mode_t test_mode)

fsp_err_t R_CAN_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

fsp_err_t R_CAN_CallbackSet (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the CAN peripheral on RA MCUs. This module implements the CAN Interface.

Overview
The Controller Area network (CAN) HAL module provides a high-level API for CAN applications and
supports the CAN peripherals available on RA microcontroller hardware. A user-callback function
must be defined that the driver will invoke when transmit, receive or error interrupts are received.
The callback is passed a parameter which indicates the channel, mailbox and event as well as the
received data (if available).

Features

Supports both standard (11-bit) and extended (29-bit) messaging formats
Supports speeds upto 1 Mbps
Support for bit timing configuration as defined in the CAN specification
Supports up to 32 transmit or receive mailboxes with standard or extended ID frames
Optional support for a 4-stage transmit and receive FIFO
Receive mailboxes can be configured to capture either data or remote CAN Frames
Receive mailboxes can be configured to receive a range of IDs using mailbox masks
Mailboxes can be configured with Overwrite or Overrun mode
Supports a user-callback function when transmit, receive, or error interrupts are received

Configuration
Build Time Configurations for r_can

The following build time configurations are defined in fsp_cfg/r_can_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

FIFO Support Disabled
Enabled

Disabled When FIFOs are
enabled, a transmit
FIFO replaces

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 856 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

mailboxes 24-27 and a
receive FIFO replaces
mailboxes 28-31.

Configurations for Connectivity > CAN (r_can)

This module can be added to the Stacks tab via New Stack > Connectivity > CAN (r_can). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_can0 Module name.

Channel Channel should be 0 or
1

0 Specify the CAN
channel to use.

Clock Source MCU Specific Options Select the CAN clock
source.

Overwrite/Overrrun
Mode

Overwrite Mode
Overrrun Mode

Overwrite Mode Select whether receive
mailbox will be
overwritten or overrun
if data is not read in
time.

Global ID Mode Standard ID
Mode
Extended ID
Mode
Mixed ID Mode

Standard ID Mode Select whether the
driver will use CAN
Standard IDs, Extended
IDs or a mix of both.

Number of Mailboxes 4 Mailboxes
8 Mailboxes
16 Mailboxes
24 Mailboxes
32 Mailboxes

32 Mailboxes Select 4, 8, 16, 24 or
32 mailboxes. In FIFO
mailbox mode up to 24
mailboxes are
available.

Baud Rate Settings

Baud Rate Settings > Auto-generated Settings

Sample-Point (%) Must be a valid integer
between 0 and 100.
Ignore when Override
Baud Settings is
Enabled.

75 Sample-Point = (TSEG1
+ 1) / (TSEG1 + TSEG2
+ 1).

CAN Baud Rate (Hz) Must be a valid integer
configurable upto
maximum 1MHz.
Ignore when Override
Baud Settings is
Enabled.

500000 Specify baud rate in
Hz.

If the requested baud
rate cannot be
achieved, the settings
with the largest
possible baud rate that

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 857 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

is less than or equal to
the requested baud
rate is used. If multiple
combinations would
result in the best baud
rate, the combination
with the least absolute
error for the ratio is
chosen. The theoretical
calculated baud rate
and ratio are printed in
a comment in the
generated
can_bit_timing_cfg_t
structure.

Baud Rate Settings > Override Auto-generated Settings

Override Baud Settings Enabled
Disabled

Disabled Override calculated
baudrate parameters
and instead use the
ones specified below.
This option ignores the
parameters specified
under Sample-Point (%)
and CAN Baud Rate
(Hz)

Baud Rate Prescaler Value must be a non-
negative integer
between 1 and 1024.

1 Specify division value
of baud rate prescaler
(baud rate prescalar +
1).

Time Segment 1 Refer to the RA
Configuration tool for
available options.

4 Time Quanta Select the time
segment 1 value.
(4-16). Check module
usage notes for how to
calculate this value.

Time Segment 2 2 Time Quanta
3 Time Quanta
4 Time Quanta
5 Time Quanta
6 Time Quanta
7 Time Quanta
8 Time Quanta

2 Time Quanta Select the time
segment 2 value (2-8).
Check module usage
notes for how to
calculate this value.

Synchronization Jump
Width

1 Time Quanta
2 Time Quanta
3 Time Quanta
4 Time Quanta

1 Time Quanta Select the
Synchronization Jump
Width value (1-4).
Check module usage
notes for how to
calculate this value.

Interrupts

Callback Name must be a valid
C symbol

can_callback A user callback
function. If this callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 858 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

function is provided, it
is called from the
interrupt service
routine (ISR) each time
any interrupt occurs.

Interrupt Priority Level MCU Specific Options Transmit/Receive/Error
interrupt priority.

Transmit FIFO Interrupt
Mode

Every Message
Empty

Every Message Select whether the
receive FIFO should
throw an interrupt on
every received
message or when it
becomes empty.

Input

Input > Receive FIFO

Input > Receive FIFO > Receive ID 1

ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the first ID for
the receive FIFO,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs.

ID Mode Standard ID
Extended ID

Standard ID Select whether the
receive FIFO is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Frame Type Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
receive FIFO is used to
capture data frames or
remote frames.

Mask Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for the
receive FIFO. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Receive FIFO > Receive ID 2

ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the second ID
for the receive FIFO,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 859 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

extended IDs.

ID Mode Standard ID
Extended ID

Standard ID Select whether the
receive FIFO is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Frame Type Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
receive FIFO is used to
capture data frames or
remote frames.

Mask Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for the
receive FIFO. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 0-3 Group

Input > Mailbox 0-3 Group > Mailbox ID

Mailbox 0 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the receive ID
for mailbox 0, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 1 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

1 Select the receive ID
for mailbox 1, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 2 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

2 Select the receive ID
for mailbox 2, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 3 ID Value must be decimal 3 Select the receive ID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 860 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

or HEX integer of
0x1FFFFFFF or less.

for mailbox 3, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 0-3 Group > Mailbox ID Mode

Mailbox 0 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 1 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 2 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 3 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 0-3 Group > Mailbox Type

Mailbox 0 Type Receive
Mailbox
Transmit
Mailbox

Transmit Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 1 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 861 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mailbox 2 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 3 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 0-3 Group > Mailbox Frame Type

Mailbox 0 Frame Type Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 1 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 2 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 3 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 0-3 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 0-3. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 4-7 Group

Input > Mailbox 4-7 Group > Mailbox ID

Mailbox 4 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

4 Select the receive ID
for mailbox 4, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 862 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

as transmit type.

Mailbox 5 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

5 Select the receive ID
for mailbox 5, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 6 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

6 Select the receive ID
for mailbox 6, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 7 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

7 Select the receive ID
for mailbox 7, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 4-7 Group > Mailbox ID Mode

Mailbox 4 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 5 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 6 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 863 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mode is set to 'Mixed
ID Mode'.

Mailbox 7 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 4-7 Group > Mailbox Type

Mailbox 4 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 5 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 6 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 7 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 4-7 Group > Mailbox Frame Type

Mailbox 4 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 5 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 6 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 7 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 864 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 4-7 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF >Select the Mask for
mailboxes 4-7. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 8-11 Group

Input > Mailbox 8-11 Group > Mailbox ID

Mailbox 8 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

8 Select the receive ID
for mailbox 8, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 9 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

9 Select the receive ID
for mailbox 9, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Mailbox 10 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

10 Select the receive ID
for mailbox 10,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 11 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

11 Select the receive ID
for mailbox 11,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 865 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Input > Mailbox 8-11 Group > Mailbox ID Mode

Mailbox 8 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 9 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 10 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 11 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 8-11 Group > Mailbox Type

Mailbox 8 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 9 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 10 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 11 Type Receive
Mailbox
Transmit

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 866 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mailbox

Input > Mailbox 8-11 Group > Mailbox Frame Type

Mailbox 8 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 9 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 10 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 11 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 8-11 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 8-11. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 12-15 Group

Input > Mailbox 12-15 Group > Mailbox ID

Mailbox 12 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

12 Select the receive ID
for mailbox 12,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 13 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

13 Select the receive ID
for mailbox 13,
between 0 and 0x7ff
when using standard
IDs, between 0 and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 867 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 14 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

14 Select the receive ID
for mailbox 14,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 15 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

15 Select the receive ID
for mailbox 15,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 12-15 Group > Mailbox ID Mode

Mailbox 12 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 13 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 14 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 15 ID Mode Standard ID Standard ID Select whether the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 868 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Extended ID mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 12-15 Group > Mailbox Type

Mailbox 12 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 13 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 14 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 15 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 12-15 Group > Mailbox Frame Type

Mailbox 12 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 13 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 14 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 15 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 869 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mailbox 12-15 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 12-15. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 16-19 Group

Input > Mailbox 16-19 Group > Mailbox ID

Mailbox 16 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

16 Select the receive ID
for mailbox 16,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 17 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

17 Select the receive ID
for mailbox 17,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 18 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

18 Select the receive ID
for mailbox 18,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 19 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

19 Select the receive ID
for mailbox 19,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 16-19 Group > Mailbox ID Mode

Mailbox 16 ID Mode Standard ID Standard ID Select whether the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 870 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Extended ID mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 17 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 18 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 19 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 16-19 Group > Mailbox Type

Mailbox 16 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 17 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 18 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 19 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 16-19 Group > Mailbox Frame Type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 871 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mailbox 16 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 17 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 18 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 19 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 16-19 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 16-19. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 20-23 Group

Input > Mailbox 20-23 Group > Mailbox ID

Mailbox 20 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

20 Select the receive ID
for mailbox 20,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 21 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

21 Select the receive ID
for mailbox 21,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 872 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

mailbox is set as
transmit type.

Mailbox 22 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

22 Select the receive ID
for mailbox 22,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 23 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

23 Select the receive ID
for mailbox 23,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 20-23 Group > Mailbox ID Mode

Mailbox 20 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 21 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 22 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 23 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 873 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 20-23 Group > Mailbox Type

Mailbox 20 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 21 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 22 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 23 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 20-23 Group > Mailbox Frame Type

Mailbox 20 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 21 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 22 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 23 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 20-23 Group
Mask

Value must be decimal
or HEX integer of

0x1FFFFFFF Select the Mask for
mailboxes 20-23. In

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 874 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

0x1FFFFFFF or less. Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 24-27 Group

Input > Mailbox 24-27 Group > Mailbox ID

Mailbox 24 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

24 Select the receive ID
for mailbox 24,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 25 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

25 Select the receive ID
for mailbox 25,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 26 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

26 Select the receive ID
for mailbox 26,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 27 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

27 Select the receive ID
for mailbox 27,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 24-27 Group > Mailbox ID Mode

Mailbox 24 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 875 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 25 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 26 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 27 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 24-27 Group > Mailbox Type

Mailbox 24 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 25 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 26 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 27 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 24-27 Group > Mailbox Frame Type

Mailbox 24 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 876 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 25 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 26 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 27 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 24-27 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 24-27. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 28-31 Group

Input > Mailbox 28-31 Group > Mailbox ID

Mailbox 28 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

28 Select the receive ID
for mailbox 28,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 29 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

29 Select the receive ID
for mailbox 29,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 877 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mailbox 30 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

30 Select the receive ID
for mailbox 30,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Mailbox 31 ID Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

31 Select the receive ID
for mailbox 31,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 28-31 Group > Mailbox ID Mode

Mailbox 28 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 29 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 30 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Mailbox 31 ID Mode Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 878 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 28-31 Group > Mailbox Type

Mailbox 28 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 29 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 30 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Mailbox 31 Type Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 28-31 Group > Mailbox Frame Type

Mailbox 28 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 29 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 30 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 31 Frame Type Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Mailbox 28-31 Group
Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 28-31. In
Mixed ID Mode the
Standard ID mask is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 879 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

the upper 11 bits of the
full 29-bit mask value.

Clock Configuration

The CAN peripheral uses the CANMCLK (main-clock oscillator) or PCLKB as its clock source (fCAN,
CAN System Clock.) The default CAN configuration will provide a CAN bit rate of 500 Kbit using
CANMCLK as the clock source. To set the PCLKB frequency, use the Clocks tab of the RA
Configuration editor. To change the clock frequency at run-time, use the CGC Interface. Refer to the
CGC module guide for more information on configuring clocks.

Warning
RA2 devices only support CANMCLK (MOSC/XTAL) for the CAN clock source. If MOSC is not
used as the main clock source it will not be started automatically. In this case, be sure to
start it before opening the CAN driver.

Clock Limitations

The following clock limitations apply when using the CAN peripheral:

When using the main oscillator (CANMCLK) as the clock source:
fPCLKB >= fCANCLK (fCANCLK = XTAL / Baud Rate Prescaler)
The user application must start the main-clock oscillator (XTAL) at run-time using
the CGC Interface if it has not already started (for example, if it is not used as the
MCU clock source.)

When using PCLKB as the clock source:
For RA6 and RA4 MCUs, the source of the peripheral module clocks must be PLL for
the CAN HAL module.

For RA4M1 and RA4W1 MCUs, the clock frequency ratio of PCLKA and PCLKB must be 2:1
when using the CAN HAL module. Operation is not guaranteed for other settings.
For RA2 MCUs only CANMCLK (XTAL) may be used as a clock source. The clock frequency
ratio of ICLK and PCLKB must be 2:1 when using the CAN HAL module. Operation is not
guaranteed for other settings.
Note

When using CANMCLK (XTAL) as the CAN clock source while running at a reduced main clock speed
(under 2x XTAL) be sure to confirm that the XTAL frequency divided by the baud rate prescaler is equal
to or less than PCLKB.

Pin Configuration

The CAN peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. A CAN channel would consist of two
pins - CRX and CTX for data transmission/reception.

Usage Notes
Bit Rate Calculation

For convenience, the baudrate of the CAN peripheral is automatically set through the RA
Configuration editor using a best effort approach. If the auto-generated baud settings cause
deviation that is not tolerable by the application, the user can override the auto-generated settings
and put in manually calculated values through RA Configuration editor. For more details on how the
baudrate is set refer to section 37.4 "Data Transfer Rate Configuration" of the RA6M3 User's Manual
(R01UH0886EJ0100).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 880 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

FIFO Support

When FIFO Support is enabled, mailboxes 24-27 form a 4-stage transmit FIFO and mailboxes 28-31
form a 4-stage receive FIFO. The receive FIFO supports two independent ID/mask settings for
acceptance filtering.

Note
Only the base mailbox of each FIFO may be accessed. When writing to the TX FIFO it is recommended to use
CAN_MAILBOX_ID_TX_FIFO.

Limitations

Developers should be aware of the following limitations when using CAN:

The can_frame_t::id_mode field is only used when Global ID Mode is set to Mixed ID. It is
ignored in all other modes.

Examples
Basic Example

This is a basic example of minimal use of the CAN in an application.

can_frame_t g_can_tx_frame;

can_frame_t g_can_rx_frame;

volatile bool g_rx_flag = false;

volatile bool g_tx_flag = false;

volatile bool g_err_flag = false;

volatile uint32_t g_rx_id;

void can_callback (can_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CAN_EVENT_RX_COMPLETE: /* Receive complete event. */

 {

 g_rx_flag = true;

 g_rx_id = p_args->frame.id;

 /* Read received frame */

 g_can_rx_frame = p_args->frame;

 break;

 }

 case CAN_EVENT_TX_COMPLETE: /* Transmit complete event. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 881 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

 {

 g_tx_flag = true;

 break;

 }

 case CAN_EVENT_ERR_BUS_OFF: /* Bus error event. (bus off) */

 case CAN_EVENT_ERR_PASSIVE: /* Bus error event. (error passive) */

 case CAN_EVENT_ERR_WARNING: /* Bus error event. (error warning) */

 case CAN_EVENT_BUS_RECOVERY: /* Bus error event. (bus recovery) */

 case CAN_EVENT_MAILBOX_MESSAGE_LOST: /* Overwrite/overrun error */

 {

 /* Set error flag */

 g_err_flag = true;

 break;

 }

 default:

 {

 break;

 }

 }

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = CAN_BUSY_DELAY;

 /* Initialize the CAN module */

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 g_can_tx_frame.id = CAN_DESTINATION_DEVICE_MAILBOX_NUMBER; /* CAN

Destination Device ID */

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_FRAME_TRANSMIT_DATA_BYTES;

 /* Write some data to the transmit frame */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 882 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

 for (i = 0; i < sizeof(g_can_tx_frame.data); i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 g_tx_flag = false;

 g_err_flag = false;

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_tx_flag) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if (true == g_err_flag)

 {

 __BKPT(0);

 }

}

External Loop-back Test

This example requires the CTX and CRX pins to be connected. If a CAN tranciever is onboard a 120
Ohm resistor should be connected across CANH and CANL instead. The mailbox numbers are
arbitrarily chosen.

void can_external_loopback_example (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = CAN_BUSY_DELAY;

 can_operation_mode_t operation_mode = CAN_OPERATION_MODE_NORMAL;

 can_test_mode_t test_mode = CAN_TEST_MODE_LOOPBACK_EXTERNAL;

 int diff = 0;

 uint32_t i = 0;

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 883 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_CAN_ModeTransition(&g_can0_ctrl, operation_mode, test_mode);

 assert(FSP_SUCCESS == err);

 /* Clear the data part of receive frame */

 memset(g_can_rx_frame.data, 0, CAN_FRAME_TRANSMIT_DATA_BYTES);

 /* CAN Destination Device ID, in this case it is the same device with another

mailbox */

 g_can_tx_frame.id = CAN_MAILBOX_NUMBER_4;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_FRAME_TRANSMIT_DATA_BYTES;

 /* Write some data to the transmit frame */

 for (i = 0; i < sizeof(g_can_tx_frame.data); i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 g_rx_flag = false;

 g_err_flag = false;

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_rx_flag) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if (true == g_err_flag)

 {

 __BKPT(0);

 }

 /* Verify received data */

 diff = memcmp(&g_can_rx_frame.data[0], &g_can_tx_frame.data[0],

CAN_FRAME_TRANSMIT_DATA_BYTES);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 884 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

 if (0 != diff)

 {

 __BKPT(0);

 }

}

Data Structures

struct can_mailbox_t

struct can_fifo_interrupt_cfg_t

struct can_rx_fifo_cfg_t

struct can_extended_cfg_t

Enumerations

enum can_status_t

enum can_error_t

enum can_mailbox_number_t

enum can_mailbox_send_receive_t

enum can_global_id_mode_t

enum can_message_mode_t

enum can_clock_source_t

enum can_fifo_interrupt_mode_t

Data Structure Documentation

◆ can_mailbox_t

struct can_mailbox_t

CAN Mailbox

Data Fields

uint32_t mailbox_id Mailbox ID.

can_id_mode_t id_mode Standard or Extended ID. Only
used in Mixed ID mode.

can_frame_type_t frame_type Frame type for receive mailbox.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 885 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

can_mailbox_send_receive_t mailbox_type Receive or Transmit mailbox
type.

◆ can_fifo_interrupt_cfg_t

struct can_fifo_interrupt_cfg_t

CAN FIFO interrupt configuration

Data Fields

can_fifo_interrupt_mode_t fifo_int_mode FIFO interrupts mode (RX and
TX combined).

IRQn_Type tx_fifo_irq TX FIFO IRQ.

IRQn_Type rx_fifo_irq RX FIFO IRQ.

◆ can_rx_fifo_cfg_t

struct can_rx_fifo_cfg_t

CAN RX FIFO configuration

Data Fields

uint32_t rx_fifo_mask1 RX FIFO acceptance filter mask
1.

uint32_t rx_fifo_mask2 RX FIFO acceptance filter mask
1.

can_mailbox_t rx_fifo_id1 RX FIFO acceptance filter ID 1.

can_mailbox_t rx_fifo_id2 RX FIFO acceptance filter ID 2.

◆ can_extended_cfg_t

struct can_extended_cfg_t

CAN extended configuration

Data Fields

can_clock_source_t clock_source Source of the CAN clock.

uint32_t * p_mailbox_mask Mailbox mask, one for every 4
mailboxes.

can_mailbox_t * p_mailbox Pointer to mailboxes.

can_global_id_mode_t global_id_mode Standard or Extended ID mode.

uint32_t mailbox_count Number of mailboxes.

can_message_mode_t message_mode Overwrite message or overrun.

can_fifo_interrupt_cfg_t const * p_fifo_int_cfg Pointer to FIFO interrupt
configuration.

can_rx_fifo_cfg_t * p_rx_fifo_cfg Pointer to RX FIFO
configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 886 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

Enumeration Type Documentation

◆ can_status_t

enum can_status_t

CAN Status

Enumerator

CAN_STATUS_NEW_DATA New Data status flag.

CAN_STATUS_SENT_DATA Sent Data status flag.

CAN_STATUS_RECEIVE_FIFO Receive FIFO status flag.

CAN_STATUS_TRANSMIT_FIFO Transmit FIFO status flag.

CAN_STATUS_NORMAL_MBOX_MESSAGE_LOST Normal mailbox message lost status flag.

CAN_STATUS_FIFO_MBOX_MESSAGE_LOST FIFO mailbox message lost status flag.

CAN_STATUS_TRANSMISSION_ABORT Transmission abort status flag.

CAN_STATUS_ERROR Error status flag.

CAN_STATUS_RESET_MODE Reset mode status flag.

CAN_STATUS_HALT_MODE Halt mode status flag.

CAN_STATUS_SLEEP_MODE Sleep mode status flag.

CAN_STATUS_ERROR_PASSIVE Error-passive status flag.

CAN_STATUS_BUS_OFF Bus-off status flag.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 887 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ can_error_t

enum can_error_t

CAN Error Code

Enumerator

CAN_ERROR_STUFF Stuff Error.

CAN_ERROR_FORM Form Error.

CAN_ERROR_ACK ACK Error.

CAN_ERROR_CRC CRC Error.

CAN_ERROR_BIT_RECESSIVE Bit Error (recessive) Error.

CAN_ERROR_BIT_DOMINANT Bit Error (dominant) Error.

CAN_ERROR_ACK_DELIMITER ACK Delimiter Error.

◆ can_mailbox_number_t

enum can_mailbox_number_t

CAN Mailbox IDs (MB + FIFO)

◆ can_mailbox_send_receive_t

enum can_mailbox_send_receive_t

CAN Mailbox type

Enumerator

CAN_MAILBOX_RECEIVE Mailbox is for receiving.

CAN_MAILBOX_TRANSMIT Mailbox is for sending.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 888 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ can_global_id_mode_t

enum can_global_id_mode_t

Global CAN ID mode settings

Enumerator

CAN_GLOBAL_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_GLOBAL_ID_MODE_EXTENDED Extended IDs of 29 bits used.

CAN_GLOBAL_ID_MODE_MIXED Both Standard and Extended IDs used.

◆ can_message_mode_t

enum can_message_mode_t

CAN Message Modes

Enumerator

CAN_MESSAGE_MODE_OVERWRITE Receive data will be overwritten if not read
before the next frame.

CAN_MESSAGE_MODE_OVERRUN Receive data will be retained until it is read.

◆ can_clock_source_t

enum can_clock_source_t

CAN Source Clock

Enumerator

CAN_CLOCK_SOURCE_PCLKB PCLKB is the source of the CAN Clock.

CAN_CLOCK_SOURCE_CANMCLK CANMCLK is the source of the CAN Clock.

◆ can_fifo_interrupt_mode_t

enum can_fifo_interrupt_mode_t

CAN FIFO Interrupt Modes

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 889 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ R_CAN_Open()

fsp_err_t R_CAN_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const p_cfg)

Open and configure the CAN channel for operation.

Example:

 /* Initialize the CAN module */

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

Return values
FSP_SUCCESS Channel opened successfully

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_CAN_INIT_FAILED Channel failed to initialize.

FSP_ERR_ASSERTION Null pointer presented.

◆ R_CAN_Close()

fsp_err_t R_CAN_Close (can_ctrl_t *const p_api_ctrl)

Close the CAN channel.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 890 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ R_CAN_Write()

fsp_err_t R_CAN_Write (can_ctrl_t *const p_api_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

Write data to the CAN channel. Write up to eight bytes to the channel mailbox.

Example:

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at
this time.

FSP_ERR_CAN_TRANSMIT_FIFO_FULL Transmit FIFO is full.

FSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup for receive and cannot
send.

FSP_ERR_INVALID_ARGUMENT Data length or frame type invalid.

FSP_ERR_ASSERTION Null pointer presented

◆ R_CAN_Read()

fsp_err_t R_CAN_Read (can_ctrl_t *const p_api_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

Read data from a mailbox or FIFO.

Note
This function is not supported.

Return values
FSP_ERR_UNSUPPORTED Function not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 891 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ R_CAN_ModeTransition()

fsp_err_t R_CAN_ModeTransition (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

CAN Mode Transition is used to change CAN driver state.

Example:

 err = R_CAN_ModeTransition(&g_can0_ctrl, operation_mode, test_mode);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

◆ R_CAN_InfoGet()

fsp_err_t R_CAN_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

Get CAN state and status information for the channel.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 892 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN (r_can)

◆ R_CAN_CallbackSet()

fsp_err_t R_CAN_CallbackSet (can_ctrl_t *const p_api_ctrl, void(*)(can_callback_args_t *)
p_callback, void const *const p_context, can_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.6.3 CAN FD (r_canfd)
Modules » Connectivity

Functions

fsp_err_t R_CANFD_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const
p_cfg)

fsp_err_t R_CANFD_Close (can_ctrl_t *const p_api_ctrl)

fsp_err_t R_CANFD_Write (can_ctrl_t *const p_api_ctrl, uint32_t buffer,
can_frame_t *const p_frame)

fsp_err_t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t buffer,
can_frame_t *const p_frame)

fsp_err_t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl,
can_operation_mode_t operation_mode, can_test_mode_t test_mode)

fsp_err_t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const
p_info)

fsp_err_t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 893 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Driver for the CANFD peripheral on RA MCUs. This module implements the CAN Interface.

Overview
The CANFD module can be used to communicate over CAN networks, optionally using Flexible Data
(CAN-FD) to accelerate the data phase. A variety of message filtering and buffer options are
available.

Features

Common Features

Compatibility
Send and receive CAN 2.0 and CAN-FD frames on the same channel
Bitrate up to 1 Mbps with FD data phase speeds up to 5-8 Mbps
ISO 11898-1 Support

Buffers
32 global receive Message Buffers (RX MBs)
2-8 global receive FIFOs (RX FIFOs)
4-16 transmit Message Buffers (TX MBs) per channel

Filtering
Each filter rule can be individually configured to accept messages based on:

ID
Standard or Extended ID (IDE bit)
Data or Remote Frame (RTR bit)
ID/IDE/RTR mask
Minimum DLC (data length) value

Interrupts
Configurable Global RX FIFO Interrupt

Configurable per FIFO
Interrupt at a certain depth or on every received message

Configurable Common FIFO RX Interrupt
Configurable per FIFO
Interrupt at a certain depth or on every received message

Channel TX Interrupt
Interrupt on every transmitted message or when a Common FIFO is
empty

Global Error
DLC Check
Message Lost
FD Payload Overflow

Channel Error
Bus Error
Error Warning
Error Passive
Bus-Off Entry
Bus-Off Recovery
Overload
Bus Lock
Arbitration Loss
Transmission Aborted

Per-MCU Specifications

RA6M5 RA6T2 RA8M1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 894 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Channels 2 1 2

Max nominal bitrate 1 Mbps 1 Mbps 1 Mbps

Max data bitrate 5 Mbps 5 Mbps 8 Mbps

Filter rules 128 32 16/ch

TX message buffers 16/ch 4 4/ch

RX message buffers 32 32 16/ch

RX FIFOs 8 2 2/ch

RX Buffer RAM 4864 bytes 1216 bytes 1216 bytes

Common FIFOs 3/ch 1 1/ch

Note
Each message buffer comprises 12 header bytes plus data length (8-64 bytes). The above buffer RAM values
therefore correspond to the following capacities:

RA6M5 RA6T2 RA8M1

Max 64-byte storage 64 messages 16 messages 16 messages

Max 8-byte storage 243 messages 60 messages 60 messages

Each Common FIFO buffer can support the following message capacities:

RA6M5 RA6T2 RA8M1

Maximum payload size 64 bytes 64 bytes 64 bytes

Maximum FIFO depth 128 messages 48 messages 48 messages

Configuration
Build Time Configurations for r_canfd

The following build time configurations are defined in fsp_cfg/r_canfd_cfg.h:

Configuration Options Default Description

Global Error Interrupt

Callback Channel MCU Specific Options Specify which channel
callback should be
called to handle global
errors. When starting
the driver this channel
must be opened first.

Priority MCU Specific Options This interrupt is fired
for each of the error
sources selected
below.

Sources DLC Check 0U Select which errors

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 895 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Message Lost
FD Payload
Overflow

should trigger an
interrupt.

Reception

Reception > FIFOs

Reception > FIFOs > FIFO 0

Enable Enabled
Disabled

Enabled Enable or disable RX
FIFO 0.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 0.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 0. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 0.

Depth MCU Specific Options Select the number of
stages for RX FIFO 0.

Reception > FIFOs > FIFO 1

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 1.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 1.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 1. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 896 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

payload size for RX
FIFO 1.

Depth MCU Specific Options Select the number of
stages for RX FIFO 1.

Reception > FIFOs > FIFO 2

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 2.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 2.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 2. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 2.

Depth MCU Specific Options Select the number of
stages for RX FIFO 2.

Reception > FIFOs > FIFO 3

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 3.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 3.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 3. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 897 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

FIFO 3.

Depth MCU Specific Options Select the number of
stages for RX FIFO 3.

Reception > FIFOs > FIFO 4

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 4.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 4.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 4. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 4.

Depth MCU Specific Options Select the number of
stages for RX FIFO 4.

Reception > FIFOs > FIFO 5

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 5.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 5.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 5. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 5.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 898 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Depth MCU Specific Options Select the number of
stages for RX FIFO 5.

Reception > FIFOs > FIFO 6

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 6.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 6.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 6. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 6.

Depth MCU Specific Options Select the number of
stages for RX FIFO 6.

Reception > FIFOs > FIFO 7

Enable Enabled
Disabled

Disabled Enable or disable RX
FIFO 7.

Interrupt Mode MCU Specific Options Set the interrupt mode
for RX FIFO 7.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for RX
FIFO 7. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Payload Size MCU Specific Options Select the message
payload size for RX
FIFO 7.

Depth MCU Specific Options Select the number of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 899 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

stages for RX FIFO 7.

Interrupt Priority MCU Specific Options This priority level will
apply to all FIFO
interrupts globally.

Reception > Message Buffers

Number of Buffers RX Message Buffer
number must be an
integer between 0 and
32.

0 Number of message
buffers available for
reception.

As there is no interrupt
for message buffer
reception it is
recommended to use
RX FIFOs instead. Set
this value to 0 to
disable RX Message
Buffers.

Payload Size 8 bytes
12 bytes
16 bytes
20 bytes
24 bytes
32 bytes
48 bytes
64 bytes

8 bytes Payload size for all RX
Message Buffers.

Reception > Acceptance Filtering

Channel 0 Rule Count The number of AFL
rules must be a
positive integer.

32 Number of acceptance
filter list rules
dedicated to Channel
0.

Channel 1 Rule Count The number of AFL
rules must be a
positive integer.

0 Number of acceptance
filter list rules
dedicated to Channel
1.

Flexible Data (FD)

Protocol Exceptions Enabled (ISO
11898-1)
Disabled

Enabled (ISO 11898-1) Select whether to enter
the protocol exception
handling state when a
RES bit is sampled
recessive as defined in
ISO 11898-1.

Payload Overflow Reject
Truncate

Reject Configure whether
received messages
larger than the
destination buffer
should be truncated or
rejected.

Common FIFOs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 900 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Common FIFOs > FIFO 0

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 0.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
0.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
receiption for Common
FIFO 0.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 0.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 0.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 0. This
setting is only
applicable when the
Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 0.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 0.

TX Message Buffer MCU Specific Options Select the TX message
buffer that participates
in TX scans related to
Common FIFO 0.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 0 in
units of the Interval
Timer Clock.

Interval Timer Reference clock Reference clock Select the source of the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 901 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Bit time clock interval timer clock for
Common FIFO 0. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common
FIFO 0.

Common FIFOs > FIFO 1

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 1.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
1.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
receiption for Common
FIFO 1.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 1.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 1.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 1. This
setting is only
applicable when the
Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 1.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 1.

TX Message Buffer MCU Specific Options Select the TX message

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 902 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

buffer that participates
in TX scans related to
Common FIFO 1.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 1 in
units of the Interval
Timer Clock.

Interval Timer Reference clock
Bit time clock

Reference clock Select the source of the
interval timer clock for
Common FIFO 1. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common
FIFO 1.

Common FIFOs > FIFO 2

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 2.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
2.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
receiption for Common
FIFO 2.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 2.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 2.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 2. This
setting is only
applicable when the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 903 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 2.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 2.

TX Message Buffer MCU Specific Options Select the TX message
buffer that participates
in TX scans related to
Common FIFO 2.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 2 in
units of the Interval
Timer Clock.

Interval Timer Reference clock
Bit time clock

Reference clock Select the source of the
interval timer clock for
Common FIFO 2. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common
FIFO 2.

Common FIFOs > FIFO 3

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 3.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
3.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
receiption for Common
FIFO 3.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 3.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 3.
Threshold mode will
only fire an interrupt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 904 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 3. This
setting is only
applicable when the
Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 3.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 3.

TX Message Buffer MCU Specific Options Select the TX message
buffer that participates
in TX scans related to
Common FIFO 3.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 3 in
units of the Interval
Timer Clock.

Interval Timer Reference clock
Bit time clock

Reference clock Select the source of the
interval timer clock for
Common FIFO 3. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common
FIFO 3.

Common FIFOs > FIFO 4

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 4.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
4.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 905 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

receiption for Common
FIFO 4.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 4.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 4.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 4. This
setting is only
applicable when the
Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 4.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 4.

TX Message Buffer MCU Specific Options Select the TX message
buffer that participates
in TX scans related to
Common FIFO 4.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 4 in
units of the Interval
Timer Clock.

Interval Timer Reference clock
Bit time clock

Reference clock Select the source of the
interval timer clock for
Common FIFO 4. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 906 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

FIFO 4.

Common FIFOs > FIFO 5

Enable Enabled
Disabled

Disabled Enable or disable
Common FIFO 5.

Mode Receive
Transmit

Receive Select the operation
mode for Common FIFO
5.

RX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
receiption for Common
FIFO 5.

TX Interrupt Enable Enabled
Disabled

Disabled Enable to allow
interrupts on message
transmission for
Common FIFO 5.

Interrupt Mode Threshold
Every frame

Threshold Set the interrupt mode
for Common FIFO 5.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below or when all
messages have been
transmitted.

Interrupt Threshold MCU Specific Options Set the interrupt
threshold value for
Common FIFO 5. This
setting is only
applicable when the
Interrupt Mode is set to
'At Threshold Value'.

Payload Size MCU Specific Options Select the message
payload size for
Common FIFO 5.

Depth MCU Specific Options Select the number of
stages for Common
FIFO 5.

TX Message Buffer MCU Specific Options Select the TX message
buffer that participates
in TX scans related to
Common FIFO 5.

Interval TX Delay TX delay must be an
integer between 0 and
255.

0 Selects the delay
between successive
transmission for
Common FIFO 5 in
units of the Interval
Timer Clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 907 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Interval Timer Reference clock
Bit time clock

Reference clock Select the source of the
interval timer clock for
Common FIFO 5. The
reference clock can be
scaled by x10 below.

Interval Timer
Reference Clock
Resolution

x1
x10

x1 Selects the timer
resolution if the
reference clock is
selected as the timer
source for Common
FIFO 5.

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Transmission Priority Message ID
Buffer Number

Buffer Number Select how messages
should be prioritized
for transmission. In
either case, lower
numbers indicate
higher priority.

DLC Check Disabled
Enabled
Enabled
w/truncate

config.driver.canfd.dlc_
check.disabled

When enabled received
messages will be
rejected if their DLC
field is less than the
value configured in the
associated AFL rule. If
'Enabled w/truncate' is
selected and a
message passes the
DLC check the DLC
field is set to the value
in the associated AFL
rule and any excess
data is discarded.

Interval Timer
Prescaler

Timer prescaler must
be an integer between
0 and 65535.

0 FIFO interval timer
prescaler, required for
Interval TX Delay.

Configurations for Connectivity > CAN FD (r_canfd)

This module can be added to the Stacks tab via New Stack > Connectivity > CAN FD (r_canfd). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_canfd0 Module name.

Channel Channel should be 0 or
1

0 Specify the CAN
channel to use.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 908 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Bitrate

Bitrate > Automatic

Nominal Rate (bps) Must be a valid integer
with a maximum of
1MHz.

500000 Specify nominal bitrate
in bits per second.

FD Data Rate (bps) Must be a valid integer
with a minimum of
1MHz.

2000000 Specify data bitrate in
bits per second. This
value is not used when
sending messages
without the FD and BRS
bits enabled and
should be left at the
default setting if only
Classical CAN will be
used.

Sample Point (%) Must be a valid integer
between 60 and 99.

75 Specify desired sample
point.

Bitrate > Manual

Bitrate > Manual > Nominal

Prescaler (divisor) Value must be a non-
negative integer
between 1 and 1024.

1 Specify clock divisor for
nominal bitrate.

Time Segment 1 (Tq) Value must be a non-
negative integer
between 2 and 256.

29 Select the Time
Segment 1 value.
Check module usage
notes for how to
calculate this value.

Time Segment 2 (Tq) Value must be a non-
negative integer
between 2 and 128.

10 Select the Time
Segment 2 value.
Check module usage
notes for how to
calculate this value.

Sync Jump Width (Tq) Value must be a non-
negative integer
between 1 and 128.

4 Select the
Synchronization Jump
Width value. Check
module usage notes for
how to calculate this
value.

Bitrate > Manual > Data

Prescaler (divisor) Value must be a non-
negative integer
between 1 and 256.

1 Specify clock divisor for
data bitrate.

Time Segment 1 (Tq) Value must be a non-
negative integer
between 2 and 32.

5 Select the Time
Segment 1 value.
Check module usage
notes for how to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 909 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

calculate this value.

Time Segment 2 (Tq) Value must be a non-
negative integer
between 2 and 16.

2 Select the Time
Segment 2 value.
Check module usage
notes for how to
calculate this value.

Sync Jump Width (Tq) Value must be a non-
negative integer
between 1 and 16.

1 Select the
Synchronization Jump
Width value. Check
module usage notes for
how to calculate this
value.

Use manual settings Yes
No

No Select whether or not
to override automatic
baudrate generation
and instead use the
values specified here.

Delay Compensation Enable
Disable

Enable When enabled the
CANFD module will
automatically
compensate for any
transceiver or bus
delay between
transmitted and
received bits. When
manually supplying bit
timing values with
delay compensation
enabled be sure the
data prescaler is 2 or
smaller for correct
operation.

Interrupts

Callback Name must be a valid
C symbol

canfd0_callback A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
any interrupt occurs.

Channel Interrupt
Priority Level

MCU Specific Options Channel Error/Transmit
interrupt priority.

Transmit Interrupts MCU Specific Options Select which TX
Message Buffers should
trigger an interrupt
when transmission is
complete.

Channel Error
Interrupts

Error Warning
Error Passive

0U Select which channel
error interrupt sources

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 910 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Bus-Off Entry
Bus-Off
Recovery
Overload

to enable.

Filter List Array Name must be a valid
C symbol

p_canfd0_afl Acceptance Filter List
(AFL) rule array symbol
name.

Clock Configuration

The CANFD peripheral uses PLL or PLL2 as its clock source. The RA Configuration editor will attempt
to get as close as possible to the supplied bitrate with the configured clock source. To achieve an
exact bitrate the CANFD source clock or divisor may need to be adjusted to meet the criteria in the
formula below:

bitrate = canfd_clock_hz / ((time_segment_1 + time_segment_2 + 1) * prescalar)

For CANFD, the possible values for each element are as follows:

Element Min Max (Nominal) Max (Data)

Bitrate - 1 Mbps 5-8 Mbps*

Time Segment 1 2 Tq 256 Tq 32 Tq

Time Segment 2 2 Tq 128 Tq 16 Tq

Sync Jump Width 1 Tq Time Segment 2 Time Segment 2

Prescalar 1 1024 256

RA6 devices support up to 5 Mbps; RA8 devices support up to 8 Mbps.

Use the Clocks tab of the RA Configuration editor to configure the CANFD clock source/divisor as
well as to set the frequency of PLL or PLL2. To change the clock frequency at run-time, use the CGC
Interface. Refer to the CGC module guide for more information on configuring clocks.

Pin Configuration

CANFD channels each control two pins: CRX (receive) and CTX (transmit).

Usage Notes
Buffers

The CANFD driver provides four types of buffers: Transmit Message Buffers (TX MBs), Receive
Message Buffers (RX MBs), Receive FIFOs (RX FIFOs), and Common FIFOs (RX/TX Common FIFOs).

TX Message Buffers

TX MBs are used for transmission only. Refer to the hardware manual for your device for information
on which TX MBs are available.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 911 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Note
The CANFD peripheral continually scans TX MBs for new data. Depending on the provided clock it may be
possible to write to multiple TX MBs before transmission begins. In this case, messages will be sent in the priority
specified by the Transmission Priority option in the RA Configuration editor.

RX Message Buffers

RX MBs are for reception only and may only hold one message at a time. The number of available RX
MBs varies per device.

On RA6M5, RX MBs are shared between channels and no interrupts are provided. Use
R_CANFD_InfoGet and R_CANFD_Read to poll and read them, respectively.

RX FIFOs

RX FIFOs provide interrupt-driven queue functionality for receiving messages. All FIFOs have the
following capabilities:

Up to 64 byte payloads
Up to 128 messages (RA6M5) or 48 messages for all other MCUs.
Interrupt events:

On every received frame OR when filled to a specified fraction of its capacity
When a message is overwritten (message received on full FIFO)

Once an interrupt is fired it will continue to fire until the FIFO is emptied and all messages have been
passed to user code via the callback. When using the threshold interrupt mode a FIFO can be
checked for data and read between interrupts by calling R_CANFD_InfoGet and R_CANFD_Read,
respectively.

Note
On the RA6M5, FIFOs are shared across all channels.

RX Buffer Pool

The CANFD peripheral has a limited amount of buffer pool RAM available for allocating RX MBs and
FIFO stages. The RA Configuration editor will provide a warning when the limit is exceeded.

The number of bytes used by RX MBs and individual FIFOs can be calculated as follows:

Total RX MB bytes used = (number of RX MBs enabled) * (RX MB payload size + 12 header

bytes)

RX FIFO bytes used = (number of FIFO stages) * (FIFO payload size + 12 header bytes)

Common FIFOs

Common FIFOs provide interrupt-driven queue functionality for receiving or transmitting messages.
Unlike RX FIFOs, Common FIFOs are individual to each channel. Refer to the hardware manual for
your device for information on how many Common FIFOs are available. Common FIFOs support the
following capabilities:

Either TX or RX behavior can be configured.
Each Common FIFO can only be configured as one or the other. It cannot operate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 912 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

in both TX and RX modes at the same time.
Up to 64 byte payloads
Up to 128 messages (RA6M5) or 48 messages on all other MCUs
Interrupt events:

On every message received or when filled to a specified fraction of its capacity
On every message transmitted or when all messages have been transmitted and
the FIFO is empty

Once an interrupt is fired it will continue to fire until the FIFO is emptied and all messages have been
passed to user code via the callback. When using the threshold interrupt mode a FIFO can be
checked for data and read between interrupts by calling R_CANFD_InfoGet and R_CANFD_Read,
respectively.

Users should be aware of the total memory allocated in the internal CAN-FD RAM area for Common
FIFOs. Allocating too many FIFOs or entries can lead to unexpected behavior.

Message Filtering (Acceptance Filter List)

To filter messages to the desired message buffer or FIFO the CANFD peripheral uses an Acceptance
Filter List (AFL). Each entry in the AFL provides a rule to check a message against along with
destination and other filtering information. When a message is received the CANFD peripheral
internally checks against every configured AFL rule for the channel. If a match is found the message
is transferred to the destination(s) specified in the rule. The default template with one entry is shown
below:

static const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH0_RULE_NUM] =

{

 {

 .id =

 {

 /* Specify the ID, ID type and frame type to accept. */

 .id = 0x00000000,

 .frame_type = CAN_FRAME_TYPE_DATA,

 .id_mode = CAN_ID_MODE_EXTENDED,

 },

 .mask =

 {

 /* These values mask which ID/mode bits to compare when filtering messages. */

 .mask_id = 0x1FFFFFFF,

 .mask_frame_type = 1,

 .mask_id_mode = 1,

 },

 .destination =

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 913 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

 /* If DLC checking is enabled any messages shorter than the below setting will be

rejected. */

 .minimum_dlc = CANFD_MINIMUM_DLC_0,

 /* Optionally specify a Receive Message Buffer (RX MB) to store accepted frames. RX

MBs do not have an

 * interrupt or overwrite protection and must be checked with R_CANFD_InfoGet and

R_CANFD_Read. */

 .rx_buffer = CANFD_RX_MB_NONE,

 /* Specify which FIFO(s) to send filtered messages to. Multiple FIFOs can be OR'd

together. */

 .fifo_select_flags = CANFD_RX_FIFO_0,

 }

 }

};

AFL templates can be easily added to a project using the Developer Assistance feature in e² studio.
Once the CANFD module is added to a project, drag and drop the elements circled below to build a
filter list:

Figure 189: CANFD Developer Assistance AFL Templates

 For an example configuration refer to the AFL Example below.

Flexible Data (FD)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 914 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Flexible Data is an extension of the CAN protocol allowing for messages up to 64 bytes and higher
data bitrates, among other features. The CANFD driver supports the following:

Sending and receiving FD messages
Bitrate switching for data phase
Manual and automatic setting of the error state (ESI) bit

To specify one or more of these options when transmitting set can_frame_t::options with combined
values from canfd_frame_options_t. Received messages will automatically have this field filled, if
applicable.

 /* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_EXAMPLE_64_BYTES;

 g_can_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

Note
When using bitrate switching be sure to configure the Data Bitrate as desired in the RA Configuration editor.

Bit Rate Calculation

For convenience, the baudrate of the CANFD peripheral is automatically set through the RA
Configuration editor using a best effort approach.

Enabling Delay Compensation instructs the CANFD peripheral to measure TX to RX tranceiver delay
and automatically adjust for it, improving the reliability of high-speed FD messages. This option may
severely limit available bitrate settings depending on the source clock; it is highly recommended to
check the generated values when enabled.

If the auto-generated baud settings cause deviation that is not tolerable by the application the user
can override the auto-generated settings and put in manually calculated values through the RA
Configuration editor. For more details on how the bitrate is calculated refer to the Clock
Configuration section above.

Sync Jump Width

The Sync Jump Width option specifies the maximum number of time quanta that the sample point
may be delayed by to account for differences in oscillators on the bus. It should be set to a value
between 1 and the configured Time Segment 2 value depending on the maximum permissible clock
error.

Error Handling

The CANFD peripheral provides two types of error interrupts: Channel and Global. As the names
imply, each channel has its own Channel Error interrupt but there is only one Global Error interrupt.
Only the configured channel will receive callbacks for Global Errors.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 915 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

Error interrupt callbacks will pass either CAN_EVENT_ERR_CHANNEL or CAN_EVENT_ERR_GLOBAL in
the can_callback_args_t::event field. A second field, can_callback_args_t::error, provides the actual
error code as canfd_error_t. Cast to this enum to retrieve the error condition. See the callback in the
Basic Example below for a demonstration.

DLC Checking

When DLC Checking is enabled messages are checked against the destination.minimum_dlc value of
each AFL rule. If the data length of a message is less than this value the message will be rejected.
When DLC checking is set to "Enabled w/truncate" in the RA Configuration editor any data in excess
of the minimum DLC setting will be truncated and the DLC value for the frame will be set to match.

FD Payload Overflow

When an FD message is received with a DLC larger than the destination buffer an FD Payload
Overflow interrupt is thrown (if configured). When Payload Overflow is set to "Truncate" the message
will still be accepted but only data up to the buffer capacity will be preserved. The DLC value is
unchanged in this case; any data beyond this value in the can_frame_t::data array should not be
used.

Test Modes

The CANFD peripheral provides three basic test modes: Listen Only, Internal Loopback and External
Loopback. Use R_CANFD_ModeTransition to switch to a test mode.

On some MCUs an additional "Internal Bus" test mode is available that allows connecting both
CANFD channels together on an internal bus, effectively creating an internal CAN network. See the
Internal Bus example below for details.

Limitations

Developers should be aware of the following limitations when using CANFD:

On RA6M5, RX Message Buffers do not have an associated interrupt. To use them in an
application one of the following is recommended:

Use R_CANFD_InfoGet to determine if any RX MBs have received data, then use
R_CANFD_Read to obtain it
Select an RX FIFO as an additional destination for the relevant filter rules and
configure the FIFO interrupt/callback as desired

The CANFD peripheral has a limited amount of buffer pool RAM available for allocating RX
MBs and FIFO stages. See the RX Buffer Pool section above for more information.
When switching modes with R_CANFD_ModeTransition a delay of up to several CAN frames
may be incurred. Consult Section 32.3.4.2 "Timing of Channel Mode Change" in the RA6M5
User's Manual (R01UH0891EJ0100) for details.
Only one channel will receive callbacks for Global Errors. If a different channel is opened
first these error interrupts will be suppressed until the specified handler channel is opened.

Examples
AFL Example

The below is an example Acceptance Filter List (AFL) declaration with two rules.

const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH1_RULE_NUM] =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 916 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

{

 /* Store all data frames with at least 4 bytes from Standard IDs 0x40-0x4F in RX

FIFO 0 and RX FIFO 1 */

 {

 .id =

 {

 .id = 0x40,

 .frame_type = CAN_FRAME_TYPE_DATA,

 .id_mode = CAN_ID_MODE_STANDARD

 },

 .mask =

 {

 .mask_id = 0x7F0,

 .mask_frame_type = 1,

 .mask_id_mode = 1

 },

 .destination =

 {

 .minimum_dlc = CANFD_MINIMUM_DLC_4,

 .rx_buffer = CANFD_RX_MB_NONE,

 .fifo_select_flags = (canfd_rx_fifo_t) (CANFD_RX_FIFO_0 |

CANFD_RX_FIFO_1)

 }

 },

 /* Store all frames from Extended ID 0x1100 in RX FIFO 2 and RX MB 0 */

 {

 .id =

 {

 .id = 0x1100,

 .frame_type = CAN_FRAME_TYPE_DATA, // This setting is ignored by the mask

 .id_mode = CAN_ID_MODE_EXTENDED

 },

 .mask =

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 917 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

 .mask_id = 0x1FFFFFFF,

 .mask_frame_type = 0,

 .mask_id_mode = 1

 },

 .destination =

 {

 .minimum_dlc = CANFD_MINIMUM_DLC_0,

 .rx_buffer = CANFD_RX_MB_0,

 .fifo_select_flags = CANFD_RX_FIFO_2

 }

 }

};

Basic Example

This is a basic example of minimal use of the CANFD module in an application.

Note
On RA6M5 it is recommended to use RX FIFOs for reception as there are no interrupts for RX message buffers.

#define CAN_EXAMPLE_ID (0x20)

can_frame_t g_can_tx_frame;

can_frame_t g_can_rx_frame;

volatile canfd_error_t g_err_status = (canfd_error_t) 0;

void canfd_callback (can_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CAN_EVENT_RX_COMPLETE: /* Receive complete event. */

 {

 /* Read received frame */

 memcpy(&g_can_rx_frame, &p_args->frame, sizeof(can_frame_t));

 /* Handle event */

 break;

 }

 case CAN_EVENT_TX_COMPLETE: /* Transmit complete event. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 918 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

 {

 /* Handle event */

 break;

 }

 case CAN_EVENT_ERR_GLOBAL: /* Global error. */

 case CAN_EVENT_ERR_CHANNEL: /* Channel error. */

 {

 /* Get error status */

 g_err_status = (canfd_error_t) p_args->error; /* Check error code with

canfd_error_t. */

 /* Handle event */

 break;

 }

 default:

 {

 break;

 }

 }

}

void canfd_basic_example (void)

{

 fsp_err_t err;

 /* Initialize the CAN module */

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Setup frame to write to CAN ID 0x20 */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = 8;

 g_can_tx_frame.options = 0;

 /* Write some data to the transmit frame */

 for (uint32_t i = 0; i < 8; i++)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 919 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Wait for a transmit callback event */

}

Flexible Data

This example demonstrates sending an FD message with bitrate switching over external loopback.
The CTX and CRX pins must be connected when using external loopback, though if a CAN tranciever
is onboard a 120 Ohm resistor should be connected across CANH and CANL instead.

#define CAN_EXAMPLE_64_BYTES 64

void canfd_fd_loopback_example (void)

{

 fsp_err_t err;

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Switch to external loopback mode */

 err = R_CANFD_ModeTransition(&g_canfd0_ctrl, CAN_OPERATION_MODE_NORMAL,

CAN_TEST_MODE_LOOPBACK_EXTERNAL);

 assert(FSP_SUCCESS == err);

 /* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_EXAMPLE_64_BYTES;

 g_can_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

 /* Write some data to the transmit frame */

 for (uint32_t i = 0; i < CAN_DATA_BUFFER_LENGTH; i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 920 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

 }

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Wait for a transmit and/or receive callback event */

}

Internal Bus

In this example two CANFD channels are connected to the Internal Bus test mode. API error checking
has been omitted for clarity.

Note
Internal Bus mode is only available on MCUs with more than one CANFD channel. In addition, use of Global
Modes for any other purpose is not recommended without consulting the device User's Manual.

Data Structures

struct canfd_afl_entry_t

struct canfd_global_cfg_t

struct canfd_extended_cfg_t

Enumerations

enum canfd_status_t

enum canfd_error_t

enum canfd_tx_buffer_t

enum canfd_tx_mb_t

enum canfd_rx_buffer_t

enum canfd_rx_mb_t

enum canfd_rx_fifo_t

enum canfd_minimum_dlc_t

enum canfd_frame_options_t

Data Structure Documentation

◆ canfd_afl_entry_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 921 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

struct canfd_afl_entry_t

AFL Entry (based on R_CANFD_CFDGAFL_Type in renesas.h)

◆ canfd_global_cfg_t

struct canfd_global_cfg_t

CANFD Global Configuration

Data Fields

uint32_t global_interrupts Global control options
(CFDGCTR register setting)

uint32_t global_config Global configuration options
(CFDGCFG register setting)

uint32_t rx_fifo_config[8] RX FIFO configuration
(CFDRFCCn register settings)

uint32_t rx_mb_config Number and size of RX Message
Buffers (CFDRMNB register
setting)

uint8_t global_err_ipl Global Error interrupt priority.

uint8_t rx_fifo_ipl RX FIFO interrupt priority.

uint32_t common_fifo_config[R_CANFD_
NUM_COMMON_FIFOS]

Common FIFO configurations.

◆ canfd_extended_cfg_t

struct canfd_extended_cfg_t

CANFD Extended Configuration

Data Fields

canfd_afl_entry_t const * p_afl AFL rules list.

uint64_t txmb_txi_enable Array of TX Message Buffer
enable bits.

uint32_t error_interrupts Error interrupt enable bits.

can_bit_timing_cfg_t * p_data_timing FD Data Rate (when bitrate
switching is used)

uint8_t delay_compensation FD Transceiver Delay
Compensation (enable or
disable)

canfd_global_cfg_t * p_global_cfg Global configuration (global
error callback channel only)

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 922 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ canfd_status_t

enum canfd_status_t

CANFD Status

Enumerator

CANFD_STATUS_RESET_MODE Channel in Reset mode.

CANFD_STATUS_HALT_MODE Channel in Halt mode.

CANFD_STATUS_SLEEP_MODE Channel in Sleep mode.

CANFD_STATUS_ERROR_PASSIVE Channel in error-passive state.

CANFD_STATUS_BUS_OFF Channel in bus-off state.

CANFD_STATUS_TRANSMITTING Channel is transmitting.

CANFD_STATUS_RECEIVING Channel is receiving.

CANFD_STATUS_READY Channel is ready for communication.

CANFD_STATUS_ESI At least one CAN-FD message was received
with the ESI flag set.

◆ canfd_error_t

enum canfd_error_t

CANFD Error Code

Enumerator

CANFD_ERROR_CHANNEL_BUS Bus Error.

CANFD_ERROR_CHANNEL_WARNING Error Warning (TX/RX error count over 0x5F)

CANFD_ERROR_CHANNEL_PASSIVE Error Passive (TX/RX error count over 0x7F)

CANFD_ERROR_CHANNEL_BUS_OFF_ENTRY Bus-Off State Entry.

CANFD_ERROR_CHANNEL_BUS_OFF_RECOVERY Recovery from Bus-Off State.

CANFD_ERROR_CHANNEL_OVERLOAD Overload.

CANFD_ERROR_CHANNEL_BUS_LOCK Bus Locked.

CANFD_ERROR_CHANNEL_ARBITRATION_LOSS Arbitration Lost.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 923 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

CANFD_ERROR_CHANNEL_STUFF Stuff Error.

CANFD_ERROR_CHANNEL_FORM Form Error.

CANFD_ERROR_CHANNEL_ACK ACK Error.

CANFD_ERROR_CHANNEL_CRC CRC Error.

CANFD_ERROR_CHANNEL_BIT_RECESSIVE Bit Error (recessive) Error.

CANFD_ERROR_CHANNEL_BIT_DOMINANT Bit Error (dominant) Error.

CANFD_ERROR_CHANNEL_ACK_DELIMITER ACK Delimiter Error.

CANFD_ERROR_GLOBAL_DLC DLC Error.

CANFD_ERROR_GLOBAL_MESSAGE_LOST Message Lost.

CANFD_ERROR_GLOBAL_PAYLOAD_OVERFLOW FD Payload Overflow.

CANFD_ERROR_GLOBAL_TXQ_OVERWRITE TX Queue Message Overwrite.

CANFD_ERROR_GLOBAL_TXQ_MESSAGE_LOST TX Queue Message Lost.

CANFD_ERROR_GLOBAL_CH0_SCAN_FAIL Channel 0 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH1_SCAN_FAIL Channel 1 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH0_ECC Channel 0 ECC Error.

CANFD_ERROR_GLOBAL_CH1_ECC Channel 1 ECC Error.

◆ canfd_tx_buffer_t

enum canfd_tx_buffer_t

CANFD Transmit Buffer (MB + CFIFO)

◆ canfd_tx_mb_t

enum canfd_tx_mb_t

CANFD Transmit Message Buffer (TX MB)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 924 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ canfd_rx_buffer_t

enum canfd_rx_buffer_t

CANFD Receive Buffer (MB + FIFO + CFIFO)

◆ canfd_rx_mb_t

enum canfd_rx_mb_t

CANFD Receive Message Buffer (RX MB)

◆ canfd_rx_fifo_t

enum canfd_rx_fifo_t

CANFD Receive FIFO (RX FIFO)

◆ canfd_minimum_dlc_t

enum canfd_minimum_dlc_t

CANFD AFL Minimum DLC settings

◆ canfd_frame_options_t

enum canfd_frame_options_t

CANFD Frame Options

Enumerator

CANFD_FRAME_OPTION_ERROR Error state set (ESI).

CANFD_FRAME_OPTION_BRS Bit Rate Switching (BRS) enabled.

CANFD_FRAME_OPTION_FD Flexible Data frame (FDF).

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 925 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ R_CANFD_Open()

fsp_err_t R_CANFD_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const p_cfg)

Open and configure the CANFD channel for operation.

Example:

 /* Initialize the CAN module */

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_IN_USE Channel is already in use.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel does not exist on this MCU.

FSP_ERR_ASSERTION A required pointer was NULL.

FSP_ERR_CAN_INIT_FAILED The provided nominal or data bitrate is
invalid.

FSP_ERR_CLOCK_INACTIVE CANFD source clock is disabled (PLL or
PLL2).

◆ R_CANFD_Close()

fsp_err_t R_CANFD_Close (can_ctrl_t *const p_api_ctrl)

Close the CANFD channel.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 926 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ R_CANFD_Write()

fsp_err_t R_CANFD_Write (can_ctrl_t *const p_api_ctrl, uint32_t buffer, can_frame_t *const
p_frame)

Write data to the CANFD channel.

Example:

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at
this time.

FSP_ERR_INVALID_ARGUMENT Data length or buffer number invalid.

FSP_ERR_INVALID_MODE An FD option was set on a non-FD frame.

FSP_ERR_ASSERTION One or more pointer arguments is NULL.

FSP_ERR_UNSUPPORTED FD is not supported on this MCU.

◆ R_CANFD_Read()

fsp_err_t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t buffer, can_frame_t *const
p_frame)

Read data from a CANFD Message Buffer or FIFO.

Example: snippet r_canfd_example.c R_CANFD_Read

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT Buffer number invalid.

FSP_ERR_ASSERTION p_api_ctrl or p_frame is NULL.

FSP_ERR_BUFFER_EMPTY Buffer or FIFO is empty.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 927 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ R_CANFD_ModeTransition()

fsp_err_t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

Switch to a different channel, global or test mode.

Example:

 /* Switch to external loopback mode */

 err = R_CANFD_ModeTransition(&g_canfd0_ctrl, CAN_OPERATION_MODE_NORMAL,

CAN_TEST_MODE_LOOPBACK_EXTERNAL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

FSP_ERR_INVALID_MODE Cannot change to the requested mode from
the current global mode.

◆ R_CANFD_InfoGet()

fsp_err_t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

Get CANFD state and status information for the channel.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 928 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CAN FD (r_canfd)

◆ R_CANFD_CallbackSet()

fsp_err_t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl, void(*)(can_callback_args_t *)
p_callback, void const *const p_context, can_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.6.4 CEC (r_cec)
Modules » Connectivity

Functions

fsp_err_t R_CEC_Open (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

fsp_err_t R_CEC_MediaInit (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

fsp_err_t R_CEC_Close (cec_ctrl_t *const p_ctrl)

fsp_err_t R_CEC_Write (cec_ctrl_t *const p_ctrl, cec_message_t const *const
p_message, uint32_t message_size)

fsp_err_t R_CEC_StatusGet (cec_ctrl_t *const p_ctrl, cec_status_t *const
p_status)

fsp_err_t R_CEC_CallbackSet (cec_ctrl_t *const p_ctrl,
void(*p_callback)(cec_callback_args_t *), void const *const
p_context, cec_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the CEC peripheral on RA MCUs. This module implements the CEC Interface.

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 929 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

The HDMI CEC HAL module provides a high-level API for CEC applications and supports the CEC
peripheral available on RA microcontroller hardware. A user-callback function must be defined that
the driver will invoke when data received, transmission complete, or error interrupts are received.
The callback is passed a parameter which indicates the event as well as received data (if available).

Features

Conforms to High Definition Multimedia Interface (HDMI) Consumer Electronics Control
(CEC) standard Ver. 1.4b.
Full range of local address settings (TV, Recording Device, Playback Device, etc.)
Data filtering based on matching destination address and local address.
Supports a user-callback function (required), invoked when transmit, receive, or error
interrupts are received.

Configuration
Build Time Configurations for r_cec

The following build time configurations are defined in fsp_cfg/r_cec_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

CEC Message Max Data
Size

CEC message max data
size must be a positive
integer

14 Maximum Data Size for
CEC Message
Transmission/Receptio
n.

Configurations for Connectivity > CEC (r_cec)

This module can be added to the Stacks tab via New Stack > Connectivity > CEC (r_cec). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_cec0 Module name

Control Configuration

Clock Select PCLKB / 32
PCLKB / 64
PCLKB / 128
PCLKB / 256
PCLKB / 512
PCLKB / 1024
CECCLK
CECCLK / 256

PCLKB / 1024 CEC Clock Select
Configuration

Ack Bit Timing Error Disabled Enabled CEC Ack Bit Timing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 930 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

Enable Enabled Error Enable

Signal-Free Time Bit
Width

3-data bit width
5-data bit width
7-data bit width
Does not detect
signal-free
time.

7-data bit width Signal-Free Time Data
Bit Width Select

Start Bit Error
Detection Enable

Disabled
Enabled

Enabled Enable to detect timing
errors during start bit
reception.

Bus Lock Detection
Enable

Disabled
Enabled

Enabled Enable to detect
sticking of receive data
to high or low.

Digital Filter Enable Disabled
Enabled

Enabled Enable to use a digital
filter.

Long Bit Width Error
Pulse Output Enable

Disabled
Enabled

Disabled Enable to output an
error handling pulse
when a long bit width
error is detected.

Start Detection
Reception Restart
Enable

Disabled
Enabled

Enabled Enable to restart
reception after a start
bit error is detected.

Bit Width Timing

Bit Width Timing > Transmit

Start Bit Low Time CEC transmission start
bit low width setting
must be a positive
integer.

180 CEC transmission start
bit low width setting
(CEC Clock Cycles).

Start Bit Width Time CEC transmission start
bit high width setting
must be a positive
integer.

220 CEC transmission start
bit high width setting
(CEC Clock Cycles).

Logical Zero Low Time CEC transmission
logical zero low width
setting must be a
positive integer.

73 CEC transmission
logical zero low width
setting (CEC Clock
Cycles).

Logical One Low Time CEC transmission
logical one low width
setting must be a
positive integer.

29 CEC transmission
logical one low width
setting (CEC Clock
Cycles).

Overall Bit Width Time CEC transmission
overall data bit width
time setting must be a
positive integer.

117 CEC transmission
overall data bit width
time setting (CEC Clock
Cycles).

Bit Width Timing > Receive

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 931 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

Data Sample Time CEC reception data
sampling time must be
a positive integer.

49 CEC reception data
sampling time setting
(CEC Clock Cycles).

Data Bit Reference
Width

CEC reception data bit
reference width must
be a positive integer.

117 CEC data bit reference
width setting (CEC
Clock Cycles).

Start Bit Low Min Time CEC reception start bit
minimum low width
setting must be a
positive integer.

171 CEC reception start bit
minimum low width
setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Start Bit Low Max Time CEC reception start bit
maximum low width
setting must be a
positive integer.

190 CEC reception start bit
maximum low width
setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Start Bit Min Time CEC start bit minimum
time setting must be a
positive integer.

210 CEC start bit minimum
time setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Start Bit Max Time CEC reception start bit
maximum time setting
must be a positive
integer.

229 CEC start bit maximum
time setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Logical Zero Low Min
Time

CEC reception logical
zero minimum low
width setting must be a
positive integer.

64 CEC reception logical
zero minimum low
width setting (CEC
Clock Cycles).

Logical Zero Low Max
Time

CEC reception locical
zero maximum low
width setting must be a
positive integer.

83 CEC reception logical
zero maximum low
width setting (CEC
Clock Cycles).

Logical One Low Min
Time

CEC reception logical
one minimum low
width setting must be a
positive integer.

20 CEC reception logical
one minimum low
width setting (CEC
Clock Cycles).

Logical One Low Max CEC reception logical 39 CEC reception logical

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 932 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

Time one maximum low
width setting must be a
positive integer.

one maximum low
width (CEC Clock
Cycles).

Overall Bit Width Min
Time

CEC reception overall
minimum bit width
setting must be a
positive integer.

100 CEC reception overall
minimum bit width
setting (CEC Clock
Cycles).

Overall Bit Width Max
Time

CEC reception overall
maximum bit width
setting must be a
positive integer.

134 CEC reception overall
maximum bit width
setting (CEC Clock
Cycles).

Interrupts

Interrupt Priority Level MCU Specific Options Error/Data/Message
interrupt priority level.

Callback Function Callback Function must
be a valid C symbol

g_rm_cec0_callback Callback function

Communication
Complete Interrupt
Timing

After Last
Frame and
Signal Free
Time
After Last
Frame
After Signal
Free Time

After Last Frame and
Signal Free Time

Communication
Complete Interrupt
(INTCE) Generation
Timing Select

Address Mismatch
Interrupt Enable

Disabled
Enabled

Disabled Enable to generate an
interrupt when the
addresses do not
match.

Data Interrupt Timing
Selection

EOM timing
(9th bit of data)
ACK Timing
(10th bit of
data)

EOM timing (9th bit of
data)

INTDA reception
interrupt timing
selection (EOM or ACK).

Clock Configuration

The CEC peripheral uses the CECCLK or PCLKB as its clock source. To set the PCLKB frequency, use
the Clocks tab of the RA Configuration editor.

Note
The selected clock and configured divider must be configured in the range of 23.4375 to 78.125 kHz.

Pin Configuration

A CEC channel uses one data pin - CECIO for data transmission and reception.

The output type for each pin should be set to n-ch open drain for most hardware designs. This can
be configured in Pins tab of the RA Configuration editor by selecting the pin under Pin
Selection->Ports.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 933 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

Usage Notes
CEC Device Addresses

The CEC standard provides 13 device addresses that may be requested based on a device's primary
function. Use R_CEC_MediaInit to request a specific address before starting communication with
other devices.

Note
Address 0 is always the primary display (TV). Do not attempt to allocate this address unless your device is intended
to function as a display.

Limitations

Developers should be aware of the following limitations when using the CEC module:

R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after R_CEC_Open
while the hardware initializes.
The CECIO pin must be set to n-ch open drain mode.

Examples
Basic Example

This is a basic example of minimal use of the CEC in an application.

/**

 * Application defined callback

 * - May be assigned at compile-time via the e2 studio configuration tool or set at

run-time via R_CEC_CallbackSet()

 **

**********************************/

void cec_callback (cec_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CEC_EVENT_READY:

 {

 /* Application processing for address allocation success. */

 break;

 }

 case CEC_EVENT_TX_COMPLETE:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 934 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

 {

 /* Any required processing after transmission has completed. */

 break;

 }

 case CEC_EVENT_ERR:

 {

 /* Error processing. See cec_error_t for possible errors. */

 break;

 }

 case CEC_EVENT_RX_DATA:

 {

 /* Application to store and process received data bytes. */

 break;

 }

 case CEC_EVENT_RX_COMPLETE:

 {

 /* Application processing for message reception complete. */

 }

 }

}

/**

 * Basic example

 **

**********************************/

#define CEC_TIMEOUT_MS (50)

#define CEC_MSG_STANDBY (0X36) /* See CEC Specification for message definitions */

void basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the CEC module */

 err = R_CEC_Open(&g_cec0_ctrl, &g_cec0_cfg);

 assert(FSP_SUCCESS == err);

 /* Initialize the CEC module and allocate an address */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 935 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

 uint32_t timeout_ms = CEC_TIMEOUT_MS;

 do

 {

 /* R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after calling

R_CEC_Open */

 err = R_CEC_MediaInit(&g_cec0_ctrl, CEC_ADDR_TV);

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 } while ((FSP_ERR_IN_USE == err) && --timeout_ms);

 assert(timeout_ms);

 assert(FSP_SUCCESS == err);

 /* Wait for local address allocation and CEC bus to be free */

 cec_status_t status;

 err = R_CEC_StatusGet(&g_cec0_ctrl, &status);

 while ((FSP_SUCCESS == err) && (CEC_STATE_READY != status.state))

 {

 err = R_CEC_StatusGet(&g_cec0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 cec_message_t cec_msg;

 uint8_t total_transmit_size;

 cec_msg.destination = CEC_ADDR_BROADCAST; /* For this example, send message

to all devices on the bus */

 cec_msg.opcode = CEC_MSG_STANDBY; /* Send Standby Request */

 memset(cec_msg.data, 0U, sizeof(cec_msg.data)); /* See CEC Specification for

other message data structures */

 total_transmit_size = 2U; /* Total message size, including

header, opcode, and data */

 /* Send asynchronous message.

 * - Application will then be free for other processing while message is being sent.

 * - Do not modify the message buffer until transmission has completed. */

 err = R_CEC_Write(&g_cec0_ctrl, &cec_msg, total_transmit_size);

 assert(FSP_SUCCESS == err);

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 936 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

Function Documentation

◆ R_CEC_Open()

fsp_err_t R_CEC_Open (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

Open and configure the CEC module for operation.

Example:

 /* Open the CEC module */

 err = R_CEC_Open(&g_cec0_ctrl, &g_cec0_cfg);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CEC Module opened successfully.

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_IRQ_BSP_DISABLED Interrupts are not enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 937 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

◆ R_CEC_MediaInit()

fsp_err_t R_CEC_MediaInit (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

Allocate provided CEC Local Address and Initialize the CEC module for operation.

Note
After calling R_CEC_Open this function may return FSP_ERR_IN_USE for up to 45 milliseconds.

Example:

 /* Initialize the CEC module and allocate an address */

 uint32_t timeout_ms = CEC_TIMEOUT_MS;

 do

 {

 /* R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after calling

R_CEC_Open */

 err = R_CEC_MediaInit(&g_cec0_ctrl, CEC_ADDR_TV);

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 } while ((FSP_ERR_IN_USE == err) && --timeout_ms);

 assert(timeout_ms);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CEC Module Initialized successfully.

FSP_ERR_ASSERTION An input argument is invalid or callback has
not been set.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_IN_USE HDMI CEC Bus is currently in use. Try again
later.

◆ R_CEC_Close()

fsp_err_t R_CEC_Close (cec_ctrl_t *const p_ctrl)

Close the CEC module.

Return values
FSP_SUCCESS CEC Module closed successfully.

FSP_ERR_ASSERTION An input argument is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 938 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

◆ R_CEC_Write()

fsp_err_t R_CEC_Write (cec_ctrl_t *const p_ctrl, cec_message_t const *const p_message, uint32_t
message_size)

Write data to the CEC bus. Data transmission is asynchronous. Provided message buffer should not
be modified until transmission is complete.

Data Transmission follows the pattern defined be the HDMI CEC Specification:

Data Description Size

Start Bit Managed by Hardware, per
config

N/A

Header Block Source/Destination Identifier 1 Byte

Data Block 1 Opcode Value (Optional) 1 Byte

Data Block 2 Operands (Optional) Variable (0-14 Bytes Typical)

Example:

 cec_message_t cec_msg;

 uint8_t total_transmit_size;

 cec_msg.destination = CEC_ADDR_BROADCAST; /* For this example, send message

to all devices on the bus */

 cec_msg.opcode = CEC_MSG_STANDBY; /* Send Standby Request */

 memset(cec_msg.data, 0U, sizeof(cec_msg.data)); /* See CEC Specification for

other message data structures */

 total_transmit_size = 2U; /* Total message size, including

header, opcode, and data */

 /* Send asynchronous message.

 * - Application will then be free for other processing while message is being sent.

 * - Do not modify the message buffer until transmission has completed. */

 err = R_CEC_Write(&g_cec0_ctrl, &cec_msg, total_transmit_size);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_NOT_INITIALIZED Module has not been successfully initialized.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_INVALID_SIZE Invalid message size.

FSP_ERR_IN_USE HDMI CEC Bus is currently in use. Try again

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 939 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > CEC (r_cec)

later.

◆ R_CEC_StatusGet()

fsp_err_t R_CEC_StatusGet (cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

Provides the state and status information according to the provided CEC control instance.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION An input argument is invalid.

◆ R_CEC_CallbackSet()

fsp_err_t R_CEC_CallbackSet (cec_ctrl_t *const p_ctrl, void(*)(cec_callback_args_t *) p_callback,
void const *const p_context, cec_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements cec_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.6.5 I2C Communication Device (rm_comms_i2c)
Modules » Connectivity

Functions

fsp_err_t RM_COMMS_I2C_Open (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_cfg_t const *const p_cfg)

 Opens and configures the Communications Middle module.
Implements rm_comms_api_t::open. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 940 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

fsp_err_t RM_COMMS_I2C_Close (rm_comms_ctrl_t *const p_api_ctrl)

 Disables specified Communications Middle module. Implements
rm_comms_api_t::close. More...

fsp_err_t RM_COMMS_I2C_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes)

 Performs a read from the I2C device. Implements
rm_comms_api_t::read. More...

fsp_err_t RM_COMMS_I2C_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes)

 Performs a write from the I2C device. Implements
rm_comms_api_t::write. More...

fsp_err_t RM_COMMS_I2C_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

 Performs a write to, then a read from the I2C device. Implements
rm_comms_api_t::writeRead. More...

void rm_comms_i2c_callback (i2c_master_callback_args_t *p_args)

 Common callback function called in the I2C driver callback function.

Detailed Description

Middleware to implement the I2C communications interface. This module implements the
Communicatons Middleware Interface.

Overview
Features

The implementation of the I2C communications interface has the following key features:

Reading data from, writing data to I2C bus
Writes to I2C bus, then reads with restart
A single I2C bus used by multiple I2C devices

Configuration
Build Time Configurations for rm_comms_i2c

The following build time configurations are defined in fsp_cfg/rm_comms_i2c_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 941 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Connectivity > I2C Shared Bus (rm_comms_i2c)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Shared Bus
(rm_comms_i2c).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comms_i2c_bus0 Module name.

Bus Timeout Value must be a non-
negative integer less
than or equal to
0xFFFFFFFF

0xFFFFFFFF Set timeout for locking
bus in using RTOS.

Semaphore for
Blocking (RTOS only)

Unuse
Use

Use Set Semaphore for
blocking in using RTOS.

Recursive Mutex for
Bus (RTOS only)

Unuse
Use

Use Set Mutex for locking
bus in using RTOS.

Channel Manual Entry 0 IIC channel

Rate Standard
Fast-mode
Fast-mode plus

Standard Transfer rate for lower
level driver.

Configurations for Connectivity > I2C Communication Device (rm_comms_i2c)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Communication
Device (rm_comms_i2c).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comms_i2c_device0 Module name.

Semaphore Timeout
(RTOS only)

Value must be a non-
negative integer less
than or equal to
0xFFFFFFFF

0xFFFFFFFF Set timeout for
blocking in using RTOS.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the I2C address
mode.

Callback Name must be a valid
C symbol

comms_i2c_callback A user callback
function can be
provided.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 942 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

This module uses SDA and SCL pins of I2C Master, SCI I2C, IICA Master and SAU I2C.

Usage Notes
If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.
If an RTOS is used and blocking and bus lock is enabled, RM_COMMS_I2C_Write(),
RM_COMMS_I2C_Read() and RM_COMMS_I2C_WriteRead() cannot be called in callback.

Bus Initialization

The I2C communications interface expects a bus instance to be opened before opening any specific
I2C comms device. The communications interface will handle switching between devices on the bus
but will not open or close the bus instance. The user should open the bus with the appropriate I2C
Master Interface open call.

Examples
Basic Example

This is a basic example of minimal use of I2C communications implementation in an application.

void rm_comms_i2c_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

(rm_comms_i2c_bus_extended_cfg_t *) g_comms_i2c_cfg.p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 943 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_COMMS_I2C_Open(&g_comms_i2c_ctrl, &g_comms_i2c_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 g_flag = 0;

 /* Send data to an I2C device. */

 RM_COMMS_I2C_Write(&g_comms_i2c_ctrl, &write_data, 1);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 944 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

 g_flag = 0;

 /* Receive data from an I2C device. */

 RM_COMMS_I2C_Read(&g_comms_i2c_ctrl, &read_data, 1);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 }

}

Data Structures

struct rm_comms_i2c_instance_ctrl_t

Data Structure Documentation

◆ rm_comms_i2c_instance_ctrl_t

struct rm_comms_i2c_instance_ctrl_t

Communications middleware control structure.

Data Fields

rm_comms_cfg_t const * p_cfg

 middleware configuration.

rm_comms_i2c_bus_extende
d_cfg_t *

p_bus

 Bus using this device;.

void * p_lower_level_cfg

 Used to reconfigure I2C driver.

uint32_t open

 Open flag.

uint32_t transfer_data_bytes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 945 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

 Size of transfer data.

uint8_t * p_transfer_data

 Pointer to transfer data buffer.

bool smbus_operation

 SMBus operation on I2C bus.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

◆ RM_COMMS_I2C_Open()

fsp_err_t RM_COMMS_I2C_Open (rm_comms_ctrl_t *const p_api_ctrl, rm_comms_cfg_t const
*const p_cfg)

Opens and configures the Communications Middle module. Implements rm_comms_api_t::open.

Example:

 err = RM_COMMS_I2C_Open(&g_comms_i2c_ctrl, &g_comms_i2c_cfg);

Return values
FSP_SUCCESS Communications Middle module

successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_COMMS_BUS_NOT_OPEN I2C driver is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 946 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

◆ RM_COMMS_I2C_Close()

fsp_err_t RM_COMMS_I2C_Close (rm_comms_ctrl_t *const p_api_ctrl)

Disables specified Communications Middle module. Implements rm_comms_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_I2C_Read()

fsp_err_t RM_COMMS_I2C_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the I2C device. Implements rm_comms_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_I2C_Write()

fsp_err_t RM_COMMS_I2C_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write from the I2C device. Implements rm_comms_api_t::write.

Return values
FSP_SUCCESS Successfully writing data .

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 947 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Communication Device (rm_comms_i2c)

◆ RM_COMMS_I2C_WriteRead()

fsp_err_t RM_COMMS_I2C_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

Performs a write to, then a read from the I2C device. Implements rm_comms_api_t::writeRead.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

5.2.6.6 I2C Master (r_iic_b_master)
Modules » Connectivity

Functions

fsp_err_t R_IIC_B_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_IIC_B_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_B_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_B_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_B_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const
p_api_ctrl, uint32_t const slave, i2c_master_addr_mode_t const
addr_mode)

fsp_err_t R_IIC_B_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_IIC_B_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_IIC_B_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

Detailed Description

I2C Driver for the IIC/I3C peripheral on RA MCUs. This module implements the I2C Master Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 948 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

Overview
The I2C master on IIC/I3C HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which are invoked when a transmit or receive operation has completed. The
callback argument will contain information about the transaction status, bytes transferred and a
pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_iic_b_master

The following build time configurations are defined in fsp_cfg/r_iic_b_master_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Connectivity > I2C Master (r_iic_b_master)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Master
(r_iic_b_master). Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 949 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

Name Name must be a valid
C symbol

g_i2c_master0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
and duty cycle are
printed in a comment
in the generated
iic_b_master_extended
_cfg_t structure.

Custom Rate (bps) Value must be a non-
negative integer

0 Set a custom bitrate
(bps). Set to 0 to use
the maximum bitrate
for the selected mode.

Standard-mode: up to
100000; Fast-mode: up
to 400000; Fast-mode
plus: up to 1000000

Rise Time (ns) Value must be a non-
negative integer

120 Set the rise time (tr) in
nanoseconds.

Fall Time (ns) Value must be a non-
negative integer

120 Set the fall time (tf) in
nanoseconds.

Duty Cycle (%) Value must be an
integer between 0 and
100

50 Set the SCL duty cycle.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode. Ensure
10-bit slave addressing
is enabled in the
configuration to use
10-Bit setting here.

Timeout Mode Short Mode
Long Mode

Short Mode Select the timeout
mode to detect bus
hang.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 950 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

Timeout during SCL
Low

Enabled
Disabled

Enabled Select if the timeout
can occur when SCL is
held low for a duration
longer than what is set
in the timeout mode.

Callback Name must be a valid
C symbol

g_iic_b_master0_callba
ck

A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) upon IIC
transaction completion
reporting the
transaction status.

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, TEI and ERI
interrupts.

Clock Configuration

The I3C peripheral module uses the IICCLK or PCLKD (based on the MCU) as its clock source for the
bus clock. The actual I2C transfer rate will be calculated and set by the tooling depending on the
selected transfer rate. If the clocks are configured in such a manner that the selected internal rate
cannot be achieved, an error will be returned.

Pin Configuration

The I3C peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I2C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel used must be enabled in the properties of the
selected device.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

IIC Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate.

When the Custom Rate setting is set to 0 the bitrate is fixed to the maximum values shown
below. Otherwise, the supplied value is used to generate bitrate settings.

Standard-mode (Sm) : up to 100 kbps
Fast-mode (Fm) : up to 400 kbps
Fast-mode Plus (Fm+) : up to 1 Mbps

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 951 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

The closest possible baud-rate that can be achieved (less than or equal to the requested
rate) at the current IICCLK/PCLKD (based on the MCU) settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the IIC

DTC transfer support is configurable and is disabled from the build by default. IIC driver
provides two DTC instances for transmission and reception respectively. The DTC instances
can be enabled individually during configuration.
DTC is helpful for minimizing interrupts during large transactions. Many I2C applications
have shorter transactions. These applications will likely not see any improvement with DTC.
I2C often runs at a much slower speed than the CPU core clock. Some applications with
longer transactions may prefer servicing the interrupts at the I2C bitrate to the overhead of
bringing in the DTC driver.
For further details on DTC please refer Transfer (r_dtc)

Multiple Devices on the Bus

A single IIC instance can be used to communicate with multiple slave devices on the same
channel by using the SlaveAddressSet API.

Multi-Master Support

If multiple masters are connected on the same bus, the I2C Master is capable of detecting
bus busy state before initiating the communication.

Restart

IIC master can hold the the bus after an I2C transaction by issuing a repeated start
condition.

Examples
Basic Example

This is a basic example of minimal use of the r_iic_master in an application. This example shows how
this driver can be used for basic read and write operations.

iic_b_master_instance_ctrl_t g_i2c_device_ctrl_1;

i2c_master_cfg_t g_i2c_device_cfg_1 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_FAST,

 .slave = I2C_SLAVE_EEPROM,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_1,

 .p_transfer_tx = NULL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 952 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_b_master_cfg_extend

};

void i2c_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_callback_event = p_args->event;

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the IIC module */

 err = R_IIC_B_MASTER_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_B_MASTER_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 953 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_B_MASTER_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single IIC driver can be used to communicate with different slave
devices which are on the same channel.

Note
The callback function from the first example applies to this example as well.

iic_b_master_instance_ctrl_t g_i2c_device_ctrl_2;

i2c_master_cfg_t g_i2c_device_cfg_2 =

{

 .channel = I2C_CHANNEL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 954 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_SLAVE_TEMP_SENSOR,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_2,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_b_master_cfg_extend

};

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_B_MASTER_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_B_MASTER_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_IIC_B_MASTER_SlaveAddressSet(&g_i2c_device_ctrl_2,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 955 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

I2C_SLAVE_DISPLAY_ADAPTER, I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = 0xAA; // NOLINT

 g_i2c_tx_buffer[1] = 0xBB; // NOLINT

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_B_MASTER_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_b_master_clock_settings_t

struct iic_b_master_instance_ctrl_t

struct iic_b_master_extended_cfg_t

Enumerations

enum iic_b_master_timeout_mode_t

enum iic_b_master_timeout_scl_low_t

Data Structure Documentation

◆ iic_b_master_clock_settings_t

struct iic_b_master_clock_settings_t

I2C clock settings

Data Fields

uint8_t cks_value Internal Reference Clock Select.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 956 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

uint8_t brh_value High-level period of SCL clock.

uint8_t brl_value Low-level period of SCL clock.

uint8_t sdod_value

bool sdodcs_value

◆ iic_b_master_instance_ctrl_t

struct iic_b_master_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ iic_b_master_extended_cfg_t

struct iic_b_master_extended_cfg_t

R_IIC_B extended configuration

Data Fields

iic_b_master_timeout_mode_t timeout_mode Timeout Detection Time Select:
Long Mode = 0 and Short Mode
= 1.

iic_b_master_timeout_scl_low_t timeout_scl_low Allows timeouts to occur when
SCL is held low.

iic_b_master_clock_settings_t clock_settings I2C Clock settings.

uint32_t iic_clock_freq I2C Clock frequency in Hz.

bool smbus_operation SMBus operation on I2C bus.

Enumeration Type Documentation

◆ iic_b_master_timeout_mode_t

enum iic_b_master_timeout_mode_t

I2C Timeout mode parameter definition

Enumerator

IIC_B_MASTER_TIMEOUT_MODE_LONG Timeout Detection Time Select: Long Mode ->
TMOS = 0.

IIC_B_MASTER_TIMEOUT_MODE_SHORT Timeout Detection Time Select: Short Mode ->
TMOS = 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 957 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

◆ iic_b_master_timeout_scl_low_t

enum iic_b_master_timeout_scl_low_t

Enumerator

IIC_B_MASTER_TIMEOUT_SCL_LOW_DISABLED Timeout detection during SCL low disabled.

IIC_B_MASTER_TIMEOUT_SCL_LOW_ENABLED Timeout detection during SCL low enabled.

Function Documentation

◆ R_IIC_B_MASTER_Open()

fsp_err_t R_IIC_B_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const
*const p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 958 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

◆ R_IIC_B_MASTER_Read()

fsp_err_t R_IIC_B_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl, p_dest or bytes is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_B_MASTER_Open to initialize the
control block.

◆ R_IIC_B_MASTER_Write()

fsp_err_t R_IIC_B_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes, bool const restart)

Performs a write to the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_B_MASTER_Open to initialize the
control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 959 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

◆ R_IIC_B_MASTER_Abort()

fsp_err_t R_IIC_B_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Safely aborts any in-progress transfer and forces the IIC peripheral into ready state.

Return values
FSP_SUCCESS Channel was reset successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_B_MASTER_Open to initialize the
control block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

◆ R_IIC_B_MASTER_SlaveAddressSet()

fsp_err_t R_IIC_B_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device. This function is used to set the device
address and addressing mode of the slave without reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION Pointer to control structure is NULL.

FSP_ERR_IN_USE Another transfer was in-progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_B_MASTER_Open to initialize the
control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 960 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

◆ R_IIC_B_MASTER_CallbackSet()

fsp_err_t R_IIC_B_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_IIC_B_MASTER_StatusGet()

fsp_err_t R_IIC_B_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 961 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_b_master)

◆ R_IIC_B_MASTER_Close()

fsp_err_t R_IIC_B_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. May power down IIC peripheral. This function will safely terminate any in-
progress I2C transfers.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_B_MASTER_Open to initialize the
control block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

5.2.6.7 I2C Master (r_iic_master)
Modules » Connectivity

Functions

fsp_err_t R_IIC_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_IIC_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_IIC_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_IIC_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_IIC_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 962 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The I2C master on IIC HAL module supports transactions with an I2C Slave device. Callbacks must be
provided which are invoked when a transmit or receive operation has completed. The callback
argument will contain information about the transaction status, bytes transferred and a pointer to
the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_iic_master

The following build time configurations are defined in fsp_cfg/r_iic_master_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Connectivity > I2C Master (r_iic_master)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Master
(r_iic_master). Non-secure callable guard functions can be generated for this module by right clicking

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 963 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2c_master0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
and duty cycle are
printed in a comment
in the generated
iic_master_extended_cf
g_t structure.

Custom Rate (bps) Value must be a non-
negative integer

0 Set a custom bitrate
(bps). Set to 0 to use
the maximum bitrate
for the selected mode.

Standard-mode: up to
100000; Fast-mode: up
to 400000; Fast-mode
plus: up to 1000000

Rise Time (ns) Value must be a non-
negative integer

120 Set the rise time (tr) in
nanoseconds.

Fall Time (ns) Value must be a non-
negative integer

120 Set the fall time (tf) in
nanoseconds.

Duty Cycle (%) Value must be an
integer between 0 and
100

50 Set the SCL duty cycle.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode. Ensure
10-bit slave addressing
is enabled in the
configuration to use
10-Bit setting here.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 964 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

Timeout Mode Short Mode
Long Mode

Short Mode Select the timeout
mode to detect bus
hang.

Timeout during SCL
Low

Enabled
Disabled

Enabled Select if the timeout
can occur when SCL is
held low for a duration
longer than what is set
in the timeout mode.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) upon IIC
transaction completion
reporting the
transaction status.

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, TEI and ERI
interrupts.

Clock Configuration

The IIC peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured
in such a manner that the selected internal rate cannot be achieved, an error will be returned.

Pin Configuration

The IIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I2C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel used must be enabled in the properties of the
selected device.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

IIC Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate.

When the Custom Rate setting is set to 0 the bitrate is fixed to the maximum values shown
below. Otherwise, the supplied value is used to generate bitrate settings.

Standard-mode (Sm) : up to 100 kbps

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 965 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

Fast-mode (Fm) : up to 400 kbps
Fast-mode Plus (Fm+) : up to 1 Mbps

The closest possible baud-rate that can be achieved (less than or equal to the requested
rate) at the current PCLKB settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the IIC

DTC transfer support is configurable and is disabled from the build by default. IIC driver
provides two DTC instances for transmission and reception respectively. The DTC instances
can be enabled individually during configuration.
DTC is helpful for minimizing interrupts during large transactions. Many I2C applications
have shorter transactions. These applications will likely not see any improvement with DTC.
I2C often runs at a much slower speed than the CPU core clock. Some applications with
longer transactions may prefer servicing the interrupts at the I2C bitrate to the overhead of
bringing in the DTC driver.
For further details on DTC please refer Transfer (r_dtc)

Multiple Devices on the Bus

A single IIC instance can be used to communicate with multiple slave devices on the same
channel by using the SlaveAddressSet API.

Multi-Master Support

If multiple masters are connected on the same bus, the I2C Master is capable of detecting
bus busy state before initiating the communication.

Restart

IIC master can hold the the bus after an I2C transaction by issuing a repeated start
condition.

Examples
Basic Example

This is a basic example of minimal use of the r_iic_master in an application. This example shows how
this driver can be used for basic read and write operations.

iic_master_instance_ctrl_t g_i2c_device_ctrl_1;

i2c_master_cfg_t g_i2c_device_cfg_1 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_FAST,

 .slave = I2C_SLAVE_EEPROM,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_1,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 966 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void i2c_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_callback_event = p_args->event;

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the IIC module */

 err = R_IIC_MASTER_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_MASTER_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 967 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single IIC driver can be used to communicate with different slave
devices which are on the same channel.

Note
The callback function from the first example applies to this example as well.

iic_master_instance_ctrl_t g_i2c_device_ctrl_2;

i2c_master_cfg_t g_i2c_device_cfg_2 =

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 968 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_SLAVE_TEMP_SENSOR,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_2,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_MASTER_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 969 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

 err = R_IIC_MASTER_SlaveAddressSet(&g_i2c_device_ctrl_2,

I2C_SLAVE_DISPLAY_ADAPTER, I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = 0xAA; // NOLINT

 g_i2c_tx_buffer[1] = 0xBB; // NOLINT

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_master_clock_settings_t

struct iic_master_instance_ctrl_t

struct iic_master_extended_cfg_t

Enumerations

enum iic_master_timeout_mode_t

enum iic_master_timeout_scl_low_t

Data Structure Documentation

◆ iic_master_clock_settings_t

struct iic_master_clock_settings_t

I2C clock settings

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 970 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

uint8_t cks_value Internal Reference Clock Select.

uint8_t brh_value High-level period of SCL clock.

uint8_t brl_value Low-level period of SCL clock.

uint8_t sddl_value

bool dlcs_value

◆ iic_master_instance_ctrl_t

struct iic_master_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ iic_master_extended_cfg_t

struct iic_master_extended_cfg_t

R_IIC extended configuration

Data Fields

iic_master_timeout_mode_t timeout_mode Timeout Detection Time Select:
Long Mode = 0 and Short Mode
= 1.

iic_master_timeout_scl_low_t timeout_scl_low Allows timeouts to occur when
SCL is held low.

iic_master_clock_settings_t clock_settings I2C Clock settings.

bool smbus_operation SMBus operation on I2C bus.

Enumeration Type Documentation

◆ iic_master_timeout_mode_t

enum iic_master_timeout_mode_t

I2C Timeout mode parameter definition

Enumerator

IIC_MASTER_TIMEOUT_MODE_LONG Timeout Detection Time Select: Long Mode ->
TMOS = 0.

IIC_MASTER_TIMEOUT_MODE_SHORT Timeout Detection Time Select: Short Mode ->
TMOS = 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 971 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

◆ iic_master_timeout_scl_low_t

enum iic_master_timeout_scl_low_t

Enumerator

IIC_MASTER_TIMEOUT_SCL_LOW_DISABLED Timeout detection during SCL low disabled.

IIC_MASTER_TIMEOUT_SCL_LOW_ENABLED Timeout detection during SCL low enabled.

Function Documentation

◆ R_IIC_MASTER_Open()

fsp_err_t R_IIC_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 972 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

◆ R_IIC_MASTER_Read()

fsp_err_t R_IIC_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl, p_dest or bytes is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

◆ R_IIC_MASTER_Write()

fsp_err_t R_IIC_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 973 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

◆ R_IIC_MASTER_Abort()

fsp_err_t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Safely aborts any in-progress transfer and forces the IIC peripheral into ready state.

Return values
FSP_SUCCESS Channel was reset successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

◆ R_IIC_MASTER_SlaveAddressSet()

fsp_err_t R_IIC_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device. This function is used to set the device
address and addressing mode of the slave without reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION Pointer to control structure is NULL.

FSP_ERR_IN_USE Another transfer was in-progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 974 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

◆ R_IIC_MASTER_CallbackSet()

fsp_err_t R_IIC_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_IIC_MASTER_StatusGet()

fsp_err_t R_IIC_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 975 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iic_master)

◆ R_IIC_MASTER_Close()

fsp_err_t R_IIC_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. May power down IIC peripheral. This function will safely terminate any in-
progress I2C transfers.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

5.2.6.8 I2C Master (r_iica_master)
Modules » Connectivity

Functions

fsp_err_t R_IICA_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_IICA_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_IICA_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_IICA_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IICA_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_IICA_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_IICA_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_IICA_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 976 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

Detailed Description

Driver for the IICA peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The IICA master on IICA HAL module supports transactions with an IICA slave device. Callbacks must
be provided which are invoked when a transmit or receive operation has completed. The callback
argument will contain information about the transaction status, bytes transferred and a pointer to
the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

IICA Master Read from a slave device.
IICA Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.

Configuration
Build Time Configurations for r_iica_master

The following build time configurations are defined in fsp_cfg/r_iica_master_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Connectivity > IICA Master (r_iica_master)

This module can be added to the Stacks tab via New Stack > Connectivity > IICA Master
(r_iica_master).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_iica_master0 Module name.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 977 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
is printed in a comment
in the generated
iica_master_extended_
cfg_t structure.

Signal Rising Time (us) Must be a valid value 0 Set the SDA and SCL
signal rising time in
micro-seconds.

Signal Falling Time (us) Must be a valid value 0 Set the SDA and SCL
signal falling time in
micro-seconds.

Duty Cycle (%) Value must be an
integer between 0 and
100

53 Set SCL high duty
cycle.

Digital Filter Enabled
Disabled

Disabled Configure digital filter.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode. Ensure
10-bit slave addressing
is enabled in the
configuration to use
10-Bit setting here.

Slave Address Value must be a non-
negative integer

0x00 Specify the slave
address.

Communication
reservation

Enabled
Disabled

Disabled Configure
Communication
Reservation.

Callback Name must be a valid
C symbol

iica_master_callback A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) upon IICA
transaction completion
reporting the
transaction status.

IICA0 communication
interrupt priority

MCU Specific Options Select end of IICA0
communication
interrupt priority.

SCLA Pin Disabled Disabled Specify SCLA pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 978 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

P100
P110
P212
P914

setting for the MCU.

SDAA Pin Disabled
P101
P109
P213
P913

Disabled Specify SDAA pin
setting for the MCU.

Clock Configuration

The IICA peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured
in such a manner that the selected internal rate cannot be achieved, an error will be returned.

Pin Configuration

The IICA peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An IICA channel would consist of two
pins - SDAA and SCLA for data/address and clock respectively.

Usage Notes
IICA Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current PCLKB settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Multiple Devices on the Bus

A single IICA instance can be used to communicate with multiple slave devices on the same
channel by using the SlaveAddressSet API.

Multi-Master Support

If multiple masters are connected on the same bus, the I2C Master is capable of detecting
bus busy state before initiating the communication.

Restart

IICA master can hold the bus after an I2C transaction by issuing a repeated start
condition.This will mimic a stop followed by start condition.

Limitations

DTC not supported.
Interrupt request is always generated on the falling edge of the 9th clock cycle.
Master operation in multi-master system is not supported
Please configure SDAA and SCLA pins in the IICA module. IICA pins must be set after IICA is
enabled.
Custom bitrate is not yet supported for IICA.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 979 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

Examples
Basic Example

This is a basic example of minimal use of the r_iica_master in an application. This example shows
how this driver can be used for basic read and write operations.

iica_master_instance_ctrl_t g_i2c_device_ctrl_1;

i2c_master_cfg_t g_i2c_device_cfg_1 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_FAST,

 .slave = I2C_SLAVE_EEPROM,

 .p_callback = iica_master_callback, // Callback

 .p_context = &g_i2c_device_ctrl_1,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void iica_master_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_callback_event = p_args->event;

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the IIC module */

 err = R_IICA_MASTER_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 980 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IICA_MASTER_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IICA_MASTER_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 981 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single IICA driver can be used to communicate with different slave
devices which are on the same channel.

Note
The callback function from the first example applies to this example as well.

iica_master_instance_ctrl_t g_i2c_device_ctrl_2;

i2c_master_cfg_t g_i2c_device_cfg_2 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_SLAVE_TEMP_SENSOR,

 .p_callback = iica_master_callback, // Callback

 .p_context = &g_i2c_device_ctrl_2,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IICA_MASTER_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IICA_MASTER_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 982 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_IICA_MASTER_SlaveAddressSet(&g_i2c_device_ctrl_2,

I2C_SLAVE_DISPLAY_ADAPTER, I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = 0xAA; // NOLINT

 g_i2c_tx_buffer[1] = 0xBB; // NOLINT

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IICA_MASTER_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct iica_master_clock_settings_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 983 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

struct iica_master_pin_settings_t

struct iica_master_instance_ctrl_t

struct iica_master_extended_cfg_t

Enumerations

enum iica_master_comm_rez_t

Data Structure Documentation

◆ iica_master_clock_settings_t

struct iica_master_clock_settings_t

IICA clock settings

◆ iica_master_pin_settings_t

struct iica_master_pin_settings_t

Configuration settings for IICA pins

Data Fields

bsp_io_port_pin_t pin The pin.

uint32_t cfg Configuration for the pin.

◆ iica_master_instance_ctrl_t

struct iica_master_instance_ctrl_t

IICA control structure. DO NOT INITIALIZE.

◆ iica_master_extended_cfg_t

struct iica_master_extended_cfg_t

R_IICA extended configuration

Data Fields

iica_master_clock_settings_t clock_settings

iica_master_pin_settings_t sda_pin_settings SDAA pin setting.

iica_master_pin_settings_t scl_pin_settings SCLAA pin setting.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 984 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

◆ iica_master_comm_rez_t

enum iica_master_comm_rez_t

IICA communication reservation parameter definition

Function Documentation

◆ R_IICA_MASTER_Open()

fsp_err_t R_IICA_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the IICA device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Invalid IRQ number assigned

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 985 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

◆ R_IICA_MASTER_Read()

fsp_err_t R_IICA_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, bool const restart)

Performs a read from the IICA device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl, p_dest or bytes is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) for data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IICA_MASTER_Open to initialize the
control block.

◆ R_IICA_MASTER_Write()

fsp_err_t R_IICA_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the IICA device. The caller will be notifieEd when the operation has completed
(successfully) by an I2C_MASTER_EVENT_TX_COMPLET in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) for data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IICA_MASTER_Open to initialize the
control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 986 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

◆ R_IICA_MASTER_Abort()

fsp_err_t R_IICA_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Safely aborts any in-progress transfer and forces the IICA peripheral into ready state.

Return values
FSP_SUCCESS Channel was reset successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IICA_MASTER_Open to initialize the
control block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

◆ R_IICA_MASTER_SlaveAddressSet()

fsp_err_t R_IICA_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device. This function is used to set the device
address and addressing mode of the slave without reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION Pointer to control structure is NULL.

FSP_ERR_IN_USE Another transfer was in-progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IICA_MASTER_Open to initialize the
control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 987 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_iica_master)

◆ R_IICA_MASTER_CallbackSet()

fsp_err_t R_IICA_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_IICA_MASTER_StatusGet()

fsp_err_t R_IICA_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

◆ R_IICA_MASTER_Close()

fsp_err_t R_IICA_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the IICA device. May power down IICA peripheral. This function will safely terminate any in-
progress IICA transfers.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IICA_MASTER_Open to initialize the
control block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 988 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

5.2.6.9 I2C Master (r_sau_i2c)
Modules » Connectivity

Functions

fsp_err_t R_SAU_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_SAU_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_SAU_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_SAU_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SAU_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_SAU_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_SAU_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_SAU_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SAU_I2C_Start (sau_i2c_instance_ctrl_t *const p_ctrl)

fsp_err_t R_SAU_I2C_Stop (sau_i2c_instance_ctrl_t *const p_ctrl)

Detailed Description

Driver for the SAU peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The Simple I2C master on SAU HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which would be invoked when a transmission or receive has been completed. The
callback arguments will contain information about the transaction status, bytes transferred and a
pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100 kHz transaction rate.
Fast Mode Support with up to 400 kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

I2C Master Read from a slave device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 989 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

I2C Master Write to a slave device.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.

Configuration
Build Time Configurations for r_sau_i2c

The following build time configurations are defined in fsp_cfg/r_sau_i2c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Enable Critical Section Enabled
Disabled

Disabled Critical section needs
to be enabled if
multiple channels on
the same SAU unit are
configured for I2C

Manual Start-Stop Enabled
Disabled

Disabled If enabled, users need
to manually call the R_
SAU_I2C_Start/R_SAU_I
2C_Stop functions to
generate the I2C start
and stop conditions.

Enable Single Channel 00
20
11
Disabled

Disabled Enable single channel
to reduce code size if
only one channel (00,
11, or 20) is to be
configured for SAU I2C.

I2C Restart Enable
Disable

Enable Select whether to
include code for the I2C
restart (repeated start)
condition in the build.
Set to 'Disable' to
reduce code size when
all I2C slaves used by
all SAU instances do
not use I2C restart.

DTC Support Enable
Disable

Disable Enable DTC support for
the SAU I2C module.

Configurations for Connectivity > I2C Master (r_sau_i2c)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Master (r_sau_i2c).

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 990 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

General

Name Name must be a valid
C symbol

g_i2c0 Module name.

Channel MCU Specific Options Select the SAU
channel.

Operation clock CK0
CK1

CK0 Select the I2C
operation clock. Use
the Clocks tab to set
the operation clock
divider.

Slave Address Value must be a non-
negative integer

0x00 Specify the slave
address.

Rate Standard
Fast mode
Fast mode plus

Standard Select the I2C data
rate.

If the requested rate
cannot be achieved,
adjust the operation
clock frequency until
the rate is achievable.
The calculated rate is
printed in a comment
in the generated
sau_i2c_extended_cfg_t
structure.

Delay time
(Microseconds)

Value must be a non-
negative integer

5 Hold SDA (or SCK) for
delay time to meet the
I2C start (or stop)
condition. Needs to be
specified according to
slave devices.

Callback Name must be a valid
C symbol

sau_i2c_master_callbac
k

A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Transfer end interrupt
priority

MCU Specific Options Select transfer end
interrupt priority. This
is set for TEI interrupt.

Custom Rate (bps) Value must be a non-
negative integer

0 Set a custom bitrate
(bps). Set to 0 to use
the maximum bitrate
for the selected mode.

Standard-mode: up to
100000; Fast-mode: up

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 991 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

to 400000; Fast-mode
plus: up to 1000000

Clock Configuration

The SAU clock uses the system clock (ICLK) as its clock source.

A prescaler is applied to the ICLK in order to produce the operation clock frequency. The operation
clock is used to generate the desired transfer period of the SAU module.

SAU operation clocks are shared among all channels within a SAU unit. Check the Hardware User's
Manual for your MCU for available units and channels. SAU operation clock dividers are configurable
in the Clocks tab.

The operation clock dividers are named SAU CKmn where m is the SAU unit, and n is the operation
clock. For example, SAU CK01 applies to all SAU0 instances using CK1 as the operation clock (m=0,
n=1).

Pin Configuration

The SAU I2C peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. An I2C channel would consist of
two pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Enabling Single Channel By User With The SAU I2C

The Common > Single Channel property is used for reducing code size when only 1 SAU
channel is to be configured for SAU I2C.
Single Channel is configurable and disabled by default in the driver code.
Note: Not all SAU channels are available on all pin layouts. Check the Hardware User
Manual for your device to confirm available function assignment for each SAU channel.

Enabling Start/Stop Condition By User With The SAU I2C

Manual triggering of I2C start/stop conditions is configurable and disabled by default.
The delay time between the rising edge of SCL and the rising edge of SDA (stop condition)
or the falling edge of SDA and the falling edge of SCL (start condition) is blocking. If
blocking in the ISR for the length of the delay time is not suitable for the application, users
can decide the appropriate calling time for start/stop conditions by enabling manual
triggering and calling R_SAU_I2C_Start/R_SAU_I2C_Stop from the application context.
When manual triggering is disabled, the driver will generate the stop condition after data
transmission from the ISR context.

Interrupt Configuration

Transmit end interrupt (TEI) for the selected channel used must be enabled in the
properties of the selected device.

SAU I2C Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate and operating clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 992 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

When the Custom Rate setting is set to 0 the bitrate is fixed to the maximum values shown
below. Otherwise, the supplied value is used to generate bitrate settings.

Standard-mode (Sm) : up to 100 kbps
Fast-mode (Fm) : up to 400 kbps
Fast-mode Plus (Fm+) : up to 1 Mbps

The closest possible baud-rate that can be achieved (less than or equal to the requested
rate) at the current PCLK settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Selecting Operation Clock Frequency

The relationship between operation clock frequency and bitrate is: bitrate = f_mck / [2 *
(SDRmn.STCLK + 1)] where:

SDRmn.STCLK is an integer in the range [1, 127] for SAU I2C
f_mck is the operation clock (SAU CKmn) frequency

By plugging in the minimum and maximum SDRmn.STCLK values, the range of bitrates for a given
operation clock frequency can be obtained.

Note that due to STCLK being set as discrete integers, the actual bitrate may not be exact. The
actual bitrate and percent errors can be calculated by the formulas:

actual_bitrate = f_mck / [2 * (SDRmn.STCLK + 1)]

percent_error = 100 * abs [(actual_bitrate - expected_bitrate) / expected_bitrate]

Using the fastest possible operation clock for the desired bitrate will result in the lowest deviation
from the requested bitrate. Set the CKmn operation clock divider in the Clocks tab to select the
desired operation clock frequency.

Enabling DTC with the SAU I2C

DTC transfer support is configurable and is disabled from the build by default. The SAU I2C
driver uses a single DTC instance for transmission and reception.
DTC is helpful for minimizing interrupts during large transactions. Many I2C applications
have shorter transactions. These applications will likely not see any improvement with DTC.
I2C often runs at a much slower speed than the CPU core clock. Some applications with
longer transactions may prefer servicing the interrupts at the I2C bitrate to the overhead of
bringing in the DTC driver.
If DTC is not used by any SAU instance, set Common > DTC Support to disabled to reduce
code size.
For further details on DTC please refer Transfer (r_dtc)

Multiple Channels Being Used In Same Unit

When multiple channels on the same SAU unit are used for any serial function (I2C, UART,
and/or SPI), then the Common > Enable Critical Section property needs to be set to enabled
for all SAU serial drivers.

This is because some SAU registers are shared for SAU channels on the same unit.
Therefore any read-modify-write operations to those registers must be protected
by a critical section.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 993 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

I2C Restart Support

I2C Restart (repeated start) is required by some, but not all slave devices.
If no slave devices used by any SAU I2C instance require repeated start, then the Common
> I2C Restart property can be set to disabled to reduce code size.
When I2C Restart is disabled, even if restart=true is passed to the read or write APIs, the
restart condition is not issued.

Multiple Devices On The Bus

A single SAU I2C instance can be used to communicate with multiple slave devices on the
same channel by using the R_SAU_I2C_SlaveAddressSet API.

Limitations

Overrun error detection is not supported
SAU I2C does not support clock stretching, I2C slave mode, or arbitration loss detection

Examples
Basic Example

This is a basic example of minimal use of the r_sau_i2c in an application. This example shows how
this driver can be used for basic read and write operations.

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the I2C module */

 err = R_SAU_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SAU_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 994 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SAU_I2C_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 995 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

Enabling Start/Stop Condition By User

This example demonstrates how to write code for SAU I2C communication when the call start/stop
condtion by user is enabled.

void manual_trigger_condition_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the I2C module */

 err = R_SAU_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SAU_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 err = R_SAU_I2C_Start(&g_i2c_device_ctrl_1);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 996 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

 err = R_SAU_I2C_Stop(&g_i2c_device_ctrl_1);

 assert(FSP_SUCCESS == err);

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SAU_I2C_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 err = R_SAU_I2C_Start(&g_i2c_device_ctrl_1);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 err = R_SAU_I2C_Stop(&g_i2c_device_ctrl_1);

 assert(FSP_SUCCESS == err);

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave Devices On The Same Channel (Bus)

This example demonstrates how a single SAU I2C driver can be used to communicate with different
slave devices which are on the same channel.

void single_channel_multi_slave (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 997 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SAU_I2C_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SAU_I2C_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_SAU_I2C_SlaveAddressSet(&g_i2c_device_ctrl_2, I2C_SLAVE_DISPLAY_ADAPTER,

I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = (uint8_t) I2C_EXAMPLE_DATA_1;

 g_i2c_tx_buffer[1] = (uint8_t) I2C_EXAMPLE_DATA_2;

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SAU_I2C_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 998 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct sau_i2c_clock_settings_t

struct sau_i2c_instance_ctrl_t

struct sau_i2c_extended_cfg_t

Enumerations

enum sau_i2c_operation_clock_t

Data Structure Documentation

◆ sau_i2c_clock_settings_t

struct sau_i2c_clock_settings_t

I2C clock settings

Data Fields

uint8_t stclk Bit rate register settings.

sau_i2c_operation_clock_t operation_clock I2C operating clock select.

◆ sau_i2c_instance_ctrl_t

struct sau_i2c_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

Data Fields

i2c_master_cfg_t const * p_cfg

 Pointer to the configuration structure.

uint32_t open

 Flag to determine if the device is open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 999 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

R_SAU0_Type * p_reg

 Base register for this channel.

uint8_t * p_buff

 Holds the data associated with the transfer.

uint32_t total

 Holds the total number of data bytes to transfer.

uint32_t loaded

 Tracks the number of data bytes written to the register.

volatile bool read

 Holds the direction of the data byte transfer.

volatile bool restart

 Holds whether or not the restart should be issued when done.

volatile bool restarted

 Tracks whether or not a restart was issued during the previous
transfer.

volatile bool do_dummy_read

 Tracks whether a dummy read is issued on the first RX.

uint8_t slave

 The address of the slave device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,000 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

◆ sau_i2c_extended_cfg_t

struct sau_i2c_extended_cfg_t

SAU I2C extended configuration

Data Fields

sau_i2c_clock_settings_t clock_settings I2C clock settings.

uint8_t delay_time The delay time of the slave
device.

uint8_t i2c_unit The SAU unit corresponding to
the selected channel.

Enumeration Type Documentation

◆ sau_i2c_operation_clock_t

enum sau_i2c_operation_clock_t

Operation clock

Enumerator

SAU_I2C_MASTER_OPERATION_CLOCK_CK0 Operating clock select CK0.

SAU_I2C_MASTER_OPERATION_CLOCK_CK1 Operating clock select CK1.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,001 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

◆ R_SAU_I2C_Open()

fsp_err_t R_SAU_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the SAU device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Clock rate requested is greater than

400KHz
5. Invalid IRQ number assigned

◆ R_SAU_I2C_Read()

fsp_err_t R_SAU_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION The parameter p_api_ctrl, p_dest is NULL,
bytes is 0.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,002 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

◆ R_SAU_I2C_Write()

fsp_err_t R_SAU_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. The write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl, p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SAU_I2C_Abort()

fsp_err_t R_SAU_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the I2C peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event.

Return values
FSP_SUCCESS Transaction was aborted without issue.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,003 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

◆ R_SAU_I2C_SlaveAddressSet()

fsp_err_t R_SAU_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address of the slave device.

This function is used to set the device address of the slave without reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION p_ctrl or address is NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_IN_USE An I2C Transaction is in progress.

◆ R_SAU_I2C_CallbackSet()

fsp_err_t R_SAU_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback.

Note
p_callback_memory is not used in this implementation and can be set to NULL.

Implements i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_SAU_I2C_StatusGet()

fsp_err_t R_SAU_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,004 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sau_i2c)

◆ R_SAU_I2C_Close()

fsp_err_t R_SAU_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down I2C peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SAU_I2C_Start()

fsp_err_t R_SAU_I2C_Start (sau_i2c_instance_ctrl_t *const p_ctrl)

This function starts/restarts the IIC condition.

Parameters
[in] p_ctrl Instance control structure.

◆ R_SAU_I2C_Stop()

fsp_err_t R_SAU_I2C_Stop (sau_i2c_instance_ctrl_t *const p_ctrl)

This function stops the IIC condition.

Parameters
[in] p_ctrl Instance control structure.

5.2.6.10 I2C Master (r_sci_b_i2c)
Modules » Connectivity

Functions

fsp_err_t R_SCI_B_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_SCI_B_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,005 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

fsp_err_t R_SCI_B_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_B_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_B_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_SCI_B_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_B_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_SCI_B_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the SCI_B peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The Simple I2C master on SCI_B HAL module supports transactions with an I2C Slave device.
Callbacks must be provided which would be invoked when a transmission or receive has been
completed. The callback arguments will contain information about the transaction status, bytes
transferred and a pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100 kHz transaction rate.
Fast Mode Support with up to 400 kHz transaction rate.

SDA Delay in nanoseconds can be specified as a part of the configuration.
I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_sci_b_i2c

The following build time configurations are defined in fsp_cfg/r_sci_b_i2c_cfg.h:

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,006 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Connectivity > I2C Master (r_sci_b_i2c)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Master (r_sci_b_i2c).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2c0 Module name.

Channel Value must be an
integer between 0 and
9

0 Select the SCI channel.

Slave Address Value must be a hex
value

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the address
mode.

Rate Standard
Fast-mode

Standard Select the I2C data
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
and SDA delay are
printed in a comment
in the generated
sci_b_i2c_extended_cfg
_t structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,007 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

Custom Rate (bps) Value must be a non-
negative integer

0 Set a custom bitrate
(bps). Set to 0 to use
the maximum bitrate
for the selected mode.

Standard-mode: up to
100000; Fast-mode: up
to 400000

SDA Output Delay
(nano seconds)

Must be a valid non-
negative integer with
maximum configurable
value of 300

300 Specify the SDA output
delay in nanoseconds.

Noise Filter Clock
Select

The on-chip
baud rate
generator
source clock
divided by 1
The on-chip
baud rate
generator
source clock
divided by 2
The on-chip
baud rate
generator
source clock
divided by 4
The on-chip
baud rate
generator
source clock
divided by 8

The on-chip baud rate
generator source clock
divided by 1

Select the on-chip baud
rate generator source
clock division setting
for the digital noise
filter

Clock Source MCU Specific Options Select the clock source
for the SCI I2C module.

Bit Rate Modulation Enable
Disable

Enable Enabling bitrate
modulation reduces the
percent error of the
actual bitrate with
respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock
output pulse, so the
clock is no longer a
square wave.

Callback Name must be a valid
C symbol

sci_b_i2c_master_callba
ck

A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,008 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

interrupt service
routine (ISR).

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI (if used),
TEI interrupts.

RX Interrupt Priority
Level [Only used when
DTC is enabled]

MCU Specific Options Select the interrupt
priority level. This is set
for RXI only when DTC
is enabled.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA6T2 PCLKA

RA8D1 PCLKA

RA8M1 PCLKA

RA8T1 PCLKA

The actual I2C transfer rate can be derived from either SCISPICLK or the peripheral clock (PCLK)1,
and will be calculated and set by the tooling depending on the selected transfer rate and the SDA
delay. If the selected clock is configured in such a manner that the selected internal rate cannot be
achieved, an error will be returned.

Note
1. See Figure 26.2 in the RA6T2 manual for more information.

Pin Configuration

The SCI_B I2C peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. An I2C channel would consist of
two pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

Receive buffer full (RXI), transmit buffer empty (TXI) and transmit end (TEI) interrupts for
the selected channel used must be enabled in the properties of the selected device.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

SCI_B I2C Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate and SDA Delay.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,009 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

When the Custom Rate setting is set to 0 the bitrate is fixed to the maximum values shown
below. Otherwise, the supplied value is used to generate bitrate settings.

Standard-mode (Sm) : up to 100 kbps
Fast-mode (Fm) : up to 400 kbps

The closest possible baud-rate that can be achieved (less than or equal to the requested
rate) at the current PCLK settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the SCI_B I2C

DTC transfer support is configurable and is disabled from the build by default. SCI_B I2C
driver provides two DTC instances for transmission and reception respectively.
DTC is helpful for minimizing interrupts during large transactions. Many I2C applications
have shorter transactions. These applications will likely not see any improvement with DTC.
I2C often runs at a much slower speed than the CPU core clock. Some applications with
longer transactions may prefer servicing the interrupts at the I2C bitrate to the overhead of
bringing in the DTC driver.
For further details on DTC please refer Transfer (r_dtc)

Multiple Devices on the Bus

A single SCI_B I2C instance can be used to communicate with multiple slave devices on the
same channel by using the SlaveAddressSet API.

Restart

SCI_B_I2C can hold the the bus after an I2C transaction by issuing a repeated start
condition.

Examples
Basic Example

This is a basic example of minimal use of the r_sci_b_i2c in an application. This example shows how
this driver can be used for basic read and write operations.

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the I2C module */

 err = R_SCI_B_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,010 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_B_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_B_I2C_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,011 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single SCI_B I2C driver can be used to communicate with different
slave devices which are on the same channel.

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_B_I2C_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_B_I2C_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,012 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

 /* Send data to I2C slave on the same channel */

 err = R_SCI_B_I2C_SlaveAddressSet(&g_i2c_device_ctrl_2,

I2C_SLAVE_DISPLAY_ADAPTER, I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = (uint8_t) I2C_EXAMPLE_DATA_1;

 g_i2c_tx_buffer[1] = (uint8_t) I2C_EXAMPLE_DATA_2;

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_B_I2C_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct sci_b_i2c_clock_settings_t

struct sci_b_i2c_instance_ctrl_t

struct sci_b_i2c_extended_cfg_t

Enumerations

enum sci_b_i2c_clock_source_t

Data Structure Documentation

◆ sci_b_i2c_clock_settings_t

struct sci_b_i2c_clock_settings_t

I2C clock settings

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,013 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

bool bitrate_modulation Bit-rate Modulation Function
enable or disable.

uint8_t brr_value Bit rate register settings.

uint8_t clk_divisor_value Clock Select settings.

uint8_t mddr_value Modulation Duty Register
settings.

uint8_t cycles_value SDA Delay Output Cycles
Select.

uint8_t snfr_value Noise Filter Setting Register
value.

sci_b_i2c_clock_source_t clock_source Clock source (PCLK or
SCISPICLK)

◆ sci_b_i2c_instance_ctrl_t

struct sci_b_i2c_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ sci_b_i2c_extended_cfg_t

struct sci_b_i2c_extended_cfg_t

SCI I2C extended configuration

Data Fields

sci_b_i2c_clock_settings_t clock_settings I2C Clock settings.

Enumeration Type Documentation

◆ sci_b_i2c_clock_source_t

enum sci_b_i2c_clock_source_t

SCI clock source

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,014 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

◆ R_SCI_B_I2C_Open()

fsp_err_t R_SCI_B_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Clock rate requested is greater than

400KHz
5. Invalid IRQ number assigned

◆ R_SCI_B_I2C_Read()

fsp_err_t R_SCI_B_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl, p_dest is NULL, bytes
is 0.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,015 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

◆ R_SCI_B_I2C_Write()

fsp_err_t R_SCI_B_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_ctrl, p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

◆ R_SCI_B_I2C_Abort()

fsp_err_t R_SCI_B_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the I2C peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Transaction was aborted without issue.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,016 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

◆ R_SCI_B_I2C_SlaveAddressSet()

fsp_err_t R_SCI_B_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device.

This function is used to set the device address and addressing mode of the slave without
reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION p_ctrl or address is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

FSP_ERR_IN_USE An I2C Transaction is in progress.

◆ R_SCI_B_I2C_CallbackSet()

fsp_err_t R_SCI_B_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,017 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_b_i2c)

◆ R_SCI_B_I2C_StatusGet()

fsp_err_t R_SCI_B_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

◆ R_SCI_B_I2C_Close()

fsp_err_t R_SCI_B_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down I2C peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

5.2.6.11 I2C Master (r_sci_i2c)
Modules » Connectivity

Functions

fsp_err_t R_SCI_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_SCI_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,018 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_SCI_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

fsp_err_t R_SCI_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The Simple I2C master on SCI HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which would be invoked when a transmission or receive has been completed. The
callback arguments will contain information about the transaction status, bytes transferred and a
pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100 kHz transaction rate.
Fast Mode Support with up to 400 kHz transaction rate.

SDA Delay in nanoseconds can be specified as a part of the configuration.
I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_sci_i2c

The following build time configurations are defined in fsp_cfg/r_sci_i2c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,019 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Connectivity > I2C Master (r_sci_i2c)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Master (r_sci_i2c).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2c0 Module name.

Channel Value must be an
integer between 0 and
9

0 Select the SCI channel.

Slave Address Value must be a hex
value

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the address
mode.

Rate Standard
Fast-mode

Standard Select the I2C data
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
and SDA delay are
printed in a comment
in the generated
sci_i2c_extended_cfg_t
structure.

Custom Rate (bps) Value must be a non-
negative integer

0 Set a custom bitrate
(bps). Set to 0 to use
the maximum bitrate
for the selected mode.

Standard-mode: up to
100000; Fast-mode: up

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,020 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

to 400000

SDA Output Delay
(nano seconds)

Must be a valid non-
negative integer with
maximum configurable
value of 300

300 Specify the SDA output
delay in nanoseconds.

Noise filter setting Use clock signal
divided by 1
with noise filter
Use clock signal
divided by 2
with noise filter
Use clock signal
divided by 4
with noise filter
Use clock signal
divided by 8
with noise filter

Use clock signal
divided by 1 with noise
filter

Select the sampling
clock for the digital
noise filter

Bit Rate Modulation Enable
Disable

Enable Enabling bitrate
modulation reduces the
percent error of the
actual bitrate with
respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock
output pulse, so the
clock is no longer a
square wave.

Callback Name must be a valid
C symbol

sci_i2c_master_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI (if used),
TEI interrupts.

RX Interrupt Priority
Level [Only used when
DTC is enabled]

MCU Specific Options Select the interrupt
priority level. This is set
for RXI only when DTC
is enabled.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,021 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2A2 PCLKB

RA2E1 PCLKB

RA2E2 PCLKB

RA2E3 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4E2 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4T1 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

RA6T3 PCLKA

The actual I2C transfer rate will be calculated and set by the tooling depending on the selected
transfer rate and the SDA delay. If the PCLK is configured in such a manner that the selected internal
rate cannot be achieved, an error will be returned.

Pin Configuration

The SCI I2C peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. An I2C channel would consist of
two pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

Receive buffer full (RXI), transmit buffer empty (TXI) and transmit end (TEI) interrupts for
the selected channel used must be enabled in the properties of the selected device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,022 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

SCI I2C Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate and SDA Delay.

When the Custom Rate setting is set to 0 the bitrate is fixed to the maximum values shown
below. Otherwise, the supplied value is used to generate bitrate settings.

Standard-mode (Sm) : up to 100 kbps
Fast-mode (Fm) : up to 400 kbps

The closest possible baud-rate that can be achieved (less than or equal to the requested
rate) at the current PCLK settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the SCI I2C

DTC transfer support is configurable and is disabled from the build by default. SCI I2C driver
provides two DTC instances for transmission and reception respectively.
DTC is helpful for minimizing interrupts during large transactions. Many I2C applications
have shorter transactions. These applications will likely not see any improvement with DTC.
I2C often runs at a much slower speed than the CPU core clock. Some applications with
longer transactions may prefer servicing the interrupts at the I2C bitrate to the overhead of
bringing in the DTC driver.
For further details on DTC please refer Transfer (r_dtc)

Multiple Devices on the Bus

A single SCI I2C instance can be used to communicate with multiple slave devices on the
same channel by using the SlaveAddressSet API.

Restart

SCI I2C master can hold the the bus after an I2C transaction by issuing Restart. This will
mimic a stop followed by start condition.

Examples
Basic Example

This is a basic example of minimal use of the r_sci_i2c in an application. This example shows how
this driver can be used for basic read and write operations.

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the I2C module */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,023 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

 err = R_SCI_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,024 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single SCI I2C driver can be used to communicate with different
slave devices which are on the same channel.

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_I2C_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,025 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_SCI_I2C_SlaveAddressSet(&g_i2c_device_ctrl_2, I2C_SLAVE_DISPLAY_ADAPTER,

I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = (uint8_t) I2C_EXAMPLE_DATA_1;

 g_i2c_tx_buffer[1] = (uint8_t) I2C_EXAMPLE_DATA_2;

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct sci_i2c_clock_settings_t

struct sci_i2c_instance_ctrl_t

struct sci_i2c_extended_cfg_t

Data Structure Documentation

◆ sci_i2c_clock_settings_t

struct sci_i2c_clock_settings_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,026 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

I2C clock settings

Data Fields

bool bitrate_modulation Bit-rate Modulation Function
enable or disable.

uint8_t brr_value Bit rate register settings.

uint8_t clk_divisor_value Clock Select settings.

uint8_t mddr_value Modulation Duty Register
settings.

uint8_t cycles_value SDA Delay Output Cycles
Select.

uint8_t snfr_value Noise Filter Setting Register
value.

◆ sci_i2c_instance_ctrl_t

struct sci_i2c_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ sci_i2c_extended_cfg_t

struct sci_i2c_extended_cfg_t

SCI I2C extended configuration

Data Fields

sci_i2c_clock_settings_t clock_settings I2C Clock settings.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,027 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

◆ R_SCI_I2C_Open()

fsp_err_t R_SCI_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Clock rate requested is greater than

400KHz
5. Invalid IRQ number assigned

◆ R_SCI_I2C_Read()

fsp_err_t R_SCI_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl, p_dest is NULL, bytes
is 0.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,028 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

◆ R_SCI_I2C_Write()

fsp_err_t R_SCI_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_ctrl, p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

◆ R_SCI_I2C_Abort()

fsp_err_t R_SCI_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the I2C peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Transaction was aborted without issue.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,029 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

◆ R_SCI_I2C_SlaveAddressSet()

fsp_err_t R_SCI_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device.

This function is used to set the device address and addressing mode of the slave without
reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION p_ctrl or address is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

FSP_ERR_IN_USE An I2C Transaction is in progress.

◆ R_SCI_I2C_CallbackSet()

fsp_err_t R_SCI_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,030 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Master (r_sci_i2c)

◆ R_SCI_I2C_StatusGet()

fsp_err_t R_SCI_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t * p_status
)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

◆ R_SCI_I2C_Close()

fsp_err_t R_SCI_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down I2C peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

5.2.6.12 I2C Slave (r_iic_b_slave)
Modules » Connectivity

Functions

fsp_err_t R_IIC_B_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl,
i2c_slave_cfg_t const *const p_cfg)

fsp_err_t R_IIC_B_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes)

fsp_err_t R_IIC_B_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes)

fsp_err_t R_IIC_B_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,031 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

fsp_err_t R_IIC_B_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the IIC/I3C peripheral on RA MCUs. This module implements the I2C Slave Interface.

Overview
Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

Reads data written by master device.
Write data which is read by master device.
Can accept 0x00 as slave address.
Can be assigned a 10-bit address.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
I2C Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error
Condition.
Additional build-time features:

Optional (build time) DTC support for read and write respectively.

Configuration
Build Time Configurations for r_iic_b_slave

The following build time configurations are defined in fsp_cfg/r_iic_b_slave_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

Configurations for Connectivity > I2C Slave (r_iic_b_slave)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Slave
(r_iic_b_slave). Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,032 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

Interrupt Priority Level

Transmit, Receive, and
Transmit End

MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, and TEI
interrupts.

Error MCU Specific Options Select the interrupt
priority level. This is set
for ERI interrupt.

Name Name must be a valid
C symbol

g_i2c_slave0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the delay for the
requested transfer rate
cannot be achieved,
the settings with the
largest possible
transfer rate that is
less than or equal to
the requested transfer
rate are used. The
theoretical calculated
delay is printed in a
comment in the
generated
iic_b_slave_extended_c
fg_t structure.

Internal Reference
Clock

I2C Clock / 1
I2C Clock / 2
I2C Clock / 4
I2C Clock / 8
I2C Clock / 16
I2C Clock / 32
I2C Clock / 64
I2C Clock / 128

I2C Clock / 1 Select the internal
reference clock for IIC
slave. The internal
reference clock is used
only to determine the
clock frequency of the
noise filter samples.
I2C Clock can be either
IICCLK or PCLKD based
on the MCU.

Digital Noise Filter
Stage Select

Refer to the RA
Configuration tool for
available options.

3-stage filter Select the number of
digital filter stages for
IIC Slave.

Slave Address Value must be non-
negative

0x08 Specify the slave
address.

General Call Enabled
Disabled

Disabled Allows the slave to
respond to general call
address: 0x00.

Address Mode 7-Bit 7-Bit Select the slave

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,033 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

10-Bit address mode.

Clock Stretching Enabled
Disabled

Disabled Configure Clock
Stretching.

Callback Name must be a valid
C symbol

g_iic_b_slave0_callback A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) to report
I2C Slave transaction
events and status.

Clock Configuration

The IIC/I3C peripheral module uses the IICCLK or PCLKD (based on the MCU) as its clock source for
the bus clock. The actual I2C transfer rate will be calculated and set by the tooling depending on the
selected transfer rate. If the clocks are configured in such a manner that the selected internal rate
cannot be achieved, an error will be returned.

Pin Configuration

The IIC/I3C peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. An I2C channel would consist of
two pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel must be enabled in the properties of the selected
device.
The interrupt priority of ERI can be set higher than or equal to the interrupt priorities of RXI,
TXI and TEI.
Note

: During master-write slave-read type of operations if the slave device requires to perform clock
stretching after the last data byte is received, a higher priority ERI will ensure that the ongoing
transaction is completed (by accepting the Stop/Restart condition from the master) before the next
transaction is initiated.
: To support clock stretching (Holding SCL low after the falling edge of the 9th clock cycle), 'Clock
Stretching' configuration must be enabled.

Callback

A callback function must be provided which will be invoked for the cases below:
An I2C Master initiates a transmission or reception:
I2C_SLAVE_EVENT_TX_REQUEST; I2C_SLAVE_EVENT_RX_REQUEST
A Transmission or reception has been completed:
I2C_SLAVE_EVENT_TX_COMPLETE; I2C_SLAVE_EVENT_RX_COMPLETE
An I2C Master is requesting to read or write more data:
I2C_SLAVE_EVENT_TX_MORE_REQUEST; I2C_SLAVE_EVENT_RX_MORE_REQUEST
Error conditions: I2C_SLAVE_EVENT_ABORTED
An I2C Master initiates a general call by passing 0x00 as slave address:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,034 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

I2C_SLAVE_EVENT_GENERAL_CALL
The callback arguments will contain information about the transaction status/events, bytes
transferred and a pointer to the user defined context.
Clock stretching is enabled by the use of callbacks. This means that the IIC slave can hold
the clock line SCL LOW to force the I2C Master into a wait state.
The table below shows I2C Slave event handling expected in user code:

IIC Slave Callback Event IIC Slave API expected to be called

I2C_SLAVE_EVENT_ABORTED Handle event based on application

I2C_SLAVE_EVENT_RX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_TX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_RX_REQUEST R_IIC_B_SLAVE_Read API. If the slave is a Write
Only device call this API with 0 bytes to send a
NACK to the master.

I2C_SLAVE_EVENT_TX_REQUEST R_IIC_B_SLAVE_Write API

I2C_SLAVE_EVENT_RX_MORE_REQUEST R_IIC_B_SLAVE_Read API. If the slave cannot
read any more data call this API with 0 bytes to
send a NACK to the master.

I2C_SLAVE_EVENT_TX_MORE_REQUEST R_IIC_B_SLAVE_Write API

I2C_SLAVE_EVENT_GENERAL_CALL R_IIC_B_SLAVE_Read

If parameter checking is enabled and R_IIC_B_SLAVE_Read API is not called for
I2C_SLAVE_EVENT_RX_REQUEST and/or I2C_SLAVE_EVENT_RX_MORE_REQUEST, the slave
will send a NACK to the master and would eventually timeout.
R_IIC_B_SLAVE_Write API is not called for I2C_SLAVE_EVENT_TX_REQUEST and/or
I2C_SLAVE_EVENT_TX_MORE_REQUEST:

Slave timeout is less than Master timeout: The slave will timeout and release the
bus causing the master to read 0xFF for every remaining byte.
Slave timeout is more than Master timeout: The master will timeout first followed
by the slave.

IIC Slave Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current I2C Clock (IICCLK or PCLKD based on the MCU)
settings is calculated and used.

Limitations

When 'Clock Stretching' configuration is enabled, the receive operation will not utilize the
double buffer arrangement in hardware for a continuous read. This means that the read
operation would happen in single byte units such that the active master would send the
next byte only when the slave has read the current byte of data.
When DTC is enabled, the clock frequency supply for DTC must be configured greater than
the "Internal Reference Clock" of the slave.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,035 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

Examples
Basic Example

This is a basic example of minimal use of the R_IIC_B_SLAVE in an application. This example shows
how this driver can be used for basic read and write operations.

iic_b_master_instance_ctrl_t g_i2c_master_ctrl;

i2c_master_cfg_t g_i2c_master_cfg =

{

 .channel = I2C_MASTER_CHANNEL_2,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_master_callback, // Callback

 .p_context = &g_i2c_master_ctrl,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend_standard_mode

};

iic_b_slave_instance_ctrl_t g_i2c_slave_ctrl;

i2c_slave_cfg_t g_i2c_slave_cfg =

{

 .channel = I2C_SLAVE_CHANNEL_0,

 .rate = I2C_SLAVE_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_SLAVE_ADDR_MODE_7BIT,

 .p_callback = i2c_slave_callback, // Callback

 .p_context = &g_i2c_slave_ctrl,

 .p_extend = &g_iic_slave_cfg_extend_standard_mode

};

void i2c_master_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_master_callback_event = p_args->event;

}

void i2c_slave_callback (i2c_slave_callback_args_t * p_args)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,036 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

{

 g_i2c_slave_callback_event = p_args->event;

 if ((p_args->event == I2C_SLAVE_EVENT_RX_COMPLETE) || (p_args->event ==

I2C_SLAVE_EVENT_TX_COMPLETE))

 {

 /* Transaction Successful */

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_RX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_RX_MORE_REQUEST))

 {

 /* Read from Master */

 err = R_IIC_B_SLAVE_Read(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_TX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_TX_MORE_REQUEST))

 {

 /* Write to master */

 err = R_IIC_B_SLAVE_Write(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Error Event - reported through g_i2c_slave_callback_event */

 }

}

void basic_example (void)

{

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 g_slave_transfer_length = I2C_BUFFER_SIZE_BYTES;

 /* Pin connections:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,037 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

 * Channel 0 SDA <--> Channel 2 SDA

 * Channel 0 SCL <--> Channel 2 SCL

 */

 /* Initialize the IIC Slave module */

 err = R_IIC_B_SLAVE_Open(&g_i2c_slave_ctrl, &g_i2c_slave_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the IIC Master module */

 err = R_IIC_B_MASTER_Open(&g_i2c_master_ctrl, &g_i2c_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_master_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 err = R_IIC_B_MASTER_Write(&g_i2c_master_ctrl, &g_i2c_master_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_B_SLAVE_Read API to service the Master

Write Request.

 */

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_RX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,038 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_B_MASTER_Read(&g_i2c_master_ctrl, &g_i2c_master_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_SLAVE_Write API to service the Master Read

Request.

 */

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_TX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_master_tx_buffer, g_i2c_master_rx_buffer,

I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_b_slave_clock_settings_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,039 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

struct iic_b_slave_extended_cfg_t

Data Structure Documentation

◆ iic_b_slave_clock_settings_t

struct iic_b_slave_clock_settings_t

I2C clock settings

Data Fields

uint8_t cks_value Internal Reference Clock Select.

uint8_t brl_value Low-level period of SCL clock.

uint8_t digital_filter_stages Number of digital filter stages
based on brl_value.

◆ iic_b_slave_extended_cfg_t

struct iic_b_slave_extended_cfg_t

R_IIC_SLAVE extended configuration

Data Fields

iic_b_slave_clock_settings_t clock_settings I2C Clock settings.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,040 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

◆ R_IIC_B_SLAVE_Open()

fsp_err_t R_IIC_B_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t const *const
p_cfg)

Opens the I2C slave device.

Return values
FSP_SUCCESS I2C slave device opened successfully.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_INVALID_ARGUMENT Error interrupt priority is lower than
Transmit, Receive and Transmit End
interrupt priority

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned
6. transfer instance in p_cfg is NULL

when DTC support enabled

◆ R_IIC_B_SLAVE_Read()

fsp_err_t R_IIC_B_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read from the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave read operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_RX_COMPLETE in the callback. In case the master continues
to write more data, an I2C_SLAVE_EVENT_RX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue

FSP_ERR_ASSERTION p_api_ctrl, bytes or p_dest is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

FSP_ERR_INVALID_SIZE Invalid size when reading data via DTC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,041 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

◆ R_IIC_B_SLAVE_Write()

fsp_err_t R_IIC_B_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write to the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave write operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_TX_COMPLETE in the callback. In case the master continues
to read more data, an I2C_SLAVE_EVENT_TX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

FSP_ERR_INVALID_SIZE Invalid size when writing data via DTC.

◆ R_IIC_B_SLAVE_CallbackSet()

fsp_err_t R_IIC_B_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*)(i2c_slave_callback_args_t *) p_callback, void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_slave_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,042 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_b_slave)

◆ R_IIC_B_SLAVE_Close()

fsp_err_t R_IIC_B_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Closes the I2C device.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_NOT_OPEN Device not opened.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

5.2.6.13 I2C Slave (r_iic_slave)
Modules » Connectivity

Functions

fsp_err_t R_IIC_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t
const *const p_cfg)

fsp_err_t R_IIC_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

fsp_err_t R_IIC_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Slave Interface.

Overview
Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

Reads data written by master device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,043 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

Write data which is read by master device.
Can accept 0x00 as slave address.
Can be assigned a 10-bit address.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
I2C Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error
Condition.
Additional build-time features:

Optional (build time) DTC support for read and write respectively.

Configuration
Build Time Configurations for r_iic_slave

The following build time configurations are defined in fsp_cfg/r_iic_slave_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

Configurations for Connectivity > I2C Slave (r_iic_slave)

This module can be added to the Stacks tab via New Stack > Connectivity > I2C Slave (r_iic_slave).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Interrupt Priority Level

Transmit, Receive, and
Transmit End

MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, and TEI
interrupts.

Error MCU Specific Options Select the interrupt
priority level. This is set
for ERI interrupt.

Name Name must be a valid
C symbol

g_i2c_slave0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,044 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

If the delay for the
requested transfer rate
cannot be achieved,
the settings with the
largest possible
transfer rate that is
less than or equal to
the requested transfer
rate are used. The
theoretical calculated
delay is printed in a
comment in the
generated
iic_slave_extended_cfg
_t structure.

Internal Reference
Clock

PCLKB / 1
PCLKB / 2
PCLKB / 4
PCLKB / 8
PCLKB / 16
PCLKB / 32
PCLKB / 64
PCLKB / 128

PCLKB / 1 Select the internal
reference clock for IIC
slave. The internal
reference clock is used
only to determine the
clock frequency of the
noise filter samples.

Digital Noise Filter
Stage Select

Disabled
Single-stage
filter
2-stage filter
3-stage filter
4-stage filter

3-stage filter Select the number of
digital filter stages for
IIC Slave.

Slave Address Value must be non-
negative

0x08 Specify the slave
address.

General Call Enabled
Disabled

Disabled Allows the slave to
respond to general call
address: 0x00.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode.

Clock Stretching Enabled
Disabled

Disabled Configure Clock
Stretching.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) to report
I2C Slave transaction
events and status.

Clock Configuration

The IIC peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,045 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

in such a manner that the selected transfer rate cannot be achieved, an error will be returned.

Pin Configuration

The IIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I2C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel must be enabled in the properties of the selected
device.
The interrupt priority of ERI can be set higher than or equal to the interrupt priorities of RXI,
TXI and TEI.
Note

: During master-write slave-read type of operations if the slave device requires to perform clock
stretching after the last data byte is received, a higher priority ERI will ensure that the ongoing
transaction is completed (by accepting the Stop/Restart condition from the master) before the next
transaction is initiated.
: To support clock stretching (Holding SCL low after the falling edge of the 9th clock cycle), 'Clock
Stretching' configuration must be enabled.

Callback

A callback function must be provided which will be invoked for the cases below:
An I2C Master initiates a transmission or reception:
I2C_SLAVE_EVENT_TX_REQUEST; I2C_SLAVE_EVENT_RX_REQUEST
A Transmission or reception has been completed:
I2C_SLAVE_EVENT_TX_COMPLETE; I2C_SLAVE_EVENT_RX_COMPLETE
An I2C Master is requesting to read or write more data:
I2C_SLAVE_EVENT_TX_MORE_REQUEST; I2C_SLAVE_EVENT_RX_MORE_REQUEST
Error conditions: I2C_SLAVE_EVENT_ABORTED
An I2C Master initiates a general call by passing 0x00 as slave address:
I2C_SLAVE_EVENT_GENERAL_CALL

The callback arguments will contain information about the transaction status/events, bytes
transferred and a pointer to the user defined context.
Clock stretching is enabled by the use of callbacks. This means that the IIC slave can hold
the clock line SCL LOW to force the I2C Master into a wait state.
The table below shows I2C Slave event handling expected in user code:

IIC Slave Callback Event IIC Slave API expected to be called

I2C_SLAVE_EVENT_ABORTED Handle event based on application

I2C_SLAVE_EVENT_RX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_TX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_RX_REQUEST R_IIC_SLAVE_Read API. If the slave is a Write
Only device call this API with 0 bytes to send a
NACK to the master.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,046 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

I2C_SLAVE_EVENT_TX_REQUEST R_IIC_SLAVE_Write API

I2C_SLAVE_EVENT_RX_MORE_REQUEST R_IIC_SLAVE_Read API. If the slave cannot read
any more data call this API with 0 bytes to send
a NACK to the master.

I2C_SLAVE_EVENT_TX_MORE_REQUEST R_IIC_SLAVE_Write API

I2C_SLAVE_EVENT_GENERAL_CALL R_IIC_SLAVE_Read

If parameter checking is enabled and R_IIC_SLAVE_Read API is not called for
I2C_SLAVE_EVENT_RX_REQUEST and/or I2C_SLAVE_EVENT_RX_MORE_REQUEST, the slave
will send a NACK to the master and would eventually timeout.
R_IIC_SLAVE_Write API is not called for I2C_SLAVE_EVENT_TX_REQUEST and/or
I2C_SLAVE_EVENT_TX_MORE_REQUEST:

Slave timeout is less than Master timeout: The slave will timeout and release the
bus causing the master to read 0xFF for every remaining byte.
Slave timeout is more than Master timeout: The master will timeout first followed
by the slave.

IIC Slave Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current PCLKB settings is calculated and used.

Limitations

When 'Clock Stretching' configuration is enabled, the receive operation will not utilize the
double buffer arrangement in hardware for a continuous read. This means that the read
operation would happen in single byte units such that the active master would send the
next byte only when the slave has read the current byte of data.
When DTC is enabled, the clock frequency supply for DTC must be configured greater than
the "Internal Reference Clock" of the slave.

Examples
Basic Example

This is a basic example of minimal use of the R_IIC_SLAVE in an application. This example shows how
this driver can be used for basic read and write operations.

iic_master_instance_ctrl_t g_i2c_master_ctrl;

i2c_master_cfg_t g_i2c_master_cfg =

{

 .channel = I2C_MASTER_CHANNEL_2,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_master_callback, // Callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,047 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

 .p_context = &g_i2c_master_ctrl,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend_standard_mode

};

iic_slave_instance_ctrl_t g_i2c_slave_ctrl;

i2c_slave_cfg_t g_i2c_slave_cfg =

{

 .channel = I2C_SLAVE_CHANNEL_0,

 .rate = I2C_SLAVE_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_SLAVE_ADDR_MODE_7BIT,

 .p_callback = i2c_slave_callback, // Callback

 .p_context = &g_i2c_slave_ctrl,

 .p_extend = &g_iic_slave_cfg_extend_standard_mode

};

void i2c_master_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_master_callback_event = p_args->event;

}

void i2c_slave_callback (i2c_slave_callback_args_t * p_args)

{

 g_i2c_slave_callback_event = p_args->event;

 if ((p_args->event == I2C_SLAVE_EVENT_RX_COMPLETE) || (p_args->event ==

I2C_SLAVE_EVENT_TX_COMPLETE))

 {

 /* Transaction Successful */

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_RX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_RX_MORE_REQUEST))

 {

 /* Read from Master */

 err = R_IIC_SLAVE_Read(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,048 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

 assert(FSP_SUCCESS == err);

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_TX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_TX_MORE_REQUEST))

 {

 /* Write to master */

 err = R_IIC_SLAVE_Write(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Error Event - reported through g_i2c_slave_callback_event */

 }

}

void basic_example (void)

{

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 g_slave_transfer_length = I2C_BUFFER_SIZE_BYTES;

 /* Pin connections:

 * Channel 0 SDA <--> Channel 2 SDA

 * Channel 0 SCL <--> Channel 2 SCL

 */

 /* Initialize the IIC Slave module */

 err = R_IIC_SLAVE_Open(&g_i2c_slave_ctrl, &g_i2c_slave_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the IIC Master module */

 err = R_IIC_MASTER_Open(&g_i2c_master_ctrl, &g_i2c_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,049 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

 g_i2c_master_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 err = R_IIC_MASTER_Write(&g_i2c_master_ctrl, &g_i2c_master_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_SLAVE_Read API to service the Master Write

Request.

 */

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_RX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Read(&g_i2c_master_ctrl, &g_i2c_master_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_SLAVE_Write API to service the Master Read

Request.

 */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,050 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_TX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_master_tx_buffer, g_i2c_master_rx_buffer,

I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_slave_clock_settings_t

struct iic_slave_extended_cfg_t

Data Structure Documentation

◆ iic_slave_clock_settings_t

struct iic_slave_clock_settings_t

I2C clock settings

Data Fields

uint8_t cks_value Internal Reference Clock Select.

uint8_t brl_value Low-level period of SCL clock.

uint8_t digital_filter_stages Number of digital filter stages
based on brl_value.

◆ iic_slave_extended_cfg_t

struct iic_slave_extended_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,051 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

R_IIC_SLAVE extended configuration

Data Fields

iic_slave_clock_settings_t clock_settings I2C Clock settings.

Function Documentation

◆ R_IIC_SLAVE_Open()

fsp_err_t R_IIC_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t const *const p_cfg
)

Opens the I2C slave device.

Return values
FSP_SUCCESS I2C slave device opened successfully.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_INVALID_ARGUMENT Error interrupt priority is lower than
Transmit, Receive and Transmit End
interrupt priority

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned
6. transfer instance in p_cfg is NULL

when DTC support enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,052 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

◆ R_IIC_SLAVE_Read()

fsp_err_t R_IIC_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read from the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave read operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_RX_COMPLETE in the callback. In case the master continues
to write more data, an I2C_SLAVE_EVENT_RX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue

FSP_ERR_ASSERTION p_api_ctrl, bytes or p_dest is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

FSP_ERR_INVALID_SIZE Invalid size when reading data via DTC.

◆ R_IIC_SLAVE_Write()

fsp_err_t R_IIC_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write to the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave write operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_TX_COMPLETE in the callback. In case the master continues
to read more data, an I2C_SLAVE_EVENT_TX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

FSP_ERR_INVALID_SIZE Invalid size when writing data via DTC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,053 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iic_slave)

◆ R_IIC_SLAVE_CallbackSet()

fsp_err_t R_IIC_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*)(i2c_slave_callback_args_t *) p_callback, void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_slave_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_IIC_SLAVE_Close()

fsp_err_t R_IIC_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Closes the I2C device.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_NOT_OPEN Device not opened.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

5.2.6.14 I2C Slave (r_iica_slave)
Modules » Connectivity

Functions

fsp_err_t R_IICA_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl,
i2c_slave_cfg_t const *const p_cfg)

fsp_err_t R_IICA_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_IICA_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,054 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

fsp_err_t R_IICA_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

fsp_err_t R_IICA_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the IICA peripheral on RA MCUs. This module implements the I2C Slave Interface.

Overview
Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

Reads data written by master device.
Write data which is read by master device.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
IICA Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error
Condition.

Configuration
Build Time Configurations for r_iica_slave

The following build time configurations are defined in fsp_cfg/r_iica_slave_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode.

General call addressing Enabled
Disabled

Disabled If enabled, the driver
will support general
call slave addressing
mode along with the
non-general call slave
addressing mode.

Configurations for Connectivity > IICA Slave (r_iica_slave)

This module can be added to the Stacks tab via New Stack > Connectivity > IICA Slave (r_iica_slave).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,055 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_iica_slave0 Module name.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
is printed in a comment
in the generated
iica_slave_extended_cf
g_t structure.

Internal Reference
Clock

PCLKB / 1
PCLKB / 2

PCLKB / 1 Select the internal
reference clock for IICA
slave.

Signal Rising Time (us) Must be a valid value 0 Set the SDA and SCL
signal rising time in
micro-seconds.

Signal Falling Time (us) Must be a valid value 0 Set the SDA and SCL
signal falling time in
micro-seconds.

Duty Cycle (%) Value must be an
integer between 0 and
100

53 Set SCL high duty
cycle.

Digital Filter Enabled
Disabled

Disabled Configure digital filter.

Slave Address Value must be non-
negative

0x08 Specify the slave
address.

Callback Name must be a valid
C symbol

iica_slave_callback A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) to report
IICA Slave transaction
events and status.

IICA0 communication
interrupt priority

MCU Specific Options Select end of IICA0
communication
interrupt priority.

SCLA Pin Disabled Disabled Specify SCLA pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,056 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

P100
P110
P212
P914

setting for the MCU.

SDAA Pin Disabled
P101
P109
P213
P913

Disabled Specify SDAA pin
setting for the MCU.

Clock Configuration

The IICA peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured
in such a manner that the selected transfer rate cannot be achieved, an error will be returned.

Pin Configuration

The IICA peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An IICA channel would consist of two
pins - SDAA and SCLA for data/address and clock respectively.

Usage Notes
Interrupt Configuration

IICA0 communication interrupt must be enabled in the properties of the selected device.
Note

: During master-write slave-read type of operations if the slave device requires to perform clock
stretching after the last data byte is received.
: To support clock stretching (Holding SCL low after the falling edge of the 9th clock cycle), 'Clock
Stretching' configuration must be enabled.

Callback

A callback function must be provided which will be invoked for the cases below:
An I2C Master initiates a transmission or reception:
I2C_SLAVE_EVENT_TX_REQUEST; I2C_SLAVE_EVENT_RX_REQUEST
A Transmission or reception has been completed:
I2C_SLAVE_EVENT_TX_COMPLETE; I2C_SLAVE_EVENT_RX_COMPLETE
An I2C Master is requesting to read or write more data:
I2C_SLAVE_EVENT_TX_MORE_REQUEST; I2C_SLAVE_EVENT_RX_MORE_REQUEST
Error conditions: I2C_SLAVE_EVENT_ABORTED

The callback arguments will contain information about the transaction status/events, bytes
transferred and a pointer to the user defined context.
Clock stretching is enabled by the use of callbacks. This means that the IICA slave can hold
the clock line SCL LOW to force the I2C Master into a wait state.
The table below shows I2C Slave event handling expected in user code:

IICA Slave Callback Event IICA Slave API expected to be called

I2C_SLAVE_EVENT_ABORTED Handle event based on application

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,057 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

I2C_SLAVE_EVENT_RX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_TX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_RX_REQUEST R_IICA_SLAVE_Read API. If the slave is a Write
Only device call this API with 0 bytes to send a
NACK to the master.

I2C_SLAVE_EVENT_TX_REQUEST R_IICA_SLAVE_Write API

I2C_SLAVE_EVENT_RX_MORE_REQUEST R_IICA_SLAVE_Read API. If the slave cannot read
any more data call this API with 0 bytes to send
a NACK to the master.

I2C_SLAVE_EVENT_TX_MORE_REQUEST R_IICA_SLAVE_Write API

IICA Slave Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current PCLKB settings is calculated and used.

Limitations

DTC doesn't support IICA
Extension code is not supported
Please configure SDAA and SCLA pins in the IICA module. IICA pins must be set after IICA is
enabled.

Examples
Basic Example

This is a basic example of minimal use of the R_IICA_SLAVE in an application. This example shows
how this driver can be used for basic read and write operations.

sau_i2c_instance_ctrl_t g_i2c_master_ctrl;

i2c_master_cfg_t g_i2c_master_cfg =

{

 .channel = I2C_MASTER_CHANNEL_20,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .p_callback = iica_master_callback, // Callback

 .p_context = &g_i2c_master_ctrl,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend_standard_mode

};

iica_slave_instance_ctrl_t g_i2c_slave_ctrl;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,058 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

i2c_slave_cfg_t g_i2c_slave_cfg =

{

 .channel = I2C_SLAVE_CHANNEL_0,

 .rate = I2C_SLAVE_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .p_callback = iica_slave_callback, // Callback

 .p_context = &g_i2c_slave_ctrl,

 .p_extend = &g_iic_slave_cfg_extend_standard_mode

};

void iica_master_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_master_callback_event = p_args->event;

}

void iica_slave_callback (i2c_slave_callback_args_t * p_args)

{

 g_i2c_slave_callback_event = p_args->event;

 if ((p_args->event == I2C_SLAVE_EVENT_RX_COMPLETE) || (p_args->event ==

I2C_SLAVE_EVENT_TX_COMPLETE))

 {

 /* Transaction Successful */

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_RX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_RX_MORE_REQUEST))

 {

 /* Read from Master */

 err = R_IICA_SLAVE_Read(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_TX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_TX_MORE_REQUEST))

 {

 /* Write to master */

 err = R_IICA_SLAVE_Write(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,059 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Error Event - reported through g_i2c_slave_callback_event */

 }

}

void basic_example (void)

{

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 g_slave_transfer_length = I2C_BUFFER_SIZE_BYTES;

 /* Initialize the IIC Slave module */

 err = R_IICA_SLAVE_Open(&g_i2c_slave_ctrl, &g_i2c_slave_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the IIC Master module */

 err = R_SAU_I2C_Open(&g_i2c_master_ctrl, &g_i2c_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_master_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 err = R_SAU_I2C_Write(&g_i2c_master_ctrl, &g_i2c_master_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IICA_SLAVE_Read API to service the Master

Write Request.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,060 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

 */

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_RX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SAU_I2C_Read(&g_i2c_master_ctrl, &g_i2c_master_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IICA_SLAVE_Write API to service the Master

Read Request.

 */

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_TX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,061 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

 /* Verify the read data */

 if (0U != memcmp(g_i2c_master_tx_buffer, g_i2c_master_rx_buffer,

I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Data Structures

struct iica_slave_clock_settings_t

struct iica_slave_pin_settings_t

struct iica_slave_extended_cfg_t

Data Structure Documentation

◆ iica_slave_clock_settings_t

struct iica_slave_clock_settings_t

IICA clock settings

◆ iica_slave_pin_settings_t

struct iica_slave_pin_settings_t

Configuration settings for IICA pins

Data Fields

bsp_io_port_pin_t pin The pin.

uint32_t cfg Configuration for the pin.

◆ iica_slave_extended_cfg_t

struct iica_slave_extended_cfg_t

R_IICA_SLAVE extended configuration

Data Fields

iica_slave_clock_settings_t clock_settings

iica_slave_pin_settings_t sda_pin_settings SDAA pin setting.

iica_slave_pin_settings_t scl_pin_settings SCLAA pin setting.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,062 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

◆ R_IICA_SLAVE_Open()

fsp_err_t R_IICA_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t const *const
p_cfg)

Opens the IICA slave device.

Return values
FSP_SUCCESS IICA slave device opened successfully.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Invalid IRQ number assigned

◆ R_IICA_SLAVE_Read()

fsp_err_t R_IICA_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read from the IICA Master device.

This function will fail if there is already an in-progress IICA transfer on the associated channel.
Otherwise, the IICA slave read operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_RX_COMPLETE in the callback. In case the master continues
to write more data, an I2C_SLAVE_EVENT_RX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue

FSP_ERR_ASSERTION p_api_ctrl, bytes or p_dest is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,063 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

◆ R_IICA_SLAVE_Write()

fsp_err_t R_IICA_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write to the IICA Master device.

This function will fail if there is already an in-progress IICA transfer on the associated channel.
Otherwise, the IICA slave write operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_TX_COMPLETE in the callback. In case the master continues
to read more data, an I2C_SLAVE_EVENT_TX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

◆ R_IICA_SLAVE_CallbackSet()

fsp_err_t R_IICA_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*)(i2c_slave_callback_args_t *) p_callback, void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_slave_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,064 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2C Slave (r_iica_slave)

◆ R_IICA_SLAVE_Close()

fsp_err_t R_IICA_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Closes the IICA device.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_NOT_OPEN Device not opened.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

5.2.6.15 I2S (r_ssi)
Modules » Connectivity

Functions

fsp_err_t R_SSI_Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t
const bytes)

fsp_err_t R_SSI_Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t
const bytes)

fsp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src,
void *const p_dest, uint32_t const bytes)

fsp_err_t R_SSI_Stop (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t R_SSI_StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status_t *const
p_status)

fsp_err_t R_SSI_Close (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_CallbackSet (i2s_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2s_callback_args_t *), void const *const p_context,
i2s_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the SSIE peripheral on RA MCUs. This module implements the I2S Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,065 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

Overview
Features

The SSI module supports the following features:

Transmission and reception of uncompressed audio data using the standard I2S protocol in
master and slave modes
Full-duplex I2S communication (channel 0 only)
Integration with the DTC transfer module
Internal connection to GPT timer output to generate the audio clock
Callback function notification when all data is loaded into the SSI FIFO

Configuration

Build Time Configurations for r_ssi

The following build time configurations are defined in fsp_cfg/r_ssi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support Enabled
Disabled

Enabled If code for DTC transfer
support is included in
the build.

Configurations for Connectivity > I2S (r_ssi)

This module can be added to the Stacks tab via New Stack > Connectivity > I2S (r_ssi). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2s0 Module name.

Channel Value must be a non-
negative integer

0 Specify the I2S
channel.

Operating Mode
(Master/Slave)

Master Mode
Slave Mode

Master Mode Select if the MCU is I2S
master or slave.

Bit Depth 8 Bits
16 Bits
18 Bits
20 Bits
22 Bits
24 Bits
32 Bits

16 Bits Select the bit depth of
one sample of audio
data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,066 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

Word Length 8 Bits
16 Bits
24 Bits
32 Bits
48 Bits
64 Bits
128 Bits
256 Bits

16 Bits Select the word length
of audio data. Must be
at least as large as
Data bits.

WS Continue Mode Enabled
Disabled

Disabled Enable WS continue
mode to output the
word select (WS) pin
even when
transmission is idle.

Bit Clock
Source(available only
in Master mode)

MCU Specific Options Select External
AUDIO_CLK for external
signal to AUDIO_CLK
input pin or Internal
AUDIO_CLK for internal
connection to MCU
specific GPT channel.
Please refer to the
hardware manual for
which GPT channel is
connected to the
internal signal

Bit Clock
Divider(available only
in Master mode)

Refer to the RA
Configuration tool for
available options.

Audio Clock / 1 Select divider used to
generate bit clock from
audio clock.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from all three
interrupt service
routines (ISR).

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Idle/Error Interrupt
Priority

MCU Specific Options Select the Idle/Error
interrupt priority.

Clock Configuration

The SSI peripheral runs on PCLKB. The PCLKB frequency can be configured on the Clocks tab of the
RA Configuration editor. The SSI audio clock can optionally be supplied from an external source
through the AUDIO_CLK pin in master mode.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,067 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

The SSI uses the following pins:

AUDIO_CLK (optional, master mode only): The AUDIO_CLK pin is used to supply the audio
clock from an external source.
SSIBCKn: Bit clock pin for channel n
SSILRCKn/SSIFSn: Channel selection pin for channel n
SSIRXD0: Reception pin for channel 0
SSITXD0: Transmission pin for channel 0
SSIDATA1: Transmission or reception pin for channel 1

Usage Notes
SSI Frames

An SSI frame is 2 samples worth of data. The frame boundary (end of previous frame, start of next
frame) is on the falling edge of the SSILRCKn signal.

Figure 190: SSI Frame Diagram (8-bit word, 8-bit samples)

Note
If the word length is longer than the sample bit depth, padding bits (0) will be added after the sample.

Audio Data

Only uncompressed PCM data is supported.

Data arrays have the following size, alignment, and length based on the "Bit Depth" setting:

Bit Depth Array Data Type Required Alignment Required Length
(bytes)

8 Bits 8-bit integer 1 byte alignment Multiple of 2

16 Bits 16-bit integer 2 byte alignment Multiple of 4

18 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

20 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

22 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

24 Bits 32-bit integer, right 4 byte alignment Multiple of 8

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,068 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

justified

32 Bits 32-bit integer 4 byte alignment Multiple of 8

Note
The length of the array must be a multiple of 2 when the data type is the recommended data type. The 2 represents
the frame size (left and right channel) of I2S communication. The SSIE peripheral does not support odd read/write
lengths in I2S mode.

Audio Clock

The audio clock is only required for master mode.

Audio Clock Frequency

The bit clock frequency is the product of the sampling frequency and channels and bits per system
word:

bit_clock (Hz) = sampling_frequency (Hz) * channels * system_word_bits

I2S data always has 2 channels.

For example, the bit clock for transmitting 2 channels of 16-bit data (using a 16-bit system word) at
44100 Hz would be:

44100 * 2 * 16 = 1,411,200 Hz

The audio clock frequency is used to generate the bit clock frequency. It must be a multiple of the bit
clock frequency. Refer to the Bit Clock Divider configuration for divider options. The input audio clock
frequency must be:

audio_clock (Hz) = desired_bit_clock (Hz) * bit_clock_divider

To get a bit clock of 1.4 MHz from an audio clock of 2.8 MHz, select the divider Audio Clock / 2.

Audio Clock Source

The audio clock source can come from:

An external source input to the AUDIO_CLK pin
An internal connection to the GPT timer output

Note
When using the internal GPT timer output, Pin Output Support must be Enabled, and GTIOCA Output Enabled
must be True.
See the SSIE section in the MCU hardware manual for information about which GPT channel may be used.

Limitations

Developers should be aware of the following limitations when using the SSI:

When using channel 1, full duplex communication is not possible. Only tranmission or
reception is possible.
SSI must go idle before changing the communication mode (between read only, write only,
and full duplex)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,069 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

Examples
Basic Example

This is a basic example of minimal use of the SSI in an application.

#define SSI_EXAMPLE_SAMPLES_TO_TRANSFER (1024)

#define SSI_EXAMPLE_TONE_FREQUENCY_HZ (800)

int16_t g_src[SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

int16_t g_dest[SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

void ssi_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Create a stereo sine wave. Using formula sample = sin(2 * pi * tone_frequency * t

/ sampling_frequency) */

 uint32_t freq = SSI_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t t = 0; t < SSI_EXAMPLE_SAMPLES_TO_TRANSFER / 2; t += 1)

 {

 float input = (((float) (freq * t)) * (float) (M_TWOPI)) /

SSI_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 g_src[2 * t] = (int16_t) ((INT16_MAX * sinf(input)));

 g_src[2 * t + 1] = (int16_t) ((INT16_MAX * sinf(input)));

 }

 /* Initialize the module. */

 err = R_SSI_Open(&g_i2s_ctrl, &g_i2s_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Transfer data. */

 (void) R_SSI_WriteRead(&g_i2s_ctrl,

 (uint8_t *) &g_src[0],

 (uint8_t *) &g_dest[0],

 SSI_EXAMPLE_SAMPLES_TO_TRANSFER * sizeof(int16_t));

}

Streaming Example

This is an example of using SSI to stream audio data. This application uses a double buffer to store

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,070 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

PCM sine wave data. It starts transmitting in the main loop, then loads the next buffer if it is ready in
the callback. If the next buffer is not ready, a flag is set in the callback so the application knows to
restart transmission in the main loop.

This example also checks the return code of R_SSI_Write() because R_SSI_Write() can return an error
if a transmit overflow occurs before the FIFO is reloaded. If a transmit overflow occurs before the
FIFO is reloaded, the SSI will be stopped in the error interrupt, and it cannot be restarted until the
I2S_EVENT_IDLE callback is received.

#define SSI_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ (22050)

#define SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK (1024)

#define SSI_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ (800)

int16_t g_stream_src[2][SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

uint32_t g_buffer_index = 0;

volatile bool g_send_data_in_main_loop = true;

volatile bool g_data_ready = false;

/* Example callback called when SSI is ready for more data. */

void ssi_example_callback (i2s_callback_args_t * p_args)

{

 /* Reload the FIFO if we hit the transmit watermark or restart transmission if the

SSI is idle because it was

 * stopped after a transmit FIFO overflow. */

 if ((I2S_EVENT_TX_EMPTY == p_args->event) || (I2S_EVENT_IDLE == p_args->event))

 {

 if (g_data_ready)

 {

 /* Reload FIFO and handle errors. */

 ssi_example_write();

 }

 else

 {

 /* Data was not ready yet, send it in the main loop. */

 g_send_data_in_main_loop = true;

 }

 }

}

/* Load the transmit FIFO and check for error conditions. */

void ssi_example_write (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,071 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

{

 /* Transfer data. This call is non-blocking. */

 fsp_err_t err = R_SSI_Write(&g_i2s_ctrl,

 (uint8_t *) &g_stream_src[g_buffer_index][0],

 SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK * sizeof

(int16_t));

 if (FSP_SUCCESS == err)

 {

 /* Switch the buffer after data is sent. */

 g_buffer_index = !g_buffer_index;

 /* Allow loop to calculate next buffer only if transmission was successful. */

 g_data_ready = false;

 }

 else

 {

 /* Getting here most likely means a transmit overflow occurred before the FIFO could

be reloaded. The

 * application must wait until the SSI is idle, then restart transmission. In this

example, the idle

 * callback transmits data or resets the flag g_send_data_in_main_loop. */

 }

}

/* Calculate samples. This example is just a sine wave. For this type of data, it

would be better to calculate

 * one period and loop it. This example should be updated for the audio data used by

the application. */

void ssi_example_calculate_samples (uint32_t buffer_index)

{

 static uint32_t t = 0U;

 /* Create a stereo sine wave. Using formula sample = sin(2 * pi * tone_frequency * t

/ sampling_frequency) */

 uint32_t freq = SSI_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t i = 0; i < SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK / 2; i += 1)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,072 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

 float input = (((float) (freq * t)) * (float) M_TWOPI) /

SSI_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 t++;

 /* Store sample twice, once for left channel and once for right channel. */

 int16_t sample = (int16_t) ((INT16_MAX * sinf(input)));

 g_stream_src[buffer_index][2 * i] = sample;

 g_stream_src[buffer_index][2 * i + 1] = sample;

 }

 /* Data is ready to be sent in the interrupt. */

 g_data_ready = true;

}

void ssi_streaming_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module. */

 err = R_SSI_Open(&g_i2s_ctrl, &g_i2s_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Prepare data in a buffer that is not currently used for transmission. */

 ssi_example_calculate_samples(g_buffer_index);

 /* Send data in main loop the first time, and if it was not ready in the interrupt.

*/

 if (g_send_data_in_main_loop)

 {

 /* Clear flag. */

 g_send_data_in_main_loop = false;

 /* Reload FIFO and handle errors. */

 ssi_example_write();

 }

 /* If the next buffer is ready, wait for the data to be sent in the interrupt. */

 while (g_data_ready)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,073 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

 /* Do nothing. */

 }

 }

}

Data Structures

struct ssi_instance_ctrl_t

struct ssi_extended_cfg_t

Enumerations

enum ssi_audio_clock_t

enum ssi_clock_div_t

Data Structure Documentation

◆ ssi_instance_ctrl_t

struct ssi_instance_ctrl_t

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when i2s_api_t::open is
called.

◆ ssi_extended_cfg_t

struct ssi_extended_cfg_t

SSI configuration extension. This extension is optional.

Data Fields

ssi_audio_clock_t audio_clock Audio clock source, default is
SSI_AUDIO_CLOCK_EXTERNAL.

ssi_clock_div_t bit_clock_div Select bit clock division ratio.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,074 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ ssi_audio_clock_t

enum ssi_audio_clock_t

Audio clock source.

Enumerator

SSI_AUDIO_CLOCK_EXTERNAL Audio clock source is the AUDIO_CLK input pin.

SSI_AUDIO_CLOCK_INTERNAL Audio clock source is internal connection to a
MCU specific GPT channel output.

◆ ssi_clock_div_t

enum ssi_clock_div_t

Bit clock division ratio. Bit clock frequency = audio clock frequency / bit clock division ratio.

Enumerator

SSI_CLOCK_DIV_1 Clock divisor 1.

SSI_CLOCK_DIV_2 Clock divisor 2.

SSI_CLOCK_DIV_4 Clock divisor 4.

SSI_CLOCK_DIV_6 Clock divisor 6.

SSI_CLOCK_DIV_8 Clock divisor 8.

SSI_CLOCK_DIV_12 Clock divisor 12.

SSI_CLOCK_DIV_16 Clock divisor 16.

SSI_CLOCK_DIV_24 Clock divisor 24.

SSI_CLOCK_DIV_32 Clock divisor 32.

SSI_CLOCK_DIV_48 Clock divisor 48.

SSI_CLOCK_DIV_64 Clock divisor 64.

SSI_CLOCK_DIV_96 Clock divisor 96.

SSI_CLOCK_DIV_128 Clock divisor 128.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,075 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ R_SSI_Open()

fsp_err_t R_SSI_Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Opens the SSI. Implements i2s_api_t::open.

This function sets this clock divisor and the configurations specified in i2s_cfg_t. It also opens the
timer and transfer instances if they are provided.

Return values
FSP_SUCCESS Ready for I2S communication.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_cfg is null.

FSP_ERR_ALREADY_OPEN The control block has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel number is not available on this
MCU.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_SSI_Write()

fsp_err_t R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const bytes)

Writes data buffer to SSI. Implements i2s_api_t::write.

This function resets the transfer if the transfer interface is used, or writes the length of data that
fits in the FIFO then stores the remaining write buffer in the control block to be written in the ISR.

Write() cannot be called if another write(), read() or writeRead() operation is in progress. Write can
be called when the SSI is idle, or after the I2S_EVENT_TX_EMPTY event.

Return values
FSP_SUCCESS Write initiated successfully.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_src was null, or
bytes requested was 0.

FSP_ERR_IN_USE Another transfer is in progress, data was not
written.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_UNDERFLOW A transmit underflow error is pending. Wait
for the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,076 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ R_SSI_Read()

fsp_err_t R_SSI_Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const bytes)

Reads data into provided buffer. Implements i2s_api_t::read.

This function resets the transfer if the transfer interface is used, or reads the length of data
available in the FIFO then stores the remaining read buffer in the control block to be filled in the
ISR.

Read() cannot be called if another write(), read() or writeRead() operation is in progress. Read can
be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
FSP_SUCCESS Read initiated successfully.

FSP_ERR_IN_USE Peripheral is in the wrong mode or not idle.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_dest was null, or
bytes requested was 0.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_OVERFLOW A receive overflow error is pending. Wait for
the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,077 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ R_SSI_WriteRead()

fsp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src, void *const p_dest,
uint32_t const bytes)

Writes from source buffer and reads data into destination buffer. Implements i2s_api_t::writeRead.

This function calls R_SSI_Write and R_SSI_Read.

writeRead() cannot be called if another write(), read() or writeRead() operation is in progress.
writeRead() can be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
FSP_SUCCESS Write and read initiated successfully.

FSP_ERR_IN_USE Peripheral is in the wrong mode or not idle.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_UNDERFLOW A transmit underflow error is pending. Wait
for the SSI to go idle before resuming
communication.

FSP_ERR_OVERFLOW A receive overflow error is pending. Wait for
the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

◆ R_SSI_Stop()

fsp_err_t R_SSI_Stop (i2s_ctrl_t *const p_ctrl)

Stops SSI. Implements i2s_api_t::stop.

This function disables both transmission and reception, and disables any transfer instances used.

The SSI will stop on the next frame boundary. Do not restart SSI until it is idle.

Return values
FSP_SUCCESS I2S communication stop request issued.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,078 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ R_SSI_Mute()

fsp_err_t R_SSI_Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Mutes SSI on the next frame boundary. Implements i2s_api_t::mute.

Data is still written while mute is enabled, but the transmit line outputs zeros.

Return values
FSP_SUCCESS Transmission is muted.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

◆ R_SSI_StatusGet()

fsp_err_t R_SSI_StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

Gets SSI status and stores it in provided pointer p_status. Implements i2s_api_t::statusGet.

Return values
FSP_SUCCESS Information stored successfully.

FSP_ERR_ASSERTION The p_instance_ctrl or p_status parameter
was null.

FSP_ERR_NOT_OPEN The channel is not opened.

◆ R_SSI_Close()

fsp_err_t R_SSI_Close (i2s_ctrl_t *const p_ctrl)

Closes SSI. Implements i2s_api_t::close.

This function powers down the SSI and closes the lower level timer and transfer drivers if they are
used.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,079 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I2S (r_ssi)

◆ R_SSI_CallbackSet()

fsp_err_t R_SSI_CallbackSet (i2s_ctrl_t *const p_api_ctrl, void(*)(i2s_callback_args_t *) p_callback,
void const *const p_context, i2s_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2s_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.6.16 I3C (r_i3c)
Modules » Connectivity

Functions

fsp_err_t R_I3C_Open (i3c_ctrl_t *const p_api_ctrl, i3c_cfg_t const *const p_cfg)

fsp_err_t R_I3C_Enable (i3c_ctrl_t *const p_api_ctrl)

fsp_err_t R_I3C_DeviceCfgSet (i3c_ctrl_t *const p_api_ctrl, i3c_device_cfg_t
const *const p_device_cfg)

fsp_err_t R_I3C_MasterDeviceTableSet (i3c_ctrl_t *const p_api_ctrl, uint32_t
device_index, i3c_device_table_cfg_t const *const
p_device_table_cfg)

fsp_err_t R_I3C_SlaveStatusSet (i3c_ctrl_t *const p_api_ctrl,
i3c_device_status_t status)

fsp_err_t R_I3C_DeviceSelect (i3c_ctrl_t *const p_api_ctrl, uint32_t
device_index, uint32_t bitrate_mode)

fsp_err_t R_I3C_DynamicAddressAssignmentStart (i3c_ctrl_t *const p_api_ctrl,
i3c_address_assignment_mode_t address_assignment_mode,
uint32_t starting_device_index, uint32_t device_count)

fsp_err_t R_I3C_CommandSend (i3c_ctrl_t *const p_api_ctrl,
i3c_command_descriptor_t const *const p_command_descriptor)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,080 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

fsp_err_t R_I3C_Write (i3c_ctrl_t *const p_api_ctrl, uint8_t const *const p_data,
uint32_t length, bool restart)

fsp_err_t R_I3C_Read (i3c_ctrl_t *const p_api_ctrl, uint8_t *const p_data,
uint32_t length, bool restart)

fsp_err_t R_I3C_IbiWrite (i3c_ctrl_t *const p_api_ctrl, i3c_ibi_type_t ibi_type,
uint8_t const *const p_data, uint32_t length)

fsp_err_t R_I3C_IbiRead (i3c_ctrl_t *const p_api_ctrl, uint8_t *const p_data,
uint32_t length)

fsp_err_t R_I3C_Close (i3c_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the I3C peripheral on RA MCUs. This module implements the I3C Interface.

Overview
I3C is a communication protocol defined by MIPI that aims to improve on I2C by increasing the
maximum transfer rate, as well as providing other features like "In-band Interrupts", "Dynamic
Address Assignment", and a set of standard "Common Command Codes".

Features

I3C Master Mode
I3C Slave Mode
Dynamic Address Assignment (ENTDAA/SETDASA)
SDR Read/Write transfers
HDR-DDR Read/Write Commands
I2C Legacy Read/Write transfers
In-Band Interrupts (Interrupt Requests, Hot-Join Requests)
Common Command Codes
Clock Stalling
Timeout Detection

Master Mode
On an I3C bus, only one device may operate in master mode at a time. The current master is
responsible for initiating I2C Legacy transfers, SDR transfers, Common Command Codes, and
handling IBIs (Interrupt Requests, Hot-Join Requests). In order to perform these operations, the driver
has an internal device table that is used for storing configuration information for each device on the
bus (See i3c_device_table_cfg_t). Each entry in the device table contains the static or dynamic
address of the device, and IBI permissions for accepting or rejecting IBI requests from the device.
The device table has a limited number of entries as well as one extended device entry that only
contains the static or dynamic address of a device (See below).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,081 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Figure 191: Master Device Table

 In order to initiate I2C Legacy transfers, SDR transfers, or Common Command Codes, the master
must select a device entry from the device table using i3c_api_t::deviceSelect. Once a device has
been selected, all subsequent operations will be directed to the selected device until a new device is
selected using i3c_api_t::deviceSelect.

The master may also receive IBI requests that are initiated by slave devices on the bus. If there is a
payload, then the driver will write the data into a buffer that is provided by the application by calling
i3c_api_t::ibiRead. If the application has not provided an IBI buffer prior to receiving an IBI, then the
it will get a callback requesting an IBI buffer. Once the IBI is completed, the application will be
notified by a callback.

Note
1. Even though there are only a limited number of device table entries and one extended device table entry, the
application can operate on more devices by maintaining its own list of devices and updating the extended device
entry as needed. Note however that devices defined in the extended device table entry will not be able to initiate IBI
requests.

Main Master

The main master is responsible for configuring the dynamic address of all devices on the bus. The
driver initiates this procedure by calling i3c_api_t::dynamicAddressAssignmentStart. Before starting
address assignment, the application must configure the device table using
i3c_api_t::masterDeviceTableSet.

Enter Dynamic Address Assignment (ENTDAA):

The application initiates the ENTDAA operation by calling i3c_api_t::dynamicAddressAssignmentStart
with a starting index into the master device table and a count specifying the number of devices to
configure. The master starts by sending the ENTDAA command. Every I3C device on the bus that has
not already been initialized will acknowledge the command and attempt to write its Provisional ID,
DCR, and BCR registers. The device with the smallest value in these registers will win arbitration and
be assigned with the first dynamic address defined in the master device table. The master will then
increment the index and repeat the process by assigning the dynamic address to the next device.
The process continues until the specified number of devices have been initialized or until there are
no more devices to configure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,082 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Note
1. The IBI payload setting will automatically be updated in the master device table based on the BCR setting that
was read during ENTDAA.
2. After each device successfully writes its Provisional ID, DCR, and BCR registers, the application will get a
callback that will provide the value of the registers.
3. If the starting index is set to the extended device entry, then the device count must be set to 1.
4. The main master assigns its own dynamic address with i3c_api_t::deviceCfgSet.

Set Dynamic Address from Static Address (SETDASA):

The application initiates the SETDASA operation by calling
i3c_api_t::dynamicAddressAssignmentStart with an index into the master device table. The master
sends the SETDASA command to the static address defined in the given device table entry, and then
assigns the associated dynamic address.

Note
1. Set the count to 0 when using SETDASA.

Slave Mode
In slave mode, the device configures its static address, Provisional ID, BCR, and DCR registers using
i3c_api_t::deviceCfgSet, and then waits for the master to initiate communication. Prior to being
assigned a dynamic address, the slave will operate as an I2C device using its static address. The
application will receive a callback when the master assigns it a dynamic address, after which point,
the slave will operate as an I3C device until it receives the RSTDAA command.

Depending on the capabilities defined in its BCR register, the slave may also initiate IBI Interrupt
Requests, and Hot-Join Requests using i3c_api_t::ibiWrite

Configuration

Build Time Configurations for r_i3c

The following build time configurations are defined in fsp_cfg/r_i3c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Unaligned Buffer
Support

Enabled
Disabled

Enabled Unaligned buffer
support may be
optionally disabled for
improved performance.

Master Support Enabled
Disabled

Enabled If only slave mode is
required, disable
master support to
decrease code size.

Slave Support Enabled
Disabled

Enabled If only master mode is
required, disable slave

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,083 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

support to decrease
code size.

Error Recovery
Procedure

MCU Specific Options There are two different
chip versions of the
RA2E2 MCU (Version 1
and Version 2). Each
version requires a
different procedure for
recovering from errors.

Configurations for Connectivity > I3C (r_i3c)

This module can be added to the Stacks tab via New Stack > Connectivity > I3C (r_i3c).

Configuration Options Default Description

Bitrate Settings

Bitrate Settings > Standard Mode

Bitrate Settings > Standard Mode > Open-Drain

Logic High Period (ns) Must be an integer
greater than 0.

167 The Logic High period
of SCL during Standard
Mode Open Drain
transfers.

Frequency Must be an integer
greater than 0.

1000000 The Frequency of SCL
during Standard Mode
Open Drain transfers.

Bitrate Settings > Standard Mode > Push-Pull

Logic High Period (ns) The Logic High Period
must be greater than
or equal to 24
Nanoseconds.

167 The Logic High period
of SCL during Standard
Mode Push Pull
transfers.

Frequency Push-Pull frequency
must be greater than
or equal to 10000 Hz.

3400000 The Frequency of SCL
during Standard Mode
Push-Pull transfers.

Bitrate Settings > Extended Mode

Bitrate Settings > Extended Mode > Open-Drain

Logic High Period (ns) Must be an integer
greater than 0.

167 The Logic High period
of SCL during Extended
Mode Open Drain
transfers.

Frequency Must be an integer
greater than 0.

1000000 The Frequency of SCL
during Extended Mode
Open Drain transfers.

Bitrate Settings > Extended Mode > Push-Pull

Logic High Period (ns) The Logic High Period
must be greater than

167 The Logic High period
of SCL during Extended

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,084 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

or equal to 24
Nanoseconds.

Mode Push Pull
transfers.

Frequency Push-Pull frequency
must be greater than
or equal to 10000 Hz.

3400000 The Frequency of SCL
during Extended Mode
Push-Pull transfers.

Bitrate Settings > Bus Timing

Open Drain Rising Time
(ns)

Rising time must be
greater than or equal
to 0 nanoseconds.

0 The Open Drain rising
time in nanoseconds.

Open Drain Falling
Time (ns)

Falling time must be
greater than or equal
to 0 nanoseconds.

0 The Open Drain falling
time in nanoseconds.

Push-Pull Rising Time
(ns)

Rising time must be
greater than or equal
to 0 nanoseconds.

0 The Push-Pull rising
time in nanoseconds.

Push-Pull Falling Time
(ns)

Falling time must be
greater than or equal
to 0 nanoseconds.

0 The Push-Pull rising
time in nanoseconds.

Bitrate Settings > Clock Stalling

Address Assignment
Phase

Enabled
Disabled

Disabled Enable clock stalling
during the Address
Assignment Phase of
ENTDAA.

Transition Phase Enabled
Disabled

Disabled Enable clock stalling
during the Transition
Bit of a read transfer.

Parity Phase Enabled
Disabled

Disabled Enable clock stalling
during the Parity Bit of
a write transfer.

Ack Phase Enabled
Disabled

Disabled Enable clock stalling
during the ACK phase
of a transfer.

Time (us) Must be greater than or
equal to 0.

0 The amount of time to
stall the clock during
the Address
Assignment Phase,
Transition Phase, Parity
Phase, and ACK Phase.

Master Mode

ACK Hot-Join Requests Enabled
Disabled

Disabled If enabled, the I3C
instance will ACK Hot-
Join Requests and
notify the application.

Notify Rejected Hot-Join
Requests.

Enabled
Disabled

Disabled If enabled, the
application will get a

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,085 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

callback when an IBI
Hot-Join Request is
rejected.

Notify Rejected
Mastership Requests.

Enabled
Disabled

Disabled If enabled, the
application will get a
callback when an IBI
Mastership Request is
rejected.

Notify Rejected
Interrupt Requests.

Enabled
Disabled

Disabled If enabled, the
application will get a
callback when an IBI
Interrupt Request is
rejected.

Slave Mode

Slave Mode > Command Response Info

Slave Mode > Command Response Info > ENEC/DISEC

In-Band Interrupts Enabled
Disabled

Disabled Configure whether the
slave can issue IBI
requests.

Hot-Join Requests Enabled
Disabled

Disabled Configure whether the
slave can issue Hot-Join
requests.

Slave Mode > Command Response Info > ENTASn

Activity State Activity State 0
Activity State 1
Activity State 2
Activity State 3

Activity State 0 Configure the starting
activity state of the
slave.

Slave Mode > Command Response Info > SETMWL/GETMWL

Max Write Length Write length must be in
the range of [8,
65535].

65535 Set the max write
length.

Slave Mode > Command Response Info > SETMRL/GETMRL

Max Read Length Read length must be in
the range of [16,
65535].

65535 Set the max read
length.

Max IBI Payload Length Read length must be in
the range of [0, 255].

0 Set the max IBI
payload length, or set
it to 0 for unlimited.

Slave Mode > Command Response Info > GETMXDS

Write Data Rate FSCL_MAX
8Mhz
6Mhz
4Mhz
2Mhz

2Mhz Set the max write data
rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,086 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Read Data Rate FSCL_MAX
8Mhz
6Mhz
4Mhz
2Mhz

2Mhz Set the max read data
rate.

Clock to Data
Turnaround Time

8 Nanoseconds
9 Nanoseconds
10
Nanoseconds
11
Nanoseconds
12
Nanoseconds
Greater than 12
Nanoseconds

8 Nanoseconds Set the clock to data
turnaround time.

Include Max Read
Turnaround Time

Enabled
Disabled

Disabled Configure whether the
Max Read Turnaround
time will be
transmitted.

Max Read Turnaround
Time

Value must be in the
range [0, 255].

0 Set max read
turnaround time.

Slave Mode > Command Response Info > GETXTIME

Frequency Byte Value must be in the
range [0, 255].

0 Set the internal
oscillator frequency in
increments of 0.5 Mhz.

Inaccuracy Byte Value must be in the
range [0, 255].

0 Set the oscillator
inaccuracy byte in
increments of 0.5%

Slave Mode > Command Response Info > GETCAP/GETHDRCAP

HDR-DDR (Mode 0) MCU Specific Options Slave supports HDR-
DDR (Mode 0)

HDR-TSP (Mode 1) MCU Specific Options Slave supports HDR-
TSP (Mode 1)

HDR-TSL (Mode 2) MCU Specific Options Slave supports HDR-
TSL (Mode 2)

Interrupts

Interrupt Priority MCU Specific Options The interrupt priority of
the RX, TX, RESPONSE,
RCV_STATUS, and IBI
ISRs.

Error and Event
Interrupt Priority

MCU Specific Options The interrupt priority of
the EEI ISR which is
used to notify the
application when an
Internal Error, HDR Exit
Pattern, or Timeout is
detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,087 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Name Name must be a valid
C symbol

g_i3c0 Module name.

Callback Name must be a valid
C symbol

g_i3c0_callback A user callback
function must be
provided. This will be
called in order to notify
the application of I3C
events and provide
status information.

Callback Context Name must be a valid
C symbol

NULL A pointer to additional
application specific
information that is
provided to the
callback.

Device Type Main Master
Slave

Slave The role that the I3C
instance will take on
the I3C bus.

Bus Free Condition
Detection Time (ns)

Must be greater than or
equal to 38.4
nanoseconds.

38.4 The minimum period
occurring after a STOP
and before a START.

Bus Available Condition
Detection Time (us)

Must be greater than or
equal to 1
microsecond.

1 The minimum period
occurring after the Bus
Free Condition when
Slaves can initiate IBI
requests.

Bus Idle Condition
Detection Time (us)

Must be greater than or
equal to 1000
microseconds.

1000 The minimum period
occurring after the Bus
Available Condition
when Slaves can
initiate Hot-Join
requests.

Timeout Detection Enabled
Disabled

Disabled If enabled, the
application will get a
callback if SCL is stuck
at a logic high or logic
low level for more than
65535 cycles of the I3C
source clock.

Clock Configuration

The following settings are used to configure the timing of SCL.

Frequency of TCLK
Standard Mode

Open Drain High Period (THIGH)
Open Drain Frequency
Push-Pull High Period (THIGH)
Push-Pull Frequency

Extended Mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,088 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Open Drain High Period (THIGH)
Open Drain Frequency
Push-Pull High Period (THIGH)
Push-Pull Frquency

i3c_bitrate_mode_t (Set during i3c_api_t::deviceSelect)

The Standard and Extended Mode settings define two separate SCL configurations that can be
selected at run-time using i3c_api_t::deviceSelect.

In addition to selecting between the Standard and Extended Mode settings, the base SCL period can
also be multiplied using the following options:

I3C_BITRATE_MODE_I3C_SDR2_STDBR_X2: Multiple the base Standard Open Drain and Push-
Pull period by 2.
I3C_BITRATE_MODE_I3C_SDR3_EXTBR_X2: Multiple the base Extended Open Drain and Push-
Pull period by 2.
I3C_BITRATE_MODE_I3C_SDR4_EXTBR_X4: Multiple the base Extended Open Drain and Push-
Pull period by 4.

In order to get accurate frequency calculations, the Rising and Falling edges must be input into the
calculation. These values will depend on the topology the I3C bus that will be different for every
application.

Note
1. The Standard and Extended Open Drain period settings define the period to use during legacy I2C transfers
(Only use the following i3c_bitrate_mode_t settings with I2C transfers: I3C_BITRATE_MODE_I2C_STDBR,
I3C_BITRATE_MODE_I2C_EXTBR).
2. THIGH is defined in Figure 31 in the MIPI I3C Specification v1.0 and describes the Logic High period.
3. Depending on the MCU, TCLK is either derived from PCLKD or from a dedicated I3C Clock (I3CCLK).

Pin Configuration

The I3C peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I3C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Read and Write in Slave Mode

In slave mode, calling read or write does not start a transfer. Instead, calling read or write will
configure the driver to perform the next read or write transfer using the user provided buffer.

Provided that a transfer is not already in progress, i3c_api_t::read and i3c_api_t::write can be called
to update the internal buffers even if the transfer has not been completed yet. Both the read and
write buffers can be configured at the same time in order to prepare the driver for when the master
initiates a read or a write transfer.

If there is no space remaining in a user configured read buffer, the application will get a
I3C_EVENT_READ_BUFFER_FULL callback requesting for a new read buffer to be provided.

Event Status

When a write, read, ibiWrite, ibiRead or commandSend, operation is completed, the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,089 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

i3c_callback_args_t::event_status should be checked. The event_status will provide information
about the success or failure of the operation.

The following are possible statuses:

I3C_EVENT_STATUS_SUCCESS
I3C_EVENT_STATUS_PARITY
I3C_EVENT_STATUS_FRAME
I3C_EVENT_STATUS_ADDRESS_HEADER
I3C_EVENT_STATUS_NACK
I3C_EVENT_STATUS_OVERFLOW
I3C_EVENT_STATUS_ABORTED_TO_MASTER
I3C_EVENT_STATUS_ABORTED

Note
In master mode, if the master issues a stop condition before the slave ends the transfer via the 'T' bit, the status will
be I3C_EVENT_STATUS_ABORTED.
In slave mode, if the master issues a stop condition before the slave ends the transfer via the 'T' bit, the status will
be I3C_EVENT_STATUS_ABORTED_TO_MASTER.

Direct Get Common Command Codes in Slave Mode

When an I3C slave receives a Command Code of type Direct Get, the response is automatically sent
from the device Special Function Registers (SFR). The SFR contains information for each command
code and can be configured during open (See i3c_extended_cfg_t::slave_command_response_info).
This allows the slave to respond to Direct Get Command Codes much faster, and removes the
burden of responding to these commands from the application.

The response to the GETSTATUS command can be configured at run-time using
i3c_api_t::slaveStatusSet.

Disabling Unaligned Buffer Support

Support for performing read and write operations on unaligned buffers can be disabled in order to
improve performance. When unaligned buffer support is disabled, all buffers passed to read, ibiRead,
write, ibiWrite, and commandSend must be aligned to 4 bytes and the size of the buffers must be a
multiple of 4 bytes.

In master mode, the value of the length passed to i3c_api_t::read and i3c_api_t::write sets the total
length of the operation in bytes. During the read or write operation, the driver may read or write to
the last word of memory during the operation. This means that the allocated memory for the buffer
passed to read and write needs to be a multiple of 4 bytes even though the transfer length is not a
multiple of 4 bytes.

In slave mode, the length passed to i3c_api_t::read must be a multiple of 4 bytes. The length passed
to i3c_api_t::write sets the number of bytes that the slave will write. The size of the buffer passed to
write still needs to be a multiple of 4 bytes.

Max Data Speed Limitation on RA2E2 MCUs

In Slave Mode, it is highly recommended that BCR[0] be set to '1' in order to indicate to the master
that the device doesn't support the max data speed. The master is then required to use the
GETMXDS command to get the device specific data speed limitations.

This will allow the slave to specify its maximum supported data rate for read/write, and the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,090 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

maximum read turnaround time (See GETMXDS in the MIPI I3C Specification v1.0).

Mixed Fast Bus

The MIPI I3C Specification v1.0 defines a Mixed Fast Bus as a bus that has legacy I2C devices that all
have a 50ns Spike Filter.

On Mixed Fast Buses, SCL has the following constraints during I3C SDR transfers:

SCL High Period: tDIG_H_MIXED(MIN) to tDIG_H_MIXED(MAX)
SCL Low Period: Up to tDIG_L(MAX)

In this case, configure the Extended Bitrate settings for I3C SDR transfers, and use the Standard
Bitrate settings for I2C transfers.

Note
1. See section 5.1.2.4 in the MIPI I3C Specification v1.0.

Mixed Slow Bus

The MIPI I3C Specification v1.0 defines a Mixed Slow Bus as a bus that has legacy I2C devices that do
not have a 50ns Spike Filter.

In this case, the SCL frequency is limited to I2C Fast Mode or I2C Fast Mode Plus.

Note
1. See section 5.1.2.4 in the MIPI I3C Specification v1.0.

RA2E2 MCU Version

There are two versions of the RA2E2. The version number can be identified by the part number or by
reading the MCU Version Register.

Part Number Chip Version

R7FA2E2A72DNK::HA0 Version 1

R7FA2E2A72DNK::HA1 Version 2

R7FA2E2A72DNK::AA0 Version 1

R7FA2E2A72DNK::AA1 Version 2

The I3C peripheral on the RA2E2 Version 1 has a hardware limitation related to using dynamic
address assignment in slave mode. When the ENTDAA command is received, the peripheral will
continue driving its PID, DCR, and BCR registers during arbitration even after its dynamic address
has already been configured. This will prevent any other devices on the bus from being configured
after the RA2E2 Version 1 device has been configured. One workaround for this limitation is to
configure the Provisional ID to all '1's in order to ensure that the RA2E2 Version 1 device is
configured last. If more than one RA2E2 Version 1 device is present on the same bus, consider
initializing them using another method (Eg. SETDASA). Note that this issue has been corrected
on the RA2E2 Version 2 (Part numbers ending in #AA1 or #HA1).

In addition to fixing this hardware limitation, the revised I3C peripheral on the RA2E2 version 2 also
greatly simplifies the error recovery procedures. By default, the driver will automatically include the
error recovery procedures for both versions, however, it can be configured to only support version 1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,091 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

or version 2 procedures in order to reduce code size.

Limitations

Developers should be aware of the following limitations when using the I3C:

The MIPI Reserved area and Vendor Extension area of Command Codes are not supported.
Mixed Fast Bus topology has the following limitation on RA2E2 MCUs. The minimum SCL
high period (TDIG_H) is 156 nanoseconds when PCLKD is 48 Mhz, and 120 nanoseconds when
PCLKD is 64 Mhz. On a Mixed Fast Bus, the high period TDIG_HIGH_MIXED must be less than 45
nanoseconds in order to ensure that Legacy I2C devices do not interpret I3C signaling as
valid I2C signaling (See Table 111 Push-Pull-Timing Parameters in the MIPI I3C Specification
v1.1). This required high period cannot be achievable with RA2E2 MCUs.
Secondary Master device role is not currently supported.

Examples
I3C Master Basic Example

This is a basic example of minimal use of the I3C Master in an application.

void i3c_master_basic_example (void)

{

 /* Initializes the module. */

 fsp_err_t status = R_I3C_Open(&g_i3c_ctrl, &g_i3c_cfg);

 assert(FSP_SUCCESS == status);

 static i3c_device_cfg_t master_device_cfg =

 {

 /* This is the Static I3C / I2C Legacy address defined by the device manufacturer.

*/

 .static_address = EXAMPLE_MASTER_STATIC_ADDRESS,

 /* If the device is a main master, it must configure its own dynamic address. */

 .dynamic_address = EXAMPLE_MASTER_DYNAMIC_ADDRESS,

 };

 status = R_I3C_DeviceCfgSet(&g_i3c_ctrl, &master_device_cfg);

 assert(FSP_SUCCESS == status);

 static i3c_device_table_cfg_t device_table_cfg =

 {

 /* This is the Static I3C / I2C Legacy address defined by the device manufacturer.

*/

 .static_address = EXAMPLE_STATIC_ADDRESS,

 /* Dynamic address is not used in I2C. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,092 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 .dynamic_address = EXAMPLE_DYNAMIC_ADDRESS,

 /* This is the type of device. It may be either an I2C device or an I3C device. */

 .device_protocol = I3C_DEVICE_PROTOCOL_I3C,

 .ibi_accept = false,

 /* Depending on the device the IBI requests may have a data payload.

 * Note that this field will be automatically updated if the device is configured

using ENTDAA.

 */

 .ibi_payload = false,

 /* Master requests cannot be accepted because Secondary Master is not supported. */

 .master_request_accept = false,

 };

 /* Set the device configuration in the master device table. */

 status = R_I3C_MasterDeviceTableSet(&g_i3c_ctrl, 0, &device_table_cfg);

 assert(FSP_SUCCESS == status);

 /* Enable the I3C device. */

 status = R_I3C_Enable(&g_i3c_ctrl);

 assert(FSP_SUCCESS == status);

 /* Start assigning dynamic addresses to devices on the bus using the ENTDAA command.

*/

 status = R_I3C_DynamicAddressAssignmentStart(&g_i3c_ctrl,

I3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA, 0, 1);

 assert(FSP_SUCCESS == status);

 /* Wait for dynamic address assignment to complete. */

 i3c_app_event_wait(I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);

 /* Select the configured device and bitrate mode for the following operations. */

 status = R_I3C_DeviceSelect(&g_i3c_ctrl, 0, I3C_BITRATE_MODE_I3C_SDR0_STDBR);

 assert(FSP_SUCCESS == status);

 /* Start a write transfer. */

 static uint8_t p_write_buffer[] = {1, 2, 3, 4, 5};

 status = R_I3C_Write(&g_i3c_ctrl, p_write_buffer, sizeof(p_write_buffer), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the write transfer to complete. */

 i3c_app_event_wait(I3C_EVENT_WRITE_COMPLETE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,093 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 /* Start a read transfer. */

 static uint8_t p_read_buffer[16];

 status = R_I3C_Read(&g_i3c_ctrl, p_read_buffer, sizeof(p_read_buffer), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the read transfer to complete. */

 i3c_app_event_wait(I3C_EVENT_READ_COMPLETE);

}

/* This function is called by the I3C driver from ISRs in order to notify the

application of I3C events. */

void i3c_master_basic_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_ENTDAA_ADDRESS_PHASE:

 {

 /* The device PID, DCR, and BCR registers will be available in

i3c_callback_args_t::p_slave_info. */

 break;

 }

 case I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE:

 {

 i3c_app_event_notify(I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);

 break;

 }

 case I3C_EVENT_WRITE_COMPLETE:

 {

 i3c_app_event_notify(I3C_EVENT_WRITE_COMPLETE);

 break;

 }

 case I3C_EVENT_READ_COMPLETE:

 {

 /* The number of bytes read from the slave will be available in

i3c_callback_args_t::transfer_size. */

 i3c_app_event_notify(I3C_EVENT_READ_COMPLETE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,094 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 break;

 }

 default:

 {

 break;

 }

 }

}

I3C Slave Basic Example

This is a basic example of minimal use of the I3C Slave in an application.

void i3c_slave_basic_example (void)

{

 /* Initializes the module. */

 fsp_err_t status = R_I3C_Open(&g_i3c_ctrl, &g_i3c_cfg);

 assert(FSP_SUCCESS == status);

 static i3c_device_cfg_t slave_device_cfg =

 {

 /* This is the Static I3C / I2C Legacy address defined by the device manufacturer.

*/

 .static_address = EXAMPLE_STATIC_ADDRESS,

 /* The dynamic address will be automatically updated when the master configures this

device using ENTDAA. */

 .dynamic_address = 0,

 /* Device Registers that are read by the master. */

 .slave_info =

 {

 .bcr = EXAMPLE_BCR_SETTING,

 .dcr = EXAMPLE_DCR_SETTING,

 .pid =

 {

 0, 1, 2, 3, 4, 5

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,095 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 }

 };

 /* Set the device configuration for this device. */

 status = R_I3C_DeviceCfgSet(&g_i3c_ctrl, &slave_device_cfg);

 assert(FSP_SUCCESS == status);

 /* Enable Slave Mode. */

 status = R_I3C_Enable(&g_i3c_ctrl);

 assert(FSP_SUCCESS == status);

 static uint8_t p_read_buffer[EXAMPLE_READ_BUFFER_SIZE];

 static uint8_t p_write_buffer[EXAMPLE_WRITE_BUFFER_SIZE];

 /* Set the buffer for storing data received during a read transfer. */

 status = R_I3C_Read(&g_i3c_ctrl, p_read_buffer, sizeof(p_read_buffer), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the master to complete a read transfer. */

 i3c_app_event_wait(I3C_EVENT_READ_COMPLETE);

 /* Set the write buffer that will be transmitted during a write transfer. */

 status = R_I3C_Write(&g_i3c_ctrl, p_write_buffer, sizeof(p_write_buffer), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the master to complete a write transfer. */

 i3c_app_event_wait(I3C_EVENT_WRITE_COMPLETE);

}

void i3c_slave_basic_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE:

 {

 i3c_app_event_notify(I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE);

 break;

 }

 case I3C_EVENT_READ_BUFFER_FULL:

 {

 /* If there is no user provided read buffer, or if the user provided read buffer has

been filled,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,096 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 * the driver will notify the application that the buffer is full. The application

may provide

 * a new read buffer by calling i3c_api_t::read. If no read buffer is provided, then

any remaining bytes

 * in the transfer will be dropped. */

 uint8_t * p_read_buffer = i3c_app_next_read_buffer_get();

 R_I3C_Read(&g_i3c_ctrl, p_read_buffer, EXAMPLE_READ_BUFFER_SIZE, false);

 break;

 }

 case I3C_EVENT_READ_COMPLETE:

 {

 /* The number of bytes read by the slave will be available in

i3c_callback_args_t::transfer_size. */

 i3c_app_event_notify(I3C_EVENT_READ_COMPLETE);

 /* Note that the application may also call i3c_api_t::read or i3c_api_t::write from

this event

 * In order to set the transfer buffers for the next transfer. */

 break;

 }

 case I3C_EVENT_WRITE_COMPLETE:

 {

 /* The number of bytes written by the slave will be available in

i3c_callback_args_t::transfer_size. */

 i3c_app_event_notify(I3C_EVENT_WRITE_COMPLETE);

 /* Note that the application may also call i3c_api_t::read or i3c_api_t::write from

this event

 * In order to set the transfer buffers for the next transfer. */

 break;

 }

 default:

 {

 break;

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,097 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

}

I2C Legacy Basic Example

This is a basic example of minimal use of I2C Legacy transfers in an application.

void i2c_legacy_basic_example (void)

{

 /* Initializes the module. */

 fsp_err_t status = R_I3C_Open(&g_i3c_ctrl, &g_i3c_cfg);

 assert(FSP_SUCCESS == status);

 static i3c_device_cfg_t master_device_cfg =

 {

 /* This is the Static I3C / I2C Legacy address defined by the device manufacturer.

*/

 .static_address = EXAMPLE_MASTER_STATIC_ADDRESS,

 /* If the device is a main master, it must configure its own dynamic address. */

 .dynamic_address = EXAMPLE_MASTER_DYNAMIC_ADDRESS,

 };

 status = R_I3C_DeviceCfgSet(&g_i3c_ctrl, &master_device_cfg);

 assert(FSP_SUCCESS == status);

 static i3c_device_table_cfg_t device_table_cfg =

 {

 /* This is the Static I3C / I2C Legacy address defined by the device manufacturer.

*/

 .static_address = EXAMPLE_STATIC_ADDRESS,

 /* Dynamic address is not used in I2C. */

 .dynamic_address = 0,

 /* This is the type of device. It may be either an I2C device or an I3C device. */

 .device_protocol = I3C_DEVICE_PROTOCOL_I2C,

 /* These options are not used in I2C. */

 .ibi_accept = false,

 /* Depending on the device the IBI requests may have a data payload.

 * Note that this field will be automatically updated if the device is configured

using ENTDAA.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,098 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 */

 .ibi_payload = false,

 /* Master requests cannot be accepted because Secondary Master is not supported. */

 .master_request_accept = false,

 };

 /* Set the device configuration in the master device table. */

 status = R_I3C_MasterDeviceTableSet(&g_i3c_ctrl, 0, &device_table_cfg);

 assert(FSP_SUCCESS == status);

 /* Enable the I3C device. */

 status = R_I3C_Enable(&g_i3c_ctrl);

 assert(FSP_SUCCESS == status);

 /* Select the configured device for the following operations. */

 status = R_I3C_DeviceSelect(&g_i3c_ctrl, 0, I3C_BITRATE_MODE_I2C_STDBR);

 assert(FSP_SUCCESS == status);

 /* Start a write transfer. */

 static uint8_t p_write_data[] = {1, 2, 3, 4, 5};

 status = R_I3C_Write(&g_i3c_ctrl, p_write_data, sizeof(p_write_data), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the write transfer to complete. */

 i3c_app_event_wait(I3C_EVENT_WRITE_COMPLETE);

 /* Start a read transfer. */

 static uint8_t p_read_data[16];

 status = R_I3C_Read(&g_i3c_ctrl, p_read_data, sizeof(p_read_data), false);

 assert(FSP_SUCCESS == status);

 /* Wait for the read transfer to complete. */

 i3c_app_event_wait(I3C_EVENT_READ_COMPLETE);

}

void i2c_legacy_basic_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_WRITE_COMPLETE:

 {

 i3c_app_event_notify(I3C_EVENT_WRITE_COMPLETE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,099 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 break;

 }

 case I3C_EVENT_READ_COMPLETE:

 {

 /* The number of bytes read from the slave will be available in

i3c_callback_args_t::transfer_size. */

 i3c_app_event_notify(I3C_EVENT_READ_COMPLETE);

 break;

 }

 default:

 {

 break;

 }

 }

}

I3C Master In-band Interrupts Example

This is a basic example of reading In-band Interrupts in I3C Master mode.

void i3c_master_ibi_basic_example (void)

{

 static uint8_t p_ibi_read_buffer[EXAMPLE_READ_BUFFER_SIZE];

 /* Set the buffer for storing IBI data that is read from the slave. */

 fsp_err_t status = R_I3C_IbiRead(&g_i3c_ctrl, p_ibi_read_buffer, sizeof

(p_ibi_read_buffer));

 assert(FSP_SUCCESS == status);

 /* Wait for the ibiRead transfer to complete.

 * Note that the master does not need to wait for the IBI, and can start other

operations. */

 i3c_app_event_wait(I3C_EVENT_IBI_READ_COMPLETE);

}

void i3c_master_ibi_basic_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,100 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 {

 case I3C_EVENT_IBI_READ_BUFFER_FULL:

 {

 /* If there is no user provided ibiRead buffer, or if the user provided ibiRead

buffer has been filled,

 * the driver will notify the application that the buffer is full. The application

may provide

 * a new read buffer by calling i3c_api_t::ibiRead. If no read buffer is provided,

then any remaining bytes

 * in the transfer will be dropped. */

 uint8_t * p_read_buffer = i3c_app_next_read_buffer_get();

 R_I3C_IbiRead(&g_i3c_ctrl, p_read_buffer, EXAMPLE_READ_BUFFER_SIZE);

 break;

 }

 case I3C_EVENT_IBI_READ_COMPLETE:

 {

 /* When an IBI is completed, the transfer_size, ibi_type, and ibi_address will be

available in p_args. */

 switch (p_args->ibi_type)

 {

 case I3C_IBI_TYPE_INTERRUPT:

 {

 /* Notify the application that an IBI was read. */

 i3c_app_event_notify(I3C_EVENT_IBI_READ_COMPLETE);

 break;

 }

 case I3C_IBI_TYPE_HOT_JOIN:

 {

 /* If a Hot-Join event is received, then the master can initiate the dynamic address

assignment procedure. */

 R_I3C_DynamicAddressAssignmentStart(&g_i3c_ctrl, I3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA,

0, 1);

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,101 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 default:

 {

 break;

 }

 }

 }

 default:

 {

 break;

 }

 }

}

I3C Slave In-band Interrupts Example

This is a basic example of writing In-band Interrupts in I3C Slave mode.

void i3c_slave_ibi_write_basic_example (void)

{

 uint8_t ibi_write_buffer[EXAMPLE_WRITE_BUFFER_SIZE] = {0};

 /* Initiate an In-band interrupt in slave mode.

 * Note: If the slave does not have an IBI payload or if it is a Hot-Join request,

the write buffer should be set

 * to NULL and the write length should be set to 0. */

 fsp_err_t status = R_I3C_IbiWrite(&g_i3c_ctrl, I3C_IBI_TYPE_INTERRUPT,

ibi_write_buffer, sizeof(ibi_write_buffer));

 assert(FSP_SUCCESS == status);

 /* Wait for the ibiWrite transfer to complete. */

 i3c_app_event_wait(I3C_EVENT_IBI_WRITE_COMPLETE);

}

void i3c_slave_ibi_write_basic_example_callback (i3c_callback_args_t const * const

p_args)

{

 switch (p_args->event)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,102 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 case I3C_EVENT_IBI_WRITE_COMPLETE:

 {

 /* Notify the application that the IBI write is complete. */

 i3c_app_event_notify(I3C_EVENT_IBI_WRITE_COMPLETE);

 break;

 }

 default:

 {

 break;

 }

 }

}

I3C Master Common Command Codes Example

This is a basic example of sending Common Command Codes in I3C Master mode.

void i3c_master_ccc_example (void)

{

 static uint8_t command_buffer[EXAMPLE_READ_BUFFER_SIZE];

 /* Setup the command descriptor. */

 static i3c_command_descriptor_t command_descriptor =

 {

 .command_code = I3C_CCC_DIRECT_GETSTATUS,

 /* Set a buffer for storing the data read by the command. */

 .p_buffer = command_buffer,

 /* The length for a GETSTATUS command is 2 bytes. */

 .length = 2,

 /* Terminate the transfer with a STOP condition. */

 .restart = false,

 /* The GETSTATUS command is a Direct Get Command so rnw should be true. */

 .rnw = true,

 };

 /* Send the command. */

 fsp_err_t status = R_I3C_CommandSend(&g_i3c_ctrl, &command_descriptor);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,103 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 assert(FSP_SUCCESS == status);

 /* Wait for the command to complete. */

 i3c_app_event_wait(I3C_EVENT_COMMAND_COMPLETE);

 /* The command_buffer will have the status info that was read from the slave device.

*/

}

void i3c_master_ccc_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_COMMAND_COMPLETE:

 {

 /* Notify the application that the command is complete. */

 i3c_app_event_notify(I3C_EVENT_COMMAND_COMPLETE);

 break;

 }

 default:

 {

 break;

 }

 }

}

I3C Slave Common Command Codes Example

This is a basic example of receiving Common Command Codes in I3C Slave mode.

void i3c_slave_ccc_example (void)

{

 static uint8_t read_buffer[EXAMPLE_READ_BUFFER_SIZE];

 /* Broadcast and Direct Set commands will be read into the read_buffer the same way

that

 * a normal SDR Master Write / Slave Read transfer is read. */

 fsp_err_t status = R_I3C_Read(&g_i3c_ctrl, read_buffer, sizeof(read_buffer), false);

 assert(FSP_SUCCESS == status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,104 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 /* Wait for the command to complete. */

 i3c_app_event_wait(I3C_EVENT_COMMAND_COMPLETE);

}

void i3c_slave_ccc_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_COMMAND_COMPLETE:

 {

 /* The command code and transfer size will be available in p_args.

 * If the command code is a Broadcast or Direct Set, then data will

 * be stored in the read buffer provided by i3c_api_t::read.

 * If the command code is a Direct Get, then the data will be automatically

 * sent from device SFR. */

 i3c_app_event_notify(I3C_EVENT_COMMAND_COMPLETE);

 break;

 }

 default:

 {

 break;

 }

 }

}

I3C HDR Command Example

This is a basic example of sending an HDR command

#define I3C_HDR_COMMAND_CODE (0x55)

#define I3C_HDR_COMMAND_LENGTH (16)

void i3c_hdr_command_example (void)

{

 static uint8_t command_buffer[EXAMPLE_READ_BUFFER_SIZE];

 /* Setup the command descriptor. */

 static i3c_command_descriptor_t command_descriptor =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,105 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 {

 /* Specify the command code for the HDR transfer. */

 .command_code = I3C_HDR_COMMAND_CODE,

 /* Set a buffer for writing command data. */

 .p_buffer = command_buffer,

 /* The length for command (HDR commands must be a multiple of 2 bytes). */

 .length = I3C_HDR_COMMAND_LENGTH,

 /* Terminate the transfer with a HDR-EXIT. */

 .restart = false,

 /* Specify if this is a read/write command. */

 .rnw = false,

 };

 /* Select the HDR mode for subsequent transfers. */

 fsp_err_t status = R_I3C_DeviceSelect(&g_i3c_ctrl, 0,

I3C_BITRATE_MODE_I3C_HDR_DDR_STDBR);

 assert(FSP_SUCCESS == status);

 /* Send the command. */

 status = R_I3C_CommandSend(&g_i3c_ctrl, &command_descriptor);

 assert(FSP_SUCCESS == status);

 /* Wait for the command to complete. */

 i3c_app_event_wait(I3C_EVENT_COMMAND_COMPLETE);

}

void i3c_hdr_command_example_callback (i3c_callback_args_t const * const p_args)

{

 switch (p_args->event)

 {

 case I3C_EVENT_COMMAND_COMPLETE:

 {

 /* Notify the application that the command is complete. */

 i3c_app_event_notify(I3C_EVENT_COMMAND_COMPLETE);

 break;

 }

 default:

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,106 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 break;

 }

 }

}

Data Structures

struct i3c_clock_stalling_t

struct i3c_bitrate_settings_t

struct i3c_ibi_control_t

struct i3c_slave_command_response_info_t

struct i3c_instance_ctrl_t

struct i3c_extended_cfg_t

Macros

#define I3C_ERROR_RECOVERY_VERSION_1

 Support error recovery procedure for chip version 1. More...

#define I3C_ERROR_RECOVERY_VERSION_2

 Support error recovery procedure for chip version 2.

#define I3C_ERROR_RECOVERY_VERSION_BOTH

 Support error recovery procedure for chip version 1 and version 2.

#define I3C_DEVICE_INDEX_EXTENDED_DEVICE

#define I3C_EVENT_STATUS_SUCCESS

 The transfer was completed as expected. More...

#define I3C_EVENT_STATUS_PARITY

 A parity error was detected.

#define I3C_EVENT_STATUS_FRAME

 A frame error was detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,107 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

#define I3C_EVENT_STATUS_ADDRESS_HEADER

 An Address Header error wasdetected.

#define I3C_EVENT_STATUS_NACK

 The transfer was NACK'd.

#define I3C_EVENT_STATUS_OVERFLOW

 A Receive FIFO overflow or Transmit FIFO underflow occurred.

#define I3C_EVENT_STATUS_ABORTED_TO_MASTER

 In slave mode, the write transfer was ended via the 'T' bit.

#define I3C_EVENT_STATUS_ABORTED

 In master mode, the transfer was aborted.

#define I3C_EVENT_STATUS_NOT_SUPPORTED

 Operation is not supported.

#define I3C_EVENT_STATUS_IBI_NACK_DISABLED

 An IBI was NACK'd and the a DISEC command was sent.

Enumerations

enum i3c_bitrate_mode_t

enum i3c_activity_state_t

enum i3c_data_rate_setting_t

enum i3c_clock_data_turnaround_t

Data Structure Documentation

◆ i3c_clock_stalling_t

struct i3c_clock_stalling_t

Clock stalling settings.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,108 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

uint32_t assigned_address_phase_enabl
e: 1

Enable Clock Stalling during the
address phase of the ENTDAA
command.

uint32_t transition_phase_enable: 1 Enable Clock Stalling during the
transition bit in read transfers.

uint32_t parity_phase_enable: 1 Enable Clock Stalling during the
parity bit period in write
transfers.

uint32_t ack_phase_enable: 1 Enable Clock Stalling during the
ACK/NACK phase.

uint16_t clock_stalling_time The amount of time to stall the
clock in I3C source clock ticks.

◆ i3c_bitrate_settings_t

struct i3c_bitrate_settings_t

Bitrate settings for configuring the SCL clock frequency.

Data Fields

uint32_t stdbr The standard bitrate settings.

uint32_t extbr The extended bitrate settings.

i3c_clock_stalling_t clock_stalling Clock Stalling settings (See
Master Clock Stalling in the MIPI
I3C Specification v1.0).

◆ i3c_ibi_control_t

struct i3c_ibi_control_t

Settings for controlling the drivers behavior in response to IBIs.

Data Fields

uint32_t hot_join_acknowledge: 1 If false, NACK all Hot Join
requests.

uint32_t notify_rejected_hot_join_reques
ts: 1

Notify the application when an
IBI Hot-Join request has been
NACK'd.

uint32_t notify_rejected_mastership_req
uests: 1

Notify the application when an
IBI Mastership request has been
NACK'd.

uint32_t notify_rejected_interrupt_reque
sts: 1

Notify the application when an
IBI Interrupt request has been
NACK'd.

◆ i3c_slave_command_response_info_t

struct i3c_slave_command_response_info_t

Default configuration settings for the slave response to Direct Get Common Command Codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,109 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

Data Fields

bool inband_interrupt_enable Enable IBI interrupts.

Slave Event Settings (See ENEC
and DISEC in the MIPI I3C
Specification v1.0).

bool mastership_request_enable Enable Mastership requests.

bool hotjoin_request_enable Enable Hot-Join requests.

i3c_activity_state_t activity_state Starting Activity State (See
ENTASn in the MIPI I3C
Specification v1.0).

uint16_t write_length Max Write Length (See SETMWL
and GETMWL in the MIPI I3C
Specification v1.0).

uint16_t read_length Max Read Length (See SETMRL
and GETMRL in the MIPI I3C
Specification v1.0).

uint8_t ibi_payload_length Number of bytes that will be
written by an IBI (See SETMRL
and GETMRL in the MIPI I3C
Specification v1.0).

i3c_data_rate_setting_t write_data_rate Max Write Data Rate.

Max Data Rate Settings (See
GETMXDS in the MIPI I3C
Specification v1.0).

i3c_data_rate_setting_t read_data_rate Max Read Data Rate.

i3c_clock_data_turnaround_t clock_data_turnaround Max Data Speed Turnaround.

bool read_turnaround_time_enable Enable transmission of the of
the Max Read Max Read
Turnaround Time.

uint32_t read_turnaround_time Max Read Turnaround Time.

uint8_t oscillator_frequency This byte represents the Slave's
internal oscillator frequency in
increments of 0.5 MHz
(500kHz), up to 127.5 MHz.
(See GETXTIME in the MIPI I3C
Specification v1.1).

uint8_t oscillator_inaccuracy Oscillator inaccuracy in 0.5%
increments of 0% up to 25.5%
(See GETXTIME in the MIPI I3C
Specification v1.1).

bool hdr_ddr_support HDR-DDR mode is supported.

bool hdr_tsp_support HDR-TSP mode is supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,110 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

bool hdr_tsl_support HDR-TSL mode is supported.

◆ i3c_instance_ctrl_t

struct i3c_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when i3c_api_t::open is called.

Public Member Functions

i3c_slave_info_t
current_slave_info

BSP_ALIGN_VARIABLE (4)

 The last i3c_slave_info_t read during ENTDAA.

Data Fields

uint32_t open

 Indicates whether the open() API has been successfully called.

R_I3C0_Type * p_reg

 Base register for this channel.

volatile uint32_t internal_state

 Used to track the current state of the driver.

uint8_t current_command_code

 The current Common Command Code that is being transferred.

uint32_t device_index

 The device index selected using i3c_api_t::deviceSelect.

i3c_bitrate_mode_t device_bitrate_mode

 Runtime bitrate settings to use for the next transfer.

uint32_t next_word

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,111 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

 The next word that will be written to the FIFO.

uint32_t ibi_next_word

 The next word that will be written to the IBI FIFO.

i3c_write_buffer_descriptor_t write_buffer_descriptor

 Buffer descriptor for keeping track of a write transfer.

i3c_read_buffer_descriptor_t read_buffer_descriptor

 Buffer descriptor for keeping track of a read transfer.

i3c_read_buffer_descriptor_t ibi_buffer_descriptor

 Buffer descriptor for keeping track of an IBI read/write transfer.

volatile uint32_t read_transfer_count_final

 The total number of bytes read during a read transfer.

volatile uint32_t ibi_transfer_count_final

 The total number of bytes read during an IBI transfer.

i3c_cfg_t const * p_cfg

 A pointer to the configuration structure provided during open.

◆ i3c_extended_cfg_t

struct i3c_extended_cfg_t

Extended configuration for r_i3c.

Data Fields

i3c_bitrate_settings_t bitrate_settings Bitrate settings configuring the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,112 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

frequency and duty cycle for
SCL.

i3c_ibi_control_t ibi_control Configure the driver's behavior
in response to IBIs.

uint32_t bus_free_detection_time The time in I3C reference clock
ticks needed in order to detect
the bus free condition (See "Bus
Free Condition" in the MIPI I3C
Specification v1.0).

uint32_t bus_available_detection_time The time in I3C reference clock
ticks needed in order to detect
the bus available condition (See
"Bus Available Condition" in the
MIPI I3C Specification v1.0).

uint32_t bus_idle_detection_time The time in I3C reference clock
ticks needed in order to detect
the bus idle condition (See "Bus
Idle Condition" in the MIPI I3C
Specification v1.0).

bool timeout_detection_enable Notify the application if SCL is
stuck high or low.

i3c_slave_command_response_i
nfo_t

slave_command_response_info Initial settings for configuring
the slave's responses to
received commands.

IRQn_Type resp_irq Response Queue Full IRQ
number.

IRQn_Type rx_irq Receive FIFO Full IRQ number.

IRQn_Type tx_irq Transmit FIFO Empty IRQ
number.

IRQn_Type rcv_irq Receive Status Queue Full IRQ
number.

IRQn_Type ibi_irq IBI IRQ number.

IRQn_Type eei_irq EEI IRQ number.

uint8_t ipl Interrupt Priority for Resp, Rx,
Tx, and RCV IRQs.

uint8_t eei_ipl Error and Event Interrupt
Priority.

Macro Definition Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,113 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ I3C_ERROR_RECOVERY_VERSION_1

#define I3C_ERROR_RECOVERY_VERSION_1

Support error recovery procedure for chip version 1.

There are two different versions of the RA2E2 MCU and the error recovery procedure is different for
each version.

◆ I3C_DEVICE_INDEX_EXTENDED_DEVICE

#define I3C_DEVICE_INDEX_EXTENDED_DEVICE

Index for selecting the device defined in the extended address table.

◆ I3C_EVENT_STATUS_SUCCESS

#define I3C_EVENT_STATUS_SUCCESS

The transfer was completed as expected.

Event Status Provided by the callback.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,114 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ i3c_bitrate_mode_t

enum i3c_bitrate_mode_t

Bitrate settings that can be selected at run-time using i3c_api_t::deviceSelect.

Enumerator

I3C_BITRATE_MODE_I2C_STDBR Use standard period setting for subsequent I2C
transfers.

I3C_BITRATE_MODE_I2C_EXTBR Use extended period setting for subsequent
I2C transfers.

I3C_BITRATE_MODE_I3C_SDR0_STDBR Use standard period setting for subsequent I3C
SDR transfers.

I3C_BITRATE_MODE_I3C_SDR1_EXTBR Use extended period setting for subsequent
I3C SDR transfers.

I3C_BITRATE_MODE_I3C_SDR2_STDBR_X2 Use standard period setting x 2 for subsequent
I3C SDR transfers.

I3C_BITRATE_MODE_I3C_SDR3_EXTBR_X2 Use extended period setting x 2 for
subsequent I3C SDR transfers.

I3C_BITRATE_MODE_I3C_SDR4_EXTBR_X4 Use extended period setting x 4 for
subsequent I3C SDR transfers.

I3C_BITRATE_MODE_I3C_HDR_DDR_STDBR Use standard period setting for subsequent I3C
HDR-DDR transfers.

◆ i3c_activity_state_t

enum i3c_activity_state_t

Supported activity states for ENTASn Command (See ENTASn in the MIPI I3C Specification v1.0).

Enumerator

I3C_ACTIVITY_STATE_ENTAS0 Activity Interval (1 microsecond).

I3C_ACTIVITY_STATE_ENTAS1 Activity Interval (100 microseconds).

I3C_ACTIVITY_STATE_ENTAS2 Activity Interval (2 milliseconds).

I3C_ACTIVITY_STATE_ENTAS3 Activity Interval (50 milliseconds).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,115 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ i3c_data_rate_setting_t

enum i3c_data_rate_setting_t

Maximum Sustained Data Rate for non-CCC messages sent by Master Device to Slave Device (See
GETMXDS in the MIPI I3C Specification v1.0).

Enumerator

I3C_DATA_RATE_SETTING_FSCL_MAX There is no data rate limit.

I3C_DATA_RATE_SETTING_8MHZ The max sustained data rate is 8 Mhz.

I3C_DATA_RATE_SETTING_6MHZ The max sustained data rate is 6 Mhz.

I3C_DATA_RATE_SETTING_4MHZ The max sustained data rate is 4 Mhz.

I3C_DATA_RATE_SETTING_2MHZ The max sustained data rate is 2 Mhz.

◆ i3c_clock_data_turnaround_t

enum i3c_clock_data_turnaround_t

Clock to Data Turnaround Time (See GETMXDS in the MIPI I3C Specification v1.0).

Enumerator

I3C_CLOCK_DATA_TURNAROUND_8NS Clock to turnaround time is 8 nanoseconds or
less.

I3C_CLOCK_DATA_TURNAROUND_9NS Clock to turnaround time is 9 nanoseconds or
less.

I3C_CLOCK_DATA_TURNAROUND_10NS Clock to turnaround time is 10 nanoseconds or
less.

I3C_CLOCK_DATA_TURNAROUND_11NS Clock to turnaround time is 11 nanoseconds or
less.

I3C_CLOCK_DATA_TURNAROUND_12NS Clock to turnaround time is 12 nanoseconds or
less.

I3C_CLOCK_DATA_TURNAROUND_EXTENDED Clock to turnaround time is greater than 12
nanoseconds.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,116 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_Open()

fsp_err_t R_I3C_Open (i3c_ctrl_t *const p_api_ctrl, i3c_cfg_t const *const p_cfg)

Configure an I3C instance. Implements i3c_api_t::open.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was invalid.

FSP_ERR_ALREADY_OPEN Open has already been called for this
instance.

FSP_ERR_UNSUPPORTED A selected feature is not supported with the
current configuration.

◆ R_I3C_Enable()

fsp_err_t R_I3C_Enable (i3c_ctrl_t *const p_api_ctrl)

Enable the I3C device.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_INVALID_MODE This instance is already enabled.

◆ R_I3C_DeviceCfgSet()

fsp_err_t R_I3C_DeviceCfgSet (i3c_ctrl_t *const p_api_ctrl, i3c_device_cfg_t const *const
p_device_cfg)

Set the configuration for this device.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_UNSUPPORTED The device cannot be a secondary master if
master support is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,117 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_MasterDeviceTableSet()

fsp_err_t R_I3C_MasterDeviceTableSet (i3c_ctrl_t *const p_api_ctrl, uint32_t device_index,
i3c_device_table_cfg_t const *const p_device_table_cfg)

Configure an entry in the master device table. This function is called in master mode in order to
configure the devices on the I3C bus. It may also be called in slave mode when the slave receives
the DEFSVLS command.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_UNSUPPORTED Mastership requests must be rejected is
slave support is disabled.

◆ R_I3C_SlaveStatusSet()

fsp_err_t R_I3C_SlaveStatusSet (i3c_ctrl_t *const p_api_ctrl, i3c_device_status_t status)

Set the status returned to the master in response to a GETSTATUS command.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_INVALID_MODE The instance is not in slave mode.

FSP_ERR_UNSUPPORTED Slave support is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,118 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_DeviceSelect()

fsp_err_t R_I3C_DeviceSelect (i3c_ctrl_t *const p_api_ctrl, uint32_t device_index, uint32_t
bitrate_mode)

In master mode, select the device for the next transfer. This function is not used in slave mode.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_INVALID_MODE This operation is prohibited in slave mode.

FSP_ERR_UNSUPPORTED Master support is disabled.

◆ R_I3C_DynamicAddressAssignmentStart()

fsp_err_t R_I3C_DynamicAddressAssignmentStart (i3c_ctrl_t *const p_api_ctrl,
i3c_address_assignment_mode_t address_assignment_mode, uint32_t starting_device_index,
uint32_t device_count)

Start the Dynamic Address Assignment Process. Implements
i3c_api_t::dynamicAddressAssignmentStart.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL or invalid.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_INVALID_MODE This operation is prohibited in slave mode.

FSP_ERR_IN_USE The operation could not be completed
because the driver is busy.

FSP_ERR_UNSUPPORTED Master support is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,119 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_CommandSend()

fsp_err_t R_I3C_CommandSend (i3c_ctrl_t *const p_api_ctrl, i3c_command_descriptor_t const
*const p_command_descriptor)

Send a broadcast or direct command to slave devices on the bus. Implements
i3c_api_t::commandSend.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_IN_USE The operation could not be completed
because the driver is busy.

FSP_ERR_INVALID_MODE This driver is not in master mode.

FSP_ERR_INVALID_ALIGNMENT The buffer must be aligned to 4 bytes. If it is
a read operation, the length also be a
multiple of 4 bytes.

FSP_ERR_UNSUPPORTED Master support must be enabled to call this
function. Slave support must be enabled
when sending the GETACCMST command.

◆ R_I3C_Write()

fsp_err_t R_I3C_Write (i3c_ctrl_t *const p_api_ctrl, uint8_t const *const p_data, uint32_t length,
bool restart)

Set the write buffer for the transfer. In master mode, start the transfer. When the transfer is
completed send a stop condition or a repeated-start. Implements i3c_api_t::write.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_IN_USE The operation could not be completed
because the driver is busy.

FSP_ERR_INVALID_MODE This driver is disabled, or an invalid bitrate
mode is selected.

FSP_ERR_INVALID_ALIGNMENT The buffer must be aligned to 4 bytes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,120 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_Read()

fsp_err_t R_I3C_Read (i3c_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t length, bool
restart)

Set the read buffer for the transfer. In master mode, start the transfer. When the transfer is
completed send a stop condition or a repeated-start. Implements i3c_api_t::read.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_IN_USE The operation could not be completed
because the driver is busy.

FSP_ERR_INVALID_MODE This driver is disabled, or an invalid bitrate
mode is selected.

FSP_ERR_INVALID_ALIGNMENT The buffer must be aligned to 4 bytes and
the length must be a multiple of 4 bytes.

◆ R_I3C_IbiWrite()

fsp_err_t R_I3C_IbiWrite (i3c_ctrl_t *const p_api_ctrl, i3c_ibi_type_t ibi_type, uint8_t const *const
p_data, uint32_t length)

Initiate an IBI write operation (This function is only used in slave mode).

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_IN_USE The operation could not be completed
because the driver is busy.

FSP_ERR_INVALID_MODE This function is only called in slave mode.

FSP_ERR_INVALID_ALIGNMENT The buffer must be aligned to 4 bytes.

FSP_ERR_UNSUPPORTED Slave supoprt is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,121 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > I3C (r_i3c)

◆ R_I3C_IbiRead()

fsp_err_t R_I3C_IbiRead (i3c_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t length)

Set the read buffer for storing received IBI data (This function is only used in master mode).

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

FSP_ERR_INVALID_MODE This function is only called in master mode.

FSP_ERR_INVALID_ALIGNMENT The buffer must be aligned to 4 bytes and
the length must be a multiple of 4 bytes.

FSP_ERR_UNSUPPORTED Master support is disabled.

◆ R_I3C_Close()

fsp_err_t R_I3C_Close (i3c_ctrl_t *const p_api_ctrl)

Close the I3C instance. Implements i3c_api_t::close.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_NOT_OPEN This instance has not been opened yet.

5.2.6.17 LIN (r_sci_b_lin)
Modules » Connectivity

Functions

fsp_err_t R_SCI_B_LIN_Open (lin_ctrl_t *const p_api_ctrl, lin_cfg_t const *const
p_cfg)

fsp_err_t R_SCI_B_LIN_StartFrameWrite (lin_ctrl_t *const p_api_ctrl, uint8_t
const id)

fsp_err_t R_SCI_B_LIN_InformationFrameWrite (lin_ctrl_t *const p_api_ctrl,
const lin_transfer_params_t *const p_transfer_params)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,122 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

fsp_err_t R_SCI_B_LIN_InformationFrameRead (lin_ctrl_t *const p_api_ctrl,
lin_transfer_params_t *const p_transfer_params)

fsp_err_t R_SCI_B_LIN_CommunicationAbort (lin_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_B_LIN_CallbackSet (lin_ctrl_t *const p_api_ctrl,
void(*p_callback)(lin_callback_args_t *), void const *const p_context,
lin_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_B_LIN_BaudCalculate (sci_b_lin_baud_params_t const *const
p_baud_params, sci_b_lin_baud_setting_t *const p_baud_setting)

fsp_err_t R_SCI_B_LIN_IdFilterSet (lin_ctrl_t *const p_api_ctrl,
sci_b_lin_id_filter_setting_t const *const p_config)

fsp_err_t R_SCI_B_LIN_IdFilterGet (lin_ctrl_t *const p_api_ctrl,
sci_b_lin_id_filter_setting_t *const p_config)

fsp_err_t R_SCI_B_LIN_Close (lin_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the LIN Interface.

Overview
The Simple LIN on SCI_B HAL module supports Local Interface Network (LIN) transactions in master
or slave mode. A callback must be provided, and is invoked when a transmission, reception, or other
event has completed or occurred. The callback arguments contain information about the transaction
status, bytes transferred and a pointer to the user defined context.

Features

Half-duplex master or slave mode LIN communication
Interrupt-driven data transmission and reception
Generation of the sync (0x55) and Protected Identifier fields when in master mode
Validation of the Protected Identifier field when in slave mode
ID filtering support in slave mode
Optional checksum generation/validation using classic or enhanced LIN checksum
Invoking the user-callback function with an event code (RX/TX complete, error, etc)
Auto synchronization is supported in slave mode
Adjustable break field length
Adjustable break field delimiter/stop bits length
Noise cancellation
Abort in-progress read/write operations
Error notifications of parity error in protected identifier, framing error, overrun error, bus
collision, and counter overflow error (counter overflow error applies in slave mode only)
Operation clock selection (PCLK or SCISPI/SCICLK)
Configuration of all available SCI_B channels with Simple LIN mode support

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,123 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

Build Time Configurations for r_sci_b_lin

The following build time configurations are defined in fsp_cfg/r_sci_b_lin_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Checksum Support Enabled
Disabled

Enabled When set to 'Disabled',
code for checksum
generation and
validation is excluded
from the build. This
setting is applied
globally to the project.
Disable only when
checksum generation
and validation is not
required for any LIN
instance.

Auto Synchronization
Support

Enabled
Disabled

Disabled When set to 'Disabled',
code for auto
synchronization is
excluded from the
build. This setting is
applied globally to the
project. Enable when at
least one LIN slave
instance is using auto
synchronization.

Configurations for Connectivity > LIN (r_sci_b_lin)

This module can be added to the Stacks tab via New Stack > Connectivity > LIN (r_sci_b_lin). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_lin0 Module name.

Channel MCU Specific Options Select the LIN channel.

Mode Master
Slave

Master Select the LIN
operating mode
(master or slave).

Extra

Clock Source MCU Specific Options Select whether the
peripheral clock (PCLK)
or SCICLK/SCISPICLK is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,124 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

used as the baud rate
generator.

Noise Filter Enable
Disable

Disable Enable the digital noise
filter on RXDn pin. The
digital noise filter block
in SCI consists of two-
stage flipflop circuits.

Bus Conflict Detection Enable
Disable

Disable Enable the bus conflict
detection function.
When enabled, the
TXDn pin output and
the RXDn pin input are
sampled by the bus
conflict detection clock
set by Extra|Bus
Conflict Clock Divider.
This function only
works during
transmission.

Bus Conflict Clock
Divider

1
2
4

2 Select the base clock
divider for the
sampling clock of the
bus conflict detection
circuit.

Baud

Baud Rate Value must be an
integer greater than 0

19200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, the settings
with the smallest
percent error are used.
The theoretical
calculated baud rate
and percent error are
printed in a comment
in the generated
sci_b_lin_extended_cfg_
t structure.

Auto Synchronization Disable
Enable

Disable Enable LIN
synchronization to the
master's clock by
measuring the effective
edges of the input
signal from the RXDn
pin during reception of
the sync byte.

Framing

Framing > ID Filter (Slave Mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,125 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

Compare Data Mask Value must be an
integer between 0 and
255.

0 Select the bit mask to
be applied before
comparing the received
PID to the selected
compare data. This
setting specifies which
bits of the selected
compare data must
match. Set to 0 to
disable the filter (allow
all frame identifiers).

Priority Compare Data Value must be an
integer between 0 and
255.

0 Select the priority
compare filter data.

Secondary Compare
Data

Value must be an
integer between 0 and
255.

0 Select the secondary
compare filter data.

Compare Data Select Priority
Secondary
Both

Priority Select the compare
data to use. If 'both' is
selected, the priority
compare data is
checked before the
secondary compare
data.

Priority Interrupt Bit
Enable

Enabled
Disabled

Disabled Select whether to
enable the Priority
Interrupt Bit filter.
When enabled,
regardless of the Filter
Data Select setting
value, the bit specified
by the Priority Interrupt
Bit setting is compared
with the corresponding
bit in the Priority
Compare Data Filter
and if it matches, the
identifier is allowed
through the filter.

Priority Interrupt Bit Value must be an
integer between bit 0
(LSb) and bit 7 (MSb).

0 Select the priority
interrupt bit (0-7) of
the received PID to
compare with the
corresponding bit in
the Priority Compare
Data Filter.

Break Field Bits/Break
Detection Threshold
(bits)

Value must be an
integer.

13 For master break field
transmission, this
configures the
dominant period of the
break field (in bits). For

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,126 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

slave break field
reception, this
configures the break
detection threshold in
bits. Must be 13 bits or
greater for master
mode and 11 bits or
greater for slave mode.

LIN Timer Divider 4
16
64

4 Set the LIN timer
divider. The LIN timer
is used for break field
transmission and
detection. Higher
dividers make possible
transmission/detection
of more break field
bits, but are less
precise.

Break Field
Delimiter/Stop Bits

1bit
2bits

1bit Select the recessive
period (in bits) of the
break field. This setting
also selects the
number of stop bits.

Interrupts

Callback Name must be a valid
C symbol

sci_b_lin0_callback A user callback
function must be
provided. It will be
called from the
interrupt service
routine (ISR).

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Data Empty
Interrupt Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Break Field Detection
Interrupt Priority

MCU Specific Options Select the break field
detection interrupt
priority (slave mode
only).

Active Edge Detection
Interrupt Priority

MCU Specific Options Select the active edge
detection interrupt
priority.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,127 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

MCU Group Peripheral Clock

RA6T2 SCISPICLK

RA8D1 SCICLK

RA8M1 SCICLK

RA8T1 SCICLK

The clock source for the baud-rate clock generator can be selected from either SCISCPI/SCICLK or the
peripheral clock (PCLK).

Note
1. See Figure 26.2 "Clock source selector block diagram" in the RA6T2 manual for more information.

Pin Configuration

This module uses TXD and RXD to communicate to external devices. Connect TXD and RXD to an on-
board or external LIN transceiver for LIN bus communication.

An external pull up resistor is required on TXD in both master and slave mode.

Interrupt Configuration

Receive buffer full (RXI), transmit buffer empty (TXI), transmit end (TEI), and error (ERI)
interrupts for the selected channel used must be enabled in the properties of the selected
device for both master and slave mode operation.
Break field detect (BFD) must be enabled in the properties of the selected device for slave
mode only.

Break Field Length/Detection Threshold Configuration

When in master mode, this setting configures the low (dominant) time of the LIN break
pattern.
When in slave mode, this setting configures the break field detection threshold (number of
bits that must be received to detect a break field).
When configuring this setting in slave mode, take care to set the detection threshold less
than the master break field length.
The standard settings are 13 bits for master nodes and 11 bits for slave nodes, but
alternate settings are supported.

Bus Conflict Detection Configuration

When Bus Conflict Detection is enabled, the TXDn pin output and the RXDn pin input are sampled by
the selected bus conflict detection clock. When a mismatch occurs three times in a row, an SCIn_ERI
interrupt is generated and transmission is stopped. This function only works during transmission.

Consideration of the specific application's LIN bus characteristics should be taken into account when
enabling this function. If the bus collision sampling clock is too fast, the expected propagation delay
through the transceiver may be erroneously detected as a bus collision (false positive). If the bus
collision sampling clock is too slow, collisions may be missed (false negative).

When CCR2.ABCS = 1, setting the bus conflict clock divider to 4 is is prohibited by the SCI_B

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,128 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

hardware.

A LIN transceiver is required to detect bus collisions.

ID Filter Configuration

The SCI performs optional hardware PID filtering in slave mode. When enabled, only start frames
with PIDs that pass through the filter are received and passed to the user callback. Other start
frames are ignored.

An initial configuration of the filter settings can be applied in the properties view by selecting
Framing -> ID Filter and choosing the desired settings. See sci_b_lin_id_filter_setting_t for the
available filter settings, as well as the examples in this document. By default, filtering is disabled and
all PIDs can be received.

The filter can be updated at runtime by using using R_SCI_B_LIN_IdFilterSet. The current filter
settings can be viewed with R_SCI_B_LIN_IdFilterGet.

Usage Notes
LIN Transmission and Reception

SCI data reception is disabled until a break field is detected (slave mode) or a call to
R_SCI_B_LIN_InformationFrameRead() is made (master and slave mode).

Slave Mode Transmission and Reception

The start frame is detected in slave mode only. Start frame reception is interrupt driven, and is
enabled after a successful call to R_SCI_B_LIN_Open() in slave mode.

When the LIN break field is detected by the slave node, start frame reception begins without action
from the application. When start frame reception completes, the user callback is called.

If the slave node needs to receive the information frame data, the slave node must call
R_SCI_B_LIN_InformationFrameRead() before the first information data is received in order to receive
the data. The user callback is called when reception is complete. It is permitted to call
R_SCI_B_LIN_InformationFrameRead() from the callback context.

If the slave node needs to publish a response to the start frame, the slave node must call
R_SCI_B_LIN_InformationFrameWrite() and provide the response data and the PID of the received
header in the lin_transfer_params_t. The user callback is called when transmission is complete.

If the slave node neither needs to receive the information frame data, nor publish a response for a
received start frame, no action is required to ignore the frame. Data reception is disabled until a new
break field is detected.

Master Mode Transmission and Reception

The start frame is not detected in master mode. Information frame reception is enabled only after a
call to R_SCI_B_LIN_InformationFrameRead().

The start frame is transmitted by calling R_SCI_B_LIN_StartFrameWrite(). The user callback is called
when transmission is complete.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,129 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

If the master node needs to receive the information frame data response, call
R_SCI_B_LIN_InformationFrameRead() after start frame transmission has completed and before the
first information frame data is received. It is permitted to call R_SCI_B_LIN_InformationFrameRead()
from the callback context.

If the master node needs to publish a response to its own start frame, the master node must call
R_SCI_B_LIN_InformationFrameWrite() only after start frame transmission has completed, and
provide the response data and the PID of the transmitted header in the lin_transfer_params_t. The
user callback is called when transmission is complete.

Timeouts/Errors

The application is responsible for managing timeouts in case R_SCI_B_LIN_InformationFrameRead() is
called, but the data is not received in the expected time period. If a timeout occurs,
R_SCI_B_LIN_CommunicationAbort() may be called to cancel a pending read.

When an error occurs, reception is stopped and the user callback is called with the relevant error
code.

Checksum Generation and Validation

The checksum calculation is performed in software for both checksum generation and
validation.
Checksum generation and validation are both optional.
The LIN checksum may be generated by passing
lin_transfer_params_t::LIN_CHECKSUM_TYPE_CLASSIC or
lin_transfer_params_t::LIN_CHECKSUM_TYPE_ENHANCED when writing the information
frame data.
The LIN checksum may be validated by passing
lin_transfer_params_t::LIN_CHECKSUM_TYPE_CLASSIC or
lin_transfer_params_t::LIN_CHECKSUM_TYPE_ENHANCED when reading the information
frame data.
To skip driver checksum generation/validation, pass
lin_transfer_params_t::LIN_CHECKSUM_TYPE_NONE to the read/write functions. Instead the
checksum can be included as part of the information data buffer, or omitted entirely
depending on the application's needs.
The maximum number of information frame bytes that can be transmitted per frame is 255,
including the checksum byte. Thus, when checksum generation/validation is requested in
the transfer parameters, the maximum number of bytes that can be specified in
transfer_params.num_bytes is 254. When checksum generation/validation is not requested
in the transfer parameters, the maximum number of bytes that can be specified in
transfer_params.num_bytes is 255.

Auto Synchronization

Auto synchronization is optional. When it is disabled, the baud rate and break field detection
threshold set in open are never updated.

This feature works in slave mode only.

Auto synchronization is not the same as automatic baud rate detection. Auto
synchronization is used for correcting small clock drift/difference in baud rate between
nodes.
Auto synchronization performs small automatic baud rate adjustments to synchronize with
the master's clock by measuring the effective edges of the input signal from the RXDn pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,130 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

during reception of the LIN sync byte.
The sync byte is measured and the baud setting and break field detection threshold are re-
adjusted for every LIN sync byte received.
If reception of the sync byte fails, or the required register settings detected would not be
possible in the hardware, the baud/timer settings are not updated, and auto
synchronization will be re-attempted on the next received start frame.
If two or more start frames are received consecutively and ignored by software (no call to
R_SCI_B_LIN_InformationFrameRead), and there is no information frame transmission by
any node on the bus between the start frames, auto synchronization is performed only on
the first start frame. Following the transmission of the next information frame (by any
node), auto synchronization will be re-attempted on the next received start frame.

Limitations

DTC/DMAC is not supported
Automatic baud rate detection is not supported
The SCI_B provides an interface to the LIN Physical layer and does not implement the LIN
Transport Layer or LIN Application Layer. The application is responsible for handling the
frame scheduling table and monitoring for Transport Layer timeouts.

Examples
Basic LIN Master Read Example

The following demonstrates a basic example of frame reception for a LIN master.

void r_sci_b_lin_basic_master_read_example (void)

{

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_master_ctrl, &g_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Send the LIN start frame */

 err = R_SCI_B_LIN_StartFrameWrite(&g_master_ctrl, FRAME_ID);

 assert(FSP_SUCCESS == err);

 /* Wait for start frame transmission to complete before starting a read of the

response */

 while (!g_start_frame_tx_complete)

 {

 }

 lin_transfer_params_t read_params =

 {

 .checksum_type = LIN_CHECKSUM_TYPE_ENHANCED,

 .id = FRAME_ID,

 .num_bytes = TRANSFER_LENGTH,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,131 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 .p_information = g_rx_buf

 };

 /* Begin reception of the information frame data */

 err = R_SCI_B_LIN_InformationFrameRead(&g_master_ctrl, &read_params);

 assert(FSP_SUCCESS == err);

 /* Wait for information frame reception to complete. The application is responsible

for

 * timing out if data is not received within the expected time interval*/

 while (!g_information_frame_rx_complete)

 {

 }

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_slave_ctrl);

 assert(FSP_SUCCESS == err);

}

void master_callback (lin_callback_args_t * p_args)

{

 /* Handle the LIN event */

 switch (p_args->event)

 {

 case LIN_EVENT_RX_INFORMATION_FRAME_COMPLETE:

 {

 g_information_frame_rx_complete = 1;

 break;

 }

 case LIN_EVENT_TX_START_FRAME_COMPLETE:

 {

 g_start_frame_tx_complete = 1;

 break;

 }

 case LIN_EVENT_TX_INFORMATION_FRAME_COMPLETE:

 {

 g_information_frame_tx_complete = 1;

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,132 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 }

 case LIN_EVENT_ERR_INVALID_CHECKSUM:

 case LIN_EVENT_ERR_BUS_COLLISION_DETECTED:

 case LIN_EVENT_ERR_FRAMING:

 case LIN_EVENT_ERR_COUNTER_OVERFLOW:

 case LIN_EVENT_ERR_OVERRUN:

 case LIN_EVENT_ERR_PARITY:

 default:

 {

 /* Handle error */

 }

 }

}

Basic LIN Master Write Example

The following demonstrates a basic example of frame transmission for a LIN master.

void r_sci_b_lin_basic_master_write_example (void)

{

 /* Initialize transmit buffer to known data. */

 for (uint8_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_tx_buf[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_master_ctrl, &g_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Send the LIN start frame: break, sync, and protected identifier */

 err = R_SCI_B_LIN_StartFrameWrite(&g_master_ctrl, FRAME_ID);

 assert(FSP_SUCCESS == err);

 /* Wait for start frame transmission to complete before sending the information

frame */

 while (!g_start_frame_tx_complete)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,133 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 }

 lin_transfer_params_t write_params =

 {

 .checksum_type = LIN_CHECKSUM_TYPE_ENHANCED,

 .id = FRAME_ID,

 .num_bytes = TRANSFER_LENGTH,

 .p_information = g_tx_buf

 };

 /* Send the LIN information frame */

 err = R_SCI_B_LIN_InformationFrameWrite(&g_master_ctrl, &write_params);

 assert(FSP_SUCCESS == err);

 /* Wait for information frame transmission to complete */

 while (!g_information_frame_tx_complete)

 {

 }

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_master_ctrl);

 assert(FSP_SUCCESS == err);

}

Basic LIN Slave Example

The following demonstrates a basic example of start frame reception and information frame
response for a LIN slave.

void r_sci_b_lin_basic_slave_example (void)

{

 /* Initialize transmit buffer to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_tx_buf[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_slave_ctrl, &g_slave_cfg);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,134 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 /* Wait for the header that this slave publishes the response to. */

 for (; ;)

 {

 if (g_start_frame_rx_complete)

 {

 if (g_received_pid == FRAME_ID)

 {

 /* Frame ID of interest received */

 break;

 }

 /* Ignore this header. No action required by slave. */

 g_start_frame_rx_complete = false;

 }

 }

 lin_transfer_params_t write_params =

 {

 .checksum_type = LIN_CHECKSUM_TYPE_ENHANCED,

 .id = g_received_pid,

 .num_bytes = TRANSFER_LENGTH,

 .p_information = g_tx_buf

 };

 /* Send the LIN information frame response */

 err = R_SCI_B_LIN_InformationFrameWrite(&g_slave_ctrl, &write_params);

 assert(FSP_SUCCESS == err);

 /* Wait for the response transmission to complete */

 while (!g_information_frame_tx_complete)

 {

 }

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_slave_ctrl);

 assert(FSP_SUCCESS == err);

}

void slave_callback (lin_callback_args_t * p_args)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,135 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 /* Handle the LIN event */

 switch (p_args->event)

 {

 case LIN_EVENT_RX_START_FRAME_COMPLETE:

 {

 g_start_frame_rx_complete = 1;

 g_received_pid = p_args->pid;

 break;

 }

 case LIN_EVENT_RX_INFORMATION_FRAME_COMPLETE:

 {

 g_information_frame_rx_complete = 1;

 break;

 }

 case LIN_EVENT_TX_INFORMATION_FRAME_COMPLETE:

 {

 g_information_frame_tx_complete = 1;

 break;

 }

 default:

 {

 /* Handle error */

 }

 }

}

Basic LIN Slave ID Filtering Example

The following example demonstrates a basic example of frame ID filtering.

#define BASIC_FILTER_MASK (0x30)

#define BASIC_PRIORITY_FILTER_DATA (0x20)

#define BASIC_SECONDARY_FILTER_DATA (0x00) // Don't-care value in this example

#define BASIC_PRIORITY_INTERRUPT_BIT (0) // Don't-care value in this example

void r_sci_b_lin_basic_id_filtering_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,136 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

{

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_slave_ctrl, &g_slave_cfg);

 assert(FSP_SUCCESS == err);

 /* If the application is using dynamically assigned identifiers, perform

 * any required initial communications to get the identifiers for this slave */

 /* Configure filter to accept only frame IDs in the range 0x20-0x2F.

 *

 * The start frame is received only when the PID bits match the bits

 * specified by the filter.

 *

 * Example: If ID 0x24 is received (PID 0x64), the filter mask (0x30) is applied

 * first (0x64 & 0x30 = 0x20) and then the result is compared to the priority

 * compare data filter (0x20). Since the result matches the filter, the start

 * frame is received and the user callback is called. Otherwise, the SCI awaits

 * the next break field, and the callback is not called.

 *

 * Note: The most significant 2 bits of the PID are the parity bits, and are

 * masked off by the filter mask in this example.

 */

 sci_b_lin_id_filter_setting_t filter =

 {

 .compare_data_mask = BASIC_FILTER_MASK,

 .priority_compare_data = BASIC_PRIORITY_FILTER_DATA,

 .secondary_compare_data = BASIC_SECONDARY_FILTER_DATA,

 .priority_interrupt_bit_select = BASIC_PRIORITY_INTERRUPT_BIT,

 .priority_interrupt_enable = SCI_B_LIN_PRIORITY_INTERRUPT_BIT_DISABLE,

 .compare_data_select = SCI_B_LIN_COMPARE_DATA_SELECT_PRIORITY,

 };

 /* Configure the ID filter */

 err = R_SCI_B_LIN_IdFilterSet(&g_slave_ctrl, &filter);

 assert(FSP_SUCCESS == err);

 /* Wait for a header frame which matches the filter */

 while (!g_start_frame_rx_complete)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,137 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 {

 }

 lin_transfer_params_t write_params =

 {

 .checksum_type = LIN_CHECKSUM_TYPE_ENHANCED,

 .id = g_received_pid,

 .num_bytes = TRANSFER_LENGTH,

 .p_information = g_tx_buf

 };

 /* Send the LIN information frame response */

 err = R_SCI_B_LIN_InformationFrameWrite(&g_slave_ctrl, &write_params);

 assert(FSP_SUCCESS == err);

 /* Wait for the response transmission to complete */

 while (!g_information_frame_tx_complete)

 {

 }

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_slave_ctrl);

 assert(FSP_SUCCESS == err);

}

Advanced LIN Slave ID Filtering Example

The following example demonstrates an advanced example of frame ID filtering.

#define ADVANCED_FILTER_MASK (0x3E)

#define ADVANCED_PRIORITY_FILTER_DATA (0x20)

#define ADVANCED_SECONDARY_FILTER_DATA (0x08)

#define ADVANCED_PRIORITY_INTERRUPT_BIT (5)

void r_sci_b_lin_advanced_id_filtering_example (void)

{

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_slave_ctrl, &g_slave_cfg);

 assert(FSP_SUCCESS == err);

 /* If the application is using dynamically assigned identifiers, perform

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,138 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 * any required initial communications to get the identifiers for this slave */

 /* Configure filter to accept the following frame IDs:

 *

 * - Any ID in which bit 5 is set to 1 (0x20-0x3F).

 * - IDs 0x08 and 0x09

 *

 * The priority compare data filter is set to 0x20 (bit 5 set).

 * The priority interrupt bit select function is enabled for bit 5.

 *

 * The secondary compare data filter is be set to 0x08. This will allow

 * both 0x08 and 0x09 through the filter, even though bit 5 is not set for

 * those values (0x08 & 0x3E = 0x08 and 0x09 & 0x3E = 0x08). All other

 * identifiers are filtered out.

 */

 sci_b_lin_id_filter_setting_t filter =

 {

 .compare_data_mask = ADVANCED_FILTER_MASK,

 .priority_compare_data = ADVANCED_PRIORITY_FILTER_DATA,

 .secondary_compare_data = ADVANCED_SECONDARY_FILTER_DATA,

 .priority_interrupt_bit_select = ADVANCED_PRIORITY_INTERRUPT_BIT,

 .priority_interrupt_enable = SCI_B_LIN_PRIORITY_INTERRUPT_BIT_ENABLE,

 .compare_data_select = SCI_B_LIN_COMPARE_DATA_SELECT_BOTH,

 };

 /* Configure the ID filter */

 err = R_SCI_B_LIN_IdFilterSet(&g_slave_ctrl, &filter);

 assert(FSP_SUCCESS == err);

 /* Wait for a header frame which matches the filter */

 while (!g_start_frame_rx_complete)

 {

 }

 lin_transfer_params_t write_params =

 {

 .checksum_type = LIN_CHECKSUM_TYPE_ENHANCED,

 .id = g_received_pid,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,139 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

 .num_bytes = TRANSFER_LENGTH,

 .p_information = g_tx_buf

 };

 /* Send the LIN information frame response */

 err = R_SCI_B_LIN_InformationFrameWrite(&g_slave_ctrl, &write_params);

 assert(FSP_SUCCESS == err);

 /* Wait for the response transmission to complete */

 while (!g_information_frame_tx_complete)

 {

 }

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_slave_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct sci_b_lin_timer_setting_t

struct sci_b_lin_baud_setting_t

struct sci_b_lin_id_filter_setting_t

struct sci_b_lin_baud_params_t

struct sci_b_lin_extended_cfg_t

Enumerations

enum sci_b_lin_priority_interrupt_bit_t

enum sci_b_lin_compare_data_select_t

enum sci_b_lin_clock_source_t

enum sci_b_lin_break_delimiter_bits_t

enum sci_b_lin_timer_divider_t

enum sci_b_lin_synchronization_t

enum sci_b_lin_noise_cancellation_t

enum e_sci_b_lin_bus_conflict_detection_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,140 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

enum sci_b_lin_bus_conflict_clock_t

Data Structure Documentation

◆ sci_b_lin_timer_setting_t

struct sci_b_lin_timer_setting_t

Register settings for configuring the LIN break field timer

Data Fields

uint8_t __pad0__: 6

uint8_t tcss: 2 LIN timer count clock source
selection.

uint16_t bflw Break field length setting
(break field length is (bflw + 1)
* clock of the timer)

◆ sci_b_lin_baud_setting_t

struct sci_b_lin_baud_setting_t

Register settings for achieving a desired baud rate.

Data Fields

union sci_b_lin_baud_setting_t __unnamed__

sci_b_lin_timer_setting_t timer_setting Break field timer settings
associated with this baud rate.

◆ sci_b_lin_id_filter_setting_t

struct sci_b_lin_id_filter_setting_t

Parameters for configuring the ID filter settings

Data Fields

uint8_t compare_data_mask Bit mask applied before
comparing the received PID to
the compare data. Selects
which bits of the selected
compare data must match.

uint8_t priority_compare_data Priority/primary compare data

uint8_t secondary_compare_data Secondary compare data

uint8_t priority_interrupt_bit_select: 3 Specify ONE of bits 0 to 7 of
Control Field 1 as the priority
interrupt bit. 0 is bit 0 of the
PID, 1 is bit 1 of the PID, and so
on.

uint8_t priority_interrupt_enable: 1 Set to 1 to enable the priority
interrupt bit filter specified by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,141 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

priority_interrupt_bit_select, 0
to disable. When this bit is 1,
regardless of the
compare_data_select setting
value, the bit specified by
priority_interrupt_bit_select is
compared with the
priority/primary comparison
data for Control Field 1
(priority_compare_data).

uint8_t compare_data_select: 2 Select the compare data for
Control Field 1 (priority,
secondary, or both). See
sci_b_lin_compare_data_select_t

uint8_t __pad0__: 2

◆ sci_b_lin_baud_params_t

struct sci_b_lin_baud_params_t

Parameters for baud and timer setting calculation

Data Fields

uint32_t baudrate Desired baudrate.

sci_b_lin_clock_source_t clock_source Peripheral clock source.

sci_b_lin_bus_conflict_clock_t bus_conflict_clock Bus collision clock divider.

uint16_t break_bits Master mode: Number of break
field bits to transmit. Slave
mode: Number of break field
threshold bits.

◆ sci_b_lin_extended_cfg_t

struct sci_b_lin_extended_cfg_t

SCI B LIN extended configuration

Data Fields

union sci_b_lin_extended_cfg_t __unnamed__

sci_b_lin_baud_setting_t baud_setting Register settings for a desired
baud rate.

sci_b_lin_id_filter_setting_t filter_setting ID filter setting.

IRQn_Type bfd_irq Break field detect IRQ number.

IRQn_Type aed_irq Active edge detect IRQ number.

uint8_t bfd_ipl Break field detect interrupt
priority.

uint8_t aed_ipl Active edge detect interrupt
priority.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,142 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

uint16_t break_bits Master mode: Number of break
field bits to transmit. Slave
mode: Number of break field
threshold bits.

Enumeration Type Documentation

◆ sci_b_lin_priority_interrupt_bit_t

enum sci_b_lin_priority_interrupt_bit_t

Priority interrupt bit options for ID filtering.

Enumerator

SCI_B_LIN_PRIORITY_INTERRUPT_BIT_DISABLE Disable the priority interrupt bit.

SCI_B_LIN_PRIORITY_INTERRUPT_BIT_ENABLE Enable the priority interrupt bit.

◆ sci_b_lin_compare_data_select_t

enum sci_b_lin_compare_data_select_t

Compare Data Select options for ID filtering.

Enumerator

SCI_B_LIN_COMPARE_DATA_SELECT_PRIORITY Select the priority/primary compare data filter
as the compare data.

SCI_B_LIN_COMPARE_DATA_SELECT_SECONDARY

Select the secondary compare data filter as the
compare data.

SCI_B_LIN_COMPARE_DATA_SELECT_BOTH Select both the priority/primary compare data
filter and the secondary compare data filter as
the compare data. The priority filter will be
checked first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,143 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ sci_b_lin_clock_source_t

enum sci_b_lin_clock_source_t

Source clock selection options for SCI.

Enumerator

SCI_B_LIN_CLOCK_SOURCE_SCISPICLK SCISPI clock source.

SCI_B_LIN_CLOCK_SOURCE_SCICLK SCI clock source.

SCI_B_LIN_CLOCK_SOURCE_PCLK PCLK source.

◆ sci_b_lin_break_delimiter_bits_t

enum sci_b_lin_break_delimiter_bits_t

Break field delimiter configuration.

Enumerator

SCI_B_LIN_BREAK_DELIMITER_BITS_1 1-bit recessive break field delimiter

SCI_B_LIN_BREAK_DELIMITER_BITS_2 2-bit recessive break field delimiter

◆ sci_b_lin_timer_divider_t

enum sci_b_lin_timer_divider_t

LIN timer configuration, used for break field generation and detection.

Enumerator

SCI_B_LIN_TIMER_DIV_4 LIN timer frequency is TCLK/4.

SCI_B_LIN_TIMER_DIV_16 LIN timer frequency is TCLK/16.

SCI_B_LIN_TIMER_DIV_64 LIN timer frequency is TCLK/64.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,144 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ sci_b_lin_synchronization_t

enum sci_b_lin_synchronization_t

Auto synchronization setting.

Enumerator

SCI_B_LIN_AUTO_SYNCHRONIZATION_DISABLE Disable auto synchronization during sync byte
reception.

SCI_B_LIN_AUTO_SYNCHRONIZATION_ENABLE Enable auto synchronization during sync byte
reception.

◆ sci_b_lin_noise_cancellation_t

enum sci_b_lin_noise_cancellation_t

Noise cancellation configuration.

Enumerator

SCI_B_LIN_NOISE_CANCELLATION_DISABLE Disable noise cancellation.

SCI_B_LIN_NOISE_CANCELLATION_ENABLE Enable noise cancellation.

◆ e_sci_b_lin_bus_conflict_detection_t

enum e_sci_b_lin_bus_conflict_detection_t

Bus conflict detection enable.

Enumerator

SCI_B_LIN_BUS_CONFLICT_DETECTION_DISABLE Disable bus conflict detection.

SCI_B_LIN_BUS_CONFLICT_DETECTION_ENABLE Enable bus conflict detection.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,145 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ sci_b_lin_bus_conflict_clock_t

enum sci_b_lin_bus_conflict_clock_t

Bus conflict detection clock selection. Base clock: 1/16 period of 1 bit period when CCR2.ABCS = 0,
1/8 period of 1 bit period when CCR2.ABCS = 1

Enumerator

SCI_B_LIN_BUS_CONFLICT_DETECTION_BASE_CL
OCK_DIV_1

Bus conflict detection clock is base clock.

SCI_B_LIN_BUS_CONFLICT_DETECTION_BASE_CL
OCK_DIV_2

Bus conflict detection clock is base clock/2.

SCI_B_LIN_BUS_CONFLICT_DETECTION_BASE_CL
OCK_DIV_4

Bus conflict detection clock is base clock/4.
Setting prohibited when CCR2.ABCS = 1.

Function Documentation

◆ R_SCI_B_LIN_Open()

fsp_err_t R_SCI_B_LIN_Open (lin_ctrl_t *const p_api_ctrl, lin_cfg_t const *const p_cfg)

Configures the LIN driver channel based on the input configuration.

Implements lin_api_t::open.

Example:

 /* Open the LIN instance with initial configuration. */

 fsp_err_t err = R_SCI_B_LIN_Open(&g_master_ctrl, &g_master_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to LIN control block or configuration
structure is NULL.

FSP_ERR_INVALID_CHANNEL The requested channel does not exist on
this MCU or the channel does not support
Simple LIN mode.

FSP_ERR_INVALID_ARGUMENT Break field length setting or timer divisor is
invalid.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_INVALID_MODE Setting not supported for selected mode

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,146 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_StartFrameWrite()

fsp_err_t R_SCI_B_LIN_StartFrameWrite (lin_ctrl_t *const p_api_ctrl, uint8_t const id)

Begins non-blocking transmission of a LIN start frame (break, sync and protected identifier).

On successful start frame transmission, the callback is called with event
lin_event_t::LIN_EVENT_TX_START_FRAME_COMPLETE.

Implements lin_api_t::startFrameWrite.

Example:

 /* Send the LIN start frame: break, sync, and protected identifier */

 err = R_SCI_B_LIN_StartFrameWrite(&g_master_ctrl, FRAME_ID);

Return values
FSP_SUCCESS Start frame transmission started

successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_ARGUMENT ID out of range (unprotected ID must be less
than 64)

FSP_ERR_INVALID_MODE Function called by slave node (not
supported for slave nodes)

FSP_ERR_IN_USE A transmission or reception is currently in
progress. Call
R_SCI_B_LIN_CommunicationAbort to cancel
it if desired, or wait for the current transfer
operation to complete before starting a new
one.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,147 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_InformationFrameWrite()

fsp_err_t R_SCI_B_LIN_InformationFrameWrite (lin_ctrl_t *const p_api_ctrl, const
lin_transfer_params_t *const p_transfer_params)

Begins non-blocking transmission of a LIN information frame.

On successful information frame transmission, the callback is called with event
lin_event_t::LIN_EVENT_TX_INFORMATION_FRAME_COMPLETE.

Implements lin_api_t::informationFrameWrite.

Example:

 /* Send the LIN information frame */

 err = R_SCI_B_LIN_InformationFrameWrite(&g_master_ctrl, &write_params);

Return values
FSP_SUCCESS Data transmission started successfully.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ASSERTION Pointer to LIN control block, transfer
parameters, or tx/rx buffer is NULL, or 0
bytes length provided

FSP_ERR_IN_USE A transmission or reception is currently in
progress. Call
R_SCI_B_LIN_CommunicationAbort to cancel
it if desired, or wait for the current transfer
operation to complete before starting a new
one.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,148 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_InformationFrameRead()

fsp_err_t R_SCI_B_LIN_InformationFrameRead (lin_ctrl_t *const p_api_ctrl, lin_transfer_params_t
*const p_transfer_params)

Begins non-blocking information frame reception to receive user specified number of bytes into
destination buffer pointer.

The checksum type specifies the checksum type used for validation. If a non-standard algorithm is
used, or the application prefers to validate the checksum outside the driver, or the application
prefers to skip checksum validation, specify lin_checksum_type_t::LIN_CHECKSUM_TYPE_NONE. If
checksum validation is skipped, the lin_checksum_type_t::LIN_EVENT_ERR_INVALID_CHECKSUM
event is not possible. When lin_checksum_type_t::LIN_CHECKSUM_TYPE_NONE is used, the number
of bytes specified in the receive buffer length will be received (the driver will not expect to receive
an additional 1 checksum byte), so if a non-standard checksum is used, sufficient space must be
allocated in the write buffer and accounted for in the provided length.

On successful information frame reception, the callback is called with event
lin_event_t::LIN_EVENT_RX_INFORMATION_FRAME_COMPLETE.

Implements lin_api_t::informationFrameRead.

Example:

 /* Begin reception of the information frame data */

 err = R_SCI_B_LIN_InformationFrameRead(&g_master_ctrl, &read_params);

Return values
FSP_SUCCESS Data reception started successfully.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ASSERTION Pointer to LIN control block, transfer
parameters, or tx/rx buffer is NULL, or 0
bytes length provided

FSP_ERR_IN_USE A transmission or reception is currently in
progress. Call
R_SCI_B_LIN_CommunicationAbort to cancel
it if desired, or wait for the current transfer
operation to complete before starting a new
one.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,149 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_CommunicationAbort()

fsp_err_t R_SCI_B_LIN_CommunicationAbort (lin_ctrl_t *const p_api_ctrl)

Cancels in progress information frame read or write, or start frame read or write. Break field
reception cannot be cancelled. For slave nodes, reception of a new start frame reception is still
enabled after a call to this function.

Implements lin_api_t::communicationAbort.

Return values
FSP_SUCCESS Data transfer aborted successfully or no

transfer was in progress.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ASSERTION Pointer to LIN control block is NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ R_SCI_B_LIN_CallbackSet()

fsp_err_t R_SCI_B_LIN_CallbackSet (lin_ctrl_t *const p_api_ctrl, void(*)(lin_callback_args_t *)
p_callback, void const *const p_context, lin_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure.

Implements lin_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION Pointer to LIN control block or callback is
NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,150 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_BaudCalculate()

fsp_err_t R_SCI_B_LIN_BaudCalculate (sci_b_lin_baud_params_t const *const p_baud_params,
sci_b_lin_baud_setting_t *const p_baud_setting)

Calculates baud rate and LIN timer (BFLW and TCSS) register settings. This function evaluates and
determines the most accurate settings for the baud rate and timer related registers.

The LIN timer setting is used for break field transmission/detection. Because the timer setting is
specified in terms of bits, and the duration of a bit varies depending on baud rate, the baud rate
register settings and timer register settings are related. The smallest possible LIN timer divider
which can achieve the desired break field bits setting at the configured baud rate is selected to
provide the highest measurement accuracy.

The baud rate cannot be updated at runtime with this function. This function is provided to ease
configuration of the initial baud settings.

Parameters
[in] p_baud_params Parameters required to

calculate the baud rate

[out] p_baud_setting If calculation succeeds,
contains computed values to
achieve requested baud
rate. If calculation fails, the
input structure is not
modified.

Return values
FSP_SUCCESS Register settings updated in provided

p_baud_setting

FSP_ERR_ASSERTION p_baud_setting was NULL

FSP_ERR_INVALID_ARGUMENT Cannot achieve combination of break field
bits and baudrate with provided settings or
p_baud_params->baudrate was 0 or
p_baud_params->break_bits was 0

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,151 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_IdFilterSet()

fsp_err_t R_SCI_B_LIN_IdFilterSet (lin_ctrl_t *const p_api_ctrl, sci_b_lin_id_filter_setting_t const
*const p_config)

Set the the ID filter settings for filtering control field 1 (PID byte).

NOTE: Setting the ID filter will abort any in-progress LIN start frame reception, as the ID filter
settings cannot be changed during reception of the start frame. The next start frame will be
received with the new settings.

 /* Configure the ID filter */

 err = R_SCI_B_LIN_IdFilterSet(&g_slave_ctrl, &filter);

Parameters
[in] p_api_ctrl Pointer to the LIN control

block.

[in] p_config The ID filter settings to apply

Return values
FSP_SUCCESS ID filter updated successfully.

FSP_ERR_ASSERTION Pointer to LIN control block or p_config is
NULL.

FSP_ERR_INVALID_MODE Function called by master node (not
supported for master nodes)

FSP_ERR_NOT_OPEN The control block has not been opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,152 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > LIN (r_sci_b_lin)

◆ R_SCI_B_LIN_IdFilterGet()

fsp_err_t R_SCI_B_LIN_IdFilterGet (lin_ctrl_t *const p_api_ctrl, sci_b_lin_id_filter_setting_t *const
p_config)

Returns the currently configured ID filter settings.

Parameters
[in] p_api_ctrl Pointer to the LIN control

block.

[out] p_config The current ID filter settings

Return values
FSP_SUCCESS ID filter updated successfully.

FSP_ERR_ASSERTION Pointer to LIN control block or p_config is
NULL.

FSP_ERR_INVALID_MODE Function called by master node (not
supported for master nodes)

FSP_ERR_NOT_OPEN The control block has not been opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ R_SCI_B_LIN_Close()

fsp_err_t R_SCI_B_LIN_Close (lin_ctrl_t *const p_api_ctrl)

Closes the LIN driver.

Implements lin_api_t::close.

Example:

 /* Close the driver */

 err = R_SCI_B_LIN_Close(&g_master_ctrl);

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to LIN control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,153 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

5.2.6.18 SMBUS Communication Device (rm_comms_smbus)
Modules » Connectivity

Functions

fsp_err_t RM_COMMS_SMBUS_Open (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_cfg_t const *const p_cfg)

 Opens and configures the SMBUS Comms module. Implements
rm_comms_api_t::open. More...

fsp_err_t RM_COMMS_SMBUS_Close (rm_comms_ctrl_t *const p_api_ctrl)

 Disables specified SMBUS Comms module. Implements
rm_comms_api_t::close. More...

fsp_err_t RM_COMMS_SMBUS_CallbackSet (rm_comms_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_comms_callback_args_t *), void const *const
p_context)

 Updates the SMBUS Comms callback. Implements
rm_comms_api_t::callbackSet. More...

fsp_err_t RM_COMMS_SMBUS_Read (rm_comms_ctrl_t *const p_api_ctrl,
uint8_t *const p_dest, uint32_t const bytes)

 Performs a read from the SMBUS device. Implements
rm_comms_api_t::read. More...

fsp_err_t RM_COMMS_SMBUS_Write (rm_comms_ctrl_t *const p_api_ctrl,
uint8_t *const p_src, uint32_t const bytes)

 Performs a write from the SMBUS device. Implements
rm_comms_api_t::write. More...

fsp_err_t RM_COMMS_SMBUS_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

 Performs a write to, then a read from the SMBUS device. Implements
rm_comms_api_t::writeRead. More...

void rm_comms_smbus_transmission_callback
(i2c_master_callback_args_t *p_args)

 Common callback function called in the I2C driver callback function
when SMBus is used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,154 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

void rm_comms_smbus_timeout_callback (timer_callback_args_t *p_args)

 Callback function called in the GPT driver callback function when
SMBus is used.

Detailed Description

Middleware to implement the SMBUS communications interface. This module implements the
Communicatons Middleware Interface.

Overview
The RM_COMMS_SMBUS module implements COMMS API for SMBUS interface.

Features

Supported SMBUS command:

Send byte
Receive byte
Write byte
Write word
Read byte
Read word
Read block

Packet error check is supported by software CRC-8 (x^8 + x^2 + x + 1).

Supported RTOS (FreeRTOS and AzureOS).

Configuration
Build Time Configurations for rm_comms_smbus

The following build time configurations are defined in fsp_cfg/rm_comms_smbus_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Connectivity > SMBus Communication Device (rm_comms_smbus)

This module can be added to the Stacks tab via New Stack > Connectivity > SMBus Communication
Device (rm_comms_smbus).

Configuration Options Default Description

Name Manual Entry g_comms_smbus0 Module name.

Callback Name must be a valid comms_smbus_callbac A user callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,155 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

C symbol k function can be
provided.

Semaphore Timeout
(RTOS only)

Value must be a non-
negative integer

0xFFFFFFFF Timeout for semaphore
operation in using
RTOS.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

CRC support Enable
Disable

Enable Use CRC-8 algorithm to
generate PEC byte for
SMBus communication.

Pin Configuration

This module uses SDA and SCL pins of I2C Master

Usage Notes
If an RTOS is used, blocking and bus lock is available.

If blocking of an SMBus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

If an RTOS is used and blocking and bus lock is enabled, RM_COMMS_SMBUS_Write(),
RM_COMMS_SMBUS_Read() and RM_COMMS_SMBUS_WriteRead() cannot be called in callback.

Dependency module General PWM Timer (GPT) and Event Link Controller (ELC) need to be openned
before opening SMBus comms device.

Protocol support by SMBUS API:

RM_COMMS_SMBUS_Write(): Send byte, Write byte, Write word.
RM_COMMS_SMBUS_Read(): Receive byte protocol.
RM_COMMS_SMBUS_WriteRead(): Read byte, read word, block read.

Warning
The recommended frequency of PCLKB (when using r_iic_master) or I3CCLK (when using
r_iic_b_master) is in range of 1 MHz - 86 MHz. If the frequency too high, the middleware will
not able to meet the 300 ns of data hold time of SMBUS standard. On the contrary, the low
frequency may cause the count of BRL smaller than SDA delay count which will lead to
communication between devices might malfunction or falsely indicate a start or stop
condition, depending on the bus state.

Bus Initialization

The SMBUS communications interface expects a bus instance to be opened before opening any
specific SMBUS comms device. The communications interface will handle switching between devices
on the bus but will not open or close the bus instance. The user should open the bus with the
appropriate SMBUS Communication Device (rm_comms_smbus) open call.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,156 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

Basic Example

This is a basic example of minimal use of SMBus communications implementation in an application.

void rm_comms_smbus_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the relevant drivers if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_comms_i2c_extend =

 ((rm_comms_smbus_extended_cfg_t *)

(g_comms_smbus_cfg.p_extend))->p_comms_i2c_extend_cfg;

 i2c_master_instance_t * p_driver_iic = (i2c_master_instance_t *)

p_comms_i2c_extend->p_driver_instance;

 elc_instance_t * p_driver_elc = (elc_instance_t *)

p_comms_i2c_extend->p_elc;

 timer_instance_t * p_driver_timer = (timer_instance_t *)

p_comms_i2c_extend->p_timer;

 p_driver_iic->p_api->open(p_driver_iic->p_ctrl, p_driver_iic->p_cfg);

 p_driver_elc->p_api->open(p_driver_elc->p_ctrl, p_driver_elc->p_cfg);

 p_driver_timer->p_api->open(p_driver_timer->p_ctrl, p_driver_timer->p_cfg);

#if (BSP_CFG_RTOS != 0)

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_comms_i2c_extend->p_blocking_semaphore)

 {

 #if (BSP_CFG_RTOS == 1) // AzureOS

tx_semaphore_create(p_comms_i2c_extend->p_blocking_semaphore->p_semaphore_handle,

p_comms_i2c_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif (BSP_CFG_RTOS == 2) // FreeRTOS

 *(p_comms_i2c_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_comms_i2c_extend->p_blocking_semaphore->p_semaphore_memory);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,157 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_comms_i2c_extend->p_bus_recursive_mutex)

 {

 #if (BSP_CFG_RTOS == 1) // AzureOS

 tx_mutex_create(p_comms_i2c_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_comms_i2c_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif (BSP_CFG_RTOS == 2) // FreeRTOS

 *(p_comms_i2c_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_comms_i2c_extend->p_bus_recursive_

mutex->p_mutex_memory);

 #endif

 }

#endif

 err = RM_COMMS_SMBUS_Open(&g_comms_smbus_ctrl, &g_comms_smbus_cfg);

 assert(FSP_SUCCESS == err);

 err = RM_COMMS_SMBUS_CallbackSet(&g_comms_smbus_ctrl, comms_smbus_callback,

NULL);

 assert(FSP_SUCCESS == err);

 g_write_read_param.p_dest = g_read_buffer;

 g_write_read_param.p_src = g_write_buffer;

 /* SMBus send byte command */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 err = RM_COMMS_SMBUS_Write(&g_comms_smbus_ctrl, g_write_buffer, 1);

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

 /* SMBus receive byte command */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 err = RM_COMMS_SMBUS_Read(&g_comms_smbus_ctrl, g_read_buffer, 2); // 1 byte for

data, 1 byte for PEC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,158 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

 /* SMBus write byte command */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 g_write_buffer[0] = (uint8_t) SMBUS_COMMAND_CODE;

 g_write_buffer[1] = (uint8_t) SMBUS_DUMMY_WRITE_DATA;

 err = RM_COMMS_SMBUS_Write(&g_comms_smbus_ctrl, g_write_buffer, 2); // 1 byte for

command code, 1 byte for data. PEC byte will be padded automatically.

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

 /* SMBus read byte command */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 g_write_buffer[0] = (uint8_t) SMBUS_COMMAND_CODE;

 g_write_read_param.src_bytes = 1; // 1 byte of command code

 g_write_read_param.dest_bytes = 2; // 1 data byte + 1 PEC byte

 err = RM_COMMS_SMBUS_WriteRead(&g_comms_smbus_ctrl, g_write_read_param);

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

 /* SMBus write word */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 g_write_buffer[0] = (uint8_t) SMBUS_COMMAND_CODE;

 g_write_buffer[1] = (uint8_t) SMBUS_DUMMY_WRITE_DATA; // Data byte low

 g_write_buffer[2] = (uint8_t) SMBUS_DUMMY_WRITE_DATA; // Data byte high

 err = RM_COMMS_SMBUS_Write(&g_comms_smbus_ctrl, g_write_buffer, 3);

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,159 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

 /* SMBus read word */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 g_write_buffer[0] = (uint8_t) SMBUS_COMMAND_CODE;

 g_write_read_param.src_bytes = 1; // 1 byte of command code

 g_write_read_param.dest_bytes = 3; // 2 data byte + 1 PEC byte

 err = RM_COMMS_SMBUS_WriteRead(&g_comms_smbus_ctrl, g_write_read_param);

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

 /* SMBus read block */

 g_smbus_callback_args.event = (rm_comms_event_t) INITIALIZE_EVENT;

 g_write_buffer[0] = (uint8_t) SMBUS_COMMAND_CODE;

 g_write_read_param.src_bytes = 1; // 1 byte of command code

 g_write_read_param.dest_bytes = 10; // 1 block count byte + 8 data byte + 1 PEC

byte

 err = RM_COMMS_SMBUS_WriteRead(&g_comms_smbus_ctrl, g_write_read_param);

 assert(FSP_SUCCESS == err);

 wait_for_transmission();

 assert(RM_COMMS_EVENT_OPERATION_COMPLETE == g_smbus_callback_args.event);

 assert(RM_COMMS_SMBUS_NO_ERROR == g_smbus_error->smbus_event);

}

Data Structures

struct rm_comms_smbus_error_t

struct rm_comms_smbus_extended_cfg_t

struct rm_comms_smbus_instance_ctrl_t

Enumerations

enum rm_comms_smbus_event_t

Data Structure Documentation

◆ rm_comms_smbus_error_t

struct rm_comms_smbus_error_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,160 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

SMBus error structure

◆ rm_comms_smbus_extended_cfg_t

struct rm_comms_smbus_extended_cfg_t

Extend configuration of SMBus

Data Fields

bool pec_enable Calculate PEC byte for SMBus
transmission.

rm_comms_i2c_bus_extended_c
fg_t *

p_comms_i2c_extend_cfg Pointer to extend configuration
block of rm_comms_i2c.

rm_comms_i2c_instance_ctrl_t * p_comms_i2c_ctrl Control block of rm_comms_i2c.

◆ rm_comms_smbus_instance_ctrl_t

struct rm_comms_smbus_instance_ctrl_t

SMBus middleware control block

Data Fields

bool timer_is_enabled Validate that external event
triggers stop the timer is
enabled.

uint8_t write_buff[RM_COMMS_SMBUS_
TRANSMISSION_MAX_BYTES]

Intermediate buffer.

uint8_t receive_crc_seed CRC seed value.

uint32_t open Open flag.

rm_comms_i2c_instance_ctrl_t * p_comms_i2c_ctrl Control block of rm_comms_i2c.

rm_comms_smbus_error_t * p_smbus_error SMBus specific error code.

const void * p_context

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,161 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

◆ rm_comms_smbus_event_t

enum rm_comms_smbus_event_t

SMBus specific event

Enumerator

RM_COMMS_SMBUS_NO_ERROR SMBus transmission complete without any
error.

RM_COMMS_SMBUS_MISC_ERROR Dependency modules failed.

RM_COMMS_SMBUS_DATA_CORRUPT PEC byte is incorrect.

RM_COMMS_SMBUS_SEXT_TIMEOUT Total transmission time exceeded 25 ms.

RM_COMMS_SMBUS_MEXT_TIMEOUT Transmission time between each event
exceeded 10 ms.

Function Documentation

◆ RM_COMMS_SMBUS_Open()

fsp_err_t RM_COMMS_SMBUS_Open (rm_comms_ctrl_t *const p_api_ctrl, rm_comms_cfg_t const
*const p_cfg)

Opens and configures the SMBUS Comms module. Implements rm_comms_api_t::open.

Return values
FSP_SUCCESS Communications Middle module

successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,162 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

◆ RM_COMMS_SMBUS_Close()

fsp_err_t RM_COMMS_SMBUS_Close (rm_comms_ctrl_t *const p_api_ctrl)

Disables specified SMBUS Comms module. Implements rm_comms_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_SMBUS_CallbackSet()

fsp_err_t RM_COMMS_SMBUS_CallbackSet (rm_comms_ctrl_t *const p_api_ctrl,
void(*)(rm_comms_callback_args_t *) p_callback, void const *const p_context)

Updates the SMBUS Comms callback. Implements rm_comms_api_t::callbackSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_SMBUS_Read()

fsp_err_t RM_COMMS_SMBUS_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the SMBUS device. Implements rm_comms_api_t::read.

Note
When Packet Error Check (PEC) is used, size of destination buffer and the number of reading bytes must have
1-byte in addition for PEC byte.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE Read data size is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,163 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMBUS Communication Device (rm_comms_smbus)

◆ RM_COMMS_SMBUS_Write()

fsp_err_t RM_COMMS_SMBUS_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes)

Performs a write from the SMBUS device. Implements rm_comms_api_t::write.

Return values
FSP_SUCCESS Successfully writing data .

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE Transfer data size is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_COMMS_SMBUS_WriteRead()

fsp_err_t RM_COMMS_SMBUS_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

Performs a write to, then a read from the SMBUS device. Implements rm_comms_api_t::writeRead.

Note
When Packet Error Check (PEC) is used, size of destination buffer and the number of reading bytes must have
1-byte in addition for PEC byte.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE Transfer data size is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

5.2.6.19 SMCI (r_sci_smci)
Modules » Connectivity

Functions

fsp_err_t R_SCI_SMCI_Open (smci_ctrl_t *const p_api_ctrl, smci_cfg_t const
*const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,164 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

fsp_err_t R_SCI_SMCI_Write (smci_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)

fsp_err_t R_SCI_SMCI_Read (smci_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SCI_SMCI_TransferModeSet (smci_ctrl_t *const p_api_ctrl,
smci_transfer_mode_t const *const p_transfer_mode_params)

fsp_err_t R_SCI_SMCI_BaudSet (smci_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

fsp_err_t R_SCI_SMCI_StatusGet (smci_ctrl_t *const p_api_ctrl, smci_status_t
*const p_status)

fsp_err_t R_SCI_SMCI_ClockControl (smci_ctrl_t *const p_api_ctrl, bool
clock_enable)

fsp_err_t R_SCI_SMCI_CallbackSet (smci_ctrl_t *const p_api_ctrl,
void(*p_callback)(smci_callback_args_t *), void const *const
p_context, smci_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_SMCI_Close (smci_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_SMCI_BaudCalculate (smci_speed_params_t const *const
p_speed_params, uint32_t baud_rate_error_x_1000, void *const
p_baud_setting)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SMCI Interface.

Overview
Features

The SCI SMCI module supports the following features:

Abort in-progress read/write operations
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, RX char, error, etc)
Transfer mode (normal and block) and data convention type change at run time.
All channels with SMCI support shall be configurable by the driver
Baud-rate (and ETU) calculation and change based on ISO7816 asynchronous parameters at
run-time. ETU is 1/baud.
Error notifications of parity error, error signal reception (guard time) and overrun.
Clock output control

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,165 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

Build Time Configurations for r_sci_smci

The following build time configurations are defined in fsp_cfg/r_sci_smci_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2A2 PCLKB

RA2E1 PCLKB

RA2E2 PCLKB

RA2E3 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4E2 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4T1 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

RA6T3 PCLKA

The clock source for the baud-rate clock generator is the PCLK. It is scaled by the SMR_SMCI.CKS bits

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,166 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

to acheive the requested baud rate. This is done in R_SCI_SMCI_BaudSet routine.

Pin Configuration

This module uses TXDx and RXDx to communicate to external devices. TXDx and RXDx need to be
tied together and pulled up to VCC externally via a pullup resistor and connected to the DATA line of
a connected card.

The SmartCard clock signal is generated by the SMCI module on the SCKx pin. The clock frequency
produced by the module is (baudrate * F) / D. The ISO specification defines the valid maximum
frequency range as 4Mhz to 20MHz; only certain combinations of Fi, Di and f(max) are allowed.

When writing the application for the driver, the application developer must also allocate a software
controlled Reset line via a GPIO. This will allow the reliable receipt of the ATR message. Optionally,
VCC and VPP can also be controlled by a GPIO output, so that cold starts can be forced.

Usage Notes
The SMCI module is compliant to ISO7816-3. SMCI is a half duplex interface. Direct convention in T0
mode is the default. The driver supports both direct and indirect (inverted) modes of transmission. It
also supports GSM mode in which the output clock can be enabled and disabled while the interface is
still active. If it is known that the device connected is a device in inverse convention, the convention
can be changed with smci_api_t::transferModeSet() after calling open.

The MCU creates the clock for the attached SMCI device based on the initial baudrate setting. Upon
reset the SmartCard device advertises the Di and Fi parameters as well as the max clock speed it
can handle. The Di and Fi parameters dictate at what rate the SmartCard device can sample the data
line as a function of the supplied clock generated by the RA MCU. Only certain combinations of D and
F are supported by the SMCI on SCI module. Only combinations where the the ratio of S=F/D
corresponds to a value of S of 32, 64, 93, 128, 186, 256, 372, or 512 (for example see Table 27-9
RA4M2 Group User's Manual R01UH0892EJ0110 or the relevant section for the MCU being used).

The baud rate (1/ETU) can be changed while the device is open to allow for speed negotiation based
on the attached device's capabilities.

The SMCI module does not contain a FIFO, and as such the receipt of multi-byte data has to be
handled by interrupt initiated callback. The application developer must develop their callback so that
the receipt of data is handled sufficiently without receiver overrun. If the read routine is called with a
length=0, every receive interrupt will initiate a call to the user's callback. If the read is called with a
non-zero length... the interrupt will fill the user's read buffer and initiate the callback after the last
byte is complete. In many cases, the user can send an event from their callback so that the reading
routine can wait for the event with a timeout. If a timeout occurs, the user can return the read state
machine to an idle state by calling the read routine with a length of 0.

Limitations

Examples
SCI SMCI Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,167 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

uint32_t g_out_of_band_index = 0;

void r_sci_smci_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the smci instance with initial configuration. */

 fsp_err_t err = R_SCI_SMCI_Open(&g_smci0_ctrl, &g_smci0_cfg);

 assert(FSP_SUCCESS == err);

 /* Need to have clock on inorder to receive or transmit*/

 R_SCI_SMCI_ClockControl(&g_smci0_ctrl, true);

 err = R_SCI_SMCI_Read(&g_smci0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_SCI_SMCI_Write(&g_smci0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 }

 while (!g_receive_complete)

 {

 }

}

void user_smci_callback (smci_callback_args_t * p_args)

{

 /* Handle the SMCI event */

 switch (p_args->event)

 {

 /* Received a character */

 case SMCI_EVENT_RX_CHAR:

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,168 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

 /* Only put the next character in the receive buffer if there is space for it */

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

 g_out_of_band_received[g_out_of_band_index++] = p_args->data;

 }

 break;

 }

 /* Receive complete */

 case SMCI_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

 }

 /* Transmit complete */

 case SMCI_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

}

SCI SMCI Baud Set Example

#define SCI_SMCI_BAUDRATE_28800 (28800)

#define SCI_SMCI_BAUDRATE_ERROR_PERCENT_5 (5000)

void r_sci_smci_baud_example (void)

{

 smci_speed_params_t speed_settings;

 smci_baud_setting_t baud_setting;

 speed_settings.baudrate = SCI_SMCI_BAUDRATE_28800;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,169 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

 speed_settings.fi = SMCI_CLOCK_CONVERSION_INTEGER_512_5;

 speed_settings.di = SMCI_BAUDRATE_ADJUSTMENT_INTEGER_4;

 fsp_err_t err = R_SCI_SMCI_BaudCalculate(&speed_settings,

SCI_SMCI_BAUDRATE_ERROR_PERCENT_5, &baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_SCI_SMCI_BaudSet(&g_smci0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct sci_smci_instance_ctrl_t

struct smci_baud_setting_t

struct sci_smci_extended_cfg_t

Data Structure Documentation

◆ sci_smci_instance_ctrl_t

struct sci_smci_instance_ctrl_t

SMCI instance control block.

◆ smci_baud_setting_t

struct smci_baud_setting_t

Register settings to achieve a desired baud rate in Smart Card mode

Data Fields

uint32_t computed_baud_rate

union smci_baud_setting_t __unnamed__

uint8_t scmr_bcp2: 1 BCP2 setting in Smart Card
Mode Register.

uint8_t brr Bit Rate Register setting.

◆ sci_smci_extended_cfg_t

struct sci_smci_extended_cfg_t

SMCI on SCI device Configuration

Data Fields

smci_baud_setting_t * p_smci_baud_setting Register settings for a desired
baud rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,170 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

Function Documentation

◆ R_SCI_SMCI_Open()

fsp_err_t R_SCI_SMCI_Open (smci_ctrl_t *const p_api_ctrl, smci_cfg_t const *const p_cfg)

Configures the Smart Card Interface driver based on the input configurations. The interface stays in
the clock-off state without enabling reception at the end of this function. ISO7816-3 default
communication parameters are used to initial ize SMCI port speed and parameters, as the ATR
message is always sent in that format. Only if Inverse convention is expected should the transfer
mode be changed after reset. Implements smci_api_t::open

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

that is to be opened

[in] p_cfg Pointer to the config
structure that shall be used
to set paramters of the SMCI
baud calculations needed to
be have done and set into p_
cfg->p_extend->p_smci_bau
d_setting

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to SMCI control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,171 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_Write()

fsp_err_t R_SCI_SMCI_Write (smci_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
smci_api_t::write

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

that is to be opened

[in] p_src Pointer to buffer that will be
written out

[in] bytes Number of bytes to be
transferred

Return values
FSP_SUCCESS Data transmission started successfully.

FSP_ERR_ASSERTION Pointer to SMCI control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A SMCI transmission is in progress

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,172 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_Read()

fsp_err_t R_SCI_SMCI_Read (smci_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Receiving is done at the isr
level as there is no FIFO. If 0 is passed in as the length, reception will always invoke the user
callback. Implements smci_api_t::read

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

that is to be opened

[in,out] p_dest Pointer to the buffer top be
read into

[in] bytes Number of bytes to copy
from the SMCI receive
register

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to SMCI control block or read buffer
is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,173 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_TransferModeSet()

fsp_err_t R_SCI_SMCI_TransferModeSet (smci_ctrl_t *const p_api_ctrl, smci_transfer_mode_t const
*const p_transfer_mode_params)

Updates the settings of block transfer mode and data transfer convention. The SCMR and
SMR_SMCI registers will be set according to the input arguments of protocol type, data convention
type, and mode. Implements smci_api_t::transferModeSet

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

that is to be modified

[in] p_transfer_mode_params Pointer to SMCI settings like
protocol, convention, and
gsm_mode

Warning
This terminates any in-progress transmission and reception.

Return values
FSP_SUCCESS Transfer mode and data transfer direction

was successfully changed.

FSP_ERR_IN_USE Unable to change transfer mode as device
has clock off or is actively RX or TX

FSP_ERR_ASSERTION Null pointer was passed as a parameter

FSP_ERR_NOT_OPEN The control block has not been opened

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,174 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_BaudSet()

fsp_err_t R_SCI_SMCI_BaudSet (smci_ctrl_t *const p_api_ctrl, void const *const p_baud_setting)

Updates the baud rate and clock output. p_baud_setting is a pointer to a smci_baud_setting_t
structure that needs to have already been filled by R_SCI_SMCI_BaudCalculate Implements
smci_api_t::baudSet

Warning
This terminates any in-progress transmission.

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

that is to be modified

[in] p_baud_setting Pointer to baud setting
information to be written to
the SMCI hardware registers

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to SMCI control block or
p_baud_setting is NUL

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_INVALID_ARGUMENT The p_baud_setting does not seem to be set
correctly

◆ R_SCI_SMCI_StatusGet()

fsp_err_t R_SCI_SMCI_StatusGet (smci_ctrl_t *const p_api_ctrl, smci_status_t *const p_status)

Provides the state of the driver and the # of bytes received since read was called Implements
smci_api_t::statusGet

Parameters
[in] p_api_ctrl Pointer to SMCI control block

of this SMCI instance

[out] p_status Pointer structure that will be
filled in with status info

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_ASSERTION Pointer to SMCI control block, or info
structure is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,175 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_ClockControl()

fsp_err_t R_SCI_SMCI_ClockControl (smci_ctrl_t *const p_api_ctrl, bool clock_enable)

Enable or disable the clock signal that is provided by interface the baud rate. When the clock is
enabled, reception is enabled at the end of this function. "Clock output control as defined in section
34.6.8 "Clock Output Control in Smart Card Interface Mode" in the RA6M3 manual
R01UH0886EJ0100 or the relevant section for the MCU being used. Implements
smci_api_t::clockControl

Warning
This terminates any in-progress transmission and reception.

Parameters
[in,out] p_api_ctrl Pointer to SMCI control block

[in] clock_enable true=Enable or
false=disable the Smart
Card Interface clock

Return values
FSP_SUCCESS Clock output setting was successfully

changed.

FSP_ERR_ASSERTION Pointer to SMCI control block is NULL

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_INVALID_MODE Clock cannot be disabled if GSM mode isnt
active

◆ R_SCI_SMCI_CallbackSet()

fsp_err_t R_SCI_SMCI_CallbackSet (smci_ctrl_t *const p_api_ctrl, void(*)(smci_callback_args_t *)
p_callback, void const *const p_context, smci_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
smci_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,176 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SMCI (r_sci_smci)

◆ R_SCI_SMCI_Close()

fsp_err_t R_SCI_SMCI_Close (smci_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Implements
smci_api_t::close

Parameters
[in] p_api_ctrl Pointer to SMCI control block

that is reqested to close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to SMCI control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_SCI_SMCI_BaudCalculate()

fsp_err_t R_SCI_SMCI_BaudCalculate (smci_speed_params_t const *const p_speed_params,
uint32_t baud_rate_error_x_1000, void *const p_baud_setting)

Calculates baud rate register settings. Evaluates and determines the best possible settings set to
the baud rate related registers. And then updates the SCI registers.

Parameters
[in] p_speed_params structure including speed

defining paramets, baud, F,
D, and max frequency

[in] baud_rate_error_x_1000 <baud_rate_percent_error>
x 1000 required for module
to function. Absolute max
baud_rate_error is 20000
(20%) according to the ISO
spec.

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate setting calculation successful

FSP_ERR_ASSERTION p_speed params or p_baud is a null pointer

FSP_ERR_INVALID_ARGUMENT Baud rate is '0', freq is '0', or error in
calculated baud rate is larger than 20%.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,177 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

5.2.6.20 SPI (r_sau_spi)
Modules » Connectivity

Functions

fsp_err_t R_SAU_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SAU_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SAU_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SAU_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SAU_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t R_SAU_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SAU_SPI_CalculateBitrate (uint32_t bitrate, sau_spi_div_setting_t
*sclk_div, uint8_t sau_unit, uint8_t channel)

Detailed Description

Driver for the SAU peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Single Transfer Mode or Continuous Transfer Mode
Data Phase (DAPmn)

DAPmn=0 Data output starts from the start of the operation of the serial
clock
DAPmn=1 Data output starts half a clock cycle before the start of the
serial clock operation

Clock Phase (CKPmn)
CKPmn=0 Non-reverse
CKPmn=1 Reverse

MSB/LSB first
DTC Support
Callback Events

Transfer Complete

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,178 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

Configuration

RX Overflow Error (The SAU shift register is copied to the data register before previous data
was read)

Build Time Configurations for r_sau_spi

The following build time configurations are defined in fsp_cfg/r_sau_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking
is included in the
build.

Critical Section
Guarding

Enabled
Disabled

Disabled Enable critical
section guarding
around peripheral
configuration
updates. This should
be enabled if the
R_SAU_I2C or
R_SAU_UART module
is being used
simultaneously with
this module.

Enable Single
Channel

00
20
11
Disabled

Disabled Enable single
channel to reduce
code size if only one
channel (00, 11, or
20) is to be
configured for SAU
SPI.

Transfer Operating
Mode

Reception
Transmission
Transmission/
Reception

Transmission/Recepti
on

Select transfer
operation mode.

DTC Support Enable
Disable

Disable Enable DTC support
for the SAU SPI
module.

Configurations for Connectivity > SPI (r_sau_spi)

This module can be added to the Stacks tab via New Stack > Connectivity > SPI (r_sau_spi).

Configuration Options Default Description

Name Name must be a
valid C symbol

g_spi0 Module name.

Channel MCU Specific Options Select the SAU

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,179 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

channel.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Operation Clock CK0
CK1

CK0 Select the operation
clock. Use the Clocks
tab to set the
operation clock
divider.

Transfer Mode Single
transfer
mode
Continuous
transfer
mode

Single transfer mode Select transfer mode
in transfer end
interrupt. But buffer
empty interrupt (in
continuous transfer
mode) cannot be
selected in Slave
Reception.

Bit Order MSB First
LSB First

MSB First Select of data
transfer sequence.

Data Phase Data
sampling on
odd edge,
data variation
on even edge
Data
sampling on
even edge,
data variation
on odd edge

Data sampling on
odd edge, data
variation on even
edge

Select when data
output shall start
compared with the
serial clock
operation.

Clock Phase High when
idle
Low when
idle

High when idle Select clock phase.

Bitrate Value must be an
integer greater than
0

500000 Enter the desired
bitrate.

If the requested
bitrate cannot be
achieved, adjust the
operation clock
frequency until the
bitrate is achievable.
The calculated
bitrate is printed in a
comment in the
generated
sau_spi_extended_cf
g_t structure.

Callback Name must be a
valid C symbol

sau_spi_callback A user callback
function that is
called from the sau

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,180 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

spi interrupts when a
transfer is completed
or an error has
occurred.

Transmit End
Interrupt Priority

MCU Specific Options Select the transmit
end interrupt
priority.

Clock Configuration

The SAU clock uses the system clock (ICLK) as its clock source.

A prescaler is applied to the ICLK in order to produce the operation clock frequency. The operation
clock is used to generate the desired transfer period of the SAU module.

SAU operation clocks are shared among all channels within a SAU unit. Check the Hardware User's
Manual for your MCU for available units and channels. SAU operation clock dividers are configurable
in the Clocks tab.

The operation clock dividers are named SAU CKmn where m is the SAU unit, and n is the operation
clock. For example, SAU CK01 applies to all SAU0 instances using CK1 as the operation clock (m=0,
n=1).

Clock Phase/Polarity Configuration

The following table illustrates the settings of the Clock Phase/Polarity corresponding SCRmn register
DCP[1:0] bits in the SAU SPI.

Clock Phase Clock Polarity DCP[1:0] Value

Data sampling on odd edge,
data variation on even edge

High when idle 0b00

Data sampling on odd edge,
data variation on even edge

Low when idle 0b01

Data sampling on even edge,
data variation on odd edge

High when idle 0b10

Data sampling on even edge,
data variation on odd edge

Low when idle 0b11

Pin Configuration

This module uses SCKmn, SOmn, and SImn pins to communicate with on board devices.

Note
At high bit rates, it might be necessary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Enabling DTC with the SAU SPI

DTC transfer is disabled by default. When DTC is enabled, error event will not be handled
until transfer is completed.
For further details on DTC please refer Transfer (r_dtc)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,181 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

Usage Notes
Enabling Single Channel By User With The SAU SPI

The Common > Single Channel property is used for reducing code size when only 1 SAU
channel is to be configured for SAU SPI.
Single Channel is configurable and disabled by default in the driver code.
Note: Not all SAU channels are available on all pin layouts. Check the Hardware User
Manual for your device to confirm available function assignment for each SAU channel.

Transfer Complete Event

The transfer complete event is triggered when all of the data has been transferred. In slave mode if
the SS pin is de-asserted then no transfer complete event is generated until the SS pin is asserted
and the remaining data is transferred.

Performance

At high bit rates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in RX Overflow
errors.

To improve performance at high bit rates, it is recommended that the instance be configured to
service transfers using the DTC.

Slave Select Pin

In master mode the slave select pin must be driven in software.
In slave mode the hardware handles the slave select pin and will only transfer data when
the SS pin is low.

Single Channel Use Case

If only SAU channel 00 is to be used for I2C or SPI or UART, enable single channel can reduce the
code size.

Selecting Operation Clock Frequency

The relationship between operation clock frequency and bitrate is: bitrate = f_mck / [2 *
(SDRmn.STCLK + 1)] where:

SDRmn.STCLK is an integer in the range [0, 127] for SAU SPI
f_mck is the operation clock (SAU CKmn) frequency

By plugging in the minimum and maximum SDRmn.STCLK values, the range of bitrates for a given
operation clock frequency can be obtained.

Note that due to STCLK being set as discrete integers, the actual bitrate may not be exact. The
actual bitrate and percent errors can be calculated by the formulas:

actual_bitrate = f_mck / [2 * (SDRmn.STCLK + 1)]

percent_error = 100 * abs [(actual_bitrate - expected_bitrate) / expected_bitrate]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,182 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

Using the fastest possible operation clock for the desired bitrate will result in the lowest deviation
from the requested bitrate. Set the CKmn operation clock divider in the Clocks tab to select the
desired operation clock frequency.

Runtime bitrate calculation

The function R_SAU_SPI_CalculateBitrate can be used at runtime to calculate alternate bitrate
settings.

This function computes settings with both operation clocks CK0 and CK1. If valid settings are
possible with both clocks, it selects the settings and clock that would produce the lowest error.

Set the divisors for CK0 and CK01 in the clocks tab such that all required bitrate settings for the
application are possible. A large range of bitrates can be achieved by having one "slow" operation
clock for low speed modes and one "fast" operation clock for high speed modes.

Limitations

When multiple channels on the same SAU unit need to be used, and one is configured as
I2C, then critical section property needs to be enabled.
Continuous transfer mode will be deprecated.

Examples
Basic Example

This is a basic example of minimal use of the SAU_SPI in an application.

static volatile bool g_transfer_complete = false;

static void r_sau_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

void sau_spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,183 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SAU_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SAU_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SAU_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,184 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

#define SAU_SPI_TRANSFER_MODE_RECEPTION

 Reception only.

#define SAU_SPI_TRANSFER_MODE_TRANSMISSION

 Transmission only.

#define SAU_SPI_TRANSFER_MODE_TRANSMISSION_RECEPTION

 Transmission/reception.

enum sau_spi_operation_clock_t

enum sau_spi_transfer_mode_t

enum sau_spi_data_phase_t

enum sau_spi_clock_phase_t

Enumeration Type Documentation

◆ sau_spi_operation_clock_t

enum sau_spi_operation_clock_t

Selection of operating clock (fMCK) of channel

◆ sau_spi_transfer_mode_t

enum sau_spi_transfer_mode_t

Selection of transfer mode of channel

◆ sau_spi_data_phase_t

enum sau_spi_data_phase_t

Data phase

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,185 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

◆ sau_spi_clock_phase_t

enum sau_spi_clock_phase_t

Clock phase

Function Documentation

◆ R_SAU_SPI_Open()

fsp_err_t R_SAU_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Enables the clock for the SAU channel.
Initializes the associated registers with default value and the user-configurable options.
Provides the channel handle for use with other API functions.

Parameters
p_api_ctrl Pointer to the control structure.

p_cfg Pointer to a configuration structure.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ASSERTION An input parameter is invalid or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

◆ R_SAU_SPI_Read()

fsp_err_t R_SAU_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission by writing data to the TXD register.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data reception via receive buffer full interrupt and transmitting dummy data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,186 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Data frame length (Set to
SPI_BIT_WIDTH_7_BITS or
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Bit width is not 8 bits
Length is equal to 0
Pointer to destination is NULL

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,187 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

◆ R_SAU_SPI_Write()

fsp_err_t R_SAU_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device. Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable interrupts.
Start data transmission with data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Complete data transmission via transmit buffer empty interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Data frame length (Set to
SPI_BIT_WIDTH_7_BITS or
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,188 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

◆ R_SAU_SPI_WriteRead()

fsp_err_t R_SAU_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to SPI device while receiving data from SPI device (full duplex).
Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission using transmit buffer empty interrupt (or by writing to the TDR
register).
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt and copy data to the destination buffer.
Complete data transmission and reception via transmit end interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Data frame length (Set to
SPI_BIT_WIDTH_7_BITS or
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Pointer to destination is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,189 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

◆ R_SAU_SPI_CallbackSet()

fsp_err_t R_SAU_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *)
p_callback, void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_SAU_SPI_Close()

fsp_err_t R_SAU_SPI_Close (spi_ctrl_t *const p_api_ctrl)

Disable the SAU channel and set the instance as not open. Implements spi_api_t::close.

Parameters
p_api_ctrl Pointer to an opened instance.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,190 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sau_spi)

◆ R_SAU_SPI_CalculateBitrate()

fsp_err_t R_SAU_SPI_CalculateBitrate (uint32_t bitrate, sau_spi_div_setting_t * sclk_div, uint8_t
sau_unit, uint8_t channel)

Calculate the register settings required to achieve the desired bitrate.

Note
This function calculates the bitrate settings with both operation clocks CK0 and CK1, then selects the operation
clock and register setting combination that would produce the lowest error.

Parameters
[in] bitrate bitrate [bps]. For example,

250,000; 500,00; 16,000,000
(max), etc.

[out] sclk_div Pointer to
sau_spi_div_setting_t used to
configure baudrate settings.

sau_unit SAU unit.

channel SAU channel.

Return values
FSP_SUCCESS Bitrate is calculated successfully.

FSP_ERR_ASSERTION Bitrate is not achievable or not valid for the
selected unit/channel.

5.2.6.21 SPI (r_sci_b_spi)
Modules » Connectivity

Functions

fsp_err_t R_SCI_B_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const
p_cfg)

fsp_err_t R_SCI_B_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_B_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_B_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const
*p_src, void *p_dest, uint32_t const length, spi_bit_width_t const
bit_width)

fsp_err_t R_SCI_B_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,191 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_B_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_B_SPI_CalculateBitrate (uint32_t bitrate,
sci_b_spi_clock_source_t clock_source, sci_b_spi_div_setting_t
*sclk_div)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Select data sampling on leading edge, data change on trailing
edge
CPHA=1 Select data change on leading edge, data sampling on trailing
edge

MSB/LSB first
Configurable bit rate
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SCI shift register is copied to the data register before
previous data was read)

Configuration

Build Time Configurations for r_sci_b_spi

The following build time configurations are defined in fsp_cfg/r_sci_b_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support Enabled
Disabled

Enabled If support for
transfering data using
the DTC will be
compiled in.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,192 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

Configurations for Connectivity > SPI (r_sci_b_spi)

This module can be added to the Stacks tab via New Stack > Connectivity > SPI (r_sci_b_spi). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_sci_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SCI channel.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling
on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

Data sampling on odd
edge, data variation on
even edge

Select the clock edge
to sample data.

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Clock Source PCLK
SCISPICLK

PCLK Select whether the
peripheral clock (PCLK)
or SCISPICLK is used for
generating the SCK
frequency.

Callback Name must be a valid
C symbol

sci_b_spi_callback A user callback
function that is called
from the sci_b_spi
interrupts when a
transfer is completed
or an error has
occurred.

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,193 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

interrupt priority.

Bitrate Value must be an
integer greater than 0

8000000 Enter the desired
bitrate.

If the requested bitrate
cannot be achieved,
the settings with the
largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is
printed in a comment
in the generated
sci_spi_extended_cfg_t
structure.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA6T2 PCLKA

RA8D1 PCLKA

RA8M1 PCLKA

RA8T1 PCLKA

The SCI peripheral uses the SCISPICLK/SCICLK or PCLKA for communication and PCLKA for internal
operations. Both can be configured via the Clocks tab of the RA Configuration editor or by using the
CGC Interface at run-time.

Pin Configuration

This module uses SCIn_MOSI, SCIn_MISO, SCIn_SPCK, and SCIn_SS pins to communicate with on
board devices.

Note
At high bit rates, it might be necessary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
Transfer Complete Event

The transfer complete event is triggered when all of the data has been transfered. In slave mode if
the SS pin is de-asserted then no transfer complete event is generated until the SS pin is asserted
and the remaining data is transferred.

Performance

At high bit rates, interrupts may not be able to service transfers fast enough. In master mode this

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,194 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

means there will be a delay between each data frame. In slave mode this could result in RX Overflow
errors.

In order to improve performance at high bit rates, it is recommended that the instance be configured
to service transfers using the DTC.

Transmit From RXI Interrupt

After every byte, the SCI SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. Whenever possible, the SCI SPI module handles both interrupts in the receive
buffer full interrupt. This improves performance when the DTC is not being used.

Slave Select Pin

In master mode the slave select pin must be driven in software.
In slave mode the hardware handles the slave select pin and will only transfer data when
the SS pin is low.

Examples
Basic Example

This is a basic example of minimal use of the SCI_B_SPI module in an application.

static volatile bool g_transfer_complete = false;

static void r_sci_b_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

void sci_b_spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SCI_B_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,195 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SCI_B_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SCI_B_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,196 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

struct sci_b_spi_div_setting_t

Data Structure Documentation

◆ sci_b_spi_div_setting_t

struct sci_b_spi_div_setting_t

Settings for adjusting the SPI CLK.

Function Documentation

◆ R_SCI_B_SPI_Open()

fsp_err_t R_SCI_B_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Enables the clock for the SCI channel.
Initializes the associated registers with default value and the user-configurable options.
Provides the channel handle for use with other API functions.

Parameters
p_api_ctrl Pointer to the control structure.

p_cfg Pointer to a configuration structure.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ASSERTION An input parameter is invalid or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,197 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

◆ R_SCI_B_SPI_Read()

fsp_err_t R_SCI_B_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission by writing data to the TXD register.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data reception via receive buffer full interrupt and transmitting dummy data.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_B_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Bit width is not 8 bits
Length is equal to 0
Pointer to destination is NULL

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,198 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

◆ R_SCI_B_SPI_Write()

fsp_err_t R_SCI_B_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device. Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable interrupts.
Start data transmission with data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Complete data transmission via transmit buffer empty interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_B_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,199 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

◆ R_SCI_B_SPI_WriteRead()

fsp_err_t R_SCI_B_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to SPI device while receiving data from SPI device (full duplex).
Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission using transmit buffer empty interrupt (or by writing to the TDR
register).
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt and copy data to the destination buffer.
Complete data transmission and reception via transmit end interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_B_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Pointer to destination is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,200 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

◆ R_SCI_B_SPI_CallbackSet()

fsp_err_t R_SCI_B_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *)
p_callback, void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SCI_B_SPI_Close()

fsp_err_t R_SCI_B_SPI_Close (spi_ctrl_t *const p_api_ctrl)

Disable the SCI channel and set the instance as not open. Implements spi_api_t::close.

Parameters
p_api_ctrl Pointer to an opened instance.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,201 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_b_spi)

◆ R_SCI_B_SPI_CalculateBitrate()

fsp_err_t R_SCI_B_SPI_CalculateBitrate (uint32_t bitrate, sci_b_spi_clock_source_t clock_source,
sci_b_spi_div_setting_t * sclk_div)

Calculate the register settings required to achieve the desired bitrate.

Parameters
[in] bitrate bitrate [bps]. For example,

250,000; 500,00; 2,500,000
(max), etc.

clock_source clock source (PCLKA or
SCISPICLK) used for bit rate
calculation.

sclk_div Pointer to
sci_b_spi_div_setting_t used
to configure baudrate
settings.

Return values
FSP_SUCCESS Baud rate is set successfully.

FSP_ERR_ASSERTION Baud rate is not achievable.

Note
The application must pause for 1 bit time after the BRR register is loaded before transmitting/receiving to allow
time for the clock to settle.

5.2.6.22 SPI (r_sci_spi)
Modules » Connectivity

Functions

fsp_err_t R_SCI_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,202 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

fsp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting_t
*sclk_div, bool use_mddr)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Select data sampling on leading edge, data change on trailing
edge
CPHA=1 Select data change on leading edge, data sampling on trailing
edge

MSB/LSB first
Configurable bit rate
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SCI shift register is copied to the data register before
previous data was read)

Configuration

Build Time Configurations for r_sci_spi

The following build time configurations are defined in fsp_cfg/r_sci_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support Enabled
Disabled

Enabled If support for
transfering data using
the DTC will be
compiled in.

Configurations for Connectivity > SPI (r_sci_spi)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,203 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

This module can be added to the Stacks tab via New Stack > Connectivity > SPI (r_sci_spi). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SCI channel.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling
on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

Data sampling on odd
edge, data variation on
even edge

Select the clock edge
to sample data.

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Callback Name must be a valid
C symbol

sci_spi_callback A user callback
function that is called
from the sci spi
interrupts when a
transfer is completed
or an error has
occurred.

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Bitrate Value must be an
integer greater than 0

8000000 Enter the desired
bitrate.

If the requested bitrate
cannot be achieved,
the settings with the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,204 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is
printed in a comment
in the generated
sci_spi_extended_cfg_t
structure.

Bitrate Modulation Disabled
Enabled

Disabled Enabling bitrate
modulation reduces the
percent error of the
actual bitrate with
respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock
output pulse, so the
clock is no longer a
square wave.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2A2 PCLKB

RA2E1 PCLKB

RA2E2 PCLKB

RA2E3 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4E2 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4T1 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M1 PCLKA

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,205 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

RA6T3 PCLKA

Pin Configuration

This module uses SCIn_MOSI, SCIn_MISO, SCIn_SPCK, and SCIn_SS pins to communicate with on
board devices.

Note
At high bit rates, it might be necessary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
Transfer Complete Event

The transfer complete event is triggered when all of the data has been transfered. In slave mode if
the SS pin is de-asserted then no transfer complete event is generated until the SS pin is asserted
and the remaining data is transferred.

Performance

At high bit rates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in RX Overflow
errors. In order to improve performance at high bit rates, it is recommended that the instance be
configured to service transfers using the DTC.

Also note when using DTC for data transfer, SCI SPI can experience overrun error if the application
makes heavy use of DMAC and/or another DTC instance. This is because DMAC has a higher priority
over DTC in arbitration for the mastership of the DMA bus, and the arbitration between different
triggers/transfers in DTC is done based on interrupt/trigger priority. Overrun error can be averted
with one of the following options:

1. If SCI SPI uses DTC for data transfer, avoid the use of DMAC or another DTC instance in an
application.

2. If DMAC/DTC is a must for other data transfers, avoid the use of DTC with SCI SPI.
3. Use the RSPI instead of SCI SPI. The RSPI hardware can handle overrun conditions.

Transmit From RXI Interrupt

After every byte, the SCI SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. Whenever possible, the SCI_SPI module handles both interrupts in the receive
buffer full interrupt. This improves performance when the DTC is not being used.

Slave Select Pin

In master mode the slave select pin must be driven in software.
In slave mode the hardware handles the slave select pin and will only transfer data when

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,206 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

the SS pin is low.

Bit Rate Modulation

Depending on the peripheral clock frequency, the desired bit rate may not be achievable. With bit
rate modulation, the device can remove a configurable number of input clock pulses to the internal
bit rate counter in order to create the desired bit rate. This has the effect of changing the period of
individual bits in order to achieve the desired average bit rate. For more information see section 34.9
Bit Rate Modulation Function in the RA6M3 manual.

Examples
Basic Example

This is a basic example of minimal use of the SCI_SPI in an application.

static volatile bool g_transfer_complete = false;

static void r_sci_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

void sci_spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SCI_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,207 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

 g_transfer_complete = false;

 err = R_SCI_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SCI_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Data Structures

struct sci_spi_div_setting_t

Data Structure Documentation

◆ sci_spi_div_setting_t

struct sci_spi_div_setting_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,208 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

Settings for adjusting the SPI CLK.

Data Fields

uint8_t brr

uint8_t cks: 2

uint8_t mddr Set to 0 to disable MDDR.

Function Documentation

◆ R_SCI_SPI_Open()

fsp_err_t R_SCI_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Enables the clock for the SCI channel.
Initializes the associated registers with default value and the user-configurable options.
Provides the channel handle for use with other API functions.

Parameters
p_api_ctrl Pointer to the control structure.

p_cfg Pointer to a configuration structure.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ASSERTION An input parameter is invalid or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,209 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

◆ R_SCI_SPI_Read()

fsp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission by writing data to the TXD register.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data reception via receive buffer full interrupt and transmitting dummy data.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Bit width is not 8 bits
Length is equal to 0
Pointer to destination is NULL

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,210 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

◆ R_SCI_SPI_Write()

fsp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device. Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable interrupts.
Start data transmission with data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Complete data transmission via transmit buffer empty interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,211 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

◆ R_SCI_SPI_WriteRead()

fsp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to SPI device while receiving data from SPI device (full duplex).
Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission using transmit buffer empty interrupt (or by writing to the TDR
register).
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt and copy data to the destination buffer.
Complete data transmission and reception via transmit end interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Pointer to destination is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,212 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

◆ R_SCI_SPI_CallbackSet()

fsp_err_t R_SCI_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *)
p_callback, void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SCI_SPI_Close()

fsp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

Disable the SCI channel and set the instance as not open. Implements spi_api_t::close.

Parameters
p_api_ctrl Pointer to an opened instance.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,213 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_sci_spi)

◆ R_SCI_SPI_CalculateBitrate()

fsp_err_t R_SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting_t * sclk_div, bool
use_mddr)

Calculate the register settings required to achieve the desired bitrate.

Parameters
[in] bitrate bitrate [bps]. For example,

250,000; 500,00; 2,500,000
(max), etc.

sclk_div Pointer to
sci_spi_div_setting_t used to
configure baudrate settings.

[in] use_mddr Calculate the divider
settings for use with MDDR.

Return values
FSP_SUCCESS Baud rate is set successfully.

FSP_ERR_ASSERTION Baud rate is not achievable.

Note
The application must pause for 1 bit time after the BRR register is loaded before transmitting/receiving to allow
time for the clock to settle.

5.2.6.23 SPI (r_spi)
Modules » Connectivity

Functions

fsp_err_t R_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src, void
*p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t R_SPI_Close (spi_ctrl_t *const p_api_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,214 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

fsp_err_t R_SPI_CalculateBitrate (uint32_t bitrate, rspck_div_setting_t
*spck_div)

Detailed Description

Driver for the SPI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
3-Wire (clock synchronous) or 4-Wire (SPI) Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Data is sampled at an odd edge and changes at an even edge.
CPHA=1 Data changes at an odd edge and is sampled at an even edge.

MSB/LSB first
8-16 bit, 20-bit, 24-bit, and 32-bit data frames

Hardware endian swap in 16-bit and 32-bit modes
SSL level keep (burst transfer) supported if available

Configurable bitrate
Supports Full Duplex or Transmit Only Mode
DTC Support
DMAC Support
Callback Events

Transfer Complete
RX Overflow Error (The SPI shift register is copied to the data register before
previous data was read)
TX Underrun Error (No data to load into shift register for transmitting)
Parity Error (When parity is enabled and a parity error is detected)

Configuration

Build Time Configurations for r_spi

The following build time configurations are defined in fsp_cfg/r_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Enable Support for
using a transfer API

Enabled
Disabled

Enabled If enabled, transfer
instances will be
included in the build for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,215 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

both transmission and
reception.

Enable Transmitting
from RXI Interrupt

Enabled
Disabled

Disabled If enabled, all
operations will be
handled from the RX
(receive) interrupt. This
setting only provides a
performance boost
when neither DTC nor
DMAC is used. In
addition, Transmit Only
mode is not supported
when this configuration
is enabled.

Configurations for Connectivity > SPI (r_spi)

This module can be added to the Stacks tab via New Stack > Connectivity > SPI (r_spi). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SPI channel.

Receive Interrupt
Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transmit Buffer Empty
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transfer Complete
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Error Interrupt Priority MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling
on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

Data sampling on odd
edge, data variation on
even edge

Select the clock edge
to sample data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,216 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Callback Name must be a valid
C symbol

spi_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

SPI Mode SPI Operation
Clock
Synchronous
Operation

Clock Synchronous
Operation

Select the clock sync
mode.

Full or Transmit Only
Mode

Full Duplex
Transmit Only

Full Duplex Select Full Duplex or
Transmit Only Mode.

Slave Select Polarity Active Low
Active High

Active Low Select the slave select
active level.

Select SSL(Slave
Select)

MCU Specific Options Select which slave to
use.

MOSI Idle State MOSI Idle Value
Fixing Disable
MOSI Idle Value
Fixing Low
MOSI Idle Value
Fixing High

MOSI Idle Value Fixing
Disable

Select the MOSI idle
level if MOSI idle is
enabled.

Parity Mode Disabled
Odd
Even

Disabled Select the parity mode
if parity is enabled.

Byte Swapping Disable
Enable

Disable Select the byte swap
mode for 16/32-Bit
Data Frames.

Bitrate Value must be an
integer greater than 0

16000000 Enter the desired
bitrate, change the
bitrate to a value
supported by MCU. If
the requested bitrate
cannot be achieved,
the settings with the
largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,217 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

printed in a comment
in the generated
spi_extended_cfg_t
structure.

Clock Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles
before each data
frame.

SSL Negation Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles after
each data frame.

Next Access Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles
between each data
frame.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2A2 PCLKB

RA2E1 PCLKB

RA2E2 PCLKB

RA2E3 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4E2 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,218 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

RA4T1 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

RA6T3 PCLKA

Pin Configuration

This module uses MOSI, MISO, RSPCK, and SSL pins to communicate with on board devices.

Note
At high bitrates, it might be nessecary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
Performance

At high bitrates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in TX Underrun
and RX Overflow errors.

In order to improve performance at high bitrates, it is recommended that the instance be configured
to service transfers using the DTC or DMAC.

Another way to improve performance is to transfer the data in 16/32 bit wide data frames when
possible. A typical use-case where this is possible is when reading/writing to a block device.

Transmit From RXI Interrupt

After every data frame the SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. It is possible to configure the driver to handle transmit buffer empty interrupts in
the receive buffer full isr. This only improves performance when neither the DTC nor DMAC is being
used.

Note
Configuring the module to use an RX DTC/DMAC instance without also providing a TX DTC/DMAC instance
results in an invalid configuration when RXI transmit is enabled.
Transmit Only mode is not supported when Transmit from RXI is enabled.

Clock Auto-Stopping

In master mode, if the Receive Buffer Full Interrupts are not handled fast enough, instead of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,219 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

generating a RX Overflow error, the last clock cycle will be stretched until the receive buffer is read.

Parity Mode

When parity mode is configured, the LSB of each data frame is used as a parity bit. When odd parity
is selected, the LSB is set such that there are an odd number of ones in the data frame. When even
parity is selected, the LSB is set such that there are an even number of ones in the data frame.

Limitations

Developers should be aware of the following limitations when using the SPI:

In master mode, the driver will only configure 4-Wire mode if the device supports SSL Level
Keeping (SSLKP bit in SPCMD0) and will return FSP_ERR_UNSUPPORTED if configured for
4-Wire mode on devices without SSL Level Keeping. Without SSL Level Keeping, the SSL pin
is toggled after every data frame. In most cases this is not desirable behavior so it is
recommended that the SSL pin be driven in software if SSL Level Keeping is not present on
the device.
In order to use CPHA=0 setting in slave mode, the master must toggle the SSL pin after
every data frame (Even if the device supports SSL Level Keeping). Because of this hardware
limitation, the module will return FSP_ERR_UNSUPPORTED when it is configured to use
CPHA=0 setting in slave mode.
The module does not support communicating with multiple slaves using different SSL pins.
In order to achieve this, the module must either be closed and re-opened to change the SSL
pin or drive SSL in software. It is recommended that SSL be driven in software when
controlling multiple slave devices.
The SPI peripheral has a minimum 3 SPI CLK delay between each data frame.
The behavior for Byte Swap operation is not guaranteed for data frames other than 8-bit,
16-bit and 32bit.

Examples
Basic Example

This is a basic example of minimal use of the SPI in an application.

static volatile bool g_transfer_complete = false;

void spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start a write/read transfer */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,220 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

}

static void r_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

Driving Software Slave Select Line

This is an example of communicating with multiple slave devices by asserting SSL in software.

void spi_software_ssl_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,221 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Configuring the SPI Clock Divider Registers

This example demonstrates how to set the SPI clock divisors at runtime.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,222 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

void spi_bitrate_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_spi_cfg.p_extend = &g_spi_extended_cfg;

 /* Configure SPI Clock divider to achieve largest bitrate less than or equal to the

desired bitrate. */

 err = R_SPI_CalculateBitrate(BITRATE, &(g_spi_extended_cfg.spck_div));

 assert(FSP_SUCCESS == err);

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rspck_div_setting_t

struct spi_extended_cfg_t

struct spi_instance_ctrl_t

Enumerations

enum spi_ssl_mode_t

enum spi_communication_t

enum spi_ssl_polarity_t

enum spi_ssl_select_t

enum spi_mosi_idle_value_fixing_t

enum spi_parity_t

enum spi_byte_swap_t

enum spi_delay_count_t

Data Structure Documentation

◆ rspck_div_setting_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,223 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

struct rspck_div_setting_t

SPI Clock Divider settings.

Data Fields

uint8_t spbr SPBR register setting.

uint8_t brdv: 2 BRDV setting in SPCMD0.

◆ spi_extended_cfg_t

struct spi_extended_cfg_t

Extended SPI interface configuration

Data Fields

spi_ssl_mode_t spi_clksyn Select spi or clock syn mode
operation.

spi_communication_t spi_comm Select full-duplex or transmit-
only communication.

spi_ssl_polarity_t ssl_polarity Select SSLn signal polarity.

spi_ssl_select_t ssl_select Select which slave to use:
0-SSL0, 1-SSL1, 2-SSL2, 3-SSL3.

spi_mosi_idle_value_fixing_t mosi_idle Select MOSI idle fixed value and
selection.

spi_parity_t parity Select parity and enable/disable
parity.

spi_byte_swap_t byte_swap Select byte swap mode.

rspck_div_setting_t spck_div Register values for configuring
the SPI Clock Divider.

spi_delay_count_t spck_delay SPI Clock Delay Register
Setting.

spi_delay_count_t ssl_negation_delay SPI Slave Select Negation Delay
Register Setting.

spi_delay_count_t next_access_delay SPI Next-Access Delay Register
Setting.

◆ spi_instance_ctrl_t

struct spi_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when spi_api_t::open is called.

Data Fields

uint32_t open

 Indicates whether the open() API has been successfully called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,224 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

spi_cfg_t const * p_cfg

 Pointer to instance configuration.

R_SPI0_Type * p_regs

 Base register for this channel.

void const * p_tx_data

 Buffer to transmit.

void * p_rx_data

 Buffer to receive.

uint32_t tx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

uint32_t rx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

uint32_t count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

spi_bit_width_t bit_width

 Bits per Data frame (8-bit, 16-bit, 32-bit)

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,225 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ spi_ssl_mode_t

enum spi_ssl_mode_t

3-Wire or 4-Wire mode.

Enumerator

SPI_SSL_MODE_SPI SPI operation (4-wire method)

SPI_SSL_MODE_CLK_SYN Clock Synchronous operation (3-wire method)

◆ spi_communication_t

enum spi_communication_t

Transmit Only (Half Duplex), or Full Duplex.

Enumerator

SPI_COMMUNICATION_FULL_DUPLEX Full-Duplex synchronous serial
communication.

SPI_COMMUNICATION_TRANSMIT_ONLY Transit only serial communication.

◆ spi_ssl_polarity_t

enum spi_ssl_polarity_t

Slave Select Polarity.

Enumerator

SPI_SSLP_LOW SSLP signal polarity active low.

SPI_SSLP_HIGH SSLP signal polarity active high.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,226 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ spi_ssl_select_t

enum spi_ssl_select_t

The Slave Select Line

Enumerator

SPI_SSL_SELECT_SSL0 Select SSL0.

SPI_SSL_SELECT_SSL1 Select SSL1.

SPI_SSL_SELECT_SSL2 Select SSL2.

SPI_SSL_SELECT_SSL3 Select SSL3.

◆ spi_mosi_idle_value_fixing_t

enum spi_mosi_idle_value_fixing_t

MOSI Idle Behavior.

Enumerator

SPI_MOSI_IDLE_VALUE_FIXING_DISABLE MOSI output value=value set in MOIFV bit.

SPI_MOSI_IDLE_VALUE_FIXING_LOW MOSIn level low during MOSI idling.

SPI_MOSI_IDLE_VALUE_FIXING_HIGH MOSIn level high during MOSI idling.

◆ spi_parity_t

enum spi_parity_t

Parity Mode

Enumerator

SPI_PARITY_MODE_DISABLE Disable parity.

SPI_PARITY_MODE_ODD Select even parity.

SPI_PARITY_MODE_EVEN Select odd parity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,227 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ spi_byte_swap_t

enum spi_byte_swap_t

Byte Swapping Enable/Disable.

Enumerator

SPI_BYTE_SWAP_DISABLE Disable Byte swapping for 16/32-Bit transfers.

SPI_BYTE_SWAP_ENABLE Enable Byte swapping for 16/32-Bit transfers.

◆ spi_delay_count_t

enum spi_delay_count_t

Delay count for SPI delay settings.

Enumerator

SPI_DELAY_COUNT_1 Set RSPCK delay count to 1 RSPCK.

SPI_DELAY_COUNT_2 Set RSPCK delay count to 2 RSPCK.

SPI_DELAY_COUNT_3 Set RSPCK delay count to 3 RSPCK.

SPI_DELAY_COUNT_4 Set RSPCK delay count to 4 RSPCK.

SPI_DELAY_COUNT_5 Set RSPCK delay count to 5 RSPCK.

SPI_DELAY_COUNT_6 Set RSPCK delay count to 6 RSPCK.

SPI_DELAY_COUNT_7 Set RSPCK delay count to 7 RSPCK.

SPI_DELAY_COUNT_8 Set RSPCK delay count to 8 RSPCK.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,228 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ R_SPI_Open()

fsp_err_t R_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

This functions initializes a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Configures the pperipheral registers acording to the configuration.
Initialize the control structure for use in other SPI Interface functions.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ALREADY_OPEN Instance was already initialized.

FSP_ERR_ASSERTION An invalid argument was given in the
configuration structure.

FSP_ERR_UNSUPPORTED A requested setting is not possible on this
device with the current build configuration.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls: transfer_api_t::open

Note
This function is reentrant.

◆ R_SPI_Read()

fsp_err_t R_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

This function receives data from a SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI read operation.

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or destination
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,229 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ R_SPI_Write()

fsp_err_t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

This function transmits data to a SPI device using the TX Only Communications Operation Mode.
Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI write operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or source
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

◆ R_SPI_WriteRead()

fsp_err_t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

This function simultaneously transmits and receive data. Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI writeRead operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control, source or
destination parameters or transfer length is
zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,230 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ R_SPI_CallbackSet()

fsp_err_t R_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *) p_callback,
void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SPI_Close()

fsp_err_t R_SPI_Close (spi_ctrl_t *const p_api_ctrl)

This function manages the closing of a channel by the following task. Implements spi_api_t::close.

Disables SPI operations by disabling the SPI bus.

Disables the SPI peripheral.
Disables all the associated interrupts.
Update control structure so it will not work with SPI Interface functions.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION A required pointer argument is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,231 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi)

◆ R_SPI_CalculateBitrate()

fsp_err_t R_SPI_CalculateBitrate (uint32_t bitrate, rspck_div_setting_t * spck_div)

Calculates the SPBR register value and the BRDV bits for a desired bitrate. If the desired bitrate is
faster than the maximum bitrate, than the bitrate is set to the maximum bitrate. If the desired
bitrate is slower than the minimum bitrate, than an error is returned.

Parameters
[in] bitrate Desired bitrate

[out] spck_div Memory location to store
bitrate register settings.

Return values
FSP_SUCCESS Valid spbr and brdv values were calculated

FSP_ERR_UNSUPPORTED Bitrate is not achievable

5.2.6.24 SPI (r_spi_b)
Modules » Connectivity

Functions

fsp_err_t R_SPI_B_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SPI_B_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_B_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_B_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_B_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t R_SPI_B_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SPI_B_CalculateBitrate (uint32_t bitrate, spi_b_clock_source_t
clock_source, rspck_div_setting_t *spck_div)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,232 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

Driver for the SPI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
3-Wire (clock synchronous) or 4-Wire (SPI) Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Data is sampled at an odd edge and changes at an even edge.
CPHA=1 Data changes at an odd edge and is sampled at an even edge.

MSB/LSB first
8- to 32-Bit data frames

Hardware endian swap in 16-Bit and 32-Bit mode
SSL level keep (burst transfer) supported

Configurable bitrate
Supports Full Duplex or Transmit Only Mode
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SPI shift register is copied to the data register before
previous data was read)
TX Underrun Error (No data to load into shift register for transmitting)
Parity Error (When parity is enabled and a parity error is detected)

Configuration

Build Time Configurations for r_spi_b

The following build time configurations are defined in fsp_cfg/r_spi_b_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Enable Support for
using DTC

Enabled
Disabled

Enabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

Enable Transmitting
from RXI Interrupt

Enabled
Disabled

Disabled If enabled, all
operations will be
handled from the RX
(receive) interrupt. This
setting only provides a
performance boost

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,233 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

when DTC is not used.
In addition, Transmit
Only mode is not
supported when this
configuration is
enabled.

Configurations for Connectivity > SPI (r_spi_b)

This module can be added to the Stacks tab via New Stack > Connectivity > SPI (r_spi_b). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SPI channel.

Receive Interrupt
Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transmit Buffer Empty
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transfer Complete
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Error Interrupt Priority MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling
on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

Data sampling on odd
edge, data variation on
even edge

Select the clock edge
to sample data.

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Callback Name must be a valid spi_callback A user callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,234 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

C symbol function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

SPI Mode SPI Operation
Clock
Synchronous
Operation

Clock Synchronous
Operation

Select the clock sync
mode.

Communication Mode
Select

Full Duplex
Transmit Only

Full Duplex Select Full Duplex or
Transmit Only Mode.

Slave Select Polarity Active Low
Active High

Active Low Select the slave select
active level.

Select SSL(Slave
Select)

SSL0
SSL1
SSL2
SSL3

SSL0 Select which slave to
use.

MOSI Idle State MOSI Idle Value
Fixing Disable
MOSI Idle Value
Fixing Low
MOSI Idle Value
Fixing High

MOSI Idle Value Fixing
Disable

Select the MOSI idle
level if MOSI idle is
enabled.

Parity Mode Disabled
Odd
Even

Disabled Select the parity mode
if parity is enabled.

Byte Swapping Disable
Enable

Disable Select the byte swap
mode for 16/32-Bit
Data Frames.

Clock Source MCU Specific Options Select the clock source
for communication.

Bitrate Value must be an
integer greater than 0

16000000 Enter the desired
bitrate, change the
bitrate to a value
supported by MCU. If
the requested bitrate
cannot be achieved,
the settings with the
largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is
printed in a comment
in the generated
spi_extended_cfg_t
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,235 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

Clock Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles
before each data
frame.

SSL Negation Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles after
each data frame.

Next Access Delay 1 Clock
2 Clocks
3 Clocks
4 Clocks
5 Clocks
6 Clocks
7 Clocks
8 Clocks

1 Clock Configure the number
of SPI clock cycles
between each data
frame.

Clock Configuration

The SPI peripheral uses the SCISPICLK for communication and PCLKB for internal operations. Both
can be configured via the Clocks tab of the RA Configuration editor or by using the CGC Interface at
run-time.

Pin Configuration

This module uses MOSI, MISO, RSPCK, and SSL pins to communicate with on board devices.

Note
At high bitrates it may be necessary to configure the pins with IOPORT_CFG_DRIVE_HIGH to maintain signal
integrity.

Usage Notes
Performance

At high bitrates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in TX Underrun
and RX Overflow errors.

In order to improve performance at high bitrates, it is recommended that the instance be configured
to service transfers using the DTC.

Another way to improve performance is to transfer the data in 16/32 bit wide data frames when
possible. A typical use-case where this is possible is when reading/writing to a block device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,236 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

Transmit From RXI Interrupt

After every data frame the SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. It is possible to configure the driver to handle transmit buffer empty interrupts in
the receive buffer full ISR. This only improves performance when the DTC is not being used.

Note
Configuring the module to use RX DTC instance without also providing a TX DTC instance results in an invalid
configuration when RXI transmit is enabled.
Transmit Only mode is not supported when Transmit from RXI is enabled.

Clock Auto-Stopping

In master mode, if the Receive Buffer Full Interrupts are not handled fast enough, instead of
generating a RX Overflow error, the last clock cycle will be stretched until the receive buffer is read.

Parity Mode

When parity mode is configured, the LSB of each data frame is used as a parity bit. When odd parity
is selected, the LSB is set such that there are an odd number of ones in the data frame. When even
parity is selected, the LSB is set such that there are an even number of ones in the data frame.

Limitations

Developers should be aware of the following limitations when using the SPI:

In master mode, the driver will only configure 4-Wire mode if the device supports SSL Level
Keeping (SSLKP bit in SPCMD0) and will return FSP_ERR_UNSUPPORTED if configured for
4-Wire mode on devices without SSL Level Keeping. Without SSL Level Keeping, the SSL pin
is toggled after every data frame. In most cases this is not desirable behavior so it is
recommended that the SSL pin be driven in software if SSL Level Keeping is not present on
the device.
The module does not support communicating with multiple slaves using different SSL pins.
In order to achieve this, the module must either be closed and re-opened to change the SSL
pin or drive SSL in software. It is recommended that SSL be driven in software when
controlling multiple slave devices.
The SPI peripheral has a minimum 3 SPI CLK delay between each data frame.
The behavior for Byte Swap operation is not guaranteed for data frames other than 8-bit,
16-bit and 32bit.

Examples
Basic Example

This is a basic example of minimal use of the SPI in an application.

static volatile bool g_transfer_complete = false;

void spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,237 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_B_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start a write/read transfer */

 err = R_SPI_B_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

}

static void r_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

Driving Software Slave Select Line

This is an example of communicating with multiple slave devices by asserting SSL in software.

void spi_software_ssl_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,238 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_B_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_B_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_B_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,239 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Configuring the SPI Clock Divider Registers

This example demonstrates how to set the SPI clock divisors at runtime.

void spi_bitrate_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_spi_cfg.p_extend = &g_spi_extended_cfg;

 /* Configure SPI Clock divider to achieve largest bitrate less than or equal to the

desired bitrate. */

 err = R_SPI_B_CalculateBitrate(BITRATE, SPI_B_CLOCK_SOURCE_SCISPICLK,

&(g_spi_extended_cfg.spck_div));

 assert(FSP_SUCCESS == err);

 /* Initialize the SPI module. */

 err = R_SPI_B_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rspck_div_setting_t

struct spi_b_extended_cfg_t

struct spi_b_instance_ctrl_t

Enumerations

enum spi_b_ssl_mode_t

enum spi_b_communication_t

enum spi_b_ssl_polarity_t

enum spi_b_ssl_select_t

enum spi_b_mosi_idle_value_fixing_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,240 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

enum spi_b_parity_t

enum spi_b_byte_swap_t

enum spi_b_delay_count_t

enum spi_b_clock_source_t

Data Structure Documentation

◆ rspck_div_setting_t

struct rspck_div_setting_t

SPI Clock Divider settings.

Data Fields

uint8_t spbr SPBR register setting.

uint8_t brdv: 2 BRDV setting in SPCMD0.

◆ spi_b_extended_cfg_t

struct spi_b_extended_cfg_t

Extended SPI interface configuration

Data Fields

spi_b_ssl_mode_t spi_clksyn Select SPI or Clock Synchronous
mode operation.

spi_b_communication_t spi_comm Select full-duplex or transmit-
only communication.

spi_b_ssl_polarity_t ssl_polarity Select SSLn signal polarity.

spi_b_ssl_select_t ssl_select Select which slave to use:
0-SSL0, 1-SSL1, 2-SSL2, 3-SSL3.

spi_b_mosi_idle_value_fixing_t mosi_idle Select MOSI idle fixed value and
selection.

spi_b_parity_t parity Select parity and enable/disable
parity.

spi_b_byte_swap_t byte_swap Select byte swap mode.

spi_b_clock_source_t clock_source Communication clock source
(TCLK).

rspck_div_setting_t spck_div Register values for configuring
the SPI Clock Divider.

spi_b_delay_count_t spck_delay SPI Clock Delay Register
Setting.

spi_b_delay_count_t ssl_negation_delay SPI Slave Select Negation Delay
Register Setting.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,241 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

spi_b_delay_count_t next_access_delay SPI Next-Access Delay Register
Setting.

◆ spi_b_instance_ctrl_t

struct spi_b_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when spi_api_t::open is called.

Data Fields

uint32_t open

 Indicates whether the open() API has been successfully called.

spi_cfg_t const * p_cfg

 Pointer to instance configuration.

R_SPI_B0_Type * p_regs

 Base register for this channel.

void const * p_tx_data

 Buffer to transmit.

void * p_rx_data

 Buffer to receive.

uint32_t tx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

uint32_t rx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

uint32_t count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,242 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

spi_bit_width_t bit_width

 Bits per Data frame (8-bit, 16-bit, 32-bit)

Enumeration Type Documentation

◆ spi_b_ssl_mode_t

enum spi_b_ssl_mode_t

3-Wire or 4-Wire mode.

Enumerator

SPI_B_SSL_MODE_SPI SPI operation (4-wire method)

SPI_B_SSL_MODE_CLK_SYN Clock Synchronous operation (3-wire method)

◆ spi_b_communication_t

enum spi_b_communication_t

Transmit Only (Half Duplex), or Full Duplex.

Enumerator

SPI_B_COMMUNICATION_FULL_DUPLEX Full-Duplex synchronous serial
communication.

SPI_B_COMMUNICATION_TRANSMIT_ONLY Transit only serial communication.

◆ spi_b_ssl_polarity_t

enum spi_b_ssl_polarity_t

Slave Select Polarity.

Enumerator

SPI_B_SSLP_LOW SSLP signal polarity active low.

SPI_B_SSLP_HIGH SSLP signal polarity active high.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,243 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ spi_b_ssl_select_t

enum spi_b_ssl_select_t

The Slave Select Line

Enumerator

SPI_B_SSL_SELECT_SSL0 Select SSL0.

SPI_B_SSL_SELECT_SSL1 Select SSL1.

SPI_B_SSL_SELECT_SSL2 Select SSL2.

SPI_B_SSL_SELECT_SSL3 Select SSL3.

◆ spi_b_mosi_idle_value_fixing_t

enum spi_b_mosi_idle_value_fixing_t

MOSI Idle Behavior.

Enumerator

SPI_B_MOSI_IDLE_VALUE_FIXING_DISABLE MOSI output value=value set in MOIFV bit.

SPI_B_MOSI_IDLE_VALUE_FIXING_LOW MOSIn level low during MOSI idling.

SPI_B_MOSI_IDLE_VALUE_FIXING_HIGH MOSIn level high during MOSI idling.

◆ spi_b_parity_t

enum spi_b_parity_t

Parity Mode

Enumerator

SPI_B_PARITY_MODE_DISABLE Disable parity.

SPI_B_PARITY_MODE_ODD Select even parity.

SPI_B_PARITY_MODE_EVEN Select odd parity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,244 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ spi_b_byte_swap_t

enum spi_b_byte_swap_t

Byte Swapping Enable/Disable.

Enumerator

SPI_B_BYTE_SWAP_DISABLE Disable Byte swapping for 16/32-Bit transfers.

SPI_B_BYTE_SWAP_ENABLE Enable Byte swapping for 16/32-Bit transfers.

◆ spi_b_delay_count_t

enum spi_b_delay_count_t

Delay count for SPI delay settings.

Enumerator

SPI_B_DELAY_COUNT_1 Set RSPCK delay count to 1 RSPCK.

SPI_B_DELAY_COUNT_2 Set RSPCK delay count to 2 RSPCK.

SPI_B_DELAY_COUNT_3 Set RSPCK delay count to 3 RSPCK.

SPI_B_DELAY_COUNT_4 Set RSPCK delay count to 4 RSPCK.

SPI_B_DELAY_COUNT_5 Set RSPCK delay count to 5 RSPCK.

SPI_B_DELAY_COUNT_6 Set RSPCK delay count to 6 RSPCK.

SPI_B_DELAY_COUNT_7 Set RSPCK delay count to 7 RSPCK.

SPI_B_DELAY_COUNT_8 Set RSPCK delay count to 8 RSPCK.

◆ spi_b_clock_source_t

enum spi_b_clock_source_t

SPI communication clock source.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,245 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ R_SPI_B_Open()

fsp_err_t R_SPI_B_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

This functions initializes a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Configures the peripheral registers according to the configuration.
Initialize the control structure for use in other SPI Interface functions.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ALREADY_OPEN Instance was already initialized.

FSP_ERR_ASSERTION An invalid argument was given in the
configuration structure.

FSP_ERR_UNSUPPORTED A requested setting is not possible on this
device with the current build configuration.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls: transfer_api_t::open

Note
This function is reentrant.

◆ R_SPI_B_Read()

fsp_err_t R_SPI_B_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

This function receives data from a SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI read operation.

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or destination
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,246 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ R_SPI_B_Write()

fsp_err_t R_SPI_B_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

This function transmits data to a SPI device using the TX Only Communications Operation Mode.
Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI write operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or source
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

◆ R_SPI_B_WriteRead()

fsp_err_t R_SPI_B_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

This function simultaneously transmits and receive data. Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI writeRead operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control, source or
destination parameters or transfer length is
zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,247 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ R_SPI_B_CallbackSet()

fsp_err_t R_SPI_B_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *)
p_callback, void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SPI_B_Close()

fsp_err_t R_SPI_B_Close (spi_ctrl_t *const p_api_ctrl)

This function manages the closing of a channel by the following task. Implements spi_api_t::close.

Disables SPI operations by disabling the SPI bus.

Disables the SPI peripheral.
Disables all the associated interrupts.
Update control structure so it will not work with SPI Interface functions.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION A required pointer argument is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,248 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > SPI (r_spi_b)

◆ R_SPI_B_CalculateBitrate()

fsp_err_t R_SPI_B_CalculateBitrate (uint32_t bitrate, spi_b_clock_source_t clock_source,
rspck_div_setting_t * spck_div)

Calculates the SPBR register value and the BRDV bits for a desired bitrate. If the desired bitrate is
faster than the maximum bitrate, than the bitrate is set to the maximum bitrate. If the desired
bitrate is slower than the minimum bitrate, than an error is returned.

Parameters
[in] bitrate Desired bitrate

[in] clock_source SPI communication clock
source to be used

[out] spck_div Memory location to store
bitrate register settings.

Return values
FSP_SUCCESS Valid spbr and brdv values were calculated

FSP_ERR_UNSUPPORTED Bitrate is not achievable

5.2.6.25 UART (r_sau_uart)
Modules » Connectivity

Functions

fsp_err_t R_SAU_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)

fsp_err_t R_SAU_UART_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_SAU_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SAU_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)

fsp_err_t R_SAU_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

fsp_err_t R_SAU_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t R_SAU_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,249 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

fsp_err_t R_SAU_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_SAU_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t
*remaining_bytes)

fsp_err_t R_SAU_UART_BaudCalculate (sau_uart_instance_ctrl_t *const p_ctrl,
uint32_t baudrate, sau_uart_baudrate_setting_t *const
p_baud_setting)

Detailed Description

UART driver for the SAU peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The SAU UART module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)
Baud-rate change at run-time
Integration with the DTC transfer module
Abort in-progress read/write operations

Configuration

Build Time Configurations for r_sau_uart

The following build time configurations are defined in fsp_cfg/r_sau_uart_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Critical Section
Guarding

Enabled
Disabled

Disabled Enable critical section
guarding around
peripheral
configuration updates.
This should be enabled
if the R_SAU_I2C
module is being used
simultaneously with
this module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,250 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

DTC Support Enable
Disable

Disable Enable DTC support for
the SAU_UART module.

Enable Single Channel Disable
Channel 0
Channel 1
Channel 2

Disable Enable single channel
to reduce code size if
only channel 0, 1, or 2
is needed.

Enable Fixed Baudrate Enable
Disable

Enable Disable baudrate
calculation and setter
functions to reduce
code size.

Configurations for Connectivity > UART (r_sau_uart)

This module can be added to the Stacks tab via New Stack > Connectivity > UART (r_sau_uart).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_uart0 Module name.

Channel Value must be a non-
negative integer

0 Select the UART
channel.

Data Bits 7 bits
8 bits
9 bits

8 bits Select the number of
bits per word.

Parity None
Zero
Odd
Even

None Select the parity mode.

Stop Bits 1 bit
2 bits

1 bit Select the number of
stop bits. In receive, 2
bit is not available.

Bit Order LSB First
MSB First

LSB First Select of data transfer
sequence.

Baud

Baud Rate Value must be an
integer greater than 0

115200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, adjust the
operation clock
frequency until the
baud rate is
achievable. The
calculated baud rate is
printed in a comment
in the generated sau_u
art_baudrate_setting_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,251 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

structure.

Extra

Operation Clock CKm0
CKm1

CKm0 Select the operation
clock. Use the Clocks
tab to set the operation
clock divider.

Tx Signal Level Standard
Inverted

Standard Select the level of
transmitted signal.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Receive End Interrupt
Priority

MCU Specific Options Select the receive end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Clock Configuration

The SAU clock uses the system clock (ICLK) as its clock source.

A prescaler is applied to the ICLK in order to produce the operation clock frequency. The operation
clock is used to generate the desired transfer period of the SAU module.

SAU operation clocks are shared among all channels within a SAU unit. Check the Hardware User's
Manual for your MCU for available units and channels. SAU operation clock dividers are configurable
in the Clocks tab.

The operation clock dividers are named SAU CKmn where m is the SAU unit, and n is the operation
clock. For example, SAU CK01 applies to all SAU0 instances using CK1 as the operation clock (m=0,
n=1).

Pin Configuration

This module uses TXD and RXD to communicate to external devices.

Usage Notes
9-bit data transfers

p_src: the address for the send data buffer. p_src in R_SAU_UART_Write must be aligned on
a 16-bit boundary. (the data order in buffer: the lower 8-bits of the first number, the highest

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,252 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

1-bit of the first number, the lower 8-bits of the second number, the highest 1-bit of the
second number, etc)
byte: the size of send data buffer.

Selecting Operation Clock Frequency

The relationship between operation clock frequency and bitrate is: bitrate = f_mck / [2 *
(SDRmn.STCLK + 1)] where:

SDRmn.STCLK is an integer in the range [2, 127] for SAU UART
f_mck is the operation clock (SAU CKmn) frequency

By plugging in the minimum and maximum SDRmn.STCLK values, the range of bitrates for a given
operation clock frequency can be obtained.

Note that due to STCLK being set as discrete integers, the actual bitrate may not be exact. The
actual bitrate and percent errors can be calculated by the formulas:

actual_bitrate = f_mck / [2 * (SDRmn.STCLK + 1)]

percent_error = 100 * abs [(actual_bitrate - expected_bitrate) / expected_bitrate]

Using the fastest possible operation clock for the desired bitrate will result in the lowest deviation
from the requested baud rate. Set the CKmn operation clock divider in the Clocks tab to select the
desired operation clock frequency.

Example of Selecting Operation Clock Frequency

Suppose an example application with a 32MHz ICLK requires:

1 SAU0 UART0 instance running at 1000 bps
1 SAU0 UART1 instance running at 115200 bps

The following operation clocks could be used:

Operation clock frequency of 250 kHz with 32 Mhz ICLK (32MHz/128=250 kHz)

bitrate_min = 250e3 / [2 * (127 + 1)] = ~976 bps

bitrate_max = 250e3 / [2 * (2 + 1)] = ~41,666 bps

Operation clock frequency of 16 MHz with 32 MHz ICLK (32MHz/2=16 MHz)

bitrate_min = 16e6 / [2 * (127 + 1)] = ~62,500 bps

bitrate_max = 16e6 / [2 * (2 + 1)] = ~2,666,666 bps

An operation clock of 250 kHz works for UART0 because 1000 is in the range [976, 41.6k]. An
operation clock of 16 MHz works for UART1 because 115200 is in the range [62.5k, 2.6M].

Applying the settings:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,253 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

Select CK0 for UART0 and CK1 for UART1 using the SAU UART "Extra > Operation Clock"
property
Set CK00 Div to /128 for SAU0, CK0 (UART0) in the Clocks tab
Set CK01 Div to /2 for for SAU0, CK1 (UART1) in the Clocks tab

Runtime Baud Rate Change

In order to change the baud rate at runtime, "Common > Enable Fixed Baudrate" must be set to
"Disabled" in the module properties.

If changing the baud rate is required at runtime, use a unique operation clock for each SAU instance.
This is required because R_SAU_UART_BaudSet may change the operation clock divider. Since the
operation clocks are shared between SAU channels on each SAU unit, changing a shared operation
clock of one instance will cause an incorrect bitrate to be generated on the other instance(s).

If the system clock frequency is changed at runtime, this setting should be disabled, as the baud rate
settings will need to be updated after the system clock change.

Limitations

Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters
received after abort and before the next call to read will arrive via the callback function with
event UART_EVENT_RX_CHAR.
If 9-bit data length is specified at R_SAU_UART_Open call, p_src in R_SAU_UART_Write must
be aligned on a 16-bit boundary.
When multiple channels on the same SAU unit need to be used, and one is configured as
UART, then critical section property needs to be enabled.

DTC Limitations

DTC support is available for reception, but labeled as [Not recommended]. This is because
the UART bytes are received asynchronously. Bytes can be received between calls to
R_SAU_UART_Read(). The logic required to combine bytes received through
R_SAU_UART_Read() (UART_EVENT_RX_COMPLETE) and bytes received between calls
(UART_EVENT_RX_CHAR) is complex. Reception length may also be unknown, and the driver
will not issue an interrupt unless the entire DTC buffer is filled.
Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.
When using 9-bit reception with DTC, clear the upper 7 bits of data before processing the
read data. The upper 7 bits contain status flags that are part of the register used to read
data in 9-bit mode.

Examples
SAU UART Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,254 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

uint32_t g_out_of_band_index = 0;

void r_sau_uart_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_SAU_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_SAU_UART_Read(&g_uart0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_SAU_UART_Write(&g_uart0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 }

 while (!g_receive_complete)

 {

 }

}

void example_callback (uart_callback_args_t * p_args)

{

 /* Handle the UART event */

 switch (p_args->event)

 {

 /* Received a character */

 case UART_EVENT_RX_CHAR:

 {

 /* Only put the next character in the receive buffer if there is space for it */

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,255 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

 if (UART_DATA_BITS_8 >= g_uart0_cfg.data_bits)

 {

 g_out_of_band_received[g_out_of_band_index++] = (uint8_t)

p_args->data;

 }

 else

 {

 uint16_t * p_dest = (uint16_t *)

&g_out_of_band_received[g_out_of_band_index];

 *p_dest = (uint16_t) p_args->data;

 g_out_of_band_index += 2;

 }

 }

 break;

 }

 /* Receive complete */

 case UART_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

 }

 /* Transmit complete */

 case UART_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

}

SAU UART Baud Set Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,256 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

#define SAU_UART_BAUDRATE_19200 (19200)

#define SAU_UART_BAUDRATE_ERROR_PERCENT_5 (5000)

void r_sau_uart_baud_example (void)

{

 sau_uart_baudrate_setting_t baud_setting;

 uint32_t baud_rate = SAU_UART_BAUDRATE_19200;

 fsp_err_t err = R_SAU_UART_BaudCalculate(&g_uart0_ctrl, baud_rate, &baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_SAU_UART_BaudSet(&g_uart0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct sau_uart_extended_cfg_t

struct sau_uart_instance_ctrl_t

Enumerations

enum sau_uart_data_sequence_t

enum sau_operation_clock_t

enum sau_uart_signal_level_t

Data Structure Documentation

◆ sau_uart_extended_cfg_t

struct sau_uart_extended_cfg_t

UART Configuration

Data Fields

sau_uart_data_sequence_t sequence Transfer sequence (LSB or MSB)

sau_uart_signal_level_t signal_level Transfer data signal level
(standard or inverted)

sau_uart_baudrate_setting_t * p_baudrate Baud rate setting (SPS and SDR
value)

◆ sau_uart_instance_ctrl_t

struct sau_uart_instance_ctrl_t

UART instance control block. DO NOT INITIALIZE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,257 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

Data Fields

uint8_t extra_data_byte

 0 for 7 or 8 bit data length(1-byte), 1 for 9 bit data length(2-byte)

uint32_t open

 Used to determine if the channel is configured.

uart_cfg_t const * p_cfg

 Pointer to the configuration block.

R_SAU0_Type * p_reg

 Base register for the transmit channel.

uint8_t sau_unit

 SAU unit information.

uint8_t sau_tx_channel

 SAU channel information.

uint8_t * p_src

 Source buffer pointer.

uint32_t tx_count

 Size of destination buffer pointer from transmit ISR.

uint8_t * p_dest

 Destination buffer pointer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,258 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

uint32_t rx_count

 Size of destination buffer pointer used for receiving data.

Enumeration Type Documentation

◆ sau_uart_data_sequence_t

enum sau_uart_data_sequence_t

UART Data transfer sequence definition

Enumerator

SAU_UART_DATA_SEQUENCE_MSB Data sequence MSB first.

SAU_UART_DATA_SEQUENCE_LSB Data sequence LSB first.

◆ sau_operation_clock_t

enum sau_operation_clock_t

UART operation clock selection definition

Enumerator

SAU_UART_OPERATION_CLOCK_CK0 Operating clock use CK0.

SAU_UART_OPERATION_CLOCK_CK1 Operating clock use CK1.

◆ sau_uart_signal_level_t

enum sau_uart_signal_level_t

UART data signal level definition

Enumerator

SAU_UART_SIGNAL_LEVEL_STANDARD Uart data signal level standard.

SAU_UART_SIGNAL_LEVEL_INVERTED Uart data signal level inverted.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,259 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_Open()

fsp_err_t R_SAU_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UART driver based on the input configurations. If reception is enabled at compile
time, reception is enabled at the end of this function. Implements uart_api_t::open

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to UART control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_INVALID_ARGUMENT Flow control is enabled but flow control pin
is not defined or selected channel does not
support "Hardware CTS and Hardware RTS"
flow control.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_SAU_UART_Close()

fsp_err_t R_SAU_UART_Close (uart_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Closes lower level
transfer drivers if used. Removes power. Implements uart_api_t::close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,260 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_Read()

fsp_err_t R_SAU_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Implements
uart_api_t::read

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Destination address or data size is not valid
for 9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

FSP_ERR_UNSUPPORTED current operation mode is transmission
only.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SAU_UART_Open call, p_dest must be aligned 16-bit boundary.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,261 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_Write()

fsp_err_t R_SAU_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
uart_api_t::write

Return values
FSP_SUCCESS Data transmission finished successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Source address or data size is not valid for
9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A UART transmission is in progress

FSP_ERR_UNSUPPORTED SAU_UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SAU_UART_Open call, p_src must be aligned on a 16-bit boundary.

◆ R_SAU_UART_BaudSet()

fsp_err_t R_SAU_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const p_baud_setting)

Updates the baud rate using the clock selected in Open. p_baud_setting is a pointer to a
sau_uart_baudrate_setting_t structure. Implements uart_api_t::baudSet

Warning
This terminates any in-progress transmission.
This function may change the operation clock frequency. Select a unique operation clock for
each SAU instance if using this function.

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer p_ctrl is NULL

FSP_ERR_INVALID_ARGUMENT p_api_ctrl is empty.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_UNSUPPORTED Fixed baud rate is enabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,262 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_CallbackSet()

fsp_err_t R_SAU_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl, void(*)(uart_callback_args_t *)
p_callback, void const *const p_context, uart_callback_args_t *const p_callback_memory)

Updates the user callback for callback structure. Implements uart_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION Pointer p_ctrl is NULL or p_callback_memory
is not NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_SAU_UART_InfoGet()

fsp_err_t R_SAU_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time. Implements uart_api_t::infoGet

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_INVALID_ARGUMENT Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,263 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_Abort()

fsp_err_t R_SAU_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR. Implements uart_api_t::communicationAbort

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

◆ R_SAU_UART_ReadStop()

fsp_err_t R_SAU_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t * remaining_bytes)

Provides API to abort ongoing read. Reception is still enabled after abort(). Any characters received
after abort() and before the transfer is reset in the next call to read(), will arrive via the callback
function with event UART_EVENT_RX_CHAR. Implements uart_api_t::readStop

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,264 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sau_uart)

◆ R_SAU_UART_BaudCalculate()

fsp_err_t R_SAU_UART_BaudCalculate (sau_uart_instance_ctrl_t *const p_ctrl, uint32_t baudrate,
sau_uart_baudrate_setting_t *const p_baud_setting)

Calculates baud rate register settings (SDR.STCLK) for the specified SAU unit.

Parameters
[in] p_ctrl Pointer to the SAU UART

control block.

[in] baudrate Baud rate [bps]. For
example, 19200, 57600,
115200, etc.

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate is successfully calculated

FSP_ERR_UNSUPPORTED Fixed baudrate is being used

FSP_ERR_ASSERTION Null pointer

FSP_ERR_INVALID_ARGUMENT Baud rate is not achievable with selected
operation clock frequency

5.2.6.26 UART (r_sci_b_uart)
Modules » Connectivity

Functions

fsp_err_t R_SCI_B_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)

fsp_err_t R_SCI_B_UART_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_B_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SCI_B_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const
*const p_src, uint32_t const bytes)

fsp_err_t R_SCI_B_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_B_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,265 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

*const p_baud_setting)

fsp_err_t R_SCI_B_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t
*const p_info)

fsp_err_t R_SCI_B_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_SCI_B_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t
*remaining_bytes)

fsp_err_t R_SCI_B_UART_BaudCalculate (uint32_t baudrate, bool
bitrate_modulation, uint32_t baud_rate_error_x_1000,
sci_b_baud_setting_t *const p_baud_setting)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The SCI UART module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)
Baud-rate change at run-time
Bit rate modulation and noise cancellation
CTS/RTS hardware flow control (with an associated pin)
RS-485 Half Duplex driver support with external RS-485 transceiver
Integration with the DTC transfer module
Abort in-progress read/write operations
FIFO support on supported channels

Configuration
Build Time Configurations for r_sci_b_uart

The following build time configurations are defined in fsp_cfg/r_sci_b_uart_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

FIFO Support Enable
Disable

Disable Enable FIFO support for
the SCI_UART module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,266 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

DTC Support Enable
Disable

Disable Enable DTC support for
the SCI_UART module.

Flow Control Support Enable
Disable

Disable Enable RS232 and
RS-485 flow control
support using a user
provided pin.

Configurations for Connectivity > UART (r_sci_b_uart)

This module can be added to the Stacks tab via New Stack > Connectivity > UART (r_sci_b_uart).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_uart0 Module name.

Channel Value must be a non-
negative integer

0 Select the SCI channel.

Data Bits 8bits
7bits
9bits

8bits Select the number of
bits per word.

Parity None
Odd
Even

None Select the parity mode.

Stop Bits 1bit
2bits

1bit Select the number of
stop bits.

Baud

Baud Rate Value must be an
integer greater than 0

115200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, the settings
with the smallest
percent error are used.
The theoretical
calculated baud rate
and percent error are
printed in a comment
in the generated
sci_b_baud_setting_t
structure.

Baud Rate Modulation Disabled
Enabled

Disabled Enabling baud rate
modulation reduces the
percent error of the
actual baud rate with
respect to the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,267 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

requested baud rate. It
does this by
modulating the number
of cycles per clock, so
some bits are slightly
longer than others.

Max Error (%) Must be a valid non-
negative integer with a
maximum configurable
value of 100

5 Maximum percent error
allowed during baud
calculation. This is used
by the algorithm to
determine whether or
not to consider using
less accurate
alternative register
settings.

NOTE: The baud
calculation does not
show an error in the
tool if this percent error
was not achieved. The
calculated percent
error is recorded in a
comment in the
generated
sci_b_baud_setting_t
structure.

Flow Control

CTS/RTS Selection MCU Specific Options Select either CTS or
RTS function on the
CTSn_RTSn pin of SCI
channel n or select CTS
function on CTSn pin
and RTS function on
CTSn_RTSn pin of SCI
channel n (Available on
selected MCUs and
channels).

Software RTS Port Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin port for the MCU.

Software RTS Pin Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin for the MCU.

Extra

Extra > RS-485

DE Pin Disable
Enable

Disable Enable or disable the
DE pin for use in
RS-485 half-duplex
mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,268 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

DE Pin Polarity Active Low
Active High

Active High Select the polarity of
the DE pin.

DE Pin Assertion Time Must be a valid integer
greater than 0 and less
than or equal to 31.

1 Configure the time
between assertion of
the DE pin and the
start of a write
transfer. The time is
specified in multiples of
the SCI base clock
period.

DE Pin Negation Time Must be a valid integer
greater than 0 and less
than or equal to 31.

1 Configure the time
between the end of a
write transfer and the
negation of the DE pin.
The time is specified in
multiples of the SCI
base clock period.

Clock Source Internal Clock
Internal Clock
With Output on
SCK
External Clock
8x baud rate
External Clock
16x baud rate

Internal Clock Selection of the clock
source to be used in
the baud-rate clock
generator. When
internal clock is used
the baud rate can be
output on the SCK pin.

Start bit detection Falling Edge
Low Level

Falling Edge Start bit detected as
falling edge or low
level.

Noise Filter Enable
Disable

Disable Enable the digital noise
filter on RXDn pin. The
digital noise filter block
in SCI consists of two-
stage flipflop circuits.

Receive FIFO Trigger
Level

Refer to the RA
Configuration tool for
available options.

Max Unused if the channel
has no FIFO or if DTC is
used for reception. Set
to One to get a
callback immediately
when each byte is
received. Set to Max to
get a callback when
FIFO is full or after 15
bit times with no data
(fewer interrupts).

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,269 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

called from the
interrupt service
routine (ISR).

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Data Empty
Interrupt Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA6T2 SCISPICLK

RA8D1 SCICLK

RA8M1 SCICLK

RA8T1 SCICLK

The clock source for the baud-rate clock generator can be selected from the internal clock, the
external clock times 8 or the external clock times 16. The external clock is supplied to the SCK pin.

Pin Configuration

This module uses TXD and RXD to communicate to external devices. CTS or RTS can be controlled by
the hardware. CTS or RTS or both (CTS and RTS) can be controlled by the hardware When the
internal clock is the source for the baud-rate generator the SCK pin can be used to output a clock
with the same frequency as the bit rate.

Usage Notes
When configured for Hardware CTS and Software RTS the configured flow control pin will be
used for RTS. The pin will be set high inside of the receive ISR while data is being read. It
will be set low when all data is read.
When configured for Hardware CTS and Hardware RTS the CSTn_RTSn pin will be used for
RTS function and the CTSn pin will be used for CTS function on channel n.
The driver will follow correct hardware flow control function when CTSn_RTSn pin is
connected to CTSn pin when "Hardware CTS and Hardware RTS" flow control is selected.
The data will still be transferred when CTSn_RTSn and CTSn are disconnected as the CTSn
pin is internally pulled low on the hardware when CTSn pin is configured as a peripheral pin
for SCI module. Do not configure CTSn pin if the hardware flow control is not desired.

Limitations

Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,270 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

received after abort and before the next call to read will arrive via the callback function with
event UART_EVENT_RX_CHAR.

DTC Limitations

DTC support is available for reception, but labeled as [Not recommended]. This is because
the UART bytes are received asynchronously. Bytes can be received between calls to
R_SCI_B_UART_Read(). The logic required to combine bytes received through
R_SCI_B_UART_Read() (UART_EVENT_RX_COMPLETE) and bytes received between calls
(UART_EVENT_RX_CHAR) is complex. Reception length may also be unknown, and the driver
will not issue an interrupt unless the entire DTC buffer is filled.
Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.
When using 9-bit reception with DTC, clear the upper 7 bits of data before processing the
read data. The upper 7 bits contain status flags that are part of the register used to read
data in 9-bit mode.

Examples
SCI UART Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

uint32_t g_out_of_band_index = 0;

void r_sci_b_uart_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_SCI_B_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_SCI_B_UART_Read(&g_uart0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_SCI_B_UART_Write(&g_uart0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,271 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

 {

 }

 while (!g_receive_complete)

 {

 }

}

void example_callback (uart_callback_args_t * p_args)

{

 /* Handle the UART event */

 switch (p_args->event)

 {

 /* Received a character */

 case UART_EVENT_RX_CHAR:

 {

 /* Only put the next character in the receive buffer if there is space for it */

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

 if (UART_DATA_BITS_8 >= g_uart0_cfg.data_bits)

 {

 g_out_of_band_received[g_out_of_band_index++] = (uint8_t)

p_args->data;

 }

 else

 {

 uint16_t * p_dest = (uint16_t *)

&g_out_of_band_received[g_out_of_band_index];

 *p_dest = (uint16_t) p_args->data;

 g_out_of_band_index += 2;

 }

 }

 break;

 }

 /* Receive complete */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,272 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

 case UART_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

 }

 /* Transmit complete */

 case UART_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

}

SCI UART Baud Set Example

#define SCI_B_UART_BAUDRATE_19200 (19200)

#define SCI_B_UART_BAUDRATE_ERROR_PERCENT_5 (5000)

void r_sci_b_uart_baud_example (void)

{

 sci_b_baud_setting_t baud_setting;

 uint32_t baud_rate = SCI_B_UART_BAUDRATE_19200;

 bool enable_bitrate_modulation = false;

 uint32_t error_rate_x_1000 =

SCI_B_UART_BAUDRATE_ERROR_PERCENT_5;

 fsp_err_t err = R_SCI_B_UART_BaudCalculate(baud_rate, enable_bitrate_modulation,

error_rate_x_1000, &baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_SCI_B_UART_BaudSet(&g_uart0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,273 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

Data Structures

struct sci_b_uart_instance_ctrl_t

struct sci_b_baud_setting_t

struct sci_b_uart_rs485_setting_t

struct sci_b_uart_extended_cfg_t

Enumerations

enum sci_b_clk_src_t

enum sci_b_uart_flow_control_t

enum sci_b_uart_rx_fifo_trigger_t

enum sci_b_uart_start_bit_detect_t

enum sci_b_uart_noise_cancellation_t

enum sci_b_uart_rs485_enable_t

enum sci_b_uart_rs485_de_polarity_t

Data Structure Documentation

◆ sci_b_uart_instance_ctrl_t

struct sci_b_uart_instance_ctrl_t

UART instance control block.

◆ sci_b_baud_setting_t

struct sci_b_baud_setting_t

Register settings to acheive a desired baud rate and modulation duty.

◆ sci_b_uart_rs485_setting_t

struct sci_b_uart_rs485_setting_t

Configuration settings for controlling the DE signal for RS-485.

Data Fields

sci_b_uart_rs485_enable_t enable Enable the DE signal.

sci_b_uart_rs485_de_polarity_t polarity DE signal polarity.

uint8_t assertion_time: 5 Time in baseclock units after
assertion of the DE signal and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,274 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

before the start of the write
transfer.

uint8_t negation_time: 5 Time in baseclock units after
the end of a write transfer and
before the DE signal is negated.

◆ sci_b_uart_extended_cfg_t

struct sci_b_uart_extended_cfg_t

UART on SCI device Configuration

Data Fields

sci_b_clk_src_t clock The source clock for the baud-
rate generator. If internal
optionally output baud rate on
SCK.

sci_b_uart_start_bit_detect_t rx_edge_start Start reception on falling edge.

sci_b_uart_noise_cancellation_t noise_cancel Noise cancellation setting.

sci_b_baud_setting_t * p_baud_setting Register settings for a desired
baud rate.

sci_b_uart_rx_fifo_trigger_t rx_fifo_trigger Receive FIFO trigger level,
unused if channel has no FIFO
or if DTC is used.

bsp_io_port_pin_t flow_control_pin UART Driver Enable pin.

sci_b_uart_flow_control_t flow_control CTS/RTS function of the SSn
pin.

sci_b_uart_rs485_setting_t rs485_setting RS-485 settings.

Enumeration Type Documentation

◆ sci_b_clk_src_t

enum sci_b_clk_src_t

Enumeration for SCI clock source

Enumerator

SCI_B_UART_CLOCK_INT Use internal clock for baud generation.

SCI_B_UART_CLOCK_INT_WITH_BAUDRATE_OUTP
UT

Use internal clock for baud generation and
output on SCK.

SCI_B_UART_CLOCK_EXT8X Use external clock 8x baud rate.

SCI_B_UART_CLOCK_EXT16X Use external clock 16x baud rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,275 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ sci_b_uart_flow_control_t

enum sci_b_uart_flow_control_t

UART flow control mode definition

Enumerator

SCI_B_UART_FLOW_CONTROL_RTS Use CTSn_RTSn pin for RTS.

SCI_B_UART_FLOW_CONTROL_CTS Use CTSn_RTSn pin for CTS.

SCI_B_UART_FLOW_CONTROL_HARDWARE_CTSR
TS

Use CTSn pin for CTS, CTSn_RTSn pin for RTS.

SCI_B_UART_FLOW_CONTROL_CTSRTS Use SCI pin for CTS, external pin for RTS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,276 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ sci_b_uart_rx_fifo_trigger_t

enum sci_b_uart_rx_fifo_trigger_t

Receive FIFO trigger configuration.

Enumerator

SCI_B_UART_RX_FIFO_TRIGGER_1 Callback after each byte is received without
buffering.

SCI_B_UART_RX_FIFO_TRIGGER_2 Callback when FIFO having 2 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_3 Callback when FIFO having 3 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_4 Callback when FIFO having 4 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_5 Callback when FIFO having 5 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_6 Callback when FIFO having 6 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_7 Callback when FIFO having 7 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_8 Callback when FIFO having 8 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_9 Callback when FIFO having 9 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_10 Callback when FIFO having 10 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_11 Callback when FIFO having 11 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_12 Callback when FIFO having 12 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_13 Callback when FIFO having 13 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_14 Callback when FIFO having 14 bytes.

SCI_B_UART_RX_FIFO_TRIGGER_MAX Callback when FIFO is full or after 15 bit times
with no data (fewer interrupts)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,277 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ sci_b_uart_start_bit_detect_t

enum sci_b_uart_start_bit_detect_t

Asynchronous Start Bit Edge Detection configuration.

Enumerator

SCI_B_UART_START_BIT_LOW_LEVEL Detect low level on RXDn pin as start bit.

SCI_B_UART_START_BIT_FALLING_EDGE Detect falling level on RXDn pin as start bit.

◆ sci_b_uart_noise_cancellation_t

enum sci_b_uart_noise_cancellation_t

Noise cancellation configuration.

Enumerator

SCI_B_UART_NOISE_CANCELLATION_DISABLE Disable noise cancellation.

SCI_B_UART_NOISE_CANCELLATION_ENABLE Enable noise cancellation.

◆ sci_b_uart_rs485_enable_t

enum sci_b_uart_rs485_enable_t

RS-485 Enable/Disable.

Enumerator

SCI_B_UART_RS485_DISABLE RS-485 disabled.

SCI_B_UART_RS485_ENABLE RS-485 enabled.

◆ sci_b_uart_rs485_de_polarity_t

enum sci_b_uart_rs485_de_polarity_t

The polarity of the RS-485 DE signal.

Enumerator

SCI_B_UART_RS485_DE_POLARITY_HIGH The DE signal is high when a write transfer is in
progress.

SCI_B_UART_RS485_DE_POLARITY_LOW The DE signal is low when a write transfer is in
progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,278 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

Function Documentation

◆ R_SCI_B_UART_Open()

fsp_err_t R_SCI_B_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UART driver based on the input configurations. If reception is enabled at compile
time, reception is enabled at the end of this function. Implements uart_api_t::open

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to UART control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_INVALID_ARGUMENT Flow control is enabled but flow control pin
is not defined.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_SCI_B_UART_Close()

fsp_err_t R_SCI_B_UART_Close (uart_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Closes lower level
transfer drivers if used. Removes power. Implements uart_api_t::close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,279 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ R_SCI_B_UART_Read()

fsp_err_t R_SCI_B_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Implements
uart_api_t::read

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Destination address or data size is not valid
for 9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

FSP_ERR_UNSUPPORTED SCI_B_UART_CFG_RX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_B_UART_Open call, p_dest must be aligned 16-bit boundary.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,280 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ R_SCI_B_UART_Write()

fsp_err_t R_SCI_B_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
uart_api_t::write

Return values
FSP_SUCCESS Data transmission finished successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Source address or data size is not valid for
9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A UART transmission is in progress

FSP_ERR_UNSUPPORTED SCI_B_UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_B_UART_Open call, p_src must be aligned on a 16-bit boundary.

◆ R_SCI_B_UART_CallbackSet()

fsp_err_t R_SCI_B_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl, void(*)(uart_callback_args_t *)
p_callback, void const *const p_context, uart_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
uart_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,281 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ R_SCI_B_UART_BaudSet()

fsp_err_t R_SCI_B_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const p_baud_setting
)

Updates the baud rate using the clock selected in Open. p_baud_setting is a pointer to a
sci_b_baud_setting_t structure. Implements uart_api_t::baudSet

Warning
This terminates any in-progress transmission.

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL or the
UART is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_SCI_B_UART_InfoGet()

fsp_err_t R_SCI_B_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time. Implements uart_api_t::infoGet

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,282 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ R_SCI_B_UART_Abort()

fsp_err_t R_SCI_B_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR. Implements uart_api_t::communicationAbort

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

◆ R_SCI_B_UART_ReadStop()

fsp_err_t R_SCI_B_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t * remaining_bytes)

Provides API to abort ongoing read. Reception is still enabled after abort(). Any characters received
after abort() and before the transfer is reset in the next call to read(), will arrive via the callback
function with event UART_EVENT_RX_CHAR. Implements uart_api_t::readStop

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,283 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_b_uart)

◆ R_SCI_B_UART_BaudCalculate()

fsp_err_t R_SCI_B_UART_BaudCalculate (uint32_t baudrate, bool bitrate_modulation, uint32_t
baud_rate_error_x_1000, sci_b_baud_setting_t *const p_baud_setting)

Calculates baud rate register settings. Evaluates and determines the best possible settings set to
the baud rate related registers.

Parameters
[in] baudrate Baud rate [bps]. For

example, 19200, 57600,
115200, etc.

[in] bitrate_modulation Enable bitrate modulation

[in] baud_rate_error_x_1000 Max baud rate error. At most
<baud_rate_percent_error>
x 1000 required for module
to function. Absolute max
baud_rate_error is 15000
(15%).

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate is set successfully

FSP_ERR_ASSERTION Null pointer

FSP_ERR_INVALID_ARGUMENT Baud rate is '0', error in calculated baud
rate is larger than requested max error, or
requested max error in baud rate is larger
than 15%.

5.2.6.27 UART (r_sci_uart)
Modules » Connectivity

Functions

fsp_err_t R_SCI_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)

fsp_err_t R_SCI_UART_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SCI_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,284 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

p_src, uint32_t const bytes)

fsp_err_t R_SCI_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

fsp_err_t R_SCI_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

fsp_err_t R_SCI_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_SCI_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t
*remaining_bytes)

fsp_err_t R_SCI_UART_BaudCalculate (uint32_t baudrate, bool
bitrate_modulation, uint32_t baud_rate_error_x_1000, baud_setting_t
*const p_baud_setting)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The SCI UART module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)
Baud-rate change at run-time
Bit rate modulation and noise cancellation
CTS/RTS hardware flow control (with an associated pin)
RS-485 Half Duplex driver support with external RS-485 transceiver
Integration with the DTC transfer module
Abort in-progress read/write operations
FIFO support on supported channels
IrDA is supported on devices that have IrDA interface

Configuration
Build Time Configurations for r_sci_uart

The following build time configurations are defined in fsp_cfg/r_sci_uart_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,285 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

FIFO Support Enable
Disable

Disable Enable FIFO support for
the SCI_UART module.

DTC Support Enable
Disable

Disable Enable DTC support for
the SCI_UART module.

Flow Control Support Enable
Disable

Disable Enable RS232 and
RS-485 flow control
support using a user
provided pin.

RS-485 Support Enable
Disable

Disable Enable support for
controlling the RS-485
DE pin.

IrDA Support Enabled
Disabled

Disabled Enable support for IrDA
pulse
encoding/decoding.

Configurations for Connectivity > UART (r_sci_uart)

This module can be added to the Stacks tab via New Stack > Connectivity > UART (r_sci_uart). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_uart0 Module name.

Channel Value must be a non-
negative integer

0 Select the SCI channel.

Data Bits 8bits
7bits
9bits

8bits Select the number of
bits per word.

Parity None
Odd
Even

None Select the parity mode.

Stop Bits 1bit
2bits

1bit Select the number of
stop bits.

Baud

Baud Rate Value must be an
integer greater than 0

115200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, the settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,286 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

with the smallest
percent error are used.
The theoretical
calculated baud rate
and percent error are
printed in a comment
in the generated
baud_setting_t
structure.

For RA4 and RA6 MCUs,
refer the datasheet to
calculate baud rate
considering the
SEMR.ABCSE bit
restriction.

Baud Rate Modulation Disabled
Enabled

Disabled Enabling baud rate
modulation reduces the
percent error of the
actual baud rate with
respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock, so
some bits are slightly
longer than others.

Max Error (%) Must be a valid non-
negative integer with a
maximum configurable
value of 100

5 Maximum percent error
allowed during baud
calculation. This is used
by the algorithm to
determine whether or
not to consider using
less accurate
alternative register
settings.

NOTE: The baud
calculation does not
show an error in the
tool if this percent error
was not achieved. The
calculated percent
error is recorded in a
comment in the
generated
baud_setting_t
structure.

Flow Control

CTS/RTS Selection MCU Specific Options Select either CTS or
RTS function on the
CTSn_RTSn pin of SCI

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,287 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

channel n or select CTS
function on CTSn pin
and RTS function on
CTSn_RTSn pin of SCI
channel n (Available on
selected MCUs and
channels).

Software RTS Port Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin port for the MCU.

Software RTS Pin Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin for the MCU.

Extra

Extra > IrDA

Enable Disabled
Enabled

Disabled Enable IrDA on this
channel.

RXD Polarity Switching Normal
Inverted

Normal IRRXD Pulse polarity
(Normal: High Pulse=0)
and (Inverted: Low
Pulse=0)..

TXD Polarity Switching Normal
Inverted

Normal IRTXD Pulse polarity
(Normal: High Pulse 0)
and (Inverted: Low
Pulse=0).

Extra > RS-485

DE Pin Disable
Enable

Disable Enable or disable the
DE pin for use in
RS-485 half-duplex
mode.

DE Pin Polarity Active Low
Active High

Active High Select the polarity of
the DE pin.

DE Port Number Refer to the RA
Configuration tool for
available options.

Disabled GPIO output port
number to use for
generating the DE
signal.

DE Pin Number Refer to the RA
Configuration tool for
available options.

Disabled GPIO output pin
number to use for
generating the DE
signal.

Clock Source Internal Clock
Internal Clock
With Output on
SCK
External Clock
8x baud rate
External Clock

Internal Clock Selection of the clock
source to be used in
the baud-rate clock
generator. When
internal clock is used
the baud rate can be
output on the SCK pin.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,288 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

16x baud rate

Start bit detection Falling Edge
Low Level

Falling Edge Start bit detected as
falling edge or low
level.

Noise Filter Enable
Disable

Disable Enable the digital noise
filter on RXDn pin. The
digital noise filter block
in SCI consists of two-
stage flipflop circuits.

Receive FIFO Trigger
Level

Refer to the RA
Configuration tool for
available options.

Max Unused if the channel
has no FIFO or if DTC is
used for reception. Set
to One to get a
callback immediately
when each byte is
received. Set to Max to
get a callback when
FIFO is full or after 15
bit times with no data
(fewer interrupts).

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Data Empty
Interrupt Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2A2 PCLKB

RA2E1 PCLKB

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,289 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

RA2E2 PCLKB

RA2E3 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4E2 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4T1 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

RA6T3 PCLKA

The clock source for the baud-rate clock generator can be selected from the internal clock, the
external clock times 8 or the external clock times 16. The external clock is supplied to the SCK pin.

Pin Configuration

This module uses TXD and RXD to communicate to external devices. CTS or RTS or both (CTS and
RTS) can be controlled by the hardware. Some MCUs support hardware flow control for both CTS and
RTS on some channels. Some MCUs and channels support hardware flow control for either CTS or
RTS but not both. If both are desired a GPIO pin can be used for RTS. When the internal clock is the
source for the baud-rate generator the SCK pin can be used to output a clock with the same
frequency as the bit rate.

Usage Notes
When configured for Hardware CTS and Software RTS the configured flow control pin will be
used for RTS. The pin will be set high inside of the receive ISR while data is being read. It
will be set low when all data is read.
When configured for Hardware CTS and Hardware RTS the CSTn_RTSn pin will be used for
RTS function and the CTSn pin will be used for CTS function on channel n.
The driver will follow correct hardware flow control function when CTSn_RTSn pin is
connected to CTSn pin when "Hardware CTS and Hardware RTS" flow control is selected.
The data will still be transferred when CTSn_RTSn and CTSn are disconnected as the CTSn
pin is internally pulled low on the hardware when CTSn pin is configured as a peripheral pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,290 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

for SCI module. Do not configure CTSn pin if the hardware flow control is not desired.

Limitations

Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters
received after abort and before the next call to read will arrive via the callback function with
event UART_EVENT_RX_CHAR.
The R_SCI_UART_BaudCalculate() and R_SCI_UART_Open() APIs are used to obtain the baud
rate register settings for a specific baudrate. On RA4 and RA6 MCU groups, there is a
restriction on SEMR.ABSCE bit for certain channels (refer to 'SEMR : Serial Extended Mode'
Register section of MCU User Manual). The API does not enforce this restriction and it may
return invalid settings.

DTC Limitations

DTC support is available for reception, but labeled as [Not recommended]. This is because
the UART bytes are received asynchronously. Bytes can be received between calls to
R_SCI_UART_Read(). The logic required to combine bytes received through
R_SCI_UART_Read() (UART_EVENT_RX_COMPLETE) and bytes received between calls
(UART_EVENT_RX_CHAR) is complex. Reception length may also be unknown, and the driver
will not issue an interrupt unless the entire DTC buffer is filled.
Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.
When using 9-bit reception with DTC, clear the upper 7 bits of data before processing the
read data. The upper 7 bits contain status flags that are part of the register used to read
data in 9-bit mode.

IrDA Limitations

The IrDA interface works in cooperation with a particular SCI channel based on the IrDA
standard 1.0.
If optics placement yields the echo of transmitted data on the receiver, the application
should disable the RX irq during transmission.
R_SCI_UART_BaudCalculate shall not be called for IrDA baud rate calculation. The correct
use is to create the baud rate by using the configurator. If run-time changes to baud rate
are required, multiple instances of different baud rates should be created with the
configurator.

Examples
SCI UART Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

uint32_t g_out_of_band_index = 0;

void r_sci_uart_basic_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,291 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_Read(&g_uart0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_Write(&g_uart0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 }

 while (!g_receive_complete)

 {

 }

}

void example_callback (uart_callback_args_t * p_args)

{

 /* Handle the UART event */

 switch (p_args->event)

 {

 /* Received a character */

 case UART_EVENT_RX_CHAR:

 {

 /* Only put the next character in the receive buffer if there is space for it */

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

 if (UART_DATA_BITS_8 >= g_uart0_cfg.data_bits)

 {

 g_out_of_band_received[g_out_of_band_index++] = (uint8_t)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,292 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

p_args->data;

 }

 else

 {

 uint16_t * p_dest = (uint16_t *)

&g_out_of_band_received[g_out_of_band_index];

 *p_dest = (uint16_t) p_args->data;

 g_out_of_band_index += 2;

 }

 }

 break;

 }

 /* Receive complete */

 case UART_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

 }

 /* Transmit complete */

 case UART_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

}

SCI UART Baud Set Example

#define SCI_UART_BAUDRATE_19200 (19200)

#define SCI_UART_BAUDRATE_ERROR_PERCENT_5 (5000)

void r_sci_uart_baud_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,293 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

{

 baud_setting_t baud_setting;

 uint32_t baud_rate = SCI_UART_BAUDRATE_19200;

 bool enable_bitrate_modulation = false;

 uint32_t error_rate_x_1000 = SCI_UART_BAUDRATE_ERROR_PERCENT_5;

 fsp_err_t err = R_SCI_UART_BaudCalculate(baud_rate, enable_bitrate_modulation,

error_rate_x_1000, &baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_BaudSet(&g_uart0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct sci_uart_instance_ctrl_t

struct baud_setting_t

struct sci_uart_rs485_setting_t

struct sci_uart_irda_setting_t

struct sci_uart_extended_cfg_t

Enumerations

enum sci_clk_src_t

enum sci_uart_flow_control_t

enum sci_uart_rx_fifo_trigger_t

enum sci_uart_start_bit_t

enum sci_uart_noise_cancellation_t

enum sci_uart_rs485_enable_t

enum sci_uart_rs485_de_polarity_t

enum sci_uart_irda_enable_t

enum sci_uart_irda_polarity_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,294 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

Data Structure Documentation

◆ sci_uart_instance_ctrl_t

struct sci_uart_instance_ctrl_t

UART instance control block.

◆ baud_setting_t

struct baud_setting_t

Register settings to acheive a desired baud rate and modulation duty.

Data Fields

union baud_setting_t __unnamed__

uint8_t cks: 2 CKS value to get divisor (CKS =
N)

uint8_t brr Bit Rate Register setting.

uint8_t mddr Modulation Duty Register
setting.

◆ sci_uart_rs485_setting_t

struct sci_uart_rs485_setting_t

Configuration settings for controlling the DE signal for RS-485.

Data Fields

sci_uart_rs485_enable_t enable Enable the DE signal.

sci_uart_rs485_de_polarity_t polarity DE signal polarity.

bsp_io_port_pin_t de_control_pin UART Driver Enable pin.

◆ sci_uart_irda_setting_t

struct sci_uart_irda_setting_t

Configuration settings for IrDA interface.

◆ sci_uart_extended_cfg_t

struct sci_uart_extended_cfg_t

UART on SCI device Configuration

Data Fields

sci_clk_src_t clock The source clock for the baud-
rate generator. If internal
optionally output baud rate on
SCK.

sci_uart_start_bit_t rx_edge_start Start reception on falling edge.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,295 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

sci_uart_noise_cancellation_t noise_cancel Noise cancellation setting.

baud_setting_t * p_baud_setting Register settings for a desired
baud rate.

sci_uart_rx_fifo_trigger_t rx_fifo_trigger Receive FIFO trigger level,
unused if channel has no FIFO
or if DTC is used.

bsp_io_port_pin_t flow_control_pin UART Driver Enable pin.

sci_uart_flow_control_t flow_control CTS/RTS function of the SSn
pin.

sci_uart_rs485_setting_t rs485_setting RS-485 settings.

sci_uart_irda_setting_t irda_setting IrDA settings.

Enumeration Type Documentation

◆ sci_clk_src_t

enum sci_clk_src_t

Enumeration for SCI clock source

Enumerator

SCI_UART_CLOCK_INT Use internal clock for baud generation.

SCI_UART_CLOCK_INT_WITH_BAUDRATE_OUTPUT

Use internal clock for baud generation and
output on SCK.

SCI_UART_CLOCK_EXT8X Use external clock 8x baud rate.

SCI_UART_CLOCK_EXT16X Use external clock 16x baud rate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,296 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ sci_uart_flow_control_t

enum sci_uart_flow_control_t

UART flow control mode definition

Enumerator

SCI_UART_FLOW_CONTROL_RTS Use SCI pin for RTS.

SCI_UART_FLOW_CONTROL_CTS Use SCI pin for CTS.

SCI_UART_FLOW_CONTROL_CTSRTS Use SCI pin for CTS, external pin for RTS.

SCI_UART_FLOW_CONTROL_HARDWARE_CTSRTS

Use CTSn_RTSn pin for RTS and CTSn pin for
CTS. Available only for some channels on
selected MCUs. See hardware manual for
channel specific options.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,297 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ sci_uart_rx_fifo_trigger_t

enum sci_uart_rx_fifo_trigger_t

Receive FIFO trigger configuration.

Enumerator

SCI_UART_RX_FIFO_TRIGGER_1 Callback after each byte is received without
buffering.

SCI_UART_RX_FIFO_TRIGGER_2 Callback when FIFO having 2 bytes.

SCI_UART_RX_FIFO_TRIGGER_3 Callback when FIFO having 3 bytes.

SCI_UART_RX_FIFO_TRIGGER_4 Callback when FIFO having 4 bytes.

SCI_UART_RX_FIFO_TRIGGER_5 Callback when FIFO having 5 bytes.

SCI_UART_RX_FIFO_TRIGGER_6 Callback when FIFO having 6 bytes.

SCI_UART_RX_FIFO_TRIGGER_7 Callback when FIFO having 7 bytes.

SCI_UART_RX_FIFO_TRIGGER_8 Callback when FIFO having 8 bytes.

SCI_UART_RX_FIFO_TRIGGER_9 Callback when FIFO having 9 bytes.

SCI_UART_RX_FIFO_TRIGGER_10 Callback when FIFO having 10 bytes.

SCI_UART_RX_FIFO_TRIGGER_11 Callback when FIFO having 11 bytes.

SCI_UART_RX_FIFO_TRIGGER_12 Callback when FIFO having 12 bytes.

SCI_UART_RX_FIFO_TRIGGER_13 Callback when FIFO having 13 bytes.

SCI_UART_RX_FIFO_TRIGGER_14 Callback when FIFO having 14 bytes.

SCI_UART_RX_FIFO_TRIGGER_MAX Callback when FIFO is full or after 15 bit times
with no data (fewer interrupts)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,298 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ sci_uart_start_bit_t

enum sci_uart_start_bit_t

Asynchronous Start Bit Edge Detection configuration.

Enumerator

SCI_UART_START_BIT_LOW_LEVEL Detect low level on RXDn pin as start bit.

SCI_UART_START_BIT_FALLING_EDGE Detect falling level on RXDn pin as start bit.

◆ sci_uart_noise_cancellation_t

enum sci_uart_noise_cancellation_t

Noise cancellation configuration.

Enumerator

SCI_UART_NOISE_CANCELLATION_DISABLE Disable noise cancellation.

SCI_UART_NOISE_CANCELLATION_ENABLE Enable noise cancellation.

◆ sci_uart_rs485_enable_t

enum sci_uart_rs485_enable_t

RS-485 Enable/Disable.

Enumerator

SCI_UART_RS485_DISABLE RS-485 disabled.

SCI_UART_RS485_ENABLE RS-485 enabled.

◆ sci_uart_rs485_de_polarity_t

enum sci_uart_rs485_de_polarity_t

The polarity of the RS-485 DE signal.

Enumerator

SCI_UART_RS485_DE_POLARITY_HIGH The DE signal is high when a write transfer is in
progress.

SCI_UART_RS485_DE_POLARITY_LOW The DE signal is low when a write transfer is in
progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,299 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ sci_uart_irda_enable_t

enum sci_uart_irda_enable_t

IrDA Enable/Disable.

Enumerator

SCI_UART_IRDA_DISABLED IrDA disabled.

SCI_UART_IRDA_ENABLED IrDA enabled.

◆ sci_uart_irda_polarity_t

enum sci_uart_irda_polarity_t

IrDA Polarity Switching.

Enumerator

SCI_UART_IRDA_POLARITY_NORMAL IrDA Tx/Rx polarity not inverted.

SCI_UART_IRDA_POLARITY_INVERTED IrDA Tx/Rx polarity inverted.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,300 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_Open()

fsp_err_t R_SCI_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UART driver based on the input configurations. If reception is enabled at compile
time, reception is enabled at the end of this function. Implements uart_api_t::open

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to UART control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_INVALID_ARGUMENT Flow control is enabled but flow control pin
is not defined or selected channel does not
support "Hardware CTS and Hardware RTS"
flow control. (or) restricted channel is
selected.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_INVALID_CHANNEL IrDA is requested for a channel that does
not support IrDA.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_SCI_UART_Close()

fsp_err_t R_SCI_UART_Close (uart_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Closes lower level
transfer drivers if used. Removes power. Implements uart_api_t::close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,301 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_Read()

fsp_err_t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Implements
uart_api_t::read

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Destination address or data size is not valid
for 9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

FSP_ERR_UNSUPPORTED SCI_UART_CFG_RX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_UART_Open call, p_dest must be aligned 16-bit boundary.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,302 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_Write()

fsp_err_t R_SCI_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
uart_api_t::write

Return values
FSP_SUCCESS Data transmission finished successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Source address or data size is not valid for
9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A UART transmission is in progress

FSP_ERR_UNSUPPORTED SCI_UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_UART_Open call, p_src must be aligned on a 16-bit boundary.

◆ R_SCI_UART_CallbackSet()

fsp_err_t R_SCI_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl, void(*)(uart_callback_args_t *)
p_callback, void const *const p_context, uart_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
uart_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,303 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_BaudSet()

fsp_err_t R_SCI_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const p_baud_setting)

Updates the baud rate using the clock selected in Open. p_baud_setting is a pointer to a
baud_setting_t structure. Implements uart_api_t::baudSet

Warning
This terminates any in-progress transmission.

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL or the
UART is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_ARGUMENT Restricted channel is selected.

◆ R_SCI_UART_InfoGet()

fsp_err_t R_SCI_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time. Implements uart_api_t::infoGet

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,304 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_Abort()

fsp_err_t R_SCI_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR. Implements uart_api_t::communicationAbort

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

◆ R_SCI_UART_ReadStop()

fsp_err_t R_SCI_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t * remaining_bytes)

Provides API to abort ongoing read. Reception is still enabled after abort(). Any characters received
after abort() and before the transfer is reset in the next call to read(), will arrive via the callback
function with event UART_EVENT_RX_CHAR. Implements uart_api_t::readStop

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,305 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_sci_uart)

◆ R_SCI_UART_BaudCalculate()

fsp_err_t R_SCI_UART_BaudCalculate (uint32_t baudrate, bool bitrate_modulation, uint32_t
baud_rate_error_x_1000, baud_setting_t *const p_baud_setting)

Calculates baud rate register settings. Evaluates and determines the best possible settings set to
the baud rate related registers.

Note
For limitations of this API, refer to the 'Limitations' section of r_sci_uart module in FSP User Manual.

Parameters
[in] baudrate Baud rate [bps]. For

example, 19200, 57600,
115200, etc.

[in] bitrate_modulation Enable bitrate modulation

[in] baud_rate_error_x_1000 Max baud rate error. At most
<baud_rate_percent_error>
x 1000 required for module
to function. Absolute max
baud_rate_error is 15000
(15%).

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate is set successfully

FSP_ERR_ASSERTION Null pointer

FSP_ERR_INVALID_ARGUMENT Baud rate is '0', error in calculated baud
rate is larger than requested max error, or
requested max error in baud rate is larger
than 15%.

5.2.6.28 UART (r_uarta)
Modules » Connectivity

Functions

fsp_err_t R_UARTA_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const
p_cfg)

fsp_err_t R_UARTA_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_UARTA_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,306 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

fsp_err_t R_UARTA_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)

fsp_err_t R_UARTA_CallbackSet (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t R_UARTA_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

fsp_err_t R_UARTA_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

fsp_err_t R_UARTA_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_UARTA_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t
*p_remaining_bytes)

fsp_err_t R_UARTA_BaudCalculate (uint32_t baudrate, uint32_t
baud_rate_percent_error_x1000, uarta_clock_source_t clock_source,
uarta_baud_setting_t *const p_baud_setting)

Detailed Description

Driver for the UARTA peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The UARTA module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Baud-rate change at run-time
Integration with the DTC transfer module
Abort in-progress read/write operations
MSB or LSB first transfer selectable
Inversion control of communication logic level provided
Clock output function (Not available on all MCUs)

Configuration
Build Time Configurations for r_uarta

The following build time configurations are defined in fsp_cfg/r_uarta_cfg.h:

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,307 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support MCU Specific Options Enable DTC support for
the UARTA module.

Receive Error Interrupt
Mode

Disabled
Enabled

Enabled Selection receive
interrupt mode .
Disabled: The
UARTA0_ERRI interrupt
is generated when a
reception error occurs.
Enabled: The
UARTA0_RXI interrupt
is generated when a
reception error occurs.

Configurations for Connectivity > UART (r_uarta)

This module can be added to the Stacks tab via New Stack > Connectivity > UART (r_uarta).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_uart0 Module name.

Channel Value must be a non-
negative integer

0 Select the UARTA
channel.

Data Bits 8bits
7bits
5bits

8bits Select the number of
bits per word.

Parity None
Zero
Odd
Even

None Select the parity mode.

Stop Bits 1bit
2bits

1bit Select the number of
stop bits.
Note: For the receive
data, only the first 1 bit
of the stop bits is
checked regardless of
the stop bit length.

Baud

Baud Rate Value must be an
integer greater than 0

115200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, the settings
with the smallest

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,308 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

percent error are used.
The theoretical
calculated baud rate
and percent error are
printed in a comment
in the generated
baud_setting_t
structure.

Extra

Transfer Order LSB first
MSB first

LSB first Selection of the
transmission/reception
order.

Transfer level Positive logic
Negative logic

Positive logic Selection of the
transmission/reception
level.

Clock output MCU Specific Options Enable Clock output

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

Clock Configuration

The baud-rate clock generator can be selected from the clock source MOSC, HOCO, MOCO,
SOSC/LOCO.

Pin Configuration

This module uses TXDA and RXDA pin to communicate to external devices.

Usage Notes
Limitations

Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters
received after abort and before the next call to read will arrive via the callback function with
event UART_EVENT_RX_CHAR.
The UARTA module does not have CTS or RTS signals.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,309 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

DTC Limitations

DTC support is available for reception, but labeled as [Not recommended]. This is because
the UART bytes are received asynchronously. Bytes can be received between calls to
R_UARTA_Read(). The logic required to combine bytes received through R_UARTA_Read()
(UART_EVENT_RX_COMPLETE) and bytes received between calls (UART_EVENT_RX_CHAR) is
complex. Reception length may also be unknown, and the driver will not issue an interrupt
unless the entire DTC buffer is filled.
Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.

Examples
UARTA Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

uint32_t g_out_of_band_index = 0;

void r_uarta_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_UARTA_Open(&g_uart0_ctrl, &g_uart0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_UARTA_Read(&g_uart0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_UARTA_Write(&g_uart0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 }

 while (!g_receive_complete)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,310 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

 }

}

void example_callback (uart_callback_args_t * p_args)

{

 /* Handle the UART event */

 switch (p_args->event)

 {

 /* Received a character */

 case UART_EVENT_RX_CHAR:

 {

 /* Only put the next character in the receive buffer if there is space for it */

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

 if (UART_DATA_BITS_8 >= g_uart0_cfg.data_bits)

 {

 g_out_of_band_received[g_out_of_band_index++] = (uint8_t)

p_args->data;

 }

 else

 {

 uint16_t * p_dest = (uint16_t *)

&g_out_of_band_received[g_out_of_band_index];

 *p_dest = (uint16_t) p_args->data;

 g_out_of_band_index += 2;

 }

 }

 break;

 }

 /* Receive complete */

 case UART_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,311 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

 }

 /* Transmit complete */

 case UART_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

}

UARTA Baud Set Example

#define UARTA_BAUDRATE_19200 (19200)

#define UARTA_BAUDRATE_ERROR_PERCENT_4740 (4740)

void r_uarta_baud_example (void)

{

 uarta_baud_setting_t baud_setting;

 uint32_t baud_rate = UARTA_BAUDRATE_19200;

 uint32_t error_rate_x_1000 = UARTA_BAUDRATE_ERROR_PERCENT_4740;

 uarta_clock_source_t clock_source = UARTA_CLOCK_SOURCE_HOCO;

 fsp_err_t err = R_UARTA_BaudCalculate(baud_rate, error_rate_x_1000, clock_source,

&baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_UARTA_BaudSet(&g_uart0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct uarta_baud_setting_t

struct uarta_extended_cfg_t

struct uarta_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,312 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

Enumerations

enum uarta_clock_source_t

enum uarta_clock_div_t

enum uarta_clock_out_t

enum uarta_dir_bit_t

enum uarta_alv_bit_t

Data Structure Documentation

◆ uarta_baud_setting_t

struct uarta_baud_setting_t

Register settings to acheive a desired baud rate and modulation duty.

Data Fields

union uarta_baud_setting_t __unnamed__

uint8_t brgca Baud rate generator control
setting.

uint16_t delay_time Delay time (us) required to
enable TX at open.

◆ uarta_extended_cfg_t

struct uarta_extended_cfg_t

UART on UARTA device Configuration

Data Fields

uarta_dir_bit_t transfer_dir Transmission/reception order
configuration.

uarta_alv_bit_t transfer_level Transmission/reception level
configuration.

uarta_clock_out_t clock_output Disable/Enable clock output.

uarta_baud_setting_t * p_baud_setting Register settings for a desired
baud rate.

◆ uarta_instance_ctrl_t

struct uarta_instance_ctrl_t

UARTA instance control block.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,313 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ uarta_clock_source_t

enum uarta_clock_source_t

Enumeration for UARTA clock source

Enumerator

UARTA_CLOCK_SOURCE_SOSC_LOCO SOSC/LOCO.

UARTA_CLOCK_SOURCE_LOCO LOCO.

UARTA_CLOCK_SOURCE_MOSC MOSC.

UARTA_CLOCK_SOURCE_HOCO HOCO.

UARTA_CLOCK_SOURCE_MOCO MOCO.

UARTA_CLOCK_SOURCE_SOSC SOSC.

◆ uarta_clock_div_t

enum uarta_clock_div_t

Enumeration for UARTA clock divider

Enumerator

UARTA_CLOCK_DIV_1 fSEL/1

UARTA_CLOCK_DIV_2 fSEL/2

UARTA_CLOCK_DIV_4 fSEL/4

UARTA_CLOCK_DIV_8 fSEL/8

UARTA_CLOCK_DIV_16 fSEL/16

UARTA_CLOCK_DIV_32 fSEL/32

UARTA_CLOCK_DIV_64 fSEL/64

UARTA_CLOCK_DIV_COUNT Total number of clock divider options.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,314 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ uarta_clock_out_t

enum uarta_clock_out_t

Enabled/Disabled Clock output

Enumerator

UARTA_CLOCK_OUTPUT_DISABLED Disables CLKAn output.

UARTA_CLOCK_OUTPUT_ENABLED Enables CLKAn output.

◆ uarta_dir_bit_t

enum uarta_dir_bit_t

Transmission/reception order configuration.

Enumerator

UARTA_DIR_BIT_MSB_FIRST MSB first.

UARTA_DIR_BIT_LSB_FIRST LSB first.

◆ uarta_alv_bit_t

enum uarta_alv_bit_t

Transmission/reception level configuration.

Enumerator

UARTA_ALV_BIT_POSITIVE_LOGIC Positive logic (wait state = high level, start bit
= low level, stop bit = high level)

UARTA_ALV_BIT_NEGATIVE_LOGIC Negative logic (wait state = low level, start bit
= high level, stop bit = low level)

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,315 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ R_UARTA_Open()

fsp_err_t R_UARTA_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UARTA driver based on the input configurations. If transmission/reception is enabled
at compile time, transmission/reception is enabled at the end of this function. Implements
uart_api_t::open

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to UARTA control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_INVALID_ARGUMENT Invalid clock select (f_UTA0) and baudrate
configuration.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_UARTA_Close()

fsp_err_t R_UARTA_Close (uart_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Closes lower level
transfer drivers if used. Removes power. Implements uart_api_t::close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,316 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ R_UARTA_Read()

fsp_err_t R_UARTA_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Implements
uart_api_t::read

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

FSP_ERR_UNSUPPORTED UARTA_CFG_RX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

◆ R_UARTA_Write()

fsp_err_t R_UARTA_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
uart_api_t::write

Return values
FSP_SUCCESS Data transmission finished successfully.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A UARTA transmission is in progress

FSP_ERR_UNSUPPORTED UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,317 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ R_UARTA_CallbackSet()

fsp_err_t R_UARTA_CallbackSet (uart_ctrl_t *const p_api_ctrl, void(*)(uart_callback_args_t *)
p_callback, void const *const p_context, uart_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
uart_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_UARTA_BaudSet()

fsp_err_t R_UARTA_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const p_baud_setting)

Updates the baud rate using the clock selected in Open. p_baud_setting is a pointer to a
uarta_baud_setting_t structure. Implements uart_api_t::baudSet

Warning
This terminates any in-progress transmission.

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL or
the UART is not configured to use the
internal clock.

FSP_ERR_INVALID_ARGUMENT Invalid clock select (f_UTA0) and baudrate
configuration.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_UARTA_InfoGet()

fsp_err_t R_UARTA_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time. Implements uart_api_t::infoGet

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,318 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ R_UARTA_Abort()

fsp_err_t R_UARTA_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR. Implements uart_api_t::communicationAbort

Return values
FSP_SUCCESS UARTA transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls: transfer_api_t::disable

◆ R_UARTA_ReadStop()

fsp_err_t R_UARTA_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t * p_remaining_bytes)

Provides API to abort ongoing read. Reception is still enabled after abort(). Any characters received
after abort() and before the transfer is reset in the next call to read(), will arrive via the callback
function with event UART_EVENT_RX_CHAR. Implements uart_api_t::readStop

Return values
FSP_SUCCESS UARTA transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UARTA control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls: transfer_api_t::disable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,319 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART (r_uarta)

◆ R_UARTA_BaudCalculate()

fsp_err_t R_UARTA_BaudCalculate (uint32_t baudrate, uint32_t baud_rate_percent_error_x1000,
uarta_clock_source_t clock_source, uarta_baud_setting_t *const p_baud_setting)

Calculates baud rate register settings. Evaluates and determines the best possible settings set to
the baud rate related registers.

Parameters
[in] baudrate Baud rate [bps]. For

example, 19200, 57600,
115200, etc.

[in] baud_rate_percent_error_x1
000

Max baud rate error. At most
baud_rate_percent_error x
1000 required for module to
function. Absolute max
baud_rate_error is 4740
(4.74%).

[in] clock_source Clock Source. Required for
module to generate
baudrate. The clock sources
can be select include UARTA
_CLOCK_SOURCE_MOSC, UA
RTA_CLOCK_SOURCE_HOCO,
UARTA_CLOCK_SOURCE_MO
CO, UARTA_CLOCK_SOURCE_
SOSC_LOCO.

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate is set successfully

FSP_ERR_ASSERTION Null pointer

FSP_ERR_INVALID_ARGUMENT Argument is out of available range, baud
rate is '0'.

FSP_ERR_INVALID_RATE Baud rate error is outside the range or the
baud rate could not be set given the current
clock source.

5.2.6.29 UART Communication Device (rm_comms_uart)
Modules » Connectivity

Functions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,320 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

fsp_err_t RM_COMMS_UART_Open (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_cfg_t const *const p_cfg)

 Opens and configures the UART Comms module. Implements
rm_comms_api_t::open. More...

fsp_err_t RM_COMMS_UART_Close (rm_comms_ctrl_t *const p_api_ctrl)

 Disables specified UART Comms module. Implements
rm_comms_api_t::close. More...

fsp_err_t RM_COMMS_UART_CallbackSet (rm_comms_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_comms_callback_args_t *), void const *const
p_context)

 Updates the UART Comms callback. Implements
rm_comms_api_t::callbackSet. More...

fsp_err_t RM_COMMS_UART_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes)

 Performs a read from the UART device. Implements
rm_comms_api_t::read. More...

fsp_err_t RM_COMMS_UART_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes)

 Performs a write to the UART device. Implements
rm_comms_api_t::write. More...

fsp_err_t RM_COMMS_UART_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

 Performs a write to, then a read from the UART device. Implements
rm_comms_api_t::writeRead. More...

Detailed Description

Middleware to implement a generic communications interface over UART. This module implements
the Communicatons Middleware Interface.

Overview
The RM_COMMS_UART module implements COMMS API for UART interface.

Features

The implementation of the UART communications interfacehas the following key features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,321 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

Non-blocking API for bare metal
Non-blocking and blocking API for RTOS

Configuration
Build Time Configurations for rm_comms_uart

The following build time configurations are defined in fsp_cfg/rm_comms_uart_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Connectivity > UART Communication Device (rm_comms_uart)

This module can be added to the Stacks tab via New Stack > Connectivity > UART Communication
Device (rm_comms_uart).

Configuration Options Default Description

RTOS

Write Mutex Do Not Use
Use

Use Lock device for writing
in using RTOS.

Read Mutex Do Not Use
Use

Use Lock device for reading
in using RTOS.

Mutex Timeout Value must be a non-
negative integer

0xFFFFFFFF Timeout for recursive
mutex operation in
using RTOS.

Write Semaphore Do Not Use
Use

Use Block writing in using
RTOS.

Read Semaphore Do Not Use
Use

Use Block reading in using
RTOS.

Semaphore Timeout Value must be a non-
negative integer

0xFFFFFFFF Timeout for semaphore
operation in using
RTOS.

Name Name must be a valid
C symbol

g_comms_uart0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided.

Usage Notes
Limitations

RM_COMMS_API are not reentrant in non blocking mode
When in blocking mode, RM_COMMS_UART_Write() and RM_COMMS_UART_Read() cannot be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,322 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

called in callback.
RM_COMMS_UART_WriteRead API is not implemented

Examples
Basic Example

This is a basic example of minimal use of UART communications implementation in an application.

void rm_comms_uart_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_COMMS_UART_Open(&g_comms_uart_ctrl, &g_comms_uart_cfg);

 if (FSP_SUCCESS != err)

 {

 /* Handle any errors. */

 }

 while (true)

 {

 /* Send data. */

 g_err_flag = 0;

 g_tx_flag = 0;

 err = RM_COMMS_UART_Write(&g_comms_uart_ctrl, g_tx_buf, TX_BUF_LEN);

 if (FSP_SUCCESS != err)

 {

 /* Handle any errors. */

 }

 while ((0 == g_tx_flag) && (0 == g_err_flag))

 {

 /* Wait callback */

 }

 /* Receive data. */

 g_err_flag = 0;

 g_rx_flag = 0;

 err = RM_COMMS_UART_Read(&g_comms_uart_ctrl, g_rx_buf, RX_BUF_LEN);

 if (FSP_SUCCESS != err)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,323 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

 /* Handle any errors.*/

 }

 while ((0 == g_rx_flag) && (0 == g_err_flag))

 {

 /* Wait callback */

 }

 }

}

static void rm_comms_uart_callback (rm_comms_callback_args_t * p_args)

{

 if (p_args->event == RM_COMMS_EVENT_TX_OPERATION_COMPLETE)

 {

 g_tx_flag = 1;

 }

 else if (p_args->event == RM_COMMS_EVENT_RX_OPERATION_COMPLETE)

 {

 g_rx_flag = 1;

 }

 else

 {

 g_err_flag = 1;

 }

}

Data Structures

struct rm_comms_uart_instance_ctrl_t

Data Structure Documentation

◆ rm_comms_uart_instance_ctrl_t

struct rm_comms_uart_instance_ctrl_t

Communications middleware control structure.

Data Fields

uint32_t open

 Open flag.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,324 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

rm_comms_cfg_t const * p_cfg

 Middleware configuration.

rm_comms_uart_extended_c
fg_t const *

p_extend

 Pointer to extended configuration structure.

void(* p_callback)(rm_comms_callback_args_t *p_args)

 Pointer to callback that is called when a uart_event_t occurs.

void const * p_context

 Pointer to context passed into callback function.

Function Documentation

◆ RM_COMMS_UART_Open()

fsp_err_t RM_COMMS_UART_Open (rm_comms_ctrl_t *const p_api_ctrl, rm_comms_cfg_t const
*const p_cfg)

Opens and configures the UART Comms module. Implements rm_comms_api_t::open.

Return values
FSP_SUCCESS UART Comms module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,325 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

◆ RM_COMMS_UART_Close()

fsp_err_t RM_COMMS_UART_Close (rm_comms_ctrl_t *const p_api_ctrl)

Disables specified UART Comms module. Implements rm_comms_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_COMMS_UART_CallbackSet()

fsp_err_t RM_COMMS_UART_CallbackSet (rm_comms_ctrl_t *const p_api_ctrl,
void(*)(rm_comms_callback_args_t *) p_callback, void const *const p_context)

Updates the UART Comms callback. Implements rm_comms_api_t::callbackSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_UART_Read()

fsp_err_t RM_COMMS_UART_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the UART device. Implements rm_comms_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,326 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > UART Communication Device (rm_comms_uart)

◆ RM_COMMS_UART_Write()

fsp_err_t RM_COMMS_UART_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes)

Performs a write to the UART device. Implements rm_comms_api_t::write.

Return values
FSP_SUCCESS Successfully writing data .

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_COMMS_UART_WriteRead()

fsp_err_t RM_COMMS_UART_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

Performs a write to, then a read from the UART device. Implements rm_comms_api_t::writeRead.

Return values
FSP_ERR_UNSUPPORTED Not supported.

5.2.6.30 USB (r_usb_basic)
Modules » Connectivity

Functions

fsp_err_t R_USB_EventGet (usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

 Obtains completed USB related events. (OS-less Only) More...

fsp_err_t R_USB_Callback (usb_callback_t *p_callback)

 Register a callback function to be called upon completion of a USB
related event. (RTOS only) More...

fsp_err_t R_USB_Open (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const
p_cfg)

 Applies power to the USB module specified in the argument (p_ctrl).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,327 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

More...

fsp_err_t R_USB_Close (usb_ctrl_t *const p_api_ctrl)

 Terminates power to the USB module specified in argument (p_ctrl).
USB0 module stops when USB_IP0 is specified to the member
(module), USB1 module stops when USB_IP1 is specified to the
member (module). More...

fsp_err_t R_USB_Read (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, uint8_t destination)

 Bulk/Interrupt data transfer. More...

fsp_err_t R_USB_Write (usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf,
uint32_t size, uint8_t destination)

 Bulk/Interrupt data transfer. More...

fsp_err_t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction,
uint8_t destination)

 Requests a data read/write transfer be terminated when a data
read/write transfer is being performed. More...

fsp_err_t R_USB_Suspend (usb_ctrl_t *const p_api_ctrl)

 Sends a SUSPEND signal from the USB module assigned to the
member (module) of the usb_crtl_t structure. More...

fsp_err_t R_USB_Resume (usb_ctrl_t *const p_api_ctrl)

 Sends a RESUME signal from the USB module assigned to the
member (module) of the usb_ctrl_tstructure. More...

fsp_err_t R_USB_VbusSet (usb_ctrl_t *const p_api_ctrl, uint16_t state)

 Specifies starting or stopping the VBUS supply. More...

fsp_err_t R_USB_InfoGet (usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info,
uint8_t destination)

 Obtains completed USB-related events. More...

fsp_err_t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, uint8_t pipe_number)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,328 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 Requests a data read (Bulk/Interrupt transfer) via the pipe specified
in the argument. More...

fsp_err_t R_USB_PipeWrite (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, uint8_t pipe_number)

 Requests a data write (Bulk/Interrupt transfer). More...

fsp_err_t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

 Terminates a data read/write operation. More...

fsp_err_t R_USB_UsedPipesGet (usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe,
uint8_t destination)

 Gets the selected pipe number (number of the pipe that has
completed initalization) via bit map information. More...

fsp_err_t R_USB_PipeInfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info,
uint8_t pipe_number)

 Gets the following pipe information regarding the pipe specified in
the argument (p_ctrl) member (pipe): endpoint number, transfer
type, transfer direction and maximum packet size. More...

fsp_err_t R_USB_PullUp (usb_ctrl_t *const p_api_ctrl, uint8_t state)

 This API enables or disables pull-up of D+/D- line. More...

fsp_err_t R_USB_HostControlTransfer (usb_ctrl_t *const p_api_ctrl, usb_setup_t
*p_setup, uint8_t *p_buf, uint8_t device_address)

 Performs settings and transmission processing when transmitting a
setup packet. More...

fsp_err_t R_USB_PeriControlDataGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_buf, uint32_t size)

 Receives data sent by control transfer. More...

fsp_err_t R_USB_PeriControlDataSet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_buf, uint32_t size)

 Performs transfer processing for control transfer. More...

fsp_err_t R_USB_PeriControlStatusSet (usb_ctrl_t *const p_api_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,329 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

usb_setup_status_t status)

 Set the response to the setup packet. More...

fsp_err_t R_USB_RemoteWakeup (usb_ctrl_t *const p_api_ctrl)

 Sends a remote wake-up signal to the connected Host. More...

fsp_err_t R_USB_DriverActivate (usb_ctrl_t *const p_api_ctrl)

 Activate USB Driver for USB Peripheral BareMetal. More...

fsp_err_t R_USB_CallbackMemorySet (usb_ctrl_t *const p_api_ctrl,
usb_callback_args_t *p_callback_memory)

 Set callback memory to USB Driver for USB Peripheral BareMetal.
More...

fsp_err_t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

 This API gets the module number. More...

fsp_err_t R_USB_ClassTypeGet (usb_ctrl_t *const p_api_ctrl, usb_class_t
*class_type)

 This API gets the class type. More...

fsp_err_t R_USB_DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*device_address)

 This API gets the device address. More...

fsp_err_t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*pipe_number)

 This API gets the pipe number. More...

fsp_err_t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uint16_t *state)

 This API gets the state of the device. More...

fsp_err_t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

 This API gets the read data size. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,330 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

fsp_err_t R_USB_SetupGet (usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

 This API gets the setup information. More...

fsp_err_t R_USB_OtgCallbackSet (usb_ctrl_t *const p_api_ctrl,
usb_otg_callback_t *p_callback)

 Set callback function to be called when the OTG role swap was
completed on Azure RTOS. More...

fsp_err_t R_USB_OtgSRP (usb_ctrl_t *const p_api_ctrl)

 Start the SRP processing for OTG on Azure RTOS. More...

fsp_err_t R_USB_TypeCInfoGet (usb_ctrl_t *const p_api_ctrl, usb_typec_info_t
*p_info)

 USB Type-C connect Information get. More...

Detailed Description

Driver for the USB peripheral on RA MCUs. This module implements the USB Interface.

Overview
The USB module operates in combination with the device class drivers provided by Renesas to form
a complete USB stack.

Features

The USB module has the following key features:

USB Host mode
Enumerates Low/Full/High-speed devices (see note below)
Automatic transfer error determination and retry

USB Peripheral mode
Supports USB1.1/2.0/3.0 hosts

Automatic processing of device connect/disconnect, suspend/resume, and USB bus reset
Up to 10 pipes

Control transfers supported on pipe 0
Data transfer on pipes 1 to 9 (Bulk or Interrupt)

Functions with or without an RTOS

Note
Supported speeds are dependent on the MCU.

Support Device Class
This driver supports the following device classes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,331 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

Host/Peripheral Device Class BareMetal FreeRTOS AzureRTOS

Host HCDC (ACM) Yes Yes Yes

HCDC (ECM) – Yes –

HHID Yes Yes Yes

HMSC Yes Yes Yes

HPRN – – Yes

HUVC – – Yes

HVND Yes Yes –

HCDC+HMSC
(Composite)

– Yes –

Peripheral PCDC Yes Yes Yes

PHID Yes Yes Yes

PMSC Yes Yes Yes

PPRN Yes Yes Yes

PAUD – – Yes

DFU – – Yes

PVND Yes Yes –

PCDC+PMSC Yes Yes Yes

PHID+PMSC Yes Yes –

PCDC+PHID Yes Yes –

PCDC+PCDC Yes Yes –

PHID+PHID Yes Yes –

PCDC+PVND Yes Yes –

Other OTG (CDC) – – Yes

OTG (HID) – – Yes

OTG (MSC) – – Yes

Configuration
Build Time Configurations for r_usb_basic

The following build time configurations are defined in fsp_cfg/r_usb_basic_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,332 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

PLL Frequency MCU Specific Options Specify the PLL
frequency supplied to
the USB module. This
setting only applies to
USB1 (not USB0).

CPU Bus Access Wait
Cycles

MCU Specific Options This setting controls
the delay for
consecutive USB
peripheral register
access. Set this value
to a number of CPU
cycles that is
equivalent to 40.8ns or
more.

Battery Charging MCU Specific Options Specify whether or not
to include battery
charging functionality.

Power IC Shutdown
Polarity

MCU Specific Options Select the polarity of
the Shutdown signal on
the power supply IC (if
provided).

Dedicated Charging
Port (DCP) Mode

MCU Specific Options When enabled, USB
communication is
disabled and the port is
used for charging only.

Notifications for SET_IN
TERFACE/SET_FEATURE
/CLEAR_FEATURE

Disabled
Enabled

Enabled When enabled, the
application will receive
notifications for
SET_INTERFACE,
SET_FEATURE and
CLEAR_FEATURE
messages.

Double Buffering Disabled
Enabled

Enabled When enabled, the
FIFOs for Pipes 1-5 are
double-buffered.

Continuous Transfer
Mode

MCU Specific Options Enable or disable
continuous transfer
mode.

LDO Regulator MCU Specific Options Enable or disable LDO
regulator.

Type-C MCU Specific Options Enable or disable Type-
C.

DMA Support MCU Specific Options Enable or disable DMA
support for the USB
module.

DMA Source Address MCU Specific Options Set this to match the
speed mode when DMA
is enabled. Otherwise,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,333 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

set to 'DMA Disabled'.

DMA Destination
Address

MCU Specific Options Set this to match the
speed mode when DMA
is enabled. Otherwise,
set to 'DMA Disabled'.

USB Compliance Test
mode

Enabled
Disabled

Disabled Display the information
required to take the
compliance test.

USB TPL table name Enter the TPL table
name.

NULL Enter the name of the
TPL Table.

Configurations for Connectivity > USB (r_usb_basic)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_basic0 Module name.

USB Mode Host mode
Peri mode
OTG mode

Host mode Select the usb mode.

USB Speed Full Speed
Hi Speed
Low Speed

Full Speed Select the USB speed.

USB Module Number USB_IP0 Port
USB_IP1 Port

USB_IP0 Port Specify the USB
module number to be
used.

USB Device Class Refer to the RA
Configuration tool for
available options.

Peripheral
Communications
Device Class

Select the USB device
class.

USB Descriptor USB Descriptor must
be a valid C symbol.

g_usb_descriptor Enter the name of the
descriptor to be used.
For how to create a
descriptor structure,
refer to the Descriptor
definition chapter in
the usb_basic manual.
Specify NULL when
using the Host class.

USB Compliance
Callback

Compliance Callback
must be a valid C
symbol.

NULL Set the callback for
compliance tests here.

USBFS Interrupt Priority MCU Specific Options Select the interrupt
priority used by the
main USBFS ISR.

USBFS Resume Priority MCU Specific Options Select the interrupt
priority used by the
USBFS Resume ISR.

USBFS D0FIFO MCU Specific Options Select the interrupt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,334 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

Interrupt Priority priority used by the
USBFS D0FIFO.

USBFS D1FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBFS D1FIFO.

USBHS Interrupt
Priority

MCU Specific Options Select the interrupt
priority used by the
main USBHS ISR.

USBHS D0FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBHS D0FIFO ISR.

USBHS D1FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBHS D1FIFO ISR.

USB Callback Enter the address of
the function.

NULL A user callback
function can be defined
here.

USB Callback Context Enter the address of
the context.

NULL Set the callback
context here.

Clock Configuration

The USB module uses PLL as the clock source. The PLL frequency can be set in the Clocks tab of the
configuration editor or by using the CGC Interface at run-time.

Note
When using HOCO as the PLL source on Cortex M33 parts the FLL function must be enabled for correct USB
operation. Refer to the MCU Family -> Clocks group of the BSP properties in the RA configuration tool to adjust
FLL settings.

Pin Configuration

In peripheral mode the USB_VBUS and/or USBHS_VBUS pins are used to detect the USB connection
status (connected or disconnected) and should be connected to the USB VBUS signal.

Note
USB_VBUS and USBHS_VBUS are 5V-tolerant pins.

In host mode the USBHS_VBUSEN, USBHS_OVRCURA and USBHS_OVRCURB pins should be connected
to the relevant pins of an external power supply IC, if available. These pins will be used to manage
the USB VBUS supply.

DMA Configuration

When using DMA with USB the following properties must be configured for each DMAC module:

Config Name Select Name Description

Transfer Size 2 Bytes
4 Bytes

In FS mode, select "2 Bytes"
In HS mode, select "4 Bytes"

Activation source USBFS FIFO 0 USB FS Reception

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,335 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

USBFS FIFO 1
USBHS FIFO 0
USBHS FIFO 1

USB FS Transmission
USB HS Reception
USB HS Transmission

Descriptor definition
In Peripheral mode, the usb_descriptor_t structure stores descriptor information including the device
and configuration descriptors. The values set in this structure are sent to the USB host as part of
enumeration.

typedef struct usb_descriptor

{

 uint8_t *p_device; /* Pointer to device descriptor */

 uint8_t *p_config_f; /* Pointer to full-speed configuration descriptor */

 uint8_t *p_config_h; /* Pointer to high-speed configuration descriptor (HS only)

*/

 uint8_t *p_qualifier; /* Pointer to device qualifier descriptor (HS only) */

 uint8_t **pp_string; /* Pointer to string descriptor table */

 uint8_t num_string; /* Number of strings in table */

} usb_descriptor_t;

Note
Even in high-speed mode the full-speed configuration must be made available:

/* Example USB FS descriptor struct */

usb_descriptor_t g_usb_descriptor =

{

 smp_device,

 smp_config_f,

 NULL,

 NULL,

 smp_str_table,

 3,

};

/* Example USB HS descriptor struct */

usb_descriptor_t g_usb_descriptor =

{

 smp_device,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,336 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 smp_config_f,

 smp_config_h,

 smp_qualifier,

 smp_str_table,

 3,

};

String Descriptor

This USB driver requires string descriptors to be registered in the string descriptor table. Use the
following format to define the elements:

/* String descriptor 0 is reserved for language ID information */

uint8_t str_descriptor_0[]

{

 0x04, /* Length */

 0x03, /* Descriptor type */

 0x09, 0x04 /* Language ID */

};

uint8_t str_descriptor_manufacturer[] =

{

 0x10, /* Length */

 0x03, /* Descriptor type */

 'R', 0x00,

 'E', 0x00,

 'N', 0x00,

 'E', 0x00,

 'S', 0x00,

 'A', 0x00,

 'S', 0x00

};

uint8_t str_descriptor_product[] =

{

 0x12, /* Length */

 0x03, /* Descriptor type */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,337 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 'C', 0x00,

 'D', 0x00,

 'C', 0x00,

 '_', 0x00,

 'D', 0x00,

 'E', 0x00,

 'M', 0x00,

 'O', 0x00

};

/* String descriptor table */

uint8_t * smp_str_table[] =

{

 str_descriptor_0, /* Index: 0 */

 str_descriptor_manufacturer, /* Index: 1 */

 str_descriptor_product, /* Index: 2 */

};

Note
Set the string index values in the device/configuration descriptors (iManufacturer, iConfiguration etc.) to the index
of the desired string in the string descriptor table. For example, in the table below, the manufacturer is described in
str_descriptor_manufacturer and the value of iManufacturer in the device descriptor is 1.

Other Descriptors

Refer to the Universal Serial Bus Revision 2.0 specification (http://www.usb.org/developers/docs/) for
details on how to construct the device, configuration and qualifier descriptors.

Usage Notes
Program Structure

USB applications (whether using an RTOS or not) should be written as an event-handling loop. Either
a callback function (RTOS only) or R_USB_EventGet should be used to provide event data to the
application loop where a switch statement handles the event.

Note
1.The USB_STATUS_CONFIGURED event should be confirmed before calling R_USB_Read or R_USB_Write.
2.When attaching or detaching USB cable, the suspend or resume event may be notified to the application program
in USB peripheral mode. Please ignore these events since the notification of these events to the application
program does not affect the operation.

Limitations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,338 / 5,560

http://www.usb.org/developers/docs/

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

Developers should be aware of the following limitations when using the USB driver:

The current USB driver does not support hub.
In USB host mode, the module does not support suspend during data transfers. Execute
suspend only after confirming that all transfers are complete.
Multiconfigurations are not supported.
This driver does not support CPU transfers using the D0FIFO/D1FIFO register.
Only one device-class driver may be used at a time.
The USB Hi-Speed module only supports Hi-Speed operation.
In USB host mode, this USB driver does not support the composite device other than "HMSC
+ HCDC (for FreeRTOS)".
The user can not specify DMA transfer to USB IP0 and IP1 modules at the same time when
using USB multi-port feature. USB multi-port function: Simultaneous operation feature of
USB Host and Peripheral.

Compliance Test

Please set as follows to the following items in RA configuration (r_usb_basic) when doing the
compliance test.

1.USB Compliance Test mode Set "Enabled" in this item.

Figure 192: Compliance Test Setting

2.USB TPL table name. Set the start address of TPL(Target Peripheral List) defined in the application
program.

Figure 193: TPL Start Address Setting

 Please refer to the following about how to define for TPL.
The following example is when two devices are set in TPL.

const uint16_t usb_tpl_table[] =

{

 2, /* Number of tpl */

 0, /* Reserved */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,339 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 0x0123, 0x4567, /* Vendor ID, Product ID (1st device) */

 0x89ab, 0xcdef /* Vendor ID, Product ID (2nd device) */

};

3.USB Compliance Callback Set the start address of the callback function defined in the application
program.

Figure 194: Compliance Callback Setting

 The user needs to create this callback function by referring to the following.

void usb_compliance_disp (void * param)

{

 usb_compliance_t *disp_data;

 uint8_t print_data[32];

 disp_data = (usb_compliance_t*)param;

 switch(disp_data->status)

 {

 case USB_COMPLIANCETEST_ATTACH: /* Device Attach Detection */

 display("\nATTACH \n");

 break;

 case USB_COMPLIANCETEST_DETACH: /* Device Detach Detection */

 display("\nDETACH \n");

 break;

 case USB_COMPLIANCETEST_TPL: /* TPL device connect */

 display("\nTPL PID:%04x VID:%04x \n",disp_data->pid, disp_data->vid);

 break;

 case USB_COMPLIANCETEST_NOTTPL: /* Not TPL device connect */

 display("\nNOTPL PID:%04x VID:%04x \n",disp_data->pid, disp_data->vid);

 break;

 case USB_COMPLIANCETEST_HUB: /* USB Hub connect */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,340 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 display("\nHub \n");

 break;

 case USB_COMPLIANCETEST_OVRC: /* over current */

 break;

 case USB_COMPLIANCETEST_NORES: /* Responce Time out for Control Read

Transfer */

 display("\nNOTRESP \n");

 break;

 case USB_COMPLIANCETEST_SETUP_ERR: /* Setup Transaction Error */

 break;

 default:

 break;

 }

} /* End of function usb_compliance_disp() */

Please replace the display function described in the example with the display function created by the
customer.

Callback function for USB Peripheral

The user can get completed USB event using callback function in USB Peripheral for BareMetal.

Please specify user callback function in the following item.

Figure 195: User Callback Function Setting

Please call the R_USB_DriverActivate function using one of the following methods.
Infinite loop in user application program
Timer Interrupt (Add r_gpt module in user system)

Please sepecify the area to store USB events to USB driver using
R_USB_CallbackMemorySet function after calling R_USB_Open function.

usb_callback_args_t g_apl_usb_event_callback;

Please allocate a buffer area such as a ring buffer to store USB event information in user
application program.

#define BUFSIZE 10

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,341 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

usb_callback_args_t g_apl_usb_event_buffer[BUFSIZE];

The USB driver calls the callback function when the USB event completes. USB event
information is stored in the area indicated by the callback function argument.Copy the
callback function argument to the ring buffer area or other area secured above.

g_apl_usb_event_buffer[g_apl_buffer_wp] = g_apl_usb_event_callback;

g_apl_buffer_wp++;

g_apl_buffer_wp %= BUFSIZE;

TrustZone

1. The USB driver for FreeRTOS cannot be allocated in Secure region.
2. Please place the descriptor file in Secure region when using Non-Secure Callable.
3. The user callback function should be specified using the R_USB_Callback function after

calling the R_USB_Open function when using Non-Secure Callable.
4. For Non-Secure region, please do USB clock setting when creating Secure project.
5. Please do USB pin setting when creating USB driver project.

Support Composite Device

This driver for FreeRTOS supports the following compoiste device when this driver for FreeRTOS
works in USB Host mode.

1. PCDC + PMSC

How to Configuration

Add HMSC and HCDC stack as follow.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,342 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

Figure 196: Add HMSC and HCDC Stack

Delete the "g_basic1" instance manually since this instance is not used in composite device.
(Refer to the red frame in the above figure.)

Figure 197: Delete g_basic1 instance

UCLK setting

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,343 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

Enable UCLK in "Clocks" tab on e² studio when using the following MCU.

1. RA6M4

Examples
USB Basic Example

This is a basic example of minimal use of the USB in an application.

void usb_basic_example (void)

{

 usb_event_info_t event_info;

 usb_status_t event;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 memset(&event_info, 0, sizeof(usb_event_info_t));

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

 g_usb_on_usb.eventGet(&event_info, &event);

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 case USB_STATUS_WRITE_COMPLETE:

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 case USB_STATUS_READ_COMPLETE:

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, event_info.data_size,

USB_CLASS_PCDC);

 break;

 case USB_STATUS_REQUEST: /* Receive Class Request */

 if (USB_PCDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,344 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 break;

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 break;

 default:

 break;

 }

 }

} /* End of function usb_main() */

USB Host Composite (CDC+MSC) Example

This is Host composiete (CDC+MSC) example of minimal use of the USB in an application.

#define RESET_VALUE (0x00)

#define EP_INFO \

 "\r\nThis example project demonstrates basic functionalities of USB Host

Communication Device \r\n" \

 "Class (HCDC) driver on Renesas RA MCUs using 2 RA Boards. The Board 1(with USB

HCDC Example \r\n" \

 "running on it)communicates with Board2(with USB PCDC Example project running).

Board 1 initiates\r\n" \

 "the communication by sending commands to Board 2 and Board 2 responds by sending

the data.\r\n" \

 "Board1 prints the received data on the RTTViewer.\r\n\n\n"

#define HCDC_TSK_STACK_SIZE 1024

#define HCDC_TSK_PRI 2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,345 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

#define BUF_SIZE 512

#define KIT_INFO ('1')

#define NEXT_STEPS ('2')

#define CARRIAGE_RETURN ('\r')

#define SET_LINE_CODING (USB_CDC_SET_LINE_CODING | USB_HOST_TO_DEV | USB_CLASS |

USB_INTERFACE)

#define GET_LINE_CODING (USB_CDC_GET_LINE_CODING | USB_DEV_TO_HOST | USB_CLASS |

USB_INTERFACE)

#define SET_CONTROL_LINE_STATE (USB_CDC_SET_CONTROL_LINE_STATE | USB_HOST_TO_DEV |

USB_CLASS | USB_INTERFACE)

#define LINE_CODING_LENGTH (0x07U)

#define VALUE_ZERO (0x0000U)

#define NO_WAIT_TIME 0

#define CDC_READ_DATA_LEN 512

#define CDC_WRITE_DATA_LEN 512

#define ZERO_INDEX 0

void usb_app_hcdc_task(void * pvParameters);

static void usb_app_common_callback(usb_event_info_t * p_event_info, usb_hdl_t

cur_task, usb_onoff_t usb_state);

static void usb_app_hcdc_callback(usb_event_info_t * p_event_info, usb_hdl_t

cur_task, usb_onoff_t usb_state);

static void set_line_coding(usb_instance_ctrl_t * p_ctrl, uint8_t device_address);

static void set_control_line_state(usb_instance_ctrl_t * p_ctrl, uint8_t

device_address);

static void get_line_coding(usb_instance_ctrl_t * p_ctrl, uint8_t device_address);

static void usb_data_process(usb_event_info_t * event_info);

static void handle_error(fsp_err_t err, char * err_str);

static void process_usb_operation(uint8_t p_input_buffer);

static void usb_write_operation(void);

static void usb_read_operation(void);

static void format_usb_device(void);

static bool check_usb_connection(void);

static void usb_safely_eject(void);

static void update_buffer(void);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,346 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

static void fat_clean_up(void);

static fsp_err_t usb_init(void);

static TaskHandle_t g_app_hcdc_tsk_hdl;

static usb_callback_t * g_usb_host_apl_callback[2];

static FF_Disk_t my_disk;

static usb_hcdc_linecoding_t g_serial_state;

static usb_hcdc_linecoding_t g_com_parm;

static uint8_t g_write_data[WRITE_ITEM_SIZE] = {RESET_VALUE}; /* Data(10k) to write

to file */

static uint8_t g_read_data[WRITE_ITEM_SIZE] = {RESET_VALUE}; /* Variable to store the

data read from file */

static uint8_t g_snd_buf[BUF_SIZE] BSP_ALIGN_VARIABLE(4) = {RESET_VALUE};

static uint8_t g_rcv_buf[BUF_SIZE] BSP_ALIGN_VARIABLE(4) = {RESET_VALUE};

static uint8_t g_usb_dummy = RESET_VALUE; /* dummy variable to send */

static volatile bool g_err_flag = false; /* error flag bit */

static bool b_usb_hmsc_close = false;

static volatile bool g_rm_freertos_plus_fat_insertion_events = false;

extern

void new_thread0_entry (void * pvParameters)

{

 FSP_PARAMETER_NOT_USED(pvParameters);

 BaseType_t err_task = pdFALSE;

 memset(&my_disk, RESET_VALUE, sizeof(my_disk));

 fsp_pack_version_t version = {RESET_VALUE};

 /* version get API for FLEX pack information */

 R_FSP_VersionGet(&version);

 g_usb_host_apl_callback[0] = usb_app_hcdc_callback; // HCDC App Callback

 g_usb_host_apl_callback[1] = g_basic0_cfg.p_usb_apl_callback; // HMSC App

Callback

 R_USB_Callback(usb_app_common_callback);

 /* Example Project information printed on the Console */

 APP_PRINT(BANNER_INFO,

 EP_VERSION,

 version.version_id_b.major,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,347 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 version.version_id_b.minor,

 version.version_id_b.patch);

 APP_PRINT(EP_INFO);

 fsp_err_t freertos_fat_error = FSP_SUCCESS;

 freertos_fat_error = usb_init();

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nError in initializing FreeRTOS+FAT with USB_HMSC\r\n");

 APP_ERR_TRAP(freertos_fat_error);

 }

 err_task = xTaskCreate((TaskFunction_t) usb_app_hcdc_task,

 "HCDC_TSK",

 HCDC_TSK_STACK_SIZE,

 NULL,

 HCDC_TSK_PRI,

 &g_app_hcdc_tsk_hdl);

 if (pdPASS != err_task)

 {

 APP_ERR_PRINT("\r\nAppTask Create failed.\r\n");

 return;

 }

 /* Print USB HMSC menu */

 APP_PRINT(USB_HMSC_MENU);

 while (true)

 {

 static uint8_t rtt_input_buf[BUFFER_SIZE_DOWN] = {RESET_VALUE};

 static uint8_t converted_rtt_input = RESET_VALUE;

 /*Read RTT input from user*/

 if (APP_CHECK_DATA)

 {

 APP_READ(rtt_input_buf);

 converted_rtt_input = (uint8_t) atoi((char *) rtt_input_buf);

 process_usb_operation(converted_rtt_input);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,348 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 if ((false == b_usb_hmsc_close) && (false ==

g_rm_freertos_plus_fat_insertion_events))

 {

 APP_PRINT("\r\n\n USB Device disconnected without Eject option.\r\n");

 APP_PRINT("\r\n Connect the USB and Execute Safely Eject option to make

sure file operations works"

 "correctly\r\n");

 /* Wait until USB Device is connected */

 while (true != check_usb_connection())

 {

 ;

 }

 }

 vTaskDelay(1);

 }

}

/**

 * This function initiates the USB operation by calling respective functions.

 **

**********************************/

static void process_usb_operation (uint8_t input_buffer)

{

 fsp_err_t freertos_fat_error = FSP_SUCCESS;

 switch (input_buffer)

 {

 case USB_WRITE:

 {

 usb_write_operation();

 usb_read_operation();

 APP_PRINT(USB_HMSC_MENU);

 break;

 }

 case USB_FORMAT:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,349 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 {

 format_usb_device();

 APP_PRINT(USB_HMSC_MENU);

 break;

 }

 case USB_SAFELY_EJECT:

 {

 usb_safely_eject();

 APP_PRINT(USB_HMSC_MENU);

 break;

 }

 case USB_INIT:

 {

 if (true == b_usb_hmsc_close)

 {

 freertos_fat_error = usb_init();

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nError in initializing FreeRTOS+FAT with USB_HMSC\r\n");

 APP_ERR_TRAP(freertos_fat_error);

 }

 }

 else

 {

 APP_PRINT("\r\n FreeRTOS+FAT USB_HMSC driver is already Initialized.

Provide any other command\r\n");

 }

 APP_PRINT(USB_HMSC_MENU);

 break;

 }

 default:

 {

 APP_PRINT("\r\n Invalid input. Provide a valid input\r\n");

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,350 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 }

 }

}

/**

 * This function performs USB HMSC write operation.

 **

******************************/

static void usb_write_operation (void)

{

 FF_FILE * file_pointer = NULL;

 FF_Stat_t file_details;

 int32_t file_error = SUCCESS;

 /* Capture the number of bytes written in the variable to check write status. */

 size_t bytes_written = RESET_VALUE;

 memset(&file_details, RESET_VALUE, sizeof(file_details));

 /* Double check the connection again to ensure the USB device is still mounted */

 if ((true == check_usb_connection()) && (true != b_usb_hmsc_close))

 {

 /* Once connection is detected open file is write mode */

 file_pointer = ff_fopen((const char *) FILE_NAME, WRITE_MODE);

 if (NULL != file_pointer)

 {

 /* Fill write buffer with data */

 update_buffer();

 APP_PRINT(" USB write operation will be initiated.\n");

 /* Write API writes */

 bytes_written = ff_fwrite(g_write_data, sizeof

(g_write_data[RESET_VALUE]), WRITE_ITEM_SIZE, file_pointer);

 if (WRITE_ITEM_SIZE != bytes_written)

 {

 APP_ERR_PRINT(" ff_write API failed. Closing opened file.\r\n");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,351 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 file_error = ff_fclose(file_pointer);

 if (SUCCESS != file_error)

 {

 APP_ERR_PRINT("ff_fclose API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 }

 return;

 }

 /* Close the file after write operation and open again in read mode */

 file_error = ff_fclose(file_pointer);

 if (SUCCESS != file_error)

 {

 APP_ERR_PRINT("ff_fclose API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 file_error = ff_stat((const char *) FILE_NAME, &file_details);

 /* ff_stat returns 0 on success and -1 on error */

 if (SUCCESS == file_error)

 {

 /* Compare the actual bytes written and file size after write operation */

 if (bytes_written == file_details.st_size)

 {

 APP_PRINT(" %d bytes Data successfully written to file %s \n",

bytes_written, FILE_NAME);

 APP_PRINT(" Write operation is Successful \n");

 }

 else

 {

 APP_ERR_PRINT("ff_write API failed ");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,352 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 return;

 }

 }

 else

 {

 APP_ERR_PRINT("ff_stat API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 }

 else

 {

 APP_ERR_PRINT("ff_fopen API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 }

 else

 {

 APP_PRINT("USB Device disconnected or not initialized after Eject command\n");

 }

}

/**

 * This function performs USB HMSC read operation.

 **

*******************************/

static void usb_read_operation (void)

{

 FF_FILE * file_pointer = NULL;

 FF_Stat_t file_details;

 int32_t file_error = SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,353 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 memset(&file_details, RESET_VALUE, sizeof(file_details));

 /* Double check the connection again to ensure the USB device is still mounted */

 if ((true == check_usb_connection()) && (true != b_usb_hmsc_close))

 {

 /* Open the file read mode to read data written previously */

 file_pointer = ff_fopen((const char *) FILE_NAME, READ_MODE);

 if (file_pointer != NULL)

 {

 APP_PRINT(" USB read operation will be initiated.\n");

 /* Capture the number of bytes read in the variable to check read status. */

 size_t bytes_read = RESET_VALUE;

 bytes_read = ff_fread(g_read_data, sizeof(g_read_data[RESET_VALUE]),

WRITE_ITEM_SIZE, file_pointer);

 if (READ_WRITE_FAILURE == bytes_read)

 {

 APP_ERR_PRINT(" ff_read API failed. Closing opened file \r\n",

stdioGET_ERRNO());

 file_error = ff_fclose(file_pointer);

 if (SUCCESS != file_error)

 {

 APP_ERR_PRINT("ff_fclose API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 return;

 }

 file_error = ff_fclose(file_pointer);

 if (SUCCESS != file_error)

 {

 APP_ERR_PRINT("ff_fclose API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,354 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 }

 file_error = ff_stat((const char *) FILE_NAME, &file_details);

 /* ff_stat returns 0 on success and -1 on error */

 if (SUCCESS == file_error)

 {

 /* Compare the actual bytes written and file size after write operation */

 if (bytes_read == file_details.st_size)

 {

 APP_PRINT(" %d bytes Data successfully read from file %s \n",

bytes_read, FILE_NAME);

 APP_PRINT(" Read operation is Successful \n");

 }

 else

 {

 APP_ERR_PRINT("ff_write API failed ");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 /* Compare Write and Read data. */

 if (SUCCESS == memcmp(g_write_data, g_read_data, WRITE_ITEM_SIZE))

 {

 APP_PRINT("\r\nWrite and Read data is same\r\n");

 }

 else

 {

 APP_ERR_PRINT("\r\nWrite and Read data did not match\r\n");

 }

 }

 else

 {

 APP_ERR_PRINT("ff_stat API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,355 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 return;

 }

 }

 else

 {

 APP_ERR_PRINT("ff_fopen API failed");

 /* Adding extra %d as parses string and prints %d as-is. */

 APP_PRINT(" %d\r\n", stdioGET_ERRNO());

 return;

 }

 }

 else

 {

 APP_PRINT("USB Device disconnected or not initialized after Eject command\n");

 }

}

/**

 * This function performs USB HMSC format operation.

 **

******************************/

static void format_usb_device (void)

{

 if ((true == check_usb_connection()) && (true != b_usb_hmsc_close))

 {

 APP_PRINT("\r\n USB Device Formatting will be initiated. Formatting will take

time "

 "depending on USB Device capacity.\r\n");

 APP_PRINT(" Do not disconnect the USB device while formatting is in

progress. Please Wait ...\r\n");

 /* Formatting time varies with USB Device capacity. Might take longer time for

higher capacity USB Device */

 FF_Error_t ff_error = FF_Format(&my_disk, my_disk.xStatus.bPartitionNumber,

pdFALSE, pdFALSE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,356 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 if (FF_ERR_NONE != ff_error)

 {

 APP_ERR_PRINT("\r\n FF_Format API failed %d. Check the USB Device.\r\n",

FF_GetErrMessage(ff_error));

 APP_PRINT(" %d\r\n", FF_GetErrMessage(ff_error));

 }

 else

 {

 APP_PRINT("\r\nUSB Device Formatted successfully \r\n");

 }

 }

 else

 {

 APP_PRINT("USB Device disconnected or not initialized after Eject command\n");

 }

}

/**

 * This function closes USB HMSC on FreeRTOS+FAT and safely ejects.

 **

******************************/

static void usb_safely_eject (void)

{

 /* Check the USB Device Connection before formating */

 if ((true == check_usb_connection()) && (true != b_usb_hmsc_close))

 {

 fsp_err_t freertos_fat_error =

RM_FREERTOS_PLUS_FAT_DiskDeinit(&g_rm_freertos_plus_fat0_ctrl, &my_disk);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nFREERTOS PLUS FAT DiskDeinit API failed\r\n");

 APP_ERR_TRAP(freertos_fat_error);

 }

 /* Close the FREERTOS_PLUS_FAT_Close instance on safely ejecting */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,357 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 freertos_fat_error = RM_FREERTOS_PLUS_FAT_Close

(&g_rm_freertos_plus_fat0_ctrl);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nFREERTOS PLUS FAT CLOSE API failed\r\n");

 APP_ERR_TRAP(freertos_fat_error);

 }

 APP_PRINT("\r\nUSB Device can be safely removed now\r\n");

 /* Update the flag */

 b_usb_hmsc_close = true;

 g_rm_freertos_plus_fat_insertion_events = false;

 }

 else

 {

 /* USB Device disconnected */

 APP_PRINT("USB Device disconnected or not initialized after Eject command\n");

 }

}

/**

 * This function checks the USB HMSC connection status.

 **

******************************/

static bool check_usb_connection (void)

{

 if (true != g_rm_freertos_plus_fat_insertion_events)

 {

 return false;

 }

 else

 {

 APP_PRINT("\r\n USB Device is connected\r\n");

 return true;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,358 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

}

/**

 * This function updates write buffer with data and clears read buffer.

 **

******************************/

static void update_buffer (void)

{

 for (uint16_t i = RESET_VALUE; i < WRITE_ITEM_SIZE; i++)

 {

 g_write_data[i] = ASCII_CHAR_A;

 g_read_data[i] = RESET_VALUE;

 }

}

/**

 * This function is callback for FreeRTOS+FAT and triggered when USB Pen drive is

removed or inserted.

 **

******************************/

static void free_rtos_fat_callback (rm_freertos_plus_fat_callback_args_t * p_args)

{

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED)

 {

 g_rm_freertos_plus_fat_insertion_events = true;

 }

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_REMOVED)

 {

 g_rm_freertos_plus_fat_insertion_events = false;

 }

}

/**

 * This function Initializes the FreeRTOS+FAT instance..

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,359 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 **

*******************************/

static fsp_err_t usb_init (void)

{

 fsp_err_t freertos_fat_error = FSP_SUCCESS;

 int32_t file_error = SUCCESS;

 rm_freertos_plus_fat_device_t device;

 memset(&device, RESET_VALUE, sizeof(device));

 /* Open FreeRTOS PLUS FAT */

 freertos_fat_error = RM_FREERTOS_PLUS_FAT_Open(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_cfg);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nFREERTOS PLUS FAT OPEN API failed\r\n");

 return freertos_fat_error;

 }

 APP_PRINT("\r\n\nFreeRTOS+FAT Open successful\r\n");

 /* Wait for USB Device connection */

 APP_PRINT(" Connect USB Device...\r\n");

 /* Wait until USB Device is connected */

 while (true != check_usb_connection())

 {

 ;

 }

 /* Initialize the mass storage device. This should not be done until the device is

plugged in and initialized. */

 freertos_fat_error = RM_FREERTOS_PLUS_FAT_MediaInit

(&g_rm_freertos_plus_fat0_ctrl, &device);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nFreeRTOS Plus FAT Media Init API failed\r\n");

 fat_clean_up();

 return freertos_fat_error;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,360 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 /* Initialize one disk for each partition used in the application. */

 freertos_fat_error = RM_FREERTOS_PLUS_FAT_DiskInit(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_disk_cfg,

 &my_disk);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_ERR_PRINT("\r\nFreeRTOS Plus FAT Disk Init API failed\r\n");

 fat_clean_up();

 return freertos_fat_error;

 }

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Error_t ff_err = FF_Mount(&my_disk, my_disk.xStatus.bPartitionNumber);

 if (FSP_SUCCESS != ff_err)

 {

 APP_ERR_PRINT("\r\nFF_Mount API failed\r\n");

 /* Close the FREERTOS_PLUS_FAT_Close instance on safely ejecting */

 fat_clean_up();

 /* As function returns fsp_err_t, ff_err cannot be returned. Hence trapping the

error here */

 APP_ERR_TRAP(ff_err);

 }

 /* Add the disk to the file system. */

 file_error = FF_FS_Add("/", &my_disk);

 if (SUCCESS == file_error)

 {

 APP_ERR_PRINT("\r\nFF_Mount API failed\r\n");

 /* Close the FREERTOS_PLUS_FAT_Close instance on safely ejecting */

 fat_clean_up();

 /* As function returns fsp_err_t, ff_err cannot be returned. Hence trapping the

error here */

 APP_ERR_TRAP(file_error);

 }

 /* Set this flag to let application know that USB is initialized */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,361 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 b_usb_hmsc_close = false;

 return freertos_fat_error;

}

/**

 * This function closes the FreeRTOS+FAT instance..

 **

*******************************/

static void fat_clean_up (void)

{

 fsp_err_t freertos_fat_error = FSP_SUCCESS;

 /* Close the FREERTOS_PLUS_FAT_Close instance on any failure */

 freertos_fat_error = RM_FREERTOS_PLUS_FAT_Close(&g_rm_freertos_plus_fat0_ctrl);

 if (FSP_SUCCESS != freertos_fat_error)

 {

 APP_PRINT("\r\nFREERTOS PLUS FAT CLOSE API failed\r\n");

 }

 else

 {

 APP_PRINT("\r\nFREERTOS PLUS FAT instance Closed successfully.\r\n");

 }

}

/**

 * Event notification thread for Interrupt IN/OUT test.

 **/

static void usb_app_hcdc_task (void * pvParameters)

{

 fsp_err_t err = FSP_SUCCESS;

 static usb_event_info_t * event_info = NULL;

 BaseType_t err_queue = pdFALSE;

 memset(&g_serial_state, RESET_VALUE, sizeof(g_serial_state));

 memset(&g_com_parm, RESET_VALUE, sizeof(g_com_parm));

 g_snd_buf[ZERO_INDEX] = KIT_INFO;

 uint32_t i;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,362 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 /*Fill the write buffer*/

 for (i = RESET_VALUE; i < CDC_WRITE_DATA_LEN; i++)

 {

 g_snd_buf[i] = (uint8_t) i;

 }

 while (true)

 {

 /* Handle error if queue send fails*/

 if (true == g_err_flag)

 {

 handle_error(g_err_flag, "Error in sending usb event through queue");

 }

 /* Receive message from queue and analyzing the received message*/

 err_queue = xQueueReceive(g_usb_queue, &event_info, (portMAX_DELAY));

 /* Handle error */

 if (pdTRUE != err_queue)

 {

 handle_error(err_queue, "Error in receiving USB event message through

queue");

 }

 switch (event_info->event)

 {

 case USB_STATUS_CONFIGURED:

 {

 vTaskDelay(200); // GR_debug

 /* CDC Class request "SetLineCoding" */

 set_line_coding(&g_basic0_ctrl, event_info->device_address);

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 /* CDC class communication data process */

 usb_data_process(event_info);

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,363 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 /* Report receive start */

 err = R_USB_Read(&g_basic0_ctrl, g_rcv_buf, CDC_READ_DATA_LEN,

event_info->device_address);

 /* Handle Error */

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_Read API FAILED**");

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 /* Check Complete request "SetLineCoding" */

 if (USB_CDC_SET_LINE_CODING == (event_info->setup.request_type & USB_BREQUEST))

 {

 /* Class notification "SerialState" receive start */

 set_control_line_state(&g_basic0_ctrl,

event_info->device_address);

 }

 /* Check Complete request "SetControlLineState" */

 else if (USB_CDC_SET_CONTROL_LINE_STATE == (event_info->setup.request_type &

USB_BREQUEST))

 {

 /* CDC Class request "SetLineCoding" */

 get_line_coding(&g_basic0_ctrl, event_info->device_address);

 }

 else if (USB_CDC_GET_LINE_CODING == (event_info->setup.request_type & USB_BREQUEST))

 {

 err = R_USB_Write(&g_basic0_ctrl, g_snd_buf, CDC_WRITE_DATA_LEN,

event_info->device_address);

 if (FSP_SUCCESS != err)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,364 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 {

 handle_error(err, "**R_USB_Write API FAILED**");

 }

 }

 else

 {

 /* Not support request */

 }

 break;

 }

 default:

 {

 /* No operation to do*/

 break;

 }

 }

 vTaskDelay(200);

 }

}

/**

 * In this function initializes to set control line state information for host

control transfer.

 **

******************************/

static void set_control_line_state (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = SET_CONTROL_LINE_STATE; /*

bRequestCode:SET_CONTROL_LINE_STATE, bmRequestType */

 setup.request_value = VALUE_ZERO; /* wValue:Zero */

 setup.request_index = VALUE_ZERO; /* wIndex:Interface */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,365 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 setup.request_length = VALUE_ZERO; /* wLength:Zero */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, &g_usb_dummy, device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_HOSTControlTransfer API FAILED**");

 }

}

/**

 * In this function initializes to set line coding information for host control

transfer.

 **

******************************/

static void set_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 g_com_parm.dwdte_rate = (uint32_t) USB_HCDC_SPEED_9600;

 g_com_parm.bdata_bits = USB_HCDC_DATA_BIT_8;

 g_com_parm.bchar_format = USB_HCDC_STOP_BIT_1;

 g_com_parm.bparity_type = USB_HCDC_PARITY_BIT_NONE;

 setup.request_type = SET_LINE_CODING; /* bRequestCode:SET_LINE_CODING,

bmRequestType */

 setup.request_value = VALUE_ZERO; /* wValue:Zero */

 setup.request_index = VALUE_ZERO; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_HostControlTransfer API FAILED**");

 }

} /* End of function cdc_set_line_coding */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,366 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

/**

 * In this function initializes to get line coding information for host control

transfer.

 **

******************************/

static void get_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = GET_LINE_CODING; /* bRequestCode:GET_LINE_CODING,

bmRequestType */

 setup.request_value = VALUE_ZERO; /* wValue:Zero */

 setup.request_index = VALUE_ZERO; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_HostControlTransfer API FAILED**");

 }

}

/**

 * This function is called to do closing of usb module using its HAL level API and

handles the error trap.

 * Handle the Error internally with Proper Message. Application handles the rest.

 **

******************************/

static void handle_error (fsp_err_t err, char * err_str)

{

}

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,367 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 * This function is to do data process with peripheral device

 **

******************************/

static void usb_data_process (usb_event_info_t * event_info)

{

 fsp_err_t err = FSP_SUCCESS;

 if (USB_CLASS_HCDC == event_info->type)

 {

 if (RESET_VALUE < event_info->data_size)

 {

 if (0 != memcmp(g_rcv_buf, g_snd_buf, event_info->data_size))

 {

 APP_PRINT("\r\n Sending and receiving data do not match :%s",

g_rcv_buf);

 }

 err = R_USB_Write(&g_basic0_ctrl, g_snd_buf, CDC_WRITE_DATA_LEN,

event_info->device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_Write API FAILED**");

 }

 APP_PRINT("\r\n Received data :%s", g_rcv_buf);

 }

 else

 {

 /* Send the data reception request when the zero-length packet is received. */

 err = R_USB_Read(&g_basic0_ctrl, g_rcv_buf, event_info->data_size,

event_info->device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_Read API FAILED**");

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,368 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 }

 else

 {

 /* Class notification "SerialState" receive start */

 err = R_USB_Read(&g_basic0_ctrl,

 (uint8_t *) &g_serial_state,

 USB_HCDC_SERIAL_STATE_MSG_LEN,

 event_info->device_address);

 /* Error Handle */

 if (FSP_SUCCESS != err)

 {

 handle_error(err, "**R_USB_Read API FAILED**");

 }

 }

} /* End of function usb_data_process */

/**

 * This function is callback for FreeRTOS+HCDC and triggers when USB event occurs

from the device.

 **

******************************/

static void usb_app_common_callback (usb_event_info_t * p_event_info, usb_hdl_t

cur_task, usb_onoff_t usb_state)

{

 FSP_PARAMETER_NOT_USED(cur_task);

 FSP_PARAMETER_NOT_USED(usb_state);

 if (USB_CLASS_REQUEST == p_event_info->type)

 {

 if ((USB_CDC_SET_LINE_CODING == (p_event_info->setup.request_type & USB_BREQUEST))

||

 (USB_CDC_GET_LINE_CODING == (p_event_info->setup.request_type &

USB_BREQUEST)) ||

 (USB_CDC_SET_CONTROL_LINE_STATE == (p_event_info->setup.request_type &

USB_BREQUEST)))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,369 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 {

 g_usb_host_apl_callback[0](p_event_info, cur_task, usb_state); // HCDC

Callback

 }

 else

 {

 g_usb_host_apl_callback[1](p_event_info, cur_task, usb_state); // HMSC

Callback

 }

 }

 else

 {

 if ((USB_CLASS_HCDC == p_event_info->type) || (USB_CLASS_HCDCC ==

p_event_info->type))

 {

 g_usb_host_apl_callback[0](p_event_info, cur_task, usb_state); // HCDC

Callback

 }

 else

 {

 g_usb_host_apl_callback[1](p_event_info, cur_task, usb_state); // HMSC

Callback

 }

 }

}

/**

 * This function is callback for FreeRTOS+HCDC and triggers when USB event occurs

from the device.

 **

******************************/

static void usb_app_hcdc_callback (usb_event_info_t * p_event_info, usb_hdl_t

cur_task, usb_onoff_t usb_state)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,370 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

 FSP_PARAMETER_NOT_USED(cur_task);

 FSP_PARAMETER_NOT_USED(usb_state);

 /* Send event received to queue */

 if (pdTRUE != (xQueueSend(g_usb_queue, (const void *) &p_event_info, (TickType_t)

(NO_WAIT_TIME))))

 {

 g_err_flag = true;

 }

}

Typedefs

typedef usb_event_info_t usb_instance_ctrl_t

Typedef Documentation

◆ usb_instance_ctrl_t

typedef usb_event_info_t usb_instance_ctrl_t

USB private control block. DO NOT MODIFY. Initialization occurs when R_USB_Open is called.

Function Documentation

◆ R_USB_EventGet()

fsp_err_t R_USB_EventGet (usb_ctrl_t *const p_api_ctrl, usb_status_t * event)

Obtains completed USB related events. (OS-less Only)

In USB host mode, the device address value of the USB device that completed an event is specified
in the usb_ctrl_t structure member (address) specified by the event's argument. In USB peripheral
mode, USB_NULL is specified in member (address). If this function is called in the RTOS execution
environment, a failure is returned.

Return values
FSP_SUCCESS Event Get Success.

FSP_ERR_USB_FAILED If called in the RTOS environment, an error
is returned.

Note
Do not use the same variable as the first argument of R_USB_Open for the first argument.
Do not call this API in the interrupt function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,371 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Callback()

fsp_err_t R_USB_Callback (usb_callback_t * p_callback)

Register a callback function to be called upon completion of a USB related event. (RTOS only)

This function registers a callback function to be called when a USB-related event has completed. If
this function is called in the OS-less execution environment, a failure is returned.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_ASSERTION Parameter is NULL error.

Note
Do not call this API in the interrupt function.

◆ R_USB_Open()

fsp_err_t R_USB_Open (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg)

Applies power to the USB module specified in the argument (p_ctrl).

Return values
FSP_SUCCESS Success in open.

FSP_ERR_USB_BUSY Specified USB module now in use.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,372 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Close()

fsp_err_t R_USB_Close (usb_ctrl_t *const p_api_ctrl)

Terminates power to the USB module specified in argument (p_ctrl). USB0 module stops when
USB_IP0 is specified to the member (module), USB1 module stops when USB_IP1 is specified to the
member (module).

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_NOT_OPEN USB module is not open.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,373 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Read()

fsp_err_t R_USB_Read (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
destination)

Bulk/Interrupt data transfer.

Requests USB data read (bulk/interrupt transfer). The read data is stored in the area specified by
argument (p_buf). After data read is completed, confirm the operation by checking the return value
(USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function. The received data size is set in
member (size) of the usb_ctrl_t structure. To figure out the size of the data when a read is
complete, check the return value (USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function,
and then refer to the member (size) of the usb_crtl_t structure.

Return values
FSP_SUCCESS Successfully completed (Data read request

completed).

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Data receive request already in process for
USB device with same device address.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1. Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).
2. Allocate the following the storage area when using DMA transfer and specify the start address of the allocated
storage area to the 2nd argument(p_buf).
(1). When using High-speed and enabling continuous transfer mode, allocate the storage area with a size that is a
multiple of 2048.
(2). When using High-speed and disabling continuous transfer mode, allocate the storage area with a size that is a
multiple of 512.
(3). When using Full-speed, allocate the storage area with a size that is a multiple of 64.
3. Specify the following address to the 2nd argument (p_buf) when using DMA transfer.
(1). When using High-speed module, specify start address of the buffer area aligned on 4-byte boundary.
(2). When using Full-speed module, specify start address of the buffer area aligned on 2-byte boundary.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,374 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Write()

fsp_err_t R_USB_Write (usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf, uint32_t size,
uint8_t destination)

Bulk/Interrupt data transfer.

Requests USB data write (bulk/interrupt transfer). Stores write data in area specified by argument
(p_buf). Set the device class type in usb_ctrl_t structure member (type). Confirm after data write is
completed by checking the return value (USB_STATUS_WRITE_COMPLETE) of the R_USB_GetEvent
function. For sending a zero-length packet, please refer the following Note.

Return values
FSP_SUCCESS Successfully completed. (Data write request

completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Data write request already in process for
USB device with same device address.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1. The user needs to send the zero-length packet(ZLP) since this USB driver does not send the ZLP automatically.
When sending a ZLP, the user sets USB_NULL in the third argument (size) of R_USB_Write function as follow.
e.g)
R_USB_Write (&g_basic0_ctrl, &g_buf, USB_NULL);
2. Specify the following address to the 2nd argument (p_buf) when using DMA transfer.
(1). When using High-speed module, specify start address of the buffer area aligned on 4-byte boundary.
(2). When using Full-speed module, specify start address of the buffer area aligned on 2-byte boundary.
3. Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,375 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Stop()

fsp_err_t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction, uint8_t destination)

Requests a data read/write transfer be terminated when a data read/write transfer is being
performed.

To stop a data read, set USB_TRANSFER_READ as the argument (type); to stop a data write, specify
USB_WRITE as the argument (type).

Return values
FSP_SUCCESS Successfully completed. (stop completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Stop processing is called multiple times.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_Suspend()

fsp_err_t R_USB_Suspend (usb_ctrl_t *const p_api_ctrl)

Sends a SUSPEND signal from the USB module assigned to the member (module) of the usb_crtl_t
structure.

After the suspend request is completed, confirm the operation with the return value
(USB_STATUS_SUSPEND) of the R_USB_EventGet function.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY During a suspend request to the specified
USB module, or when the USB module is
already in the suspended state.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,376 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_Resume()

fsp_err_t R_USB_Resume (usb_ctrl_t *const p_api_ctrl)

Sends a RESUME signal from the USB module assigned to the member (module) of the
usb_ctrl_tstructure.

After the resume request is completed, confirm the operation with the return value
(USB_STATUS_RESUME) of the R_USB_EventGet function

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Resume already requested for same device
address. (USB host mode only)

FSP_ERR_USB_NOT_SUSPEND USB device is not in the SUSPEND state.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_VbusSet()

fsp_err_t R_USB_VbusSet (usb_ctrl_t *const p_api_ctrl, uint16_t state)

Specifies starting or stopping the VBUS supply.

Return values
FSP_SUCCESS Successful completion. (VBUS supply

start/stop completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,377 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_InfoGet()

fsp_err_t R_USB_InfoGet (usb_ctrl_t *const p_api_ctrl, usb_info_t * p_info, uint8_t destination)

Obtains completed USB-related events.

Return values
FSP_SUCCESS Successful completion. (VBUS supply

start/stop completed)

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,378 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_PipeRead()

fsp_err_t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
pipe_number)

Requests a data read (Bulk/Interrupt transfer) via the pipe specified in the argument.

The read data is stored in the area specified in the argument (p_buf). After the data read is
completed, confirm the operation with the R_USB_GetEvent function return
value(USB_STATUS_READ_COMPLETE). To figure out the size of the data when a read is complete,
check the return value (USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function, and then
refer to the member (size) of the usb_crtl_t structure.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1. Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).
2. Allocate the following the storage area when using DMA transfer and specify the start address of the allocated
storage area to the 2nd argument(p_buf).
(1). When using High-speed and enabling continuous transfer mode, allocate the storage area with a size that is a
multiple of 2048.
(2). When using High-speed and disabling continuous transfer mode, allocate the storage area with a size that is a
multiple of 512.
(3). When using Full-speed, allocate the storage area with a size that is a multiple of 64.
3. Specify the following address to the 2nd argument (p_buf) when using DMA transfer.
(1). When using High-speed module, specify start address of the buffer area aligned on 4-byte boundary.
(2). When using Full-speed module, specify start address of the buffer area aligned on 2-byte boundary.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,379 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_PipeWrite()

fsp_err_t R_USB_PipeWrite (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
pipe_number)

Requests a data write (Bulk/Interrupt transfer).

The write data is stored in the area specified in the argument (p_buf). After data write is
completed, confirm the operation with the return value (USB_STATUS_WRITE_COMPLETE) of the
EventGet function. For sending a zero-length packet, please refer the following Note.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1. The user needs to send the zero-length packet(ZLP) since this USB driver does not send the ZLP automatically.
When sending a ZLP, the user sets USB_NULL in the third argument (size) of R_USB_PipeWrite function as
follow.
e.g)
R_USB_PipeWrite (&g_basic0_ctrl, &g_buf, USB_NULL, pipe_number);
2. Specify the following address to the 2nd argument (p_buf) when using DMA transfer.
(1). When using High-speed module, specify start address of the buffer area aligned on 4-byte boundary.
(2). When using Full-speed module, specify start address of the buffer area aligned on 2-byte boundary.
3. Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,380 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_PipeStop()

fsp_err_t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

Terminates a data read/write operation.

Return values
FSP_SUCCESS Successfully completed. (Stop request

completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_UsedPipesGet()

fsp_err_t R_USB_UsedPipesGet (usb_ctrl_t *const p_api_ctrl, uint16_t * p_pipe, uint8_t
destination)

Gets the selected pipe number (number of the pipe that has completed initalization) via bit map
information.

The bit map information is stored in the area specified in argument (p_pipe). Based on the
information (module member and address member) assigned to the usb_ctrl_t structure, obtains
the PIPE information of that USB device.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,381 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_PipeInfoGet()

fsp_err_t R_USB_PipeInfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t * p_info, uint8_t
pipe_number)

Gets the following pipe information regarding the pipe specified in the argument (p_ctrl) member
(pipe): endpoint number, transfer type, transfer direction and maximum packet size.

The obtained pipe information is stored in the area specified in the argument (p_info).

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_PullUp()

fsp_err_t R_USB_PullUp (usb_ctrl_t *const p_api_ctrl, uint8_t state)

This API enables or disables pull-up of D+/D- line.

Return values
FSP_SUCCESS Successful completion. (Pull-up

enable/disable setting completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,382 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_HostControlTransfer()

fsp_err_t R_USB_HostControlTransfer (usb_ctrl_t *const p_api_ctrl, usb_setup_t * p_setup, uint8_t
* p_buf, uint8_t device_address)

Performs settings and transmission processing when transmitting a setup packet.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_PeriControlDataGet()

fsp_err_t R_USB_PeriControlDataGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size)

Receives data sent by control transfer.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,383 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_PeriControlDataSet()

fsp_err_t R_USB_PeriControlDataSet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size)

Performs transfer processing for control transfer.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_PeriControlStatusSet()

fsp_err_t R_USB_PeriControlStatusSet (usb_ctrl_t *const p_api_ctrl, usb_setup_status_t status)

Set the response to the setup packet.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,384 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_RemoteWakeup()

fsp_err_t R_USB_RemoteWakeup (usb_ctrl_t *const p_api_ctrl)

Sends a remote wake-up signal to the connected Host.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_NOT_SUSPEND Device is not suspended.

FSP_ERR_USB_BUSY The device is in resume operation.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_DriverActivate()

fsp_err_t R_USB_DriverActivate (usb_ctrl_t *const p_api_ctrl)

Activate USB Driver for USB Peripheral BareMetal.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

Note
Call this API in the in the infinite loop of the application program or a timer interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,385 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_CallbackMemorySet()

fsp_err_t R_USB_CallbackMemorySet (usb_ctrl_t *const p_api_ctrl, usb_callback_args_t *
p_callback_memory)

Set callback memory to USB Driver for USB Peripheral BareMetal.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

Note
Call this API after calling R_USB_Open function.

◆ R_USB_ModuleNumberGet()

fsp_err_t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * module_number)

This API gets the module number.

Return values
FSP_SUCCESS Successful completion.

◆ R_USB_ClassTypeGet()

fsp_err_t R_USB_ClassTypeGet (usb_ctrl_t *const p_api_ctrl, usb_class_t * class_type)

This API gets the class type.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,386 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_DeviceAddressGet()

fsp_err_t R_USB_DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8_t * device_address)

This API gets the device address.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

◆ R_USB_PipeNumberGet()

fsp_err_t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * pipe_number)

This API gets the pipe number.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

◆ R_USB_DeviceStateGet()

fsp_err_t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uint16_t * state)

This API gets the state of the device.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,387 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_DataSizeGet()

fsp_err_t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t * data_size)

This API gets the read data size.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

◆ R_USB_SetupGet()

fsp_err_t R_USB_SetupGet (usb_ctrl_t *const p_api_ctrl, usb_setup_t * setup)

This API gets the setup information.

Return values
FSP_SUCCESS Successful completion.

Note
In Bare-Metal, In the Bare-Metal version, please specify the variable specified by the 1st argument of the
R_USB_EventGet function to the 1st argument of this API.
In the FreeRTOS, please specify one of the following to the 1st argument of this API.
1. The 1st argument of the callback function specified in Conguration.
2. The start address of the area where the structure area of the 1st argument was copied.

◆ R_USB_OtgCallbackSet()

fsp_err_t R_USB_OtgCallbackSet (usb_ctrl_t *const p_api_ctrl, usb_otg_callback_t * p_callback)

Set callback function to be called when the OTG role swap was completed on Azure RTOS.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,388 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB (r_usb_basic)

◆ R_USB_OtgSRP()

fsp_err_t R_USB_OtgSRP (usb_ctrl_t *const p_api_ctrl)

Start the SRP processing for OTG on Azure RTOS.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

Note
Do not support the VBUS Pulsing since OTG 2.0 does not support the VBUS Pulsing..

◆ R_USB_TypeCInfoGet()

fsp_err_t R_USB_TypeCInfoGet (usb_ctrl_t *const p_api_ctrl, usb_typec_info_t * p_info)

USB Type-C connect Information get.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

5.2.6.31 USB Composite (r_usb_composite)
Modules » Connectivity

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
USB composite device works as a USB Peripheral by combining two peripheral device classes and
r_usb_basic module.
This USB driver supports the following composite devices:

1. PCDC + PMSC
2. PCDC + PHID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,389 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

3. PHID + PMSC
4. PCDC + PCDC
5. PHID + PHID
6. PCDC + PVND

How to Configuration
The following shows FSP configuration procedure for USB composite device.

Select [New Stack]->[USB]->[USB Composite]

Figure 198: Select USB Composite

The following is displayed when selecting [USB Composite].

Figure 199: USB Composite Stack

Select the supported 2 device classes as follows.

Figure 200: Select Device Classes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,390 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

Note

1. Be sure to select "USB PCDC driver on r_usb_pcdc" and "USB PCDC 2channel driver on r_usb_pcdc"
when configurating for "PCDC + PCDC".

2. Be sure to select "USB PHID driver on r_usb_phid" and "USB PHID 2channel driver on r_usb_phid"
when configurating for "PHID + PHID".

Select the supported 2 device classes as follows. The following is displayed when selecting
2 device classes.

Figure 201: Delete USB Basic Instance

Note

1. Delete the "g_basic1" instance manually since this instance is not used in composite device. (Refer to
the blue frame in the above figure.)

2. The error is output when selecting the following device classes.
a. PMSC + PMSC

Figure 202: Device Class Selection Error

Limitations

The following composite device is not suppored when using RA2A1(MCU).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,391 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

PMSC + PCDC
PCDC + PCDC

If you use PMSC, make sure to use usb_basic module with PMSC.

There is a risk that the information on the PMSC storage media cannot be registered
normally in the "USB Callback Context".

Notes

Please determine by the member "pipe" in "usb_event_info" structure when getting PCDC channel
number which the write event is completed in PCDC + PCDC.
Don't refer to the member "type" in "usb_event_info" structure.

Descriptor
Templates for composite device descriptors can be found in ra/fsp/src/r_usb_composite folder. Also,
please be sure to use your vendor ID.

1. r_usb_pcdc_pmsc_descriptor.c.template (for PCDC + PMSC)
2. r_usb_pcdc_phid_descriptor.c.template (for PCDC + PHID)
3. r_usb_phid_pmsc_descriptor.c.template (for PHID + PMSC)
4. r_usb_pcdc_pcdc_descriptor.c.template (for PCDC + PCDC)
5. r_usb_phid_phid_descriptor.c.template (for PHID + PHID)
6. r_usb_pcdc_pvnd_descriptor.c.template (for PCDC + PVND)

Examples
USB COMPOSITE Example

PCDC + PHID

void main_task (void)

{

 #if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

 #endif

 usb_event_info_t usb_event;

 usb_status_t event;

 uint8_t * p_idle_value;

 uint8_t sw_data;

 usb_info_t info;

 fsp_err_t ret_code = FSP_SUCCESS;

 uint8_t send_data[16] BSP_ALIGN_VARIABLE(4);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,392 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 uint8_t req_comp_flag = 0;

 uint8_t count = 0;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 set_key_data(g_buf_phid);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

 #if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 usb_event = *p_mess;

 event = usb_event.event;

 #else /* (BSP_CFG_RTOS == 2) */

 R_USB_EventGet(&usb_event, &event);

 #endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 g_status = NO_WRITING;

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (usb_event.type == USB_CLASS_PCDC)

 {

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 }

 else if (usb_event.type == USB_CLASS_PHID)

 {

 if (DATA_WRITING == g_status)

 {

 g_status = ZERO_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, (uint8_t *) g_zero_data,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,393 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

DATA_LEN_PHID, USB_CLASS_PHID); /* Sending the zero data (8 bytes) */

 }

 else if (g_status == ZERO_WRITING)

 {

 g_status = NO_WRITING;

 }

 }

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 if (usb_event.type == USB_CLASS_PCDC)

 {

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, usb_event.data_size,

USB_CLASS_PCDC);

 if (req_comp_flag == 1)

 {

 if (g_status == NO_WRITING)

 {

 count++;

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf_phid,

DATA_LEN_PHID, USB_CLASS_PHID);

 }

 }

 }

 break;

 }

 case USB_STATUS_REQUEST: /* Receive Class Request */

 {

 if (USB_PCDC_SET_LINE_CODING == (usb_event.setup.request_type & USB_BREQUEST))

 {

 R_USB_PeriControlDataGet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,394 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 }

 else if (USB_PCDC_GET_LINE_CODING == (usb_event.setup.request_type & USB_BREQUEST))

 {

 R_USB_PeriControlDataSet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

 }

 else if (USB_SET_REPORT == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.read(&g_basic0_ctrl, (uint8_t *) &g_numlock, 2,

USB_CLASS_PHID); /* Get the NumLock data (NumLock data is not used) */

 }

 else if (USB_GET_DESCRIPTOR == (usb_event.setup.request_type & USB_BREQUEST))

 {

 if (USB_GET_REPORT_DESCRIPTOR == usb_event.setup.request_value)

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

 (uint8_t *) g_apl_report,

USB_RECEIVE_REPORT_DESCRIPTOR);

 }

 else if (USB_GET_HID_DESCRIPTOR == usb_event.setup.request_value)

 {

 for (uint8_t i = 0; i < USB_RECEIVE_HID_DESCRIPTOR; i++)

 {

 send_data[i] = g_apl_configuration[84 + i];

 }

 /* Configuration Descriptor address set. */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, send_data,

USB_RECEIVE_HID_DESCRIPTOR);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,395 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 }

 }

 else if (USB_SET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

 {

 /* Get SetIdle value */

 p_idle_value = (uint8_t *) &usb_event.setup.request_value;

 g_idle = p_idle_value[1];

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, &g_idle, 1);

 }

 else if (USB_SET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE: /* Complete Class Request */

 {

 if (USB_SET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,396 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 {

 p_idle_value = (uint8_t *) &usb_event.setup.request_value;

 g_idle = p_idle_value[1];

 }

 else if (USB_SET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 /* None */

 /* g_protocol = event_info.setup.value; */

 }

 else

 {

 req_comp_flag = 1;

 }

 break;

 }

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main() */

void set_key_data (uint8_t * p_buf)

{

 static uint8_t key_data;

 key_data = KBD_CODE_A;

 *(p_buf + 2) = key_data;

}

 #if (BSP_CFG_RTOS == 2)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,397 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

/**

 * Function Name : usb_apl_rec_msg

 * Description : Receive a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t** mess : Message pointer

 * : usb_tm_t tm : Timeout Value

 * Return : uint16_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_rec_msg (uint8_t id, usb_msg_t ** mess, usb_tm_t tm)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 (void) tm;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 *mess = NULL;

 err = xQueueReceive(handle, (void *) mess, (portMAX_DELAY));

 if ((pdTRUE == err) && (NULL != (*mess)))

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

 * End of function usb_apl_rec_msg

 **/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,398 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

/**

 * Function Name : usb_apl_snd_msg

 * Description : Send a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t* mess : Message pointer

 * Return : usb_er_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_snd_msg (uint8_t id, usb_msg_t * mess)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 err = xQueueSend(handle, (const void *) &mess, (TickType_t) (0));

 if (pdTRUE == err)

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

 * End of function usb_apl_snd_msg

 **/

 #endif /* #if (BSP_CFG_RTOS == 2) */

PCDC + PVND

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,399 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

/**

 * Includes <System Includes> , "Project Includes"

 **/

#include "r_usb_basic.h"

#include "r_usb_pcdc_api.h"

#include "r_usb_pcdc_cfg.h"

/**

 * Macro definitions

 **/

#define DATA_LEN 2048

#define RESET_VALUE 0

#define INT_EVT_TSK_STACK_SIZE 1024 /* Stack size of Event notification thread for

vendor class's Interrupt IN/OUT test */

#define INT_EVT_TSK_PRI 2 /* Priority of Event notification thread for vendor

class's Interrupt IN/OUT test */

#define BUF_SIZE (2048) /* Buffer size */

#define REQ_SIZE (20) /* Request buffer size */

#define USB_VALUE_FF (0xFFU) /* FF macro */

#define USB_APL_MXPS (64U)

#define START_PIPE (USB_PIPE1) /* Start pipe number */

#define END_PIPE (USB_PIPE9 + 1) /* Total pipe */

/* for Vendor Class Request */

#define USB_SET_VENDOR_NO_DATA (0x0000U)

#define USB_SET_VENDOR (0x0100U)

#define USB_GET_VENDOR (0x0200U)

#define SET_VENDOR_NO_DATA (USB_SET_VENDOR_NO_DATA | USB_HOST_TO_DEV | USB_VENDOR |

USB_INTERFACE)

#define SET_VENDOR (USB_SET_VENDOR | USB_HOST_TO_DEV | USB_VENDOR | USB_INTERFACE)

#define GET_VENDOR (USB_GET_VENDOR | USB_DEV_TO_HOST | USB_VENDOR | USB_INTERFACE)

#define DELAY (10U) /* Delay for print */

#define USB_STATUS_VENDOR_INTIN_TEST ((usb_status_t) 0x01)

#define USB_STATUS_VENDOR_INTOUT_TEST ((usb_status_t) 0x02)

#define USB_STATUS_COM_IN_TEST ((usb_status_t) 0x03)

#define USB_STATUS_RE_INIT_TEST ((usb_status_t) 0x04)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,400 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

#define HS_MAX_PACKET_SIZE (512)

#define FS_MAX_PACKET_SIZE (64)

#define VALUE_A1H (0xA1)

#define LINE_CODING_LENGTH (0x07U)

/**

 * Private global variables and functions

 **/

static uint8_t g_cdc_buf[BUF_SIZE] = {RESET_VALUE}; /* Data buffer for PCDC Normal

Request */

static uint8_t g_vnd_buf[BUF_SIZE] = {RESET_VALUE}; /* Data buffer for PVND Normal

Request */

static uint8_t g_request_buf[REQ_SIZE] = {RESET_VALUE}; /* Data buffer for PVND Class

Request */

static uint8_t g_bulk_in_pipe = RESET_VALUE; /* Bulk In Pipe */

static uint8_t g_bulk_out_pipe = RESET_VALUE; /* Bulk Out Pipe */

static uint8_t g_interrupt_in_pipe = RESET_VALUE; /* Interrupt In Pipe */

static uint8_t g_interrupt_out_pipe = RESET_VALUE; /* Interrupt Out Pipe */

static uint16_t g_max_packet_size = USB_APL_MXPS;

/* Variable to capture USB event. */

static volatile usb_event_info_t * p_usb_event = NULL;

static volatile bool g_err_flag = false;

static bool b_usb_attach = false;

static usb_pcdc_linecoding_t g_line_coding;

#if (BSP_CFG_RTOS == 2)

static TaskHandle_t g_app_interrupt_event_notify_tsk_hdl;

#endif /* (BSP_CFG_RTOS == 2) */

static uint32_t g_interrupt_in_test_flag = 0;

static uint32_t g_interrupt_out_test_flag = 0;

static uint32_t g_interrupt_out_times = 0;

static uint32_t g_interrupt_com_event = 0;

static uint8_t g_interrupt_in_com_data[8] = {VALUE_A1H, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

static uint32_t g_test_reinit_flag = 0;

/* Interrupt Event for Application */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,401 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

#if (BSP_CFG_RTOS == 2)

static usb_event_info_t g_event_info2;

static usb_event_info_t * g_p_event_info2;

#else

static usb_event_info_t g_usb_event;

static usb_status_t g_event;

static uint32_t g_event2;

#endif

extern const usb_cfg_t g_basic0_cfg;

usb_instance_ctrl_t g_basic0_ctrl;

/* Function definitions */

static fsp_err_t process_usb_events(void);

static fsp_err_t process_usb_events_for_interrupt(void);

static fsp_err_t usb_configured_event_process(void);

static fsp_err_t usb_status_request(void);

static void handle_error(fsp_err_t err);

static fsp_err_t buffer_check(uint32_t length);

void usb_composite_thread_entry(void * pvParameters);

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_app_interrupt_event_task

 * Description : Event notification thread for Interrupt IN/OUT test.

 * Argument : void * pvParameters : Ipointer to pvParameters

 * Return : none

 **/

void usb_app_interrupt_event_task (void * pvParameters)

{

 while (1)

 {

 if (1 == g_interrupt_in_test_flag)

 {

 g_interrupt_in_test_flag = 0;

 g_event_info2.event = USB_STATUS_VENDOR_INTIN_TEST;

 g_p_event_info2 = &g_event_info2;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,402 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 /* Send Interrupt-IN event to queue */

 if (pdTRUE != (xQueueSend(g_event_queue, (const void *) &g_p_event_info2,

(TickType_t) (RESET_VALUE))))

 {

 g_err_flag = true;

 }

 }

 if (1 == g_interrupt_out_test_flag)

 {

 g_interrupt_out_test_flag = 0;

 g_event_info2.event = USB_STATUS_VENDOR_INTOUT_TEST;

 g_p_event_info2 = &g_event_info2;

 /* Send Interrupt-OUT event to queue */

 if (pdTRUE != (xQueueSend(g_event_queue, (const void *) &g_p_event_info2,

(TickType_t) (RESET_VALUE))))

 {

 g_err_flag = true;

 }

 }

 if (0 != g_interrupt_com_event)

 {

 g_interrupt_com_event = 0;

 g_event_info2.event = USB_STATUS_COM_IN_TEST;

 g_p_event_info2 = &g_event_info2;

 /* Send Interrupt-IN event to queue */

 if (pdTRUE != (xQueueSend(g_event_queue, (const void *) &g_p_event_info2,

(TickType_t) (RESET_VALUE))))

 {

 g_err_flag = true;

 }

 }

 if (0 != g_test_reinit_flag)

 {

 g_test_reinit_flag = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,403 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 g_event_info2.event = USB_STATUS_RE_INIT_TEST;

 g_p_event_info2 = &g_event_info2;

 /* Send RE_INIT_TEST event to queue */

 if (pdTRUE != (xQueueSend(g_event_queue, (const void *) &g_p_event_info2,

(TickType_t) (RESET_VALUE))))

 {

 g_err_flag = true;

 }

 }

 vTaskDelay(100);

 }

}

/**

 * End of function usb_app_interrupt_event_task

 **/

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_composite_thread_entry

 * Description : Peripheral CDC & Vendor application main process

 * Arguments : none

 * Return value : none

 **/

void usb_composite_thread_entry (void * pvParameters)

{

 FSP_PARAMETER_NOT_USED(pvParameters);

 fsp_err_t err = FSP_SUCCESS;

#if (BSP_CFG_RTOS == 2)

 BaseType_t err_queue = pdFALSE;

 BaseType_t err_task = pdFALSE;

#endif /* (BSP_CFG_RTOS == 2) */

 /* Open USB instance */

 R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 if (USB_SPEED_FS == g_basic0_cfg.usb_speed)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,404 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 g_max_packet_size = FS_MAX_PACKET_SIZE;

 }

 else

 {

 g_max_packet_size = HS_MAX_PACKET_SIZE;

 }

#if (BSP_CFG_RTOS == 2)

 err_task = xTaskCreate((TaskFunction_t) usb_app_interrupt_event_task,

 "INT_EVT_TSK",

 INT_EVT_TSK_STACK_SIZE,

 NULL,

 INT_EVT_TSK_PRI,

 &g_app_interrupt_event_notify_tsk_hdl);

 if (pdPASS != err_task)

 {

 return;

 }

#endif

 while (true)

 {

 /* Handle error if queue send fails*/

 if (true == g_err_flag)

 {

 handle_error(FSP_ERR_ABORTED);

 }

#if (BSP_CFG_RTOS == 2)

 /* Receive message from queue */

 err_queue = xQueueReceive(g_event_queue, &p_usb_event, (portMAX_DELAY));

 /* Handle error */

 if (pdTRUE != err_queue)

 {

 handle_error(FSP_ERR_ABORTED);

 }

 if (pdTRUE == err_queue)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,405 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 {

 if (p_usb_event == &g_event_info2)

 {

 /* process Application Interrupt events */

 err = process_usb_events_for_interrupt();

 handle_error(err);

 }

 else

 {

 /* process USB events */

 err = process_usb_events();

 handle_error(err);

 }

 }

#else /* (BSP_CFG_RTOS == 2) */

 R_USB_EventGet(&g_usb_event, &g_event);

 if (USB_STATUS_NONE == g_event)

 {

 /* Interrupt IN Test Event for Vendor Class */

 if (1 == g_interrupt_in_test_flag)

 {

 g_interrupt_in_test_flag = 0;

 g_event2 = USB_STATUS_VENDOR_INTIN_TEST;

 err = process_usb_events_for_interrupt();

 }

 /* Interrupt OUT Test Event for Vendor Class */

 else if (1 == g_interrupt_out_test_flag)

 {

 g_interrupt_out_test_flag = 0;

 g_event2 = USB_STATUS_VENDOR_INTOUT_TEST;

 err = process_usb_events_for_interrupt();

 }

 /* Interrupt IN Test Event for COM Class */

 else if (0 != g_interrupt_com_event)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,406 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 {

 g_interrupt_com_event = 0;

 g_event2 = USB_STATUS_COM_IN_TEST;

 err = process_usb_events_for_interrupt();

 }

 /* ReInit Test Event */

 else if (0 != g_test_reinit_flag)

 {

 g_test_reinit_flag = 0;

 g_event2 = USB_STATUS_RE_INIT_TEST;

 err = process_usb_events_for_interrupt();

 }

 else

 {

 err = process_usb_events();

 }

 }

 else

 {

 p_usb_event = &g_usb_event;

 err = process_usb_events();

 }

 handle_error(err);

#endif

 }

}

/**

 * End of function usb_composite_thread_entry

 **/

/**

 * Function Name : process_usb_events

 * Description : Function processes usb events.

 * Arguments : none

 * Return value : Any Other Error code apart from FSP_SUCCESS on Unsuccessful

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,407 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

operation.

 **/

static fsp_err_t process_usb_events (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* USB event received */

#if (BSP_CFG_RTOS == 2)

 switch (p_usb_event->event)

#else /* (BSP_CFG_RTOS == 2) */

 switch (g_event)

#endif /* (BSP_CFG_RTOS == 2) */

 {

 case USB_STATUS_CONFIGURED: /* Configured State */

 {

 /* Process USB configured event */

 usb_configured_event_process();

 /* [PCDC] Read data from terminal software */

 R_USB_Read(&g_basic0_ctrl, g_cdc_buf, g_max_packet_size, USB_CLASS_PCDC);

 /* [PVND] Read data from ra_usb_hvnd.exe */

 memset(g_vnd_buf, RESET_VALUE, BUF_SIZE);

 err = R_USB_PipeRead(&g_basic0_ctrl, &g_vnd_buf[RESET_VALUE], BUF_SIZE,

g_bulk_out_pipe);

 break;

 }

 case USB_STATUS_WRITE_COMPLETE: /* Write Complete State */

 {

 if (b_usb_attach)

 {

 /* [PCDC] Read data from terminal software */

 if ((USB_CFG_PCDC_BULK_IN == p_usb_event->pipe) && (FSP_ERR_USB_FAILED !=

p_usb_event->status))

 {

 err = R_USB_Read(&g_basic0_ctrl, g_cdc_buf, g_max_packet_size,

USB_CLASS_PCDC);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,408 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 }

 /* [PVND] Read data from ra_usb_hvnd.exe */

 if ((g_bulk_in_pipe == p_usb_event->pipe) && (FSP_ERR_USB_FAILED !=

p_usb_event->status))

 {

 memset(g_vnd_buf, RESET_VALUE, BUF_SIZE);

 /* Read data back */

 err = R_USB_PipeRead(&g_basic0_ctrl, &g_vnd_buf[RESET_VALUE], BUF_SIZE,

g_bulk_out_pipe);

 }

 }

 else

 {

 // Do Nothing as USB is removed and not connected yet.

 }

 break;

 }

 case USB_STATUS_READ_COMPLETE: /* Read Complete State */

 {

 if (b_usb_attach)

 {

 /* PCDC */

 if ((USB_CFG_PCDC_BULK_OUT == p_usb_event->pipe) && (FSP_ERR_USB_FAILED !=

p_usb_event->status))

 {

 /* Write back the read data from terminal software to it. */

 err = R_USB_Write(&g_basic0_ctrl, g_cdc_buf,

p_usb_event->data_size, USB_CLASS_PCDC);

 }

 /* PVND */

 if ((g_bulk_out_pipe == p_usb_event->pipe) && (FSP_ERR_USB_FAILED !=

p_usb_event->status))

 {

 /* Data comparison read from host */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,409 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 err = buffer_check(p_usb_event->data_size);

 if (FSP_SUCCESS == err)

 {

 /* Write data back to host */

 R_USB_PipeWrite(&g_basic0_ctrl, &g_vnd_buf[RESET_VALUE], p_usb_event->data_size,

 g_bulk_in_pipe);

 }

 else

 {

 return FSP_ERR_USB_FAILED;

 }

 }

 }

 else

 {

 // Do Nothing as USB is removed and not connected yet.

 }

 break;

 }

 case USB_STATUS_REQUEST: /* Receive Class Request */

 {

 /* Perform usb status request operation.*/

 err = usb_status_request();

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE: /* Request Complete State */

 {

 // Do Nothing.

 break;

 }

 case USB_STATUS_DETACH:

 case USB_STATUS_SUSPEND:

 {

 /* Reset the usb attached flag as indicating usb is removed.*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,410 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 b_usb_attach = false;

 memset(g_cdc_buf, RESET_VALUE, sizeof(g_cdc_buf));

 memset(g_vnd_buf, RESET_VALUE, sizeof(g_vnd_buf));

 break;

 }

 case USB_STATUS_RESUME:

 {

 /* set the usb attached flag*/

 b_usb_attach = true;

 break;

 }

 default:

 {

 break;

 }

 }

 return err;

}

/**

 * End of function process_usb_events

 **/

/**

 * Function Name : process_usb_events_for_interrupt

 * Description : Function processes Application events (Interrupt IN/OUT Request).

 * Arguments : none

 * Return value : Any Other Error code apart from FSP_SUCCESS on Unsuccessful

operation.

 **/

static fsp_err_t process_usb_events_for_interrupt (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint8_t pipe = RESET_VALUE;

 /* USB event received */

#if (BSP_CFG_RTOS == 2)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,411 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 switch (p_usb_event->event)

#else /* (BSP_CFG_RTOS == 2) */

 switch (g_event2)

#endif /* (BSP_CFG_RTOS == 2) */

 {

 case USB_STATUS_VENDOR_INTIN_TEST:

 {

 pipe = g_interrupt_in_pipe;

 err = R_USB_PipeWrite(&g_basic0_ctrl, (uint8_t *) "interrupt-in-test",

strlen("interrupt-in-test"), pipe);

 break;

 }

 case USB_STATUS_VENDOR_INTOUT_TEST:

 {

 pipe = g_interrupt_out_pipe;

 err = R_USB_PipeRead(&g_basic0_ctrl, &g_vnd_buf[RESET_VALUE], (BUF_SIZE),

pipe);

 if (FSP_SUCCESS == err)

 {

 g_interrupt_out_times++;

 }

 break;

 }

 case USB_STATUS_COM_IN_TEST:

 {

 pipe = USB_CFG_PCDC_INT_IN;

 err = R_USB_PipeWrite(&g_basic0_ctrl, g_interrupt_in_com_data,

sizeof(g_interrupt_in_com_data), pipe);

 break;

 }

 case USB_STATUS_RE_INIT_TEST:

 {

 g_usb_on_usb.close(&g_basic0_ctrl);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,412 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 break;

 }

 default:

 {

 break;

 }

 }

 return err;

}

/**

 * End of function process_usb_events_for_interrupt

 **/

/**

 * Function Name : usb_configured_event_process

 * Description : Function processes USB configured event (for vendor class).

 * Arguments : none

 * Return value : Any Other Error code apart from FSP_SUCCESS on Unsuccessful

operation.

 **/

static fsp_err_t usb_configured_event_process (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t used_pipe = RESET_VALUE;

 usb_pipe_t pipe_info = {RESET_VALUE};

 uint8_t pipe = RESET_VALUE;

 /* Get USB Pipe Information */

 err = R_USB_UsedPipesGet(&g_basic0_ctrl, &used_pipe, USB_CLASS_PVND);

 if (FSP_SUCCESS == err)

 {

 for (pipe = START_PIPE; pipe < END_PIPE; pipe++)

 {

 /* check for the used pipe */

 if ((used_pipe & (START_PIPE << pipe)) != RESET_VALUE)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,413 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 /* Get the pipe Info */

 err = R_USB_PipeInfoGet(&g_basic0_ctrl, &pipe_info, pipe);

 if (USB_EP_DIR_IN != (pipe_info.endpoint & USB_EP_DIR_IN))

 {

 /* Out Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 if (pipe != USB_CFG_PCDC_BULK_OUT)

 {

 g_bulk_out_pipe = pipe;

 }

 }

 else if (USB_TRANSFER_TYPE_INT == pipe_info.transfer_type)

 {

 g_interrupt_out_pipe = pipe;

 }

 else

 {

 /* Do nothing */

 }

 }

 else

 {

 /* In Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 if (pipe != USB_CFG_PCDC_BULK_IN)

 {

 g_bulk_in_pipe = pipe;

 }

 }

 else if (USB_TRANSFER_TYPE_INT == pipe_info.transfer_type)

 {

 if (pipe != USB_CFG_PCDC_INT_IN)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,414 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 {

 g_interrupt_in_pipe = pipe;

 }

 }

 else

 {

 /* Do nothing */

 }

 }

 }

 else

 {

 /* Do nothing */

 }

 }

 }

 return err;

}

/**

 * End of function usb_configured_event_process

 **/

/**

 * Function Name : usb_status_request

 * Description : Function processes usb status request.

 * Arguments : none

 * Return value : Any Other Error code apart from FSP_SUCCESS on Unsuccessful

operation.

 **/

static fsp_err_t usb_status_request (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t request_length = RESET_VALUE;

 /* Check for the specific CDC class request IDs */

 if (USB_PCDC_SET_LINE_CODING == (p_usb_event->setup.request_type & USB_BREQUEST))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,415 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 {

 /* Get the class request.*/

 err = R_USB_PeriControlDataGet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (p_usb_event->setup.request_type & USB_BREQUEST

))

 {

 /* Set the class request.*/

 err = R_USB_PeriControlDataSet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_SET_CONTROL_LINE_STATE == (p_usb_event->setup.request_type &

USB_BREQUEST))

 {

 /* Set the usb status as ACK response.*/

 err = R_USB_PeriControlStatusSet(&g_basic0_ctrl, USB_SETUP_STATUS_ACK);

 }

 else if (USB_SET_VENDOR_NO_DATA == (p_usb_event->setup.request_type & USB_BREQUEST))

 {

 /* Set ACk to host */

 err = R_USB_PeriControlStatusSet(&g_basic0_ctrl, USB_SETUP_STATUS_ACK);

 }

 else if (USB_SET_VENDOR == (p_usb_event->setup.request_type & USB_BREQUEST))

 {

 request_length = p_usb_event->setup.request_length;

 /* Get data length from host */

 err = R_USB_PeriControlDataGet(&g_basic0_ctrl, &g_request_buf[RESET_VALUE],

request_length);

 }

 else if (USB_GET_VENDOR == (p_usb_event->setup.request_type & USB_BREQUEST))

 {

 request_length = p_usb_event->setup.request_length;

 /* Set data length in peripheral */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,416 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 err = R_USB_PeriControlDataSet(&g_basic0_ctrl, &g_request_buf[RESET_VALUE],

request_length);

 }

 else

 {

 // Do Nothing.

 }

 return err;

}

/**

 * End of function usb_status_request

 **/

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_composite_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_event_info : Control structure for USB API.

 * usb_hdl_t handler : Task Handle

 * usb_onoff_t usbon_off_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **/

void usb_composite_callback (usb_event_info_t * p_event_info, usb_hdl_t handler,

usb_onoff_t on_off)

{

 FSP_PARAMETER_NOT_USED(handler);

 FSP_PARAMETER_NOT_USED(on_off);

 /* Send event received to queue */

 if (pdTRUE != (xQueueSend(g_event_queue, (const void *) &p_event_info, (TickType_t)

(RESET_VALUE))))

 {

 g_err_flag = true;

 }

}

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,417 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 * End of function usb_composite_callback

 **/

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : handle_error

 * Description : Closes the USB module , Print and traps error.

 * Arguments : fsp_err_t err : error status

 * Return value : none

 **/

static void handle_error (fsp_err_t err)

{

 if (FSP_SUCCESS != err)

 {

 R_USB_Close(&g_basic0_ctrl);

 }

}

/**

 * End of function handle_error

 **/

/**

 * Function Name : buffer_check

 * Description : Check data received from vendor host tools

 * Arguments : uint32_t length : data length

 * char * err_str : error string

 * Return value : Any Other Error code apart from FSP_SUCCESS on Unsuccessful

operation.

 **/

static fsp_err_t buffer_check (uint32_t length)

{

 for (uint16_t cnt = RESET_VALUE; cnt < (uint16_t) length; cnt++)

 {

 if ((uint8_t) (cnt & USB_VALUE_FF) != g_vnd_buf[cnt])

 {

 return FSP_ERR_ABORTED;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,418 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Composite (r_usb_composite)

 }

 }

 R_BSP_SoftwareDelay(DELAY, BSP_DELAY_UNITS_MILLISECONDS);

 return FSP_SUCCESS;

}

/**

 * End of function buffer_check

 **/

5.2.6.32 USB HCDC (r_usb_hcdc)
Modules » Connectivity

Functions

fsp_err_t R_USB_HCDC_ControlDataRead (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_buf, uint32_t size, uint8_t device_address)

 Read Control Data.(CDC Interrupt IN data) More...

fsp_err_t R_USB_HCDC_SpecificDeviceRegister (usb_ctrl_t *const p_api_ctrl,
uint16_t vendor_id, uint16_t product_id)

 Register the specified vendor class device in the device table. More...

fsp_err_t R_USB_HCDC_DeviceInfoGet (usb_ctrl_t *const p_api_ctrl,
usb_hcdc_device_info_t *p_info, uint8_t device_address)

 Get the VID, PID and subclass code of the connected device. More...

Detailed Description

This module provides a USB Host Communications Device Class (HCDC) driver. It implements the
USB HCDC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,419 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

The r_usb_hcdc module, when used in combination with the r_usb_basic module, operates as a USB
Host Communications Device Class (HCDC) driver. The HCDC conforms to the PSTN device subclass
abstract control model of the USB Communications Device Class (CDC) specification and enables
communication with a CDC peripheral device.

Features

The r_usb_hcdc module has the following key features:

Checks for connected devices
Implementation of communication line settings
Acquisition of the communication line state
Data transfer to and from a CDC peripheral device

Configuration
Build Time Configurations for r_usb_hcdc

The following build time configurations are defined in fsp_cfg/r_usb_hcdc_cfg.h:

Configuration Options Default Description

Target Peripheral
Device Class ID

CDC class
supported
device
Vendor class
device

CDC class supported
device

Specify the device
class ID of the CDC
device to be
connected.

Bulk Input Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE4 Select the USB pipe to
use for bulk input
transfers.

Bulk Output Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE5 Select the USB pipe to
use for bulk output
transfers.

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the USB pipe to
use for interrupts.

Configurations for Connectivity > USB HCDC (r_usb_hcdc)

This module can be added to the Stacks tab via New Stack > Connectivity > USB HCDC (r_usb_hcdc).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_hcdc0 Module name.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,420 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Communications Device Class (CDC), PSTN and ACM

This software conforms to the Abstract Control Model (ACM) subclass of the Communications Device
Class specification as defined in the "USB Communications Class Subclass Specification for PSTN
Devices", Revision 1.2. The Abstract Control Model subclass is a technology that bridges the gap
between USB devices and earlier modems (employing RS-232C connections) enabling use of
application programs designed for older modems.

Basic Functions

The main functions of HCDC are the following:

Verify connected devices
Make communication line settings
Acquire the communication line state
Transfer data to and from the CDC peripheral device

Abstract Control Model Class Requests - Host to Device

This driver supports the following class requests:

Request Code Description

SendEncapsulatedCommand 0x00 Transmits an AT command as
defined by the protocol used by
the device (normally 0 for USB).

GetEncapsulatedResponse 0x01 Requests a response to a
command transmitted by
SendEncapsulatedCommand.

SetCommFeature 0x02 Enables or disables features
such as device-specific 2-byte
code and country setting.

GetCommFeature 0x03 Acquires the enabled/disabled
state of features such as device-
specific 2-byte code and
country setting.

ClearCommFeature 0x04 Restores the default
enabled/disabled settings of
features such as device-specific
2-byte code and country

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,421 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

setting.

SetLineCoding 0x20 Makes communication line
settings (communication speed,
data length, parity bit, and stop
bit length).

GetLineCoding 0x21 Acquires the communication
line setting state.

SetControlLineState 0x22 Makes communication line
control signal (RTS, DTR)
settings.

SendBreak 0x23 Transmits a break signal.

Note
For more information about Abstract Control Model requests, refer to Table 11 "Requests - Abstract Control
Model" in the "USB Communications Class Subclass Specification for PSTN Devices", Revision 1.2.

The expected data format for each command is shown below followed by dependent structures.

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0x21 SEND_ENCAPS
ULATED_COMM

AND (0x00)

0x0000 0x0000 Data length usb_hcdc_enca
psulated_t

0x21 GET_ENCAPSU
LATED_RESPO

NSE (0x01)

0x0000 0x0000 Data length usb_hcdc_enca
psulated_t

0x21 SET_COMM_FE
ATURE (0x02)

usb_hcdc_feat
ure_selector_t

0x0000 Data length usb_hcdc_com
mfeature_t

0x21 GET_COMM_FE
ATURE (0x03)

usb_hcdc_feat
ure_selector_t

0x0000 Data length usb_hcdc_com
mfeature_t

0x21 CLEAR_COMM_
FEATURE

(0x04)

usb_hcdc_feat
ure_selector_t

0x0000 Data length None

0x21 SET_LINE_CODI
NG (0x20)

0x0000 0x0000 0x0000 usb_hcdc_linec
oding_t

0xA1 GET_LINE_COD
ING (0x21)

0x0000 0x0000 0x0007 usb_hcdc_linec
oding_t

0x21 SET_CONTROL
_LINE_STATE

(0x22)

usb_hcdc_cont
rollinestate_t

0x0000 0x0000 None

0x21 SEND_BREAK
(0x23)

usb_hcdc_brea
kduration_t

0x0000 0x0000 None

ACM Notifications from Device to Host

The following class notifications are supported:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,422 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

Notification Code Description

RESPONSE_AVAILABLE 0x01 Response to
GET_ENCAPSULATED_RESPONS
E

SERIAL_STATE 0x20 Notification of serial line state

The data types returned are as follows:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 RESPONSE_AV
AILABLE (0x01)

0x0000 0x0000 0x0000 None

0xA1 SERIAL_STATE
(0x20)

0x0000 0x0000 0x0002 usb_hcdc_seria
lstate_t

Note
The host is notified with SERIAL_STATE whenever a change in the UART port state is detected.

Limitations

This driver is subject to the following limitations:

Suspend is not supported when a data transfer is in progress. Confirm that data transfer
has completed before executing suspend.
Use of compound USB devices with CDC class support is not supported.
This module must be incorporated into a project using r_usb_basic and does not provide
any public APIs.
This driver does not support Low-speed.
This driver does not support simultaneous operation with the other device class.
CDC-ECM requires a TCP/IP driver for USB driver on the upper layer.
The user needs to support the porting layer for TCP/IP when using CDC-ECM.
CDC-ECM works on FreeRTOS.
CDC-ECM was evaluated using the following USB to Ethernet adapter.

UGREEN USB to Ethernet Adapater RJ45 (Manufacture: Ugreen Group Limited, Item
modle number: 50922)

Examples
USB HCDC Loopback Example

The main functions of the HCDC loopback example are as follows:

1. Virtual UART control settings are configured by transmitting the class request
SET_LINE_CODING to the CDC device.

2. Sends receive (Bulk In transfer) requests to a CDC peripheral device and receives data.
3. Loops received data back to the peripheral by means of Bulk Out transfers.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,423 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

Figure 203: Data Transfer (Loopback)

 The main loop performs loopback processing in which data received from a CDC peripheral device is
transmitted unaltered back to the peripheral.

#define SET_LINE_CODING (USB_CDC_SET_LINE_CODING | USB_HOST_TO_DEV | USB_CLASS |

USB_INTERFACE)

#define GET_LINE_CODING (USB_CDC_GET_LINE_CODING | USB_DEV_TO_HOST | USB_CLASS |

USB_INTERFACE)

#define SET_CONTROL_LINE_STATE (USB_CDC_SET_CONTROL_LINE_STATE | USB_HOST_TO_DEV |

USB_CLASS | USB_INTERFACE)

#define COM_SPEED (9600U)

#define COM_DATA_BIT (8U)

#define COM_STOP_BIT (0)

#define COM_PARITY_BIT (0)

#define LINE_CODING_LENGTH (7)

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,424 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 * Return value : none

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback() */

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_hcdc_example

 * Description : Host CDC application main process

 * Arguments : none

 * Return value : none

 **/

void usb_hcdc_example (void)

{

 usb_status_t event;

 usb_event_info_t event_info;

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,425 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* Handle the received event (if any) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 /* Configure virtual UART settings */

 set_line_coding(&g_basic0_ctrl, event_info.device_address); /* CDC

Class request "SetLineCoding" */

 break;

 case USB_STATUS_READ_COMPLETE:

 if (USB_CLASS_HCDC == event_info.type)

 {

 if (event_info.data_size > 0)

 {

 /* Send the received data back to the connected peripheral */

 g_usb_on_usb.write(&g_basic0_ctrl, g_snd_buf,

event_info.data_size, USB_DEVICE_ADDRESS_1);

 }

 else

 {

 /* Send the data reception request when the zero-length packet is received. */

 g_usb_on_usb.read(&g_basic0_ctrl, g_rcv_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 }

 }

 else /* USB_HCDCC */

 {

 /* Control Class notification "SerialState" receive start */

 g_usb_on_usb.read(&g_basic0_ctrl,

 (uint8_t *) &g_serial_state,

 USB_HCDC_SERIAL_STATE_MSG_LEN,

 USB_DEVICE_ADDRESS_1);

 }

 break;

 case USB_STATUS_WRITE_COMPLETE:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,426 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* Start receive operation */

 g_usb_on_usb.read(&g_basic0_ctrl, g_rcv_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 break;

 case USB_STATUS_REQUEST_COMPLETE:

 if (USB_CDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Set virtual RTS/DTR signal state */

 set_control_line_state(&g_basic0_ctrl, event_info.device_address);

/* CDC Class request "SetControlLineState" */

 }

 /* Check Complete request "SetControlLineState" */

 else if (USB_CDC_SET_CONTROL_LINE_STATE == (event_info.setup.request_type &

USB_BREQUEST))

 {

 /* Read back virtual UART settings */

 get_line_coding(&g_basic0_ctrl, event_info.device_address); /* CDC

Class request "SetLineCoding" */

 }

 else if (USB_CDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Now that setup is complete, start loopback operation */

 g_usb_on_usb.read(&g_basic0_ctrl, g_snd_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 }

 else

 {

 /* Unsupported request */

 }

 break;

 default:

 /* Other event */

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,427 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 }

} /* End of function usb_hcdc_example() */

/**

 * Function Name : set_control_line_state

 * Description : Send the class request (SetControLineState) to CDC device.

 * Arguments : device_address : device address of CDC device.

 * Return value : none

 **/

void set_control_line_state (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 setup.request_type = SET_CONTROL_LINE_STATE; /*

bRequestCode:SET_CONTROL_LINE_STATE, bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = 0x0000; /* wLength:Zero */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_usb_dummy,

device_address);

} /* End of function set_control_line_state() */

/**

 * Function Name : set_line_coding

 * Description : Send the class request (SetLineCoding) to CDC device.

 * Arguments : device_address : device address of CDC device.

 * Return value : none

 **/

void set_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 g_com_parm.dwdte_rate = (usb_hcdc_line_speed_t) COM_SPEED;

 g_com_parm.bchar_format = (usb_hcdc_stop_bit_t) COM_STOP_BIT;

 g_com_parm.bparity_type = (usb_hcdc_parity_bit_t) COM_PARITY_BIT;

 g_com_parm.bdata_bits = (usb_hcdc_data_bit_t) COM_DATA_BIT;

 setup.request_type = SET_LINE_CODING; /* bRequestCode:SET_LINE_CODING,

bmRequestType */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,428 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

} /* End of function set_line_coding() */

/**

 * Function Name : get_line_coding

 * Description : Send the class request (GetLineCoding) to CDC device.

 * Arguments : device_address : device address of CDC device.

 * Return value : none

 **/

void get_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 setup.request_type = GET_LINE_CODING; /* bRequestCode:GET_LINE_CODING,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

} /* End of function get_line_coding() */

USB HCDC-ECM Example

The following is the porting layere example code for FreeRTOS Plus TCP

#if defined USE_PING_SEND_DEMO

#elif defined USE_TCP_CLIENT_DEMO

 #define BUFFER_SIZE 1514 * 2 // 1024

static char cRxedData[BUFFER_SIZE];

static char cTxData[BUFFER_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,429 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

Socket_t vCreateTCPClientSocket(void);

void vCloseTCPClientSocket(Socket_t xSocket);

BaseType_t xConnectToTCPServer(Socket_t xSocket);

#endif

/* Domain for the DNS Host lookup is used in this Example Project.

 * The project can be built with different *domain_name to validate the DNS client

 */

char * domain_name = USR_TEST_DOMAIN_NAME;

/* IP address of the PC or any Device on the LAN/WAN where the Ping request is sent.

 * Note: Users needs to change this according to the LAN settings of your Test PC or

device

 * when running this project.

 */

// char *remote_ip_address = "132.158.142.140";

// char *remote_ip_address = "192.168.1.140";

#if (USE_DHCP_CLIENT_DEMO != 0)

char * remote_ip_address = USR_TEST_PING_IP;

#else

char * remote_ip_address = "192.168.10.1";

#endif

#if (USE_DHCP_CLIENT_DEMO != 0)

/* DHCP populates these IP address, Sub net mask and Gateway Address. So start with

this is zeroed out values

 * The MAC address is Test MAC address.

 */

static uint8_t ucMACAddress[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};

static uint8_t ucIPAddress[4] = {RESET_VALUE};

static uint8_t ucNetMask[4] = {255, 255, 255, 128};

static uint8_t ucGatewayAddress[4] = {132, 158, 124, 1};

static uint8_t ucDNSServerAddress[4] = {RESET_VALUE};

#else

/* Static IP configuration, when DHCP mode is not used for the Example Project.

 * This needs to be populated by the user according to the Network Settings of your

LAN.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,430 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 * This sample address taken from the LAN where it is tested. This is different for

different LAN.

 * get the Address using the PC IPconfig details.

 */

static uint8_t ucMACAddress[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};

static uint8_t ucIPAddress[4] = {192, 168, 10, 2};

static uint8_t ucNetMask[4] = {255, 255, 255, 0};

static uint8_t ucGatewayAddress[4] = {192, 168, 10, 0};

static uint8_t ucDNSServerAddress[4] = {10, 60, 1, 2};

#endif

#if (USE_DHCP_CLIENT_DEMO != 0)

extern NetworkAddressingParameters_t xNetworkAddressing;

NetworkAddressingParameters_t xNd = {RESET_VALUE, RESET_VALUE, RESET_VALUE,

RESET_VALUE, RESET_VALUE};

uint32_t usrPingCount = RESET_VALUE;

static uint32_t usr_print_ability = RESET_VALUE;

#endif

uint32_t dhcp_in_use = RESET_VALUE;

ping_data_t ping_data = {RESET_VALUE, RESET_VALUE, RESET_VALUE};

uint32_t ulRand (void)

{

 /* example of a 32-bit random number generator.

 * Here rand() returns a 15-bit number. so create 32 bit Random number using 15 bit

rand()

 */

 uint32_t ulResult =

 ((((uint32_t) rand()) & 0x7fffuL)) |

 ((((uint32_t) rand()) & 0x7fffuL) << 15) |

 ((((uint32_t) rand()) & 0x0003uL) << 30);

 return ulResult;

}

uint32_t ulApplicationGetNextSequenceNumber (uint32_t ulSourceAddress,

 uint16_t usSourcePort,

 uint32_t ulDestinationAddress,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,431 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 uint16_t usDestinationPort)

{

 /* Here we need to get random number for the sequence number.

 * This is just for testing purpose, so software rand() is okay.

 * This can also be tied to the TRNG.

 */

 return (ulSourceAddress + ulDestinationAddress + usSourcePort + usDestinationPort)

&& ulRand();

}

BaseType_t vSendPing (const char * pcIPAddress)

{

 uint32_t ulIPAddress = RESET_VALUE;

 /*

 * The pcIPAddress parameter holds the destination IP address as a string in

 * decimal dot notation (for example, ?192.168.0.200?). Convert the string into

 * the required 32-bit format.

 */

 ulIPAddress = FreeRTOS_inet_addr(pcIPAddress);

 /*

 * Send a ping request containing 8 data bytes. Wait (in the Blocked state) a

 * maximum of 100ms for a network buffer into which the generated ping request

 * can be written and sent.

 */

 return FreeRTOS_SendPingRequest(ulIPAddress, 8, 1000000 / portTICK_PERIOD_MS);

}

void vApplicationPingReplyHook (ePingReplyStatus_t eStatus, uint16_t usIdentifier)

{

 (void) usIdentifier;

 switch (eStatus)

 {

 /* A valid ping reply has been received */

 case eSuccess:

 ping_data.received++;

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,432 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* A reply was received but it was not valid. */

 case eInvalidData:

 default:

 ping_data.lost++;

 break;

 }

}

uint32_t isNetworkUp (void)

{

 fsp_err_t eth_link_status = FSP_ERR_NOT_OPEN;

 BaseType_t networkUp = pdFALSE;

 uint32_t network_status = (IP_LINK_UP | ETHERNET_LINK_UP);

 networkUp = FreeRTOS_IsNetworkUp();

 eth_link_status = xGetPhyLinkStatus();

 if ((pdPASS == eth_link_status) && (pdTRUE == networkUp))

 {

 return network_status;

 }

 else

 {

 if (pdPASS != eth_link_status)

 {

 network_status |= ETHERNET_LINK_DOWN;

 }

 else if (pdPASS == eth_link_status)

 {

 network_status |= ETHERNET_LINK_UP;

 }

 if (pdTRUE != networkUp)

 {

 network_status |= IP_LINK_DOWN;

 }

 else if (pdTRUE == networkUp)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,433 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 network_status |= IP_LINK_UP;

 }

 return network_status;

 }

}

#if defined USE_LINK_STATUS_CHECK

static void prvLinkStatusCheckTask (void * pvParameters)

{

 fsp_err_t eth_link_status = pdFAIL;

 fsp_err_t eth_link_pre_status = pdFAIL;

 while (1)

 {

 eth_link_status = xGetPhyLinkStatus();

 if ((pdPASS == eth_link_status) && (pdFAIL == eth_link_pre_status))

 {

 APP_PRINT("\r\n-- Link Up --");

 eth_link_pre_status = pdPASS;

 }

 else if ((pdFAIL == eth_link_status) && (pdPASS == eth_link_pre_status))

 {

 APP_PRINT("\r\n-- Link Down --");

 eth_link_pre_status = pdFAIL;

 }

 vTaskDelay(100);

 }

}

#endif

void new_thread0_entry (void * pvParameters)

{

 BaseType_t status = pdFALSE;

 fsp_pack_version_t version = {RESET_VALUE};

#if defined USE_PING_SEND_DEMO

#elif defined USE_TCP_CLIENT_DEMO

 Socket_t xClientSocket;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,434 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 BaseType_t lBytesReceived;

#endif

 FSP_PARAMETER_NOT_USED(pvParameters);

 /* version get API for FLEX pack information */

 R_FSP_VersionGet(&version);

 /* Example Project information printed on the RTT */

 APP_PRINT(BANNER_INFO,

 EP_VERSION,

 version.version_id_b.major,

 version.version_id_b.minor,

 version.version_id_b.patch);

 /* Prints the Ethernet Configuration prior to the IP Init*/

 APP_PRINT(ETH_PREINIT);

 print_ipconfig();

#if defined USE_LINK_STATUS_CHECK

 static TaskHandle_t xLinkStatusCheckTaskHandle = NULL;

 BaseType_t xReturn = pdFAIL;

 xReturn = xTaskCreate(prvLinkStatusCheckTask,

 "LinkStatusCheckTask",

 configMINIMAL_STACK_SIZE,

 NULL,

 2, // configMAX_PRIORITIES - 3,

 &xLinkStatusCheckTaskHandle);

#endif

 /* FreeRTOS IP Initialization: This init initializes the IP stack */

 status = FreeRTOS_IPInit(ucIPAddress, ucNetMask, ucGatewayAddress,

ucDNSServerAddress, ucMACAddress);

 if (pdFALSE == status)

 {

 APP_ERR_PRINT("FreeRTOS_IPInit Failed");

 APP_ERR_TRAP(status);

 }

 APP_PRINT(ETH_POSTINIT);

 while (true)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,435 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 {

#if (USE_DHCP_CLIENT_DEMO != 0)

 /* Check if Both the Ethernet Link and IP link are UP */

 if (SUCCESS == isNetworkUp())

 {

 /* usr_print_ability is added to avoid multiple UP messages or Down Messages

repeating*/

 if (!(PRINT_UP_MSG_DISABLE & usr_print_ability))

 {

 APP_PRINT("\r\nNetwork is Up");

 usr_print_ability |= PRINT_UP_MSG_DISABLE;

 }

 if (!(PRINT_NWK_USR_MSG_DISABLE & usr_print_ability))

 {

 /* Display the New IP credentials obtained from the DHCP server */

 updateDhcpResponseToUsr();

 /* Updated IP credentials on to the RTT console */

 print_ipconfig();

 /*DNS lookup for the Domain name requested. This is Synchronous Activity */

 dnsQuerryFunc(domain_name);

 }

 if (!(PRINT_NWK_USR_MSG_DISABLE & usr_print_ability))

 {

 APP_PRINT("\r\nPinging %s:\r\n\r\n", (char *) remote_ip_address);

 }

 while (usrPingCount < USR_PING_COUNT)

 {

 /* Send a ICMP Ping request to the requested IP address

 * USR_PING_COUNT (100) is used in this Example Project

 * For Continuous testing the count can be increased to bigger number

 */

 status = vSendPing((char *) remote_ip_address);

 if (status != pdFALSE)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,436 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 ping_data.sent++;

 APP_PRINT("!");

 }

 else

 {

 ping_data.lost++;

 APP_PRINT(".");

 }

 usrPingCount++;

 /* Add some delay between Pings */

 vTaskDelay(10);

 }

 if (!(PRINT_NWK_USR_MSG_DISABLE & usr_print_ability))

 {

 print_pingResult();

 usr_print_ability |= PRINT_NWK_USR_MSG_DISABLE;

 }

 }

 else

 {

 if (!(PRINT_DOWN_MSG_DISABLE & usr_print_ability))

 {

 APP_PRINT("\r\nNetwork is Down");

 usr_print_ability |= PRINT_DOWN_MSG_DISABLE;

 }

 else

 {

 APP_PRINT(".");

 }

 }

 vTaskDelay(100);

#else

 #if defined USE_PING_SEND_DEMO

 /* [Provisional processing] Wait until the link is up */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,437 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 if (SUCCESS == isNetworkUp())

 {

 while (1)

 {

 status = vSendPing((char *) remote_ip_address);

 if (status != pdFALSE)

 {

 if (SUCCESS != isNetworkUp())

 {

 break;

 }

 vTaskDelay(2000);

 }

 else

 {

 break;

 }

 }

 }

 vTaskDelay(100);

 #elif defined USE_TCP_CLIENT_DEMO

 if (SUCCESS == isNetworkUp())

 {

 /* Create, bind and connect a socket */

 xClientSocket = vCreateTCPClientSocket();

 while (1)

 {

 if (pdTRUE == xConnectToTCPServer(xClientSocket))

 {

 break;

 }

 vTaskDelay(1000);

 }

 /* Receive data from TCP Server. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,438 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 lBytesReceived = FreeRTOS_recv(xClientSocket, &cRxedData, BUFFER_SIZE,

0);

 if (lBytesReceived > 0)

 {

 memcpy(&cTxData, &cRxedData, (size_t) lBytesReceived);

 /* Send data to TCP Server. (Loopback received data) */

 FreeRTOS_send(xClientSocket, &cTxData, (size_t) lBytesReceived, 0);

 vTaskDelay(1000);

 }

 /* Close socket */

 vCloseTCPClientSocket(xClientSocket);

 }

 vTaskDelay(1000);

 #else

 vTaskDelay(100);

 #endif

 vTaskDelay(100);

#endif

 }

}

#if defined USE_PING_SEND_DEMO

#elif defined USE_TCP_CLIENT_DEMO

Socket_t vCreateTCPClientSocket (void)

{

 Socket_t xClientSocket;

 struct freertos_sockaddr xBindAddress;

 static const TickType_t xTimeOut = pdMS_TO_TICKS(10000);

// static const TickType_t xTimeOut = pdMS_TO_TICKS(2000);

 /* Attempt to open the socket. */

 xClientSocket = FreeRTOS_socket(FREERTOS_AF_INET,

 FREERTOS_SOCK_STREAM, /* SOCK_STREAM for TCP. */

 FREERTOS_IPPROTO_TCP);

 /* Check the socket was created. */

 configASSERT(xClientSocket != FREERTOS_INVALID_SOCKET);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,439 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* If FREERTOS_SO_RCVBUF or FREERTOS_SO_SNDBUF are to be used with

 * FreeRTOS_setsockopt() to change the buffer sizes from their default then do

 * it here!. (see the FreeRTOS_setsockopt() documentation. */

 /* If ipconfigUSE_TCP_WIN is set to 1 and FREERTOS_SO_WIN_PROPERTIES is to

 * be used with FreeRTOS_setsockopt() to change the sliding window size from

 * its default then do it here! (see the FreeRTOS_setsockopt()

 * documentation. *//* Set send and receive time outs. */

 FreeRTOS_setsockopt(xClientSocket, 0, FREERTOS_SO_RCVTIMEO, &xTimeOut,

sizeof(xTimeOut));

 FreeRTOS_setsockopt(xClientSocket, 0, FREERTOS_SO_SNDTIMEO, &xTimeOut,

sizeof(xTimeOut));

 /* Bind the socket, but pass in NULL to let FreeRTOS-Plus-TCP choose the port

number.

 * See the next source code snipped for an example of how to bind to a specific

 * port number. */

 if (xClientSocket != FREERTOS_INVALID_SOCKET)

 {

 xBindAddress.sin_port = FreeRTOS_htons(9999);

 if (FreeRTOS_bind(xClientSocket, &xBindAddress, sizeof(xBindAddress)) == 0)

 {

 /* The bind was successful. */

 }

 else

 {

 while (1)

 {

 ; /* error */

 }

 }

 }

 else

 {

 while (1)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,440 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 ; /* error */

 }

 }

 return xClientSocket;

}

BaseType_t xConnectToTCPServer (Socket_t xSocket)

{

 BaseType_t ret;

 struct freertos_sockaddr xRemoteAddress;

 /* Connect to TCP Server */

 xRemoteAddress.sin_addr = FreeRTOS_inet_addr_quick(192, 168, 10, 1); /*

192.168.10.1 : Remote IP Address */

 xRemoteAddress.sin_port = FreeRTOS_htons(4000);

 ret = FreeRTOS_connect(xSocket, &xRemoteAddress, sizeof(xRemoteAddress));

 if (ret == 0)

 {

 /* Success */

 ret = pdTRUE;

 }

 else

 {

 // while(1); /* error */

 ret = pdFALSE;

 }

 return ret;

}

void vCloseTCPClientSocket (Socket_t xSocket)

{

 /* Initiate graceful shutdown. */

 FreeRTOS_shutdown(xSocket, FREERTOS_SHUT_RDWR);

 /* Wait for the socket to disconnect gracefully (indicated by FreeRTOS_recv()

 * returning a -pdFREERTOS_ERRNO_EINVAL error) before closing the socket. */

 while (FreeRTOS_recv(xSocket, &cRxedData, BUFFER_SIZE, 0) >= 0)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,441 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* Wait for shutdown to complete. If a receive block time is used then

 * this delay will not be necessary as FreeRTOS_recv() will place the RTOS task

 * into the Blocked state anyway. */

 vTaskDelay(250);

 /* Note - real applications should implement a timeout here, not just

 * loop forever. */

 }

 /* The socket has shut down and is safe to close. */

 FreeRTOS_closesocket(xSocket);

}

#endif

#if (USE_DHCP_CLIENT_DEMO != 0)

eDHCPCallbackAnswer_t xApplicationDHCPHook (eDHCPCallbackPhase_t eDHCPPhase, uint32_t

ulIPAddress)

{

 eDHCPCallbackAnswer_t eReturn = eDHCPContinue;

 /*

 * This hook is called in a couple of places during the DHCP process, as identified

by the eDHCPPhase parameter.

 */

 switch (eDHCPPhase)

 {

 case eDHCPPhasePreDiscover:

 /*

 * A DHCP discovery is about to be sent out. eDHCPContinue is returned to allow the

discovery to go out.

 * If eDHCPUseDefaults had been returned instead then the DHCP process would be

stopped and the statically

 * configured IP address would be used.

 * If eDHCPStopNoChanges had been returned instead then the DHCP process would be

stopped and whatever the

 * current network configuration was would continue to be used.

 */

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,442 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 case eDHCPPhasePreRequest:

 /* An offer has been received from the DHCP server, and the offered IP address is

passed in the ulIPAddress

 * parameter.

 */

 /*

 * The sub-domains don?t match, so continue with the DHCP process so the offered IP

address is used.

 */

 /* Update the Structure, the DHCP state Machine is not updating this */

 xNetworkAddressing.ulDefaultIPAddress = ulIPAddress;

 dhcp_in_use = 1;

 break;

 default:

 /*

 * Cannot be reached, but set eReturn to prevent compiler warnings where compilers

are disposed to generating one.

 */

 break;

 }

 return eReturn;

}

#endif

void print_pingResult (void)

{

 APP_PRINT("\r\n \r\nPing Statistics for %s :\r\n", (char *) remote_ip_address);

 APP_PRINT("\r\nPackets: Sent = %02d, Received = %02d, Lost = %02d \r\n",

 ping_data.sent,

 ping_data.received,

 ping_data.lost);

}

void print_ipconfig (void)

{

#if (USE_DHCP_CLIENT_DEMO != 0)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,443 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 if (dhcp_in_use)

 {

 ucNetMask[3] = (uint8_t) ((xNd.ulNetMask & 0xFF000000) >> 24);

 ucNetMask[2] = (uint8_t) ((xNd.ulNetMask & 0x00FF0000) >> 16);

 ucNetMask[1] = (uint8_t) ((xNd.ulNetMask & 0x0000FF00) >> 8);

 ucNetMask[0] = (uint8_t) (xNd.ulNetMask & 0x000000FF);

 ucGatewayAddress[3] = (uint8_t) ((xNd.ulGatewayAddress & 0xFF000000) >> 24);;

 ucGatewayAddress[2] = (uint8_t) ((xNd.ulGatewayAddress & 0x00FF0000) >> 16);

 ucGatewayAddress[1] = (uint8_t) ((xNd.ulGatewayAddress & 0x0000FF00) >> 8);

 ucGatewayAddress[0] = (uint8_t) (xNd.ulGatewayAddress & 0x000000FF);

 ucDNSServerAddress[3] = (uint8_t) ((xNd.ulDNSServerAddress & 0xFF000000) >>

24);

 ucDNSServerAddress[2] = (uint8_t) ((xNd.ulDNSServerAddress & 0x00FF0000) >>

16);

 ucDNSServerAddress[1] = (uint8_t) ((xNd.ulDNSServerAddress & 0x0000FF00) >>

8);

 ucDNSServerAddress[0] = (uint8_t) (xNd.ulDNSServerAddress & 0x000000FF);

 ucIPAddress[3] = (uint8_t) ((xNd.ulDefaultIPAddress & 0xFF000000) >> 24);

 ucIPAddress[2] = (uint8_t) ((xNd.ulDefaultIPAddress & 0x00FF0000) >> 16);

 ucIPAddress[1] = (uint8_t) ((xNd.ulDefaultIPAddress & 0x0000FF00) >> 8);

 ucIPAddress[0] = (uint8_t) (xNd.ulDefaultIPAddress & 0x000000FF);

 }

#endif

 APP_PRINT("\r\nEthernet adapter for Renesas "KIT_NAME ":\r\n")

 APP_PRINT("\tDescription : Renesas "KIT_NAME "

Ethernet\r\n");

 APP_PRINT("\tPhysical Address. :

%02x-%02x-%02x-%02x-%02x-%02x\r\n",

 ucMACAddress[0],

 ucMACAddress[1],

 ucMACAddress[2],

 ucMACAddress[3],

 ucMACAddress[4],

 ucMACAddress[5]);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,444 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 APP_PRINT("\tDHCP Enabled. : %s\r\n", dhcp_in_use ? "Yes" :

"No")

 APP_PRINT("\tIPv4 Address. : %d.%d.%d.%d\r\n",

 ucIPAddress[0],

 ucIPAddress[1],

 ucIPAddress[2],

 ucIPAddress[3]);

 APP_PRINT("\tSubnet Mask : %d.%d.%d.%d\r\n",

 ucNetMask[0],

 ucNetMask[1],

 ucNetMask[2],

 ucNetMask[3]);

 APP_PRINT("\tDefault Gateway : %d.%d.%d.%d\r\n",

 ucGatewayAddress[0],

 ucGatewayAddress[1],

 ucGatewayAddress[2],

 ucGatewayAddress[3]);

 APP_PRINT("\tDNS Servers : %d.%d.%d.%d\r\n",

 ucDNSServerAddress[0],

 ucDNSServerAddress[1],

 ucDNSServerAddress[2],

 ucDNSServerAddress[3]);

}

void dnsQuerryFunc (char * domain)

{

 uint32_t ulIPAddress = RESET_VALUE;

 int8_t cBuffer[16] = {RESET_VALUE};

 /* Lookup the IP address of the FreeRTOS.org website. */

 ulIPAddress = FreeRTOS_gethostbyname((char *) domain);

 if (ulIPAddress != 0)

 {

 /* Convert the IP address to a string. */

 FreeRTOS_inet_ntoa(ulIPAddress, (char *) cBuffer);

 /* Print out the IP address obtained from the DNS lookup. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 APP_PRINT("\r\nDNS Lookup for \"www.freertos.org\" is : %s \r\n",

cBuffer);

 }

 else

 {

 APP_PRINT("\r\nDNS Lookup failed for \"www.freertos.org\" \r\n");

 }

}

#if (USE_DHCP_CLIENT_DEMO != 0)

void updateDhcpResponseToUsr (void)

{

 if (dhcp_in_use)

 {

 memcpy(&xNd, &xNetworkAddressing, sizeof(xNd));

 }

}

#endif

#if (ipconfigDHCP_REGISTER_HOSTNAME == 1)

const char * pcApplicationHostnameHook (void)

{

 return KIT_NAME;

}

#endif

USB HCDC-ECM FreeRTOS Plus TCP Porting Layer Example

The following is HCDC-ECM example code sample for FreeRTOS Plus TCP

/**

 * Macro definitions

 **

***********************************/

/* If ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES is set to 1, then the Ethernet

 * driver will filter incoming packets and only pass the stack those packets it

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 * considers need processing. */

#if (ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES == 0)

 #define ipCONSIDER_FRAME_FOR_PROCESSING(pucEthernetBuffer) eProcessBuffer

#else

 #define ipCONSIDER_FRAME_FOR_PROCESSING(pucEthernetBuffer)

eConsiderFrameForProcessing((pucEthernetBuffer))

#endif

#define MAXIMUM_ETHERNET_FRAME_SIZE (1514U)

#define UNSIGNED_SHORT_RANDOM_NUMBER_MASK (0xFFFFUL)

#define ETHER_LINK_STATUS_CHECK_INTERVAL (100)

#define USB_MAX_PACKET_SIZE_FS (64)

#define USB_MAX_PACKET_SIZE_HS (512)

#define USB_CALLBACK_QUEUE_SIZE (10)

#define CDC_READ_DATA_LEN MAXIMUM_ETHERNET_FRAME_SIZE * 2

#define NO_WAIT_TIME (0)

#define VALUE_ZERO (0)

#define VALUE_9 (9)

#define VALUE_0001H (0x0001)

#define VALUE_0002H (0x0002)

#define VALUE_0003H (0x0003)

#define VALUE_001FH (0x001F)

#define CDC_SUB_CLASS_ACM (0x02)

#define CDC_SUB_CLASS_ECM (0x06)

#define CDC_INTERRUPT_READ_DATA_LEN (16)

#define SET_ETHERNET_PACKET_FILTER (0x4300)

#define VALUE_ZERO (0)

#define VALUE_9 (9)

#define VALUE_0001H (0x0001)

#define VALUE_0002H (0x0002)

#define VALUE_0003H (0x0003)

#define VALUE_001FH (0x001F)

#define USB_ECM_TEST_DEVICE_VID (0x0b95) /* USB-LAN conversion adapter's Vendor ID */

#define USB_ECM_TEST_DEVICE_PID (0x1790) /* USB-LAN conversion adapter's Product ID

*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

/**

 * Exported global variables (to be accessed by other files)

 **

**********************************/

volatile bool g_err_flag = false; /* flag bit */

QueueHandle_t g_usb_read_complete_queue;

QueueHandle_t g_usb_write_complete_queue;

usb_utr_t g_utr;

uint32_t g_ecm_connected = 0;

extern volatile bool g_err_flag;

extern QueueHandle_t g_usb_read_complete_queue;

extern QueueHandle_t g_usb_write_complete_queue;

extern uint32_t g_ecm_connected;

extern usb_utr_t g_utr;

/**

 * Private global variables

 **

**********************************/

static TaskHandle_t xRxHanderTaskHandle = NULL;

static QueueHandle_t g_usb_callback_queue;

static usb_event_info_t * g_p_event_info = NULL;

static uint8_t g_snd_buf[CDC_READ_DATA_LEN] BSP_ALIGN_VARIABLE(4) = {VALUE_ZERO}; /*

Send buffer (Bulk OUT) */

static uint8_t g_rcv_buf[CDC_READ_DATA_LEN] BSP_ALIGN_VARIABLE(4) = {VALUE_ZERO}; /*

Receive buffer (Bulk IN) */

static uint32_t g_usb_max_packet_size;

static uint8_t g_interrupt_in_rcv_buf[64] BSP_ALIGN_VARIABLE(4) = {VALUE_ZERO}; /*

Receive buffer (Interrupt IN) */

static uint8_t g_usb_dummy = VALUE_ZERO; /* dummy variable to send */

static uint8_t g_disc_buf[512] BSP_ALIGN_VARIABLE(4) = {VALUE_ZERO}; /* Receive

buffer for GetDescriptor Request */

static uint8_t g_subclass = VALUE_ZERO;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

static const uint8_t g_notification_networkconnection_connect[8] =

{

 0xA1, /* bmRequestType */

 0x00, /* bRequest */

 0x01, /* wValue (lo) */

 0x00, /* wValue (hi) */

 0x01, /* wIndex (lo) */

 0x00, /* wIndex (hi) */

 0x00, /* wLength (lo) */

 0x00 /* wLength (hi) */

};

static const uint8_t g_notification_networkconnection_disconnect[8] =

{

 0xA1, /* bmRequestType */

 0x00, /* bRequest */

 0x00, /* wValue (lo) */

 0x00, /* wValue (hi) */

 0x01, /* wIndex (lo) */

 0x00, /* wIndex (hi) */

 0x00, /* wLength (lo) */

 0x00 /* wLength (hi) */

};

/**

 * Exported global function

 **

***********************************/

extern void vSpecificDeviceRegistration(void);

extern void vEventProcess(usb_event_info_t * p_event_info);

/**

 * Prototype declaration of global functions

 **

**********************************/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

void handle_error(fsp_err_t err, char * err_str);

void vSpecificDeviceRegistration(void);

void vEventProcess(usb_event_info_t * p_event_info);

/**

 * Prototype declaration of private functions

 **

**********************************/

static BaseType_t prvNetworkInterfaceInput(void);

static void prvRXHandlerTask(void * pvParameters);

static void prvUsbEventProcessTask(void * pvParameters);

static void set_configuration0_for_asix_ax88179(usb_instance_ctrl_t * p_ctrl, uint8_t

device_address);

static void set_configuration3_for_asix_ax88179(usb_instance_ctrl_t * p_ctrl, uint8_t

device_address);

static void get_configration_descriptor_for_asix_ax88179(usb_instance_ctrl_t *

p_ctrl,

 uint8_t device

_address,

 uint16_t

length);

static void set_interface_for_asix_ax88179(usb_instance_ctrl_t * p_ctrl, uint8_t

device_address);

static void set_ethernet_packet_filter(usb_instance_ctrl_t * p_ctrl, uint8_t

device_address);

/**

 * Interface functions

 **

**********************************/

BaseType_t xNetworkInterfaceInitialise (void)

{

 fsp_err_t err;

 BaseType_t xReturn = pdFAIL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 g_utr.ip = g_basic0_cfg.module_number;

 g_utr.ipp = usb_hstd_get_usb_ip_adr((uint16_t) g_basic0_cfg.module_number);

#if (USB_CFG_DMA == USB_CFG_ENABLE)

 g_utr.p_transfer_rx = g_basic0_cfg.p_transfer_rx;

 g_utr.p_transfer_tx = g_basic0_cfg.p_transfer_tx;

#endif

 if (USB_SPEED_FS == g_basic0_cfg.usb_speed)

 {

 g_usb_max_packet_size = USB_MAX_PACKET_SIZE_FS;

 }

 else

 {

 g_usb_max_packet_size = USB_MAX_PACKET_SIZE_HS;

 }

 g_usb_callback_queue = xQueueCreate(USB_CALLBACK_QUEUE_SIZE, sizeof(void

*));

 g_usb_read_complete_queue = xQueueCreate(1, sizeof(unsigned long));

 g_usb_write_complete_queue = xQueueCreate(1, sizeof(unsigned long));

 if ((NULL != g_usb_callback_queue) &&

 (NULL != g_usb_read_complete_queue) &&

 (NULL != g_usb_write_complete_queue))

 {

 xReturn = xTaskCreate(prvUsbEventProcessTask,

 "UsbEventProcessTask",

 configMINIMAL_STACK_SIZE,

 NULL,

 configMAX_PRIORITIES - 3,

 NULL);

 }

 vSpecificDeviceRegistration();

 err = R_USB_Open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS != err)

 {

 return pdFAIL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 }

 xReturn = xTaskCreate(prvRXHandlerTask,

 "RXHandlerTask",

 configMINIMAL_STACK_SIZE,

 NULL,

 configMAX_PRIORITIES - 3,

 &xRxHanderTaskHandle);

 return xReturn;

}

BaseType_t xGetPhyLinkStatus (void)

{

 BaseType_t xReturn = pdPASS;

 if (1 == g_ecm_connected)

 {

 xReturn = pdPASS;

 }

 else

 {

 xReturn = pdFAIL;

 }

 return xReturn;

}

BaseType_t xNetworkInterfaceOutput (NetworkBufferDescriptor_t * const

pxNetworkBuffer, BaseType_t xReleaseAfterSend)

{

 fsp_err_t err;

 BaseType_t xReturn = pdFAIL;

 usb_event_info_t * p_event_info;

 if (1 == g_ecm_connected)

 {

 if ((USB_IP1 == g_utr.ip) && (0 != ((uint32_t) pxNetworkBuffer->pucEthernetBuffer) %

sizeof(uint32_t)))

 {

 memcpy(g_snd_buf, pxNetworkBuffer->pucEthernetBuffer,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

pxNetworkBuffer->xDataLength);

 err = R_USB_Write(&g_basic0_ctrl, g_snd_buf,

pxNetworkBuffer->xDataLength, g_p_event_info->device_address);

 }

 else

 {

 err = R_USB_Write(&g_basic0_ctrl,

 pxNetworkBuffer->pucEthernetBuffer,

 pxNetworkBuffer->xDataLength,

 g_p_event_info->device_address);

 }

 if (FSP_SUCCESS == err)

 {

 xQueueReceive(g_usb_write_complete_queue, &p_event_info, (TickType_t)

portMAX_DELAY);

 if (FSP_ERR_USB_FAILED != p_event_info->status)

 {

 if (0 == pxNetworkBuffer->xDataLength % g_usb_max_packet_size)

 {

 /* Send 0-Length Packet */

 err = R_USB_Write(&g_basic0_ctrl, NULL, VALUE_ZERO,

g_p_event_info->device_address);

 xQueueReceive(g_usb_write_complete_queue, &p_event_info, (TickType_t)

portMAX_DELAY);

 }

 xReturn = pdPASS;

 }

 if (pdFAIL != xReturn)

 {

 /* Call the standard trace macro to log the send event. */

 iptraceNETWORK_INTERFACE_TRANSMIT();

 }

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 /* The Ethernet buffer is therefore no longer needed, and must be freed for re-use.

*/

 if (xReleaseAfterSend == pdTRUE)

 {

 vReleaseNetworkBufferAndDescriptor(pxNetworkBuffer);

 }

 return xReturn;

}

void vNetworkInterfaceAllocateRAMToBuffers (

 NetworkBufferDescriptor_t

pxNetworkBuffers[ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS])

{

 /* Remove compiler warning about unused parameter. */

 (void) pxNetworkBuffers;

}

/**

 * private functions

 **

**********************************/

static BaseType_t prvNetworkInterfaceInput (void) {

 BaseType_t xResult = pdFAIL;

 fsp_err_t err;

 usb_event_info_t * p_event_info;

 /* Used to indicate that xSendEventStructToIPTask() is being called because

 * of an Ethernet receive event. */

 IPStackEvent_t xRxEvent;

 NetworkBufferDescriptor_t * pxBufferDescriptor;

 pxBufferDescriptor = pxGetNetworkBufferWithDescriptor((size_t)

MAXIMUM_ETHERNET_FRAME_SIZE, 0);

 if (NULL != pxBufferDescriptor)

 {

 err = R_USB_Read(&g_basic0_ctrl, g_rcv_buf, CDC_READ_DATA_LEN,

g_p_event_info->device_address);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 if (err != FSP_SUCCESS)

 {

 vReleaseNetworkBufferAndDescriptor(pxBufferDescriptor);

 return xResult;

 }

 /* Wait for read complete */

 xQueueReceive(g_usb_read_complete_queue, &p_event_info, (TickType_t)

portMAX_DELAY);

 if (FSP_ERR_USB_FAILED != p_event_info->status)

 {

 /* Setting of Recieved data and data length */

 memcpy(pxBufferDescriptor->pucEthernetBuffer, g_rcv_buf,

p_event_info->data_size);

 pxBufferDescriptor->xDataLength = (size_t) p_event_info->data_size;

 }

 else

 {

 err = FSP_ERR_INVALID_STATE;

 }

 /* When driver received any data. */

 if (FSP_SUCCESS == err)

 {

 if (eConsiderFrameForProcessing(pxBufferDescriptor->pucEthernetBuffer) ==

eProcessBuffer)

 {

 /* The event about to be sent to the TCP/IP is an Rx event. */

 xRxEvent.eEventType = eNetworkRxEvent;

 /* pvData is used to point to the network buffer descriptor that

 * now references the received data. */

 xRxEvent.pvData = (void *) pxBufferDescriptor;

 /* Send the data to the TCP/IP stack. */

 if (pdPASS == xSendEventStructToIPTask(&xRxEvent, 0))

 {

 /* The message was successfully sent to the TCP/IP stack.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 * Call the standard trace macro to log the occurrence. */

 iptraceNETWORK_INTERFACE_RECEIVE();

 xResult = pdPASS;

 }

 }

 }

 if (pdPASS != xResult)

 {

 /* The buffer could not be sent to the IP task so the buffer must be released. */

 vReleaseNetworkBufferAndDescriptor(pxBufferDescriptor);

 iptraceETHERNET_RX_EVENT_LOST();

 }

 }

 return xResult;

}

static void prvRXHandlerTask (void * pvParameters) {

 BaseType_t xResult = pdFALSE;

 /* Avoid compiler warning about unreferenced parameter. */

 (void) pvParameters;

 for (; ;)

 {

 vTaskDelay(ETHER_LINK_STATUS_CHECK_INTERVAL);

 if (1 == g_ecm_connected)

 {

 while (1)

 {

 xResult = prvNetworkInterfaceInput();

 if (pdFAIL == xResult)

 {

 if (1 != g_ecm_connected)

 {

 break;

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 }

 }

 }

}

static void prvUsbEventProcessTask (void * pvParameters) {

 BaseType_t xResult = pdFALSE;

 /* Avoid compiler warning about unreferenced parameter. */

 (void) pvParameters;

 for (; ;)

 {

 /* Handle error if queue send fails*/

 if (true == g_err_flag)

 {

 handle_error(g_err_flag, "Error in sending usb event through queue");

 }

 /* Receive message from queue and analyzing the received message*/

 xResult = xQueueReceive(g_usb_callback_queue, &g_p_event_info,

(portMAX_DELAY));

 /* Handle error */

 if (pdTRUE != xResult)

 {

 handle_error(g_err_flag, "Error in receiving USB event message through

queue");

 }

 vEventProcess(g_p_event_info);

 }

}

__attribute__((weak)) BaseType_t xApplicationGetRandomNumber (uint32_t * pulNumber)

{

 /* example of a 32-bit random number generator.

 * rand() in returns a 16-bit number. so create 32 bit Random number using 16 bit

rand().

 * In this case just a psuedo random number is used so THIS IS NOT RECOMMENDED FOR

PRODUCTION SYSTEMS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 */

 uint32_t ulRandomValue = 0;

 ulRandomValue = ((((uint32_t) rand()) & UNSIGNED_SHORT_RANDOM_NUMBER_MASK))

| // NOLINT (rand() has limited randomness. But c99 does not support random)

 ((((uint32_t) rand()) & UNSIGNED_SHORT_RANDOM_NUMBER_MASK) << 16);

// NOLINT (rand() has limited randomness. But c99 does not support random)

 *(pulNumber) = ulRandomValue;

 return pdTRUE;

}

BSP_WEAK_REFERENCE uint32_t ulApplicationGetNextSequenceNumber (uint32_t

ulSourceAddress,

 uint16_t usSourcePort,

 uint32_t ulDestinationAddress,

 uint16_t usDestinationPort)

{

 /*

 * Callback that provides the inputs necessary to generate a randomized TCP

 * Initial Sequence Number per RFC 6528. In this case just a psuedo random

 * number is used so THIS IS NOT RECOMMENDED FOR PRODUCTION SYSTEMS.

 */

 FSP_PARAMETER_NOT_USED(ulSourceAddress);

 FSP_PARAMETER_NOT_USED(ulDestinationAddress);

 FSP_PARAMETER_NOT_USED(usSourcePort);

 FSP_PARAMETER_NOT_USED(usDestinationPort);

 uint32_t ulResult = 0;

 while (0 == ulResult)

 {

 xApplicationGetRandomNumber(&ulResult);

 }

 return ulResult;

}

void handle_error (fsp_err_t err, char * err_str)

{

 FSP_PARAMETER_NOT_USED(err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 FSP_PARAMETER_NOT_USED(err_str);

 /* close opened USB module */

 R_USB_Close(&g_basic0_ctrl);

} /* End of function handle_error() */

void usb_rtos_callback (usb_event_info_t * p_event_info, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 FSP_PARAMETER_NOT_USED(cur_task);

 FSP_PARAMETER_NOT_USED(usb_state);

 /* Send event received to queue */

 if (pdTRUE != (xQueueSend(g_usb_callback_queue, (const void *) &p_event_info,

(TickType_t) (NO_WAIT_TIME))))

 {

 g_err_flag = true;

 }

} /* End of function usb_rtos_callback */

void vSpecificDeviceRegistration (void)

{

 fsp_err_t err;

 err = R_USB_HCDC_SpecificDeviceRegister(&g_basic0_ctrl, USB_ECM_TEST_DEVICE_VID,

USB_ECM_TEST_DEVICE_PID);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HCDC_SpecificDeviceRegister API FAILED");

 }

}

void vEventProcess (usb_event_info_t * p_event_info)

{

 fsp_err_t err;

 usb_hcdc_device_info_t device_info;

 switch (p_event_info->event)

 {

 case USB_STATUS_CONFIGURED:

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 err = R_USB_HCDC_DeviceInfoGet(&g_basic0_ctrl, &device_info,

p_event_info->device_address);

 if (FSP_SUCCESS == err)

 {

 if (CDC_SUB_CLASS_ECM == device_info.subclass)

 {

 R_USB_HCDC_ControlDataRead(&g_basic0_ctrl,

 &g_interrupt_in_rcv_buf[VALUE_ZERO],

 CDC_INTERRUPT_READ_DATA_LEN,

 p_event_info->device_address);

 }

 else if (CDC_SUB_CLASS_ACM == g_subclass)

 {

 /* none */

 }

 else

 {

 if ((USB_ECM_TEST_DEVICE_VID == device_info.vendor_id) &&

 (USB_ECM_TEST_DEVICE_PID == device_info.product_id))

 {

 set_configuration0_for_asix_ax88179(&g_basic0_ctrl,

p_event_info->device_address);

 }

 }

 }

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 if (USB_CLASS_HCDC == p_event_info->type)

 {

 xQueueSend(g_usb_read_complete_queue, &p_event_info, (TickType_t)

portMAX_DELAY);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 else

 {

 if (0 ==

 memcmp((void *) g_notification_networkconnection_connect,

g_interrupt_in_rcv_buf,

 sizeof(g_notification_networkconnection_connect)))

 {

 /* Received NETWORKCONNECTION "Connected". */

 g_ecm_connected = 1; /* link up */

 }

 else if (0 ==

 memcmp((void *) g_notification_networkconnection_disconnect,

g_interrupt_in_rcv_buf,

 sizeof(g_notification_networkconnection_disconnect)))

 {

 /* Received NETWORKCONNECTION "Disconnect". */

 g_ecm_connected = 0; /* link down */

 }

 R_USB_HCDC_ControlDataRead(&g_basic0_ctrl,

 &g_interrupt_in_rcv_buf[VALUE_ZERO],

 CDC_INTERRUPT_READ_DATA_LEN,

 p_event_info->device_address);

 }

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 xQueueSend(g_usb_write_complete_queue, &p_event_info, (TickType_t)

portMAX_DELAY);

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if ((USB_SET_CONFIGURATION == (p_event_info->setup.request_type & USB_BREQUEST)) &&

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 (VALUE_ZERO == p_event_info->setup.request_value))

 {

 /* Set Configuration (3) */

 set_configuration3_for_asix_ax88179(&g_basic0_ctrl,

p_event_info->device_address);

 }

 else if ((USB_SET_CONFIGURATION == (p_event_info->setup.request_type & USB_BREQUEST

)) &&

 (VALUE_0003H == p_event_info->setup.request_value))

 {

 /* Get Configuration Descrptor (9 byte) */

 get_configration_descriptor_for_asix_ax88179(&g_basic0_ctrl,

p_event_info->device_address,

 (uint16_t) VALUE_9);

 }

 else if ((USB_GET_DESCRIPTOR == (p_event_info->setup.request_type & USB_BREQUEST))

&&

 (p_event_info->data_size == VALUE_9))

 {

 /* Get Configuration Descrptor (all byte) */

 get_configration_descriptor_for_asix_ax88179(&g_basic0_ctrl,

p_event_info->device_address,

 (uint16_t) (((uint16_t)

g_disc_buf[3] << 8) +

 (uint16_t)

g_disc_buf[2]));

 }

 else if ((USB_GET_DESCRIPTOR == (p_event_info->setup.request_type & USB_BREQUEST))

&&

 (p_event_info->data_size > VALUE_9))

 {

 set_ethernet_packet_filter(&g_basic0_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

p_event_info->device_address);

 }

 else if (SET_ETHERNET_PACKET_FILTER == (p_event_info->setup.request_type &

USB_BREQUEST))

 {

 set_interface_for_asix_ax88179(&g_basic0_ctrl,

p_event_info->device_address);

 }

 else if (USB_SET_INTERFACE == (p_event_info->setup.request_type & USB_BREQUEST))

 {

 /* Pipe setting */

 memcpy(g_usb_hstd_config_descriptor[g_utr.ip], g_disc_buf,

 (uint16_t) (((uint16_t) g_disc_buf[3] << 8) + (uint16_t)

g_disc_buf[2]));

 usb_hcdc_pipe_info(&g_utr,

 (uint8_t *) g_usb_hstd_config_descriptor[g_utr.ip],

 g_usb_hcdc_speed[g_utr.ip],

 (uint16_t) (((uint16_t) g_disc_buf[3] << 8) + (uint16_t)

g_disc_buf[2]));

 usb_hcdc_set_pipe_registration(&g_utr, p_event_info->device_address);

 R_USB_HCDC_ControlDataRead(&g_basic0_ctrl,

 &g_interrupt_in_rcv_buf[VALUE_ZERO],

 CDC_INTERRUPT_READ_DATA_LEN,

 p_event_info->device_address);

 }

 else

 {

 /* Not support request */

 }

 break;

 }

 case USB_STATUS_DETACH:

 {

 g_ecm_connected = 0; /* link down */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 break;

 }

 default:

 {

 /* No operation to do*/

 break;

 }

 }

}

static void set_configuration0_for_asix_ax88179 (usb_instance_ctrl_t * p_ctrl,

uint8_t device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = USB_SET_CONFIGURATION | USB_HOST_TO_DEV | USB_STANDARD |

USB_DEVICE;

 setup.request_value = VALUE_ZERO;

 setup.request_index = VALUE_ZERO;

 setup.request_length = VALUE_ZERO;

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_usb_dummy,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HostControlTransfer API FAILED");

 }

}

static void set_configuration3_for_asix_ax88179 (usb_instance_ctrl_t * p_ctrl,

uint8_t device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = USB_SET_CONFIGURATION | USB_HOST_TO_DEV | USB_STANDARD |

USB_DEVICE;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

 setup.request_value = VALUE_0003H;

 setup.request_index = VALUE_ZERO;

 setup.request_length = VALUE_ZERO;

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_usb_dummy,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HostControlTransfer API FAILED");

 }

}

static void get_configration_descriptor_for_asix_ax88179 (usb_instance_ctrl_t *

p_ctrl,

 uint8_t devic

e_address,

 uint16_t

length)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = USB_GET_DESCRIPTOR | USB_DEV_TO_HOST | USB_STANDARD |

USB_DEVICE;

 setup.request_value = (uint16_t) USB_CONF_DESCRIPTOR | VALUE_0002H; /* 0x0002 :

index of config disc */

 setup.request_index = VALUE_ZERO;

 setup.request_length = length;

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_disc_buf,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HostControlTransfer API FAILED");

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

static void set_interface_for_asix_ax88179 (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = USB_SET_INTERFACE | USB_HOST_TO_DEV | USB_STANDARD |

USB_INTERFACE;

 setup.request_value = VALUE_0001H;

 setup.request_index = VALUE_0001H;

 setup.request_length = VALUE_ZERO;

 /* Request Control transfer */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_usb_dummy,

device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HostControlTransfer API FAILED");

 }

}

static void set_ethernet_packet_filter (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 fsp_err_t err = FSP_SUCCESS;

 setup.request_type = (SET_ETHERNET_PACKET_FILTER | USB_HOST_TO_DEV | USB_CLASS

| USB_INTERFACE);

 setup.request_value = VALUE_001FH; /* No packet filter */

 setup.request_index = VALUE_0001H; /* wIndex:Interface */

 setup.request_length = VALUE_ZERO; /* wLength:Zero */

 err = R_USB_HostControlTransfer(p_ctrl, &setup, &g_usb_dummy, device_address);

 if (FSP_SUCCESS != err)

 {

 handle_error(g_err_flag, "R_USB_HostControlTransfer API FAILED");

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

Function Documentation

◆ R_USB_HCDC_ControlDataRead()

fsp_err_t R_USB_HCDC_ControlDataRead (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t
size, uint8_t device_address)

Read Control Data.(CDC Interrupt IN data)

Return values
FSP_SUCCESS Successfully completed (Data read request

completed).

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Data receive request already in process for
USB device with same device address.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1. Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_HCDC_SpecificDeviceRegister()

fsp_err_t R_USB_HCDC_SpecificDeviceRegister (usb_ctrl_t *const p_api_ctrl, uint16_t vendor_id,
uint16_t product_id)

Register the specified vendor class device in the device table.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HCDC (r_usb_hcdc)

◆ R_USB_HCDC_DeviceInfoGet()

fsp_err_t R_USB_HCDC_DeviceInfoGet (usb_ctrl_t *const p_api_ctrl, usb_hcdc_device_info_t *
p_info, uint8_t device_address)

Get the VID, PID and subclass code of the connected device.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
(1). Interrupt function.
(2). Callback function (for RTOS).

5.2.6.33 USB HHID (r_usb_hhid)
Modules » Connectivity

Functions

fsp_err_t R_USB_HHID_TypeGet (usb_ctrl_t *const p_api_ctrl, uint8_t *p_type,
uint8_t device_address)

 Get HID protocol.(USB Mouse/USB Keyboard/Other Type.) More...

fsp_err_t R_USB_HHID_MaxPacketSizeGet (usb_ctrl_t *const p_api_ctrl,
uint16_t *p_size, uint8_t direction, uint8_t device_address)

 Obtains max packet size for the connected HID device. The max
packet size is set to the area. Set the direction
(USB_HID_IN/USB_HID_OUT). More...

Detailed Description

This module provides a USB Host Human Interface Device Class Driver (HHID). It implements the USB
HHID Interface.

Overview
The r_usb_hhid module combines with the r_usb_basic module to provide a USB Host Human
Interface Device Class (HHID) driver. The HHID driver conforms to the USB Human Interface Device

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

class specifications and implements communication with a HID device.

Features

The r_usb_hhid module has the following key features:

Data communication with a connected HID device (USB mouse, keyboard etc.)
Issuing of HID class requests to a connected HID device
Supports Interrupt OUT transfer

Configuration
Build Time Configurations for r_usb_hhid

The following build time configurations are defined in fsp_cfg/r_usb_hhid_cfg.h:

Configuration Options Default Description

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the pipe number
to use for input
interrupt events.

Interrupt Out Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE9 Select the pipe number
to use for output
interrupt events.

Configurations for Connectivity > USB HHID (r_usb_hhid)

This module can be added to the Stacks tab via New Stack > Connectivity > USB HHID (r_usb_hhid).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_hhid0 Module name.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Note

This driver is not guaranteed to provide USB HID operation in all scenarios. The developer must verify correct
operation when connected to the targeted USB peripherals.

Class Requests

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

The class requests supported by this driver are shown below:

Request Code Description

USB_GET_REPORT 0x01 Receives a report from the HID
device.

USB_SET_REPORT 0x09 Sends a report to the HID
device.

USB_GET_IDLE 0x02 Receives a duration (time) from
the HID device.

USB_SET_IDLE 0x0A Sends a duration (time) to the
HID device.

USB_GET_PROTOCOL 0x03 Reads a protocol from the HID
device.

USB_SET_PROTOCOL 0x0B Sends a protocol to the HID
device.

USB_GET_REPORT_DESCRIPTOR 0x06 Requests a report descriptor.

USB_GET_HID_DESCRIPTOR 0x06 Requests a HID descriptor.

Data Format

The boot protocol data format of data received from the keyboard or mouse through interrupt-IN
transfers is shown below:

offset Keyboard (8 Bytes) Mouse (3 Bytes)

0 (Top Byte) Modifier keys b0 : Button 1
b1 : Button 2
b2 : Button 3
b3-b7 : Reserved

+1 Reserved X displacement

+2 Keycode 1 Y displacement

+3 Keycode 2 -

+4 Keycode 3 -

+5 Keycode 4 -

+6 Keycode 5 -

+7 Keycode 6 -

Limitations

The HID driver does not analyze the report descriptor. This driver determines the report
format from the interface protocol.
This driver does not support DMA transfers.
This driver does not support High-speed.
The transfer rates of Full-speed and Low-speed are the same when the max packet sizes of
Full-speed and Low-speed are the same.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

This driver does not support simultaneous operation with the other device class.

Examples
USB HHID Example

The main functions of the application are as follows:

1. Performs enumeration and initialization of HID devices.
2. Transfers data to and from a connected HID device (mouse or keyboard). Data received

from the device is read and discarded.
3. When an RTOS is used, the USB driver calls the callback (usb_apl_callback) in order to pass

events to the main loop through a queue.

Figure 204: Example Operating Environment

Application Processing (for RTOS)

The main loop performs processing to receive data from the HID device as part of the main routine.
An overview of the processing performed by the loop is shown below.

1. When a USB-related event has completed, the USB driver calls the callback function
(usb_apl_callback). In the callback function (usb_apl_callback), the application task (APL) is
notified of the USB completion event using the real-time OS functionality.

2. In APL, information regarding the USB completion event was notified from the callback
function is retrieved using the real-time OS functionality.

3. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

2 above is USB_STATUS_CONFIGURED, APL sends the class request (SET_PROTOCOL) to the
HID device.

4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STATUS_REQUEST_COMPLETE, APL performs a data reception request to
receive data transmitted from the HID device by calling the R_USB_Read function.

5. The above processing is repeated.

Figure 205: Main Loop (Normal mode)

Application Processing (for Non-OS)

The main loop performs processing to receive data from the HID device as part of the main routine.
An overview of the processing of the main loop is presented below.

1. When the R_USB_GetEvent function is called after an HID device attaches to the USB host
and enumeration completes, USB_STATUS_CONFIGURED is set as the return value. When
the APL confirms USB_STATUS_CONFIGURED, it calls the R_USB_Write function to request
transmission of data to the HID device.

2. When the R_USB_GetEvent function is called after sending of class request SET_PROTOCOL
to the HID device has completed, USB_STATUS_REQUEST_COMPLETE is set as the return
value. When the APL confirms USB_STATUS_REQUEST_COMPLETE, it calls the R_USB_Read
function to make a data receive request for data sent by the HID device.

3. When the R_USB_GetEvent function is called after reception of data from the HID device has
completed, USB_STATUS_READ_COMPLETE is set as the return value. When the APL
confirms USB_STATUS_READ_COMPLETE, it calls the R_USB_Read function to make a data
receive request for data sent by the HID device.

4. The processing in step 3, above, is repeated.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

Figure 206: Main Loop (Normal mode)

/**

 * Macro definitions

 **/

#define SET_PROTOCOL (USB_HID_SET_PROTOCOL | USB_HOST_TO_DEV | USB_CLASS |

USB_INTERFACE)

#define BOOT_PROTOCOL (0)

#define USB_FS_DEVICE_ADDRESS_1 (1)

/**

 * Private global variables and functions

 **/

static const usb_hhid_api_t g_hhid_on_usb =

{

 .typeGet = R_USB_HHID_TypeGet,

 .maxPacketSizeGet = R_USB_HHID_MaxPacketSizeGet,

};

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback() */

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_hhid_example

 * Description : Host HID application main process

 * Arguments : none

 * Return value : none

 **/

void usb_hhid_example (void)

{

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif /* (BSP_CFG_RTOS == 2) */

 usb_status_t event;

 usb_event_info_t event_info;

 uint16_t offset = 0;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&event_info, &event); /* Get event code */

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 g_hhid_on_usb.typeGet(&g_basic0_ctrl, &g_hid_type,

USB_FS_DEVICE_ADDRESS_1);

 g_hhid_on_usb.maxPacketSizeGet(&g_basic0_ctrl, &g_mxps, USB_HID_IN,

USB_FS_DEVICE_ADDRESS_1);

 /* Send the HID request (SetProtocol) to HID device */

 set_protocol(&g_basic0_ctrl, BOOT_PROTOCOL, USB_FS_DEVICE_ADDRESS_1);

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 offset = hid_memcpy(g_store_buf, g_buf, offset, g_mxps);

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, (uint32_t) g_mxps,

USB_FS_DEVICE_ADDRESS_1);

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_HID_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, (uint32_t) g_mxps,

USB_FS_DEVICE_ADDRESS_1);

 }

 break;

 }

 default:

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

 break;

 }

 }

 }

} /* End of function usb_hhid_example() */

/**

 * Function Name : set_protocol

 * Description : Sending SetProtocol request to HID device

 * Arguments : usb_ctrl_t *p_ctrl : Pointer to usb_instance_ctrl_t structure.

 * : uint8_t ptorocol: Protocol Type

 * : uint8_t device_address: Device address that sends this request

 * Return value : none

 **/

static void set_protocol (usb_instance_ctrl_t * p_ctrl, uint8_t protocol, uint8_t

device_address)

{

 usb_setup_t setup;

 setup.request_type =

SET_PROTOCOL; /*

bRequestCode:SET_PROTOCOL, bmRequestType */

 setup.request_value =

protocol; /* wValue:

Protocol Type */

 setup.request_index =

0x0000; /*

wIndex:Interface */

 setup.request_length =

0x0000; /* wLength:Zero

*/

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_setup_data,

device_address); /* Request Control transfer */

} /* End of function set_protocol() */

/**

 * Function Name : hid_memcpy

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

 * Description : Copy received hhid data to the application buffer

 * Arguments : uint8_t *p_dest : Pointer to application buffer

 * : uint8_t *p_src : Pointer to received buffer

 * : uint16_t offset : Application buffer offset

 * : uint16_t size : Size of receiced hhid data

 * Return value : uint16_t offset + i: Offset

 **/

static uint16_t hid_memcpy (uint8_t * p_dest, uint8_t * p_src, uint16_t offset,

uint16_t size)

{

 uint16_t i;

 for (i = 0; i < size; i++)

 {

 if (BUFSIZE == (offset + i))

 {

 offset = 0;

 }

 *(p_dest + offset + i) = *(p_src + i);

 }

 return (uint16_t) (offset + i);

} /* End of function hid_memcpy() */

Function Documentation

◆ R_USB_HHID_TypeGet()

fsp_err_t R_USB_HHID_TypeGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_type, uint8_t
device_address)

Get HID protocol.(USB Mouse/USB Keyboard/Other Type.)

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HHID (r_usb_hhid)

◆ R_USB_HHID_MaxPacketSizeGet()

fsp_err_t R_USB_HHID_MaxPacketSizeGet (usb_ctrl_t *const p_api_ctrl, uint16_t * p_size, uint8_t
direction, uint8_t device_address)

Obtains max packet size for the connected HID device. The max packet size is set to the area. Set
the direction (USB_HID_IN/USB_HID_OUT).

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

5.2.6.34 USB HMSC (r_usb_hmsc)
Modules » Connectivity

Functions

fsp_err_t R_USB_HMSC_StorageCommand (usb_ctrl_t *const p_api_ctrl, uint8_t
*buf, uint8_t command, uint8_t destination)

 Processing for MassStorage(ATAPI) command. More...

fsp_err_t R_USB_HMSC_DriveNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_drive, uint8_t destination)

 Get number of Storage drive. More...

fsp_err_t R_USB_HMSC_StorageReadSector (uint16_t drive_number, uint8_t
*const buff, uint32_t sector_number, uint16_t sector_count)

 Read sector information. More...

fsp_err_t R_USB_HMSC_StorageWriteSector (uint16_t drive_number, uint8_t
const *const buff, uint32_t sector_number, uint16_t sector_count)

 Write sector information. More...

fsp_err_t R_USB_HMSC_SemaphoreGet (void)

 Get a semaphore. (RTOS only) More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

fsp_err_t R_USB_HMSC_SemaphoreRelease (void)

 Release a semaphore. (RTOS only) More...

Detailed Description

This module provides a USB Host Mass Storage Class (HMSC) driver. It implements the USB HMSC
Interface.

Overview
The r_usb_hmsc module, when used in combination with the r_usb_basic module, operates as a USB
Host Mass Storage Class (HMSC) driver. It is built on the USB Mass Storage Class Bulk-Only Transport
(BOT) protocol. It is possible to communicate with BOT-compatible USB storage devices by
combining this module with a file system and storage device driver.

Note
This module should be used in combination with the FreeRTOS+FAT File System.

Features

The r_usb_hmsc module has the following key features:

Checking of connected USB storage devices to determine whether or not operation is
supported
Storage command communication using the BOT protocol
Support for SFF-8070i (ATAPI) USB mass storage subclass
Sharing of a single pipe for IN/OUT directions or multiple devices
Supports up to 4 connected USB storage devices

Known Issues

Users can not use TrustZone features that use Non-secure Callable.

Class Requests

The class requests supported by this driver are shown below.

Request Description

GetMaxLun Gets the maximum number of units that are
supported.

MassStorageReset Cancels a protocol error.

Storage Commands

This driver supports the following storage commands:

TEST_UNIT_READY
MODE_SELECT10
MODE_SENSE10

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

PREVENT_ALLOW
READ_FORMAT_CAPACITY
READ10
WRITE10

Configuration
Refer to the USB (r_usb_basic) module.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Warning

Due to the wide variety of USB mass storage device implementations, this driver is not
guaranteed to work with all devices. When implementing the driver it is important to verify
correct operation with the mass storage devices that the end user is expected to use.

Multi Port

This driver supports simultaneous operation with Peripheral Communication Device Class(PCDC). If
the user are using MCU that supports 2 USB modules, such as RA6M3, the user can run HMSC on one
USB module and PCDC on the other. This driver does not support simultaneous operation using
device classes other than PCDC.

For Bare Metal

1. To use FreeRTOS+FAT without FreeRTOS, copy FreeRTOSConfigMinimal.h to one of your
project's include paths and rename it FreeRTOSConfig.h.

2. In RA configurator, enter the appropriate values in the Main stack size and Heap size fields.
The figure below is an example of the RA6M3-EK board.

Figure 207: BSP Setting

1. In the Bare Metal version, specify "NULL" in the Callback item.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

Figure 208: For Bare Metal Setting

Limitations

1. Some MSC devices may be unable to connect because they are not recognized as storage
devices.

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command
(mass storage class command) are not supported.

3. A maximum of 4 USB storage devices can be connected.
4. Only USB storage devices with a sector size of 512 bytes can be connected.
5. A device that does not respond to the READ_CAPACITY command operates as a device with

a sector size of 512 bytes.
6. The continuous transfer mode cannot be used when using DMA.
7. This module must be incorporated into a project using r_usb_basic and does not provide

any public APIs.
8. This driver does not support Low-speed.

Examples
USB HMSC Example

Example Operating Environment

The following shows an example operating environment for the HMSC.

Refer to the associated instruction manuals for details on setting up the evaluation board and using
the emulator, etc.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

Figure 209: Example Operating Environment

Application Specifications

The main functions of the application are as follows:

1. Performs enumeration and drive recognition processing on MSC devices.
2. After the above processsing finisihes, the application writes the file to the MSC device once.
3. After writing the above file, the APL repeatedly reads the file. It continues to read the file

repeatedly until the switch is pressed again.

Application Processing (for RTOS)

This application has two tasks. An overview of the processing in these two tasks is provided below.

usb_apl_task

1. After start up, MCU pin setting, USB controller initialization, and application program
initialization are performed.

2. The MSC device is attached to the kit. When enumeration and drive recognition processing
have completed, the USB driver calls the callback function (usb_apl_callback). In the
callback function (usb_apl_callback), the application task is notified of the USB completion
event using the FreeRTOS functionality.

3. In the application task, information regarding the USB completion event about which
notification was received from the callback function is retrieved using the real-time OS
functionality.

4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS_CONFIGURED then, based on the USB completion event, the MSC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

device is mounted and the file is written to the MSC device.
5. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step

2 above is USB_STS_DETACH, the application initializes the variables for state management.

Figure 210: usb_apl_task

 file_read_task

Of the application tasks usb_apl_task and file_read_task, file_read_task is processed while
usb_apl_task is in the wait state. This task performs file read processing on the file that was written
to the MSC device.

Example Code

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME "TEST_FILE.txt"

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES (10240)

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER (0)

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB

typedef enum

{

 STATE_ATTACH, STATE_DATA_READY, STATE_DATA_WRITE, STATE_FILE_READ, STATE_DETACH,

STATE_ERROR,

} state_t;

extern rm_freertos_plus_fat_instance_ctrl_t g_rm_freertos_plus_fat0_ctrl;

extern const rm_freertos_plus_fat_cfg_t g_rm_freertos_plus_fat0_cfg;

// @@extern const rm_freertos_plus_fat_disk_cfg_t g_rm_freertos_plus_fat0_disk_cfg;

uint8_t g_file_data[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

uint8_t g_read_buffer[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

static uint16_t g_state = STATE_DETACH;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

void usb_hmsc_baremetal_example (void)

{

 uint16_t i;

 uint16_t k;

 fsp_err_t err;

 FF_FILE * pxSourceFile;

 FF_Disk_t disk;

 rm_freertos_plus_fat_device_t device;

 usb_status_t event;

 usb_event_info_t event_info;

 FF_Error_t ff_err;

 size_t size_return;

 int close_err;

 rm_block_media_usb_instance_ctrl_t * p_instance_ctrl;

 for (i = 0; i < RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES; i++)

 {

 g_file_data[i] = (uint8_t) i;

 }

 /* Open media driver.*/

 RM_FREERTOS_PLUS_FAT_Open(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_cfg);

/* When using USB media, enable RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB macro. */

 #ifdef RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB

 while (1)

 {

 g_usb_on_usb.eventGet(&event_info, &event);

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 p_instance_ctrl = event_info.p_context;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

 p_instance_ctrl->device_address = event_info.device_address;

 RM_FREERTOS_PLUS_FAT_MediaInit(&g_rm_freertos_plus_fat0_ctrl, &device);

 /* Initialize one disk for each partition used in the application. */

 RM_FREERTOS_PLUS_FAT_DiskInit(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_disk_cfg, &disk);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Mount(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 /* Write file data. */

 ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

 /* Close the file. */

 ff_fclose(pxSourceFile);

 g_state = STATE_FILE_READ;

 break;

 }

 case USB_STATUS_DETACH:

 {

 g_state = STATE_DETACH;

 RM_FREERTOS_PLUS_FAT_DiskDeinit(&g_rm_freertos_plus_fat0_ctrl, &disk);

 break;

 }

 default:

 {

 break;

 }

 }

 if (STATE_FILE_READ == g_state)

 {

 pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "r");

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

 for (k = 0; k < RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES; k++)

 {

 g_read_buffer[k] = (uint8_t) 0;

 }

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1,

pxSourceFile);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 }

 }

 #endif

}

Function Documentation

◆ R_USB_HMSC_StorageCommand()

fsp_err_t R_USB_HMSC_StorageCommand (usb_ctrl_t *const p_api_ctrl, uint8_t * buf, uint8_t
command, uint8_t destination)

Processing for MassStorage(ATAPI) command.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

◆ R_USB_HMSC_DriveNumberGet()

fsp_err_t R_USB_HMSC_DriveNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_drive, uint8_t
destination)

Get number of Storage drive.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_HMSC_StorageReadSector()

fsp_err_t R_USB_HMSC_StorageReadSector (uint16_t drive_number, uint8_t *const buff, uint32_t
sector_number, uint16_t sector_count)

Read sector information.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
The address specified in the argument buff must be 4-byte aligned.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB HMSC (r_usb_hmsc)

◆ R_USB_HMSC_StorageWriteSector()

fsp_err_t R_USB_HMSC_StorageWriteSector (uint16_t drive_number, uint8_t const *const buff,
uint32_t sector_number, uint16_t sector_count)

Write sector information.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
The address specified in the argument buff must be 4-byte aligned.

◆ R_USB_HMSC_SemaphoreGet()

fsp_err_t R_USB_HMSC_SemaphoreGet (void)

Get a semaphore. (RTOS only)

If this function is called in the OS less execution environment, a failure is returned.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

◆ R_USB_HMSC_SemaphoreRelease()

fsp_err_t R_USB_HMSC_SemaphoreRelease (void)

Release a semaphore. (RTOS only)

If this function is called in the OS less execution environment, a failure is returned.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

5.2.6.35 USB Host Vendor class (r_usb_hvnd)
Modules » Connectivity

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
USB Host Vendor class works by combining r_usb_basic module.

How to Configuration
The following shows FSP configuration procedure for USB Host Vendor class.

Select [New Stack]->[Middleware]->[USB]->[USB Host Vendor class driver on r_usb_hvnd].

Figure 211: Select USB Host Vendor Class

The following is displayed when selecting [USB Host Vendor class driver on r_usb_hvnd].
The user does not specify USB pipe number in Vendor class.

Figure 212: USB Host Vendor Class Stack

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

API
Use the following APIs in Host Vendor class application program.

For Data Transfer
Use the following APIs for data transfer for Bulk transfer or Interrupt transfer.

1. R_USB_PipeRead()
2. R_USB_PipeWrite()
3. R_USB_PipeStop()

For Control Transfer
Use the following API for the class request processing.

1. R_USB_HostControlTransfer()

For USB Pipe Information
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor
class. Use the following APIs to get the allocated USB pipe information.

1. R_USB_UsedPipesGet()
2. R_USB_PipeInfoGet()

USB PIPE Allocation
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor class.
The USB PIPE related to the Endpoint Descriptor are allocated in order from USB PIPE1 according to
the description order of the Endpoint Descriptor.

Examples
This application program processes the follwoing after the enumeration completes with USB device.

1. Getting USB Pipe Infomattion
2. Vendor Class Request Processing
3. Loopback processing of bulk transfer and interrupt transfer.

/**

**

 * Macro definitions

 **

**/

/* for Vendor Class Request */

#define USB_SET_VENDOR_NO_DATA (0x0000U)

#define USB_SET_VENDOR (0x0100U)

#define USB_GET_VENDOR (0x0200U)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

#define SET_VENDOR_NO_DATA (USB_SET_VENDOR_NO_DATA | USB_HOST_TO_DEV |

USB_VENDOR | USB_INTERFACE)

#define SET_VENDOR (USB_SET_VENDOR | USB_HOST_TO_DEV | USB_VENDOR |

USB_INTERFACE)

#define GET_VENDOR (USB_GET_VENDOR | USB_DEV_TO_HOST | USB_VENDOR |

USB_INTERFACE)

#if (BSP_CFG_RTOS == 2)

/**

**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **

**/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback() */

#endif /* (BSP_CFG_RTOS == 2) */

/**

**

 * Function Name : usb_pvnd_example

 * Description : Peripheral Vendor Class application main process

 * Arguments : none

 * Return value : none

 **

**/

void usb_pvnd_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

{

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 usb_status_t event;

 usb_event_info_t event_info;

 uint8_t bulk_out_pipe = 0; /* Bulk Out Pipe */

 uint8_t bulk_in_pipe = 0; /* Bulk In Pipe */

 uint8_t int_out_pipe = 0; /* Interrupt Out Pipe */

 uint8_t int_in_pipe = 0; /* Interrupt In Pipe */

 uint16_t buf_type = 0;

 uint8_t pipe = 0;

 uint8_t is_zlp[2] = {0, 0};

 uint16_t used_pipe = 0;

 usb_pipe_t pipe_info;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 buffer_init();

 is_zlp[0] = 0;

 is_zlp[1] = 0;

 /* Get USB Pipe Information */

 g_usb_on_usb.usedPipesGet(&g_basic0_ctrl, &used_pipe,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

ADDRESS1);

 for (pipe = START_PIPE; pipe < END_PIPE; pipe++)

 {

 if (0 != (used_pipe & (1 << pipe)))

 {

 g_usb_on_usb.pipeInfoGet(&g_basic0_ctrl, &pipe_info,

pipe);

 if (USB_EP_DIR_IN != (pipe_info.endpoint & USB_EP_DIR_IN))

 {

 /* Out Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_out_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_out_pipe = pipe;

 }

 }

 else

 {

 /* In Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_in_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_in_pipe = pipe;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 }

 }

 }

 /* Send Vendor Class Request */

 class_request_set_vendor_no_data(&g_basic0_ctrl,

event_info.device_address);

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 if (FSP_ERR_USB_FAILED != event_info.status)

 {

 if (bulk_in_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 pipe = bulk_out_pipe;

 }

 else if (int_in_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 pipe = int_out_pipe;

 }

 else

 {

 while (1)

 {

 ;

 }

 }

 buffer_check(buf_type, event_info.data_size);

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[buf_type][0], event_info.data_size, pipe);

 }

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (bulk_out_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 if (1 == is_zlp[buf_type])

 {

 pipe = bulk_in_pipe;

 }

 }

 else if (int_out_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 if (1 == is_zlp[buf_type])

 {

 pipe = int_in_pipe;

 }

 }

 else

 {

 /* Nothing */

 }

 if (1 == is_zlp[buf_type])

 {

 is_zlp[buf_type] = 0;

 buffer_clear(buf_type);

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[buf_type][0],

BUF_SIZE, pipe);

 }

 else

 {

 is_zlp[buf_type] = 1;

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, 0, 0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

event_info.pipe); /* Send ZLP */

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_SET_VENDOR_NO_DATA == (event_info.setup.request_type & USB_BREQUEST

))

 {

 class_request_set_vendor(&g_basic0_ctrl,

event_info.device_address);

 }

 else if (USB_SET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 class_request_get_vendor(&g_basic0_ctrl,

event_info.device_address);

 }

 else if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 buffer_init();

 /* Bulk Out Transfer */

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[BUF_BULK][0], (BUF_SIZE - USB_APL_MXPS),

 bulk_out_pipe);

 /* Interrupt Out Transfer */

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, &g_buf[BUF_INT][0],

(BUF_SIZE - USB_APL_MXPS), int_out_pipe);

 }

 else

 {

 /* Unsupported request */

 }

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 case USB_STATUS_DETACH:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_pvnd_example() */

/**

**

 * Function Name : class_request_set_vendor

 * Description : Send Vendor Class Request (SET_VENDOR) to USB device.

 * Arguments : none

 * Return value : none

 **

**/

static void class_request_set_vendor (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

 {

 g_request_buf[i] = (uint8_t) i;

 }

 setup.request_type = SET_VENDOR; /* bRequestCode:SET_VENDOR,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = REQ_SIZE; /* wLength: Data Length */

 /* Request Control transfer */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

device_address);

} /* End of function class_request_set_vendor() */

/**

**

 * Function Name : class_request_set_vendor_no_data

 * Description : Send Vendor Class Request (SET_VENDOR_NO_DATA) to USB

device.

 * Arguments : none

 * Return value : none

 **

**/

static void class_request_set_vendor_no_data (usb_instance_ctrl_t * p_ctrl,

uint8_t device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

 {

 g_request_buf[i] = (uint8_t) i;

 }

 setup.request_type = SET_VENDOR_NO_DATA; /*

bRequestCode:SET_VENDOR_NO_DATA, bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = 0x0000; /* wLength: Data Length */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

device_address);

} /* End of function class_request_set_vendor_no_data() */

/**

**

 * Function Name : class_request_get_vendor

 * Description : Send Vendor Class Request (GET_VENDOR) to USB device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 * Arguments : none

 * Return value : none

 **

**/

static void class_request_get_vendor (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

 {

 g_request_buf[i] = 0;

 }

 setup.request_type = GET_VENDOR; /* bRequestCode:GET_VENDOR,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = REQ_SIZE; /* wLength: Data Length */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

device_address);

} /* End of function class_request_get_vendor() */

/**

**

 * Function Name : buffer_init

 * Description : buffer initialization

 * Arguments : none

 * Return value : none

 **

**/

static void buffer_init (void)

{

 uint16_t i;

 uint16_t j;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 for (j = 0; j < 2; j++)

 {

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[j][i] = (uint8_t) i;

 }

 }

} /* End of function buffer_init() */

/**

**

 * Function Name : buffer_check

 * Description : buffer check

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_check (uint16_t buf_type, uint32_t size)

{

 uint16_t i;

 for (i = 0; i < (uint16_t) size; i++)

 {

 if ((uint8_t) (i & USB_VALUE_FF) != g_buf[buf_type][i])

 {

 while (1)

 {

 ;

 }

 }

 }

} /* End of function buffer_check() */

/**

**

 * Function Name : buffer_clear

 * Description : buffer clear

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Host Vendor class (r_usb_hvnd)

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_clear (uint16_t buf_type)

{

 uint16_t i;

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[buf_type][i] = 0;

 }

} /* End of function buffer_clear() */

/**

**

 * End of function usb_mcu_init

 **

**/

5.2.6.36 USB PCDC (r_usb_pcdc)
Modules » Connectivity

This module provides a USB Peripheral Communications Device Class Driver (PCDC). It implements
the USB PCDC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_pcdc module combines with the r_usb_basic module to provide a USB Peripheral
Communications Device Class (PCDC) driver. The PCDC driver conforms to Abstract Control Model of
the USB Communications Device Class (CDC) specification and enables communication with a CDC
host device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,501 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

Features

The r_usb_pcdc module has the following key features:

Data transfer to and from a USB host
Response to CDC class requests
Supports CDC notifications

Configuration
Build Time Configurations for r_usb_pcdc

The following build time configurations are defined in fsp_cfg/r_usb_pcdc_cfg.h:

Configuration Options Default Description

Bulk In Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE4 Select the USB pipe to
use for bulk input
transfers.

Bulk Out Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE5 Select the USB pipe to
use for bulk output
transfers.

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the USB pipe to
use for interrupts.

Configurations for Connectivity > USB PCDC (r_usb_pcdc)

This module can be added to the Stacks tab via New Stack > Connectivity > USB PCDC (r_usb_pcdc).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_pcdc0 Module name.

Note
Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

Abstract Control Model Overview

The Abstract Control Model subclass of CDC is a technology that bridges the gap between USB
devices and earlier modems (employing RS-232C connections), enabling use of application programs
designed for older modems.

Class Requests (Host to Peripheral)

This driver notifies the application when receiving the following class requests:

Request Code Description

SetLineCoding 0x20 Sets communication line
settings (bitrate, data length,
parity, and stop bit length)

GetLineCoding 0x21 Acquires the communication
line setting state

SetControlLineState 0x22 Set communication line control
signals (RTS, DTR)

Note
For details concerning the Abstract Control Model requests, refer to Table 11 "Requests - Abstract Control Model"
in the "USB Communications Class Subclass Specification for PSTN Devices", Revision 1.2.

Data Format of Class Requests

The data format of supported class requests is described below:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0x21 SET_LINE_CODI
NG (0x20)

0x0000 0x0000 0x0007 usb_pcdc_linec
oding_t

0xA1 GET_LINE_COD
ING (0x21)

0x0000 0x0000 0x0007 usb_pcdc_linec
oding_t

0x21 SET_CONTROL
_LINE_STATE

(0x22)

usb_pcdc_ctrlli
nestate_t

0x0000 0x0000 None

Class Notifications (Peripheral to Host)

The following class notifications are supported:

Notification Code Description

SERIAL_STATE 0x20 Notification of serial line state

The data types returned are as follows:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

0xA1 SERIAL_STATE
(0x20)

0x0000 0x0000 0x0002 usb_serial_stat
e_bitmap_t

Note
The host is notified with SERIAL_STATE whenever a change in the UART port state is detected. This driver will
automatically detect overrun, parity and framing errors. A state notification is performed when a transition from
normal to error state is detected.

Virtual COM-port Usage

When connected to a PC the CDC device can be used as a virtual COM port. After enumeration, the
CDC class requests GetLineCoding and SetControlLineState are executed by the target, and the CDC
device is registered in Windows Device Manager as a virtual COM device.

Registering the CDC device as a virtual COM-port in Windows Device Manager enables data
communication with the CDC device via a terminal app such as PuTTY. When changing settings of
the serial port in the terminal application, the UART setting is propagated to the firmware via the
class request SetLineCoding.

Data input (or file transmission) from the terminal app window is transmitted to the board using
endpoint 2 (EP2); data from the board side is transmitted to the PC using EP1.

When the last packet of data received is the maximum packet size, and the terminal determines that
there is continuous data, the received data may not be displayed in the terminal. If the received data
is smaller than the maximum packet size, the data received up to that point is displayed in the
terminal.

Multi Port

This driver supports simultaneous operation with Host Mass Storage Class(HMSC). If the user are
using MCU that supports 2 USB modules, such as RA6M3, the user can run PCDC on one USB module
and HMSC on the other. This driver does not support simultaneous operation using device classes
other than HMSC.

Limitations

This module must be incorporated into a project using r_usb_basic and does not provide
any public APIs.
This driver does not support Low-speed.
Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.

Examples
USB PCDC Loopback Example

The main functions of the PCDC loopback example are as follows:

1. Receives virtual UART configuration data from the host terminal
2. Loops all other received data back to the host terminal

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,504 / 5,560

https://www.putty.org/

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

Figure 213: Example Operating Environment

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

Figure 214: Main Loop processing (Echo mode)

#define USB_APL_YES (1U)

#define USB_APL_NO (0U)

#define APL_NUM_USB_EVENT (10U)

// #define APL_USE_BAREMETAL_CALLBACK USB_APL_NO

#define APL_USE_BAREMETAL_CALLBACK USB_APL_YES

/**

 * Private global variables and functions

 **/

extern const usb_cfg_t g_basic0_cfg;

static uint8_t g_buf[DATA_LEN];

static usb_pcdc_linecoding_t g_line_coding;

extern uint8_t g_apl_device[];

extern uint8_t g_apl_configuration[];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

extern uint8_t g_apl_hs_configuration[];

extern uint8_t g_apl_qualifier_descriptor[];

extern uint8_t * g_apl_string_table[];

usb_instance_ctrl_t g_basic0_ctrl;

#if (BSP_CFG_RTOS == 2)

QueueHandle_t g_apl_mbx_hdl;

#endif /* (BSP_CFG_RTOS == 2) */

#if (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES)

usb_callback_args_t g_apl_usb_event;

usb_callback_args_t g_apl_usb_event_buf[APL_NUM_USB_EVENT];

uint8_t g_apl_usb_event_wp = 0;

uint8_t g_apl_usb_event_rp = 0;

#endif /* (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES) */

/**

 * Exported global functions (to be accessed by other files)

 **/

void usb_pcdc_example(void);

#if (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES)

void usb_apl_callback(usb_callback_args_t * p_event);

#endif

#if (BSP_CFG_RTOS == 2)

void usb_apl_callback(usb_event_info_t * p_api_event, usb_hdl_t cur_task, usb_onoff_t

usb_state);

#endif

/**

 * Renesas Peripheral Communications Devices Class Sample Code functions

 **/

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

 * Return value : none

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback */

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_callback_args_t * p_event : Pointer to usb_callback_args_t

structure

 * Return value : none

 **/

#if (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES)

void usb_apl_callback (usb_callback_args_t * p_event)

{

 g_apl_usb_event_buf[g_apl_usb_event_wp] = *p_event;

 g_apl_usb_event_wp++;

 g_apl_usb_event_wp %= APL_NUM_USB_EVENT;

}

#endif /* (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES) */

/**

 * Function Name : usb_pcdc_example

 * Description : Peripheral CDC application main process

 * Arguments : none

 * Return value : none

 **/

void usb_pcdc_example (void)

{

 usb_event_info_t event_info;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

 usb_status_t event = USB_STATUS_POWERED;

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

#if (BSP_CFG_RTOS == 0) && (APL_USE_BAREMETAL_CALLBACK == USB_YES)

 g_usb_on_usb.callbackMemorySet(&g_basic0_ctrl, &g_apl_usb_event);

#endif /* (APL_USE_BAREMETAL_CALLBACK == USB_YES) */

 memset(&event_info, 0, sizeof(usb_event_info_t));

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 #if (APL_USE_BAREMETAL_CALLBACK == USB_YES)

 g_usb_on_usb.driverActivate(&g_basic0_ctrl);

 if (g_apl_usb_event_wp != g_apl_usb_event_rp)

 {

 event_info = g_apl_usb_event_buf[g_apl_usb_event_rp];

 g_apl_usb_event_rp++;

 g_apl_usb_event_rp %= APL_NUM_USB_EVENT;

 event = event_info.event;

 }

 #else /* (APL_USE_BAREMETAL_CALLBACK == USB_YES) */

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

 #endif

#endif /* (BSP_CFG_RTOS == 2) */

 /* Handle the received event (if any) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

 case USB_STATUS_WRITE_COMPLETE:

 /* Initialization complete; get data from host */

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 case USB_STATUS_READ_COMPLETE:

 /* Loop back received data to host */

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, event_info.data_size,

USB_CLASS_PCDC);

 break;

 case USB_STATUS_REQUEST: /* Receive Class Request */

 if (USB_PCDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Configure virtual UART settings */

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Send virtual UART settings back to host */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else

 {

 /* ACK all other status requests */

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 break;

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 break;

 default:

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PCDC (r_usb_pcdc)

 }

 }

} /* End of function usb_pcdc_example() */

Descriptor
A template for PCDC descriptors can be found in
ra/fsp/src/r_usb_pcdc/r_usb_pcdc_descriptor.c.template. Also, please be sure to use your vendor ID.

5.2.6.37 USB PHID (r_usb_phid)
Modules » Connectivity

This module is USB Peripheral Human Interface Device Class Driver (PHID). It implements the USB
PHID Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_phid module combines with the r_usb_basic module to provide a USB Peripheral Human
Interface Device Class (PHID) driver. The PHID driver conforms to the USB Human Interface Device
class specifications and implements communication with a HID host.

Features

The r_usb_phid module has the following functions:

Data transfer to and from a USB host
Response to HID class requests
Response to function references from the HID host

Note
This driver is not guaranteed to provide USB HID operation in all scenarios. The developer must verify correct
operation when connected to the targeted USB hosts.

Configuration
Build Time Configurations for r_usb_phid

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

The following build time configurations are defined in fsp_cfg/r_usb_phid_cfg.h:

Configuration Options Default Description

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the pipe number
for input interrupt
events.

Interrupt Out Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE7 Select the pipe number
for output interrupt
events.

Configurations for Connectivity > USB PHID (r_usb_phid)

This module can be added to the Stacks tab via New Stack > Connectivity > USB PHID (r_usb_phid).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_phid0 Module name.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Class Requests (Host to Peripheral)

This driver notifies the application when receiving the following class requests:

Request Code Description

Get_Report 0x01 Receives a report from the HID
host

Set_Report 0x09 Sends a report to the HID host

Get_Idle 0x02 Receives a duration (time) from
the HID host

Set_Idle 0x0A Sends a duration (time) to the
HID host

Get_Protocol 0x03 Reads a protocol from the HID
host

Set_Protocol 0x0B Sends a protocol to the HID
host

Get_Descriptor 0x06 Transmits a report or HID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

descriptor

The data format of supported class requests is described below:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 GET_REPORT
(0x01)

ReportType &
ReportID

Interface ReportLength Report

0x21 SET_REPORT
(0x09)

ReportType &
ReportID

Interface ReportLength Report

0xA1 GET_IDLE
(0x02)

0 & ReportID Interface 1 Idle rate

0x21 SET_IDLE
(0x0A)

Duration &
ReportID

Interface 0 Idle rate

0xA1 GET_PROTOCO
L (0x03)

0 Interface 0 0 (Boot) or 1
(Report)

0x21 SET_PROTOCO
L (0x0B)

0 (Boot) or 1
(Report)

Interface 0 Not applicable

Limitations

This driver does not support USB Hi-speed mode.
This driver does not support USB Low-speed mode.
This driver does not support DMA transfers.
This driver does not support simultaneous operation with USB Host device class.
Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

Figure 215: Example Operating Environment

USB PHID Example

This is a minimal example for implementing PHID in a non-RTOS application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

Figure 216: Main Loop processing for non-RTOS example

 This is a minimal example for implementing PHID in an RTOS application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

Figure 217: Main Loop processing for RTOS example

#define USB_RECEIVE_REPORT_DESCRIPTOR (76)

#define USB_RECEIVE_HID_DESCRIPTOR (9)

#define USB_WAIT_1000MS (1000)

#define SW_ACTIVE 0

#define SW R_PFS->PORT[0].PIN[8].PmnPFS_b.PIDR

#define SW_PDR R_PFS->PORT[0].PIN[8].PmnPFS_b.PDR

#define SW_PMR R_PFS->PORT[0].PIN[8].PmnPFS_b.PMR

static uint8_t g_buf[] = {0, 0, 0, 0, 0, 0, 0, 0}; /* HID data */

static const uint8_t g_zero_data[] = {0, 0, 0, 0, 0, 0, 0, 0}; /* zero data */

static uint16_t g_numlock = 0;

static uint8_t g_idle = 0;

uint8_t g_remote_wakeup_enable = USB_OFF;

uint8_t g_status = NO_WRITING;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

/**

 * Function Name : usb_cpu_getkeyno

 * Description : input key port

 * Arguments : none

 * Return value : uint16_t : key_no

 **/

uint8_t usb_cpu_getkeyno (void)

{

 uint8_t key_buf = 0;

 if (SW_ACTIVE == SW)

 {

 if (sw_on_count[0] < SW_ON_THRESHOLD)

 {

 sw_on_count[0]++;

 }

 }

 else

 {

 if (sw_on_count[0] >= SW_ON_THRESHOLD)

 {

 key_buf |= SW_PUSH;

 }

 sw_on_count[0] = 0;

 }

 return key_buf;

} /* End of function usb_cpu_getkeyno() */

/**

 * Function Name : set_key_data

 * Description : Set key data to buffer

 * Arguments : none

 * Return value : none

 **/

void set_key_data (uint8_t * p_buf)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

 static uint8_t key_data;

 key_data = KBD_CODE_A;

 *(p_buf + 2) = key_data;

} /* End of function set_key_data() */

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback() */

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_phid_example

 * Description : Peripheral HID application main process

 * Arguments : none

 * Return value : none

 **/

void usb_phid_example (void)

{

 usb_event_info_t event_info;

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 usb_status_t event;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

 uint8_t * p_idle_value;

 uint8_t sw_data;

 usb_info_t info;

 fsp_err_t ret_code = FSP_SUCCESS;

 uint8_t send_data[16] BSP_ALIGN_VARIABLE(4);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 set_key_data(g_buf);

 memset(&event_info, 0, sizeof(usb_event_info_t));

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 break;

 case USB_STATUS_WRITE_COMPLETE:

 if (DATA_WRITING == g_status)

 {

 g_status = ZERO_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, (uint8_t *) g_zero_data,

DATA_LEN, USB_CLASS_PHID); /* Sending the zero data (8 bytes) */

 }

 else

 {

 g_status = DATA_WRITING;

 usb_cpu_delay_xms(USB_WAIT_1000MS);

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

);

 }

 break;

 case USB_STATUS_REQUEST

: /* Receive Class Request

*/

 if (USB_SET_REPORT == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl, (uint8_t *)

&g_numlock, 2); /* Get the NumLock data (NumLock data is not used) */

 }

 else if (USB_GET_DESCRIPTOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 if (USB_GET_REPORT_DESCRIPTOR == event_info.setup.request_value)

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

 (uint8_t *) g_apl_report,

USB_RECEIVE_REPORT_DESCRIPTOR);

 }

 else if (USB_GET_HID_DESCRIPTOR == event_info.setup.request_value)

 {

 for (uint8_t i = 0; i < USB_RECEIVE_HID_DESCRIPTOR; i++)

 {

 send_data[i] = g_apl_configuration[18 + i];

 }

 /* Configuration Descriptor address set. */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, send_data,

USB_RECEIVE_HID_DESCRIPTOR);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,520 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

 }

 }

 else if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Get SetIdle value */

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, &g_idle, 1);

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 else if (USB_GET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 break;

 case USB_STATUS_REQUEST_COMPLETE: /* Complete Class Request */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

 if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* None */

 }

 else

 {

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 break;

 case USB_STATUS_SUSPEND:

 break;

 case USB_STATUS_DETACH:

 g_remote_wakeup_enable = USB_OFF;

 break;

 default:

 break;

 }

 ret_code = g_usb_on_usb.infoGet(&g_basic0_ctrl, &info, 0);

 if (FSP_SUCCESS == ret_code)

 {

 sw_data = usb_cpu_getkeyno();

 if (USB_STATUS_SUSPEND == info.device_status)

 {

 if (0 != (sw_data & SW_PUSH))

 {

 g_usb_on_usb.remoteWakeup(&g_basic0_ctrl);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PHID (r_usb_phid)

 }

 }

 }

} /* End of function usb_phid_example() */

Descriptors
A template for PHID descriptors can be found in ra/fsp/src/r_usb_phid. Be sure to replace the vendor
ID with your own.
Keyboard templates should be referred to r_usb_phid_descriptor_keyboard.c.template.
Mouse templates should be referred to r_usb_phid_descriptor_mouse.c.template.

5.2.6.38 USB PMSC (r_usb_pmsc)
Modules » Connectivity

This module provides a USB Peripheral Mass Storage Class (PMSC) driver. It implements the USB
PMSC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_pmsc module combines with the r_usb_basic module to provide USB Peripheral It operates
as a Mass Storage class driver (hereinafter referred to as PMSC).
The USB peripheral mass storage class driver (PMSC) comprises a USB mass storage class bulk-only
transport (BOT) protocol.
When combined with a USB peripheral control driver and media driver, it enables communication
with a USB host as a BOT-compatible storage device.

Features

The r_usb_pmsc module has the following key features:

Storage command control using the BOT protocol
Supports only SFF-8070i (ATAPI) Interface Sub-Class
Response to mass storage device class requests from a USB host

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

Build Time Configurations for r_usb_pmsc

The following build time configurations are defined in fsp_cfg/r_usb_pmsc_cfg.h:

Configuration Options Default Description

Bulk Input Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE4 Select the USB pipe to
use for bulk input
transfers.

Bulk Output Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE5 Select the USB pipe to
use for bulk output
transfers.

Vendor Information Vendor Information
must be 8 bytes long;
pad with spaces if
shorter.

Vendor Specify the vendor
information field (part
of the Inquiry
command response).

Product Information Product Information
must be 16 bytes long;
pad with spaces if
shorter.

Mass Storage Specify the product
information field (part
of the Inquiry
command response).

Product Revision Level Product Revision Level
must be 4 bytes long;
pad with spaces if
shorter.

1.00 Specify the product
revision level field (part
of the Inquiry
command response).

Sector size 512
4096

512 Specifies the sector
size.

Number of Transfer
Sectors

Please enter a number
between 1 and 255.

8 Specify the maximum
sector size to request
with one data transfer.

Configurations for Connectivity > USB PMSC (r_usb_pmsc)

This module can be added to the Stacks tab via New Stack > Connectivity > USB PMSC
(r_usb_pmsc).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_pmsc0 Module name.

Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

Refer to the USB (r_usb_basic) module.

Usage Notes
Class Requests

The class requests supported by this driver are shown below.

Request Code Description

Bulk-Only Mass Storage Reset 0xFF Resets the connection interface
to the mass storage device.

Get Max Logical Unit Number 0xFE Reports the logical numbers
supported by the device.

Storage Commands

This driver supports the following storage commands.

Command Code Description

TEST_UNIT_READY 0x00 Checks the state of the
peripheral device.

REQUEST_SENSE 0x03 Gets the error information of
the previous storage command
execution result.

INQUIRY 0x12 Gets the parameter information
of the logical unit.

READ_FORMAT_CAPACITY 0x23 Gets the formattable capacity.

READ_CAPACITY 0x25 Gets the capacity information of
the logical unit.

READ10 0x28 Reads data.

WRITE10 0x1A Writes data.

MODE_SENSE10 0x5A Gets the parameters of the
logical unit.

Note
A STALL or FAIL error is sent to the host upon receipt of any command not listed in the above table.

BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that encapsulates command, data, and
status (results of commands) using only two endpoints (one bulk in and one bulk out). The ATAPI
storage commands and the response status are embedded in a Command Block Wrapper (CBW) and
a Command Status Wrapper (CSW). The below image shows an overview of how the BOT protocol
progresses with command and status data flowing between USB host and peripheral.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

Figure 218: BOT protocol Overview

Block Media Interface

PMSC implements a block media interface to enable access to higher-level modules. If the block
media interface supports multiple media, users can select any media to access.

Note
When the user develops the storage media driver, be sure to define the instance named "g_rm_block_media0".

Limitations

1. The driver always returns 0 in response to the GetMaxLun command.
2. The driver supports a sector size of 512 bytes only.
3. The only media currently supported by the block media interface is an SD card. The card

must be inserted before initializing the driver.
4. When using DMA for Hi-Speed transfers continuous transfer mode must not be used in the

USB Basic driver.
5. The storage area must be formatted before use.
6. When using the SD/MMC Block Media Implementation (rm_block_media_sdmmc), "Card

Detection" must be set to "Not Used" in the SD/MMC Host Interface (r_sdhi) settings.
7. The driver does not support Low-speed.
8. This driver does not support simultaneous operation with USB Host device class.
9. Please ignore the suspend or resume event occurs when attaching or detaching the USB

cable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

Examples
USB PMSC Example

In this example, when the evaluation board is connected to the host PC it is recognized as a
removable disk and reading/writing files is possible. The FAT type is either FAT12, FAT16, or FAT32
depending on the size of the media used.

Figure 219: Example Operating Environment

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback */

#endif /* (BSP_CFG_RTOS == 2) */

void usb_pmsc_example (void)

{

 usb_event_info_t usb_event;

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#else

 usb_status_t event;

#endif

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&usb_event, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 break;

 }

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 {

#if USB_SUPPORT_LPW == USB_APL_ENABLE

// @@ low_power_mcu();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PMSC (r_usb_pmsc)

#endif /* USB_SUPPORT_LPW == USB_APL_ENABLE */

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main() */

Descriptor
A template for PMSC descriptors can be found in
ra/fsp/src/r_usb_pmsc/r_usb_pmsc_descriptor.c.template. Also, please be sure to use your vendor ID.

5.2.6.39 USB PPRN (r_usb_pprn)
Modules » Connectivity

This module is USB Peripheral Printer Device Class Driver (PPRN). It implements the USB PPRN
Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_pprn module combines with the r_usb_basic module to provide a USB Peripheral Printer
Device Class (PPRN) driver. The PPRN driver conforms to the USB Printer Device class specifications
and implements communication with a printer host.

Features

The r_usb_pprn module has the following functions:

Data transfer to and from a USB host
Response to the printer class requests

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

Response to function references from the printer host

Note
This driver is not guaranteed to provide USB printer operation in all scenarios. The developer must verify correct
operation when connected to the targeted USB hosts.

Configuration
Build Time Configurations for r_usb_pprn

The following build time configurations are defined in fsp_cfg/r_usb_pprn_cfg.h:

Configuration Options Default Description

Bulk In Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE4 Select the USB pipe to
use for bulk in transfer.

Bulk Out Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE5 Select the USB pipe to
use for bulk out
transfer.

Configurations for Connectivity > USB PPRN (r_usb_pprn)

This module can be added to the Stacks tab via New Stack > Connectivity > USB PPRN (r_usb_pprn).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_pprn0 Module name.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Class Requests (Host to Peripheral)

This driver notifies the application when receiving the following class requests:

Request Code Description

GET_DEVICE_ID 0x00 Get IEEE 1284 Device ID String

GET_PORT_STATUS 0x01 Get Printer's Status

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

SOFT_RESET 0x02 Flushes all buffers and resets
the Bulk OUT and Bulk IN pipes

The data format of supported class requests is described below:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 GET_DEVICE_I
D (0x00)

Config Index Interface
Alternate
Setting

Maximum
Length

1284 Device ID
String

0xA1 GET_PORT_STA
TUS (0x01)

0 Interface 1 Printer Status

0x21 SOFT_RESET
(0x02)

0 Interface 0 None

Limitations

This driver does not support USB Low-speed mode.
This driver does not support simultaneous operation with USB Host device class.
Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.

USB PPRN Example

This is a minimal example for implementing PPRN in bare metal and FreeRTOS application.

/**

 * Macro definitions

 **/

/* Define device framework. */

#define DEMO_PROTOCOL (1U) /* 1-Uni-dir, 2-Bi-dir */

#define VALUE_5BH (0x5BU)

/**

 * Private global variables and functions

 **/

static uint8_t g_port_status = PORT_STATUS_BENIGN;

/* Device printer device ID. */

static uint8_t g_printer_device_id[] =

{

 0x00, /* data length */

 VALUE_5BH,

 'M', /* manufacturer (case sensitive) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

 'F',

 'G',

 ':',

 'G',

 'e',

 'n',

 'e',

 'r',

 'i',

 'c',

 ';',

 'M', /* model (case sensitive) */

 'D',

 'L',

 ':',

 'G',

 'e',

 'n',

 'e',

 'r',

 'i',

 'c',

 '_',

 '/',

 '_',

 'T',

 'e',

 'x',

 't',

 '_',

 'O',

 'n',

 'l',

 'y',

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

 ';',

 'C', /* PDL command set */

 'M',

 'D',

 ':',

 '1',

 '2',

 '8',

 '4',

 '.',

 '4',

 ';',

 'C', /* class */

 'L',

 'S',

 ':',

 'P',

 'R',

 'I',

 'N',

 'T',

 'E',

 'R',

 ';',

 'D', /* description */

 'E',

 'S',

 ':',

 'G',

 'e',

 'n',

 'e',

 'r',

 'i',

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

 'c',

 ' ',

 't',

 'e',

 'x',

 't',

 ' ',

 'o',

 'n',

 'l',

 'y',

 ' ',

 'p',

 'r',

 'i',

 'n',

 't',

 'e',

 'r',

 ';'

};

/**

 * Exported global functions (to be accessed by other files)

 **/

void usb_pprn_example(void);

usb_instance_ctrl_t g_basic0_ctrl;

#if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

 **/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0));

} /* End of function usb_apl_callback */

#endif /* (BSP_CFG_RTOS == 2) */

/**

 * Function Name : usb_pprn_example

 * Description : Peripheral Printer Class(PRN) application main process

 * Arguments : none

 * Return value : none

 **/

void usb_pprn_example (void)

{

 usb_event_info_t event_info;

 usb_status_t event;

 usb_info_t info;

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 memset(&event_info, 0, sizeof(usb_event_info_t));

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

#endif

 /* Handle the received event (if any) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 /* Initialization complete; get data from host */

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PPRN);

 break;

 case USB_STATUS_WRITE_COMPLETE:

#if DEMO_PROTOCOL > 1

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PPRN);

#endif

 break;

 case USB_STATUS_READ_COMPLETE:

#if DEMO_PROTOCOL > 1

 /* Loop back to Host */

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, event_info.data_size,

USB_CLASS_PPRN);

#else

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PPRN);

#endif

 break;

 case USB_STATUS_REQUEST: /* Receive Class Request */

 if (USB_PPRN_GET_DEVICE_ID == (event_info.setup.request_type & USB_BREQUEST))

 {

 R_USB_InfoGet(&g_basic0_ctrl, &info, event_info.device_address);

 R_USB_PeriControlDataSet(&g_basic0_ctrl, g_printer_device_id,

PRINTER_DEVICE_ID_LENGTH);

 }

 else if (USB_PRPN_GET_PORT_STATUS == (event_info.setup.request_type & USB_BREQUEST))

 {

 R_USB_InfoGet(&g_basic0_ctrl, &info, event_info.device_address);

 R_USB_PeriControlDataSet(&g_basic0_ctrl, &g_port_status, 1);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB PPRN (r_usb_pprn)

 else if (USB_PPRN_SOFT_RESET == (event_info.setup.request_type & USB_BREQUEST))

 {

 R_USB_InfoGet(&g_basic0_ctrl, &info, event_info.device_address);

 R_USB_PeriControlStatusSet(&g_basic0_ctrl, USB_SETUP_STATUS_ACK);

 /* [To do] Transport Abort */

 g_usb_on_usb.stop(&g_basic0_ctrl, USB_TRANSFER_READ,

USB_CLASS_PPRN);

 }

 else

 {

 }

 break;

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 break;

 default:

 break;

 }

 }

}

Descriptors
A template for PPRN descriptors can be found in ra/fsp/src/r_usb_pprn folder. Be sure to replace the
vendor ID with your own.

5.2.6.40 USB Peripheral Vendor class (r_usb_pvnd)
Modules » Connectivity

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

Overview
USB Peripheral Vendor class works by combining r_usb_basic module.

How to Configuration
The following shows FSP configuration procedure for USB Peripheral Vendor class.

Select [New Stack]->[Middleware]->[USB]->[USB Peripheral Vendor class driver on
r_usb_pvnd].

Figure 220: Select USB Peripheral Vendor Class

The following is displayed when selecting [USB Peripheral Vendor class driver on
r_usb_pvnd]. The user does not specify USB pipe number in Vendor class.

Figure 221: USB Peripheral Vendor Class Stack

API
Use the following APIs in Peripheral Vendor class application program.

For Data Transfer
Use the following APIs for data transfer for Bulk transfer or Interrupt transfer.

1. R_USB_PipeRead()

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,538 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

2. R_USB_PipeWrite()
3. R_USB_PipeStop()

For Control Transfer
Use the following API for the class request processing.

1. R_USB_PeriControlDataGet()
2. R_USB_PeriControlDataSet()
3. R_USB_PeriControlStatusSet()

For USB Pipe Information
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor
class. Use the following APIs to get the allocated USB pipe information.

1. R_USB_UsedPipesGet()
2. R_USB_PipeInfoGet()

USB PIPE Allocation
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor class.
The USB PIPE related to the Endpoint Descriptor are allocated in order from USB PIPE1 according to
the description order of the Endpoint Descriptor.
FSP driver pipe configuration behaviors for the PVND Class, when it is used with the Composite
PCDC+PVND Class is mentioned below.

In Composite PCDC+PVND class, PCDC class interface is placed next to the PVND class
interface in descriptor file. PVND Class Pipe configurations are as follows.

FSP driver(PVND) allocates Pipes in order from USB PIPE1 according to the order of
the endpoint in descriptor(Bulk transfer).
FSP driver(PVND) allocates Pipes in order(decremental order) from USB PIPE9
according to the order of the endpoint in descriptor(Interrupt transfer).
PCDC and PVND must always use different USB PIPEs.

For example:

In the Composite PCDC+PVND class, if there are 3 number of bulk transfers endpoints and
one Interrupt transfer endpoint in descriptor file for PVND class and for this configuration
FSP driver configures USB PIPE1, USB PIPE2 and USB PIPE3 for bulk data transfer and USB
PIPE9 for Interrupt data transfer.
Since hardware support total 5 number of Bulk transfer pipe configuration. So, in this
scenario, for the PCDC class we have configurable USB PCDC Stack property to select
available Pipes(USB PIPE 4 and USB PIPE 5 for Bulk and USB PIPE 6 for Interrupt transfer)
from USB PCDC Stack configurator.

Limitaions
Please ignore the suspend or resume event occurs when attaching or detaching the USB
cable.

Descriptor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

Template for Vendor class descriptor can be found in ra/fsp/src/r_usb_pvnd folder. Also, please be
sure to use your vendor ID.

Examples
This application program processes the follwoing after the enumeration completes with USB device.

1. Getting USB Pipe Infomattion
2. Vendor Class Request Processing
3. Loopback processing of bulk transfer and interrupt transfer.

/**

**

 * Macro definitions

 **

**/

/* for Vendor Class Request */

#define USB_SET_VENDOR_NO_DATA (0x0000U)

#define USB_SET_VENDOR (0x0100U)

#define USB_GET_VENDOR (0x0200U)

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

/**

**

 * Function Name : usb_apl_callback

 * Description : Callback function for Application program

 * Arguments : usb_event_info_t *p_api_event : Control structure for USB API.

 * : usb_hdl_t cur_task : Task Handle

 * : uint8_t usb_state : USB_ON(USB_STATUS_REQUEST) / USB_OFF

 * Return value : none

 **

**/

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 xQueueSend(g_apl_mbx_hdl, (const void *) &p_api_event, (TickType_t) (0))

} /* End of function usb_apl_callback() */

#endif /* (BSP_CFG_RTOS == 2) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

/**

**

 * Function Name : usb_pvnd_example

 * Description : Peripheral Vendor Class application main process

 * Arguments : none

 * Return value : none

 **

**/

void usb_pvnd_example (void)

{

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 usb_event_info_t * p_mess;

#endif

 usb_status_t event;

 usb_event_info_t event_info;

 uint8_t bulk_out_pipe = 0; /* Bulk Out Pipe */

 uint8_t bulk_in_pipe = 0; /* Bulk In Pipe */

 uint8_t int_out_pipe = 0; /* Interrupt Out Pipe */

 uint8_t int_in_pipe = 0; /* Interrupt In Pipe */

 uint16_t buf_type = 0;

 uint8_t pipe = 0;

 uint8_t is_zlp[2] = {0, 0};

 uint32_t request_length = 0;

 uint16_t used_pipe = 0;

 usb_pipe_t pipe_info;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 memset(&event_info, 0, sizeof(usb_event_info_t));

 while (1)

 {

#if (BSP_CFG_RTOS == 2) /* FreeRTOS */

 xQueueReceive(g_apl_mbx_hdl, (void *) &p_mess, portMAX_DELAY);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 buffer_init();

 is_zlp[0] = 0;

 is_zlp[1] = 0;

 g_usb_on_usb.usedPipesGet(&g_basic0_ctrl, &used_pipe,

USB_CLASS_PVND);

 for (pipe = START_PIPE; pipe < END_PIPE; pipe++)

 {

 if (0 != (used_pipe & (1 << pipe)))

 {

 g_usb_on_usb.pipeInfoGet(&g_basic0_ctrl, &pipe_info,

pipe);

 if (USB_EP_DIR_IN != (pipe_info.endpoint & USB_EP_DIR_IN))

 {

 /* Out Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_out_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_out_pipe = pipe;

 }

 }

 else

 {

 /* In Transfer */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_in_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_in_pipe = pipe;

 }

 }

 }

 }

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 if (FSP_ERR_USB_FAILED != event_info.status)

 {

 if (bulk_out_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 pipe = bulk_in_pipe;

 }

 else if (int_out_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 pipe = int_in_pipe;

 }

 else

 {

 while (1)

 {

 ;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 }

 }

 buffer_check(buf_type, event_info.data_size);

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[buf_type][0], event_info.data_size, pipe);

 }

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (bulk_in_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 if (1 == is_zlp[buf_type])

 {

 pipe = bulk_out_pipe;

 }

 }

 else if (int_in_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 if (1 == is_zlp[buf_type])

 {

 pipe = int_out_pipe;

 }

 }

 else

 {

 /* Nothing */

 }

 if (1 == is_zlp[buf_type])

 {

 is_zlp[buf_type] = 0;

 buffer_clear(buf_type);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[buf_type][0],

BUF_SIZE, pipe);

 }

 else

 {

 is_zlp[buf_type] = 1;

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, 0, 0,

event_info.pipe); /* Send ZLP */

 }

 break;

 }

 case USB_STATUS_REQUEST:

 {

 if (USB_SET_VENDOR_NO_DATA == (event_info.setup.request_type & USB_BREQUEST

))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_SET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 request_length = event_info.setup.request_length;

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl,

&g_request_buf[0], request_length);

 }

 else if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

&g_request_buf[0], request_length);

 }

 else

 {

 /* Nothing */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[BUF_BULK][0],

BUF_SIZE, bulk_out_pipe);

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[BUF_INT][0],

BUF_SIZE, int_out_pipe);

 }

 break;

 }

 case USB_STATUS_DETACH:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_pvnd_example() */

/**

**

 * Function Name : buffer_init

 * Description : buffer initialization

 * Arguments : none

 * Return value : none

 **

**/

static void buffer_init (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 uint16_t i;

 uint16_t j;

 for (j = 0; j < 2; j++)

 {

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[j][i] = (uint8_t) i;

 }

 }

} /* End of function buffer_init() */

/**

**

 * Function Name : buffer_check

 * Description : buffer check

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_check (uint16_t buf_type, uint32_t size)

{

 uint16_t i;

 for (i = 0; i < (uint16_t) size; i++)

 {

 if ((uint8_t) (i & USB_VALUE_FF) != g_buf[buf_type][i])

 {

 while (1)

 {

 ;

 }

 }

 }

} /* End of function buffer_check() */

/**

**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB Peripheral Vendor class (r_usb_pvnd)

 * Function Name : buffer_clear

 * Description : buffer clear

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_clear (uint16_t buf_type)

{

 uint16_t i;

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[buf_type][i] = 0;

 }

} /* End of function buffer_clear() */

/**

**

 * End of function usb_mcu_init

 **

**/

5.2.6.41 USB_PCDC Communication Device (rm_comms_usb_pcdc)
Modules » Connectivity

Functions

fsp_err_t RM_COMMS_USB_PCDC_Open (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_cfg_t const *const p_cfg)

 Opens and configures the USB PCDC Comms module. Implements
rm_comms_api_t::open. More...

fsp_err_t RM_COMMS_USB_PCDC_Close (rm_comms_ctrl_t *const p_api_ctrl)

 Disables specified USB PCDC Comms module. Implements
rm_comms_api_t::close. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

fsp_err_t RM_COMMS_USB_PCDC_CallbackSet (rm_comms_ctrl_t *const
p_api_ctrl, void(*p_callback)(rm_comms_callback_args_t *), void
const *const p_context)

 Updates the USB PCDC Comms callback. Implements
rm_comms_api_t::callbackSet. More...

fsp_err_t RM_COMMS_USB_PCDC_Read (rm_comms_ctrl_t *const p_api_ctrl,
uint8_t *const p_dest, uint32_t const bytes)

 Performs a read from the USB PCDC device. Implements
rm_comms_api_t::read. More...

fsp_err_t RM_COMMS_USB_PCDC_Write (rm_comms_ctrl_t *const p_api_ctrl,
uint8_t *const p_src, uint32_t const bytes)

 Performs a write to the USB PCDC device. Implements
rm_comms_api_t::write. More...

fsp_err_t RM_COMMS_USB_PCDC_WriteRead (rm_comms_ctrl_t *const
p_api_ctrl, rm_comms_write_read_params_t const
write_read_params)

 Performs a write to, then a read from the USB device. Implements
rm_comms_api_t::writeRead. More...

void rm_comms_usb_pcdc_notify_application
(rm_comms_usb_pcdc_instance_ctrl_t const *p_ctrl,
rm_comms_event_t event)

void rm_comms_usb_pcdc_callback_handler (usb_instance_ctrl_t *p_args,
usb_hdl_t usb_handle, usb_onoff_t usb_onoff_status)

 Common callback function called in the USB PCDC driver callback
function.

Detailed Description

Middleware to implement a generic communications interface over USB_PCDC. This module
implements the Communicatons Middleware Interface.

Overview
The RM_COMMS_USB_PCDC module implements COMMS API for USB_PCDC interface.

Features

The implementation of the USB_PCDC communications interfacehas the following key features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

Non-blocking API for bare metal
Non-blocking and blocking API for RTOS

Configuration
Build Time Configurations for rm_comms_usb_pcdc

The following build time configurations are defined in fsp_cfg/r_usb_pcdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Bulk In Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE4 Select the USB pipe to
use for bulk input
transfers.

Bulk Out Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE5 Select the USB pipe to
use for bulk output
transfers.

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the USB pipe to
use for interrupts.

Configurations for Connectivity > USB PCDC Communication Device
(rm_comms_usb_pcdc)

This module can be added to the Stacks tab via New Stack > Connectivity > USB PCDC
Communication Device (rm_comms_usb_pcdc).

Configuration Options Default Description

RTOS

Write Mutex Do Not Use
Use

Use Lock device for writing
in using RTOS.

Read Mutex Do Not Use
Use

Use Lock device for reading
in using RTOS.

Mutex Timeout Value must be a non-
negative integer

0xFFFFFFFF Timeout for recursive
mutex operation in
using RTOS.

Write Semaphore Do Not Use
Use

Use Block writing in using
RTOS.

Read Semaphore Do Not Use
Use

Use Block reading in using
RTOS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

Semaphore Timeout Value must be a non-
negative integer

0xFFFFFFFF Timeout for semaphore
operation in using
RTOS.

Name Name must be a valid
C symbol

g_comms_usb_pcdc0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided.

Usage Notes
Limitations

RM_COMMS_API are not reentrant in non blocking mode
When in blocking mode, RM_COMMS_USB_PCDC_Write() and RM_COMMS_USB_PCDC_Read()
cannot be called in callback.
RM_COMMS_USB_PCDC_WriteRead API is not implemented

Examples
Basic Example

This is a basic example of minimal use of USB_PCDC communications implementation in an
application.

void rm_comms_usb_pcdc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_COMMS_USB_PCDC_Open(&g_comms_usb_pcdc_ctrl, &g_comms_usb_pcdc_cfg);

 if (FSP_SUCCESS != err)

 {

 /* Handle any errors. */

 }

 while (true)

 {

 /* Send data. */

 g_err_flag = 0;

 g_tx_flag = 0;

 err = RM_COMMS_USB_PCDC_Write(&g_comms_usb_pcdc_ctrl, g_tx_buf,

TX_BUF_LEN);

 if (FSP_SUCCESS != err)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

 /* Handle any errors. */

 }

 while ((0 == g_tx_flag) && (0 == g_err_flag))

 {

 /* Wait callback */

 }

 /* Receive data. */

 g_err_flag = 0;

 g_rx_flag = 0;

 err = RM_COMMS_USB_PCDC_Read(&g_comms_usb_pcdc_ctrl, g_rx_buf,

RX_BUF_LEN);

 if (FSP_SUCCESS != err)

 {

 /* Handle any errors.*/

 }

 while ((0 == g_rx_flag) && (0 == g_err_flag))

 {

 /* Wait callback */

 }

 }

}

static void rm_comms_usb_pcdc_callback (rm_comms_callback_args_t * p_args)

{

 if (p_args->event == RM_COMMS_EVENT_TX_OPERATION_COMPLETE)

 {

 g_tx_flag = 1;

 }

 else if (p_args->event == RM_COMMS_EVENT_RX_OPERATION_COMPLETE)

 {

 g_rx_flag = 1;

 }

 else

 {

 g_err_flag = 1;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

 }

}

Descriptor
A template for PCDC descriptors can be found in
ra/fsp/src/r_usb_pcdc/r_usb_pcdc_descriptor.c.template. Also, please be sure to use your vendor ID.

Data Structures

struct rm_comms_usb_pcdc_instance_ctrl_t

Data Structure Documentation

◆ rm_comms_usb_pcdc_instance_ctrl_t

struct rm_comms_usb_pcdc_instance_ctrl_t

Communications middleware control structure.

Data Fields

uint32_t open

 Open flag.

rm_comms_cfg_t const * p_cfg

 Middleware configuration.

rm_comms_usb_pcdc_exten
ded_cfg_t const *

p_extend

 Pointer to extended configuration structure.

usb_callback_args_t * p_usb_args

 Pointer to usb callback args.

void(* p_callback)(rm_comms_callback_args_t *p_args)

 Pointer to callback that is called when a usb_status_t occurs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

void const * p_context

 Pointer to context passed into callback function.

Function Documentation

◆ RM_COMMS_USB_PCDC_Open()

fsp_err_t RM_COMMS_USB_PCDC_Open (rm_comms_ctrl_t *const p_api_ctrl, rm_comms_cfg_t const
*const p_cfg)

Opens and configures the USB PCDC Comms module. Implements rm_comms_api_t::open.

Return values
FSP_SUCCESS USB PCDC Comms module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_COMMS_USB_PCDC_Close()

fsp_err_t RM_COMMS_USB_PCDC_Close (rm_comms_ctrl_t *const p_api_ctrl)

Disables specified USB PCDC Comms module. Implements rm_comms_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

◆ RM_COMMS_USB_PCDC_CallbackSet()

fsp_err_t RM_COMMS_USB_PCDC_CallbackSet (rm_comms_ctrl_t *const p_api_ctrl,
void(*)(rm_comms_callback_args_t *) p_callback, void const *const p_context)

Updates the USB PCDC Comms callback. Implements rm_comms_api_t::callbackSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_USB_PCDC_Read()

fsp_err_t RM_COMMS_USB_PCDC_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the USB PCDC device. Implements rm_comms_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_COMMS_USB_PCDC_Write()

fsp_err_t RM_COMMS_USB_PCDC_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes)

Performs a write to the USB PCDC device. Implements rm_comms_api_t::write.

Return values
FSP_SUCCESS Successfully writing data .

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Connectivity > USB_PCDC Communication Device (rm_comms_usb_pcdc)

◆ RM_COMMS_USB_PCDC_WriteRead()

fsp_err_t RM_COMMS_USB_PCDC_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

Performs a write to, then a read from the USB device. Implements rm_comms_api_t::writeRead.

Return values
FSP_ERR_UNSUPPORTED Not supported.

◆ rm_comms_usb_pcdc_notify_application()

void rm_comms_usb_pcdc_notify_application (rm_comms_usb_pcdc_instance_ctrl_t const * p_ctrl,
rm_comms_event_t event)

(end addtogroup RM_COMMS_USB_PCDC)

5.2.7 DSP
Modules

Detailed Description

DSP Modules.

Modules

CMSIS DSP H/W Acceleration (rm_cmsis_dsp)

 Middleware to implement Arm CMSIS DSP by using 32-bit Multiply-
Accumulator (MACL).

IIR Filter Accelerator (r_iirfa)

 Driver for the IIRFA peripheral on RA MCUs. This module implements
the IIR Interface.

5.2.7.1 CMSIS DSP H/W Acceleration (rm_cmsis_dsp)
Modules » DSP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,556 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > CMSIS DSP H/W Acceleration (rm_cmsis_dsp)

Middleware to implement Arm CMSIS DSP by using 32-bit Multiply-Accumulator (MACL).

Overview
The 32-bit Multiply-Accumulator (MACL) provides hardware acceleration for calculation of CMSIS DSP
functions. After initializing this module, refer to the Arm documentation to use the file system:
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

Features

The MACL module supports the following features:

No MACL API Feature

1 arm_mult_q31 Q31 vector multiplication

2 arm_scale_q31 Multiplies a Q31 vector by a
scalar

3 arm_mat_mult_q31 Q31 matrix multiplication

4 arm_mat_vec_mult_q31 Q31 matrix and vector
multiplication

5 arm_mat_scale_q31 Q31 matrix scaling

6 arm_biquad_cascade_df1_q31 Processing function for the Q31
Biquad cascade filter

7 arm_conv_partial_q31 Partial convolution of Q31
sequences

8 arm_conv_q31 Convolution of Q31 sequences

9 arm_correlate_q31 Correlation of Q31 sequences

10 arm_fir_decimate_q31 Processing function for the Q31
FIR decimator

11 arm_fir_interpolate_q31 Processing function for the Q31
FIR interpolator

12 arm_fir_q31 Processing function for Q31 FIR
filter

13 arm_fir_sparse_q31 Processing function for the Q31
sparse FIR filter

14 arm_lms_norm_q31 Processing function for Q31
normalized LMS filter

15 arm_lms_q31 Processing function for Q31
LMS filter

Note
The MACL hardware acceleration when executing 5 APIs including arm_scale_q31, arm_mat_scale_q31,
arm_correlate_q31, arm_fir_q31, and arm_lms_q31 with 1-element input on IAR compiler will not be better than
ARM CMSIS software. The MACL hardware is useful when executing with larger amounts of input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,557 / 5,560

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > CMSIS DSP H/W Acceleration (rm_cmsis_dsp)

Configuration
CMSIS DSP Acceleration Configuration

To enable hardware acceleration for Arm CMSIS DSP, the stack "Arm CMSIS6 DSP Acceleration" of
CMSIS DSP must be filled with MACL (rm_cmsis_dsp). Otherwise the CMSIS DSP functions will perform
the calculation by using software. This can be done at the Stack Configuration.

Usage Notes
Hardware Support

MACL module is required for using this middleware. Refer to the MCU hardware user's manual or
datasheet to determine if it has MACL support.

Examples
Basic Example

About examples, how to use the CMSIS DSP APIs refer to the link: https://github.com/ARM-
software/CMSIS-DSP/tree/main/Examples/ARM.

5.2.7.2 IIR Filter Accelerator (r_iirfa)
Modules » DSP

Functions

fsp_err_t R_IIRFA_Open (iir_ctrl_t *const p_api_ctrl, iir_cfg_t const *const p_cfg)

fsp_err_t R_IIRFA_Filter (iir_ctrl_t *const p_api_ctrl, float const *p_data_in, float
*p_data_out, uint16_t const num_samples)

fsp_err_t R_IIRFA_Configure (iir_ctrl_t *const p_api_ctrl, iir_filter_cfg_t const
*const p_filter_cfg)

fsp_err_t R_IIRFA_StatusGet (iir_ctrl_t *const p_api_ctrl, iir_status_t *const
p_status)

fsp_err_t R_IIRFA_Close (iir_ctrl_t *const p_api_ctrl)

__STATIC_INLINE float R_IIRFA_SingleFilter (iir_ctrl_t *const p_api_ctrl, float data_in)

Detailed Description

Driver for the IIRFA peripheral on RA MCUs. This module implements the IIR Interface.

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,558 / 5,560

https://github.com/ARM-software/CMSIS-DSP/tree/main/Examples/ARM
https://github.com/ARM-software/CMSIS-DSP/tree/main/Examples/ARM

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

The IIR Filter Accelerator (IIRFA) provides hardware acceleration for calculation of single-precision
floating point direct form 2 biquad IIR filters. Up to 32 biquad stages can be configured at a time.

Features

The IIRFA module supports the following features:

Up to 16 different concurrent configurations/channels
32 biquad filter stages (shared between all channels)
Runtime filter configuration
ECC error detection for coefficient and delay data

1-bit error correction, 2-bit error detection

Configuration
Build Time Configurations for r_iirfa

The following build time configurations are defined in fsp_cfg/r_iirfa_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Polling Mode Enabled
Disabled

Enabled When enabled the
IIRFA driver will poll for
completion before
reading the output
register. This prevents
IIRFA operations from
delaying global
interrupt processing at
the cost of slower filter
performance.

Software Loop Unroll
Depth

Refer to the RA
Configuration tool for
available options.

1 Sample Select the number of
samples to process for
every loop. This setting
generally only affects
filters that use 1
biquad stage.

ECC Support Disabled
Enabled
Enabled (no
writeback)

Enabled Select whether to
detect ECC errors.
When set to 'Enabled
(no writeback)' 1-bit
ECC errors will not be
corrected.

Rounding Mode Nearest
Toward zero

Nearest Select how to round
calculation results.

Configurations for DSP > IIR Filter Accelerator (r_iirfa)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,559 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

This module can be added to the Stacks tab via New Stack > DSP > IIR Filter Accelerator (r_iirfa).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_iirfa0 Module name.

Channel Value must be an
integer between 0 and
15

0 Select the IIRFA
channel.

Clock Configuration

The clock source for the IIRFA peripheral is ICLK.

Pin Configuration

IIRFA does not have any pin connections.

Filter Configuration

Before using IIRFA to filter data the coefficients and state variables must be initialized. See the Filter
Configuration example for how to initialize an iir_filter_cfg_t struct to pass to R_IIRFA_Configure.

Note
There are 32 total biquad stages in the peripheral shared across all channels. Channels may not select the same
stages, so it is important to choose iir_filter_cfg_t::stage_base and iir_filter_cfg_t::stage_num carefully to ensure
no overlap.

Usage Notes
Maximizing Performance

The optimum configuration for IIRFA is dependent on the application. It is recommended to consider
the following in regards to your project to determine what settings may be ideal.

Regardless of configuration, each filter stage takes 2 ICLK cycles to process per sample and an
additional 5 cycles to write state values back to registers. This means single-sample operations only
take 2 cycles per stage while multi-sample operations take 7. Additional overhead cycles are
required to load and store each sample. The following suggestions may improve performance:

Either process more data at a time with R_IIRFA_Filter or only one sample at a time using
R_IIRFA_SingleFilter
Use the unrolled software loop option

Provide data in a multiple of the unroll depth
Disable polling (see warning)

Polling Mode

By default, the driver will poll a status flag for completion after writing input data to IIRFA. Disabling
polling significantly improves performance when using a low number of stages, but may cause
higher global interrupt latency during processing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,560 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

Note
If only one stage is used it is recommended to disable polling as IIRFA will typically execute faster than code
resulting in no wait cycles. If polling must be used with a one stage filter, please note that in some situations the
Arm CMSIS DSP Library functions arm_biquad_cascade_df2T_init_f32 and arm_biquad_cascade_df2T_f32 may
provide better performance. It up to the user to evaluate performance within their own project.

Warning
When polling is disabled, filter operation works by writing a value to IIRCHnINP then
immediately reading IIRCHnOUT. While this maximizes performance, the core will wait for
output data to become available before continuing execution. While execution waits for
IIRCHnOUT no interrupts will be processed by the core. The maximum wait time for a
32-stage filter may be up to approximately 64 ICLK cycles for single sample processing or
224 ICLK cycles for multi-sample processing (decreasing linearly with the number of stages
used).

Single Sample Processing

In applications such as motor control where each sample needs immediate processing, the inline
function R_IIRFA_SingleFilter is provided. This function has no parameter checking, takes one
sample, and returns a filtered sample. Polling is supported by this function (if configured).

ECC Errors

If configured, R_IIRFA_Filter will return an error if a 1- or 2-bit ECC error has occurred.

1-bit errors are automatically corrected unless writeback is disabled. 2-bit errors cannot be
automatically corrected. Reset the coefficient and filter data by calling R_IIRFA_Configure if a non-
correctable ECC error is reported.

Limitations

A total of 32 stages may be configured at any one time across all channels.
When polling is disabled core execution is halted while waiting for data to become
available. (See warning)

Examples
Filter Configuration

Below is an example of how to initialize a filter configuration to pass to R_IIRFA_Configure.

#define FILTER_STAGE_NUM (2)

/* Biquad coefficients (4th order Butterworth 200Hz lowpass on 44.1KHz input) */

iir_filter_coeffs_t gp_iirfa0_filter_coeffs[FILTER_STAGE_NUM] =

{

 {

 .b0 = 1.000000000F,

 .b1 = 2.000000000F,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,561 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

 .b2 = 1.000000000F,

 .a1 = -1.947914029F,

 .a2 = 0.948705125F,

 },

 {

 .b0 = 1.000000000F,

 .b1 = 2.000000000F,

 .b2 = 1.000000000F,

 .a1 = -1.977625722F,

 .a2 = 0.978428884F,

 },

};

/* Biquad state data (clear to start) */

iir_filter_state_t gp_iirfa0_filter_state[FILTER_STAGE_NUM] = {0};

/* Filter configuration */

iir_filter_cfg_t g_iirfa0_filter_cfg =

{

 .p_filter_coeffs = gp_iirfa0_filter_coeffs, // Pointer to filter coefficient

array

 .p_filter_state = gp_iirfa0_filter_state, // Pointer to filter state data array

 .stage_base = 0, // Which hardware biquad stage to

start allocation from (0-31)

 .stage_num = 2, // Number of stages to allocate

};

Software Example

The following is a basic example of configuring and using a filter with IIRFA.

#define NUM_SAMPLES (128)

#define TWO_PI (2.0F * (float) M_PI)

float gp_data_in[NUM_SAMPLES];

float gp_data_out[NUM_SAMPLES];

void iirfa_filter_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,562 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

 fsp_err_t err;

 /* Initialize the IIRFA module */

 err = R_IIRFA_Open(&g_iirfa0_ctrl, &g_iirfa0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize filter coefficients and state variables */

 err = R_IIRFA_Configure(&g_iirfa0_ctrl, &g_iirfa0_filter_cfg);

 assert(FSP_SUCCESS == err);

 /* Get input data to be filtered */

 get_input_data(gp_data_in);

 /* Filter data */

 err = R_IIRFA_Filter(&g_iirfa0_ctrl, gp_data_in, gp_data_out, NUM_SAMPLES);

 /* R_IIRFA_Filter will return FSP_ERR_INVALID_RESULT when one or more calculations

results in infinity. */

 if (FSP_ERR_INVALID_RESULT == err)

 {

 /* Handle error */

 }

 else

 {

 assert(FSP_SUCCESS == err);

 }

}

Data Structures

struct iirfa_instance_ctrl_t

Data Structure Documentation

◆ iirfa_instance_ctrl_t

struct iirfa_instance_ctrl_t

IIRFA instance control block.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,563 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

◆ R_IIRFA_Open()

fsp_err_t R_IIRFA_Open (iir_ctrl_t *const p_api_ctrl, iir_cfg_t const *const p_cfg)

Prepare an IIR channel for filtering.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION One or both of the parameters was NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT An invalid channel was selected.

FSP_ERR_ALREADY_OPEN The instance is already opened.

◆ R_IIRFA_Filter()

fsp_err_t R_IIRFA_Filter (iir_ctrl_t *const p_api_ctrl, float const * p_data_in, float * p_data_out,
uint16_t const num_samples)

Start a filter operation on the specified data.

Return values
FSP_SUCCESS Data has been successfully filtered.

FSP_ERR_ASSERTION One of the provided pointers is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_INVALID_ARGUMENT num_samples is zero.

FSP_ERR_INVALID_RESULT The result of one or more calculations was
+/- infinity.

FSP_ERR_NOT_INITIALIZED The filter is not configured.

FSP_ERR_IIRFA_ECC_1BIT A 1-bit ECC error was detected.

FSP_ERR_IIRFA_ECC_2BIT A 2-bit ECC error was detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,564 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

◆ R_IIRFA_Configure()

fsp_err_t R_IIRFA_Configure (iir_ctrl_t *const p_api_ctrl, iir_filter_cfg_t const *const p_filter_cfg)

Configure filter coefficients and state values.

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_INVALID_ARGUMENT Invalid filter stage selection.

FSP_ERR_IN_USE One or more requested filter stages are
currently in use.

◆ R_IIRFA_StatusGet()

fsp_err_t R_IIRFA_StatusGet (iir_ctrl_t *const p_api_ctrl, iir_status_t *const p_status)

Read the current filter state variables.

Return values
FSP_SUCCESS Information read successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

◆ R_IIRFA_Close()

fsp_err_t R_IIRFA_Close (iir_ctrl_t *const p_api_ctrl)

Stop filter operations and close the channel instance.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,565 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > DSP > IIR Filter Accelerator (r_iirfa)

◆ R_IIRFA_SingleFilter()

__STATIC_INLINE float R_IIRFA_SingleFilter (iir_ctrl_t *const p_api_ctrl, float data_in)

Perform a single inline filter operation.

Note
This function is intended to be used in performance-critical applications. As such, no parameter checking or error
validation is provided.

5.2.8 Graphics
Modules

Detailed Description

Graphics Modules.

Modules

Azure RTOS GUIX Port (rm_guix_port)

Capture Engine Unit (r_ceu)

 Driver for the CEU peripheral on RA MCUs. This module implements
the CAPTURE Interface.

D/AVE 2D Port Interface (r_drw)

 Driver for the DRW peripheral on RA MCUs. This module is a port of
D/AVE 2D.

Graphics LCD (r_glcdc)

 Driver for the GLCDC peripheral on RA MCUs. This module
implements the Display Interface.

JPEG Codec (r_jpeg)

 Driver for the JPEG peripheral on RA MCUs. This module implements
the JPEG Codec Interface.

MIPI Display Serial Interface (r_mipi_dsi)

 Driver for the MIPI DSI peripheral on RA MCUs. This module
implements the Display Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,566 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics

Parallel Data Capture (r_pdc)

 Driver for the PDC peripheral on RA MCUs. This module implements
the CAPTURE Interface.

SEGGER emWin RA Port (rm_emwin_port)

 SEGGER emWin port for RA MCUs.

Segment LCD (r_slcdc)

 Driver for the SLCDC peripheral on RA MCUs. This module
implements the SLCDC Interface.

5.2.8.1 Azure RTOS GUIX Port (rm_guix_port)
Modules » Graphics

Functions

UINT rm_guix_port_hw_initialize (GX_DISPLAY *p_display)

Detailed Description

Overview
The Azure RTOS GUIX Port module provides the configuration and hardware acceleration support
necessary for use of GUIX on RA products. The port provides full integration with the graphics
peripherals (GLCDC, DRW and JPEG).

Figure 222: Azure RTOS GUIX Port Block Diagram

Note
This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. For information about how to use GUIX and GUIX

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,567 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

Studio (including example code) please consult the Azure RTOS GUIX documentation.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

DRW Engine (D/AVE 2D Port Interface (r_drw))
Drawing bitmaps
8, 4 and 1bpp uncompressed and compressed (RLE) font rendering
Line and shape drawing
Anti-aliased operations

Circle stroke and fill
Polygon stroke and fill
Lines and arcs

JPEG Codec (r_jpeg)
JPEG decoding

Graphics LCD (r_glcdc)
Brightness, contrast and gamma correction
Pixel format conversion (framebuffer to LCD)

Configuration
Build Time Configurations for gx

The following build time configurations are defined in fsp_cfg/azure/gx/gx_user.h:

Configuration Options Default Description

Hardware Acceleration

JPEG Codec Support MCU Specific Options Select whether or not
to use the JPEG Codec
for hardware
acceleration.

DRW Engine Support Enabled
Disabled

Enabled Select whether or not
to use the DRW Engine
for hardware
acceleration.

Max DRW Operations Value must be a
positive integer

30 Specifies the maximum
number of DRW
operations before
flushing the display list.
Reducing this value
may reduce the peak
heap used by the
application but may
reduce performance.

Internal Thread

Stack Size Value must be greater
than zero

4096 GUIX internal thread
stack size in bytes.
Must be greater than
zero.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,568 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/guix/

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

Priority Value must be between
0 to 31

30 Priority of the GUIX
Internal Thread. The
value must be between
0 to 31.

Time Slice Value must be in range
0 to 0xFFFFFFFF

10 Time Slice value of the
GUIX Internal Thread.
The value must be
between 0
(TX_NO_TIME_SLICE) to
0xFFFFFFFF.

System Timer (ms) Value must be greater
than or equal to 10

20 GUIX system timer
period (GX_SYSTEM_TI
MER_MS). This value
will be internally
converted to RTOS
ticks and will be
rounded down to the
next smallest multiple
of the RTOS tick period
(1000 / TX_TIMER_TICK
S_PER_SECOND).

Multithread Support Disabled
Enabled

Enabled Must be enabled if
GUIX functions are
called from multiple
threads. Set to
Disabled when calling
GUIX from only one
thread to reduce
system overhead.

UTF8 Support Disabled
Enabled

Enabled Select whether to
enable or disable
support for UTF8
characters.

Event Queue Size Value must be greater
than zero

48 Maximum number of
events in the GUIX
event queue.

Enable GX_WIDGET
User Data

Enabled
Disabled

Disabled Set to Enabled to to
use the
gx_widget_user_data
member in the
GX_WIDGET structure.

Build Time Configurations for rm_guix_port

The following build time configurations are defined in fsp_cfg/middleware/rm_guix_port_cfg.h:

Configuration Options Default Description

DRW Buffer Cache Enabled
Disabled

Enabled Enabling this option
significantly improves
DRW Engine

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,569 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

performance. Set to
Disabled only if Display
underflow events are
triggered under high
graphics load.

Configurations for Graphics > Azure RTOS GUIX Port (rm_guix_port)

Configuration Options Default Description

Display Rotation

Screen Orientation None
CW (90
degrees)
FLIP (180
degrees)
CCW (270
degrees)

None Select the display
orientation specified in
the GUIX Studio
project. The Canvas
Buffer must be enabled
when rotating 180
degrees (FLIP).

Use Canvas Buffer Enabled
Disabled

Disabled When screen rotation is
set to 180 degrees
(FLIP), a canvas buffer
must be used. The
canvas buffer size will
be the same as a frame
buffer for the display
module.

Canvas Buffer Memory
Section

This property must be
a valid section name

bss Specify the memory
section where the GUIX
Canvas Buffer will be
allocated.

JPEG Decoding

Work Buffer Size Must be a positive
integer greater than 0

0xC800 Specify the JPEG work
buffer size in bytes. A
larger buffer can
reduce JPEG
decode/draw times.
The buffer will not be
allocated if JPEG Codec
support is disabled.

Unless you are sure of
the subsampling used
in and the size of the
input JPEG images it is
recommended to
allocate at least 16
framebuffer lines of
memory.

Buffer Memory Section This property must be
a valid section name

bss Specify the memory
section where the JPEG
Work Buffer will be
allocated.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,570 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

Name Name must be a valid
C symbol

g_rm_guix_port0 Module name.

Target Display Layer Graphics Layer
1
Graphics Layer
2

Graphics Layer 1 Specify which graphics
screen to inherit the
buffer and display
dimensions from.

Callback Function Must be a valid C
symbol

NULL If a callback function is
provided it will be
called when Display
events occur.

Hardware Configuration

No clocks or pins are directly required by this module. Please consult the submodules'
documentation for their requirements.

Usage Notes
Getting Started

To get started with GUIX in an RA project the following must be performed:

1. In e² studio, open the RA Configuration editor for your GUIX project
2. Select or create a thread
3. Add GUIX to your project in the Stacks view by clicking New Stack -> Azure RTOS ->

GUIX
4. Ensure the configuration options for GUIX and the port layer are set as necessary for your

application
5. Set the proporties for the GLCDC module to match the timing and memory requirements of

your display panel
6. Set the input color format in the GLCDC module (Input -> Graphics Layer * -> General ->

Color format) and the output color format in the JPEG Codec module if applicable (Decode
-> Output color format) per your project specification

7. Click the BSP tab in the configuration editor and confirm the heap size in the Properties
pane is sufficient (see Note below)

8. Click Generate Project Content to save and commit configuration changes
9. Drop the Quick Setup entry in Developer Assistance into the desired thread entry C file and

update the items marked with TODO as necessary
10. Call the Quick Setup function from the thread entry function (or where desired)

At this point the project is now ready to build and run your GUIX Studio project. Please refer to the
documentation for Azure RTOS GUIX and GUIX Studio for details on how to create and edit a GUI
application.

Note
It is recommended to start with 8K-32K of heap to begin development. Actual heap use is typically far lower than
this but must be characterized by the developer.

Using Hardware Acceleration

In most cases there is no need to perform additional configuration to ensure the DRW Engine is used.
However, there are some guidelines that should be followed:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,571 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

Avoid transparent pixelmaps in 8-bit display mode as they are rendered in software. In
particular, ensure PNGs to be used in 8bpp GUIX Studio projects are saved without
transparency data if no transparency is needed.
The following items may require a large heap to draw successfully:

Polygons (more sides = more heap)
Filled arcs and ellipses (more framebuffer lines occupied = more heap)
gx_canvas_pixelmap_tile (more tiles = more heap)

When using hardware acceleration, images used for tile fill of shapes must have dimensions
that are a power of 2. This limitation does not apply to gx_canvas_pixelmap_tile as well as
certain arc/ellipse fill functions as GUIX manually draws pixelmaps to fill these shapes (at
the expense of heap space).

Examples
Basic Example

This is a basic example demonstrating how to get GUIX up and running given an existing GUIX Studio
project. A template for this code is available in Developer Assistance for the GUIX Port module.

Note
GUIX manages the GLCDC, DRW and JPEG Codec submodules internally; they do not need to be opened directly.

GX_WINDOW_ROOT * p_window_root;

void guix_user_start (void)

{

 /* Initialize GUIX */

 gx_system_initialize();

 /* Configure GUIX Studio project main display and get a pointer to the root window

*/

 gx_studio_display_configure(MAIN_DISPLAY,

 rm_guix_port_hw_initialize,

 MAIN_DISPLAY_LANGUAGE_ENGLISH,

 MAIN_DISPLAY_THEME,

 &p_window_root);

 /* Set pointer to the first buffer generated by the configuration

(rm_guix_port_canvas) */

 gx_canvas_memory_define(p_window_root->gx_window_root_canvas,

 rm_guix_port_canvas,

p_window_root->gx_window_root_canvas->gx_canvas_memory_size);

 /* Create and show the root window in the GUIX Studio project */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,572 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

 gx_studio_named_widget_create("root_widget_name", (GX_WIDGET *) p_window_root,

GX_NULL);

 gx_widget_show(p_window_root);

 /* Start GUIX */

 gx_system_start();

 /* GUIX will continue to run in its own thread */

}

Data Structures

struct rm_guix_port_callback_args_t

Enumerations

enum rm_guix_port_device_t

enum rm_guix_port_event_t

Data Structure Documentation

◆ rm_guix_port_callback_args_t

struct rm_guix_port_callback_args_t

Callback arguments for the FSP GUIX Port

Data Fields

rm_guix_port_device_t device Device code.

rm_guix_port_event_t event Event code of the low level
hardware.

uint32_t error Error code if
RM_GUIX_PORT_EVENT_ERROR.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,573 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

◆ rm_guix_port_device_t

enum rm_guix_port_device_t

Low level device code for the GUIX

Enumerator

RM_GUIX_PORT_DEVICE_NONE Non hardware.

RM_GUIX_PORT_DEVICE_DISPLAY Display device.

RM_GUIX_PORT_DEVICE_DRW 2D Graphics Engine

RM_GUIX_PORT_DEVICE_JPEG JPEG Codec.

◆ rm_guix_port_event_t

enum rm_guix_port_event_t

Display event codes

Enumerator

RM_GUIX_PORT_EVENT_ERROR Low level driver error occurs.

RM_GUIX_PORT_EVENT_DISPLAY_VSYNC Display interface VSYNC.

RM_GUIX_PORT_EVENT_UNDERFLOW Display interface underflow.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,574 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Azure RTOS GUIX Port (rm_guix_port)

◆ rm_guix_port_hw_initialize()

UINT rm_guix_port_hw_initialize (GX_DISPLAY * p_display)

Callback function to be passed to gx_studio_display_configure in order to start hardware modules.

Example:

 /* Configure GUIX Studio project main display and get a pointer to the root window

*/

 gx_studio_display_configure(MAIN_DISPLAY,

 rm_guix_port_hw_initialize,

 MAIN_DISPLAY_LANGUAGE_ENGLISH,

 MAIN_DISPLAY_THEME,

 &p_window_root);

Note
This function should only be called by GUIX.

Return values
GX_SUCCESS Device driver setup is successfully done.

GX_FAILURE Device driver setup failed.

5.2.8.2 Capture Engine Unit (r_ceu)
Modules » Graphics

Functions

fsp_err_t R_CEU_Open (capture_ctrl_t *const p_ctrl, capture_cfg_t const *const
p_cfg)

fsp_err_t R_CEU_Close (capture_ctrl_t *const p_ctrl)

fsp_err_t R_CEU_CaptureStart (capture_ctrl_t *const p_ctrl, uint8_t *const
p_buffer)

fsp_err_t R_CEU_CallbackSet (capture_ctrl_t *const p_ctrl,
void(*p_callback)(capture_callback_args_t *), void const *const
p_context, capture_callback_args_t *const p_callback_memory)

fsp_err_t R_CEU_StatusGet (capture_ctrl_t *const p_ctrl, capture_status_t
*p_status)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,575 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

Driver for the CEU peripheral on RA MCUs. This module implements the CAPTURE Interface.

Overview
The CEU peripheral supports interfacing with external cameras by accepting timing and data signals
in order to capture incoming data. A callback is invoked for each V-Sync event, frame of data
accepted, or when certain errors occurr.

Features

Supports 8 or 16-bit camera bus
Capture images up to 5 MP (2560x1920)
Capture incoming data directly into a user defined memory location without the need for
DTC/DMAC
Capture specified size 'raw' image data using Data Synchronous Fetch mode (e.g. RGB565,
YUV422, etc.)
Capture binary image data using Data Enable fetch mode (e.g. JPEG)
Perform basic timing signal validation

Configuration
Build Time Configurations for r_ceu

The following build time configurations are defined in fsp_cfg/r_ceu_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Graphics > Capture Engine Unit (r_ceu)

This module can be added to the Stacks tab via New Stack > Graphics > Capture Engine Unit
(r_ceu). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_ceu0 Module name.

Input

Input > Data Bus Specifications

Data Bus Size 8-bit
16-bit

8-bit Data bus-width of CEU
physical connection.

HSYNC Polarity High
Low

High Specify the active
polarity of the HSYNC
signal.

VSYNC Polarity High High Specify the active

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,576 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

Low polarity of the VSYNC
signal.

Input > Capture Specifications

Input > Capture Specifications > Sample Points

Data Sample Point Rising edge of
the camera
clock
Falling edge of
the camera
clock

Rising edge of the
camera clock

Specify the external
camera clock transition
state for fetching the
image data (D15 to D0)
from the external
module.

H-Sync Sample Point Rising edge of
the camera
clock
Falling edge of
the camera
clock

Rising edge of the
camera clock

Specify the external
camera clock transition
state for capturing H-
Sync from the external
module.

V-Sync Sample Point Rising edge of
the camera
clock
Falling edge of
the camera
clock

Rising edge of the
camera clock

Specify the external
camera clock transition
state for capturing V-
Sync from the external
module.

Horizontal capture
resolution

Value must be an
integer.

640 Specify the number of
horizontal pixels to
capture.

Vertical capture
resolution

Value must be an
integer.

480 Specify the number of
vertical pixels to
capture.

Horizontal pixel offset Value must be an
integer.

0 Number of pixels from
H-sync signal up to the
start of a valid data
period.

Vertical pixel offset Value must be an
integer.

0 Specify the vertical line
to start capturing
image data.

Capture Mode Data
Synchronous
Fetch
Data Enable
Fetch

Data Synchronous
Fetch

Capture mode of
incoming data.

Output

Output > Buffer

Data Enable Buffer Size Value must be a
positive integer.

0 Specify size of image
region available for use
by CEU data bus. (Only
applicable to Data
Enable Fetch capture

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,577 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

mode)

Byte Swapping Swap 8-bit units
Swap 16-bit
units
Swap 32-bit
units

Byte swapping
configuration. Bytes
may be swapped in
8-bit, 16-bit, or 32-bit
units.

Burst Transfer Mode Transfer in
32-byte units
Transfer in
64-byte units
Transfer in
128-byte units
Transfer in
256-byte units

Transfer in 256-byte
units

Specify the unit for
transferring data to the
bus bridge module.

Interrupts

Interrupts > Selectable CEU Events

One-Frame Capture
End Event

Enabled
Disabled

Enabled Capturing one frame
from an external
module has finished.

Horizontal Sync Event Enabled
Disabled

Disabled Horizontal sync signal
was input from an
external module.

Vertical Sync Event Enabled
Disabled

Enabled Vertical sync signal
was input from an
external module.

CRAM Buffer Overflow
Error

Enabled
Disabled

Enabled Data overflowed in the
CRAM write buffer.

H-Sync Validation Error Enabled
Disabled

Disabled The number of
configured H-sync
cycles is different than
the H-sync cycles input
from the external
module.

V-Sync Validation Error Enabled
Disabled

Disabled The number of
configured V-sync
cycles is different than
the V-sync cycles input
from the external
module.

V-Sync Error Enabled
Disabled

Enabled V-sync has been input
while CEU holds data
(insufficient vertical-
sync front porch).

No H-Sync error Enabled
Disabled

Enabled No H-sync signal was
input.

No V-Sync error Enabled
Disabled

Enabled No V-sync signal was
input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,578 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

Callback Name must be a valid
C symbol.

g_ceu0_user_callback A user callback
function must be
provided. This callback
is invoked for every
successful frame
capture as well as
other status or error
conditions.

Callback Context Name must be a valid
C symbol.

NULL Pointer to the context
structure to be passed
through the callback
argument.

CEU Interrupt Priority MCU Specific Options Select the CEU
interrupt priority.

Clock Configuration

The CEU peripheral is clocked both from PCLKA and externally, from the camera module (VIO_CLK).
The external input clock (VIO_CLK) should have a frequency at most the same as the CEU operating
clock (PCLKA) frequency, with jitter on both sides included. The PCLKA frequency may be set using
the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

Note
At least 10 external clock cycles (VIO_CLK) must elapse after opening the CEU module, before starting a capture.

Pin Configuration

The VIO_CLK pin is a clock input to the MCU and should be connected to the clock output from the
camera. The VIO_HD and VIO_VD pins must be connected to the horizontal and vertical sync signal
output of the camera respectively. The VIO_D0 to VIO_D15 pins are the data bus input pins and
should be connected to the relevant output pins of the camera. For 8-bit camera data bus VIO_D0 to
VIO_D7 should be used.

Note
Camera control and serial communication pins must be configured separately and are not controlled by this
module.

Capture Resolution

For Data Synchronous Fetch mode, caputure size is calculated using the configured
Horizontal Resolution, Vertical Resolution, and Bytes Per Pixel.
For Data Enable Fetch mode, the capture size is controlled by the external module and is
defined as a period from a VD rising edge to the VD falling edge. For this mode Horizontal
Resolution and Vertical Resolution are not used. However, the maximum capture size is
configured using the 'Data Enable Buffer Size' option, which is uesd to configure the
maximum write 'Firewall Address' location.

Note
For Data Enable Fetch mode, the external module must transmit data in 4-byte units.

Capture Offset

The blanking period from a horizontal or vertical sync signal differs among external modules.
Therefore, the capture start location must be specified in terms of external cycles from the sync

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,579 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

signal so that an image can be captured from the valid image area. Some external modules output a
horizontal sync signal as a data enable signal. In this case, there is no blanking period so the
configured offsets must be cleared to 0.

The horizontal capture start location must be specified in terms of the number of pixels
from a hoizontal sync signal.
The vertical capture start location must be specified in terms of the number of H-cycles
from a vertical sync signal.

Note
Capture offset is not used when Data Enable Fetch mode is configured.

Usage Notes
Interrupt Configuration

CEU V-sync, capture-end, and error interrupts are used by this module for reporting capture
status and error events such as overrun, vertical line number setting and other capture
errors.

Note
If both a capture complete event and capture error event occur simultaneously, the capture complete event should
be disregarded.

CEU Setup With External Camera

Ensure that the memory pointed to by p_buffer is both valid and large enough to store a
complete image.
When Data Synchronous Fetch mode is configured, the amount of space required (in bytes)
may be calculated as size (bytes) = image width (pixels) * image height (lines) * number of
bytes per pixel.
Ensure that the capture buffer address is 4-byte aligned and the buffer size is divisible by
32 bytes.

Note
Any required configuration for external cameras must be performed by the application.

Examples
Basic Example

This is a basic example of minimal use of the CEU in an application. This example shows how this
driver can be used for capturing data from an external I/O device such as an image sensor.

bool g_ceu_capture_error;

bool g_ceu_capture_complete;

void ceu_minimal_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_ceu_capture_error = false;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,580 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

 g_ceu_capture_complete = false;

 err = R_CEU_Open(&g_ceu0_ctrl, &g_ceu0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_CEU_CaptureStart(&g_ceu0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

 while (!g_ceu_capture_complete && !g_ceu_capture_error)

 {

 /* Wait for capture to complete. */

 }

/* Process image here if capture was successful. */

 err = R_CEU_Close(&g_ceu0_ctrl);

 assert(FSP_SUCCESS == err);

}

void ceu_callback (capture_callback_args_t * p_args)

{

 /* Multiple event flags may be set simultaneously */

 if (p_args->event & (uint32_t) ~(CEU_EVENT_HD | CEU_EVENT_VD | CEU_EVENT_FRAME_END))

 {

 /* Error processing should occur first. Application should not process complete

event if error occurred. */

 g_ceu_capture_error = true;

 }

 else

 {

 if (p_args->event & CEU_EVENT_VD)

 {

 /* Capture has started. Process V-Sync event. */

 }

 if (p_args->event & CEU_EVENT_FRAME_END)

 {

 /* Capture is complete and no error has occurred */

 g_ceu_capture_complete = true;

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,581 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

}

Data Structures

struct ceu_byte_swapping_t

struct ceu_edge_info_t

struct ceu_extended_cfg_t

struct ceu_instance_ctrl_t

Enumerations

enum ceu_capture_mode_t

enum ceu_data_bus_size_t

enum ceu_hsync_polarity_t

enum ceu_vsync_polarity_t

enum ceu_burst_transfer_mode_t

enum ceu_event_t

enum ceu_capture_format_t

Data Structure Documentation

◆ ceu_byte_swapping_t

struct ceu_byte_swapping_t

Swap bits configuration

Data Fields

uint8_t swap_8bit_units: 1 Byte swapping in 8-bit units.

uint8_t swap_16bit_units: 1 Byte swapping in 16-bit units.

uint8_t swap_32bit_units: 1 Byte swapping in 32-bit units.

◆ ceu_edge_info_t

struct ceu_edge_info_t

Edge information for latching signals

Data Fields

uint8_t dsel: 1 Sets the edge for fetching the
image data (D15 to D0) from an
external module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,582 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

uint8_t hdsel: 1 Sets the edge for capturing hd
from external module.

uint8_t vdsel: 1 Sets the edge for capturing vd
from external module.

◆ ceu_extended_cfg_t

struct ceu_extended_cfg_t

Extended configuration structure for CEU.

Data Fields

ceu_capture_format_t capture_format Capture format for incoming
data.

ceu_data_bus_size_t data_bus_width Size of camera data bus.

ceu_edge_info_t edge_info

ceu_hsync_polarity_t hsync_polarity Polarity of HSYNC input.

ceu_vsync_polarity_t vsync_polarity Polarity of VSYNC input.

uint32_t image_area_size Image capture size. Used when
setting firewall address for Data
Enable Fetch mode.

ceu_byte_swapping_t byte_swapping Controls byte swapping in 8-bit,
16-bit and 32-bit units.

ceu_burst_transfer_mode_t burst_mode Bus transfer data size.

uint32_t interrupts_enabled Enabled interrupt events bit
mask.

uint8_t ceu_ipl PDC interrupt priority.

IRQn_Type ceu_irq PDC IRQ number.

◆ ceu_instance_ctrl_t

struct ceu_instance_ctrl_t

CEU instance control block. DO NOT INITIALIZE.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,583 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

◆ ceu_capture_mode_t

enum ceu_capture_mode_t

Capture mode

Enumerator

CEU_CAPTURE_MODE_SINGLE Single image capture.

CEU_CAPTURE_MODE_CONTINUOUS Continuous image capture.

◆ ceu_data_bus_size_t

enum ceu_data_bus_size_t

Data bus width

Enumerator

CEU_DATA_BUS_SIZE_8_BIT Data bus is 8-bit.

CEU_DATA_BUS_SIZE_16_BIT Data bus is 16-bit.

◆ ceu_hsync_polarity_t

enum ceu_hsync_polarity_t

Polarity of input HSYNC signal

Enumerator

CEU_HSYNC_POLARITY_HIGH HSYNC signal is active high.

CEU_HSYNC_POLARITY_LOW HSYNC signal is active low.

◆ ceu_vsync_polarity_t

enum ceu_vsync_polarity_t

Polarity of input VSYNC signal

Enumerator

CEU_VSYNC_POLARITY_HIGH VSYNC signal is active high.

CEU_VSYNC_POLARITY_LOW VSYNC signal is active low.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,584 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

◆ ceu_burst_transfer_mode_t

enum ceu_burst_transfer_mode_t

Enumerator

CEU_BURST_TRANSFER_MODE_X1 Transferred to the bus in 32-byte units */.

CEU_BURST_TRANSFER_MODE_X2 Transferred to the bus in 64-byte units */.

CEU_BURST_TRANSFER_MODE_X4 Transferred to the bus in 128-byte units */.

CEU_BURST_TRANSFER_MODE_X8 Transferred to the bus in 256-byte units */.

◆ ceu_event_t

enum ceu_event_t

Enumerator

CEU_EVENT_FRAME_END Frame end event (CPE)

CEU_EVENT_HD (Not Used) HD received (HD)

CEU_EVENT_VD VD received (VD)

CEU_EVENT_CRAM_OVERFLOW Data overflowed in the CRAM buffer (CDTOF)

CEU_EVENT_HD_MISMATCH HD mismatch (IGHS)

CEU_EVENT_VD_MISMATCH VD mismatch (IGVS)

CEU_EVENT_VD_ERROR Invalid VD condition (VBP)

CEU_EVENT_FIREWALL Data write address exceeds firewall (FWF)

CEU_EVENT_HD_MISSING HD was expected but not input (NHD)

CEU_EVENT_VD_MISSING VD was expected but not input (NVD)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,585 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

◆ ceu_capture_format_t

enum ceu_capture_format_t

Capture mode for CEU.

Enumerator

CEU_CAPTURE_FORMAT_DATA_SYNCHRONOUS Raw formatted data.

CEU_CAPTURE_FORMAT_DATA_ENABLE JPG formatted data.

Function Documentation

◆ R_CEU_Open()

fsp_err_t R_CEU_Open (capture_ctrl_t *const p_ctrl, capture_cfg_t const *const p_cfg)

CEU module initialization.

Implements capture_api_t::open

The function provides initial configuration for the CEU module. Further initialization may be
performed in capture_api_t::captureStart. This function should be called once prior to calling any
other CEU API functions. After the CEU is opened the Open function should not be called again
without first calling the Close function.

Example:

 err = R_CEU_Open(&g_ceu0_ctrl, &g_ceu0_cfg);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,586 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

◆ R_CEU_Close()

fsp_err_t R_CEU_Close (capture_ctrl_t *const p_ctrl)

Stops and closes the transfer interface.

Implements capture_api_t::close

Stops any active captures, clears internal driver state-data, disables interrupts, and powers off the
CEU peripheral.

Example:

 err = R_CEU_Close(&g_ceu0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_NOT_OPEN Open has not been successfully called.

◆ R_CEU_CaptureStart()

fsp_err_t R_CEU_CaptureStart (capture_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Starts a capture.

Implements capture_api_t::captureStart.

Sets up the interface to transfer data from the CEU into the specifiec buffer. Configures the CEU
settings as previously set by the capture_api_t::open API. When a capture is complete the callback
registered during capture_api_t::open API call or by capture_api_t::callbackSet API will be called.

Example:

 err = R_CEU_CaptureStart(&g_ceu0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_NOT_OPEN Open has not been successfully called.

FSP_ERR_INVALID_ADDRESS Invalid buffer address alignment.

FSP_ERR_IN_USE Capture is in progress.

FSP_ERR_INVALID_STATE Capture is pending.

FSP_ERR_NOT_INITIALIZED Callback function has not been set.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,587 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Capture Engine Unit (r_ceu)

◆ R_CEU_CallbackSet()

fsp_err_t R_CEU_CallbackSet (capture_ctrl_t *const p_ctrl, void(*)(capture_callback_args_t *)
p_callback, void const *const p_context, capture_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure.

Implements capture_api_t::callbackSet.

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_NOT_OPEN Open has not been successfully called.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_CEU_StatusGet()

fsp_err_t R_CEU_StatusGet (capture_ctrl_t *const p_ctrl, capture_status_t * p_status)

Provides the ceu operating status.

Implements capture_api_t::statusGet.

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_NOT_OPEN Open has not been successfully called.

5.2.8.3 D/AVE 2D Port Interface (r_drw)
Modules » Graphics

Driver for the DRW peripheral on RA MCUs. This module is a port of D/AVE 2D.

Overview
Note

The D/AVE 2D Port Interface (D1 layer) is a HAL layer for the D/AVE D2 layer API and does not provide any
interfaces to the user. Consult the TES Dave2D Driver Documentation for further information on using the D2
API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,588 / 5,560

https://www.renesas.com/us/en/document/lbr/tes-dave2d-driver-documentation

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > D/AVE 2D Port Interface (r_drw)

For cross-platform compatibility purposes the D1 and D2 APIs are not bound by FSP coding guidelines for
function names and general module functionality.

Configuration
Build Time Configurations for r_drw

The following build time configurations are defined in fsp_cfg/r_drw_cfg.h:

Configuration Options Default Description

Allow Indirect Mode Enabled
Disabled

Enabled Enable indirect mode
to allow no-copy mode
for d2_adddlist (see the
TES Dave2D Driver
Documentation for
details).

Memory Allocation Default
Custom

Default Set Memory Allocation
to Default to use built-
in dynamic memory
allocation for the D2
heap. This will use an
RTOS heap if
configured; otherwise,
standard C malloc and
free will be used.
Set to Custom to define
your own allocation
scheme for the D2
heap. In this case, the
developer will need to
define the following
functions:

void * d1_malloc(size_t
size)
void d1_free(void * ptr)

Configurations for Graphics > D/AVE 2D Port Interface (r_drw)

This module can be added to the Stacks tab via New Stack > Graphics > D/AVE 2D Port Interface
(r_drw).

Configuration Options Default Description

D2 Device Handle
Name

Name must be a valid
C symbol

d2_handle0 Set the name for the
d2_device handle used
when calling D2 layer
functions.

DRW Interrupt Priority MCU Specific Options Select the DRW_INT
(display list

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,589 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > D/AVE 2D Port Interface (r_drw)

completion) interrupt
priority.

Heap Size

The D1 port layer allows the D2 driver to allocate memory as needed. There are three ways the
driver can accomplish this:

1. Allocate memory using the main heap
2. Allocate memory using a heap provided by an RTOS
3. Allocate memory via user-provided functions

When the "Memory Allocation" configuration option is set to "Default" the driver will use an RTOS
implementation if available and the main heap otherwise. Setting the option to "Custom" allows the
user to define their own scheme using the following prototypes:

void * d1_malloc(size_t size);

void d1_free(void * ptr);

Warning
If there is no RTOS-based allocation scheme the main heap will be used. Be sure that it is
enabled by setting the "Heap size (bytes)" property under RA Common on the BSP tab of
the RA Configuration editor.

Note
It is recommended to add 32KB of additional heap space for the D2 driver until the actual usage can be determined
in your application.

Interrupt

The D1 port includes one interrupt to handle various events like display list completion or bus error.
This interrupt is managed internally by the D2 driver and no callback function is available.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the DRW engine:

The DRW module supports two additional interrupt types - bus error and render complete.
These interrupts are not needed for D2 layer operation and thus are not supported.
If the DRW module is stopped during rendering the render will continue once the module is
started again. If this behavior is undesirable in your application it is recommended to call
d2_flushframe before stopping the peripheral.

5.2.8.4 Graphics LCD (r_glcdc)
Modules » Graphics

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,590 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Functions

fsp_err_t R_GLCDC_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const
*const p_cfg)

fsp_err_t R_GLCDC_Close (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_Start (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_Stop (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_LayerChange (display_ctrl_t const *const p_api_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
layer)

fsp_err_t R_GLCDC_BufferChange (display_ctrl_t const *const p_api_ctrl,
uint8_t *const framebuffer, display_frame_layer_t layer)

fsp_err_t R_GLCDC_ColorCorrection (display_ctrl_t const *const p_api_ctrl,
display_correction_t const *const p_correction)

fsp_err_t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl,
display_clut_cfg_t const *const p_clut_cfg, display_frame_layer_t
layer)

fsp_err_t R_GLCDC_ClutEdit (display_ctrl_t const *const p_api_ctrl,
display_frame_layer_t layer, uint8_t index, uint32_t color)

fsp_err_t R_GLCDC_ColorKeySet (display_ctrl_t const *const p_api_ctrl,
display_colorkeying_layer_t key_cfg, display_frame_layer_t layer)

fsp_err_t R_GLCDC_StatusGet (display_ctrl_t const *const p_api_ctrl,
display_status_t *const p_status)

Detailed Description

Driver for the GLCDC peripheral on RA MCUs. This module implements the Display Interface.

Overview
The GLCDC is a multi-stage graphics output peripheral designed to automatically generate timing
and data signals for LCD panels. As part of its internal pipeline the two internal graphics layers can
be repositioned, alpha blended, color corrected, dithered and converted to and from a wide variety
of pixel formats.

Features

The following features are available:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,591 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Feature Options

Input color formats ARGB8888, ARGB4444, ARGB1555, RGB888
(32-bit), RGB565, CLUT 8bpp, CLUT 4bpp, CLUT
1bpp

Output color formats RGB888, RGB666, RGB565, Serial RGB888 (8-bit
parallel)

Correction processes Alpha blending, positioning, brightness and
contrast, gamma correction, dithering

Timing signals Dot clock, Vsync, Hsync, Vertical and horizontal
data enable (DE)

Maximum resolution Up to 2038 x 2043 pixels (dependent on sync
signal width)

Maximum dot clock 60MHz for serial RGB mode, 54MHz otherwise

Internal clock divisors 1-9, 12, 16, 24, 32

Interrupts Line detect (Vblank), Layer 1 underflow, Layer 2
underflow

Other functions Byte-order and endianness control, line repeat
function

Configuration
Build Time Configurations for r_glcdc

The following build time configurations are defined in fsp_cfg/r_glcdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected, code for
parameter checking is
included in the build.

Color Correction On
Off

Off If selected, code to
adjust brightness,
contrast and gamma
settings is included in
the build. When
disabled all color
correction
configuration options
are ignored.

Configurations for Graphics > Graphics LCD (r_glcdc)

This module can be added to the Stacks tab via New Stack > Graphics > Graphics LCD (r_glcdc).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,592 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Name Name must be a valid
C symbol

g_display0 Module name.

Interrupts

Callback Function Name must be a valid
C symbol

NULL A user callback
function can be defined
here.

Line Detect Interrupt
Priority

MCU Specific Options Select the line detect
(Vsync) interrupt
priority.

Underflow 1 Interrupt
Priority

MCU Specific Options Select the underflow
interrupt priority for
layer 1.

Underflow 2 Interrupt
Priority

MCU Specific Options Select the underflow
interrupt priority for
layer 2.

Input

Input > Graphics Layer 1

Input > Graphics Layer 1 > General

Enabled Yes
No

Yes Specify Used if the
graphics layer 1 is
used. If so a
framebuffer will be
automatically
generated based on
the specified height
and horizontal stride.

Horizontal size Value must be an
integer from 16 to
2040

480 Specify the number of
horizontal pixels.

Vertical size Value must be an
integer from 16 to
2043

854 Specify the number of
vertical pixels.

Horizontal position Must be a valid non-
negative integer with a
maximum configurable
value of 4091

0 Specify the horizontal
offset in pixels of the
graphics layer from the
background layer.

Vertical position Must be a valid non-
negative integer with a
maximum configurable
value of 4094

0 Specify the vertical
offset in pixels of the
graphics layer from the
background layer.

Color format ARGB8888
(32-bit)
RGB888 (32-bit)
RGB565 (16-bit)
ARGB1555
(16-bit)

RGB565 (16-bit) Specify the graphics
layer Input format. If
selecting CLUT formats,
you must write the
CLUT table data before
starting output.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,593 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

ARGB4444
(16-bit)
CLUT8 (8-bit)
CLUT4 (4-bit)
CLUT1 (1-bit)

Line descending mode Enabled
Disabled

Disabled Select Used if the
framebuffer starts from
the bottom of the line.

Input > Graphics Layer 1 > Framebuffer

Framebuffer name This property must be
a valid C symbol

fb_background Specify the name for
the framebuffer for
Layer 1.

Number of
framebuffers

Must be a valid non-
negative integer

2 Number of
framebuffers allocated
for Graphics Layer 1.

Section for framebuffer
allocation

Manual Entry .sdram Specify the section in
which to allocate the
framebuffer. When Arm
Compiler 6 is used to
place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Input > Graphics Layer 1 > Line Repeat

Enable On
Off

Off Select On if the display
will be repeated from a
smaller section of the
framebuffer.

Repeat count Must be a valid non-
negative integer with a
maximum configurable
value of 65535 i.e
(vertical size) x (lines
repeat times) must be
equal to the panel
vertical size

0 Specify the number of
times the image is
repeated.

Input > Graphics Layer 1 > Fading

Mode None
Fade-in
Fade-out

None Select the fade
method.

Speed Value must be an
integer from 0 to 255

0 Specify the number of
frames for the fading
transition to complete.

Input > Graphics Layer 2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,594 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Input > Graphics Layer 2 > General

Enabled Yes
No

No Specify Used if the
graphics layer 2 is
used. If so a
framebuffer will be
automatically
generated based on
the specified height
and horizontal stride.

Horizontal size Value must be be an
integer from 16 to
2040

480 Specify the number of
horizontal pixels.

Vertical size Value must be be an
integer from 16 to
2043

854 Specify the number of
vertical pixels.

Horizontal position Must be a valid non-
negative integer with a
maximum configurable
value of 4091

0 Specify the horizontal
offset in pixels of the
graphics layer from the
background layer.

Vertical position Must be a valid non-
negative integer with a
maximum configurable
value of 4094

0 Specify the vertical
offset in pixels of the
graphics layer from the
background layer.

Color format ARGB8888
(32-bit)
RGB888 (32-bit)
RGB565 (16-bit)
ARGB1555
(16-bit)
ARGB4444
(16-bit)
CLUT8 (8-bit)
CLUT4 (4-bit)
CLUT1 (1-bit)

RGB565 (16-bit) Specify the graphics
layer Input format. If
selecting CLUT formats,
you must write the
CLUT table data before
starting output.

Line descending mode Enabled
Disabled

Disabled Select Used if the
framebuffer starts from
the bottom of the line.

Input > Graphics Layer 2 > Framebuffer

Framebuffer name This property must be
a valid C symbol

fb_foreground Specify the name for
the framebuffer for
Layer 2.

Number of
framebuffers

Must be a valid non-
negative integer

2 Number of
framebuffers allocated
for Graphics Layer 2.

Section for framebuffer
allocation

Manual Entry .sdram Specify the section in
which to allocate the
framebuffer. When Arm
Compiler 6 is used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,595 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Input > Graphics Layer 2 > Line Repeat

Enable On
Off

Off Select On if the display
will be repeated from a
smaller section of the
framebuffer.

Repeat count Must be a valid non-
negative integer with a
maximum configurable
value of 65535 i.e
(vertical size) x (lines
repeat times) must be
equal to the panel
vertical size

0 Specify the number of
times the image is
repeated.

Input > Graphics Layer 2 > Fading

Mode None
Fade-in
Fade-out

None Select the fade
method.

Speed Value must be an
integer from 0 to 255

0 Specify the number of
frames for the fading
transition to complete.

Output

Output > Timing

Horizontal total cycles Value must be an
integer from 24 to
2047

559 Specify the total cycles
in a horizontal line. Set
to the number of cycles
defined in the data
sheet of LCD panel
sheet in your system

Horizontal active video
cycles

Value must be an
integer from 16 to
2040

480 Specify the number of
active video cycles in a
horizontal line
(including front and
back porch). Set to the
number of cycles
defined in the data
sheet of LCD panel
sheet in your system.

Horizontal back porch
cycles

Value must be an
integer from 5 to 2029

5 Specify the number of
back porch cycles in a
horizontal line. Back
porch starts from the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,596 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

beginning of Hsync
cycles, which means
back porch cycles
contain Hsync cycles.
Set to the number of
cycles defined in the
data sheet of LCD
panel sheet in your
system.

Horizontal sync signal
cycles

Value must be an
integer from 0 to 2046

2 Specify the number of
Hsync signal assertion
cycles. Set to the
number of cycles
defined in the data
sheet of LCD panel
sheet in your system.

Horizontal sync signal
polarity

Low active
High active

Low active Select the polarity of
Hsync signal to match
your system.

Vertical total lines Value must be an
integer from 20 to
2047

894 Specify number of total
lines in a frame
(including front and
back porch).

Vertical active video
lines

Value must be an
integer from 16 to
2043

854 Specify the number of
active video lines in a
frame.

Vertical back porch
lines

Value must be an
integer from 3 to 2030

20 Specify the number of
back porch lines in a
frame. Back porch
starts from the
beginning of Vsync
lines, which means
back porch lines
contain Vsync lines.

Vertical sync signal
lines

Value must be an
integer from 0 to 2046

3 Specify the Vsync
signal assertion lines in
a frame.

Vertical sync signal
polarity

Low active
High active

Low active Select the polarity of
Vsync signal to match
to your system.

Data Enable Signal
Polarity

Low active
High active

High active Select the polarity of
Data Enable signal to
match to your system.

Sync edge Rising edge
Falling edge

Falling edge Select the polarity of
Sync signals to match
to your system.

Output > Format

Color format 24bits RGB888 24bits RGB888 Specify the graphics

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,597 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

18bits RGB666
16bits RGB565
8bits serial

layer output format to
match to your LCD
panel.

Color order RGB
BGR

RGB Select data order for
output signal to LCD
panel.

Endian Little endian
Big endian

Little endian Select data endianness
for output signal to LCD
panel.

Output > Background

Alpha Value must be an
integer from 0 to 255

255 Alpha component of
the background color.

Red Value must be an
integer from 0 to 255

0 Red component of the
background color.

Green Value must be an
integer from 0 to 255

0 Green component of
the background color.

Blue Value must be an
integer from 0 to 255

0 Blue component of the
background color.

CLUT

Enabled Yes
No

No Specify Used if
selecting CLUT formats
for a graphics layer
input format. If used, a
buffer (CLUT_buffer)
will be automatically
generated based on
the selected pixel
width.

Size Must be a valid non-
negative integer with a
maximum configurable
value of 256

256 Specify the number of
entries for the CLUT
source data buffer.
Each entry consumes 4
bytes (1 word).

TCON

Hsync pin select Not used
LCD_TCON0
LCD_TCON1
LCD_TCON2
LCD_TCON3

LCD_TCON1 Select the TCON pin
used for the Hsync
signal to match to your
system.

Vsync pin select Not used
LCD_TCON0
LCD_TCON1
LCD_TCON2
LCD_TCON3

LCD_TCON0 Select TCON pin used
for Vsync signal to
match to your system.

Data enable (DE) pin
select

Not used
LCD_TCON0

LCD_TCON2 Select TCON pin used
for DataEnable signal

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,598 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

LCD_TCON1
LCD_TCON2
LCD_TCON3

to match to your
system.

Panel clock source Internal clock
(GLCDCLK)
External clock
(LCD_EXTCLK)

Internal clock
(GLCDCLK)

Choose between an
internal GLCDCLK
generated from PCLKA
or an external clock
provided to the
LCD_EXTCLK pin.

Panel clock division
ratio

Refer to the RA
Configuration tool for
available options.

1/8 Select the clock source
divider value.

Color Correction

Color Correction > Brightness

Enabled Yes
No

No Enable brightness color
correction.

Red channel Value must be an
integer from 0 to 1023

512 Red component of the
brightness calibration.
This value is divided by
512 to determine gain.

Green channel Value must be an
integer from 0 to 1023

512 Green component of
the brightness
calibration. This value
is divided by 512 to
determine gain.

Blue channel Value must be an
integer from 0 to 1023

512 Blue component of the
brightness calibration.
This value is divided by
512 to determine gain.

Color Correction > Contrast

Enabled Yes
No

No Enable contrast color
correction.

Red channel gain Value must be an
integer from 0 to 255

128 Red component of the
contrast calibration.
This value is divided by
128 to determine gain.

Green channel gain Value must be an
integer from 0 to 255

128 Green component of
the contrast
calibration. This value
is divided by 128 to
determine gain.

Blue channel gain Value must be an
integer from 0 to 255

128 Blue component of the
contrast calibration.
This value is divided by
128 to determine gain.

Color Correction > Gamma

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,599 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Color Correction > Gamma > Tables

Color Correction > Gamma > Tables > Red

Color Correction > Gamma > Tables > Red > Gain

0 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

1 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

2 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

3 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

4 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

5 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

6 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

7 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

8 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,600 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

9 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

10 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

11 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

12 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

13 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

14 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

15 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

Color Correction > Gamma > Tables > Red > Threshold

1 Value must be an
integer from 0 to 1023

64 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

2 Value must be an
integer from 0 to 1023

128 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

3 Value must be an
integer from 0 to 1023

192 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,601 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

4 Value must be an
integer from 0 to 1023

256 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

5 Value must be an
integer from 0 to 1023

320 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

6 Value must be an
integer from 0 to 1023

384 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

7 Value must be an
integer from 0 to 1023

448 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

8 Value must be an
integer from 0 to 1023

512 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

9 Value must be an
integer from 0 to 1023

576 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

10 Value must be an
integer from 0 to 1023

640 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

11 Value must be an
integer from 0 to 1023

704 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

12 Value must be an
integer from 0 to 1023

768 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

13 Value must be an
integer from 0 to 1023

832 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

14 Value must be an
integer from 0 to 1023

896 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

15 Value must be an
integer from 0 to 1023

960 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,602 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Color Correction > Gamma > Tables > Green

Color Correction > Gamma > Tables > Green > Gain

0 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

1 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

2 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

3 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

4 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

5 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

6 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

7 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

8 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

9 Value must be an 1024 Enter a gain value from

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,603 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

integer from 0 to 2047 0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

10 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

11 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

12 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

13 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

14 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

15 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

Color Correction > Gamma > Tables > Green > Threshold

1 Value must be an
integer from 0 to 1023

64 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

2 Value must be an
integer from 0 to 1023

128 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

3 Value must be an
integer from 0 to 1023

192 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

4 Value must be an 256 Enter a threshold value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,604 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

integer from 0 to 1023 between the
surrounding values less
than or equal to 1023.

5 Value must be an
integer from 0 to 1023

320 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

6 Value must be an
integer from 0 to 1023

384 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

7 Value must be an
integer from 0 to 1023

448 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

8 Value must be an
integer from 0 to 1023

512 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

9 Value must be an
integer from 0 to 1023

576 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

10 Value must be an
integer from 0 to 1023

640 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

11 Value must be an
integer from 0 to 1023

704 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

12 Value must be an
integer from 0 to 1023

768 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

13 Value must be an
integer from 0 to 1023

832 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

14 Value must be an
integer from 0 to 1023

896 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

15 Value must be an
integer from 0 to 1023

960 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,605 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Color Correction > Gamma > Tables > Blue

Color Correction > Gamma > Tables > Blue > Gain

0 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

1 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

2 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

3 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

4 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

5 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

6 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

7 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

8 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

9 Value must be an 1024 Enter a gain value from

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,606 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

integer from 0 to 2047 0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

10 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

11 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

12 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

13 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

14 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

15 Value must be an
integer from 0 to 2047

1024 Enter a gain value from
0 to 2047
(corresponding to gain
of 0 and 1.999,
respectively).

Color Correction > Gamma > Tables > Blue > Threshold

1 Value must be an
integer from 0 to 1023

64 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

2 Value must be an
integer from 0 to 1023

128 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

3 Value must be an
integer from 0 to 1023

192 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

4 Value must be an 256 Enter a threshold value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,607 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

integer from 0 to 1023 between the
surrounding values less
than or equal to 1023.

5 Value must be an
integer from 0 to 1023

320 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

6 Value must be an
integer from 0 to 1023

384 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

7 Value must be an
integer from 0 to 1023

448 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

8 Value must be an
integer from 0 to 1023

512 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

9 Value must be an
integer from 0 to 1023

576 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

10 Value must be an
integer from 0 to 1023

640 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

11 Value must be an
integer from 0 to 1023

704 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

12 Value must be an
integer from 0 to 1023

768 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

13 Value must be an
integer from 0 to 1023

832 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

14 Value must be an
integer from 0 to 1023

896 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

15 Value must be an
integer from 0 to 1023

960 Enter a threshold value
between the
surrounding values less
than or equal to 1023.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,608 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Red On
Off

Off Enable gamma color
correction for the red
channel.

Green On
Off

Off Enable gamma color
correction for the green
channel.

Blue On
Off

Off Enable gamma color
correction for the blue
channel.

Table Mode Constant
Variable

Variable Set to Constant to
override the
automatically-
generated RAM gamma
tables with a constant
declaration using the
provided values.

Process order Brightness/cont
rast first
Gamma first

Brightness/contrast
first

Select the color
correction processing
order.

Dithering

Enabled Yes
No

No Enable dithering to
reduce the effect of
color banding.

Mode Truncate
Round off
2x2 Pattern

Truncate Select the dithering
mode.

Pattern A Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Pattern B Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Pattern C Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Pattern D Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Clock Configuration

The peripheral clock for this module is PCLKA.

The dot clock is typically generated from the PLL with a maximum output frequency of 54 MHz in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,609 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

most pixel formats (60 MHz for serial RGB). Optionally, a clock signal can be provided to the
LCD_EXTCLK pin for finer framerate control (60 MHz maximum input). With either clock source
dividers of 1-9, 12, 16, 24 and 32 may be used. Clocks must be initialized and settled prior to
starting this module.

Pin Configuration

This module controls a variety of pins necessary for LCD data and timing signal output:

Pin Name Function Notes

LCD_EXTCLK External clock signal input The maximum input clock
frequency is 60MHz.

LCD_CLK Dot clock output The maximum output frequency
is 54MHz (60MHz in serial RGB
mode).

LCD_DATAn Pixel data output lines Pin assignment and color order
is based on the output block
configuration. See the RA6M3
User's Manual
(R01UH0886EJ0100) section
58.1.4 "Output Control for Data
Format" for details.

LCD_TCONn Panel timing signal output These pins can be configured to
output vertical and horizontal
synchronization and data valid
signals.

Note
There are two banks of pins listed for the GLCDC in the RA6M3 User's Manual (_A and _B). In most cases the _B
bank will be used as _A conflicts with SDRAM pins. In either case, it is generally recommended to only use pins
from only one bank at a time as this allows for superior signal routing both inside and outside the package. If _A
and _B pins must be mixed be sure to note the timing precision penalty detailed in Table 60.33 in in the RA6M3
User's Manual.

Usage Notes
Overview

The GLCDC peripheral is a combination of several sub-peripherals that form a pixel data processing
pipeline. Each block passes pixel data to the next but otherwise they are disconnected from one
another - in other words, changing timing block parameters does not affect the output generation
block configuration and vice versa.

Initial Configuration

During R_GLCDC_Open all configured parameters are set in the GLCDC peripheral fully preparing it
for operation. Once opened, calling R_GLCDC_Start is typically all that is needed for basic operation.
Background generation, timing and output parameters are not configurable at runtime, though layer
control and color correction options can be altered.

Framebuffer Allocation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,610 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

The framebuffer should be allocated in the highest-speed region available without displacing the
stack, heap and other program-critical structures. Regardless of the placement two rules must be
followed to ensure correct operation of the GLCDC:

The framebuffer must be aligned on a 64-byte boundary
The horizontal stride of the buffer must be a multiple of 64 bytes

Note
Framebuffers allocated through the RA Configuraton tool automatically follow the alignment and size
requirements.

If your framebuffer will be placed in internal memory it is recommended to avoid any high-speed
RAM regions as there is typically no speed advantage for doing so. In particular, it is important to
ensure the framebuffer does not push the stack or any heaps outside of high-speed RAM areas to
preserve CPU performance.

Graphics Layers and Timing Parameters

The GLCDC synthesizes graphics data through two configurable graphics layers onto a background
layer. The background is used as a solid-color canvas upon which to composite data from the
graphics layers. The two graphics layers are blended on top of each other (Layer 2 above Layer 1)
and overlaid on the background layer based on their individual configuration. The placement of the
layers (as well as LCD timing parameters) are detailed in Figure 1. The colors of the dimensions
indicate which element of the display_cfg_t struct is being referenced - for example, the width of the
background layer would be [display_cfg].output.htiming.display_cyc as shown in the figure below.

Figure 223: GLCDC layers and timing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,611 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Note
The data enable signal (if configured) is the logical AND of the horizontal and vertical data valid signals.
In the GLCDC layers and timing figure, only one graphics layer is shown for simplicity. Additionally, in most
applications the graphics layer(s) will be the same dimensions as the background layer.

Runtime Configuration Options

Note
All runtime configurations detailed below are also automatically configured during R_GLCDC_Open based on the
options selected in the RA Configuration editor.

Blend processing

Control of layer positioning, alpha blending and fading is possible at runtime via
R_GLCDC_LayerChange. This function takes a display_runtime_cfg_t parameter which contains the
same input and layer elements as the display_cfg_t control block. Refer to the documentation for
display_runtime_cfg_t as well as the Examples below to see what options are configurable.

Brightness and contrast

Brightness and contrast correction can be controlled through R_GLCDC_ColorCorrection. The
display_correction_t parameter is used to control enabling, disabling and gain values for both
corrections as shown below:

 display_correction_t correction;

 /* Brightness values are 0-1023 with +512 offset being neutral */

 correction.brightness.r = 512;

 correction.brightness.g = 512;

 correction.brightness.b = 512;

 /* Contrast values are 0-255 representing gain of 0-2 (128 is gain of 1) */

 correction.contrast.r = 128;

 correction.contrast.g = 128;

 correction.contrast.b = 128;

 /* Brightness and contrast correction can be enabled or disabled independent of one

another */

 correction.brightness.enable = true;

 correction.contrast.enable = true;

 /* Enable correction */

 R_GLCDC_ColorCorrection(&g_disp_ctrl, &correction);

Color Look-Up Table (CLUT) Modes

The GLCDC supports 1-, 4- and 8-bit color look-up table (CLUT) formats for input pixel data. By using

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,612 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

these modes the framebuffer size in memory can be reduced significantly, allowing even high-
resolution displays to be buffered in on-chip SRAM. To enable CLUT modes for a layer the color
format must be set to a CLUT mode (either at startup or through R_GLCDC_LayerChange) in addition
to filling the CLUT as appropriate via R_GLCDC_ClutUpdate as shown below:

 /* Basic 4-bit (16-color) CLUT definition */

 uint32_t clut_4[16] =

 {

 0xFF000000, // Black

 0xFFFFFFFF, // White

 0xFF0000FF, // Blue

 0xFF0080FF, // Turquoise

 0xFF00FFFF, // Cyan

 0xFF00FF80, // Mint Green

 0xFF00FF00, // Green

 0xFF80FF00, // Lime Green

 0xFFFFFF00, // Yellow

 0xFFFF8000, // Orange

 0xFFFF0000, // Red

 0xFFFF0080, // Pink

 0xFFFF00FF, // Magenta

 0xFF8000FF, // Purple

 0xFF808080, // Gray

 0x00000000 // Transparent

 };

 /* Define the CLUT configuration */

 display_clut_cfg_t clut_cfg =

 {

 .start = 0,

 .size = 16,

 .p_base = clut_4

 };

 /* Update the CLUT in the GLCDC */

 R_GLCDC_ClutUpdate(&g_disp_ctrl, &clut_cfg, DISPLAY_FRAME_LAYER_1);

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,613 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

If individual elements of the CLUT must be changed or if elements must be changed one at a time (for instance,
when using emWin) it is recommended to use R_GLCDC_ClutEdit to avoid repeated memcpy operations.

Other Configuration Options

Gamma correction

Gamma correction is performed based on a gain curved defined in the RA Configuration editor. Each
point on the curve is defined by a threshold and a gain value - each gain value represents a
multiplier from 0x-2x (set as 0-2047) that sets the Y-value of the slope of the gain curve, while each
threshold interval sets the X-value respectively. For a more detailed explanation refer to the RA6M3
User's Manual (R01UH0886EJ0100) Figure 58.12 "Calculation of gamma correction value" and the
related description above it.

When setting threshold values three rules must be followed:

Each threshold value must be greater than the previous value
Threshold values must be greater than zero and less than 1024
Threshold values can equal the previous value only if they are 1023 (maximum)

Note
Gamma correction can only be applied via R_GLCDC_Open.

Dithering

Dithering is a method of pixel blending that allows for smoother transitions between colors when
using a limited palette. A full description of dithering is outside the scope of this document. For more
information on the pattern settings and how to configure them refer to the RA6M3 User's Manual
(R01UH0886EJ0100) Figure 58.13 "Configuration of dither correction block" and Figure 58.14
"Addition value selection method for 2x2 pattern dither".

Maximum Resolution

Though the GLCDC is capable of outputting resolutions in excess of HD, maximum clockspeeds and
bus throughput limit what can be realistically achieved. Below is a table of maximum recommended
widescreen resolutions at various input color depths based on clock and bus limits at 60 FPS.

Device 8bpp 16bpp 24/32bpp

RA6M3 960x540 (qHD) 800x480 (WVGA) 640x360 (nHD)

RA8 1920x1200 (WUXGA) 1280x800 (WXGA) 960x540 (qHD)

Note
The above values are estimated conservatively based on effective SDRAM bus throughput at a standard framerate.
To calculate estimated maximum values for other situations the following equations can be used:
bytes per frame = (SDCLK speed (Hz) * SDRAM bus width / 8) / framerate
width = sqrt(16/9 * (bytes per frame) / (pixel bit depth / 8))
height = 9/16 * width
These equations provide values that are theoretically possible but may or may not be attainable depending on a
number of other factors. It is the responsibility of the developer to test and confirm performance on each system to
determine a suitable panel size for the application.

Limitations

Developers should be aware of the following limitations when using the GLCDC API:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,614 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

Due to a limitation of the GLCDC hardware, if the horizontal back porch is less than the
number of pixels in a graphics burst read (64 bytes) for a layer and the layer is positioned
at a negative X-value then the layer X-position will be locked to the nearest 64-byte
boundary, rounded toward zero.
The GLCDC peripheral offers a chroma-key function that can be used to perform a green-
screen-like color replacement. This functionality is not exposed through the GLCDC API. See
the descriptions for GR1_AB7/GR2_AB7 through GR1_AB9/GR2_AB9 in the device's User's
Manual for further details.
Use of R_GLCDC_ClutUpdate and R_GLCDC_ClutEdit may not be mixed on the same frame.

Examples
Basic Example

This is a basic example showing the minimum code required to initialize and start the GLCDC
module. If the entire display can be drawn within the vertical blanking period no further code may be
necessary.

void glcdc_init (void)

{

 fsp_err_t err;

 // Open the GLCDC driver

 err = R_GLCDC_Open(&g_disp_ctrl, &g_disp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 // Start display output

 err = R_GLCDC_Start(&g_disp_ctrl);

 assert(FSP_SUCCESS == err);

}

Layer Transitions

This example demonstrates how to set up and execute both a sliding and fading layer transition. This
is most useful in static image transition scenarios as switching between two actively-drawing
graphics layers may require up to four framebuffers to eliminate tearing.

volatile uint32_t g_vsync_count = 0;

/* Callback function for GLCDC interrupts */

static void glcdc_callback (display_callback_args_t * p_args)

{

 if (p_args->event == DISPLAY_EVENT_LINE_DETECTION)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,615 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

 g_vsync_count++;

 }

}

/* Simple wait that returns 1 if no Vsync happened within the timeout period */

uint8_t vsync_wait (void)

{

 uint32_t timeout_timer = GLCDC_VSYNC_TIMEOUT;

 g_vsync_count = 0;

 while (!g_vsync_count && --timeout_timer)

 {

 /* Spin here until DISPLAY_EVENT_LINE_DETECTION callback or timeout */

 }

 return timeout_timer ? 0 : 1;

}

/* Initiate a fade on Layer 2

 *

 * Parameters:

 * direction True for fade in, false for fade out

 * speed number of frames over which to fade

 */

void glcdc_layer_transition_fade (display_runtime_cfg_t * disp_rt_cfg, bool

direction, uint16_t speed)

{

 fsp_err_t err;

 if (direction)

 {

 /* Set the runtime struct to the desired buffer */

 disp_rt_cfg->input.p_base = (uint32_t *) g_framebuffer_1;

 disp_rt_cfg->layer.fade_control = DISPLAY_FADE_CONTROL_FADEIN;

 }

 else

 {

 disp_rt_cfg->layer.fade_control = DISPLAY_FADE_CONTROL_FADEOUT;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,616 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

 /* Ensure speed is at least 1 frame */

 if (!speed)

 {

 speed = 1;

 }

 /* Set the fade speed to the desired change in alpha per frame */

 disp_rt_cfg->layer.fade_speed = UINT8_MAX / speed;

 /* Initiate the fade (will start on the next Vsync) */

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg, DISPLAY_FRAME_LAYER_2);

 assert(FSP_SUCCESS == err);

}

/* Slide Layer 1 out to the left while sliding Layer 2 in from the right */

void glcdc_layer_transition_sliding (display_runtime_cfg_t * disp_rt_cfg_in,

display_runtime_cfg_t * disp_rt_cfg_out)

{

 fsp_err_t err;

 /* Set the config for the incoming layer to be just out of bounds on the right side

*/

 disp_rt_cfg_in->input.p_base = (uint32_t *) g_framebuffer_1;

 disp_rt_cfg_in->layer.coordinate.x = DISPLAY_WIDTH;

 /* Move layer 1 out and layer 2 in at a fixed rate of 4 pixels per frame */

 for (int32_t x = disp_rt_cfg_in->layer.coordinate.x; x >= 0; x -= 4)

 {

 /* Wait for a Vsync before starting */

 vsync_wait();

 /* Set the X-coordinate of both layers then update them */

 disp_rt_cfg_out->layer.coordinate.x = (int16_t) (x - DISPLAY_WIDTH);

 disp_rt_cfg_in->layer.coordinate.x = (int16_t) x;

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg_out, DISPLAY_FRAME_LAYER_1

);

 assert(FSP_SUCCESS == err);

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg_in, DISPLAY_FRAME_LAYER_2

);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,617 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

 }

}

Double-Buffering

Using a double-buffer allows one to be output to the LCD while the other is being drawn to memory,
eliminating tearing and in some cases reducing bus load. The following is a basic example showing
integration of the line detect (Vsync) interrupt to set the timing for buffer swapping and drawing.

/* User-defined function to draw the current display to a framebuffer */

void display_draw (uint8_t * framebuffer)

{

 FSP_PARAMETER_NOT_USED(framebuffer);

 /* Draw buffer here */

}

/* This function is an example of a basic double-buffered display thread */

void display_thread (void)

{

 uint8_t * p_framebuffer = NULL;

 fsp_err_t err;

 /* Initialize and start the R_GLCDC module */

 glcdc_init();

 while (1)

 {

 /* Swap the active framebuffer */

 p_framebuffer = (p_framebuffer == g_framebuffer_0) ? g_framebuffer_1 :

g_framebuffer_0;

 /* Draw the new framebuffer now */

 display_draw(p_framebuffer);

 /* Now that the framebuffer is ready, update the GLCDC buffer pointer on the next

Vsync */

 err = R_GLCDC_BufferChange(&g_disp_ctrl, p_framebuffer, DISPLAY_FRAME_LAYER_1

);

 assert(FSP_SUCCESS == err);

 /* Wait for a Vsync event */

 vsync_wait();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,618 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

 }

}

Data Structures

struct glcdc_instance_ctrl_t

struct glcdc_extended_cfg_t

Enumerations

enum glcdc_clk_src_t

enum glcdc_panel_clk_div_t

enum glcdc_tcon_pin_t

enum glcdc_bus_arbitration_t

enum glcdc_correction_proc_order_t

enum glcdc_tcon_signal_select_t

enum glcdc_clut_plane_t

enum glcdc_dithering_mode_t

enum glcdc_dithering_pattern_t

enum glcdc_input_interface_format_t

enum glcdc_output_interface_format_t

enum glcdc_dithering_output_format_t

Data Structure Documentation

◆ glcdc_instance_ctrl_t

struct glcdc_instance_ctrl_t

Display control block. DO NOT INITIALIZE.

◆ glcdc_extended_cfg_t

struct glcdc_extended_cfg_t

GLCDC hardware specific configuration

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,619 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

glcdc_tcon_pin_t tcon_hsync GLCDC TCON output pin select.

glcdc_tcon_pin_t tcon_vsync GLCDC TCON output pin select.

glcdc_tcon_pin_t tcon_de GLCDC TCON output pin select.

glcdc_correction_proc_order_t correction_proc_order Correction control route select.

glcdc_clk_src_t clksrc Clock Source selection.

glcdc_panel_clk_div_t clock_div_ratio Clock divide ratio for dot clock.

glcdc_dithering_mode_t dithering_mode Dithering mode.

glcdc_dithering_pattern_t dithering_pattern_A Dithering pattern A.

glcdc_dithering_pattern_t dithering_pattern_B Dithering pattern B.

glcdc_dithering_pattern_t dithering_pattern_C Dithering pattern C.

glcdc_dithering_pattern_t dithering_pattern_D Dithering pattern D.

void * phy_layer Alternate PHY layer, such as
MIPI DSI.

Enumeration Type Documentation

◆ glcdc_clk_src_t

enum glcdc_clk_src_t

Clock source select

Enumerator

GLCDC_CLK_SRC_INTERNAL Internal.

GLCDC_CLK_SRC_EXTERNAL External.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,620 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ glcdc_panel_clk_div_t

enum glcdc_panel_clk_div_t

Clock frequency division ratio

Enumerator

GLCDC_PANEL_CLK_DIVISOR_1 Division Ratio 1/1.

GLCDC_PANEL_CLK_DIVISOR_2 Division Ratio 1/2.

GLCDC_PANEL_CLK_DIVISOR_3 Division Ratio 1/3.

GLCDC_PANEL_CLK_DIVISOR_4 Division Ratio 1/4.

GLCDC_PANEL_CLK_DIVISOR_5 Division Ratio 1/5.

GLCDC_PANEL_CLK_DIVISOR_6 Division Ratio 1/6.

GLCDC_PANEL_CLK_DIVISOR_7 Division Ratio 1/7.

GLCDC_PANEL_CLK_DIVISOR_8 Division Ratio 1/8.

GLCDC_PANEL_CLK_DIVISOR_9 Division Ratio 1/9.

GLCDC_PANEL_CLK_DIVISOR_12 Division Ratio 1/12.

GLCDC_PANEL_CLK_DIVISOR_16 Division Ratio 1/16.

GLCDC_PANEL_CLK_DIVISOR_24 Division Ratio 1/24.

GLCDC_PANEL_CLK_DIVISOR_32 Division Ratio 1/32.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,621 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ glcdc_tcon_pin_t

enum glcdc_tcon_pin_t

LCD TCON output pin select

Enumerator

GLCDC_TCON_PIN_NONE No output.

GLCDC_TCON_PIN_0 LCD_TCON0.

GLCDC_TCON_PIN_1 LCD_TCON1.

GLCDC_TCON_PIN_2 LCD_TCON2.

GLCDC_TCON_PIN_3 LCD_TCON3.

◆ glcdc_bus_arbitration_t

enum glcdc_bus_arbitration_t

Bus Arbitration setting

Enumerator

GLCDC_BUS_ARBITRATION_ROUNDROBIN Round robin.

GLCDC_BUS_ARBITRATION_FIX_PRIORITY Fixed.

◆ glcdc_correction_proc_order_t

enum glcdc_correction_proc_order_t

Correction circuit sequence control

Enumerator

GLCDC_CORRECTION_PROC_ORDER_BRIGHTNES
S_CONTRAST2GAMMA

Brightness -> contrast -> gamma correction.

GLCDC_CORRECTION_PROC_ORDER_GAMMA2BRI
GHTNESS_CONTRAST

Gamma correction -> brightness -> contrast.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,622 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ glcdc_tcon_signal_select_t

enum glcdc_tcon_signal_select_t

Timing signals for driving the LCD panel

Enumerator

GLCDC_TCON_SIGNAL_SELECT_STVA_VS STVA/VS.

GLCDC_TCON_SIGNAL_SELECT_STVB_VE STVB/VE.

GLCDC_TCON_SIGNAL_SELECT_STHA_HS STH/SP/HS.

GLCDC_TCON_SIGNAL_SELECT_STHB_HE STB/LP/HE.

GLCDC_TCON_SIGNAL_SELECT_DE DE.

◆ glcdc_clut_plane_t

enum glcdc_clut_plane_t

Clock phase adjustment for serial RGB output

Enumerator

GLCDC_CLUT_PLANE_0 GLCDC CLUT plane 0.

GLCDC_CLUT_PLANE_1 GLCDC CLUT plane 1.

◆ glcdc_dithering_mode_t

enum glcdc_dithering_mode_t

Dithering mode

Enumerator

GLCDC_DITHERING_MODE_TRUNCATE No dithering (truncate)

GLCDC_DITHERING_MODE_ROUND_OFF Dithering with round off.

GLCDC_DITHERING_MODE_2X2PATTERN Dithering with 2x2 pattern.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,623 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ glcdc_dithering_pattern_t

enum glcdc_dithering_pattern_t

Dithering mode

Enumerator

GLCDC_DITHERING_PATTERN_00 2x2 pattern '00'

GLCDC_DITHERING_PATTERN_01 2x2 pattern '01'

GLCDC_DITHERING_PATTERN_10 2x2 pattern '10'

GLCDC_DITHERING_PATTERN_11 2x2 pattern '11'

◆ glcdc_input_interface_format_t

enum glcdc_input_interface_format_t

Output interface format

Enumerator

GLCDC_INPUT_INTERFACE_FORMAT_RGB565 Input interface format RGB565.

GLCDC_INPUT_INTERFACE_FORMAT_RGB888 Input interface format RGB888.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB1555 Input interface format ARGB1555.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB4444 Input interface format ARGB4444.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB8888 Input interface format ARGB8888.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT8 Input interface format CLUT8.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT4 Input interface format CLUT4.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT1 Input interface format CLUT1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,624 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ glcdc_output_interface_format_t

enum glcdc_output_interface_format_t

Output interface format

Enumerator

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB888 Output interface format RGB888.

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB666 Output interface format RGB666.

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB565 Output interface format RGB565.

GLCDC_OUTPUT_INTERFACE_FORMAT_SERIAL_R
GB

Output interface format Serial RGB.

◆ glcdc_dithering_output_format_t

enum glcdc_dithering_output_format_t

Dithering output format

Enumerator

GLCDC_DITHERING_OUTPUT_FORMAT_RGB888 Dithering output format RGB888.

GLCDC_DITHERING_OUTPUT_FORMAT_RGB666 Dithering output format RGB666.

GLCDC_DITHERING_OUTPUT_FORMAT_RGB565 Dithering output format RGB565.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,625 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ R_GLCDC_Open()

fsp_err_t R_GLCDC_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const *const p_cfg)

Open GLCDC module. Implements display_api_t::open.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ALREADY_OPEN Device was already open.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_CLOCK_GENERATION Dot clock cannot be generated from clock
source.

FSP_ERR_INVALID_TIMING_SETTING Invalid panel timing parameter.

FSP_ERR_INVALID_LAYER_SETTING Invalid layer setting found.

FSP_ERR_INVALID_ALIGNMENT Input buffer alignment invalid.

FSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction setting found

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid brightness correction setting found

Note
PCLKA must be supplied to Graphics LCD Controller (GLCDC) and GLCDC pins must be set in IOPORT before
calling this API.

◆ R_GLCDC_Close()

fsp_err_t R_GLCDC_Close (display_ctrl_t *const p_api_ctrl)

Close GLCDC module. Implements display_api_t::close.

Return values
FSP_SUCCESS Device was closed successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN The function call is performed when the
driver state is not equal to
DISPLAY_STATE_CLOSED.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed when the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is not in DISPLAY_STATE_CLOSED state. It returns an error if the
register update operation for the background screen generation block is being held.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,626 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ R_GLCDC_Start()

fsp_err_t R_GLCDC_Start (display_ctrl_t *const p_api_ctrl)

Start GLCDC module. Implements display_api_t::start.

Return values
FSP_SUCCESS Device was started successfully.

FSP_ERR_NOT_OPEN GLCDC module has not been opened.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

Note
This API can be called when the driver is not in DISPLAY_STATE_OPENED status.

◆ R_GLCDC_Stop()

fsp_err_t R_GLCDC_Stop (display_ctrl_t *const p_api_ctrl)

Stop GLCDC module. Implements display_api_t::stop.

Return values
FSP_SUCCESS Device was stopped successfully

FSP_ERR_ASSERTION Pointer to the control block is NULL

FSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING The function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks, the graphics data I/F blocks, or the output
control block is being held.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,627 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ R_GLCDC_LayerChange()

fsp_err_t R_GLCDC_LayerChange (display_ctrl_t const *const p_api_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t layer)

Change layer parameters of GLCDC module at runtime. Implements display_api_t::layerChange.

Return values
FSP_SUCCESS Changed layer parameters of GLCDC

module successfully.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_INVALID_MODE A function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the graphics data I/F block is being held.

◆ R_GLCDC_BufferChange()

fsp_err_t R_GLCDC_BufferChange (display_ctrl_t const *const p_api_ctrl, uint8_t *const
framebuffer, display_frame_layer_t layer)

Change the framebuffer pointer for a layer. Implements display_api_t::bufferChange.

Return values
FSP_SUCCESS Changed layer parameters of GLCDC

module successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_INVALID_MODE A function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_ALIGNMENT The framebuffer pointer is not 64-byte
aligned.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in DISPLAY_STATE_OPENED state or higher. It returns an error if the
register update operation for the background screen generation blocks or the graphics data I/F block is being held.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,628 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ R_GLCDC_ColorCorrection()

fsp_err_t R_GLCDC_ColorCorrection (display_ctrl_t const *const p_api_ctrl, display_correction_t
const *const p_correction)

Perform color correction through the GLCDC module. Implements display_api_t::correction.

Return values
FSP_SUCCESS Color correction by GLCDC module was

performed successfully.

FSP_ERR_ASSERTION Pointer to the control block or the display
correction structure is NULL.

FSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating registers internally.

FSP_ERR_UNSUPPORTED Feature not supported with the current
configuration.

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid brightness correction setting found

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the output control block is being held.

◆ R_GLCDC_ClutUpdate()

fsp_err_t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t layer)

Write an entire color look-up table (CLUT) in the GLCDC module. Implements display_api_t::clut.

Return values
FSP_SUCCESS CLUT written successfully.

FSP_ERR_ASSERTION Pointer to the control block or CLUT source
data is NULL.

FSP_ERR_INVALID_UPDATE_TIMING R_GLCDC_ClutEdit was already used to edit
the specified CLUT this frame.

FSP_ERR_INVALID_CLUT_ACCESS Illegal CLUT entry or size is specified.

Note
This API can be called any time. The written data will be used after the next vertical sync event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,629 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Graphics LCD (r_glcdc)

◆ R_GLCDC_ClutEdit()

fsp_err_t R_GLCDC_ClutEdit (display_ctrl_t const *const p_api_ctrl, display_frame_layer_t layer,
uint8_t index, uint32_t color)

Update an element of a color look-up table (CLUT) in the GLCDC module. Implements
display_api_t::clutEdit.

Return values
FSP_SUCCESS CLUT element updated successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

Note
This API can be called any time. The written data will be used after the next vertical sync event.

◆ R_GLCDC_ColorKeySet()

fsp_err_t R_GLCDC_ColorKeySet (display_ctrl_t const *const p_api_ctrl, display_colorkeying_layer_t
 key_cfg, display_frame_layer_t layer)

Configuring color key is not supported for GLCDC.

Return values
FSP_ERR_UNSUPPORTED

◆ R_GLCDC_StatusGet()

fsp_err_t R_GLCDC_StatusGet (display_ctrl_t const *const p_api_ctrl, display_status_t *const
p_status)

Get status of GLCDC module. Implements display_api_t::statusGet.

Return values
FSP_SUCCESS Got status successfully.

FSP_ERR_ASSERTION Pointer to the control block or the status
structure is NULL.

Note
The GLCDC hardware starts the fading processing at the first Vsync after the previous LayerChange() call is held.
Due to this behavior of the hardware, this API may not return DISPLAY_FADE_STATUS_FADING_UNDERWAY
as the fading status, if it is called before the first Vsync after LayerChange() is called. In this case, the API returns
DISPLAY_FADE_STATUS_PENDING, instead of DISPLAY_FADE_STATUS_NOT_UNDERWAY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,630 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

5.2.8.5 JPEG Codec (r_jpeg)
Modules » Graphics

Functions

fsp_err_t R_JPEG_Open (jpeg_ctrl_t *const p_api_ctrl, jpeg_cfg_t const *const
p_cfg)

fsp_err_t R_JPEG_OutputBufferSet (jpeg_ctrl_t *p_api_ctrl, void
*p_output_buffer, uint32_t output_buffer_size)

fsp_err_t R_JPEG_InputBufferSet (jpeg_ctrl_t *const p_api_ctrl, void
*p_data_buffer, uint32_t data_buffer_size)

fsp_err_t R_JPEG_DecodeLinesDecodedGet (jpeg_ctrl_t *p_api_ctrl, uint32_t
*p_lines)

fsp_err_t R_JPEG_DecodeImageSubsampleSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

fsp_err_t R_JPEG_DecodeHorizontalStrideSet (jpeg_ctrl_t *p_api_ctrl, uint32_t
horizontal_stride)

fsp_err_t R_JPEG_DecodeImageSizeGet (jpeg_ctrl_t *p_api_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

fsp_err_t R_JPEG_DecodePixelFormatGet (jpeg_ctrl_t *p_api_ctrl,
jpeg_color_space_t *p_color_space)

fsp_err_t R_JPEG_EncodeImageSizeSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_encode_image_size_t *p_image_size)

fsp_err_t R_JPEG_ModeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_mode_t mode)

fsp_err_t R_JPEG_Close (jpeg_ctrl_t *p_api_ctrl)

fsp_err_t R_JPEG_StatusGet (jpeg_ctrl_t *p_api_ctrl, jpeg_status_t *p_status)

Detailed Description

Driver for the JPEG peripheral on RA MCUs. This module implements the JPEG Codec Interface.

Overview
The JPEG Codec is a hardware block providing accelerated JPEG image encode and decode
functionality independent of the CPU. Images can optionally be partially processed facilitating
streaming applications.

Features

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,631 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

The JPEG Codec provides a number of options useful in a variety of applications:

Basic encoding and decoding
Streaming input and/or output
Decoding JPEGs of unknown size
Shrink (sub-sample) an image during the decoding process
Rearrange input and output byte order (byte, word and/or longword swap)
JPEG error detection

The specifications for the codec are as follows:

Feature Options

Decompression input formats Baseline JPEG Y'CbCr 4:4:4, 4:2:2, 4:2:0 and
4:1:1

Decompression output formats ARGB8888, RGB565

Compression input formats Raw Y'CbCr 4:2:2 only

Compression output formats Baseline JPEG Y'CbCr 4:2:2 only

Byte reordering Byte, halfword and/or word swapping on input
and output

Interrupt sources Image size acquired, input/output data pause,
decode complete, error

Compatible image sizes See Minimum Coded Unit (MCU) below

Configuration
Build Time Configurations for r_jpeg

The following build time configurations are defined in fsp_cfg/r_jpeg_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected, code for
parameter checking is
included in the build.

Decode Support Enabled
Disabled

Enabled If selected, code for
decoding JPEG images
is included in the build.

Encode Support Enabled
Disabled

Disabled If selected, code for
encoding JPEG images
is included in the build.

Configurations for Graphics > JPEG Codec (r_jpeg)

This module can be added to the Stacks tab via New Stack > Graphics > JPEG Codec (r_jpeg).

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,632 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

General

Name Name must be a valid
C symbol

g_jpeg0 Module name.

Default mode Decode
Encode

Decode Set the mode to use
when calling
R_JPEG_Open. This
parameter is only used
when both Encode and
Decode support are
enabled.

Decode

Input byte order MCU Specific Options Select the byte order of
the input data for
decoding.

Output byte order MCU Specific Options Select the byte order of
the output data for
decoding.

Output color format ARGB8888
(32-bit)
RGB565 (16-bit)

RGB565 (16-bit) Select the output pixel
format for decode
operations.

Output alpha
(ARGB8888 only)

Value must be an 8-bit
integer (0-255)

255 Specify the alpha value
to apply to each output
pixel when ARGB8888
format is chosen.

Callback Name must be a valid
C symbol

NULL If a callback function is
provided it will be
called from the
interrupt service
routine (ISR) each time
a related IRQ triggers.

Encode

Horizontal resolution Value cannot be
greater than 65535
and must be a non-
negative integer
divisible by 16

480 Horizontal resolution of
the raw image (in
pixels). This value can
be configured at
runtime via
R_JPEG_ImageSizeSet.

Vertical resolution Value cannot be
greater than 65535
and must be a non-
negative integer
divisible by 8

272 Vertical resolution of
the raw image. This
value can be
configured at runtime
via
R_JPEG_ImageSizeSet.

Horizontal stride Value cannot be
greater than 65535
and must be a non-
negative integer

480 Horizontal stride of the
raw image buffer (in
pixels). This value can
be configured at

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,633 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

runtime via
R_JPEG_ImageSizeSet.

Input byte order MCU Specific Options Select the byte order of
the input data for
encoding.

Output byte order MCU Specific Options Select the byte order of
the output data for
encoding.

Reset interval Value cannot be
greater than 65535
and must be a non-
negative integer

512 Set the number of
MCUs between RST
markers. A value of 0
will disable DRI and
RST marker output.

Quality factor Value must be between
1 and 100 and must be
an integer

50 Set the quality factor
for encoding (1-100).
Lower values produce
smaller images at the
cost of image quality.

Callback Name must be a valid
C symbol

NULL If a callback function is
provided it will be
called from the
interrupt service
routine (ISR) each time
a related IRQ triggers.

Interrupts

Decode Process
Interrupt Priority

MCU Specific Options Select the
decompression
interrupt priority.

Data Transfer Interrupt
Priority

MCU Specific Options Select the data transfer
interrupt priority.

Clock Configuration

The peripheral clock for this module is PCLKA. No clocks are provided by this module.

Pin Configuration

This module does not have any input or output pin connections.

Usage Notes
Overview

The JPEG Codec contains both decode and encode hardware. While these two functions are largely
independent in configuration only one can be used at a time.

To switch from decode to encode mode (or vice versa) use R_JPEG_ModeSet while the JPEG Codec is
idle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,634 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

Status

The status value (jpeg_status_t) provided by the callback and by R_JPEG_StatusGet is a bitfield that
encompasses all potential status indication conditions. One or more statuses can be set
simultaneously.

Decoding Process

JPEG decoding can be performed in several ways depending on the application:

To perform the simplest decode operation where all dimensions are known:
Set the input buffer, stride and output buffer then wait for a callback with status
JPEG_STATUS_OPERATION_COMPLETE.

To pause after decoding the JPEG header (in order to acquire image dimensions and secure
an output buffer):

Call R_JPEG_InputBufferSet before setting the output buffer and wait for a callback
with status JPEG_STATUS_IMAGE_SIZE_READY.

To decode a partial JPEG image then pause until the next chunk is available:
Specify a size smaller than the full JPEG data when calling R_JPEG_InputBufferSet.

To pause decoding once an output buffer is filled:
Specify a size smaller than the full decoded image when calling
R_JPEG_OutputBufferSet.

The flowchart below illustrates the steps necessary to handle any decode operation. The statuses
given in blue are part of jpeg_status_t with the JPEG_DECODE_STATUS prefix omitted.

Figure 224: JPEG Decode Operational Flow

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,635 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

Encoding Process

As compared to decoding, encoding is fairly straightforward. The only option available is to stream
input data if desired. The flowchart below details the steps needed to compress an image.

Figure 225: JPEG Encode Operational Flow

Handling Failed Operations

If an encode or decode operation fails or times out while the codec is running, the peripheral must be
reset before it is used again. To reset the JPEG Codec simply close and re-open the module by calling
R_JPEG_Close followed by R_JPEG_Open.

Limitations

Developers should be aware of the following limitations when using the JPEG API.

Minimum Coded Unit (MCU)

The JPEG Codec can only correctly process images that are an even increment of minimum coded
units (MCUs). In other words, depending on the format the width and height of an image to be
encoded or decoded must be divisible by the following:

Format Horizontal Vertical

Y'CbCr 4:4:4 8 pixels 8 lines

Y'CbCr 4:2:2 16 pixels 8 lines

Y'CbCr 4:1:1 32 pixels 8 lines

Y'CbCr 4:2:0 16 pixels 16 lines

Note
Because encoding is limited to Y'CbCr 4:2:2, raw pixel input data must always be in whole increments of 16x8
pixels.

Encoding Input Format

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,636 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

The encoding unit only supports Y'CbCr 4:2:2 input. Raw RGB888 data can be converted to this
format as follows:

 y = (0.299000f * r) + (0.587000f * g) + (0.114000f * b);

 cb = 128 - (0.168736f * r) - (0.331264f * g) + (0.500000f * b);

 cr = 128 + (0.500000f * r) - (0.418688f * g) - (0.081312f * b);

 While these equations are mathematically simple they do use the floating-point unit. To speed
things up we can multiply the coefficients by 256 and divide the sum by 256...

 y = ((76.5440f * r) + (150.272f * g) + (29.1840f * b)) / 256;

 cb = 128 - ((43.1964f * r) - (84.8036f * g) + (128.000f * b)) / 256;

 cr = 128 + ((128.000f * r) - (107.184f * g) - (20.8159f * b)) / 256;

 ...which allows the formulas to be calculated entirely with shifts and addition (coefficients rounded
to the nearest integer):

 y = ((r << 6) + (r << 3) + (r << 2) + r

 + (g << 7) + (g << 4) + (g << 2) + (g << 1)

 + (b << 4) + (b << 3) + (b << 2) + b

) >> 8;

 cb = 128 - ((r << 5) + (r << 3) + (r << 1) + r

 + (g << 6) + (g << 4) + (g << 2) + g

 - (b << 7)

) >> 8;

 cr = 128 + ((r << 7)

 - (g << 6) - (g << 5) - (g << 3) - (g << 1) - g

 - (b << 4) - (b << 2) - b)

) >> 8;

 To compose the final Y'CbCr 4:2:2 data the chroma of every two pixels must be averaged. In
addition, the JPEG Codec expects chrominance values to be in the range -127..127
instead of the standard 1..255.

 cb = (uint8_t) ((int8_t) ((cb0 + cb1 + 1) >> 1) - 128);

 cr = (uint8_t) ((int8_t) ((cr0 + cr1 + 1) >> 1) - 128);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,637 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 Finally, the below equation composes two 4:2:2 output pixels at a time with standard byte order
(JPEG_DATA_ORDER_NORMAL):

 out = y0 + (cb << 8) + (y1 << 16) + (cr << 24);

Note
RGB565 pixels must be upscaled to RGB888 before using the above formulas. Refer to the below example on
Y'CbCr Conversion for implementation details.

Examples
Basic Decode Example

This is a basic example showing the minimum code required to initialize the JPEG Codec and decode
an image.

void jpeg_decode_basic (void)

{

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, JPEG_PTR, JPEG_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Set horizontal stride of output buffer */

 err = R_JPEG_DecodeHorizontalStrideSet(&g_jpeg_ctrl, JPEG_HSIZE);

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, decode_buffer, sizeof(decode_buffer));

 assert(FSP_SUCCESS == err);

 /* Wait for decode completion */

 jpeg_status_t status = (jpeg_status_t) 0;

 while (!(status & (JPEG_STATUS_OPERATION_COMPLETE | JPEG_STATUS_ERROR)))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,638 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 err = R_JPEG_StatusGet(&g_jpeg_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

}

Streaming Input/Output Example

In this example JPEG data is read in 512-byte chunks. Decoding is paused when a chunk is read and
once the JPEG header is decoded. The image is decoded 16 lines at a time.

Note
Streaming is always bypassed when a given buffer's size encompasses the entire input or output image,
respectively. Though this example decodes via smaller chunks the input and output data are still contiguous for
ease of demonstration. Refer to the comments for further insight as to how to implement streaming with different
JPEG/output buffer size combinations.

#define JPEG_INPUT_SIZE_BYTES 512U

/* JPEG Codec status */

static volatile jpeg_status_t g_jpeg_status = JPEG_STATUS_NONE;

/* JPEG event flag */

static volatile uint8_t jpeg_event = 0;

/* Callback function for JPEG decode interrupts */

void jpeg_decode_callback (jpeg_callback_args_t * p_args)

{

 /* Get JPEG Codec status */

 g_jpeg_status = p_args->status;

 /* Set JPEG flag */

 jpeg_event = 1;

}

/* Simple wait that returns 1 if no event happened within the timeout period */

static uint8_t jpeg_event_wait (void)

{

 uint32_t timeout_timer = JPEG_EVENT_TIMEOUT;

 while (!jpeg_event && --timeout_timer)

 {

 /* Spin here until an event callback or timeout */

 }

 jpeg_event = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,639 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 return timeout_timer ? 0 : 1;

}

/* Decode a JPEG image to a buffer using streaming input and output */

void jpeg_decode_streaming (void)

{

 uint8_t * p_jpeg = (uint8_t *) JPEG_PTR;

 jpeg_status_t status = (jpeg_status_t) 0;

 uint8_t timeout = 0;

 fsp_err_t err;

 /* Number of input bytes to read at a time */

 uint32_t input_bytes = JPEG_INPUT_SIZE_BYTES;

 /* Open JPEG unit and start decode */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(status & JPEG_STATUS_ERROR) && !timeout)

 {

 /* Set the input buffer to read `input_bytes` bytes at a time */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_jpeg, input_bytes);

 assert(FSP_SUCCESS == err);

 /* This delay is required for streaming input mode to function correctly.

 * (Without this delay the JPEG Codec will not correctly locate markers in the file

header.) */

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MICROSECONDS);

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 /* Get the status from the callback */

 status = g_jpeg_status;

 /* Break if the header has finished decoding */

 if (status & JPEG_STATUS_IMAGE_SIZE_READY)

 {

 break;

 }

 /* Move pointer to next block of input data (if needed) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,640 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 p_jpeg = (uint8_t *) ((uint32_t) p_jpeg + input_bytes);

 }

 /* Get image size */

 uint16_t horizontal;

 uint16_t vertical;

 err = R_JPEG_DecodeImageSizeGet(&g_jpeg_ctrl, &horizontal, &vertical);

 assert(FSP_SUCCESS == err);

 /* Prepare output data buffer here if needed (already allocated in this example) */

 uint8_t * p_output = decode_buffer;

 /* Set horizontal stride */

 err = R_JPEG_DecodeHorizontalStrideSet(&g_jpeg_ctrl, horizontal);

 assert(FSP_SUCCESS == err);

 /* Calculate the number of bytes that will fit in the buffer (16 lines in this

example) */

 uint32_t output_size = horizontal * 16U * 4U;

 /* Start decoding by setting the output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, p_output, output_size);

 assert(FSP_SUCCESS == err);

 while (!(status & JPEG_STATUS_ERROR) && !timeout)

 {

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 /* Get the status from the callback */

 status = g_jpeg_status;

 /* Break if decoding is complete */

 if (status & JPEG_STATUS_OPERATION_COMPLETE)

 {

 break;

 }

 if (status & JPEG_STATUS_OUTPUT_PAUSE)

 {

 /* Draw the JPEG work buffer to the framebuffer here (if needed) */

 /* Move pointer to next block of output data (if needed) */

 p_output += output_size;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,641 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 /* Set the output buffer to the next 16-line block */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, p_output, output_size);

 assert(FSP_SUCCESS == err);

 }

 if (status & JPEG_STATUS_INPUT_PAUSE)

 {

 /* Get next block of input data */

 p_jpeg = (uint8_t *) ((uint32_t) p_jpeg + input_bytes);

 /* Set the new input buffer pointer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_jpeg, input_bytes);

 assert(FSP_SUCCESS == err);

 }

 }

 /* Close driver to allow encode operations if needed */

 err = R_JPEG_Close(&g_jpeg_ctrl);

 assert(FSP_SUCCESS == err);

}

Encode Example

This is a basic example showing the minimum code required to initialize the JPEG Codec and encode
an image.

Note
This example assumes image dimensions are provided in the configuration. If this is not the case,
R_JPEG_EncodeImageSizeSet must be used to set the size before calling R_JPEG_InputBufferSet.

void jpeg_encode_basic (void)

{

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, jpeg_buffer, sizeof(jpeg_buffer));

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,642 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 /* Set input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, RAW_YCBCR_IMAGE_PTR, IMAGE_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Wait for decode completion */

 jpeg_status_t status = (jpeg_status_t) 0;

 while (!(status & JPEG_STATUS_OPERATION_COMPLETE))

 {

 err = R_JPEG_StatusGet(&g_jpeg_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

}

Streaming Encode Example

In this example the raw input data is provided in smaller chunks. This can help significantly reduce
buffer size and improve throughput when streaming in raw data from an outside source.

/* Callback function for JPEG encode interrupts */

void jpeg_encode_callback (jpeg_callback_args_t * p_args)

{

 /* Get JPEG Codec status */

 g_jpeg_status = p_args->status;

 /* Set JPEG flag */

 jpeg_event = 1;

}

void jpeg_encode_streaming (void)

{

 uint8_t timeout = 0;

 uint8_t * p_chunk = (uint8_t *) RAW_YCBCR_IMAGE_PTR;

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,643 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, jpeg_buffer, sizeof(jpeg_buffer));

 assert(FSP_SUCCESS == err);

 /* Set the image size */

 jpeg_encode_image_size_t image_size;

 image_size.horizontal_resolution = X_RESOLUTION;

 image_size.vertical_resolution = Y_RESOLUTION;

 image_size.horizontal_stride_pixels = H_STRIDE;

 err = R_JPEG_EncodeImageSizeSet(&g_jpeg_ctrl, &image_size);

 assert(FSP_SUCCESS == err);

 /* Calculate the size of the input data chunk (16 lines in this example) */

 uint32_t chunk_size = H_STRIDE * 16U * YCBCR_BYTES_PER_PIXEL;

 while (!timeout)

 {

 /* Set the input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_chunk, chunk_size);

 assert(FSP_SUCCESS == err);

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 if (g_jpeg_status & JPEG_STATUS_OPERATION_COMPLETE)

 {

 /* Encode complete */

 break;

 }

 if (g_jpeg_status & JPEG_STATUS_INPUT_PAUSE)

 {

 /* Load next block of input data here (if needed) */

 p_chunk += chunk_size;

 }

 }

}

Y'CbCr Conversion

The below function is provided as a reference for how to convert RGB values to Y'CbCr for use with
the JPEG Codec.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,644 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

Note
This function is only partially optimized for clarity. Further appllication-specific size- or speed-based optimizations
should be considered when implementing in an actual project.

#define RGB565_G_MASK 0x07E0

#define RGB565_B_MASK 0x001F

#define C_0 128

typedef enum e_pixel_format

{

 PIXEL_FORMAT_ARGB8888,

 PIXEL_FORMAT_RGB565

} pixel_format_t;

/* 5-bit to 8-bit LUT */

const uint8_t lut_32[] =

{

 0, 8, 16, 25, 33, 41, 49, 58,

 66, 74, 82, 90, 99, 107, 115, 123,

 132, 140, 148, 156, 165, 173, 181, 189,

 197, 206, 214, 222, 230, 239, 247, 255

};

/* 6-bit to 8-bit LUT */

const uint8_t lut_64[] =

{

 0, 4, 8, 12, 16, 20, 24, 28,

 32, 36, 40, 45, 49, 53, 57, 61,

 65, 69, 73, 77, 81, 85, 89, 93,

 97, 101, 105, 109, 113, 117, 121, 125,

 130, 134, 138, 142, 146, 150, 154, 158,

 162, 166, 170, 174, 178, 182, 186, 190,

 194, 198, 202, 206, 210, 215, 219, 223,

 227, 231, 235, 239, 243, 247, 251, 255

};

void bitmap_rgb2ycbcr(uint32_t * out, uint8_t * in, uint32_t len, pixel_format_t

format);

/**

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,645 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 * Convert an RGB buffer to Y'CbCr 4:2:2.

 *

 * NOTE: The width (in pixels) of the image to be converted must be divisible by 2.

 *

 * Parameters:

 * out Pointer to output buffer

 * in Pointer to input buffer

 * len Length of input buffer (in pixels)

 * format Input buffer format (ARGB8888 or RGB565)

 **

**********************************/

void bitmap_rgb2ycbcr (uint32_t * out, uint8_t * in, uint32_t len, pixel_format_t

format)

{

 uint16_t in0;

 uint16_t in1;

 uint32_t r0;

 uint32_t g0;

 uint32_t b0;

 uint32_t r1;

 uint32_t g1;

 uint32_t b1;

 uint8_t y0;

 uint8_t y1;

 uint8_t cb0;

 uint8_t cr0;

 uint8_t cb1;

 uint8_t cr1;

 /* Divide length by 2 as we're working with two pixels at a time */

 len >>= 1;

 /* Perform the conversion */

 while (len)

 {

 /* Get R, G and B channel values */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,646 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 if (format == PIXEL_FORMAT_RGB565)

 {

 /* Get next two 16-bit values */

 in0 = *((uint16_t *) in);

 in += 2;

 in1 = *((uint16_t *) in);

 in += 2;

 /* Decompose into individual channels */

 r0 = in0 >> 11;

 g0 = (in0 & RGB565_G_MASK) >> 5;

 b0 = in0 & RGB565_B_MASK;

 r1 = in1 >> 11;

 g1 = (in1 & RGB565_G_MASK) >> 5;

 b1 = in1 & RGB565_B_MASK;

 }

 else

 {

 /* Get each ARGB8888 channel in sequence, skipping alpha */

 b0 = *in++;

 g0 = *in++;

 r0 = *in++;

 in++;

 b1 = *in++;

 g1 = *in++;

 r1 = *in++;

 in++;

 }

 /* Convert RGB565 data to RGB888 */

 if (PIXEL_FORMAT_RGB565 == format)

 {

 r0 = lut_32[r0];

 g0 = lut_64[g0];

 b0 = lut_32[b0];

 r1 = lut_32[r1];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,647 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

 g1 = lut_64[g1];

 b1 = lut_32[b1];

 }

 /* Calculate Y'CbCr 4:4:4 values for the two pixels */

 /* Algorithm based on method shown here: https://sistenix.com/rgb2ycbcr.html */

 /* Original coefficients from https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion */

 y0 = (uint8_t) (((r0 << 6) + (r0 << 3) + (r0 << 2) + r0 +

 (g0 << 7) + (g0 << 4) + (g0 << 2) + (g0 << 1) +

 (b0 << 4) + (b0 << 3) + (b0 << 2) + b0

) >> 8);

 cb0 = (uint8_t) (C_0 - (((r0 << 5) + (r0 << 3) + (r0 << 1) + r0 +

 (g0 << 6) + (g0 << 4) + (g0 << 2) + g0 -

 (b0 << 7)

) >> 8));

 cr0 = (uint8_t) (C_0 + (((r0 << 7) -

 (g0 << 6) - (g0 << 5) - (g0 << 3) - (g0 << 1) - g0 -

 (b0 << 4) - (b0 << 2) - b0

) >> 8));

 y1 = (uint8_t) (((r1 << 6) + (r1 << 3) + (r1 << 2) + r1 +

 (g1 << 7) + (g1 << 4) + (g1 << 2) + (g1 << 1) +

 (b1 << 4) + (b1 << 3) + (b1 << 2) + b1

) >> 8);

 cb1 = (uint8_t) (C_0 - (((r1 << 5) + (r1 << 3) + (r1 << 1) + r1 +

 (g1 << 6) + (g1 << 4) + (g1 << 2) + g1 -

 (b1 << 7)

) >> 8));

 cr1 = (uint8_t) (C_0 + (((r1 << 7) -

 (g1 << 6) - (g1 << 5) - (g1 << 3) - (g1 << 1) - g1 -

 (b1 << 4) - (b1 << 2) - b1

) >> 8));

 /* The above code is based on the floating point method shown here: */

 // y0 = (uint8_t) ((0.299F * (float) r0) + (0.587F * (float) g0) + (0.114F * (float)

b0));

 // y1 = (uint8_t) ((0.299F * (float) r1) + (0.587F * (float) g1) + (0.114F * (float)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,648 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

b1));

 // cb0 = (uint8_t) (128.0F - (0.168736F * (float) r0) - (0.331264F * (float) g0) +

(0.5F * (float) b0));

 // cb1 = (uint8_t) (128.0F - (0.168736F * (float) r1) - (0.331264F * (float) g1) +

(0.5F * (float) b1));

 // cr0 = (uint8_t) (128.0F + (0.5F * (float) r0) - (0.418688F * (float) g0) -

(0.081312F * (float) b0));

 // cr1 = (uint8_t) (128.0F + (0.5F * (float) r1) - (0.418688F * (float) g1) -

(0.081312F * (float) b1));

 /* NOTE: The JPEG Codec expects signed instead of unsigned chrominance values. */

 /* Convert chrominance to -127..127 instead of 1..255 */

 cb0 = (uint8_t) ((int8_t) ((cb0 + cb1 + 1) >> 1) - C_0);

 cr0 = (uint8_t) ((int8_t) ((cr0 + cr1 + 1) >> 1) - C_0);

 /* Convert the two 4:4:4 values into 4:2:2 by averaging the chroma, then write to

output */

 *out++ = (uint32_t) (y0 + (cb0 << 8) + (y1 << 16) + (cr0 << 24));

 len--;

 }

}

Data Structures

struct jpeg_instance_ctrl_t

Data Structure Documentation

◆ jpeg_instance_ctrl_t

struct jpeg_instance_ctrl_t

JPEG Codec module control block. DO NOT INITIALIZE. Initialization occurs when jpep_api_t::open is
called.

Data Fields

uint32_t open JPEG Codec driver status.

jpeg_status_t status JPEG Codec operational status.

fsp_err_t error_code JPEG Codec error code (if any).

jpeg_mode_t mode Current mode (decode or
encode).

uint32_t horizontal_stride_bytes Horizontal Stride settings.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,649 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

uint32_t output_buffer_size Output buffer size.

jpeg_cfg_t const * p_cfg JPEG Decode configuration
struct.

void const * p_extend JPEG Codec hardware
dependent configuration */.

jpeg_decode_pixel_format_t pixel_format Pixel format.

uint16_t total_lines_decoded Track the number of lines
decoded so far.

jpeg_decode_subsample_t horizontal_subsample Horizontal sub-sample setting.

uint16_t lines_to_encode Number of lines to encode.

uint16_t vertical_resolution vertical size

uint16_t total_lines_encoded Number of lines encoded.

Function Documentation

◆ R_JPEG_Open()

fsp_err_t R_JPEG_Open (jpeg_ctrl_t *const p_api_ctrl, jpeg_cfg_t const *const p_cfg)

Initialize the JPEG Codec module.

Note
This function configures the JPEG Codec for operation and sets up the registers for data format and pixel format
based on user-supplied configuration parameters. Interrupts are enabled to support callbacks.

Return values
FSP_SUCCESS JPEG Codec module is properly configured

and is ready to take input data.

FSP_ERR_ALREADY_OPEN JPEG Codec is already open.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_IRQ_BSP_DISABLED JEDI interrupt does not have an IRQ number.

FSP_ERR_INVALID_ARGUMENT (Encode only) Quality factor, horizontal
resolution and/or vertical resolution are
invalid.

FSP_ERR_INVALID_ALIGNMENT (Encode only) The horizontal resolution (at
16bpp) is not divisible by 8 bytes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,650 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_OutputBufferSet()

fsp_err_t R_JPEG_OutputBufferSet (jpeg_ctrl_t * p_api_ctrl, void * p_output_buffer, uint32_t
output_buffer_size)

Assign a buffer to the JPEG Codec for storing output data.

Note
In Decode mode, the number of image lines to be decoded depends on the size of the buffer and the horizontal
stride settings. Once the output buffer size is known, the horizontal stride value is known, and the input pixel format
is known (the input pixel format is obtained by the JPEG decoder from the JPEG headers), the driver automatically
computes the number of lines that can be decoded into the output buffer. After these lines are decoded, the JPEG
engine pauses and a callback function is triggered, so the application is able to provide the next buffer for the
JPEG module to resume the operation.

The JPEG decoding operation automatically starts after both the input buffer and the output buffer
are set and the output buffer is big enough to hold at least eight lines of decoded image data.

Return values
FSP_SUCCESS The output buffer is properly assigned to

JPEG codec device.

FSP_ERR_ASSERTION Pointer to the control block or output_buffer
is NULL or output_buffer_size is 0.

FSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE The number of horizontal pixels exceeds
horizontal memory stride.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH Invalid buffer size.

FSP_ERR_IN_USE The output buffer cannot be changed during
codec operation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,651 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_InputBufferSet()

fsp_err_t R_JPEG_InputBufferSet (jpeg_ctrl_t *const p_api_ctrl, void * p_data_buffer, uint32_t
data_buffer_size)

Assign an input data buffer to the JPEG codec for processing.

Note
After the amount of data is processed, the JPEG driver triggers a callback function with the flag
JPEG_PRV_OPERATION_INPUT_PAUSE set. The application supplies the next chunk of data to the driver so
processing can resume.
The JPEG decoding operation automatically starts after both the input buffer and the output buffer are set, and the
output buffer is big enough to hold at least one line of decoded image data.

If zero is provided for the decode data buffer size the JPEG Codec will never pause for more input
data and will continue to read until either an image has been fully decoded or an error condition
occurs.

Note
When encoding images the minimum data buffer size is 8 lines by 16 Y'CbCr 4:2:2 pixels (256 bytes). This
corresponds to one minimum coded unit (MCU) of the resulting JPEG output.

Return values
FSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

FSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the input_buffer is NULL, or the
input_buffer_size is 0.

FSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_IN_USE The input buffer cannot be changed while
the codec is running.

FSP_ERR_INVALID_CALL In encode mode the output buffer must be
set first.

FSP_ERR_JPEG_IMAGE_SIZE_ERROR The buffer size is smaller than the minimum
coded unit (MCU).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,652 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_DecodeLinesDecodedGet()

fsp_err_t R_JPEG_DecodeLinesDecodedGet (jpeg_ctrl_t * p_api_ctrl, uint32_t * p_lines)

Returns the number of lines decoded into the output buffer.

Note
Use this function to retrieve the number of image lines written to the output buffer after a partial decode operation.
Combined with the horizontal stride settings and the output pixel format the application can compute the amount of
data to read from the output buffer.

Return values
FSP_SUCCESS Line count successfully returned.

FSP_ERR_ASSERTION Pointer to the control block or p_lines is
NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

◆ R_JPEG_DecodeImageSubsampleSet()

fsp_err_t R_JPEG_DecodeImageSubsampleSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure horizontal and vertical subsampling.

Note
This function can be used to scale the output of decoded image data.

Return values
FSP_SUCCESS Horizontal subsample value is properly

configured.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,653 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_DecodeHorizontalStrideSet()

fsp_err_t R_JPEG_DecodeHorizontalStrideSet (jpeg_ctrl_t * p_api_ctrl, uint32_t horizontal_stride)

Configure horizontal stride setting for decode operations.

Note
If the image size is known prior to the open call and/or the output buffer stride is constant, pass the horizontal
stride value in the jpeg_cfg_t structure. Otherwise, after the image size becomes available use this function to set
the output buffer horizontal stride value.

Return values
FSP_SUCCESS Horizontal stride value is properly

configured.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_INVALID_ALIGNMENT Horizontal stride is zero or is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

◆ R_JPEG_DecodeImageSizeGet()

fsp_err_t R_JPEG_DecodeImageSizeGet (jpeg_ctrl_t * p_api_ctrl, uint16_t * p_horizontal_size,
uint16_t * p_vertical_size)

Obtain the size of an image being decoded.

Return values
FSP_SUCCESS The image size is available and the

horizontal and vertical values are stored in
the memory pointed to by p_horizontal_size
and p_vertical_size.

FSP_ERR_ASSERTION Pointer to the control block is NULL and/or
size is not ready.

FSP_ERR_NOT_OPEN JPEG is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,654 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_DecodePixelFormatGet()

fsp_err_t R_JPEG_DecodePixelFormatGet (jpeg_ctrl_t * p_api_ctrl, jpeg_color_space_t *
p_color_space)

Get the color format of the JPEG being decoded.

Return values
FSP_SUCCESS The color format was successfully retrieved.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG is not opened.

◆ R_JPEG_EncodeImageSizeSet()

fsp_err_t R_JPEG_EncodeImageSizeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_encode_image_size_t *
p_image_size)

Set the image dimensions for an encode operation.

Note
Image dimensions must be set before setting the input buffer.

Return values
FSP_SUCCESS Image size was successfully written to the

JPEG Codec.

FSP_ERR_ASSERTION Pointer to the control block or p_image_size
is NULL.

FSP_ERR_INVALID_ALIGNMENT Horizontal stride is not 8-byte aligned.

FSP_ERR_INVALID_ARGUMENT Horizontal or vertical resolution is invalid or
zero.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_IN_USE Image parameters cannot be changed while
the codec is running.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,655 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_ModeSet()

fsp_err_t R_JPEG_ModeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_mode_t mode)

Switch between encode and decode mode (or vice-versa).

Note
The codec must not be idle in order to switch modes.

Return values
FSP_SUCCESS Mode changed successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE JPEG Codec is currently in use.

FSP_ERR_INVALID_ARGUMENT (Encode only) Quality factor, horizontal
resolution and/or vertical resolution are
invalid.

FSP_ERR_INVALID_ALIGNMENT (Encode only) The horizontal resolution (at
16bpp) is not divisible by 8 bytes.

◆ R_JPEG_Close()

fsp_err_t R_JPEG_Close (jpeg_ctrl_t * p_api_ctrl)

Cancel an outstanding JPEG codec operation and close the device.

Return values
FSP_SUCCESS The JPEG unit is stopped and the driver is

closed.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,656 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > JPEG Codec (r_jpeg)

◆ R_JPEG_StatusGet()

fsp_err_t R_JPEG_StatusGet (jpeg_ctrl_t * p_api_ctrl, jpeg_status_t * p_status)

Get the status of the JPEG codec. This function can also be used to poll the device.

Return values
FSP_SUCCESS The status information is successfully

retrieved.

FSP_ERR_ASSERTION Pointer to the control block or p_status is
NULL.

FSP_ERR_NOT_OPEN JPEG is not opened.

5.2.8.6 MIPI Display Serial Interface (r_mipi_dsi)
Modules » Graphics

Functions

fsp_err_t R_MIPI_DSI_Open (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_cfg_t
const *const p_cfg)

fsp_err_t R_MIPI_DSI_Close (mipi_dsi_ctrl_t *const p_api_ctrl)

fsp_err_t R_MIPI_DSI_Start (mipi_dsi_ctrl_t *const p_api_ctrl)

fsp_err_t R_MIPI_DSI_Stop (mipi_dsi_ctrl_t *const p_api_ctrl)

fsp_err_t R_MIPI_DSI_UlpsEnter (mipi_dsi_ctrl_t *const p_api_ctrl,
mipi_dsi_lane_t lane)

fsp_err_t R_MIPI_DSI_UlpsExit (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_lane_t
lane)

fsp_err_t R_MIPI_DSI_Command (mipi_dsi_ctrl_t *const p_api_ctrl,
mipi_dsi_cmd_t *p_cmd)

fsp_err_t R_MIPI_DSI_StatusGet (mipi_dsi_ctrl_t *const p_api_ctrl,
mipi_dsi_status_t *p_status)

Detailed Description

Driver for the MIPI DSI peripheral on RA MCUs. This module implements the Display Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,657 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Overview
The MIPI DSI peripheral consists of the Display Serial Interface (DSI-2) Host, physical layer (D-PHY),
and supporting sub-systems. Together, these form a high-speed graphics serial bus that formats
data from the GLCDC layer and sends it to an external display. The DSI-2 and D-Phy peripherals
support MIPI Alliance for Display Serial Interface 2 Version 1.1 (with Errata 01) and MIPI Alliance
Specification for D-PHY Version 2.1 (with Errata 01).

Features

The following features are available:

Feature Options

Pixel formats RGB888, RGB666, RGB565

Number of lanes Up to 2

Maximum resolution See GLCDC specifications

Maximum bandwidth Up to 750 Mbps per high-speed lane

Features:

Supports up to 2 Lanes.
Bidirectional LP mode transfer/receipt (LP-TX / LP-RX).
Unidirectional High-Speed mode transfer (HS-TX).
Data rates of up to 720 Mbps per lane.
Ultra-Low-Power State (ULPS).
Video input from GLCDC (RGB888, RGB666, RGB565).
ECC/Checksum generation and verification for packets.
Generation of scrambled packets.
Automatic transition from HP to LP during blanking/porch periods.

Configuration
Build Time Configurations for r_mipi_dsi

The following build time configurations are defined in fsp_cfg/r_mipi_dsi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Graphics > MIPI Physical Layer (r_mipi_phy)

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_mipi_phy0 Module name.

Timing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,658 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Timing > THSPREP

ns Value must be a
number, greater than
or equal to zero.

40 (Nanosecond portion)
Duration of the data
lane LP-00 state,
immediately before
entry to the HS-0 state
(ns)

UI Value must be a
number, greater than
or equal to zero.

5 (UI portion) Duration of
the data lane LP-00
state, immediately
before entry to the
HS-0 state (UI)

Timing > THSZERO

ns Value must be a
number, greater than
or equal to zero.

140 (Nanosecond portion)
Specify the data lane
zero time before
sending data (ns).

UI Value must be a
number, greater than
or equal to zero.

10 (UI portion) Specify the
data lane zero time
before sending data
(UI).

Timing > THSTRAIL

ns Value must be a
number, greater than
or equal to zero.

60 (Nanosecond portion)
Specify the data lane
trail time before exiting
HS mode (ns).

UI Value must be a
number, greater than
or equal to zero.

4 (UI portion) Specify the
data lane trail time
before exiting HS mode
(UI).

Timing > TCLKPOST

ns Value must be a
number, greater than
or equal to zero.

60 (Nanosecond portion)
Specify the duration
after HS data lane trail
time elapses before
stopping the clock lane
(ns).

UI Value must be a
number, greater than
or equal to zero.

52 (UI portion) Specify the
duration after HS data
lane trail time elapses
before stopping the
clock lane (UI).

Timing > TCLKPRE

ns Value must be a
number, greater than
or equal to zero.

0 (Nanosecond portion)
Specify the time clock
is active before
transitioning data lane

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,659 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

into HS mode (ns).

UI Value must be a
number, greater than
or equal to zero.

8 (UI portion) Specify the
time clock is active
before transitioning
data lane into HS mode
(UI).

Timing > TCLKPREP

ns Value must be a
number, greater than
or equal to zero.

75 (Nanosecond portion)
Duration of the clock
lane LP-00 state,
immediately before
entry to the HS-0 state
(ns)

UI Value must be a
number, greater than
or equal to zero.

0 (UI portion) Duration of
the clock lane LP-00
state, immediately
before entry to the
HS-0 state (UI)

Timing > TLPX

ns Value must be a
number, greater than
or equal to zero.

60 (Nanosecond portion)
Specify the time for the
clock lane to exit low
power mode (ns).

UI Value must be a
number, greater than
or equal to zero.

0 (UI portion) Specify the
time for the clock lane
to exit low power mode
(UI).

Timing > TCLKTRL

ns Value must be a
number, greater than
or equal to zero.

60 (Nanosecond portion)
Specify the time after
clock lane stop before
exiting HS mode (ns).

UI Value must be a
number, greater than
or equal to zero.

0 (UI portion) Specify the
time after clock lane
stop before exiting HS
mode (UI).

Timing > TCLKZERO

ns Value must be a
number, greater than
or equal to zero.

230 (Nanosecond portion)
Specify the time clock
lane is zero before
starting in HS mode
(ns).

UI Value must be a
number, greater than
or equal to zero.

0 (UI portion) Specify the
time clock lane is zero
before starting in HS
mode (UI)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,660 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Timing > THSEXIT

ns Value must be a
number, greater than
or equal to zero.

100 (Nanosecond portion)
Specify the data lane
HS mode exit time (ns).

UI Value must be a
number, greater than
or equal to zero.

0 (UI portion) Specify the
data lane HS mode exit
time (UI)

LP Clock Divider Value must be an
integer.

5 Specify the MIPI PHY LP
clock division ratio
(Resulting frequency
must be from 2-17
MHz)

TINIT (ns) Value must be a
number, greater than
or equal to zero.

600000 Minimum duration of
the TINIT state (ns)

DSI PLL Frequency
(MHz)

Value must be between
160 MHz and 1440.0
MHz.

1000.00 Specify the MIPI PHY
PLL frequency in MHz.

Configurations for Graphics > MIPI Display (r_mipi_dsi)

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_mipi_dsi0 Module name.

Options

LCD External Clock Hz Value must be an
integer.

0 Specify the GLCDC
external clock
frequency in Hz (Set to
0 when GLCDC clock
source is set to
Internal).

Data Scramble Enable Disable
Enable

Disable Data Scramble Enable.
Do not enable unless
peripheral has data
scramble function.

EoTP Enable Disable
Enable

Enable Disable to support
devices that do not
support EoTP
transmission.

ECC Check Enable Disable
Enable

Enable ECC Check support
enable.

CRC Enable Virtual Channel
0
Virtual Channel
1
Virtual Channel

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,661 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

2
Virtual Channel
3

Maximum Return
Packet Size

Value must be an
integer.

1 Specify the maximum
return packet size to be
received in LP-RX
mode.

External Tearing Effect
Detection Sense Select

Rising Edge
Falling Edge

1 Specify the maximum
return packet size to be
received in LP-RX
mode.

HS-TX Timeout Count
(us)

Value must be an
integer.

0 Set LP-RX Timeout (LRX-
H_TO) value. (0 is
disabled)

LP-RX Host Processor
Timeout (us)

Value must be an
integer.

0 Set LP-RX Timeout (LRX-
H_TO) value. (0 is
disabled)

Turnaround
Acknowledge Timeout
(us)

Value must be an
integer.

0 Set Turnaround
Acknowledge Timeout
value. (0 is disabled)

Peripheral Response
Timeout (us)

Value must be an
integer.

0 Set Peripheral
Response Timeout BTA
value. (0 is disabled)

LP Write Response
Timeout (us)

Value must be an
integer.

0 Set Low Power Write
Acknowledge Timeout
value. (0 is disabled)

LP Read Response
Timeout (us)

Value must be an
integer.

0 Set Low Power Read
Acknowledge Timeout
value. (0 is disabled)

HS Write Response
Timeout (us)

Value must be an
integer.

0 Set High Speed Write
Acknowledge Timeout
value. (0 is disabled)

HS Read Response
Timeout (us)

Value must be an
integer.

0 Set High Speed Read
Acknowledge Timeout
value. (0 is disabled)

Low Power

Ultra Low Power State
Wakeup Period (us)

Value must be a
positive integer or
zero.

1000 Set ultra low power
state wakeup period
(us).

Clock Lane

Continuous Mode Disable
Enable

Enable Enable or disable
continuous clock mode.

Data Lane

Number of Data Lanes Value must be an
integer.

2 Specify the number of
data lanes. Note: not

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,662 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

all data lanes are
capable of HS
operation. See Usage
Notes for additional
information.

Video Mode

Video Mode > Pixel Packet

Sync Pulse HSE and VSE
are not
transmitted
HSE and VSE
are transmitted

HSE and VSE are not
transmitted

Select if HSE and VSE
are transmitted.
Disable for Burst Mode
sequence or Non-Burst
Mode with Sync Events.

Virtual Channel ID Value must be an
integer.

0 Select the video mode
virtual channel ID.

Delay Override (0 to
disable)

Value must be an
integer.

0 Override FSP calculated
delay value (not
recommended for most
users). Delay for DSI
Host between first data
reception from display
module until DSI output
begins. (Unit: 32xUI).
Set to 0 to use FSP
calculated value
(recommended).

Prevent LP Transition No LP during
the HSA period
No LP during
the HBP period
No LP during
the HFP period

Prevent LP transition
during specified
periods.

Interrupts

dsi_seq0 Interrupt
Priority

MCU Specific Options Select the Low-Power
Sequence command
operation interrupt
priority.

dsi_seq1 Interrupt
Priority

MCU Specific Options Select the High-Speed
Sequence command
operation interrupt
priority.

dsi_vin1 Interrupt
Priority

MCU Specific Options Select the Video Input
interrupt priority.

dsi_rcv Interrupt
Priority

MCU Specific Options Select the Receive
interrupt priority.

dsi_ferr Interrupt
Priority

MCU Specific Options Select the Fatal Error
interrupt priority.

dsi_ppi Interrupt MCU Specific Options Select the PHY-Protocol

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,663 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Priority Interface interrupt
priority.

Receive Interrupt
Enable

Refer to the RA
Configuration tool for
available options.

module.driver.mipi_dsi.
rxie.btarend,module.dri
ver.mipi_dsi.rxie.lrxhto,
module.driver.mipi_dsi.
rxie.tato,module.driver.
mipi_dsi.rxie.rxresp,mo
dule.driver.mipi_dsi.rxi
e.rxeotp_msk,module.d
river.mipi_dsi.rxie.rxte,
module.driver.mipi_dsi.
rxie.rxack,module.drive
r.mipi_dsi.rxie.extedet,
module.driver.mipi_dsi.
rxie.mlferr,module.driv
er.mipi_dsi.rxie.eccerr
m,module.driver.mipi_d
si.rxie.unexerr,module.
driver.mipi_dsi.rxie.wce
rr,module.driver.mipi_d
si.rxie.crcerr,module.dr
iver.mipi_dsi.rxie.iberr,
module.driver.mipi_dsi.
rxie.rxovferr,module.dri
ver.mipi_dsi.rxie.prtoer
r,module.driver.mipi_ds
i.rxie.noreserr,module.
driver.mipi_dsi.rxie.rsiz
eerr,module.driver.mipi
_dsi.rxie.eccerrs,modul
e.driver.mipi_dsi.rxie.rx
ake

Enable receive
interrupts.

Fatal Error Interrupt
Enable

HS TX Timeout
LP-RX Host
Processor
Timeout
Turnaround
Acknowledge
Timeout
Escape mode
Entry Error
LPDT Sync Error
Control Error
LP0 Contention
Error
LP1 Contention
Error

module.driver.mipi_dsi.
ferrie.htxto,module.driv
er.mipi_dsi.ferrie.lrxhto
,module.driver.mipi_dsi
.ferrie.tato,module.driv
er.mipi_dsi.ferrie.escen
t,module.driver.mipi_ds
i.ferrie.syncesc,module
.driver.mipi_dsi.ferrie.ct
rl,module.driver.mipi_d
si.ferrie.clp0,module.dri
ver.mipi_dsi.ferrie.clp1

Enable Fatal Error
interrupts.

Physical Lane Interrupt
Enable

Data Lane-0 Rx
to Tx Transition
Data Lane-0 Tx
to Rx Transition
Clock Lane

Enable Physical Lane
interrupts.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,664 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

ULPS Enter
Clock Lane
ULPS Exit
Clock Lane LP
to HS Transition
Clock Lane HS
to LP Transition
Data Lane ULPS
Enter
Data Lane ULPS
Exit

Video Mode Interrupt
Enable

Video Mode
Operation Start
Video Mode
Operation Stop
Video Mode
Operation
Ready
Timing Error
Video Buffer
Underflow Error
Video Buffer
Overflow Error

module.driver.mipi_dsi.
vmie.vbufudf,module.d
river.mipi_dsi.vmie.vbu
fovf

Enable Video Mode
interrupts.

Sequence Channel 0
Interrupt Enable

All Actions
Finish
All Descriptors
Finish
Tx Internal Bus
Error
Receive Fatal
Error
Receive Fail
Receive Packet
Data Fail
Receive
Correctable
Error Interrupt
Receive
Acknowledge
and Error
Report Packet

module.driver.mipi_dsi.
sqch0ie.aactfin,module
.driver.mipi_dsi.sqch0ie
.adesfin,module.driver.
mipi_dsi.sqch0ie.txiberr
,module.driver.mipi_dsi
.sqch0ie.rxferr,module.
driver.mipi_dsi.sqch0ie.
rxfail,module.driver.mi
pi_dsi.sqch0ie.rxpfail,m
odule.driver.mipi_dsi.sq
ch0ie.rxcorerr,module.
driver.mipi_dsi.sqch0ie.
rxake

Enable Sequence
Channel 0 interrupts.

Sequence Channel 1
Interrupt Enable

All Actions
Finish
All Descriptors
Finish
Packet Size
Error
Tx Internal Bus
Error
Receive Fatal
Error
Receive Fail
Receive Packet

module.driver.mipi_dsi.
sqch1ie.aactfin,module
.driver.mipi_dsi.sqch1ie
.adesfin,module.driver.
mipi_dsi.sqch1ie.sizeer
r,module.driver.mipi_ds
i.sqch1ie.txiberr,modul
e.driver.mipi_dsi.sqch1i
e.rxferr,module.driver.
mipi_dsi.sqch1ie.rxfail,
module.driver.mipi_dsi.
sqch1ie.rxpfail,module.

Enable Sequence
Channel 1 interrupts.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,665 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Data Fail
Receive
Correctable
Error Interrupt
Receive
Acknowledge
and Error
Report Packet

driver.mipi_dsi.sqch1ie.
rxcorerr,module.driver.
mipi_dsi.sqch1ie.rxake

Callback Name must be a valid
C symbol

mipi_dsi0_callback A user callback
function. If this callback
function is provided it
is called from the
interrupt service
routine (ISR) each time
any interrupt occurs.

Callback Context Name must be a valid
C symbol

NULL Pointer to the context
structure to be passed
through the callback
argument.

Clock Configuration

The MIPI DSI D-PHY has a dedicated regulator (D-PHY LDO) and PLL (D-PHY PLL), which are managed
by the driver. The D-PHY PLL frequency must be configured between 160 MHz and 1.44 GHz.

Note
The D-PHY High-Speed data transmission rate is determined by the following formula: Line rate [Mbps] =
fDPHYPLL [MHz] / 2

Pin Configuration

Communication to the external display occurs via one or more data lanes and one clock lane. Each of
these lanes has dedicated pins. Lane 0 is capable of low-power data transfer and bidirectional
communication with a display. Lane 1 is capable of low-power or high-speed data transfer to the
external display. Additionally, an optional tearing effect connection (DSI_TE) may be used with this
module.

Usage Notes
Display Data

The DSI-2 Host consumes data from the GLCDC module and prepares it for output via the D-PHY and
connections to the display.

MIPI DSI Operating Modes

MIPI DSI is capable of several operating modes: Non-Burst Mode with Sync Pulse, Non-Burst Mode
with Sync Event, and Burst Mode. Each operational mode is achieved by configuring the peripheral
with specific timimg and option settings.

Non-Burst Mode with Sync Pulse:

GLCDC Video Clock bandwidth == MIPI Phy PLL bandwidth

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,666 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

Sync Pulse is enabled (HSE and VSE are transmitted)

Non-Burst Mode with Sync Event:

GLCDC Video Clock bandwidth == MIPI Phy PLL bandwidth
Sync Pulse is disabled (HSE and VSE are not transmitted)

Burst Mode:

GLCDC Video Clock bandwidth < MIPI Phy PLL bandwidth
Sync Pulse is disabled (HSE and VSE are not transmitted)

For the purpose of this section:

GLCDC Video Clock bandwidth is defined as: (Panel Clock MHz) * (Bits per pixel)
MIPI Phy PLL bandwidth is defined as: (MIPI Phy PLL Clock MHz / 2) * (Number of MIPI data
lanes) * 8 - (Configuration Dependent Transmission Overhead)

Note
Consult the MIPI DSI Specification and the connected display's User Manual to calculate the desired bandwidth
utilization. Additionally, especially with strict timing requirements, it is recommended to empirically validate the
configuration and use the API to check for reported errors.

MIPI PHY Data Lanes

The DSI-2 Host supports two basic types of operations: Command Mode and Video Mode. While a
data lane is in Low-Power (LP) operation, Command Mode may be used for bi-directional
communication with a connected display using a pre-defined set of command descriptors.

Note
GLCDC Video Clock bandwidth must not exceed Data Bus bandwidth or MIPI Phy PLL bandwidth.

MIPI PHY Timing Configuration

The MIPI DSI D-PHY configuration controls timing aspects of Low Power (LP) and High Speed (HS)
communication. Configure these values to match specifications listed in the datasheet for the
display.

Figure 226: High-Speed data transmission in normal mode

Command Mode Operation

Two internal channels may be used for command mode operations, available for all physical lane

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,667 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

configurations. Channel-0 supports only LP mode (LP-TX, LP-RX), while Channel-1 supports LP mode
(LP-TX, LP-RX) and HS mode (HS-TX).

There are two basic packet formats, short and long. Each format may be transmitted in high-speed
or low-power modes. Packets may be followed by a Bus Turn-Around (BTA) request for reading
information from the display. Once configured and started, video packets are transmitted
automatically, until video output is stopped.

In addition to the full set of MIPI DSI commands, the application may trigger any of four special
commands by setting flags in the message structure. These special commands are Reset Signal,
Initial Skew Calibration, Periodic Skew Calibration, and No-Operation.

Note
For peripherals with more than one lane, physical Lane 0 is used for all peripheral-to-processor transmissions.
Other lanes are unidirectional, from the host processor to the peripheral.

Acknowledge and Error Reporting

The application is notified of Acknowledge and Error Reporting (AwER) via an optional receive
interrupt event. The most recent and accumulated AwER data may be retrieved by calling
R_MIPI_DSI_StatusGet(). The application may send a MIPI_DSI_CMD_FLAG_BTA_NO_WRITE message
with tx size of zero to request AwER from the peripheral.

Ultra-low Power State

Ultra-low Power State (ULPS) may be actived when HS and LP operations are not occurring. Clock
and Data lanes may be transitioned into ULPS independently from each other.

Limitations

Developers should be aware of the following limitations when using the MIPI DSI API:

MIPI DSI must be closed before transitioning MCU into low-power modes.
Data bus bandwidth limitations should be considered when setting GLCDC and MIPI DSI
clock speeds.
When the MIPI DSI is used, voltage of VCC and AVCC_MIPI pin must be same and 3V or
larger(VCC=AVCC_MIPI≧3V)

Interrupt Configuration

When enabled, Interrupts will invoke the configured callback function. Low-power and High-Speed
command status should be determined by checking Sequence 0 and Sequence 1 events,
respectively. See the DSI Error Handling section of the user manual for information about how to
handle error events.

MIPI DSI Setup with External Display

Especially for use with display middleware such as emWin or GUIX, the callback will be invoked with
post-open and pre-video-start events. Depending on your hardware, it may be necessary to use
these events to configure the display.

Examples
Basic Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,668 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

This is a basic example showing the minimum code required to initialize and start the MIPI DSI
module.

void mipi_dsi_minimal_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = R_MIPI_DSI_Open(&g_mipi_dsi0_ctrl, &g_mipi_dsi0_cfg);

 assert(FSP_SUCCESS == err);

 /* Application to perform display specific initialization. */

 uint8_t cmd_tx_buffer[] = {0x30, 0x01}; // NOLINT(readability-magic-

numbers)

 mipi_dsi_cmd_t cmd =

 {

 .channel = 0,

 .cmd_id = MIPI_DSI_CMD_ID_DCS_SHORT_WRITE_1_PARAM,

 .flags = (mipi_dsi_cmd_flag_t) (MIPI_DSI_CMD_FLAG_LOW_POWER |

MIPI_DSI_CMD_FLAG_BTA_READ),

 .tx_len = 1,

 .p_tx_buffer = cmd_tx_buffer,

 };

 err = R_MIPI_DSI_Command(&g_mipi_dsi0_ctrl, &cmd);

 assert(FSP_SUCCESS == err);

 /* Wait for tx/rx complete before sending additional messages */

 while (!message_tx_complete)

 {

 ;

 }

 while (!message_rx_complete)

 {

 ;

 }

 err = R_MIPI_DSI_Start(&g_mipi_dsi0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Trigger status message from peripheral by sending LP BTA

 * NOTE: This is requried for ack_err status data to be populated */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,669 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

 mipi_dsi_cmd_t read_cmd = {0};

 read_cmd.cmd_id = MIPI_DSI_CMD_ID_DCS_READ;

 read_cmd.flags |= MIPI_DSI_CMD_FLAG_BTA_NO_WRITE | MIPI_DSI_CMD_FLAG_LOW_POWER;

 message_rx_complete = false;

 err = R_MIPI_DSI_Command(&g_mipi_dsi0_ctrl, &read_cmd);

 assert(FSP_SUCCESS == err);

 while (!message_rx_complete)

 {

 ;

 }

 /* Read peripheral and local MIPI DSI status

 * Note: peripheral ack_err status is cleared each time it is read using StatusGet

*/

 mipi_dsi_status_t status;

 err = R_MIPI_DSI_StatusGet(&g_mipi_dsi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 err = R_MIPI_DSI_Stop(&g_mipi_dsi0_ctrl);

 assert(FSP_SUCCESS == err);

 err = R_MIPI_DSI_UlpsEnter(&g_mipi_dsi0_ctrl, (mipi_dsi_lane_t)

(MIPI_DSI_LANE_CLOCK | MIPI_DSI_LANE_DATA_ALL));

 assert(FSP_SUCCESS == err);

 err = R_MIPI_DSI_UlpsExit(&g_mipi_dsi0_ctrl, (mipi_dsi_lane_t)

(MIPI_DSI_LANE_CLOCK | MIPI_DSI_LANE_DATA_ALL));

 assert(FSP_SUCCESS == err);

 err = R_MIPI_DSI_Close(&g_mipi_dsi0_ctrl);

 assert(FSP_SUCCESS == err);

}

void mipi_dsi0_callback (mipi_dsi_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case MIPI_DSI_EVENT_POST_OPEN:

 {

 /* Application to configure peripheral using necessary interface and commands */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,670 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

 configure_dsi_peripheral();

 break;

 }

 case MIPI_DSI_EVENT_RECEIVE:

 {

 /* Application to perform receive processing */

 message_rx_complete = true;

 break;

 }

 case MIPI_DSI_EVENT_SEQUENCE_0:

 {

 message_tx_complete = (p_args->tx_status ==

MIPI_DSI_SEQUENCE_STATUS_DESCRIPTORS_FINISHED);

 break;

 }

 default:

 {

 break;

 }

 }

}

void configure_dsi_peripheral (void)

{

 /* Send necessary commands to configure LCD */

}

Data Structures

struct mipi_dsi_irq_cfg_t

struct mipi_dsi_extended_cfg_t

struct mipi_dsi_instance_ctrl_t

Data Structure Documentation

◆ mipi_dsi_irq_cfg_t

struct mipi_dsi_irq_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,671 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

MIPI DSI interrupt configuration

Data Fields

uint8_t ipl Interrupt priority.

IRQn_Type irq Interrupt vector number.

◆ mipi_dsi_extended_cfg_t

struct mipi_dsi_extended_cfg_t

Extended configuration structure for MIPI DSI.

Data Fields

mipi_dsi_irq_cfg_t dsi_seq0 Sequence 0 interrupt.

mipi_dsi_irq_cfg_t dsi_seq1 Sequence 1 interrupt.

mipi_dsi_irq_cfg_t dsi_ferr DSI Fatal Error interrupt.

mipi_dsi_irq_cfg_t dsi_ppi D-PHY PPI interrupt.

mipi_dsi_irq_cfg_t dsi_rcv Receive interrupt.

mipi_dsi_irq_cfg_t dsi_vin1 Video Input Operation interrupt.

uint32_t dsi_rxie Receive interrupt enable
configuration.

uint32_t dsi_ferrie Fatal error interrupt enable
configuration.

uint32_t dsi_plie Physical lane interrupt enable
configuration.

uint32_t dsi_vmie Video mode interrupt enable
configuration.

uint32_t dsi_sqch0ie Sequence Channel 0 interrupt
enable configuration.

uint32_t dsi_sqch1ie Sequence Channel 1 interrupt
enable configuration.

◆ mipi_dsi_instance_ctrl_t

struct mipi_dsi_instance_ctrl_t

MIPI DSI instance control block.

Data Fields

uint32_t open

 Interface is open.

bool data_ulps_active

 Data lane ULPS status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,672 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

bool clock_ulps_active

 Data lane ULPS status.

mipi_dsi_lane_t ulps_status

 Ultra-low Power State active status.

mipi_dsi_cfg_t const * p_cfg

 Pointer to configuration structure used to open the interface.

void(* p_callback)(mipi_dsi_callback_args_t *)

 Pointer to callback that is called when an adc_event_t occurs.

void const * p_context

 Pointer to context to be passed into callback function.

mipi_dsi_callback_args_t * p_callback_memory

 Pointer to non-secure memory that can be used to pass arguments
to a callback in non-secure memory.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,673 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

◆ R_MIPI_DSI_Open()

fsp_err_t R_MIPI_DSI_Open (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_cfg_t const *const p_cfg)

Initialize the MIPI DSI peripheral.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION One or both of the parameters was NULL.

FSP_ERR_ALREADY_OPEN The instance is already opened.

FSP_ERR_INVALID_STATE Display module must be opened before DSI.

◆ R_MIPI_DSI_Close()

fsp_err_t R_MIPI_DSI_Close (mipi_dsi_ctrl_t *const p_api_ctrl)

Close MIPI DSI and display data instances, disable interrupts, and power-off the module.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_IN_USE Operation in progress and must be stopped
before closing.

◆ R_MIPI_DSI_Start()

fsp_err_t R_MIPI_DSI_Start (mipi_dsi_ctrl_t *const p_api_ctrl)

Start video output. Initialize Video Output Registers Perform sequence steps 3 to 5 from section
58.3.6.1 in RA8D1 hardware manual R01UH0995EJ0060.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_IN_USE The physical interface is currently in use.

FSP_ERR_INVALID_STATE DSI is already in video mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,674 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

◆ R_MIPI_DSI_Stop()

fsp_err_t R_MIPI_DSI_Stop (mipi_dsi_ctrl_t *const p_api_ctrl)

Stop video output.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_IN_USE DSI cannot be closed while ULPS is active.

◆ R_MIPI_DSI_UlpsEnter()

fsp_err_t R_MIPI_DSI_UlpsEnter (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_lane_t lane)

Enter Ultra-low Power State (ULPS).

Return values
FSP_SUCCESS Information read successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_INVALID_MODE Invalid mode for transition.

◆ R_MIPI_DSI_UlpsExit()

fsp_err_t R_MIPI_DSI_UlpsExit (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_lane_t lane)

Exit Ultra-low Power State (ULPS).

Return values
FSP_SUCCESS Information read successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,675 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > MIPI Display Serial Interface (r_mipi_dsi)

◆ R_MIPI_DSI_Command()

fsp_err_t R_MIPI_DSI_Command (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_cmd_t * p_cmd)

Send a command to the peripheral device.

Note
p_data will be used as either write data or a read buffer depending on the data id.
p_data memory must not be updated until sequence operation is complete if byte_count is greater than 16.

Return values
FSP_SUCCESS Command(s) queued successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL. cmd_id specifies a long
packet but p_data is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

FSP_ERR_IN_USE The physical interface is currently in use or
video mode is in operation.

FSP_ERR_INVALID_POINTER Invalid pointer provided

FSP_ERR_INVALID_ARGUMENT Invalid message configuration

◆ R_MIPI_DSI_StatusGet()

fsp_err_t R_MIPI_DSI_StatusGet (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_status_t * p_status)

Provide information about current MIPI DSI status.

Note: Accumulated Acknowledge and Error (AwER) Status is cleared by calling this function. Latest
AwER status is only set upon reception from peripheral.

Return values
FSP_SUCCESS Information read successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance is not open.

5.2.8.7 Parallel Data Capture (r_pdc)
Modules » Graphics

Functions

fsp_err_t R_PDC_Open (capture_ctrl_t *const p_ctrl, capture_cfg_t const *const
p_cfg)

 Powers on PDC, handles required initialization described in the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,676 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

hardware manual. More...

fsp_err_t R_PDC_Close (capture_ctrl_t *const p_ctrl)

 Stops and closes the transfer interface, disables and powers off the
PDC, clears internal driver data and disables interrupts. More...

fsp_err_t R_PDC_CaptureStart (capture_ctrl_t *const p_ctrl, uint8_t *const
p_buffer)

 Starts a capture. Enables interrupts. More...

fsp_err_t R_PDC_StatusGet (capture_ctrl_t *const p_ctrl, capture_status_t
*p_status)

fsp_err_t R_PDC_CallbackSet (capture_ctrl_t *const p_ctrl,
void(*p_callback)(capture_callback_args_t *), void const *const
p_context, capture_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the PDC peripheral on RA MCUs. This module implements the CAPTURE Interface.

Overview
The PDC peripheral supports interfacing with external cameras by accepting timing and data signals
in order to capture incoming data. A callback is invoked every time a frame of data is accepted.

Features

Capture incoming data into a user defined buffer
Data bytes per pixel can be configured
Endianess of the incoming data can be specified
Supports configuring capture width and height
Supports configuring vertical and horizontal sync polarity
Horizontal and Vertical position for image/data capture can be specified
External clock to the camera module can be adjusted
Choice between DMA and DTC to transfer out the captured data
The specified user callback is invoked when a data frame is captured

Configuration
Build Time Configurations for r_pdc

The following build time configurations are defined in fsp_cfg/r_pdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP) Default (BSP) If selected code for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,677 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

Enabled
Disabled

parameter checking is
included in the build.

Configurations for Graphics > Parallel Data Capture (r_pdc)

This module can be added to the Stacks tab via New Stack > Graphics > Parallel Data Capture
(r_pdc).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_pdc0 Module name.

Input

Input > Signal polarity

HSYNC High
Low

High Specify the active
polarity of the HSYNC
signal.

VSYNC High
Low

High Specify the active
polarity of the VSYNC
signal.

Input > Capture Specifications

Number of pixels to
capture horizontally

Value must be an
integer greater than 0

640 Specify the number of
horizontal pixels to
capture.

Number of lines to
capture vertically

Value must be an
integer greater than 0

480 Specify the number of
vertical pixels to
capture.

Horizontal pixel to start
capture from

Value must be an
integer

0 Specify the horizontal
pixel to start capturing
image data from.
Allows an image
smaller than the native
resolution of a camera
to be captured.

Line to start capture
from

Value must be an
integer

0 Specify the vertical line
to start capturing
image data from.
Allows an image
smaller than the native
resolution of a camera
to be captured.

Bytes per pixel Value must be an
integer greater than 0

2 Specify the number of
bytes per pixel of the
captured image data.

Clock divider CLK/2
CLK/4

CLK/2 Specify the clock
divider for clock

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,678 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

CLK/6
CLK/8
CLK/10
CLK/12
CLK/14
CLK/16

frequency of the clock
input PCKO to the PDC
peripheral.

Endianess Little
Big

Little Specify the endianness
of the captured image
data.

Output

Output > Buffer

Number of image
buffers

Value must be an
integer greater than 0

1 Specify the number of
buffers to create.

Interrupts

Callback Name must be a valid
C symbol

g_pdc_user_callback A user callback
function must be
provided. This callback
is invoked for every
successful frame
capture and any error
conditions

PDC Interrupt Priority MCU Specific Options Select the PDC
interrupt priority.

DTC Interrupt Priority MCU Specific Options Select the DTC
interrupt priority.

Clock Configuration

The PDC peripheral module uses the PCLKB as its clock source. The maximum clock to the camera
module is PCLKB / 2.

Pin Configuration

The PCKO pin is a clock output and should be connected to the clock input of the camera. The PIXCLK
pin is a clock input and should be connected to the output pixel clock of the camera. Likewise, the
HSYNC and VSYNC pins must be connected to the horizontal and vertical sync signals of the camera,
respectively. The PIXD0-PIXD7 pins are the 8-bit data bus input and should be connected to the
relevant output pins of the camera.

Note
Camera control and serial communication pins must be configured separately and are not controlled by this
module.

Usage Notes
Interrupt Configuration

PDC error interrupts are used by this module for reporting errors such as overrun, underrun,
vertical line number setting and horizontal byte number setting errors.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,679 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

In addition to the PDC error interrupts, DMA or DTC interrupts are also used internally to
perform data transfer from this peripheral to the specified image buffer.
Receive data ready interrupt is used as activation source for DMA and DTC trigger.

Enabling Transfer Modules

An option to select between DMAC or DTC is provided with DMA as the default transfer
choice.
For further details on DMA please refer Transfer (r_dmac)
For further details on DTC please refer Transfer (r_dtc)

PDC setup with external camera

Before configuring the external camera device the PDC Open API must be called in order to
start clock output.
Ensure that the memory pointed to by p_buffer is both valid and large enough to store a
complete image.
The amount of space required (in bytes) can be calculated as: size (bytes) = image width
(pixels) * image height (lines) * number of bytes per pixel
Ensure that the size above is divisible by and aligned to 32 bytes.

Examples
Basic Example

This is a basic example of minimal use of the PDC in an application. This example shows how this
driver can be used for capturing data from an external I/O device such as an image sensor.

void g_pdc_user_callback (capture_callback_args_t * p_args)

{

 if (PDC_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_capture_ready = true;

 }

}

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the PDC module */

 err = R_PDC_Open(&g_pdc0_ctrl, &g_pdc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the camera module at this point. This implementation is camera vendor

specific. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,680 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

 camera_module_initialization();

 /* Initialize capture ready flag to false. This gets set to true in PDC callback

upon successful frame capture. */

 g_capture_ready = false;

 err = R_PDC_CaptureStart(&g_pdc0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

 uint32_t timeout_ms = PDC_DELAY_MS;

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_capture_ready) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (0U == timeout_ms)

 {

 __BKPT(0);

 }

}

static void camera_module_initialization (void)

{

 /* Camera vendor specific initialization to be done here */

}

Data Structures

struct pdc_extended_cfg_t

struct pdc_instance_ctrl_t

Enumerations

enum pdc_event_t

enum pdc_clock_division_t

enum pdc_endian_t

enum pdc_hsync_polarity_t

enum pdc_vsync_polarity_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,681 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

Data Structure Documentation

◆ pdc_extended_cfg_t

struct pdc_extended_cfg_t

Extended configuration structure for PDC.

Data Fields

pdc_clock_division_t clock_division Clock divider.

pdc_endian_t endian Endian of capture data.

pdc_hsync_polarity_t hsync_polarity Polarity of HSYNC input.

pdc_vsync_polarity_t vsync_polarity Polarity of VSYNC input.

uint8_t pdc_ipl PDC interrupt priority.

uint8_t transfer_req_ipl Transfer interrupt priority.

IRQn_Type pdc_irq PDC IRQ number.

IRQn_Type transfer_req_irq Transfer request IRQ number.

transfer_instance_t const * p_lower_lvl_transfer Pointer to the transfer instance
the PDC should use.

◆ pdc_instance_ctrl_t

struct pdc_instance_ctrl_t

PDC instance control block. DO NOT INITIALIZE.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,682 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

◆ pdc_event_t

enum pdc_event_t

PDC events

Enumerator

PDC_EVENT_TRANSFER_COMPLETE Complete frame transferred by DMAC/DTC.

PDC_EVENT_RX_DATA_READY Receive data ready interrupt.

PDC_EVENT_FRAME_END Frame end interrupt.

PDC_EVENT_ERR_OVERRUN Overrun interrupt.

PDC_EVENT_ERR_UNDERRUN Underrun interrupt.

PDC_EVENT_ERR_V_SET Vertical line setting error interrupt.

PDC_EVENT_ERR_H_SET Horizontal byte number setting error interrupt.

◆ pdc_clock_division_t

enum pdc_clock_division_t

Clock divider applied to PDC clock to provide PCKO output frequency

Enumerator

PDC_CLOCK_DIVISION_2 CLK / 2.

PDC_CLOCK_DIVISION_4 CLK / 4.

PDC_CLOCK_DIVISION_6 CLK / 6.

PDC_CLOCK_DIVISION_8 CLK / 8.

PDC_CLOCK_DIVISION_10 CLK / 10.

PDC_CLOCK_DIVISION_12 CLK / 12.

PDC_CLOCK_DIVISION_14 CLK / 14.

PDC_CLOCK_DIVISION_16 CLK / 16.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,683 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

◆ pdc_endian_t

enum pdc_endian_t

Endian of captured data

Enumerator

PDC_ENDIAN_LITTLE Data is in little endian format.

PDC_ENDIAN_BIG Data is in big endian format.

◆ pdc_hsync_polarity_t

enum pdc_hsync_polarity_t

Polarity of input HSYNC signal

Enumerator

PDC_HSYNC_POLARITY_HIGH HSYNC signal is active high.

PDC_HSYNC_POLARITY_LOW HSYNC signal is active low.

◆ pdc_vsync_polarity_t

enum pdc_vsync_polarity_t

Polarity of input VSYNC signal

Enumerator

PDC_VSYNC_POLARITY_HIGH VSYNC signal is active high.

PDC_VSYNC_POLARITY_LOW VSYNC signal is active low.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,684 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

◆ R_PDC_Open()

fsp_err_t R_PDC_Open (capture_ctrl_t *const p_ctrl, capture_cfg_t const *const p_cfg)

Powers on PDC, handles required initialization described in the hardware manual.

Implements capture_api_t::open.

The Open function provides initial configuration for the PDC module. It powers on the module and
enables the PCLKO output and the PIXCLK input. Further initialization requires the PIXCLK input to
be running in order to be able to reset the PDC as part of its initialization. This clock is input from a
camera module and so the reset and further initialization is performed in
capture_api_t::captureStart. This function should be called once prior to calling any other PDC API
functions. After the PDC is opened the Open function should not be called again without first calling
the Close function.

Example:

 /* Initialize the PDC module */

 err = R_PDC_Open(&g_pdc0_ctrl, &g_pdc0_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more of the following parameters is
NULL

1. p_cfg is NULL
2. p_api_ctrl is NULL
3. The pointer to the transfer interface

in the p_cfg parameter is NULL
4. Callback parameter is NULL.
5. Invalid IRQ number assigned

FSP_ERR_INVALID_ARGUMENT One or more of the following parameters is
incorrect

1. bytes_per_pixel is zero
2. x_capture_pixels is zero
3. y_capture_pixels is zero
4. x_capture_start_pixel +

x_capture_pixels is greater than
4095, OR

5. y_capture_start_pixel +
y_capture_pixels is greater than
4095

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,685 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

◆ R_PDC_Close()

fsp_err_t R_PDC_Close (capture_ctrl_t *const p_ctrl)

Stops and closes the transfer interface, disables and powers off the PDC, clears internal driver data
and disables interrupts.

Implements capture_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_api_ctrl is NULL

FSP_ERR_NOT_OPEN Open has not been successfully called.

◆ R_PDC_CaptureStart()

fsp_err_t R_PDC_CaptureStart (capture_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Starts a capture. Enables interrupts.

Implements capture_api_t::captureStart.

Sets up the transfer interface to transfer data from the PDC into the specified buffer. Configures the
PDC settings as previously set by the capture_api_t::open API. These settings are configured here
as the PIXCLK input must be active for the PDC reset operation. When a capture is complete the
callback registered during capture_api_t::open API call will be called.

Example:

 err = R_PDC_CaptureStart(&g_pdc0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Capture start successful.

FSP_ERR_ASSERTION One or more of the following parameters is
NULL

1. p_api_ctrl is NULL
2. p_buffer is NULL

FSP_ERR_NOT_OPEN Open has not been successfully called.

FSP_ERR_IN_USE PDC transfer is already in progress.

FSP_ERR_TIMEOUT Reset operation timed out.

FSP_ERR_NOT_INITIALIZED Callback function has not been set

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,686 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Parallel Data Capture (r_pdc)

◆ R_PDC_StatusGet()

fsp_err_t R_PDC_StatusGet (capture_ctrl_t *const p_ctrl, capture_status_t * p_status)

Provides the pdc operating status.

Implements capture_api_t::statusGet.

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more parameters is NULL.

FSP_ERR_NOT_OPEN Open has not been successfully called.

◆ R_PDC_CallbackSet()

fsp_err_t R_PDC_CallbackSet (capture_ctrl_t *const p_ctrl, void(*)(capture_callback_args_t *)
p_callback, void const *const p_context, capture_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure.

Implements capture_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED This is just a stub at present

5.2.8.8 SEGGER emWin RA Port (rm_emwin_port)
Modules » Graphics

SEGGER emWin port for RA MCUs.

Overview
The SEGGER emWin RA Port module provides the configuration and hardware acceleration support
necessary for use of emWin on RA products. The port provides full integration with the graphics
peripherals as well as FreeRTOS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,687 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

Figure 227: SEGGER emWin FSP Port Block Diagram (using RA6M3 as example)

Note
This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. Please consult the SEGGER emWin User Guide
(UM03001) for details on how to use emWin in your project.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

DRW Engine (r_drw)
Drawing bitmaps (ARGB8888 and RGB565)
4bpp font rendering
Rectangle fill
Line and shape drawing
Anti-aliased operations

Circle stroke and fill
Polygon stroke and fill
Lines and arcs

JPEG Codec (r_jpeg)
JPEG decoding

Graphics LCD Controller (r_glcdc)
Brightness, contrast and gamma correction
Pixel format conversion (framebuffer to LCD)

Configuration
Build Time Configurations for rm_emwin_port

The following build time configurations are defined in fsp_cfg/rm_emwin_port_cfg.h:

Configuration Options Default Description

Memory Allocation

GUI Heap Size Value must be a non-
negative integer

32768 Set the size of the heap
to be allocated for use
exclusively by emWin.

Section for GUI Heap Manual Entry .noinit Specify the section in
which to allocate the
GUI heap. When Arm

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,688 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

Compiler 6 is used to
place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Maximum Layers Value must be a non-
negative integer

16 Set the maximum
number of available
display layers in
emWin.

This setting is not
related to GLCDC Layer
1 or 2.

AA Font Conversion
Buffer Size

Value must be a non-
negative integer

400 Set the size of the
conversion buffer for
anti-aliased font
glyphs. This should be
set to the size (in
bytes) of the largest AA
character to be
rendered.

LCD Settings

Wait for Vertical Sync Enabled
Disabled

Enabled When enabled emWin
will wait for a vertical
sync event each time
the display is updated.
If an RTOS is used the
thread will yield;
otherwise each frame
will block until Vsync.

WARNING: Disabling
vertical sync will result
in tearing. It is
recommended to
always leave this
setting Enabled if an
RTOS is used.

JPEG Decoding

JPEG Decoding > General

Input Alignment 8-byte aligned
(faster)
Unaligned
(slower)

8-byte aligned (faster) Setting this option to
8-bit alignment can
allow the hardware
JPEG Codec to directly
read JPEG data. This
speeds up JPEG
decoding operations
and reduces RAM

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,689 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

overhead, but all JPEG
images must reside on
an 8-byte boundary.

When this option is
enabled the input
buffer is not allocated.

Double-Buffer Output Enabled
Disabled

Disabled Enable this option to
configure JPEG
decoding operations to
use a double-buffered
output pipeline. This
allows the JPEG to be
rendered to the display
at the same time as
decoding at the cost of
additional RAM usage.

Enabling this option
automatically allocates
double the output
buffer size.

Error Timeout Value must be a non-
negative integer

50 Set the timeout for
JPEG decoding
operations (in RTOS
ticks) in the event of a
decode error.

JPEG Decoding > Buffers

Input Buffer Size Value must be a non-
negative integer

0x1000 Set the size of the JPEG
decode input buffer (in
bytes). This buffer is
used to ensure 8-byte
alignment of input
data. Specifying a size
smaller than the size of
the JPEG to decode will
use additional
interrupts to stream
data in during the
decoding process.

Output Buffer Size Value must be a non-
negative integer

0x3C00 Set the size of the JPEG
decode output buffer
(in bytes). An output
buffer smaller than the
size of a decoded
image will use
additional interrupts to
stream the data into a
framebuffer.

Unless you are sure of
the subsampling used

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,690 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

in and the size of the
input JPEG images it is
recommended to
allocate at least 16
framebuffer lines of
memory.

Section for Buffers Manual Entry .noinit Specify the section in
which to allocate the
JPEG work buffers.
When Arm Compiler 6
is used to place this
memory in on-chip
SRAM, the section
name must be .bss or
start with .bss. to avoid
consuming
unnecessary ROM
space.

Hardware Configuration

No clocks or pins are directly required by this module. Please consult the submodules'
documentation for their requirements.

Library Configuration

emWin is provided as a pre-compiled library. To maximize compatibility the build-time options are
configured as follows:

#define GUI_OS (1) // Context switch support enabled

#define GUI_MAXTASK (1) // One task supported by default (can be increased at runtime

via GUITASK_SetMaxTask())

#define GUI_NUM_LAYERS (3) // Up to three displays supported

#define GUI_SUPPORT_TOUCH (1) // Support touch screens

#define GUI_SUPPORT_MOUSE (1) // Support a mouse

#define GUI_SUPPORT_MEMDEV (1) // Memory devices available

#define GUI_WINSUPPORT (1) // Window manager available

#define GUI_SUPPORT_BIDI (1) // Bidirectional text enabled

#define GUI_DEBUG_LEVEL (2) // Parameter and consistency checks enabled (no logging)

All other options are left at the default settings in GUI_ConfDefaults.h.

Usage Notes
Getting Started

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,691 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

To get started with emWin in an RA project the following must be performed:

1. Open the RA Configuration editor for your project
2. Add emWin to your project in the Stacks view by clicking New Stack -> SEGGER ->

SEGGER emWin
3. Ensure the configuration options for emWin are set as necessary for your application
4. Set the proporties for the GLCDC module to match the timing and memory requirements of

your display panel
5. Set the JPEG decode color depth to the desired value (if applicable)
6. Ensure interrupts on all modules are enabled:

GLCDC Vertical Position (Vpos) Interrupt
DRW Interrupt (if applicable)
JPEG Encode/Decode and Data Transfer Interrupts (if applicable)

7. Confirm stack and heap are configured as needed
When starting development a minimum stack of 0x1000 (4K) and heap of 0x4000
(16K) are recommended until actual usage can be characterized

8. Click Generate Project Content to save and commit configuration changes

At this point the project is now ready to build with emWin. Please refer to the SEGGER emWin User
Guide (UM03001) as well as demo and sample code for details on how to create a GUI application.

Using Hardware Acceleration

In most cases there is no need to perform additional configuration to ensure the DRW Engine is used.
However, there are some guidelines that should be followed depending on the item in question:

Bitmaps:
ARGB8888, RGB888 and RGB565 bitmaps require no additional settings.

Anti-aliased shapes:
Anti-aliased lines, circles, polygons, polygon outlines and arcs are rendered with
the DRW Engine.

Anti-aliased (4bpp) fonts:
Set the text mode to GUI_TM_TRANS or create the relevant widget with
WM_CF_HASTRANS set.
Ensure the "AA Font Conversion Buffer Size" configuration option is set to a size
equal to or greater than the size (in bytes) of the largest glyph.

8bpp palletized images:
When creating these images ensure transparency is not enabled as the SEGGER
method for this is not compatible with the DRW Engine.

RLE-encoded images:
Hardware acceleration is not available for SEGGER's RLE format.

JPEG images:
Align any user-declared JPEG data to an 8-byte boundary. If 8-byte alignment
cannot be guaranteed disable the JPEG Decoding -> General -> Input
Alignment option in the RA Configuration.

Multi-thread Support

When the "Multi-thread Support" configuration is enabled, emWin can be called from multiple
threads. This comes with advantages and disadvantages:

Advantages:

High flexibility in development of applications
Threads can pend and post on emWin events

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,692 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

Disadvantages:

Slightly higher RAM/ROM use
Large GUI projects can become difficult to debug

Note
Multi-thread support is independent of RTOS support. RTOS support is managed internally and cannot be
manually configured.

Limitations

Developers should be aware of the following limitations when using SEGGER emWin with FSP:

Hardware acceleration is not available when using color modes lower than 16 bits.
Hardware acceleration is not available for SEGGER's RLE image format.
Rotated screen modes are not supported.
Because emWin is provided as a pre-compiled library the build-time options are fixed. See
the Library Configuration section for the supplied configuration.

Examples
Basic Example

This is a basic example demonstrating a very simple emWin application. The screen is cleared to
white and "Hello World!" is printed in the center.

Note
emWin manages the GLCDC, DRW and JPEG Codec submodules internally; they do not need to be opened
directly.

#include "DIALOG.h"

#define COLOR_WHITE 0x00FFFFFFU

#define COLOR_BLACK 0x00000000U

#define GUI_DRAW_DELAY 100

static void _cbMain (WM_MESSAGE * pMsg)

{

 GUI_RECT Rect;

 switch (pMsg->MsgId)

 {

 case WM_CREATE:

 {

 break;

 }

 case WM_PAINT:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,693 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

 {

 /* Clear background to white */

 GUI_SetBkColor(COLOR_WHITE);

 GUI_Clear();

 /* Draw "Hello World!" in black in the center */

 WM_GetClientRect(&Rect);

 GUI_SetColor(COLOR_BLACK);

 GUI_DispStringInRect("Hello World!", &Rect, GUI_TA_VCENTER |

GUI_TA_HCENTER);

 break;

 }

 default:

 {

 WM_DefaultProc(pMsg);

 break;

 }

 }

}

void emWinTask (void)

{

 int32_t xSize;

 int32_t ySize;

 /* Initialize emWin */

 GUI_Init();

 /* Get screen dimensions */

 xSize = LCD_GetXSize();

 ySize = LCD_GetYSize();

 /* Create main window */

 WM_CreateWindowAsChild(0, 0, xSize, ySize, WM_HBKWIN, WM_CF_SHOW, _cbMain, 0);

 /* Enter main drawing loop */

 while (1)

 {

 GUI_Delay(GUI_DRAW_DELAY);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,694 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > SEGGER emWin RA Port (rm_emwin_port)

}

Note
For further example code please consult SEGGER emWin documentation, which can be downloaded here, as well
as the Quick Start Guide and example project(s) provided with your Evaluation Kit (if applicable).

5.2.8.9 Segment LCD (r_slcdc)
Modules » Graphics

Functions

fsp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const
p_cfg)

fsp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_ctrl, uint8_t const
start_segment, uint8_t const *p_data, uint8_t const segment_count)

fsp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_ctrl, uint8_t const segment,
uint8_t const data, uint8_t const data_mask)

fsp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_ctrl)

fsp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_ctrl)

fsp_err_t R_SLCDC_SetContrast (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t
const contrast)

fsp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_ctrl,
slcdc_display_area_t const display_area)

fsp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the SLCDC peripheral on RA MCUs. This module implements the SLCDC Interface.

Overview
The segment LCD controller (SLCDC) utilizes two to four reference voltages to provide AC signals for
driving traditional segment LCD panels. Depending on the LCD and MCU package, up to 272
segments can be driven. A built-in link to the RTC allows for up to 152 segments to switch between
two patterns at regular intervals. An on-chip boost driver can be used to provide configurable
reference voltages up to 5.25V allowing for simple contrast adjustment.

Features

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,695 / 5,560

http://www.renesas.com/fsp#downloads

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

The SLCDC module can perform the following functions:

Initialize, start and stop the SLCDC
Set and modify the output pattern
Blink between two patterns based on a periodic RTC interrupt signal
Adjust display contrast (only when using internal voltage boosting)
Select reference voltage mode: VL1 reference mode (1/3 or 1/4 Bias) and VL2 reference
mode (1/3 Bias) can be selected at internal voltage boosting method, conventional VCC
reference mode (1/3 Bias) and VL4 reference mode (1/3) Bias can be selected at capacitor
split method

Configuration

Build Time Configurations for r_slcdc

The following build time configurations are defined in fsp_cfg/r_slcdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Graphics > Segment LCD (r_slcdc)

This module can be added to the Stacks tab via New Stack > Graphics > Segment LCD (r_slcdc).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_slcdc0 Module Name

Clock

Source MCU Specific Options Select the clock source.

Divisor MCU Specific Options Select the clock divisor.

Output

Bias method 1/2 bias
1/3 bias
1/4 bias

1/2 bias Select the bias method.
This determines the
number of voltage
levels used to create
the waveforms.

Timeslice MCU Specific Options Select the LCD time
slice. The number of
slices should match the
number of common
(COM) pins for your
LCD panel.

Waveform Waveform A Waveform A Select the LCD

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,696 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

Waveform B waveform.

Drive method External
resistance
division
Internal voltage
boosting
Capacitor split

External resistance
division

Select the LCD drive
method.

Reference Voltage MCU Specific Options Select the LCD
reference voltage.

Default contrast (if
available)

MCU Specific Options Select the default
contrast level.

Valid Configurations

Though there are many setting combinations only a limited subset are supported by the SLCDC
peripheral hardware:

Boards have feature Select reference voltage mode (see User's Manual (r01uh1005ej0050) for
details)

Waveform Slices Bias External
Resistance

Internal
boosting

VL1

Internal
boosting

VL2

Capacitor
split VCC

Capacitor
split VL4

A 8 1/4 Available Available — — —

A 6 1/4 — Available — — —

A 8 1/3 Available Available Available Available Available

A 6 1/3 Available Available Available Available Available

A 4 1/3 Available Available Available Available Available

A 3 1/3 Available Available Available Available Available

A 3 1/2 Available — — — —

A 2 1/2 Available — — — —

A Static — Available — — — —

B 8 1/4 Available Available — — —

B 8 1/3 Available Available Available Available Available

B 6 1/3 Available Available Available Available Available

B 4 1/3 Available Available Available Available Available

B 3 1/3 Available Available Available Available Available

Others:

Waveform Slices Bias External
Resistance

Internal Boost Capacitor Split

A 8 1/4 Available Available —

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,697 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

A 4 1/3 Available Available Available

A 3 1/3 Available Available Available

A 3 1/2 Available — —

A 2 1/2 Available — —

A Static — Available — —

B 8 1/4 Available Available Available

B 4 1/3 Available Available —

Clock Configuration

User's Manual (r01uh1005ej0050): The SLCDC clock can be sourced from the main clock (MOSC), sub-
clock (SOSC), HOCO, LOCO or MOCO. Dividers of 4 to 1024 are available for SOSC/LOCO and 256 to
1048576 are for MOSC/HOCO/MOCO. It is recommended to adjust the divisor such that the resulting
clock provides a frame frequency of 32-128 Hz (some conditions have a frame frequency 24 to 128
Hz - see Table 36.10 in the User's Manual (r01uh1005ej0050) for details).

Others: The SLCDC clock can be sourced from the main clock (MOSC), sub-clock (SOSC), HOCO or
LOCO. Dividers of 4 to 1024 are available for SOSC/LOCO and 256 to 524288 for MOSC/HOCO. It is
recommended to adjust the divisor such that the resulting clock provides a frame frequency of
32-128 Hz.

Note
Make sure your desired source clock is enabled and running before starting SLCDC output.
Do not set the segment LCD clock over 512 Hz when using internal boost or capacitor split modes.

Pin Configuration

This module controls a variety of pins necessary for segment LCD voltage generation and signal
output:

Pin Name Function Notes

SEGn Segment data output Connect these signals to the
segment pins of the LCD.

COMn Common signal output Connect these signals to the
common pins of the LCD.

VLn Voltage reference These pins should be connected
to passive components based
on the selected drive method
(see section 45.7 "Supplying
LCD Drive Voltages VL1, VL2,
VL3, and VL4" in the RA4M1
User's Manual
(R01UH0887EJ0100)).

CAPH, CAPL Drive voltage generator
capacitor

Connect a nonpolar 0.47uF
capacitor across these pins
when using internal boost or
capacitor split modes. This pin
is not needed when using

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,698 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

resistance division.

Interrupt Configuration

The SLCDC provides no interrupt signals.

Note
Blinking output timing is driven directly from the RTC periodic interrupt. Once the interrupt is enabled setting the
display to SLCDC_DISP_BLINK will swap between A- and B-pattern each time it occurs. The ELC is not required
for this functionality.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the SLCDC:

Different packages provide different numbers of segment pins. Check the User's Manual for
your device to confirm availability and mapping of segment signals.
When using internal boost mode a delay of 5ms is required between calling R_SLCDC_Open
and R_SLCDC_Start to allow the boost circuit to charge.
When using the internal boost or capacitor split method do not set the segment LCD clock
higher than 512 Hz.

Examples
Basic Example

Below is a basic example of minimal use of the SLCDC in an application. The SLCDC driver is
initialized, output is started and a pattern is written to the segment registers.

void slcdc_init (void)

{

 fsp_err_t err;

 /* Open SLCDC driver */

 err = R_SLCDC_Open(&g_slcdc_ctrl, &g_slcdc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* When using internal boost mode this delay is required to allow the boost circuit

to charge. See RA4M1 User's

 * Manual (R01UH0887EJ0100) 8.2.18 "Segment LCD Source Clock Control Register

(SLCDSCKCR)" for details. */

 R_BSP_SoftwareDelay(5, BSP_DELAY_UNITS_MILLISECONDS);

 /* Start SLCDC output */

 err = R_SLCDC_Start(&g_slcdc_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,699 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

 assert(FSP_SUCCESS == err);

 /* Write pattern to display */

 err = R_SLCDC_Write(&g_slcdc_ctrl, 0, segment_data, NUM_SEGMENTS);

 assert(FSP_SUCCESS == err);

}

Note
While the SLCDC is running, pattern data is constantly being output. No latching or buffering is required when
writing or reading segment data.

Blinking Output

This example demonstrates how to set up blinking output using the RTC periodic interrupt. In this
example it is assumed that the SLCDC has already been started.

void slcdc_blink (void)

{

 fsp_err_t err;

 /* Open RTC and set time/date */

 err = R_RTC_Open(&r_rtc_ctrl, &r_rtc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_RTC_CalendarTimeSet(&r_rtc_ctrl, &g_rtc_time);

 assert(FSP_SUCCESS == err);

 /* Set RTC periodic interrupt to 2 Hz (display blink cycle will be 1 Hz) */

 err = R_RTC_PeriodicIrqRateSet(&r_rtc_ctrl,

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECOND);

 assert(FSP_SUCCESS == err);

 /* Set display to blink */

 err = R_SLCDC_SetDisplayArea(&g_slcdc_ctrl, SLCDC_DISP_BLINK);

 assert(FSP_SUCCESS == err);

 /* Display will now continuously blink */

}

Data Structures

struct slcdc_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,700 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

Data Structure Documentation

◆ slcdc_instance_ctrl_t

struct slcdc_instance_ctrl_t

SLCDC control block. DO NOT INITIALIZE. Initialization occurs when slcdc_api_t::open is called

Function Documentation

◆ R_SLCDC_Open()

fsp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

Opens the SLCDC driver. Implements slcdc_api_t::open.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_UNSUPPORTED Invalid display mode.

◆ R_SLCDC_Write()

fsp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t const *
p_data, uint8_t const segment_count)

Writes a sequence of display data to the segment data registers. Implements slcdc_api_t::write.

Return values
FSP_SUCCESS Data was written successfully.

FSP_ERR_ASSERTION Pointer to the control block or data is NULL.

FSP_ERR_INVALID_ARGUMENT Segment index is (or will be) out of range.

FSP_ERR_NOT_OPEN Device is not opened or initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,701 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

◆ R_SLCDC_Modify()

fsp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t const data,
uint8_t const data_mask)

Modifies a single segment register based on a mask and the desired data. Implements
slcdc_api_t::modify.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

FSP_ERR_NOT_OPEN Device is not opened or initialized

◆ R_SLCDC_Start()

fsp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_ctrl)

Starts output of LCD signals. Implements slcdc_api_t::start.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

◆ R_SLCDC_Stop()

fsp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_ctrl)

Stops output of LCD signals. Implements slcdc_api_t::stop.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,702 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

◆ R_SLCDC_SetContrast()

fsp_err_t R_SLCDC_SetContrast (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const contrast)

Sets contrast to the specified level. Implements slcdc_api_t::setContrast.

Note
Contrast can be adjusted when the SLCDC is operating in internal boost mode only. The range of values is 0-5
when 1/4 bias setting is used and 0-15 otherwise. See RA4M1 User's Manual (R01UH0887EJ0100) section 45.2.4
"LCD Boost Level Control Register (VLCD)" for voltage levels at each setting.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

FSP_ERR_UNSUPPORTED Unsupported operation

◆ R_SLCDC_SetDisplayArea()

fsp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

Sets output to Waveform A, Waveform B or blinking output. Implements slcdc_api_t::setDisplayArea
.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_UNSUPPORTED Pattern selection has no effect in 8-time-
slice mode.

FSP_ERR_NOT_OPEN Device is not opened or initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,703 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics > Segment LCD (r_slcdc)

◆ R_SLCDC_Close()

fsp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_ctrl)

Closes the SLCDC driver. Implements slcdc_api_t::close.

Return values
FSP_SUCCESS Device was closed successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

5.2.9 Input
Modules

Detailed Description

Input Modules.

Modules

External IRQ (r_icu)

 Driver for the ICU peripheral on RA MCUs. This module implements
the External IRQ Interface.

Key Matrix (r_kint)

 Driver for the KINT peripheral on RA MCUs. This module implements
the Key Matrix Interface.

5.2.9.1 External IRQ (r_icu)
Modules » Input

Functions

fsp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl,
external_irq_cfg_t const *const p_cfg)

fsp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,704 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

fsp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

fsp_err_t R_ICU_ExternalIrqCallbackSet (external_irq_ctrl_t *const p_api_ctrl,
void(*p_callback)(external_irq_callback_args_t *), void const *const
p_context, external_irq_callback_args_t *const p_callback_memory)

fsp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the ICU peripheral on RA MCUs. This module implements the External IRQ Interface.

Overview
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC, DTC, and
DMAC modules. The R_ICU software module only implements the External IRQ Interface. The
external_irq interface is for configuring interrupts to fire when a trigger condition is detected on an
external IRQ pin.

Note
Multiple instances are used when more than one external interrupt is needed. Configure each instance with
different channels and properties as needed for the specific interrupt.

Features

Supports configuring interrupts for IRQ pins on the target MCUs
Enabling and disabling interrupt generation.
Configuring interrupt trigger on rising edge, falling edge, both edges, or low level
signal.
Enabling and disabling the IRQ noise filter.

Supports configuring a user callback function, which will be invoked by the HAL module
when an external pin interrupt is generated.

Configuration

Build Time Configurations for r_icu

The following build time configurations are defined in fsp_cfg/r_icu_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Input > External IRQ (r_icu)

This module can be added to the Stacks tab via New Stack > Input > External IRQ (r_icu). Non-
secure callable guard functions can be generated for this module by right clicking the module in the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,705 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_external_irq0 Module name.

Channel Value must be a non-
negative integer

0 Specify the hardware
channel.

Trigger MCU Specific Options Select the signal edge
or state that triggers
an interrupt.

Digital Filtering MCU Specific Options Select if the digital
noise filter should be
enabled.

Digital Filtering Sample
Clock (Only valid when
Digital Filtering is
Enabled)

MCU Specific Options Select the clock divider
for the digital noise
filter.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided here. If this
callback function is
provided, it is called
from the interrupt
service routine (ISR)
each time the IRQn
triggers

Pin Interrupt Priority MCU Specific Options Select the PIN interrupt
priority.

Clock Configuration

The ICU peripheral module doesn't require any specific clock settings.

Note
The digital filter uses PCLKB as the clock source for sampling the IRQ pin.

Pin Configuration

The pin for the external interrupt channel must be configured as an input with IRQ Input Enabled.

Limitation

Pin configuration does not show conflicts when same IRQ is used by multiple pins.

Usage Notes
Digital Filter

The digital filter is used to reject trigger conditions that are too short. The trigger condition must be
longer than three periods of the filter clock. The filter clock frequency is determined by PCLKB and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,706 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

the external_irq_pclk_div_t setting.

MIN_PULSE_WIDTH = EXTERNAL_IRQ_PCLKB_DIV / PCLKB_FREQUENCY * 3

DMAC/DTC

When using an External IRQ pin to trigger a DMAC/DTC transfer, the External IRQ pin must be
opened before the transfer instance is opened.

Examples
Basic Example

This is a basic example of minimal use of the ICU in an application.

#define ICU_IRQN_PIN BSP_IO_PORT_02_PIN_06

#define ICU_IRQN 6

/* Called from icu_irq_isr */

void external_irq_callback (external_irq_callback_args_t * p_args)

{

 (void) p_args;

 g_external_irq_complete = 1;

}

void simple_example ()

{

 /* Example Configuration */

 external_irq_cfg_t icu_cfg =

 {

 .channel = ICU_IRQN,

 .trigger = EXTERNAL_IRQ_TRIG_RISING,

 .filter_enable = false,

 .clock_source_div = EXTERNAL_IRQ_CLOCK_SOURCE_DIV_1,

 .p_callback = external_irq_callback,

 .p_context = 0,

 .ipl = 0,

 .irq = (IRQn_Type) 0,

 };

 /* Configure the external interrupt. */

 fsp_err_t err = R_ICU_ExternalIrqOpen(&g_icu_ctrl, &icu_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,707 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

 assert(FSP_SUCCESS == err);

 /* Enable the external interrupt. */

 /* Enable not required when used with ELC or DMAC. */

 err = R_ICU_ExternalIrqEnable(&g_icu_ctrl);

 assert(FSP_SUCCESS == err);

 while (0 == g_external_irq_complete)

 {

 /* Wait for interrupt. */

 }

}

Data Structures

struct icu_instance_ctrl_t

Data Structure Documentation

◆ icu_instance_ctrl_t

struct icu_instance_ctrl_t

ICU private control block. DO NOT MODIFY. Initialization occurs when R_ICU_ExternalIrqOpen is
called.

Data Fields

uint32_t open

 Used to determine if channel control block is in use.

IRQn_Type irq

 NVIC interrupt number.

uint8_t channel

 Channel.

void const * p_context

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,708 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

◆ p_context

void const* icu_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

Function Documentation

◆ R_ICU_ExternalIrqOpen()

fsp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl, external_irq_cfg_t const
*const p_cfg)

Configure an IRQ input pin for use with the external interrupt interface. Implements
external_irq_api_t::open.

The Open function is responsible for preparing an external IRQ pin for operation.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION One of the following is invalid:

p_ctrl or p_cfg is NULL

FSP_ERR_ALREADY_OPEN The channel specified has already been
opened. No configurations were changed.
Call the associated Close function to
reconfigure the channel.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in p_cfg is not
available on the device selected in
r_bsp_cfg.h.

FSP_ERR_INVALID_ARGUMENT p_cfg->p_callback is not NULL, but ISR is not
enabled. ISR must be enabled to use
callback function.

FSP_ERR_UNSUPPORTED An input argument is not supported by
selected mode.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,709 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

◆ R_ICU_ExternalIrqEnable()

fsp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

Enable external interrupt for specified channel at NVIC. Implements external_irq_api_t::enable.

Return values
FSP_SUCCESS Interrupt Enabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_IRQ_BSP_DISABLED Requested IRQ is not defined in this system

◆ R_ICU_ExternalIrqDisable()

fsp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

Disable external interrupt for specified channel at NVIC. Implements external_irq_api_t::disable.

Return values
FSP_SUCCESS Interrupt disabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_IRQ_BSP_DISABLED Requested IRQ is not defined in this system

◆ R_ICU_ExternalIrqCallbackSet()

fsp_err_t R_ICU_ExternalIrqCallbackSet (external_irq_ctrl_t *const p_api_ctrl,
void(*)(external_irq_callback_args_t *) p_callback, void const *const p_context,
external_irq_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
external_irq_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,710 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > External IRQ (r_icu)

◆ R_ICU_ExternalIrqClose()

fsp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Close the external interrupt channel. Implements external_irq_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel is not opened.

5.2.9.2 Key Matrix (r_kint)
Modules » Input

Functions

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t
const *const p_cfg)

fsp_err_t R_KINT_Close (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Enable (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Disable (keymatrix_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the KINT peripheral on RA MCUs. This module implements the Key Matrix Interface.

Overview
The KINT module configures the Key Interrupt (KINT) peripheral to detect rising or falling edges on
any of the KINT channels. When such an event is detected on any of the configured pins, the module
generates an interrupt.

Features

Detect rising or falling edges on KINT channels
Callback for notifying the application when edges are detected on the configured channels

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,711 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > Key Matrix (r_kint)

Build Time Configurations for r_kint

The following build time configurations are defined in fsp_cfg/r_kint_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Input > Key Matrix (r_kint)

This module can be added to the Stacks tab via New Stack > Input > Key Matrix (r_kint).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_kint0 Module name.

Input

Key Interrupt Flag Mask MCU Specific Options Select channels to
enable.

Interrupts

Trigger Type Falling Edge
Rising Edge

Rising Edge Specifies if the enabled
channels detect a
rising edge or a falling
edge. NOTE: either all
channels detecting a
rising edge or all
channels detecting a
falling edge.

Callback Name must be a valid
C symbol

kint_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the IRQ triggers.

Key Interrupt Priority MCU Specific Options Select the key interrupt
priority.

Clock Configuration

The KINT peripheral runs on PCLKB.

Pin Configuration

The KRn pins are key switch matrix row input pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,712 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > Key Matrix (r_kint)

Usage Notes
Connecting a Switch Matrix

The KINT module is designed to scan the rows of a switch matrix where each row is connected to a
number of columns through switches. A periodic timer (or other mechanism) sets one column pin
high at a time. Any switches that are pressed on the driven column cause a rising (or falling) edge on
the row pin (KRn) causing an interrupt.

Note
In applications where multiple keys may be pressed at the same time it is recommended to put a diode inline with
each switch to prevent ghosting.

Handling Multiple Pins

When an edge is detected on multiple pins at the same time, a single IRQ will be generated. A mask
of all the pins that detected an edge will be passed to the callback.

Examples
Basic Example

This is a basic example of minimal use of the KINT in an application.

static volatile uint32_t g_channel_mask;

static volatile uint32_t g_kint_edge_detected = 0U;

/* Called from key_int_isr */

void r_kint_callback (keymatrix_callback_args_t * p_args)

{

 g_channel_mask = p_args->channel_mask;

 g_kint_edge_detected = 1U;

}

void r_kint_example ()

{

 /* Configure the KINT. */

 fsp_err_t err = R_KINT_Open(&g_kint_ctrl, &g_kint_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the KINT. */

 err = R_KINT_Enable(&g_kint_ctrl);

 assert(FSP_SUCCESS == err);

 while (0 == g_kint_edge_detected)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,713 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > Key Matrix (r_kint)

 /* Wait for interrupt. */

 }

}

Data Structures

struct kint_instance_ctrl_t

Data Structure Documentation

◆ kint_instance_ctrl_t

struct kint_instance_ctrl_t

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when
keymatrix_api_t::open is called.

Function Documentation

◆ R_KINT_Open()

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t const *const p_cfg)

Configure all the Key Input (KINT) channels and provides a handle for use with the rest of the KINT
API functions. Implements keymatrix_api_t::open.

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One of the following parameters may be
NULL: p_cfg, or p_ctrl or the callback.

FSP_ERR_ALREADY_OPEN The module has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel mask is invalid.

◆ R_KINT_Close()

fsp_err_t R_KINT_Close (keymatrix_ctrl_t *const p_api_ctrl)

Clear the KINT configuration and disable the KINT IRQ. Implements keymatrix_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN The module is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,714 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Input > Key Matrix (r_kint)

◆ R_KINT_Enable()

fsp_err_t R_KINT_Enable (keymatrix_ctrl_t *const p_api_ctrl)

This function enables interrupts for the KINT peripheral after clearing any pending requests.
Implements keymatrix_api_t::enable.

Return values
FSP_SUCCESS Interrupt enabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The peripheral is not opened.

◆ R_KINT_Disable()

fsp_err_t R_KINT_Disable (keymatrix_ctrl_t *const p_api_ctrl)

This function disables interrupts for the KINT peripheral. Implements keymatrix_api_t::disable.

Return values
FSP_SUCCESS Interrupt disabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

5.2.10 Monitoring
Modules

Detailed Description

Monitoring Modules.

Modules

CRC (r_crc)

 Driver for the CRC peripheral on RA MCUs. This module implements
the CRC Interface.

Clock Accuracy Circuit (r_cac)

 Driver for the CAC peripheral on RA MCUs. This module implements
the CAC Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,715 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring

Data Operation Circuit (r_doc)

 Driver for the DOC peripheral on RA MCUs. This module implements
the DOC Interface.

Independent Watchdog (r_iwdt)

 Driver for the IWDT peripheral on RA MCUs. This module implements
the WDT Interface.

Low/Programmable Voltage Detection (r_lvd)

 Driver for the LVD and PVD peripherals on RA MCUs. This module
implements the Low Voltage Detection Interface.

Watchdog (r_wdt)

 Driver for the WDT peripheral on RA MCUs. This module implements
the WDT Interface.

5.2.10.1 CRC (r_crc)
Modules » Monitoring

Functions

fsp_err_t R_CRC_Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t R_CRC_Close (crc_ctrl_t *const p_ctrl)

fsp_err_t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const
p_crc_input, uint32_t *calculatedValue)

fsp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t
*calculatedValue)

fsp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

fsp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the CRC peripheral on RA MCUs. This module implements the CRC Interface.

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,716 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

The CRC module provides a API to calculate 8, 16 and 32-bit CRC values on a block of data in
memory or a stream of data over a Serial Communication Interface (SCI) channel using industry-
standard polynomials.

Features

CRC module supports the following 8 and 16 bit CRC polynomials which operates on 8-bit
data in parallel

X^8+X^2+X+1 (CRC-8)
X^16+X^15+X^2+1 (CRC-16)
X^16+X^12+X^5+1 (CRC-CCITT)

CRC module supports the following 32 bit CRC polynomials which operates on 32-bit data in
parallel

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X
^2+X+ 1 (CRC-32)
X^32+ X^28+ X^27+ X^26+ X^25+ X^23+ X^22+ X^20+ X^19+
X^18+X^14+X^13+X^11+X^10+X^9+X^8+X^6+1 (CRC-32C)

CRC module can calculate CRC with LSB first or MSB first bit order.

Configuration
Build Time Configurations for r_crc

The following build time configurations are defined in fsp_cfg/r_crc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Monitoring > CRC (r_crc)

This module can be added to the Stacks tab via New Stack > Monitoring > CRC (r_crc). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_crc0 Module name.

CRC Polynomial MCU Specific Options Select the CRC
polynomial.

Bit Order MCU Specific Options Select the CRC bit
order.

Snoop Address MCU Specific Options Select the SCI register
address CRC snoop

Clock Configuration

There is no clock configuration for the CRC module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,717 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

Pin Configuration

This module does not use I/O pins.

Usage Notes
CRC Snoop

The CRC snoop function monitors reads from and writes to a specified I/O register address and
performs CRC calculation on the data read from and written to the register address automatically.
Instead of calling R_CRC_Calculate on a block of data, R_CRC_SnoopEnable is called to start
monitoring reads/writes and R_CRC_CalculatedValueGet is used to obtain the current CRC.

Note
Snoop mode is available for transmit/receive operations on SCI only.

Limitations

When using CRC32 polynomial functions the CRC module produces the same results as popular
online CRC32 calculators, but it is important to remember a few important points.

Online CRC32 calculators allow the input to be any number of bytes. The FSP CRC32 API
function uses 32-bit words. This means the online calculations must be 'padded' to end on a
32-bit boundary.
Online CRC32 calculators usually invert the output prior to presenting it as a result. It is up
to the application program to include this step if needed.
The seed value of 0xFFFFFFFF needs to be used by both the online calculator and the
R_CRC module API (CRC32 polynomials)
Make sure the bit orientation of the R_CRC CRC32 is set for LSB and that you have CRC32
selected and not CRC32C.
Some online CRC tools XOR the final result with 0xFFFFFFFF.

Examples
Basic Example

This is a basic example of minimal use of the CRC module in an application.

void crc_example ()

{

 uint32_t length;

 uint32_t uint8_calculated_value;

 length = sizeof(g_data_8bit) / sizeof(g_data_8bit[0]);

 crc_input_t example_input =

 {

 .p_input_buffer = g_data_8bit,

 .num_bytes = length,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,718 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

 .crc_seed = 0,

 };

 /* Open CRC module with 8 bit polynomial */

 R_CRC_Open(&crc_ctrl, &g_crc_test_cfg);

 /* 8-bit CRC calculation */

 R_CRC_Calculate(&crc_ctrl, &example_input, &uint8_calculated_value);

}

Snoop Example

This example demonstrates CRC snoop operation.

void crc_snoop_example ()

{

 /* Open CRC module with 8 bit polynomial */

 R_CRC_Open(&crc_ctrl, &g_crc_test_cfg);

 /* Open SCI Driver */

 /* Configure Snoop address and enable snoop mode */

 R_CRC_SnoopEnable(&crc_ctrl, 0);

 /* Perfrom SCI read/Write operation depending on the SCI snoop address configure */

 /* Read CRC value */

 R_CRC_CalculatedValueGet(&crc_ctrl, &g_crc_buff);

}

Data Structures

struct crc_instance_ctrl_t

Data Structure Documentation

◆ crc_instance_ctrl_t

struct crc_instance_ctrl_t

Driver instance control structure.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,719 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

◆ R_CRC_Open()

fsp_err_t R_CRC_Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module

Implements crc_api_t::open

Open the CRC driver module and initialize the driver control block according to the passed-in
configuration structure.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Module already open

FSP_ERR_UNSUPPORTED Hardware not support this feature.

◆ R_CRC_Close()

fsp_err_t R_CRC_Close (crc_ctrl_t *const p_ctrl)

Close the CRC module driver.

Implements crc_api_t::close

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,720 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

◆ R_CRC_Calculate()

fsp_err_t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input, uint32_t *
calculatedValue)

Perform a CRC calculation on a block of 8-bit/32-bit (for 32-bit polynomial) data.

Implements crc_api_t::calculate

This function performs a CRC calculation on an array of 8-bit/32-bit (for 32-bit polynomial) values
and returns an 8-bit/32-bit (for 32-bit polynomial) calculated value

Return values
FSP_SUCCESS Calculation successful.

FSP_ERR_ASSERTION Either p_ctrl, inputBuffer, or calculatedValue
is NULL.

FSP_ERR_INVALID_ARGUMENT length value is NULL, or not 4-byte aligned
when 32-bit CRC polynomial function is
configured.

FSP_ERR_NOT_OPEN The driver is not opened.

◆ R_CRC_CalculatedValueGet()

fsp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t * calculatedValue)

Return the current calculated value.

Implements crc_api_t::crcResultGet

CRC calculation operates on a running value. This function returns the current calculated value.

Return values
FSP_SUCCESS Return of calculated value successful.

FSP_ERR_ASSERTION Either p_ctrl or calculatedValue is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,721 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > CRC (r_crc)

◆ R_CRC_SnoopEnable()

fsp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Configure the snoop channel and set the CRC seed.

Implements crc_api_t::snoopEnable

The CRC calculator can operate on reads and writes over any of the first ten SCI channels. For
example, if set to channel 0, transmit, every byte written out SCI channel 0 is also sent to the CRC
calculator as if the value was explicitly written directly to the CRC calculator.

Return values
FSP_SUCCESS Snoop configured successfully.

FSP_ERR_ASSERTION Pointer to control stucture is NULL

FSP_ERR_NOT_OPEN The driver is not opened.

FSP_ERR_UNSUPPORTED SNOOP operation is not supported.

◆ R_CRC_SnoopDisable()

fsp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

Disable snooping.

Implements crc_api_t::snoopDisable

Return values
FSP_SUCCESS Snoop disabled.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

FSP_ERR_UNSUPPORTED SNOOP operation is not supported.

5.2.10.2 Clock Accuracy Circuit (r_cac)
Modules » Monitoring

Functions

fsp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,722 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

fsp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint32_t *const p_counter)

fsp_err_t R_CAC_CallbackSet (cac_ctrl_t *const p_ctrl,
void(*p_callback)(cac_callback_args_t *), void const *const
p_context, cac_callback_args_t *const p_callback_memory)

fsp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

Detailed Description

Driver for the CAC peripheral on RA MCUs. This module implements the CAC Interface.

Overview
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of
measurement clock edges that occur between two edges of the reference clock.

Features

Supports clock frequency-measurement and monitoring based on a reference signal input
Reference can be either an externally supplied clock source or an internal clock source
An interrupt request may optionally be generated by a completed measurement, a detected
frequency error, or a counter overflow.
A digital filter is available for an externally supplied reference clock, and dividers are
available for both internally supplied measurement and reference clocks.
Edge-detection options for the reference clock are configurable as rising, falling, or both.

Configuration

Build Time Configurations for r_cac

The following build time configurations are defined in fsp_cfg/r_cac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Monitoring > Clock Accuracy Circuit (r_cac)

This module can be added to the Stacks tab via New Stack > Monitoring > Clock Accuracy Circuit
(r_cac). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_cac0 Module name.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,723 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

Reference clock divider 32
128
1024
8192

32 Reference clock
divider.

Reference clock source MCU Specific Options Reference clock
source.

Reference clock digital
filter

Disabled
Sampling clock
=Measuring
freq
Sampling clock
=Measuring
freq/4
Sampling clock
=Measuring
freq/16

Disabled Reference clock digital
filter.

Reference clock edge
detect

Rising
Falling
Both

Rising Reference clock edge
detection.

Measurement clock
divider

1
4
8
32

1 Measurement clock
divider.

Measurement clock
source

MCU Specific Options Measurement clock
source.

Upper Limit Threshold Value must be a non-
negative integer,
between 0 to 65535

0 Top end of allowable
range for measurement
completion.

Lower Limit Threshold Value must be a non-
negative integer,
between 0 to 65535

0 Bottom end of
allowable range for
measurement
completion.

Frequency Error
Interrupt Priority

MCU Specific Options CAC frequency error
interrupt priority.

Measurement End
Interrupt Priority

MCU Specific Options CAC measurement end
interrupt priority.

Overflow Interrupt
Priority

MCU Specific Options CAC overflow interrupt
priority.

Callback Name must be a valid
C symbol

NULL Function name for
callback

Clock Configuration

The CAC measurement clock source can be configured as the following:

1. MAIN_OSC
2. SUBCLOCK
3. HOCO

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,724 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

4. MOCO
5. LOCO
6. PCLKB
7. IWDT

The CAC reference clock source can be configured as the following:

1. MAIN_OSC
2. SUBCLOCK
3. HOCO
4. MOCO
5. LOCO
6. PCLKB
7. IWDT
8. External Clock Source (CACREF)

Pin Configuration

The CACREF pin can be configured to provide the reference clock for CAC measurements.

Usage Notes
Measurement Accuracy

The clock measurement result may be off by up to one pulse depending on the phase difference
between the edge detection circuit, digital filter, and CACREF pin signal, if applicable.

Frequency Error Interrupt

The frequency error interrupt is only triggered at the end of a CAC measurement. This means that
there will be a measurement complete interrupt in addition to the frequency error interrupt.

Examples
Basic Example

This is a basic example of minimal use of the CAC in an application.

volatile uint32_t g_callback_complete;

void cac_basic_example ()

{

 g_callback_complete = 0;

 fsp_err_t err = R_CAC_Open(&g_cac_ctrl, &g_cac_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 (void) R_CAC_StartMeasurement(&g_cac_ctrl);

 /* Wait for measurement to complete. */

 while (0 == g_callback_complete)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,725 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

 {

 }

 uint32_t value;

 /* Read the CAC measurement. */

 (void) R_CAC_Read(&g_cac_ctrl, &value);

}

/* Called when measurement is completed. */

static void r_cac_callback (cac_callback_args_t * p_args)

{

 if (CAC_EVENT_MEASUREMENT_COMPLETE == p_args->event)

 {

 g_callback_complete = 1U;

 }

}

Data Structures

struct cac_instance_ctrl_t

Data Structure Documentation

◆ cac_instance_ctrl_t

struct cac_instance_ctrl_t

CAC instance control block. DO NOT INITIALIZE.

Function Documentation

◆ R_CAC_Open()

fsp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

The Open function configures the CAC based on the provided user configuration settings.

Return values
FSP_SUCCESS CAC is available and available for

measurement(s).

FSP_ERR_ASSERTION An argument is invalid.

FSP_ERR_ALREADY_OPEN The CAC has already been opened.

Note
There is only a single CAC peripheral.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,726 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

◆ R_CAC_StartMeasurement()

fsp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

Start the CAC measurement process.

Return values
FSP_SUCCESS CAC measurement started.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

◆ R_CAC_StopMeasurement()

fsp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

Stop the CAC measurement process.

Return values
FSP_SUCCESS CAC measuring has been stopped.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

◆ R_CAC_Read()

fsp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint32_t *const p_counter)

Read and return the CAC status and counter registers.

Return values
FSP_SUCCESS CAC read successful.

FSP_ERR_ASSERTION An argument is NULL.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,727 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Clock Accuracy Circuit (r_cac)

◆ R_CAC_CallbackSet()

fsp_err_t R_CAC_CallbackSet (cac_ctrl_t *const p_ctrl, void(*)(cac_callback_args_t *) p_callback,
void const *const p_context, cac_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements cac_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_CAC_Close()

fsp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

Release any resources that were allocated by the Open() or any subsequent CAC operations.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

5.2.10.3 Data Operation Circuit (r_doc)
Modules » Monitoring

Functions

fsp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const
p_cfg)

fsp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

fsp_err_t R_DOC_Read (doc_ctrl_t *const p_api_ctrl, uint32_t *p_result)

fsp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, uint32_t data)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,728 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

fsp_err_t R_DOC_CallbackSet (doc_ctrl_t *const p_api_ctrl,
void(*p_callback)(doc_callback_args_t *), void const *const
p_context, doc_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the DOC peripheral on RA MCUs. This module implements the DOC Interface.

Overview
Features

The DOC HAL module peripheral is used to compare, add or subtract 16-bit or 32-bit1 data and can
detect the following events:

Comparison Mode
Data is equal to the configured reference data setting.
Data is not equal to the configured reference data setting.
Data is less than the configured reference data setting2.
Data is greater than the configured reference data setting2.
Data is inside of a configurable pair of reference data settings2.
Data is outside of a configurable pair of reference data settings2.

Addition Mode - Overflow of an addition operation
Subtraction Mode - Underflow of a subtraction operation

A user-defined callback can be created to inform the CPU when any of above events occur.

Note
1. Operating on 32-bit data is not supported on all MCUs.
2. This comparison mode is not supported on all MCUs.

Configuration

Build Time Configurations for r_doc

The following build time configurations are defined in fsp_cfg/r_doc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Monitoring > Data Operation Circuit (r_doc)

This module can be added to the Stacks tab via New Stack > Monitoring > Data Operation Circuit
(r_doc). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,729 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

Name Name must be a valid
C symbol

g_doc0 Module name.

Event MCU Specific Options Select the event that
will trigger the DOC
interrupt.

Bit Width MCU Specific Options The bit width for DOC
operations.

Reference/Initial Data Value must be an
integer greater than or
equal to 0.

0 Enter Initial Value for
Addition/Subtraction or
enter reference value
for comparison.

Additional Reference
Data

Value must be an
integer greater than or
equal to 0.

0 Additional reference
data used for Window
Compare modes.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) when the
configured DOC event
occurs.

DOC Interrupt Priority MCU Specific Options Select the DOC
interrupt priority.

Clock Configuration

The DOC HAL module does not require a specific clock configuration.

Pin Configuration

The DOC HAL module does not require and specific pin configurations.

Usage Notes
DMAC/DTC Integration

DOC can be used with Transfer (r_dmac) or Transfer (r_dtc) to write to the input register without CPU
intervention. DMAC is more useful for most DOC applications because it can be started directly from
software. To write DOC input data with DTC/DMAC, set transfer_info_t::p_dest to R_DOC->DODIR.

Examples
Basic Example

This is a basic example of minimal use of the R_DOC in an application. This example shows how this
driver can be used for continuous 16 bit addition operation while reading the result at every overflow
event.

#define DOC_EXAMPLE_VALUE 0xF000

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,730 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

uint32_t g_callback_event_counter = 0;

/* This callback is called when DOC overflow event occurs. It is registered in

doc_cfg_t when R_DOC_Open is

 * called. */

void doc_callback (doc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_callback_event_counter++;

}

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the DOC module for addition with initial value specified in

doc_cfg_t::doc_data. */

 err = R_DOC_Open(&g_doc_ctrl, &g_doc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write data to the DOC Data Input Register and read the result of addition from

status register when an

 * interrupt occurs. */

 for (int i = 0; i < 5; i++)

 {

 err = R_DOC_Write(&g_doc_ctrl, DOC_EXAMPLE_VALUE);

 assert(FSP_SUCCESS == err);

 if (g_callback_event_counter >= 1)

 {

 uint32_t result;

 /* Read the result of the operation */

 err = R_DOC_Read(&g_doc_ctrl, &result);

 assert(FSP_SUCCESS == err);

 }

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,731 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

Function Documentation

◆ R_DOC_Open()

fsp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const p_cfg)

Opens and configures the Data Operation Circuit (DOC) in comparison, addition or subtraction
mode and sets initial data for addition or subtraction, or reference data for comparison.

Example:

 /* Initialize the DOC module for addition with initial value specified in

doc_cfg_t::doc_data. */

 err = R_DOC_Open(&g_doc_ctrl, &g_doc_cfg);

Return values
FSP_SUCCESS DOC successfully configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL or the interrupt vector is
invalid.

◆ R_DOC_Close()

fsp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

Closes the module driver. Enables module stop mode.

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function will disable the DOC interrupt in the NVIC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,732 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

◆ R_DOC_Read()

fsp_err_t R_DOC_Read (doc_ctrl_t *const p_api_ctrl, uint32_t * p_result)

Returns the result of addition/subtraction.

Example:

 uint32_t result;

 /* Read the result of the operation */

 err = R_DOC_Read(&g_doc_ctrl, &result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Status successfully read.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION One or more pointers point to NULL.

◆ R_DOC_Write()

fsp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, uint32_t data)

Writes to the DODIR - DOC Input Register.

Example:

 err = R_DOC_Write(&g_doc_ctrl, DOC_EXAMPLE_VALUE);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Values successfully written to the registers.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION One or more pointers point to NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,733 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Data Operation Circuit (r_doc)

◆ R_DOC_CallbackSet()

fsp_err_t R_DOC_CallbackSet (doc_ctrl_t *const p_api_ctrl, void(*)(doc_callback_args_t *)
p_callback, void const *const p_context, doc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
doc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.10.4 Independent Watchdog (r_iwdt)
Modules » Monitoring

Functions

fsp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

fsp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

fsp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t
status)

fsp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

fsp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

fsp_err_t R_IWDT_CallbackSet (wdt_ctrl_t *const p_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,734 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

Driver for the IWDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview
The independent watchdog timer is used to recover from unexpected errors in an application. The
timer must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the IWDT resets the device
or generates an NMI.

Features

The IWDT HAL module has the following key features:

When the IWDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The WDT supports following modes:1
In auto start mode, the WDT begins counting at reset.
In register start mode, the WDT can be started from the application1.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically
(auto start mode).

On most of MCUs, the IWDT can
only be configured by hardware
to start automatically1.

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

Note
1. Refer to the MCU hardware user's manual or datasheet to determine if IWDT supports register start mode.

Configuration
When using register start mode, configure the watchdog timer on the Stacks tab.

Note
When using auto start mode, configurations on the Stacks tab are ignored. Configure the watchdog using the OFS
settings on the BSP tab. These settings include the following:

Start Mode
Timeout Period
Dedicated Clock Frequency Divisor
Window End Position
Window Start Position
Reset Interrupt Request Select
Stop Control

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,735 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

Review the OFS0 properties window to see additional details.

Build Time Configurations for r_iwdt

The following build time configurations are defined in fsp_cfg/r_iwdt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Register Start NMI
Support

MCU Specific Options If enabled, code for NMI
support in register start
mode is included in the
build.

Configurations for Monitoring > Independent Watchdog (r_iwdt)

This module can be added to the Stacks tab via New Stack > Monitoring > Independent Watchdog
(r_iwdt). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_wdt0 Module name.

Timeout MCU Specific Options Select the independent
watchdog timeout in
cycles.

Clock Division Ratio MCU Specific Options Select the independent
watchdog clock divisor.

Window Start Position MCU Specific Options Select the allowed
independent watchdog
refresh start point in %.

Window End Position MCU Specific Options Select the allowed
independent watchdog
refresh end point in %.

Reset Control MCU Specific Options Select what happens
when the independent
watchdog timer
expires.

Stop Control MCU Specific Options Select the independent
watchdog state in low
power mode.

NMI callback Name must be a valid
C symbol

NULL A user callback
function can be
provided here. If this
callback function is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,736 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

provided, it is called
from the interrupt
service routine (ISR)
when the watchdog
triggers.

Clock Configuration

The IWDT clock is based on the IWDTCLK frequency. You can set the IWDTCLK frequency divider
using the BSP tab of the RA Configuration editor.

Pin Configuration

This module does not use I/O pins.

Usage Notes
NMI Interrupt

The independent watchdog timer uses the NMI, which is enabled by default. No special configuration
is required. When the NMI is triggered, the callback function registered during open is called.

Note
When using the IWDT in software start mode with NMI and the timer underflows, the IWDT status must be reset by
calling R_IWDT_StatusClear before restarting the timer via R_IWDT_Refresh.

Period Calculation

The IWDT operates from IWDTCLK. With a IWDTCLK of 15000 Hz, the maximum time from the last
refresh to device reset or NMI generation will be just below 35 seconds as detailed below.

IWDTCLK = 15000 Hz
Clock division ratio = IWDTCLK / 256
Timeout period = 2048 cycles
WDT clock frequency = 15000 Hz / 256 = 58.59 Hz
Cycle time = 1 / 58.59 Hz = 17.067 ms
Timeout = 17.067 ms x 2048 cycles = 34.95 seconds

Limitations

Developers should be aware of the following limitations when using the IWDT:

When using a J-Link debugger the IWDT counter does not count and therefore will not reset
the device or generate an NMI. To enable the watchdog to count and generate a reset or
NMI while debugging, add this line of code in the application:
 /* (Optional) Enable the IWDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_IWDT = 0;

If the IWDT is configured to stop the counter in low power mode, then your application must
restart the watchdog by calling R_IWDT_Refresh() after the MCU wakes from low power
mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,737 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

Examples
IWDT Basic Example

This is a basic example of minimal use of the IWDT in an application.

void iwdt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* In auto start mode, the IWDT starts counting immediately when the MCU is powered

on. */

 /* Initializes the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application work here. */

 /* Refresh before the counter underflows to prevent reset or NMI based on the

setting. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 }

}

IWDT Advanced Example

This example demonstrates using a start window and gives an example callback to handle an NMI
generated by an underflow or refresh error.

#define IWDT_TIMEOUT_COUNTS (2048U)

#define IWDT_MAX_COUNTER (IWDT_TIMEOUT_COUNTS - 1U)

#define IWDT_START_WINDOW_75 ((IWDT_MAX_COUNTER * 3) / 4)

/* Example callback called when a watchdog NMI occurs. */

void iwdt_callback (wdt_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,738 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_IWDT_StatusGet(&g_iwdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Log source of NMI and any other debug information. */

 /* (Optional) Clear the error flags. */

 err = R_IWDT_StatusClear(&g_iwdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Issue a software reset to reset the MCU. */

 __NVIC_SystemReset();

}

void iwdt_advanced_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Enable the IWDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_IWDT = 0;

 /* (Optional) Check if the IWDTRF flag is set to know if the system is

 * recovering from a IWDT reset. */

 if (R_SYSTEM->RSTSR1_b.IWDTRF)

 {

 /* Clear the flag. */

 R_SYSTEM->RSTSR1 = 0U;

 }

 /* Open the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize other application code. */

 /* Do not call R_IWDT_Refresh() in auto start mode unless the

 * counter is in the acceptable refresh window. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 while (true)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,739 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

 /* Application work here. */

 /* (Optional) If there is a chance the application takes less time than

 * the start window, verify the IWDT counter is past the start window

 * before refreshing the IWDT. */

 uint32_t iwdt_counter = 0U;

 do

 {

 /* Read the current IWDT counter value. */

 err = R_IWDT_CounterGet(&g_iwdt0_ctrl, &iwdt_counter);

 assert(FSP_SUCCESS == err);

 } while (iwdt_counter >= IWDT_START_WINDOW_75);

 /* Refresh before the counter underflows to prevent reset or NMI. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 }

}

Data Structures

struct iwdt_instance_ctrl_t

Data Structure Documentation

◆ iwdt_instance_ctrl_t

struct iwdt_instance_ctrl_t

IWDT control block. DO NOT INITIALIZE. Initialization occurs when wdt_api_t::open is called.

Data Fields

uint32_t wdt_open

 Indicates whether the open() API has been successfully called.

void const * p_context

 Placeholder for user data. Passed to the user callback in
wdt_callback_args_t.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,740 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

Function Documentation

◆ R_IWDT_Open()

fsp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const p_cfg)

Register the IWDT NMI callback.

Example:

 /* Initializes the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

Return values
FSP_SUCCESS IWDT successfully configured.

FSP_ERR_ASSERTION Null Pointer.

FSP_ERR_NOT_ENABLED An attempt to open the IWDT when the
OFS0 register is not configured for auto-
start mode.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_STATE The security state of the NMI and the
module do not match.

◆ R_IWDT_Refresh()

fsp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

Refresh the Independent Watchdog Timer. If the refresh fails due to being performed outside of the
permitted refresh period the device will either reset or trigger an NMI ISR to run.

Example:

 /* Refresh before the counter underflows to prevent reset or NMI based on the

setting. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

Return values
FSP_SUCCESS IWDT successfully refreshed.

FSP_ERR_ASSERTION One or more parameters are NULL pointers.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,741 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

◆ R_IWDT_StatusGet()

fsp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const p_status)

Read the IWDT status flags.

Indicates both status and error conditions.

Example:

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_IWDT_StatusGet(&g_iwdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT status successfully read.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

FSP_ERR_UNSUPPORTED This function is only valid if the IWDT
generates an NMI when an error occurs.

Note
When the IWDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,742 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

◆ R_IWDT_StatusClear()

fsp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t status)

Clear the IWDT status and error flags. Implements wdt_api_t::statusClear.

Example:

 /* (Optional) Clear the error flags. */

 err = R_IWDT_StatusClear(&g_iwdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT flag(s) successfully cleared.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

FSP_ERR_UNSUPPORTED This function is only valid if the IWDT
generates an NMI when an error occurs.

Note
When the IWDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

◆ R_IWDT_CounterGet()

fsp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const p_count)

Read the current count value of the IWDT. Implements wdt_api_t::counterGet.

Example:

 /* Read the current IWDT counter value. */

 err = R_IWDT_CounterGet(&g_iwdt0_ctrl, &iwdt_counter);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT current count successfully read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,743 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Independent Watchdog (r_iwdt)

◆ R_IWDT_TimeoutGet()

fsp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl, wdt_timeout_values_t *const
p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
FSP_SUCCESS IWDT timeout information retrieved

successfully.

FSP_ERR_ASSERTION One or more parameters are NULL pointers.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

◆ R_IWDT_CallbackSet()

fsp_err_t R_IWDT_CallbackSet (wdt_ctrl_t *const p_ctrl, void(*)(wdt_callback_args_t *) p_callback,
void const *const p_context, wdt_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
wdt_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.10.5 Low/Programmable Voltage Detection (r_lvd)
Modules » Monitoring

Functions

fsp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const
p_cfg)

fsp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t
*p_lvd_status)

fsp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,744 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

fsp_err_t R_LVD_CallbackSet (lvd_ctrl_t *const p_api_ctrl,
void(*p_callback)(lvd_callback_args_t *), void const *const p_context,
lvd_callback_args_t *const p_callback_memory)

fsp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the LVD and PVD peripherals on RA MCUs. This module implements the Low Voltage
Detection Interface.

Note
In the below usage notes, "LVD" refers to both LVD and PVD.

Overview
The Low Voltage Detection module configures the voltage monitors to detect when a power supply
pin or a voltage detector pin voltages crosses a specified threshold.

Features

The LVD HAL module supports the following functions:

Five run-time configurable voltage monitors (Voltage Monitor 1, Voltage Monitor 2, LVD
VBAT, LVD VRTC, EXLVD)

Configurable voltage threshold
Digital filter (Available on specific MCUs)
Support for both interrupt or polling

NMI or maskable interrupt can be configured (NMI support for Voltage
Monitor 1 & Voltage Monitor 2 only).

Voltage monitor interrupt generation condition can be configured (rising, falling, or
both edge event detection).
Support for resetting the MCU when VCC falls below/rises above configured
threshold.

Configuration

Build Time Configurations for r_lvd

The following build time configurations are defined in fsp_cfg/r_lvd_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Monitoring > Low/Programmable Voltage Detection (r_lvd)

This module can be added to the Stacks tab via New Stack > Monitoring > Low/Programmable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,745 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

Voltage Detection (r_lvd). Non-secure callable guard functions can be generated for this module by
right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_lvd0 Module name.

Monitor Number MCU Specific Options Select the LVD monitor.

Digital Filter MCU Specific Options Enable the digital filter
and select the digital
filter clock divider.

Voltage Threshold MCU Specific Options Select the low voltage
detection threshold.

Detection Response MCU Specific Options Select what happens
when the voltage
crosses the threshold
voltage.

Voltage Slope MCU Specific Options Select interrupt
generation on rising
voltage, falling voltage
or both.

Negation Delay MCU Specific Options Negation of the
monitor signal can
either be delayed from
the reset event or from
voltage returning to
normal range.

Monitor Interrupt
Callback

Name must be a valid
C symbol.

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the IRQ triggers.

LVD Monitor Interrupt
Priority

MCU Specific Options Select the LVD Monitor
interrupt priority.

Clock Configuration

The LOCO clock must be enabled in order to use the digital filter.

Pin Configuration

To use LVD module, you need to switch pin funtion of EXLVDVBAT pin, VRTC pin, EXLVD pin to
enable LVD function on this pin.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,746 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

Startup Edge Detection

If VCC is below the threshold prior to configuring the voltage monitor for falling edge detection, the
monitor will immediately detect the a falling edge condition. If VCC is above the threshold prior to
configuring the monitor for rising edge detection, the monitor will not detect a rising edge condition
until VCC falls below the threshold and then rises above it again.

Voltage Monitor 0

The LVD HAL module only supports configuring voltage monitor 1 and voltage monitor 2. Voltage
monitor 0 can be configured by setting the appropriate bits in the OFS1 register. This means that
voltage monitor 0 settings cannot be changed at runtime.

Voltage monitor 0 supports the following features

Configurable Voltage Threshold (VDET0)
Reset the device when VCC falls below VDET0

Limitations

The digital filter must be disabled when using voltage monitors in Software Standby or
Deep Software Standby.
Deep Software Standby mode is not possible if the voltage monitor is configured to reset
the MCU.
Reset generated by the VCC-rise detection is supported only on devices with PVD.
On RA0, when LVD0 is used the detection voltage of LVD1 must be higher than LVD0's. See
the section "LVD1CR : Voltage Monitor 1 Circuit Control Register" of the RA0 Hardware
User's Manual (r01uh1040ej0100).

Examples
Basic Example

This is a basic example of minimal use of the LVD in an application.

void basic_example (void)

{

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 assert(FSP_SUCCESS == err);

 while (1)

 {

 lvd_status_t status;

 err = R_LVD_StatusGet(&g_lvd_ctrl, &status);

 assert(FSP_SUCCESS == err);

 if (LVD_THRESHOLD_CROSSING_DETECTED == status.crossing_detected)

 {

 err = R_LVD_StatusClear(&g_lvd_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,747 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

 assert(FSP_SUCCESS == err);

 /* Do something */

 }

 }

}

Interrupt Example

This is a basic example of using a LVD instance that is configured to generate an interrupt.

void interrupt_example (void)

{

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (1)

 {

 /* Application Process */

 /* Application will be interrupted when Vcc crosses the configured threshold. */

 }

}

/* Called when Vcc crosses configured threshold. */

void lvd_callback (lvd_callback_args_t * p_args)

{

 if (LVD_CURRENT_STATE_BELOW_THRESHOLD == p_args->current_state)

 {

 /* Do Something */

 }

}

Reset Example

This is a basic example of using a LVD instance that is configured to reset the MCU.

void reset_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,748 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

 if (1U == R_SYSTEM->RSTSR0_b.LVD1RF)

 {

 /* The system is coming out of reset because Vcc crossed configured voltage

threshold. */

 /* Clear Voltage Monitor 1 Reset Detect Flag. */

 R_SYSTEM->RSTSR0_b.LVD1RF = 0;

 }

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (1)

 {

 /* Application Process */

 /* Application will reset when Vcc crosses the configured threshold. */

 }

}

Data Structures

struct lvd_instance_ctrl_t

Data Structure Documentation

◆ lvd_instance_ctrl_t

struct lvd_instance_ctrl_t

LVD instance control structure

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,749 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

◆ R_LVD_Open()

fsp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a voltage monitor and detector according to the passed-in configuration structure.

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

Note
Digital filter is not to be used with standby modes.
Startup time can take on the order of milliseconds for some configurations.

Example:

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION Requested configuration was invalid

FSP_ERR_ALREADY_OPEN The instance was already opened

FSP_ERR_IN_USE Another instance is already using the
desired monitor

FSP_ERR_UNSUPPORTED Digital filter was enabled on a device that
does not support it

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,750 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

◆ R_LVD_StatusGet()

fsp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t * p_lvd_status)

Get the current state of the monitor (threshold crossing detected, voltage currently above or below
threshold).

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

[out] p_lvd_status Pointer to status structure

Example:

 err = R_LVD_StatusGet(&g_lvd_ctrl, &status);

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

◆ R_LVD_StatusClear()

fsp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

Clears the latched status of the monitor.

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,751 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Low/Programmable Voltage Detection (r_lvd)

◆ R_LVD_CallbackSet()

fsp_err_t R_LVD_CallbackSet (lvd_ctrl_t *const p_api_ctrl, void(*)(lvd_callback_args_t *)
p_callback, void const *const p_context, lvd_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
lvd_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_LVD_Close()

fsp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Parameters
[in] p_api_ctrl Pointer to the control block

structure for the driver
instance

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

5.2.10.6 Watchdog (r_wdt)
Modules » Monitoring

Functions

fsp_err_t R_WDT_Open (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t
*const p_timeout)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,752 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

fsp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_ctrl)

fsp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_ctrl, const wdt_status_t
status)

fsp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const
p_count)

fsp_err_t R_WDT_CallbackSet (wdt_ctrl_t *const p_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the WDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview
The watchdog timer is used to recover from unexpected errors in an application. The watchdog timer
must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the WDT resets the device
or generates an NMI.

Figure 228: Watchdog Timer Operation Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,753 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

Features

The WDT HAL module has the following key features:

When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The WDT has two supported modes:
In auto start mode, the WDT begins counting at reset.
In register start mode, the WDT can be started from the application.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically
(auto start mode).

The IWDT can only be
configured by hardware to start
automatically.

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

Configuration
When using register start mode, configure the watchdog timer on the Stacks tab.

Note
When using auto start mode, configurations on the Stacks tab are ignored. Configure the watchdog using the OFS
settings on the BSP tab.

Build Time Configurations for r_wdt

The following build time configurations are defined in fsp_cfg/r_wdt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Register Start NMI
Support

Enabled
Disabled

Disabled If enabled, code for NMI
support in register start
mode is included in the
build.

Configurations for Monitoring > Watchdog (r_wdt)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,754 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

This module can be added to the Stacks tab via New Stack > Monitoring > Watchdog (r_wdt). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_wdt0 Module name.

Timeout 1,024 Cycles
4,096 Cycles
8,192 Cycles
16,384 Cycles

16,384 Cycles Select the watchdog
timeout in cycles.

Clock Division Ratio PCLK/4
PCLK/64
PCLK/128
PCLK/512
PCLK/2048
PCLK/8192

PCLK/8192 Select the watchdog
clock divisor.

Window Start Position 100 (Window
Position Not
Specified)
75
50
25

100 (Window Position
Not Specified)

Select the allowed
watchdog refresh start
point in %.

Window End Position 0 (Window
Position Not
Specified)
25
50
75

0 (Window Position Not
Specified)

Select the allowed
watchdog refresh end
point in %.

Reset Control Reset Output
NMI Generated

Reset Output Select what happens
when the watchdog
timer expires.

Stop Control WDT Count
Enabled in Low
Power Mode
WDT Count
Disabled in Low
Power Mode

WDT Count Disabled in
Low Power Mode

Select the watchdog
state in low power
mode.

NMI Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided if the WDT is
configured to generate
an NMI when the timer
underflows or a refresh
error occurs. If this
callback function is
provided, it will be
called from the NMI
handler each time the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,755 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

watchdog triggers.

Clock Configuration

The WDT clock is based on the PCLKB frequency. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time. The maximum timeout
period with PCLKB running at 60 MHz is approximately 2.2 seconds.

Pin Configuration

This module does not use I/O pins.

Usage Notes
NMI Interrupt

The watchdog timer uses the NMI, which is enabled by default. No special configuration is required.
When the NMI is triggered, the callback function registered during open is called.

Note
When using the WDT in software start mode with NMI and the timer underflows, the WDT status must be reset by
calling R_WDT_StatusClear before restarting the timer via R_WDT_Refresh.

Period Calculation

The WDT operates from PCLKB. With a PCLKB of 60 MHz, the maximum time from the last refresh to
device reset or NMI generation will be just over 2.2 seconds as detailed below.

PLCKB = 60 MHz
Clock division ratio = PCLKB / 8192
Timeout period = 16384 cycles
WDT clock frequency = 60 MHz / 8192 = 7.324 kHz
Cycle time = 1 / 7.324 kHz = 136.53 us
Timeout = 136.53 us x 16384 cycles = 2.23 seconds

Limitations

Developers should be aware of the following limitations when using the WDT:

When using a J-Link debugger the WDT counter does not count and therefore will not reset
the device or generate an NMI. To enable the watchdog to count and generate a reset or
NMI while debugging, add this line of code in the application:
 /* (Optional) Enable the WDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

If the WDT is configured to stop the counter in low power mode, then your application must
restart the watchdog by calling R_WDT_Refresh() after the MCU wakes from low power
mode.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,756 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

WDT Basic Example

This is a basic example of minimal use of the WDT in an application.

void wdt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* In auto start mode, the WDT starts counting immediately when the MCU is powered

on. */

 /* Initializes the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* In register start mode, start the watchdog by calling R_WDT_Refresh. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application work here. */

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 }

}

WDT Advanced Example

This example demonstrates using a start window and gives an example callback to handle an NMI
generated by an underflow or refresh error.

#define WDT_TIMEOUT_COUNTS (16384U)

#define WDT_MAX_COUNTER (WDT_TIMEOUT_COUNTS - 1U)

#define WDT_START_WINDOW_75 ((WDT_MAX_COUNTER * 3) / 4)

/* Example callback called when a watchdog NMI occurs. */

void wdt_callback (wdt_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,757 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_WDT_StatusGet(&g_wdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Log source of NMI and any other debug information. */

 /* (Optional) Clear the error flags. */

 err = R_WDT_StatusClear(&g_wdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

 /* (Register start mode) In register start mode, call R_WDT_Refresh() to

 * continue using the watchdog after an error. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 /* (Optional) Issue a software reset to reset the MCU. */

 __NVIC_SystemReset();

}

void wdt_advanced_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Enable the WDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

 /* (Optional) Check if the WDTRF flag is set to know if the system is

 * recovering from a WDT reset. */

 if (R_SYSTEM->RSTSR1_b.WDTRF)

 {

 /* Clear the flag. */

 R_SYSTEM->RSTSR1 = 0U;

 }

 /* Open the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize other application code. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,758 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

 /* (Register start mode) Call R_WDT_Refresh() to start the WDT in register

 * start mode. Do not call R_WDT_Refresh() in auto start mode unless the

 * counter is in the acceptable refresh window. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application work here. */

 /* (Optional) If there is a chance the application takes less time than

 * the start window, verify the WDT counter is past the start window

 * before refreshing the WDT. */

 uint32_t wdt_counter = 0U;

 do

 {

 /* Read the current WDT counter value. */

 err = R_WDT_CounterGet(&g_wdt0_ctrl, &wdt_counter);

 assert(FSP_SUCCESS == err);

 } while (wdt_counter >= WDT_START_WINDOW_75);

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 }

}

Data Structures

struct wdt_instance_ctrl_t

Data Structure Documentation

◆ wdt_instance_ctrl_t

struct wdt_instance_ctrl_t

WDT private control block. DO NOT MODIFY. Initialization occurs when R_WDT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,759 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

◆ R_WDT_Open()

fsp_err_t R_WDT_Open (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Configure the WDT in register start mode. In auto-start_mode the NMI callback can be registered.
Implements wdt_api_t::open.

This function should only be called once as WDT configuration registers can only be written to once
so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

Return values
FSP_SUCCESS WDT successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_STATE The security state of the NMI and the
module do not match.

Note
In auto start mode the only valid configuration option is for registering the callback for the NMI ISR if NMI output
has been selected.

◆ R_WDT_TimeoutGet()

fsp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
FSP_SUCCESS WDT timeout information retrieved

successfully.

FSP_ERR_ASSERTION Null Pointer.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,760 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

◆ R_WDT_Refresh()

fsp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer. Implements wdt_api_t::refresh.

In addition to refreshing the watchdog counter this function can be used to start the counter in
register start mode.

Example:

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT successfully refreshed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function only returns FSP_SUCCESS. If the refresh fails due to being performed outside of the permitted
refresh period the device will either reset or trigger an NMI ISR to run.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,761 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

◆ R_WDT_StatusGet()

fsp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the WDT status flags. Implements wdt_api_t::statusGet.

Indicates both status and error conditions.

Example:

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_WDT_StatusGet(&g_wdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT status successfully read.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

FSP_ERR_UNSUPPORTED This function is only valid if the watchdog
generates an NMI when an error occurs.

Note
When the WDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,762 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

◆ R_WDT_StatusClear()

fsp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the WDT status and error flags. Implements wdt_api_t::statusClear.

Example:

 /* (Optional) Clear the error flags. */

 err = R_WDT_StatusClear(&g_wdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT flag(s) successfully cleared.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

FSP_ERR_UNSUPPORTED This function is only valid if the watchdog
generates an NMI when an error occurs.

Note
When the WDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

◆ R_WDT_CounterGet()

fsp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current count value of the WDT. Implements wdt_api_t::counterGet.

Example:

 /* Read the current WDT counter value. */

 err = R_WDT_CounterGet(&g_wdt0_ctrl, &wdt_counter);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT current count successfully read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,763 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Monitoring > Watchdog (r_wdt)

◆ R_WDT_CallbackSet()

fsp_err_t R_WDT_CallbackSet (wdt_ctrl_t *const p_ctrl, void(*)(wdt_callback_args_t *) p_callback,
void const *const p_context, wdt_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
wdt_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.11 Motor
Modules

Detailed Description

Motor Modules.

Modules

120-degree conduction control sensorless
(rm_motor_120_control_sensorless)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor 120-Degree Control Interface.

120-degree conduction control with Hall sensors
(rm_motor_120_control_hall)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor 120-Degree Control Interface.

ADC and PWM Modulation (rm_motor_driver)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor driver Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,764 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor

ADC and PWM modulation (rm_motor_120_driver)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor 120-Degree Driver Interface.

Motor 120 degree control (rm_motor_120_degree)

 Usual control of a SPM (Surface Permanent Magnet) motor on RA
MCUs. This module implements the Motor 120 degree control
(rm_motor_120_degree).

Motor Angle (rm_motor_estimate)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Angle (rm_motor_sense_encoder)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Angle and Speed Calculation with Hall sensors
(rm_motor_sense_hall)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Angle and Speed Calculation with induction sensor
(rm_motor_sense_induction)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Current Controller (rm_motor_current)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor current Interface.

Motor Encoder Vector Control (rm_motor_encoder)

 Control a SPM motor on RA MCUs. This module implements the Motor
Encoder Vector Control (rm_motor_encoder).

Motor Inertia estimate (rm_motor_inertia_estimate)

 Measurement and calculation proccess for the motor control on RA
MCUs. This module implements the Motor Inertia Estimate Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,765 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor

Motor Position Controller (rm_motor_position)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor position Interface.

Motor Sensorless Vector Control (rm_motor_sensorless)

 Usual control of a SPM motor on RA MCUs. This module implements
the Motor Sensorless Vector Control (rm_motor_sensorless).

Motor Speed Controller (rm_motor_speed)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor speed Interface.

Motor Vector Control with hall sensors (rm_motor_hall)

 Usual control of a SPM motor on RA MCUs. This module implements
the Motor Vector Control with hall sensors (rm_motor_hall).

Motor return origin (rm_motor_return_origin)

 Search origin position proccess for the motor control on RA MCUs.
This module implements the Motor Return Origin Function Interface.

Motor vector control with induction sensor (rm_motor_induction)

 Control a SPM motor on RA MCUs. This module implements the Motor
vector control with induction sensor (rm_motor_induction).

5.2.11.1 120-degree conduction control sensorless (rm_motor_120_control_sensorless)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Open
(motor_120_control_ctrl_t *const p_ctrl, motor_120_control_cfg_t
const *const p_cfg)

 Opens and configures the motor sensorless 120 detection module.
Implements motor_120_control_api_t::open. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Close
(motor_120_control_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,766 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

 Disables specified motor sensorless 120 detection module.
Implements motor_120_control_api_t::close. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Run
(motor_120_control_ctrl_t *const p_ctrl)

 Run motor (Start motor rotation). Implements
motor_120_control_api_t::run. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Stop
(motor_120_control_ctrl_t *const p_ctrl)

 Stop motor (Stop motor rotation). Implements
motor_120_control_api_t::stop. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Reset
(motor_120_control_ctrl_t *const p_ctrl)

 Reset variables of motor sensorless 120 detection module.
Implements motor_120_control_api_t::reset. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_SpeedSet
(motor_120_control_ctrl_t *const p_ctrl, float const speed_rpm)

 Set speed[rpm]. Implements motor_120_control_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_SpeedGet
(motor_120_control_ctrl_t *const p_ctrl, float *const p_speed_rpm)

 Get speed. Implements motor_120_control_api_t::speedGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_CurrentGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

 Get current. Implements motor_120_control_api_t::currentGet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_WaitStopFlagGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements
motor_120_control_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_TimeoutErrorFlagGet

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,767 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

 Get timeout error flag. Implements
motor_120_control_api_t::timeoutErrorFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_PatternErrorFlagGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

 Get pattern error flag. Implements
motor_120_control_api_t::patternErrorFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_VoltageRefGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_voltage_ref_t *const p_voltage_ref)

 Get voltage ref. Implements motor_120_control_api_t::voltageRefGet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_ParameterUpdate
(motor_120_control_ctrl_t *const p_ctrl, motor_120_control_cfg_t
const *const p_cfg)

 Update the parameters of sensorless 120 detection module.
Implements motor_120_control_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor
120-Degree Control Interface.

Overview
The motor current is used to control the electric current of motor rotation in an appication. This
module should be called cyclically after the A/D conversion of electric current of each phase in an
application. This module calculates each phase voltage with input current reference, electric current
and rotor angle.

Features

The motor 120 control sensorless module has below features.

Calculate each phase(U/V/W) voltage.
Decoupling control.
Voltage error compensation.

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,768 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

Build Time Configurations for rm_motor_120_control_sensorless

The following build time configurations are defined in
fsp_cfg/rm_motor_120_control_sensorless_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > 120-degree conduction control sensorless
(rm_motor_120_control_sensorless)

This module can be added to the Stacks tab via New Stack > Motor > 120-degree conduction control
sensorless (rm_motor_120_control_sensorless).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_120_control_s
ensorless0

Module name.

Conduction type First 60 degree
PWM
Complementary
First 60 degree
PWM

First 60 degree PWM Select conduction type

Stop BEMF Must be a valid non-
negative value.

0.5 Value of stop motor
BEMF (U+V+W)

Timeout counts (msec) Must be a valid integer. 2000 Undetected time

Maximum voltage for
BOOT (V)

Must be a valid non-
negative value.

8.0 Maximum output
voltage for boot mode
(V)

Maximum voltage (V) Must be a valid non-
negative value.

20.0 Maximum output
voltage (V)

Minimum voltage (V) Must be a valid non-
negative value.

3.0 Minimum output
voltage (V)

Carrier frequency (kHz) Must be a valid non-
negative value.

20.0 PWM carrier frequency
(kHz)

Adjusting angle Must be a valid non-
negative value.

0 Adjusting angle

Speed PI decimation Must be a valid integer. 1 Speed PI control
decimation count

Free run timer
frequency (MHz)

Must be a valid integer. 120 Freerun timer
frequency (MHz)

Speed LPF K Must be a valid non-
negative value.

1.0 Speed LPF parameter

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,769 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

Step of speed change Must be a valid non-
negative value.

0.2 Speed reference
change step

Boot reference voltage
(V)

Must be a valid non-
negative value.

3.0 Voltage reference for
boot mode

Voltage lamping time Must be a valid integer. 128 Voltage lamping time

Voltage constant adjust
time

Must be a valid integer. 64 Voltage constant adjust
time value (msec)

Open loop start speed
(rpm)

Must be a valid integer
value.

150 Open loop start speed
(rpm)

Open loop mode2
speed (rpm)

Must be a valid integer
value.

185 to mode2 change
speed (rpm)

Open loop mode3
speed (rpm)

Must be a valid integer
value.

1000 to mode3 change
speed (rpm)

Open loop start voltage
(V)

Must be a valid non-
negative value.

3.0 start reference voltage
(V)

Open loop mode1
speed rate

Must be a valid non-
negative value.

0.25 increase rate of
reference speed
(rpm/control period)

Open loop mode2
voltage rate

Must be a valid non-
negative value.

0.00285 increase rate of
reference voltage
(v/control period)

Open loop mode2
speed rate

Must be a valid non-
negative value.

0.71 increase rate of
reference speed
(rpm/control period)

Open loop mode3
voltage rate

Must be a valid non-
negative value.

0.002 increase rate of
reference voltage
(v/control period)

Open loop maximum
voltage (V)

Must be a valid non-
negative value.

6.5 openloop maximum
voltage (V)

PI control KP Must be a valid non-
negative value.

0.02 PI control gain of
proportional term

PI control KI Must be a valid non-
negative value.

0.004 PI control gain of
integral term

PI control limit Must be a valid non-
negative value.

24.0 PI control limit of
integral term

Motor Parameter

Pole pairs Must be a valid integer. 2 Pole pairs

Resistance (ohm) Must be a valid non-
negative value.

6.447 Resistance

Inductance of d-axis
(H)

Must be a valid non-
negative value.

0.0045 Inductance of d-axis

Inductance of q-axis Must be a valid non- 0.0045 Inductance of q-axis

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,770 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

(H) negative value.

Permanent magnetic
flux (Wb)

Must be a valid non-
negative value.

0.02159 Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid non-
negative value.

1.8 Rotor inertia

Interrupts

Callback Name must be a valid
C symbol

NULL callback function

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the period of current control with none-negative value.
Set the reference voltage with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor 120 control sensorless in an application.

void motor_120_control_sensorless_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err =

RM_MOTOR_120_CONTROL_SENSORLESS_Open(g_motor_120_control_sensorless0.p_ctrl,

 g_motor_120_control_sensorless0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_SpeedSet(g_motor_120_control_sensorless0.p_ctrl,

DEF_120_CONTROL_SENSORLESSHALL_TEST_OVSPD_LIM);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,771 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

 /* Start motor rotation */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Run(g_motor_120_control_sensorless0.p_ctrl);

 /* Get current motor speed */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_SpeedGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_speed);

 /* Get current */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_CurrentGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_current_status);

 /* Get wait stop flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_WaitStopFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_wait_stop_flag);

 /* Get timeout error flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_TimeoutErrorFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_timeout_error_fl

ag);

 /* Get pattern error flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_PatternErrorFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_pattern_error_fl

ag);

 /* Get voltage ref */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_VoltageRefGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_voltage_ref);

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_ParameterUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,772 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

(g_motor_120_control_sensorless0.p_ctrl,

g_motor_120_control_sensorless0.p_cfg);

 /* Stop motor rotation */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Stop(g_motor_120_control_sensorless0.p_ctrl);

 /* Reset the process. */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Reset(g_motor_120_control_sensorless0.p_ctrl);

 /* Close the module. */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Close(g_motor_120_control_sensorless0.p_ctrl);

}

Data Structures

struct motor_120_control_sensorless_extended_cfg_t

struct motor_120_control_sensorless_instance_ctrl_t

Enumerations

enum motor_120_control_sensorless_draw_in_position_t

enum motor_120_control_sensorless_pattern_change_flag_t

Data Structure Documentation

◆ motor_120_control_sensorless_extended_cfg_t

struct motor_120_control_sensorless_extended_cfg_t

Extended configurations for motor 120 control sensorless

Data Fields

float f4_stop_bemf Value of stop motor BEMF
(U+V+W)

float f4_max_boot_v Max output voltage for boot
mode (V)

float f4_carrier_freq Carrier wave frequency (kHz)

int32_t s4_angle_shift_adjust Adjusting angle.

float f4_boot_ref_v Voltage reference when zero
speed (V)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,773 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

uint32_t u4_v_up_time Voltage lamping time.

uint32_t u4_v_const_time Voltage constant adjust time
value (ms)

int32_t s4_ol_start_rpm Start speed (rpm)

int32_t s4_ol_mode1_change_rpm To mode2 change speed (rpm)

int32_t s4_ol_mode2_change_rpm To mode3 change speed (rpm)

float f4_ol_start_refv Start reference voltage (V)

float f4_ol_mode1_rate_rpm Increase rate of reference
speed (rpm/control period)

float f4_ol_mode2_rate_refv Increase rate of reference
voltage (v/control period)

float f4_ol_mode2_rate_rpm Increase rate of reference
speed (rpm/control period)

float f4_ol_mode3_rate_refv Increase rate of reference
voltage (v/control period)

float f4_ol_mode3_max_refv Openloop max voltage (V)

motor_120_driver_instance_t
const *

p_motor_120_driver_instance Motor 120 driver access
module.

timer_instance_t const * p_speed_cyclic_timer_instance Cyclic process of speed control
timer module.

timer_instance_t const * p_speed_calc_timer_instance Speed calculate timer module.

◆ motor_120_control_sensorless_instance_ctrl_t

struct motor_120_control_sensorless_instance_ctrl_t

120 control sensorless instance control block

Data Fields

uint32_t open Used to determine if the
channel is configured.

motor_120_control_status_t active Flag to set active/inactive the
motor 120 control.

motor_120_control_run_mode_t run_mode Drive mode.

motor_120_control_timeout_err
or_flag_t

timeout_error_flag Timeout error status.

motor_120_control_pattern_erro
r_flag_t

pattern_error_flag Bemf pattern error status.

motor_120_control_rotation_dir
ection_t

direction Rotational direction (0:CW
,1:CCW)

float f4_ol_pattern_set_calc Counts to change timing of
open loop pattern.

float f4_speed_calc_base Base counts to calculate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,774 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

rotation speed.

float f_rpm2rad Translate value to
radian/second to rpm.

float f4_v_ref Voltage reference (output of
speed PI control)

uint32_t u4_pwm_duty PWM duty.

float f4_ref_speed_rad Motor speed reference.

float f4_ref_speed_rad_ctrl Motor speed reference for
speed PI control.

float f4_speed_rad Motor speed.

uint32_t u4_cnt_speed_pi Counter for period of speed PI
control.

motor_120_control_wait_stop_fl
ag_t

flag_wait_stop Flag for waiting for motor stop.

float f4_vn_ad Neutral voltage.

uint32_t u4_cnt_adj_v Voltage lamping count
adjustment.

motor_120_control_sensorless_
draw_in_position_t

flag_draw_in Status of draw in a initial
position.

motor_120_driver_phase_patter
n_t

v_pattern Voltage pattern.

uint32_t u4_v_pattern_num Selecting pattern number for
openloop drive.

uint32_t u4_bemf_signal Pattern of BEMF.

uint32_t u4_pre_bemf_signal Previous pattern of BEMF.

motor_120_control_sensorless_
pattern_change_flag_t

flag_pattern_change Pattern change flag.

motor_120_control_speed_ref_t flag_speed_ref Speed reference flag.

motor_120_control_voltage_ref_
t

flag_voltage_ref Voltage reference flag.

uint32_t u4_ol_signal Pattern of BEMF.

uint32_t u4_ol_pattern_set Openloop frequency.

uint32_t u4_cnt_ol_pattern_set Counter for openloop pattern
change.

uint32_t u4_cnt_timeout Counter for timeout error.

uint32_t u4_bemf_timer_cnt Value of timer counter.

uint32_t u4_pre_bemf_timer_cnt Previous value of timer counter.

int32_t s4_timer_cnt_ave Counts for 360 degrees.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,775 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

uint32_t u4_timer_cnt_buf[MOTOR_120_
CONTROL_SENSORLESS_TIMES]

Counts for 60 degrees.

uint32_t u4_timer_cnt_num Array element number before
360 degrees.

uint32_t u4_cnt_carrier Counter for carrier interrupt.

uint32_t u4_pre_cnt_carrier Previous carrier interrupt count.

uint32_t u4_angle_shift_cnt Shift degrees count.

float f4_pi_ctrl_err PI control error.

float f4_pi_ctrl_refi PI control buffer of integral
term.

motor_120_control_cfg_t const * p_cfg Pointer of configuration
structure.

timer_direction_t timer_direction Hold timer direction.

timer_callback_args_t timer_args For call timer callbackSet
function.

Enumeration Type Documentation

◆ motor_120_control_sensorless_draw_in_position_t

enum motor_120_control_sensorless_draw_in_position_t

Draw in a initial position

Enumerator

MOTOR_120_CONTROL_SENSORLESS_DRAW_IN_
POSITION_INIT

Inital parameter.

MOTOR_120_CONTROL_SENSORLESS_DRAW_IN_
POSITION_1ST_TIME

Draw in a initial position of the 1st time.

MOTOR_120_CONTROL_SENSORLESS_DRAW_IN_
POSITION_2ND_TIME

Draw in a initial position of the 2nd time.

◆ motor_120_control_sensorless_pattern_change_flag_t

enum motor_120_control_sensorless_pattern_change_flag_t

Pattern change

Enumerator

MOTOR_120_CONTROL_SENSORLESS_PATTERN_
CHANGE_FLAG_CLEAR

Inital parameter.

MOTOR_120_CONTROL_SENSORLESS_PATTERN_
CHANGE_FLAG_SET

Voltage pattern change.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,776 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

Function Documentation

◆ RM_MOTOR_120_CONTROL_SENSORLESS_Open()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Open (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

Opens and configures the motor sensorless 120 detection module. Implements
motor_120_control_api_t::open.

Example:

 /* Initializes the module. */

 err =

RM_MOTOR_120_CONTROL_SENSORLESS_Open(g_motor_120_control_sensorless0.p_ctrl,

 g_motor_120_control_sensorless0.p_cfg);

Return values
FSP_SUCCESS Motor driver successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_SENSORLESS_Close()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Close (motor_120_control_ctrl_t *const p_ctrl)

Disables specified motor sensorless 120 detection module. Implements
motor_120_control_api_t::close.

Example:

 /* Close the module. */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Close(g_motor_120_control_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,777 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_Run()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Run (motor_120_control_ctrl_t *const p_ctrl)

Run motor (Start motor rotation). Implements motor_120_control_api_t::run.

Example:

 /* Start motor rotation */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Run(g_motor_120_control_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_CONTROL_SENSORLESS_Stop()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Stop (motor_120_control_ctrl_t *const p_ctrl)

Stop motor (Stop motor rotation). Implements motor_120_control_api_t::stop.

Example:

 /* Stop motor rotation */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Stop(g_motor_120_control_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,778 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_Reset()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_Reset (motor_120_control_ctrl_t *const p_ctrl)

Reset variables of motor sensorless 120 detection module. Implements
motor_120_control_api_t::reset.

Example:

 /* Reset the process. */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_Reset(g_motor_120_control_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_CONTROL_SENSORLESS_SpeedSet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_SpeedSet (motor_120_control_ctrl_t *const
p_ctrl, float const speed_rpm)

Set speed[rpm]. Implements motor_120_control_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_SpeedSet(g_motor_120_control_sensorless0.p_ctrl,

DEF_120_CONTROL_SENSORLESSHALL_TEST_OVSPD_LIM);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,779 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_SpeedGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_SpeedGet (motor_120_control_ctrl_t *const
p_ctrl, float *const p_speed_rpm)

Get speed. Implements motor_120_control_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_SpeedGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_SENSORLESS_CurrentGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_CurrentGet (motor_120_control_ctrl_t *const
p_ctrl, motor_120_driver_current_status_t *const p_current_status)

Get current. Implements motor_120_control_api_t::currentGet.

Example:

 /* Get current */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_CurrentGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_current_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,780 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_WaitStopFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_WaitStopFlagGet (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_wait_stop_flag_t *const p_flag)

Get wait stop flag. Implements motor_120_control_api_t::waitStopFlagGet.

Example:

 /* Get wait stop flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_WaitStopFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_wait_stop_flag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,781 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_TimeoutErrorFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_TimeoutErrorFlagGet (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

Get timeout error flag. Implements motor_120_control_api_t::timeoutErrorFlagGet.

Example:

 /* Get timeout error flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_TimeoutErrorFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_timeout_error_fl

ag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,782 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_PatternErrorFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_PatternErrorFlagGet (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

Get pattern error flag. Implements motor_120_control_api_t::patternErrorFlagGet.

Example:

 /* Get pattern error flag */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_PatternErrorFlagGet

(g_motor_120_control_sensorless0.p_ctrl,

 &smpl_pattern_error_fl

ag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_SENSORLESS_VoltageRefGet()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_VoltageRefGet (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_voltage_ref_t *const p_voltage_ref)

Get voltage ref. Implements motor_120_control_api_t::voltageRefGet.

Example:

 /* Get voltage ref */

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_VoltageRefGet(g_motor_120_control_sensorless0.p_ctrl,

&smpl_voltage_ref);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,783 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control sensorless (rm_motor_120_control_sensorless)

◆ RM_MOTOR_120_CONTROL_SENSORLESS_ParameterUpdate()

fsp_err_t RM_MOTOR_120_CONTROL_SENSORLESS_ParameterUpdate (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_cfg_t const *const p_cfg)

Update the parameters of sensorless 120 detection module. Implements
motor_120_control_api_t::parameterUpdate.

Example:

 (void)

RM_MOTOR_120_CONTROL_SENSORLESS_ParameterUpdate

(g_motor_120_control_sensorless0.p_ctrl,

g_motor_120_control_sensorless0.p_cfg);

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

5.2.11.2 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Open (motor_120_control_ctrl_t
*const p_ctrl, motor_120_control_cfg_t const *const p_cfg)

 Opens and configures the motor hall 120 detection module.
Implements motor_120_control_api_t::open. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Close (motor_120_control_ctrl_t
*const p_ctrl)

 Disables specified motor hall 120 detection module. Implements
motor_120_control_api_t::close. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Run (motor_120_control_ctrl_t
*const p_ctrl)

 Run motor (Start motor rotation). Implements
motor_120_control_api_t::run. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,784 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Stop (motor_120_control_ctrl_t
*const p_ctrl)

 Stop motor (Stop motor rotation). Implements
motor_120_control_api_t::stop. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Reset (motor_120_control_ctrl_t
*const p_ctrl)

 Reset variables of motor hall 120 detection module. Implements
motor_120_control_api_t::reset. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_SpeedSet
(motor_120_control_ctrl_t *const p_ctrl, float const speed_rpm)

 Set speed[rpm]. Implements motor_120_control_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_SpeedGet
(motor_120_control_ctrl_t *const p_ctrl, float *const p_speed_rpm)

 Get speed. Implements motor_120_control_api_t::speedGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_CurrentGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

 Get current. Implements motor_120_control_api_t::currentGet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_WaitStopFlagGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements
motor_120_control_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_TimeoutErrorFlagGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

 Get timeout error flag. Implements
motor_120_control_api_t::timeoutErrorFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_PatternErrorFlagGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,785 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

 Get pattern error flag. Implements
motor_120_control_api_t::patternErrorFlagGet. More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_VoltageRefGet
(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_voltage_ref_t *const p_voltage_ref)

 Get voltage ref. Implements motor_120_control_api_t::voltageRefGet.
More...

fsp_err_t RM_MOTOR_120_CONTROL_HALL_ParameterUpdate
(motor_120_control_ctrl_t *const p_ctrl, motor_120_control_cfg_t
const *const p_cfg)

 Update the parameters of hall 120 detection module. Implements
motor_120_control_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor
120-Degree Control Interface.

Overview
The motor current is used to control the electric current of motor rotation in an appication. This
module should be called cyclically after the A/D conversion of electric current of each phase in an
application. This module calculates each phase voltage with input current reference, electric current
and rotor angle.

Features

The motor 120 control hall module has below features.

Calculate each phase(U/V/W) voltage.
Decoupling control.
Voltage error compensation.

Configuration
Build Time Configurations for rm_motor_120_control_hall

The following build time configurations are defined in fsp_cfg/rm_motor_120_control_hall_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > 120-degree conduction control with Hall sensors

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,786 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

(rm_motor_120_control_hall)

This module can be added to the Stacks tab via New Stack > Motor > 120-degree conduction control
with Hall sensors (rm_motor_120_control_hall).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_120_control_h
all0

Module name.

Conduction type First 60 degree
PWM
Complementary
First 60 degree
PWM

First 60 degree PWM Select conduction type

Timeout counts (msec) Must be a valid integer. 200 Counts to judge rotor
unrotate

Maximum voltage (V) Must be a valid non-
negative value.

20.0 Maximum output
voltage (V)

Minimum voltage (V) Must be a valid non-
negative value.

3.0 Minimum output
voltage (V)

Speed PI decimation Must be a valid integer. 0 Speed PI control
decimation count

Freerun timer
frequency (MHz)

Must be a valid integer. 120 Freerun timer
frequency (MHz)

Speed LPF Must be a valid non-
negative value.

1.0 Speed LPF parameter

Step of speed
reference change

Must be a valid non-
negative value.

0.2 Speed ref change step

Start reference voltage
(V)

Must be a valid non-
negative value.

5.8 Reference voltage for
boot mode (V)

Hall wait counts Must be a valid integer. 12 Wait counts of hall
interrupts to start
speed calculation

Stop judge time Must be a valid integer. 1000 Stop judge time

Minimum limit speed
(rpm)

Must be a valid integer. 550 Minimum limit speed
(rpm) (mechanical
angle)

PI control KP Must be a valid non-
negative value.

0.02 PI control gain of
proportional term

PI control KI Must be a valid non-
negative value.

0.0005 PI control gain of
integral term

PI control limit Must be a valid non-
negative value.

24.0 PI control limit of
integral term

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,787 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

Hall interrupt mask
value

Must be a valid integer. 15 For limiting hall
interrupt processing.
Limited by the number
of ADC interrupts

Motor Parameter

Pole pairs Must be a valid integer. 2 Pole pairs

Resistance (ohm) Must be a valid non-
negative value.

6.447 Resistance

Inductance of d-axis
(H)

Must be a valid non-
negative value.

0.0045 Inductance of d-axis

Inductance of q-axis
(H)

Must be a valid non-
negative value.

0.0045 Inductance of q-axis

Permanent magnetic
flux (Wb)

Must be a valid non-
negative value.

0.02159 Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid non-
negative value.

1.8 Rotor inertia

Interrupts

Callback Name must be a valid
C symbol

NULL Callback function

Hall sensor port U Manual Entry BSP_IO_PORT_04_PIN_1
1

Hall sensor port U

Hall sensor port V Manual Entry BSP_IO_PORT_04_PIN_1
0

Hall sensor port V

Hall sensor port W Manual Entry BSP_IO_PORT_04_PIN_0
9

Hall sensor port W

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

Depend on included ICU module.

Usage Notes
Limitations

Set the period of current control with none-negative value.
Set the reference voltage with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor 120 control hall in an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,788 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

void motor_120_control_hall_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_120_CONTROL_HALL_Open(g_motor_120_control_hall0.p_ctrl,

g_motor_120_control_hall0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_120_CONTROL_HALL_SpeedSet(g_motor_120_control_hall0.p_ctrl,

DEF_120_CONTROL_HALL_TEST_SPEED_REF);

 /* Start motor rotation */

 (void) RM_MOTOR_120_CONTROL_HALL_Run(g_motor_120_control_hall0.p_ctrl);

 /* Get current motor speed */

 (void) RM_MOTOR_120_CONTROL_HALL_SpeedGet(g_motor_120_control_hall0.p_ctrl,

&smpl_speed);

 /* Get current */

 (void) RM_MOTOR_120_CONTROL_HALL_CurrentGet(g_motor_120_control_hall0.p_ctrl,

&smpl_current_status);

 /* Get wait stop flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_WaitStopFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_wait_stop_flag);

 /* Get timeout error flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_TimeoutErrorFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_timeout_error_flag);

 /* Get pattern error flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_PatternErrorFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_pattern_error_flag);

 /* Get voltage ref */

 (void) RM_MOTOR_120_CONTROL_HALL_VoltageRefGet(g_motor_120_control_hall0.p_ctrl,

&smpl_voltage_ref);

 (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,789 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

RM_MOTOR_120_CONTROL_HALL_ParameterUpdate(g_motor_120_control_hall0.p_ctrl,

g_motor_120_control_hall0.p_cfg);

 /* Stop motor rotation */

 (void) RM_MOTOR_120_CONTROL_HALL_Stop(g_motor_120_control_hall0.p_ctrl);

 /* Reset the process. */

 (void) RM_MOTOR_120_CONTROL_HALL_Reset(g_motor_120_control_hall0.p_ctrl);

 /* Close the module. */

 (void) RM_MOTOR_120_CONTROL_HALL_Close(g_motor_120_control_hall0.p_ctrl);

}

Data Structures

struct motor_120_control_hall_extended_cfg_t

struct motor_120_control_hall_instance_ctrl_t

Data Structure Documentation

◆ motor_120_control_hall_extended_cfg_t

struct motor_120_control_hall_extended_cfg_t

Extended configurations for motor 120 control hall

Data Fields

bsp_io_port_pin_t port_hall_sensor_u Hall sensor port U.

bsp_io_port_pin_t port_hall_sensor_v Hall sensor port V.

bsp_io_port_pin_t port_hall_sensor_w Hall sensor port W.

float f4_start_refv Reference voltage for boot
mode.

uint32_t u4_hall_wait_cnt Wait counts of hall interrupts
for speed calculation.

uint32_t u4_stop_judge_time Stop judge time.

uint32_t u4_min_speed_rpm Minimum limit speed (rpm)
(mechanical angle)

uint32_t u4_hall_interrupt_mask_value For limiting hall interrupt
processing. Limited by the
number of ADC interrupts.

motor_120_driver_instance_t
const *

p_motor_120_driver_instance Motor 120 driver access
module.

timer_instance_t const * p_speed_cyclic_timer_instance Cyclic process of speed control
timer module.

timer_instance_t const * p_speed_calc_timer_instance Speed calculate timer module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,790 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

external_irq_instance_t const * p_u_hall_irq_instance U phase hall interrupt.

external_irq_instance_t const * p_v_hall_irq_instance V phase hall interrupt.

external_irq_instance_t const * p_w_hall_irq_instance W phase hall interrupt.

◆ motor_120_control_hall_instance_ctrl_t

struct motor_120_control_hall_instance_ctrl_t

120 control hall instance control block

Data Fields

uint32_t open Used to determine if the
channel is configured.

motor_120_control_status_t active Flag to set active/inactive the
motor 120 control.

motor_120_control_run_mode_t run_mode Drive mode.

motor_120_control_timeout_err
or_flag_t

timeout_error_flag Timeout error status.

motor_120_control_pattern_erro
r_flag_t

pattern_error_flag Hall pattern error status.

motor_120_control_rotation_dir
ection_t

direction Rotational direction (0:CW
,1:CCW)

float f4_speed_calc_base Base counts to calculate
rotation speed.

float f_rpm2rad Translate value to
radian/second to rpm.

float f4_v_ref Voltage reference (output of
speed PI control)

float f4_ref_speed_rad Motor speed reference.

float f4_ref_speed_rad_ctrl Motor speed reference for
speed PI control.

float f4_speed_rad Motor speed.

uint32_t u4_cnt_speed_pi Counter for period of speed PI
control.

motor_120_control_wait_stop_fl
ag_t

flag_wait_stop Flag for waiting for motor stop.

uint32_t u4_cnt_wait_stop Counter for waiting motor stop.

motor_120_driver_phase_patter
n_t

v_pattern Voltage pattern.

motor_120_control_speed_ref_t flag_speed_ref Speed reference flag.

motor_120_control_voltage_ref_
t

flag_voltage_ref Voltage reference flag.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,791 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

uint32_t u4_cnt_timeout Counter for timeout error.

uint32_t u4_hall_timer_cnt Value of timer counter.

uint32_t u4_pre_hall_timer_cnt Previous value of timer counter.

int32_t s4_timer_cnt_ave Counts for 360 degrees.

uint32_t u4_timer_cnt_buf[MOTOR_120_
CONTROL_HALL_TIMES]

Counts for 60 degrees.

uint32_t u4_timer_cnt_num Array element number before
360 degrees.

float f4_pi_ctrl_err PI control error.

float f4_pi_ctrl_refi PI control buffer of integral
term.

uint32_t u4_hall_intr_cnt For start timing of speed
calculation.

uint32_t u4_adc_interrupt_cnt Number of ADC interrupt
processing.

motor_120_control_cfg_t const * p_cfg Pointer of configuration
structure.

timer_direction_t timer_direction Hold timer direction.

external_irq_callback_args_t hall_interrupt_args For call IRQ callbackSet
function.

timer_callback_args_t timer_args For call timer callbackSet
function.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,792 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_Open()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Open (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

Opens and configures the motor hall 120 detection module. Implements
motor_120_control_api_t::open.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_120_CONTROL_HALL_Open(g_motor_120_control_hall0.p_ctrl,

g_motor_120_control_hall0.p_cfg);

Return values
FSP_SUCCESS Motor 120 driver successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_HALL_Close()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Close (motor_120_control_ctrl_t *const p_ctrl)

Disables specified motor hall 120 detection module. Implements motor_120_control_api_t::close.

Example:

 /* Close the module. */

 (void) RM_MOTOR_120_CONTROL_HALL_Close(g_motor_120_control_hall0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,793 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_Run()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Run (motor_120_control_ctrl_t *const p_ctrl)

Run motor (Start motor rotation). Implements motor_120_control_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_120_CONTROL_HALL_Run(g_motor_120_control_hall0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_CONTROL_HALL_Stop()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Stop (motor_120_control_ctrl_t *const p_ctrl)

Stop motor (Stop motor rotation). Implements motor_120_control_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_120_CONTROL_HALL_Stop(g_motor_120_control_hall0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,794 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_Reset()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_Reset (motor_120_control_ctrl_t *const p_ctrl)

Reset variables of motor hall 120 detection module. Implements motor_120_control_api_t::reset.

Example:

 /* Reset the process. */

 (void) RM_MOTOR_120_CONTROL_HALL_Reset(g_motor_120_control_hall0.p_ctrl);

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_CONTROL_HALL_SpeedSet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_SpeedSet (motor_120_control_ctrl_t *const p_ctrl, float
const speed_rpm)

Set speed[rpm]. Implements motor_120_control_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_120_CONTROL_HALL_SpeedSet(g_motor_120_control_hall0.p_ctrl,

DEF_120_CONTROL_HALL_TEST_SPEED_REF);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,795 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_SpeedGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_SpeedGet (motor_120_control_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

Get speed. Implements motor_120_control_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_120_CONTROL_HALL_SpeedGet(g_motor_120_control_hall0.p_ctrl,

&smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_HALL_CurrentGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_CurrentGet (motor_120_control_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

Get current. Implements motor_120_control_api_t::currentGet.

Example:

 /* Get current */

 (void) RM_MOTOR_120_CONTROL_HALL_CurrentGet(g_motor_120_control_hall0.p_ctrl,

&smpl_current_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,796 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_WaitStopFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_WaitStopFlagGet (motor_120_control_ctrl_t *const
p_ctrl, motor_120_control_wait_stop_flag_t *const p_flag)

Get wait stop flag. Implements motor_120_control_api_t::waitStopFlagGet.

Example:

 /* Get wait stop flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_WaitStopFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_wait_stop_flag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_HALL_TimeoutErrorFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_TimeoutErrorFlagGet (motor_120_control_ctrl_t *const
p_ctrl, motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

Get timeout error flag. Implements motor_120_control_api_t::timeoutErrorFlagGet.

Example:

 /* Get timeout error flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_TimeoutErrorFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_timeout_error_flag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,797 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_PatternErrorFlagGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_PatternErrorFlagGet (motor_120_control_ctrl_t *const
p_ctrl, motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

Get pattern error flag. Implements motor_120_control_api_t::patternErrorFlagGet.

Example:

 /* Get pattern error flag */

 (void)

RM_MOTOR_120_CONTROL_HALL_PatternErrorFlagGet(g_motor_120_control_hall0.p_ctrl,

&smpl_pattern_error_flag);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_CONTROL_HALL_VoltageRefGet()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_VoltageRefGet (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_voltage_ref_t *const p_voltage_ref)

Get voltage ref. Implements motor_120_control_api_t::voltageRefGet.

Example:

 /* Get voltage ref */

 (void) RM_MOTOR_120_CONTROL_HALL_VoltageRefGet(g_motor_120_control_hall0.p_ctrl,

&smpl_voltage_ref);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,798 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)

◆ RM_MOTOR_120_CONTROL_HALL_ParameterUpdate()

fsp_err_t RM_MOTOR_120_CONTROL_HALL_ParameterUpdate (motor_120_control_ctrl_t *const
p_ctrl, motor_120_control_cfg_t const *const p_cfg)

Update the parameters of hall 120 detection module. Implements
motor_120_control_api_t::parameterUpdate.

Example:

 (void)

RM_MOTOR_120_CONTROL_HALL_ParameterUpdate(g_motor_120_control_hall0.p_ctrl,

g_motor_120_control_hall0.p_cfg);

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

5.2.11.3 ADC and PWM Modulation (rm_motor_driver)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_DRIVER_Open (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

 Opens and configures the Motor Driver module. Implements
motor_driver_api_t::open. More...

fsp_err_t RM_MOTOR_DRIVER_Close (motor_driver_ctrl_t *const p_ctrl)

 Disables specified Motor Driver Module. Implements
motor_driver_api_t::close. More...

fsp_err_t RM_MOTOR_DRIVER_Reset (motor_driver_ctrl_t *const p_ctrl)

 Reset variables of Motor Driver Module. Implements
motor_driver_api_t::reset. More...

fsp_err_t RM_MOTOR_DRIVER_PhaseVoltageSet (motor_driver_ctrl_t *const
p_ctrl, float const u_voltage, float const v_voltage, float const
w_voltage)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,799 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

 Set Phase Voltage Data to calculate PWM duty. Implements
motor_driver_api_t::phaseVoltageSet. More...

fsp_err_t RM_MOTOR_DRIVER_CurrentGet (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

 Get calculated phase Current, Vdc & Va_max data. Implements
motor_driver_api_t::currentGet. More...

fsp_err_t RM_MOTOR_DRIVER_FlagCurrentOffsetGet (motor_driver_ctrl_t
*const p_ctrl, uint8_t *const p_flag_offset)

 Get the flag of finish current offset detection. Implements
motor_driver_api_t::flagCurrentOffsetGet. More...

fsp_err_t RM_MOTOR_DRIVER_CurrentOffsetRestart (motor_driver_ctrl_t *const
p_ctrl)

 Restart the current offset detection. Implements
motor_driver_api_t::currentOffsetRestart. More...

fsp_err_t RM_MOTOR_DRIVER_ParameterUpdate (motor_driver_ctrl_t *const
p_ctrl, motor_driver_cfg_t const *const p_cfg)

 Update the parameters of Driver Module. Implements
motor_driver_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor driver
Interface.

Overview
The motor driver module is used to translate phase voltage to PWM duty and output PWM, and
detect phase current and main line voltage. This module should be called cyclically at included A/D
Conversion finish interrupt.

Features

The Motor Driver Module has below features.

Calculate each phase(U/V/W) PWM duty according to reference and output PWM.
Detect each phase current and main line voltage.
Detect and correct A/D offset at phase current channel

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,800 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

Build Time Configurations for rm_motor_driver

The following build time configurations are defined in fsp_cfg/rm_motor_driver_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

ADC_B Support Enabled
Disabled

Disabled Select ADC_B module
support.

Shared ADC support Enabled
Disabled

Disabled Select Shared ADC
support.

Supported Motor
Number

Must be greater than 1. 1

Configurations for Motor > ADC and PWM Modulation (rm_motor_driver)

This module can be added to the Stacks tab via New Stack > Motor > ADC and PWM Modulation
(rm_motor_driver).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_driver0 Module name.

Shunt type 1 shunt
2 shunt
3 shunt

2 shunt Select shunt type

Modulation method SVPWM
SPWM

SVPWM Select PWM modulation
method

PWM output port UP Manual Entry 0 PWM output port UP

PWM output port UN Manual Entry 0 PWM output port UN

PWM output port VP Manual Entry 0 PWM output port VP

PWM output port VN Manual Entry 0 PWM output port VN

PWM output port WP Manual Entry 0 PWM output port WP

PWM output port WN Manual Entry 0 PWM output port WN

PWM Timer Frequency
(MHz)

Must be a valid non-
negative value.

120 GPT PWM timer
frequency

PWM Carrier Period
(Microseconds)

Must be a valid non-
negative value.

50 GPT PWM carrier period

Dead Time (Raw
Counts)

Must be a valid non-
negative value.

240 GPT PWM dead time

Current Range (A) Must be a valid value 27.5F Current range to
measure(Maximum

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,801 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

input current)

Voltage Range (V) Must be a valid value 111.0F Voltage range to
measure(Maximum
input Main Line
Voltage)

Counts for current
offset measurement

Must be a valid non-
negative value.

500 How many times to
measure current offset

A/D conversion channel
for U Phase current

Value must be a
supported channel
number

0 Specify the A/D
channel for U phase
current (channel
availability varies by
MCU)

A/D conversion channel
for W Phase current

Value must be a
supported channel
number

2 Specify the A/D
channel for W phase
current (channel
availability varies by
MCU)

A/D conversion channel
for Main Line Voltage

Value must be a
supported channel
number

5 Specify the A/D
channel for main line
voltage (channel
availability varies by
MCU)

A/D conversion channel
for V Phase current

Value must be a
supported channel
number

1 Specify the A/D
channel for V phase
current (channel
availability varies by
MCU)

A/D conversion channel
for sin signal

Value must be a
supported channel
number

27 Specify the A/D
channel for sin signal
of induction sensor
(channel availability
varies by MCU)

A/D conversion channel
for cos signal

Value must be a
supported channel
number

28 Specify the A/D
channel for cos signal
of induction sensor
(channel availability
varies by MCU)

Using ADC Scan Group Manual Entry 0 For MCUs with ADC_B,
select the scan group
used.

A/D conversion unit for
U Phase current

Manual Entry 0 Select the A/D
conversion module for
U phase current (only
valid with adc module)

A/D conversion unit for
W Phase current

Manual Entry 0 Select the A/D
conversion module for
W phase current (only
valid with adc module)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,802 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

A/D conversion unit for
main line voltage

Manual Entry 0 Select the A/D
conversion module for
main line voltage (only
valid with adc module)

A/D conversion unit for
V Phase current

Manual Entry 0 Select the A/D
conversion module for
V phase current (only
valid with adc module)

A/D conversion unit for
sin signal

Manual Entry 0 Select the A/D
conversion module for
sin signal of induction
sensor (only valid with
adc module)

A/D conversion unit for
cos signal

Manual Entry 0 Select the A/D
conversion module for
cos signal of induction
sensor (only valid with
adc module)

ADC interrupt module 1st
2nd

1st Select from which
module ADC intterupt
happens (only valid
with adc module)

Adjustment value to
current A/D

Must be a valid non-
negative value.

20.0 Value to adjust 1shunt
A/D double buffer

Minimum difference of
PWM duty

Must be a valid non-
negative value.

300 Minimum difference of
PWM duty

Adjustment delay of
A/D conversion

Must be a valid non-
negative value.

240 Adjustment delay of
A/D conversion

1shunt interrupt phase PHASE_U
PHASE_V
PHASE_W

PHASE_U Select the phase which
occures ADC end
interrupt. (Only valid
with 1shunt)

Input Voltage (V) Must be a valid value 24.0F Input voltage

Resolution of A/D
conversion

Must be a valid
Resolution of ADC.

0xFFF Resolution of A/D
conversion

Offset of A/D
conversion for current

Must be a valid non-
negative value.

0x745 Offset of A/D
conversion for current

Conversion level of A/D
conversion for voltage

Must be a valid value 0.66F Conversion level of A/D
conversion for voltage

GTIOCA Stop Level Pin Level Low
Pin Level High

Pin Level High Select the behavior of
the output pin when
the timer is stopped.

GTIOCB Stop Level Pin Level Low
Pin Level High

Pin Level High Select the behavior of
the output pin when
the timer is stopped.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,803 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

Modulation

Maximum Duty Must be a valid value 0.9375F Maximum duty of PWM

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at A/D
conversion finish
interrupt.

Clock Configuration

Set used clock with included GPT timer.

Pin Configuration

Depend on included GPT Three Phase Module and ADC Module.

Usage Notes
When shared ADC instance is used, please perform below sequence.

1. Add (New) shared ADC instance.
2. Set configurations of below ADC module for your use.
3. Select "Common | Shared ADC support" to "Enabled".

Limitations

Basically no limitation exists.

Examples
Basic Example

This is a basic example of minimal use of the Motor Driver in an application.

void motor_driver_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_DRIVER_Open(&g_motor_driver0.p_ctrl, &g_motor_driver0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at cyclic interrupt (e.g. included GPT PWM Carrier

intterupt).

 * This implementation is an example. */

 // while (true)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,804 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

 {

 /* Application work here. */

 /* Get electric current, main line voltage and maximum voltage component */

 (void) RM_MOTOR_DRIVER_CurrentGet(&g_motor_driver0.p_ctrl, &f_get_iu,

&f_get_iw, &f_get_vdc, &f_get_va_max);

 /* Get the flag of A/D convderted current offset */

 (void) RM_MOTOR_DRIVER_FlagCurrentOffsetGet(&g_motor_driver0.p_ctrl,

&u1_get_flg_offset);

 // Perform current control process here

 /* Set phase voltage */

 (void) RM_MOTOR_DRIVER_PhaseVoltageSet(&g_motor_driver0.p_ctrl, 1.0F, 1.0F,

1.0F);

 (void) RM_MOTOR_DRIVER_ParameterUpdate(&g_motor_driver0.p_ctrl,

&g_motor_driver0.p_cfg);

 }

 (void) RM_MOTOR_DRIVER_Reset(&g_motor_driver0.p_ctrl);

 //

 (void) RM_MOTOR_DRIVER_Close(&g_motor_driver0.p_ctrl);

}

Data Structures

struct motor_driver_shared_instance_ctrl_t

struct motor_driver_extended_shared_cfg_t

Enumerations

enum motor_driver_select_adc_instance_t

enum motor_driver_modulation_method_t

Data Structure Documentation

◆ motor_driver_shared_instance_ctrl_t

struct motor_driver_shared_instance_ctrl_t

For multiple motor

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,805 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

uint32_t open

uint8_t registered_motor_count Registered motor counts.

void const * p_context[MOTOR_DRIVER_CFG
_SUPPORT_MOTOR_NUM]

◆ motor_driver_extended_shared_cfg_t

struct motor_driver_extended_shared_cfg_t

For multiple motor

Data Fields

adc_instance_t const * p_adc_instance_first first ADC instance

adc_instance_t const * p_adc_instance_second second ADC instance

motor_driver_shared_instance_c
trl_t
*const

p_shared_instance_ctrl

Enumeration Type Documentation

◆ motor_driver_select_adc_instance_t

enum motor_driver_select_adc_instance_t

Support two ADC instance valid for adc

Enumerator

MOTOR_DRIVER_SELECT_ADC_INSTANCE_FIRST Use first ADC instance.

MOTOR_DRIVER_SELECT_ADC_INSTANCE_SECON
D

Use second ADC instanse.

◆ motor_driver_modulation_method_t

enum motor_driver_modulation_method_t

Enumerator

MOTOR_DRIVER_MODULATION_METHOD_SPWM Sinusoidal pulse-width-modulation.

MOTOR_DRIVER_MODULATION_METHOD_SVPWM

Space vector pulse-width-modulation.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,806 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

◆ RM_MOTOR_DRIVER_Open()

fsp_err_t RM_MOTOR_DRIVER_Open (motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

Opens and configures the Motor Driver module. Implements motor_driver_api_t::open.

Return values
FSP_SUCCESS Motor Driver successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ RM_MOTOR_DRIVER_Close()

fsp_err_t RM_MOTOR_DRIVER_Close (motor_driver_ctrl_t *const p_ctrl)

Disables specified Motor Driver Module. Implements motor_driver_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_DRIVER_Reset()

fsp_err_t RM_MOTOR_DRIVER_Reset (motor_driver_ctrl_t *const p_ctrl)

Reset variables of Motor Driver Module. Implements motor_driver_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,807 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

◆ RM_MOTOR_DRIVER_PhaseVoltageSet()

fsp_err_t RM_MOTOR_DRIVER_PhaseVoltageSet (motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

Set Phase Voltage Data to calculate PWM duty. Implements motor_driver_api_t::phaseVoltageSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_DRIVER_CurrentGet()

fsp_err_t RM_MOTOR_DRIVER_CurrentGet (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

Get calculated phase Current, Vdc & Va_max data. Implements motor_driver_api_t::currentGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_DRIVER_FlagCurrentOffsetGet()

fsp_err_t RM_MOTOR_DRIVER_FlagCurrentOffsetGet (motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

Get the flag of finish current offset detection. Implements motor_driver_api_t::flagCurrentOffsetGet
.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,808 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM Modulation (rm_motor_driver)

◆ RM_MOTOR_DRIVER_CurrentOffsetRestart()

fsp_err_t RM_MOTOR_DRIVER_CurrentOffsetRestart (motor_driver_ctrl_t *const p_ctrl)

Restart the current offset detection. Implements motor_driver_api_t::currentOffsetRestart.

Return values
FSP_SUCCESS Successfully restarted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_DRIVER_ParameterUpdate()

fsp_err_t RM_MOTOR_DRIVER_ParameterUpdate (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Update the parameters of Driver Module. Implements motor_driver_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

5.2.11.4 ADC and PWM modulation (rm_motor_120_driver)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_120_DRIVER_Open (motor_120_driver_ctrl_t *const
p_ctrl, motor_120_driver_cfg_t const *const p_cfg)

 Opens and configures the motor 120 driver module. Implements
motor_120_driver_api_t::open. More...

fsp_err_t RM_MOTOR_120_DRIVER_Close (motor_120_driver_ctrl_t *const
p_ctrl)

 Disables specified motor 120 driver module. Implements
motor_120_driver_api_t::close. More...

fsp_err_t RM_MOTOR_120_DRIVER_Run (motor_120_driver_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,809 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

 Run motor (Start motor rotation). Implements
motor_120_driver_api_t::run. More...

fsp_err_t RM_MOTOR_120_DRIVER_Stop (motor_120_driver_ctrl_t *const p_ctrl)

 Stop motor (Stop motor rotation). Implements
motor_120_driver_api_t::stop. More...

fsp_err_t RM_MOTOR_120_DRIVER_Reset (motor_120_driver_ctrl_t *const
p_ctrl)

 Reset variables of motor 120 driver module. Implements
motor_120_driver_api_t::reset. More...

fsp_err_t RM_MOTOR_120_DRIVER_PhaseVoltageSet (motor_120_driver_ctrl_t
*const p_ctrl, float const u_voltage, float const v_voltage, float const
w_voltage)

 Set phase voltage data to calculate PWM duty. Implements
motor_120_driver_api_t::phaseVoltageSet. More...

fsp_err_t RM_MOTOR_120_DRIVER_PhasePatternSet (motor_120_driver_ctrl_t
*const p_ctrl, motor_120_driver_phase_pattern_t const pattern)

 Set phase voltage pattern. Implements
motor_120_driver_api_t::phasePatternSet. More...

fsp_err_t RM_MOTOR_120_DRIVER_CurrentGet (motor_120_driver_ctrl_t *const
p_ctrl, motor_120_driver_current_status_t *const p_current_status)

 Get calculated phase current, Vdc & Va_max data. Implements
motor_120_driver_api_t::currentGet. More...

fsp_err_t RM_MOTOR_120_DRIVER_CurrentOffsetCalc (motor_120_driver_ctrl_t
*const p_ctrl)

 current offset detection. Implements
motor_120_driver_api_t::currentOffsetCalc More...

fsp_err_t RM_MOTOR_120_DRIVER_FlagCurrentOffsetGet
(motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_flag_offset_calc_t *const p_flag_offset)

 Get the flag of finish current offset detection. Implements
motor_120_driver_api_t::flagCurrentOffsetGet. More...

fsp_err_t RM_MOTOR_120_DRIVER_ParameterUpdate (motor_120_driver_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,810 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

*const p_ctrl, motor_120_driver_cfg_t const *const p_cfg)

 Update the parameters of 120 driver module. Implements
motor_120_driver_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor
120-Degree Driver Interface.

Overview
The motor 120 degree driver module is used to translate phase voltage to PWM duty and output
PWM, and detect phase current, voltage and main line voltage. This module should be called
cyclically at included A/D conversion finish interrupt.

Figure 229: Image of Current Control Module(yellow block)

Features

The motor 120 degree driver module has below features.

Calculate each phase(U/V/W) PWM duty according to reference and output PWM.
Detect each phase current, phase voltage and main line voltage.
Detect and correct A/D offset at phase current and voltage channel

Configuration
Build Time Configurations for rm_motor_120_driver

The following build time configurations are defined in fsp_cfg/rm_motor_120_driver_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,811 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

ADC_B Support Enabled
Disabled

Disabled Select ADC_B module
support.

Shared ADC support Enabled
Disabled

Disabled Select Shared ADC
support.

Support Motor Number Must be greater than 1. 1

Configurations for Motor > ADC and PWM modulation (rm_motor_120_driver)

This module can be added to the Stacks tab via New Stack > Motor > ADC and PWM modulation
(rm_motor_120_driver).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_120_driver0 Module name.

120 degree control
type

Sensorless
Hall

Sensorless 120 degree control
type

PWM output port UP Manual Entry BSP_IO_PORT_06_PIN_0
1

PWM output port UP

PWM output port UN Manual Entry BSP_IO_PORT_06_PIN_0
0

PWM output port UN

PWM output port VP Manual Entry BSP_IO_PORT_01_PIN_1
3

PWM output port VP

PWM output port VN Manual Entry BSP_IO_PORT_01_PIN_1
4

PWM output port VN

PWM output port WP Manual Entry BSP_IO_PORT_01_PIN_1
1

PWM output port WP

PWM output port WN Manual Entry BSP_IO_PORT_01_PIN_1
2

PWM output port WN

PWM timer frequency
(MHz)

Must be a valid positive
integer.

120 GPT PWM timer
frequency

PWM carrier period
(Microseconds)

Must be a valid positive
integer.

50 GPT PWM carrier period

Dead time (Raw
counts)

Must be a valid positive
integer.

240 GPT PWM dead time

Current range (A) Must be a valid non-
negative value.

27.5 Current range to
measure(Maximum
input current)

Voltage range (V) Must be a valid non- 111.0 Voltage range to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,812 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

negative value. measure(Maximum
input main line
voltage)

Resolution of A/D
conversion

Must be a valid
Resolution of ADC.

0xFFF Resolution of A/D
conversion

Offset of A/D
conversion for current

Must be a valid non-
negative value.

0x745 Offset of A/D
conversion for current

Conversion level of A/D
conversion for voltage

Must be a valid non-
negative value.

0.66 Conversion level of A/D
conversion for voltage

Counts for current
offset measurement

Must be a valid positive
integer.

500 How many times to
measure current offset

Input voltage Must be a valid non-
negative value.

24.0 Input voltage

A/D conversion channel
for U phase current

Value must be a
supported channel
number

0 Specify the A/D
channel for U phase
current

A/D conversion channel
for W phase current

Value must be a
supported channel
number

2 Specify the A/D
channel for W phase
current

A/D conversion channel
for main line voltage

Value must be a
supported channel
number

5 Specify the A/D
channel for main line
voltage

A/D conversion channel
for U phase voltage

Value must be a
supported channel
number

18 Specify the A/D
channel for U phase
voltage

A/D conversion channel
for V phase voltage

Value must be a
supported channel
number

20 Specify the A/D
channel for V phase
voltage

A/D conversion channel
for W phase voltage

Value must be a
supported channel
number

6 Specify the A/D
channel for W phase
voltage

A/D conversion unit for
U phase current

Must be a valid non-
negative value.

0 Specify the A/D unit for
U phase current

A/D conversion unit for
W phase current

Must be a valid non-
negative value.

0 Specify the A/D unit for
W phase current

A/D conversion unit for
main line voltage

Must be a valid non-
negative value.

0 Specify the A/D unit for
main line voltage

A/D conversion unit for
U phase voltage

Must be a valid non-
negative value.

0 Specify the A/D unit for
U phase voltage

A/D conversion unit for
V phase voltage

Must be a valid non-
negative value.

0 Specify the A/D unit for
V phase voltage

A/D conversion unit for
W phase voltage

Must be a valid non-
negative value.

0 Specify the A/D unit for
W phase voltage

GTIOCA stop level Pin Level Low Pin Level High Select the behavior of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,813 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

Pin Level High the output pin when
the timer is stopped.

GTIOCB stop level Pin Level Low
Pin Level High

Pin Level High Select the behavior of
the output pin when
the timer is stopped.

ADC interrupt module 1st
2nd

1st Select from which
module ADC intterupt
happens

Modulation

Maximum duty Must be a valid non-
negative value.

0.9375 Maximum duty of PWM

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at A/D
conversion finish
interrupt.

Clock Configuration

Set used clock with included GPT timer.

Pin Configuration

Depend on included GPT three phase module and ADC module.

Usage Notes
Limitations

Basically no limitation exists.

Examples
Basic Example

This is a basic example of minimal use of the Motor 120 degree driver in an application.

void motor_120_driver_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_120_DRIVER_Open(&g_motor_120_driver0.p_ctrl,

&g_motor_120_driver0.p_cfg);

 /* Start PWM output */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,814 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

 err = RM_MOTOR_120_DRIVER_Run(&g_motor_120_driver0.p_ctrl);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at cyclic interrupt (e.g. included GPT PWM carrier

intterupt).

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Caclutarion of current offset */

 (void) RM_MOTOR_120_DRIVER_CurrentOffsetCalc(&g_motor_120_driver0.p_ctrl);

 /* Get electric current, main line voltage and maximum voltage component */

 (void) RM_MOTOR_120_DRIVER_CurrentGet(&g_motor_120_driver0.p_ctrl,

&g_current_status);

 /* Get the flag of A/D convderted current offset */

 (void) RM_MOTOR_120_DRIVER_FlagCurrentOffsetGet(&g_motor_120_driver0.p_ctrl,

&u1_get_flg_offset);

 // Perform current control process here

 /* Set phase voltage */

 (void) RM_MOTOR_120_DRIVER_PhaseVoltageSet(&g_motor_120_driver0.p_ctrl, 1.0F,

1.0F, 1.0F);

 /* Set phase pattern */

 (void) RM_MOTOR_120_DRIVER_PhasePatternSet(&g_motor_120_driver0.p_ctrl,

MOTOR_120_DRIVER_API_VP_ON_WN_PWM);

 (void) RM_MOTOR_120_DRIVER_ParameterUpdate(&g_motor_120_driver0.p_ctrl,

&g_motor_120_driver0.p_cfg);

 }

 (void) RM_MOTOR_120_DRIVER_Stop(&g_motor_120_driver0.p_ctrl);

 (void) RM_MOTOR_120_DRIVER_Reset(&g_motor_120_driver0.p_ctrl);

 //

 (void) RM_MOTOR_120_DRIVER_Close(&g_motor_120_driver0.p_ctrl);

}

Data Structures

struct motor_120_driver_shared_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,815 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

struct motor_120_driver_modulation_t

struct motor_120_driver_extended_cfg_t

Enumerations

enum motor_120_driver_select_adc_instance_t

enum motor_120_driver_status_t

enum motor_120_driver_type_t

Data Structure Documentation

◆ motor_120_driver_shared_instance_ctrl_t

struct motor_120_driver_shared_instance_ctrl_t

For multiple ADC module

Data Fields

uint32_t open

uint8_t registered_motor_count Registered motor counts.

void const * p_context[MOTOR_120_DRIVER
_CFG_SUPPORT_MOTOR_NUM]

◆ motor_120_driver_modulation_t

struct motor_120_driver_modulation_t

Modulation parameter

Data Fields

float f4_vdc Main line voltage (Vdc) (V)

float f4_max_duty Maximum duty cycle.

float f4_min_duty Minimum duty cycle.

float f4_neutral_duty Duty cycle that represents 0 (V)

◆ motor_120_driver_extended_cfg_t

struct motor_120_driver_extended_cfg_t

Extended configurations for motor 120 driver

Data Fields

adc_instance_t const * p_adc_instance ADC module instance.

three_phase_instance_t const * p_three_phase_instance PWM output module instance
(GPT three phase)

motor_120_driver_type_t motor_120_type 120 degree control type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,816 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

adc_channel_t iu_ad_ch A/D channel for U phase
current.

adc_channel_t iw_ad_ch A/D channel for W phase
current.

adc_channel_t vdc_ad_ch A/D channel for main line
voltage.

adc_channel_t vu_ad_ch A/D channel for U phase
voltage.

adc_channel_t vv_ad_ch A/D channel for V phase
voltage.

adc_channel_t vw_ad_ch A/D channel for W phase
voltage.

uint8_t iu_ad_unit Used A/D unit number for U
phase current.

uint8_t iw_ad_unit Used A/D unit number for W
phase current.

uint8_t vdc_ad_unit Used A/D unit number for main
line voltage.

uint8_t vu_ad_unit Used A/D unit number for U
phase voltage.

uint8_t vv_ad_unit Used A/D unit number for V
phase voltage.

uint8_t vw_ad_unit Used A/D unit number for W
phase voltage.

bsp_io_port_pin_t port_up PWM output port UP.

bsp_io_port_pin_t port_un PWM output port UN.

bsp_io_port_pin_t port_vp PWM output port VP.

bsp_io_port_pin_t port_vn PWM output port VN.

bsp_io_port_pin_t port_wp PWM output port WP.

bsp_io_port_pin_t port_wn PWM output port WN.

uint32_t u4_pwm_timer_freq PWM timer frequency (MHz)

float u4_pwm_carrier_freq PWM carrier frequency (kHz)
[DEPRECATED].

float pwm_carrier_freq PWM carrier frequency (kHz)

uint32_t u4_deadtime PWM deadtime (usec)

float f_current_range A/D current measure range
(max current) (A)

float f_vdc_range A/D main line voltage measure
range (max voltage) (V)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,817 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

float f_ad_resolution A/D resolution.

float f_ad_current_offset A/D offset (Center value)

float f_ad_voltage_conversion A/D conversion level.

uint32_t u4_offset_calc_count Calculation counts for current
offset.

motor_120_driver_modulation_t mod_param Modulation parameter.

motor_120_driver_select_adc_in
stance_t

interrupt_adc Select which interrupt to use.

motor_120_driver_extended_sh
ared_cfg_t
const *

p_shared_cfg shared extended config

Enumeration Type Documentation

◆ motor_120_driver_select_adc_instance_t

enum motor_120_driver_select_adc_instance_t

Support two ADC instance valid for adc

Enumerator

MOTOR_120_DRIVER_SELECT_ADC_INSTANCE_1S
T

Use 1st ADC instance.

MOTOR_120_DRIVER_SELECT_ADC_INSTANCE_2
ND

Use 2nd ADC instanse.

◆ motor_120_driver_status_t

enum motor_120_driver_status_t

120 driver active flag

Enumerator

MOTOR_120_DRIVER_STATUS_INACTIVE 120 driver status inactive

MOTOR_120_DRIVER_STATUS_ACTIVE 120 driver status active

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,818 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ motor_120_driver_type_t

enum motor_120_driver_type_t

120 degree control type

Enumerator

MOTOR_120_DRIVER_TYPE_SENSORLESS 120 degree sensorless control

MOTOR_120_DRIVER_TYPE_HALL 120 degree hall control

Function Documentation

◆ RM_MOTOR_120_DRIVER_Open()

fsp_err_t RM_MOTOR_120_DRIVER_Open (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_cfg_t const *const p_cfg)

Opens and configures the motor 120 driver module. Implements motor_120_driver_api_t::open.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_120_DRIVER_Open(&g_motor_120_driver0.p_ctrl,

&g_motor_120_driver0.p_cfg);

Return values
FSP_SUCCESS Motor 120 driver successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,819 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ RM_MOTOR_120_DRIVER_Close()

fsp_err_t RM_MOTOR_120_DRIVER_Close (motor_120_driver_ctrl_t *const p_ctrl)

Disables specified motor 120 driver module. Implements motor_120_driver_api_t::close.

Example:

 (void) RM_MOTOR_120_DRIVER_Close(&g_motor_120_driver0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_DRIVER_Run()

fsp_err_t RM_MOTOR_120_DRIVER_Run (motor_120_driver_ctrl_t *const p_ctrl)

Run motor (Start motor rotation). Implements motor_120_driver_api_t::run.

Example:

 /* Start PWM output */

 err = RM_MOTOR_120_DRIVER_Run(&g_motor_120_driver0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,820 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ RM_MOTOR_120_DRIVER_Stop()

fsp_err_t RM_MOTOR_120_DRIVER_Stop (motor_120_driver_ctrl_t *const p_ctrl)

Stop motor (Stop motor rotation). Implements motor_120_driver_api_t::stop.

Example:

 (void) RM_MOTOR_120_DRIVER_Stop(&g_motor_120_driver0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_DRIVER_Reset()

fsp_err_t RM_MOTOR_120_DRIVER_Reset (motor_120_driver_ctrl_t *const p_ctrl)

Reset variables of motor 120 driver module. Implements motor_120_driver_api_t::reset.

Example:

 (void) RM_MOTOR_120_DRIVER_Reset(&g_motor_120_driver0.p_ctrl);

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,821 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ RM_MOTOR_120_DRIVER_PhaseVoltageSet()

fsp_err_t RM_MOTOR_120_DRIVER_PhaseVoltageSet (motor_120_driver_ctrl_t *const p_ctrl, float
const u_voltage, float const v_voltage, float const w_voltage)

Set phase voltage data to calculate PWM duty. Implements
motor_120_driver_api_t::phaseVoltageSet.

Example:

 /* Set phase voltage */

 (void) RM_MOTOR_120_DRIVER_PhaseVoltageSet(&g_motor_120_driver0.p_ctrl, 1.0F,

1.0F, 1.0F);

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_120_DRIVER_PhasePatternSet()

fsp_err_t RM_MOTOR_120_DRIVER_PhasePatternSet (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_phase_pattern_t const pattern)

Set phase voltage pattern. Implements motor_120_driver_api_t::phasePatternSet.

Example:

 /* Set phase pattern */

 (void) RM_MOTOR_120_DRIVER_PhasePatternSet(&g_motor_120_driver0.p_ctrl,

MOTOR_120_DRIVER_API_VP_ON_WN_PWM);

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,822 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ RM_MOTOR_120_DRIVER_CurrentGet()

fsp_err_t RM_MOTOR_120_DRIVER_CurrentGet (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

Get calculated phase current, Vdc & Va_max data. Implements motor_120_driver_api_t::currentGet
.

Example:

 /* Get electric current, main line voltage and maximum voltage component */

 (void) RM_MOTOR_120_DRIVER_CurrentGet(&g_motor_120_driver0.p_ctrl,

&g_current_status);

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_DRIVER_CurrentOffsetCalc()

fsp_err_t RM_MOTOR_120_DRIVER_CurrentOffsetCalc (motor_120_driver_ctrl_t *const p_ctrl)

current offset detection. Implements motor_120_driver_api_t::currentOffsetCalc

Example:

 /* Caclutarion of current offset */

 (void) RM_MOTOR_120_DRIVER_CurrentOffsetCalc(&g_motor_120_driver0.p_ctrl);

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,823 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > ADC and PWM modulation (rm_motor_120_driver)

◆ RM_MOTOR_120_DRIVER_FlagCurrentOffsetGet()

fsp_err_t RM_MOTOR_120_DRIVER_FlagCurrentOffsetGet (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_flag_offset_calc_t *const p_flag_offset)

Get the flag of finish current offset detection. Implements
motor_120_driver_api_t::flagCurrentOffsetGet.

Example:

 /* Get the flag of A/D convderted current offset */

 (void) RM_MOTOR_120_DRIVER_FlagCurrentOffsetGet(&g_motor_120_driver0.p_ctrl,

&u1_get_flg_offset);

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_120_DRIVER_ParameterUpdate()

fsp_err_t RM_MOTOR_120_DRIVER_ParameterUpdate (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_cfg_t const *const p_cfg)

Update the parameters of 120 driver module. Implements
motor_120_driver_api_t::parameterUpdate.

Example:

 (void) RM_MOTOR_120_DRIVER_ParameterUpdate(&g_motor_120_driver0.p_ctrl,

&g_motor_120_driver0.p_cfg);

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

5.2.11.5 Motor 120 degree control (rm_motor_120_degree)
Modules » Motor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,824 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Functions

fsp_err_t RM_MOTOR_120_DEGREE_Open (motor_ctrl_t *const p_ctrl,
motor_cfg_t const *const p_cfg)

 Configure the motor in register start mode. Implements
motor_api_t::open. More...

fsp_err_t RM_MOTOR_120_DEGREE_Close (motor_ctrl_t *const p_ctrl)

 Disables specified motor control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_120_DEGREE_Reset (motor_ctrl_t *const p_ctrl)

 Reset motor control block. Implements motor_api_t::reset. More...

fsp_err_t RM_MOTOR_120_DEGREE_Run (motor_ctrl_t *const p_ctrl)

 Run motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_120_DEGREE_Stop (motor_ctrl_t *const p_ctrl)

 Stop motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_120_DEGREE_ErrorSet (motor_ctrl_t *const p_ctrl,
motor_error_t const error)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_120_DEGREE_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_120_DEGREE_StatusGet (motor_ctrl_t *const p_ctrl,
uint8_t *const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_120_DEGREE_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,825 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

fsp_err_t RM_MOTOR_120_DEGREE_WaitStopFlagGet (motor_ctrl_t *const
p_ctrl, motor_wait_stop_flag_t *const p_flag_wait_stop)

 Get wait stop flag. Implements motor_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_120_DEGREE_ErrorCheck (motor_ctrl_t *const p_ctrl,
uint16_t *const p_error)

 Check the occurunce of error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_120_DEGREE_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference. Implements motor_api_t::positionSet. More...

fsp_err_t RM_MOTOR_120_DEGREE_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Set position reference. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_120_DEGREE_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

 Select using function. Implements motor_api_t::functionSelect.
More...

Detailed Description

Usual control of a SPM (Surface Permanent Magnet) motor on RA MCUs. This module implements the
Motor 120 degree control (rm_motor_120_degree).

Overview
The motor 120 degree control is used to control a motor rotation in an appication. This module is
implemented with using a SPM motor. User can start/stop motor rotation simply.

Features

The motor 120 degree module has below features.

Start/Stop a motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Target Hardware

The below figure shows examples of target hardware of this Motor 120-degree Module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,826 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 230: Example of target hardware of motor 120-degree sensorless

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,827 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 231: Example of target hardware of motor 120-degree with hall sensor

Modulation

The modulation factor "m" is defined as follows.

Figure 232: Modulation factor

State transition

The below figure shows a state transition diagram. Internal state is managed by "SYSTEM MODE".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,828 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 233: State transition diagram

 (1) SYSTEM MODE "SYSTEM MODE" indicates the operating states of the system. The state transits
on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop
(INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

(2) EVENT When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown the
table in above figure, according to that "EVENT". The occurrence factors of each event are shown
below.

EVENT name Occurrence factor

STOP by user operation

RUN by user operation

ERROR when the system detects an error

RESET by user operation

Flowchart

The below figures show flowcharts of motor 120-degree module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,829 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 234: Main process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,830 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 235: Current control process of 120-degree sensorless

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,831 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 236: Speed control process of 120-degree sensorless

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,832 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 237: Current control process of 120-degree with hall sensor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,833 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 238: Speed control process of 120-degree with hall sensor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,834 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Figure 239: Over current detection interrupt process

Configuration
Build Time Configurations for rm_motor_120_degree

The following build time configurations are defined in fsp_cfg/rm_motor_120_degree_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor 120 degree control (rm_motor_120_degree)

This module can be added to the Stacks tab via New Stack > Motor > Motor 120 degree control
(rm_motor_120_degree).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,835 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

Name Name must be a valid
C symbol

g_motor_120_degree0 Module name.

Limit of over current
(A)

Must be a valid non-
negative value.

4.0 Limit of over
current.(Detection
threshold)

Limit of over voltage
(V)

Must be a valid non-
negative value.

28.0 Limit of over
voltage.(Detection
threshold)

Limit of over speed
(rpm)

Must be a valid non-
negative value.

3000.0 Limit of over
speed.(Detection
threshold)

Limit of low voltage (V) Must be a valid non-
negative value.

14.0 Limit of low
voltage.(Detection
threshold)

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins. Please set used pins on configuration of each hardware modules.

Usage Notes
Limitations

Set the limit of electric current with non-negative value.
Set the limit of input voltage with non-negative value.
Set the limit of rotational speed with non-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor 120 degree in an application.

void motor_120_degree_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_120_DEGREE_Open(g_motor_120_degree0.p_ctrl,

g_motor_120_degree0.p_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,836 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_120_DEGREE_SpeedSet(g_motor_120_degree0.p_ctrl,

DEF_120_DEGREE_SPEED_REF);

 /* Start motor rotation */

 (void) RM_MOTOR_120_DEGREE_Run(g_motor_120_degree0.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_120_DEGREE_StatusGet(g_motor_120_degree0.p_ctrl, &smpl_status);

 /* Get current motor speed */

 (void) RM_MOTOR_120_DEGREE_SpeedGet(g_motor_120_degree0.p_ctrl, &smpl_speed);

 /* Get wait stop flag */

 (void) RM_MOTOR_120_DEGREE_WaitStopFlagGet(g_motor_120_degree0.p_ctrl,

&smpl_wait_stop_flag);

 /* Check error */

 (void) RM_MOTOR_120_DEGREE_ErrorCheck(g_motor_120_degree0.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_120_DEGREE_Stop(g_motor_120_degree0.p_ctrl);

 (void) RM_MOTOR_120_DEGREE_ErrorSet(g_motor_120_degree0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

 /* Reset the process. */

 (void) RM_MOTOR_120_DEGREE_Reset(g_motor_120_degree0.p_ctrl);

 /* Close the module. */

 (void) RM_MOTOR_120_DEGREE_Close(g_motor_120_degree0.p_ctrl);

}

Data Structures

struct motor_120_degree_statemachine_t

struct motor_120_degree_extended_cfg_t

Enumerations

enum motor_120_degree_ctrl_status_t

enum motor_120_degree_ctrl_event_t

Data Structure Documentation

◆ motor_120_degree_statemachine_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,837 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

struct motor_120_degree_statemachine_t

Statemachine structure for motor 120 degree

Data Fields

motor_120_degree_ctrl_status_t status The current system status.

motor_120_degree_ctrl_status_t status_next The next system status.

motor_120_degree_ctrl_event_t current_event The current event index.

uint16_t u2_error_status The error information.

◆ motor_120_degree_extended_cfg_t

struct motor_120_degree_extended_cfg_t

Extended configurations for motor 120 degree

Data Fields

motor_120_control_instance_t
const *

p_motor_120_control_instance 120 degree control Instance

float f_overcurrent_limit Over-current limit (A)

float f_overvoltage_limit Over-voltage limit (V)

float f_overspeed_limit Over-speed limit (rpm)

float f_lowvoltage_limit Low-voltage limit (V)

Enumeration Type Documentation

◆ motor_120_degree_ctrl_status_t

enum motor_120_degree_ctrl_status_t

Control state

Enumerator

MOTOR_120_DEGREE_CTRL_STATUS_STOP Stop mode.

MOTOR_120_DEGREE_CTRL_STATUS_RUN Run mode.

MOTOR_120_DEGREE_CTRL_STATUS_ERROR Error mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,838 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ motor_120_degree_ctrl_event_t

enum motor_120_degree_ctrl_event_t

Control event

Enumerator

MOTOR_120_DEGREE_CTRL_EVENT_STOP Stop event.

MOTOR_120_DEGREE_CTRL_EVENT_RUN Run event.

MOTOR_120_DEGREE_CTRL_EVENT_ERROR Error event.

MOTOR_120_DEGREE_CTRL_EVENT_RESET Reset event.

Function Documentation

◆ RM_MOTOR_120_DEGREE_Open()

fsp_err_t RM_MOTOR_120_DEGREE_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const
p_cfg)

Configure the motor in register start mode. Implements motor_api_t::open.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_120_DEGREE_Open(g_motor_120_degree0.p_ctrl,

g_motor_120_degree0.p_cfg);

Return values
FSP_SUCCESS Successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

Note
This function should only be called once as motor configuration registers can only be written to once so subsequent
calls will have no effect.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,839 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_Close()

fsp_err_t RM_MOTOR_120_DEGREE_Close (motor_ctrl_t *const p_ctrl)

Disables specified motor control block. Implements motor_api_t::close.

Example:

 /* Close the module. */

 (void) RM_MOTOR_120_DEGREE_Close(g_motor_120_degree0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_120_DEGREE_Reset()

fsp_err_t RM_MOTOR_120_DEGREE_Reset (motor_ctrl_t *const p_ctrl)

Reset motor control block. Implements motor_api_t::reset.

Example:

 /* Reset the process. */

 (void) RM_MOTOR_120_DEGREE_Reset(g_motor_120_degree0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,840 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_Run()

fsp_err_t RM_MOTOR_120_DEGREE_Run (motor_ctrl_t *const p_ctrl)

Run motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_120_DEGREE_Run(g_motor_120_degree0.p_ctrl);

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_120_DEGREE_Stop()

fsp_err_t RM_MOTOR_120_DEGREE_Stop (motor_ctrl_t *const p_ctrl)

Stop motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_120_DEGREE_Stop(g_motor_120_degree0.p_ctrl);

Return values
FSP_SUCCESS Successfully stopped.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,841 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_ErrorSet()

fsp_err_t RM_MOTOR_120_DEGREE_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error
)

Set error information. Implements motor_api_t::errorSet.

Example:

 (void) RM_MOTOR_120_DEGREE_ErrorSet(g_motor_120_degree0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully set error infomation.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_120_DEGREE_SpeedSet()

fsp_err_t RM_MOTOR_120_DEGREE_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_120_DEGREE_SpeedSet(g_motor_120_degree0.p_ctrl,

DEF_120_DEGREE_SPEED_REF);

Return values
FSP_SUCCESS Successfully set speed reference.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,842 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_StatusGet()

fsp_err_t RM_MOTOR_120_DEGREE_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status
)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_120_DEGREE_StatusGet(g_motor_120_degree0.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully got current control status.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER Data received pointer is invalid.

Note

◆ RM_MOTOR_120_DEGREE_SpeedGet()

fsp_err_t RM_MOTOR_120_DEGREE_SpeedGet (motor_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_120_DEGREE_SpeedGet(g_motor_120_degree0.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully got rotational speed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER Data received pointer is invalid.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,843 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_WaitStopFlagGet()

fsp_err_t RM_MOTOR_120_DEGREE_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag_wait_stop)

Get wait stop flag. Implements motor_api_t::waitStopFlagGet.

Example:

 /* Get wait stop flag */

 (void) RM_MOTOR_120_DEGREE_WaitStopFlagGet(g_motor_120_degree0.p_ctrl,

&smpl_wait_stop_flag);

Return values
FSP_SUCCESS Successfully got wait stop flag.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER Data received pointer is invalid.

Note

◆ RM_MOTOR_120_DEGREE_ErrorCheck()

fsp_err_t RM_MOTOR_120_DEGREE_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const
p_error)

Check the occurunce of error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_120_DEGREE_ErrorCheck(g_motor_120_degree0.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully error checke process.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER Data received pointer is invalid.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,844 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor 120 degree control (rm_motor_120_degree)

◆ RM_MOTOR_120_DEGREE_PositionSet()

fsp_err_t RM_MOTOR_120_DEGREE_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference. Implements motor_api_t::positionSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_120_DEGREE_AngleGet()

fsp_err_t RM_MOTOR_120_DEGREE_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad
)

Set position reference. Implements motor_api_t::angleGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_120_DEGREE_FunctionSelect()

fsp_err_t RM_MOTOR_120_DEGREE_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

Select using function. Implements motor_api_t::functionSelect.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

5.2.11.6 Motor Angle (rm_motor_estimate)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_ESTIMATE_Open (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,845 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

 Opens and configures the Angle Estimation module. Implements
motor_angle_api_t::open. More...

fsp_err_t RM_MOTOR_ESTIMATE_Close (motor_angle_ctrl_t *const p_ctrl)

 Disables specified Angle Estimation module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_ESTIMATE_Reset (motor_angle_ctrl_t *const p_ctrl)

 Reset variables of Angle Estimation module. Implements
motor_angle_api_t::reset. More...

fsp_err_t RM_MOTOR_ESTIMATE_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_ESTIMATE_SpeedSet (motor_angle_ctrl_t *const p_ctrl,
float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_ESTIMATE_FlagPiCtrlSet (motor_angle_ctrl_t *const
p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements
motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_ESTIMATE_AngleSpeedGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_ESTIMATE_EstimatedComponentGet (motor_angle_ctrl_t
*const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

fsp_err_t RM_MOTOR_ESTIMATE_ParameterUpdate (motor_angle_ctrl_t *const
p_ctrl, motor_angle_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,846 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

 Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_ESTIMATE_InternalCalculate (motor_angle_ctrl_t *const
p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

fsp_err_t RM_MOTOR_ESTIMATE_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

fsp_err_t RM_MOTOR_ESTIMATE_EncoderCyclic (motor_angle_ctrl_t *const
p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_ESTIMATE_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

 Gets information of Encoder Angle Module. Implements
motor_angle_api_t::infoGet. More...

fsp_err_t RM_MOTOR_ESTIMATE_CyclicProcess (motor_angle_ctrl_t *const
p_ctrl)

 Perform induction cyclic process. Implements
motor_angle_api_t::cyclicProcess. More...

fsp_err_t RM_MOTOR_ESTIMATE_SensorDataSet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_ad_data_t *const p_ad_data)

 Set sensor data. Implements motor_angle_api_t::sensorDataSet.
More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed estimation module is used to calculate rotor angle and rotational speed

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,847 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

in an application. This module should be called cyclically after the A/D conversion of electric current
of each phase in an application.

Features

The Motor Angle and Speed Estimation Module has below features.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration
Build Time Configurations for rm_motor_estimate

The following build time configurations are defined in fsp_cfg/rm_motor_estimate_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Angle and Speed Estimation (rm_motor_estimate)

This module can be added to the Stacks tab via New Stack > Motor > Motor Angle and Speed
Estimation (rm_motor_estimate).

Configuration Options Default Description

Motor Parameter

Pole pairs Must be a valid non-
negative value.

2 Pole pairs

Motor Parameter >
Resistance[ohm]

Must be a valid value 8.5F Resistance

Motor Parameter >
Inductance of d-axis[H]

Must be a valid value 0.0045F Inductance of d-axis

Motor Parameter >
Inductance of q-axis[H]

Must be a valid value 0.0045F Inductance of q-axis

Motor Parameter >
Permanent magnetic
flux[Wb]

Must be a valid value 0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia[kgm^2]

Must be a valid value 0.0000028F Rotor inertia

Motor Parameter >
Nominal current[Arms]

Must be a valid value 1.67 Nominal current

Name Name must be a valid
C symbol

g_motor_angle0 Module name.

Openloop damping Disable
Enable

Enable Openloop damping
functionally enable or

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,848 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

disable

Natural frequency of
BEMF observer

Must be a valid value 1000.0F Natural frequency of
BEMF observer

Damping ratio of BEMF
observer

Must be a valid value 1.0F Damping ratio of BEMF
observer

Natural frequency of
PLL Speed estimate
loop

Must be a valid value 20.0F Natural frequency of
PLL Speed estimate
loop

Damping ratio of PLL
Speed estimate loop

Must be a valid value 1.0F Damping ratio of PLL
Speed estimate loop

Control period Must be a valid value 0.00005F Control period

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the Motor Angle and Speed
Estimation:

Examples
Basic Example

This is a basic example of minimal use of the Motor Angle and Speed Estimation in an application.

void motor_estimate_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 motor_angle_current_t smpl_current:

 motor_angle_voltage_reference_t smpl_voltage;

 /* Initializes the module. */

 err = RM_MOTOR_ESTIMATE_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 while (true)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,849 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

 {

 /* Application work here. */

 /* Set PI Control Flag before get Angle/Speed and Estimated Component */

 (void) RM_MOTOR_ESTIMATE_FlagPiCtrlSet(&g_mtr_angle0_ctrl, 1U);

 smpl_current.id = 1.0F;

 smpl_current.iq = 1.0F;

 smpl_voltage.vd = 10.0F;

 smpl_voltage.vq = 10.0F;

 /* Set Current and Speed data before get Angle/Speed and Estimated Component */

 (void) RM_MOTOR_ESTIMATE_CurrentSet(&g_mtr_angle0_ctrl, smpl_current,

smpl_voltage);

 /* Set Internal Speed Reference & damping speed data before get Angle/Speed and

Estimated Component */

 (void) RM_MOTOR_ESTIMATE_SpeedSet(&g_mtr_angle0_ctrl, 104.27F, 10.0F);

 /* Get Angle/Speed data */

 (void) RM_MOTOR_ESTIMATE_AngleSpeedGet(&g_mtr_angle0_ctrl, &f_get_angle,

&f_get_speed, &f_get_phase_err);

 /* Get Estimated Component */

 (void) RM_MOTOR_ESTIMATE_EstimatedComponentGet(&g_mtr_angle0_ctrl, &f_get_ed,

&f_get_eq);

 }

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,850 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_Open()

fsp_err_t RM_MOTOR_ESTIMATE_Open (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

Opens and configures the Angle Estimation module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS MTR_ANGL_EST successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_ESTIMATE_Close()

fsp_err_t RM_MOTOR_ESTIMATE_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle Estimation module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_Reset()

fsp_err_t RM_MOTOR_ESTIMATE_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle Estimation module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,851 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_CurrentSet()

fsp_err_t RM_MOTOR_ESTIMATE_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_SpeedSet()

fsp_err_t RM_MOTOR_ESTIMATE_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_ESTIMATE_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,852 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_AngleSpeedGet()

fsp_err_t RM_MOTOR_ESTIMATE_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_EstimatedComponentGet()

fsp_err_t RM_MOTOR_ESTIMATE_EstimatedComponentGet (motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_SUCCESS Successfully data gotten.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_ParameterUpdate()

fsp_err_t RM_MOTOR_ESTIMATE_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,853 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_InternalCalculate()

fsp_err_t RM_MOTOR_ESTIMATE_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_AngleAdjust()

fsp_err_t RM_MOTOR_ESTIMATE_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_EncoderCyclic()

fsp_err_t RM_MOTOR_ESTIMATE_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,854 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_InfoGet()

fsp_err_t RM_MOTOR_ESTIMATE_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Encoder Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_CyclicProcess()

fsp_err_t RM_MOTOR_ESTIMATE_CyclicProcess (motor_angle_ctrl_t *const p_ctrl)

Perform induction cyclic process. Implements motor_angle_api_t::cyclicProcess.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

◆ RM_MOTOR_ESTIMATE_SensorDataSet()

fsp_err_t RM_MOTOR_ESTIMATE_SensorDataSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_ad_data_t *const p_ad_data)

Set sensor data. Implements motor_angle_api_t::sensorDataSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

5.2.11.7 Motor Angle (rm_motor_sense_encoder)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_SENSE_ENCODER_Open (motor_angle_ctrl_t *const
p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Opens and configures the Angle Encoder module. Implements
motor_angle_api_t::open. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,855 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

fsp_err_t RM_MOTOR_SENSE_ENCODER_Close (motor_angle_ctrl_t *const
p_ctrl)

 Disables specified Angle Encoder module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_Reset (motor_angle_ctrl_t *const
p_ctrl)

 Reset variables of Angle Encoder module. Implements
motor_angle_api_t::reset. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_InternalCalculate (motor_angle_ctrl_t
*const p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleSpeedGet (motor_angle_ctrl_t
*const p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleAdjust (motor_angle_ctrl_t
*const p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_EncoderCyclic (motor_angle_ctrl_t
*const p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_CyclicProcess (motor_angle_ctrl_t
*const p_ctrl)

 Perform cyclic process. Implements motor_angle_api_t::cyclicProcess
. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_InfoGet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_encoder_info_t *const p_info)

 Gets information of Encoder Angle Module. Implements
motor_angle_api_t::infoGet. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,856 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

fsp_err_t RM_MOTOR_SENSE_ENCODER_ParameterUpdate (motor_angle_ctrl_t
*const p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Update the parameters of Angle&Speed calculation with an encoder.
Implements motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_CurrentSet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_SpeedSet (motor_angle_ctrl_t *const
p_ctrl, float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet (motor_angle_ctrl_t
*const p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements
motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet
(motor_angle_ctrl_t *const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_SensorDataSet (motor_angle_ctrl_t
*const p_ctrl, motor_angle_ad_data_t *const p_ad_data)

 Set sensor data. Implements motor_angle_api_t::sensorDataSet.
More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed calculation with an encoder module is used to calculate rotor angle and
rotational speed in an application. This module is designed to be used with the motor current module
(rm_motor_current).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,857 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

Features

The motor angle and speed calculation with an encoder module has the features listed below.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration
Build Time Configurations for rm_motor_sense_encoder

The following build time configurations are defined in fsp_cfg/rm_motor_sense_encoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Angle and Speed Calculation with encoder
(rm_motor_sense_encoder)

This module can be added to the Stacks tab via New Stack > Motor > Motor Angle and Speed
Calculation with encoder (rm_motor_sense_encoder).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_sense_encode
r0

Module name.

Motor Parameter

Pole pairs Must be a valid non-
negative value.

7 Pole pairs

Resistance (ohm) Must be a valid non-
negative value

0.453F Resistance

Inductance of d-axis
(H)

Must be a valid non-
negative value

0.0009447F Inductance of d-axis

Inductance of q-axis
(H)

Must be a valid non-
negative value

0.0009447F Inductance of q-axis

Permanent magnetic
flux (Wb)

Must be a valid non-
negative value

0.006198F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid non-
negative value

0.00000962F Rotor inertia

Control Type Speed
Position

Position Select control Type

Period of Current
control (kHz)

Must be a valid non-
negative value

20.0F Period of Current
control

Period of Speed control Must be a valid non- 0.0005F Period of Speed control

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,858 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

(sec) negative value

PWM Carrier Frequency
(kHz)

Must be a valid non-
negative value

20.0F PWM Carrier Frequency

Decimation of Interrupt Must be a valid non-
negative value.

0U Decimation of Interrupt

Counts per Rotation Must be a valid non-
negative value.

1200U Encoder Counts per
One Rotation

Counts for Angle Adjust Must be a valid non-
negative value.

512U Counts for Angle Adjust
(as working time)

Zero speed counts Must be a valid non-
negative value.

20000000U Threshold counts to
judge zero speed

Occupancy Time Must be a valid non-
negative value

0.30F Occupancy time of
carrier interrup

Carrier Time Must be a valid non-
negative value

0.000013F Processing time of
carrier interrupt

Process Time Must be a valid non-
negative value

0.000001F Processing time of
encoder interrupt

Highspeed Change
Margin (rpm)

Must be a valid non-
negative value.

150U Margin of toggle speed
for high speed mode

LPF parameter for
Highspeed Filter

Must be a valid non-
negative value

0.1F Highspeed mode speed
LPF parameter

Counts to change
speed

Must be a valid non-
negative value.

8U Counts for mode
change of position
speed calculation

Clock Configuration

Pin Configuration

Usage Notes
Limitations

Developers should be aware of the following limitations when using the motor angle and speed
calculation with an encoder: all configurations should be set as positive values.

Examples
Basic Example

This is a basic example of minimal use of the motor angle and speed calculation with an encoder in
an application.

void motor_sense_encoder_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,859 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

 /* Initializes the module. */

 err = RM_MOTOR_SENSE_ENCODER_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Initialize motor with the encoder */

 (void) RM_MOTOR_SENSE_ENCODER_AngleAdjust(&g_mtr_angle0_ctrl);

 /* Perform cyclic encoder process*/

 (void) RM_MOTOR_SENSE_ENCODER_CyclicProcess(&g_mtr_angle0_ctrl);

 /* Calculate information with encoder signal input */

 (void) RM_MOTOR_SENSE_ENCODER_InternalCalculate(&g_mtr_angle0_ctrl);

 /* Get angle/speed data */

 (void) RM_MOTOR_SENSE_ENCODER_AngleSpeedGet(&g_mtr_angle0_ctrl, &f_get_angle,

&f_get_speed, &f_get_phase_err);

 /* Get calculated component */

 (void) RM_MOTOR_SENSE_ENCODER_InfoGet(&g_mtr_angle0_ctrl, &temp_info);

 }

 /* Reset the module */

 (void) RM_MOTOR_SENSE_ENCODER_Reset(&g_mtr_angle0_ctrl);

 /* Close the module */

 (void) RM_MOTOR_SENSE_ENCODER_Close(&g_mtr_angle0_ctrl);

}

Enumerations

enum motor_sense_encoder_loop_t

enum motor_sense_encoder_mode_t

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,860 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ motor_sense_encoder_loop_t

enum motor_sense_encoder_loop_t

Enumerator

MOTOR_SENSE_ENCODER_LOOP_SPEED Speed control mode.

MOTOR_SENSE_ENCODER_LOOP_POSITION Position control mode.

◆ motor_sense_encoder_mode_t

enum motor_sense_encoder_mode_t

Enumerator

MOTOR_SENSE_ENCODER_MODE_INIT Initialize mode (Start status)

MOTOR_SENSE_ENCODER_MODE_BOOT Boot mode (Angle adjustment status)

MOTOR_SENSE_ENCODER_MODE_DRIVE Drive mode (Normal work status)

Function Documentation

◆ RM_MOTOR_SENSE_ENCODER_Open()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Open (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t
const *const p_cfg)

Opens and configures the Angle Encoder module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS Angle Encoder module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,861 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_Close()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle Encoder module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_Reset()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle Encoder module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_InternalCalculate()

fsp_err_t RM_MOTOR_SENSE_ENCODER_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,862 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_AngleSpeedGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float
*const p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_AngleAdjust()

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_EncoderCyclic()

fsp_err_t RM_MOTOR_SENSE_ENCODER_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,863 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_CyclicProcess()

fsp_err_t RM_MOTOR_SENSE_ENCODER_CyclicProcess (motor_angle_ctrl_t *const p_ctrl)

Perform cyclic process. Implements motor_angle_api_t::cyclicProcess.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_InfoGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Encoder Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_ParameterUpdate()

fsp_err_t RM_MOTOR_SENSE_ENCODER_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of Angle&Speed calculation with an encoder. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,864 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_CurrentSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software currentSet is

not supported.

◆ RM_MOTOR_SENSE_ENCODER_SpeedSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software speedSet is

not supported.

◆ RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t
const flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software flagPiCtrlSet

is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,865 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software

estimatedComponentGet is not supported.

◆ RM_MOTOR_SENSE_ENCODER_SensorDataSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_SensorDataSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_ad_data_t *const p_ad_data)

Set sensor data. Implements motor_angle_api_t::sensorDataSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

5.2.11.8 Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_SENSE_HALL_Open (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

 Opens and configures the angle hall sensor module. Implements
motor_angle_api_t::open. More...

fsp_err_t RM_MOTOR_SENSE_HALL_Close (motor_angle_ctrl_t *const p_ctrl)

 Disables specified Angle Estimation module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_SENSE_HALL_Reset (motor_angle_ctrl_t *const p_ctrl)

 Reset variables of Angle Estimation module. Implements
motor_angle_api_t::reset. More...

fsp_err_t RM_MOTOR_SENSE_HALL_CurrentSet (motor_angle_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,866 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

p_ctrl, motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_SENSE_HALL_SpeedSet (motor_angle_ctrl_t *const p_ctrl,
float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSE_HALL_FlagPiCtrlSet (motor_angle_ctrl_t *const
p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements
motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_SENSE_HALL_AngleSpeedGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_SENSE_HALL_EstimatedComponentGet
(motor_angle_ctrl_t *const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

fsp_err_t RM_MOTOR_SENSE_HALL_ParameterUpdate (motor_angle_ctrl_t
*const p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_SENSE_HALL_InternalCalculate (motor_angle_ctrl_t
*const p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

fsp_err_t RM_MOTOR_SENSE_HALL_AngleAdjust (motor_angle_ctrl_t *const
p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,867 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

fsp_err_t RM_MOTOR_SENSE_HALL_EncoderCyclic (motor_angle_ctrl_t *const
p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_SENSE_HALL_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

 Gets information of Encoder Angle Module. Implements
motor_angle_api_t::infoGet. More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed calculation with hall sensors module is used to calculate rotor angle and
rotational speed in an application. This module is designed to be used with the motor current module
(rm_motor_current).

Features

The motor angle and speed calculation with hall sensors module has the features listed below.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration
Build Time Configurations for rm_motor_sense_hall

The following build time configurations are defined in fsp_cfg/rm_motor_sense_hall_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Angle and Speed Calculation with Hall sensors
(rm_motor_sense_hall)

This module can be added to the Stacks tab via New Stack > Motor > Motor Angle and Speed
Calculation with Hall sensors (rm_motor_sense_hall).

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,868 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

General

Name Name must be a valid
C symbol

g_motor_angle0 Module name.

Hall sensor

U phase input port Manual Entry BSP_IO_PORT_12_PIN_0
4

Hall sensor port U

V phase input port Manual Entry BSP_IO_PORT_12_PIN_0
5

Hall sensor port V

W phase input port Manual Entry BSP_IO_PORT_11_PIN_0
1

Hall sensor port W

sensor pattern #1 Must be a valid integer 1 Hall sensor pattern #1

sensor pattern #2 Must be a valid integer 5 Hall sensor pattern #2

sensor pattern #3 Must be a valid integer 4 Hall sensor pattern #3

sensor pattern #4 Must be a valid integer 6 Hall sensor pattern #4

sensor pattern #5 Must be a valid integer 2 Hall sensor pattern #5

sensor pattern #6 Must be a valid integer 3 Hall sensor pattern #6

Process Frequency
(kHz)

Must be a valid value 20.0F Frequency to perform
the process.

Correction parameter
of rotor angle

Must be a valid value 0.0F Correction parameter
of rotor angle

Default counts of
carrier interrupt

Must be a valid non-
negative value.

300U Default counts of
carrier interrupt during
a period of Hall signal
change

Maximum counts of
one rotation

Must be a valid non-
negative value.

500U Maximum counts of
carrier interrupt during
one rotor rotation

Target value for
pseudo speed (rad/s)

Must be a valid non-
negative value.

100.0 Target value for
pseudo speed (rad/s).

Target time until the
pseudo speed update
reaches (msec)

Must be a valid non-
negative value.

300.0 Target time until the
pseudo speed update
reaches (msec).

Rotation counts to start
speed estimation

Must be a valid integer 2 Rotation counts to start
of speed estimation.

Carrier counts at
startup

Must be a valid integer 400 Carrier counts to wait
the start timing of
pseudo speed update

Speed to judge start Must be a valid non-
negative value.

250.0 Speed to judge start PI
calculation.

Clock Configuration

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,869 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

Usage Notes
Limitations

Developers should be aware of the following limitations when using the motor angle and speed
calculation with hall sensors: all configurations should be set as positive values.

Examples
Basic Example

This is a basic example of minimal use of the motor angle and speed calculation with hall sensors in
an application.

void motor_sense_hall_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SENSE_HALL_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Get angle/speed data */

 (void) RM_MOTOR_SENSE_HALL_AngleSpeedGet(&g_mtr_angle0_ctrl, &f_get_angle,

&f_get_speed, &f_get_phase_err);

 }

 /* Reset the module */

 (void) RM_MOTOR_SENSE_HALL_Reset(&g_mtr_angle0_ctrl);

 /* Close the module */

 (void) RM_MOTOR_SENSE_HALL_Close(&g_mtr_angle0_ctrl);

}

Data Structures

struct motor_sense_hall_input_t

struct motor_sense_hall_extended_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,870 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

struct motor_sense_hall_instance_ctrl_t

Enumerations

enum motor_sense_hall_direction_t

enum motor_sense_hall_signal_status_t

Data Structure Documentation

◆ motor_sense_hall_input_t

struct motor_sense_hall_input_t

This stucture is provided to receive speed information.

Data Fields

float f4_ref_speed_rad_ctrl Speed Reference [rad/sec].

◆ motor_sense_hall_extended_cfg_t

struct motor_sense_hall_extended_cfg_t

Optional Motor sense hall extension data structure.

Data Fields

bsp_io_port_pin_t port_hall_sensor_u Hall U-signal input port.

bsp_io_port_pin_t port_hall_sensor_v Hall V-signal input port.

bsp_io_port_pin_t port_hall_sensor_w Hall W-signal input port.

uint8_t u1_hall_pattern[MOTOR_SENSE_
HALL_SPEED_COUNTS+1]

The order of hall signal pattern.

float f_pwm_carrier_freq PWM carrier frequency (or
Decimated frequency at
decimation of current process)

float f_angle_correct Coefficent to correct angle.

uint8_t u1_trigger_hall_signal_count Rotation counts to wait the
stability.

float f4_target_pseudo_speed_rad Target value for pseudo speed
estimates [radian/second].

float f4_reach_time_msec Time until the pseudo speed
estimate reaches the target
value [msec].

uint16_t u2_trigger_carrier_count Estimated speed 0 until this
trigger.

uint16_t u2_default_counts Default counts for period of hall
signal to reset.

uint16_t u2_maximum_period Maximum counts of hall signal
period.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,871 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

uint8_t u1_hall_polepairs Hall pole pairs.

float f4_start_speed_rad Speed to judge start
[radian/second].

◆ motor_sense_hall_instance_ctrl_t

struct motor_sense_hall_instance_ctrl_t

SENSE_HALL control block. DO NOT INITIALIZE. Initialization occurs when motor_angle_api_t::open
is called.

Data Fields

uint32_t open

uint8_t u1_hall_signal Hall signal pattern.

uint8_t u1_last_hall_signal Last hall signal pattern.

motor_sense_hall_direction_t direction Rotation direction.

motor_sense_hall_direction_t last_direction Last rotation direction.

uint16_t u2_carrier_count Carrier count.

uint16_t u2_hall_period[MOTOR_SENSE_
HALL_SPEED_COUNTS]

Array of carrier count to
calculate 2PI.

uint8_t u1_period_counter Counter for above array.

float f_angle Rotor angle [radian].

float f_angle_per_count Angle per 1 count.

float f_calculated_speed Calculated speed
[radian/second].

uint8_t u1_hall_signal_memory Memorized hall signal at
startup.

motor_sense_hall_signal_status
_t

hall_signal_status Hall signal status.

uint8_t u1_hall_signal_count Rotation counter.

float f4_pseudo_speed_rad Pseudo speed used for startup
[radian/second].

float f4_add_pseudo_speed_rad Step of pseudo speed to update
[radian/second].

uint16_t u2_startup_carrier_count Counter of carrier interrupt for
startup.

motor_sense_hall_input_t st_input Input parameter structure.

uint8_t u1_startup_flag Flag for startup.

motor_angle_cfg_t const * p_cfg

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,872 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

◆ motor_sense_hall_direction_t

enum motor_sense_hall_direction_t

Enumerator

MOTOR_SENSE_HALL_DIRECTION_CW Rotation direction clockwise.

MOTOR_SENSE_HALL_DIRECTION_CCW Rotation direction counter clockwise.

◆ motor_sense_hall_signal_status_t

enum motor_sense_hall_signal_status_t

Enumerator

MOTOR_SENSE_HALL_SIGNAL_STATUS_INITIAL Hall signal isn't captured. (Initial)

MOTOR_SENSE_HALL_SIGNAL_STATUS_CAPTURE
D

Hall signal is captured.

Function Documentation

◆ RM_MOTOR_SENSE_HALL_Open()

fsp_err_t RM_MOTOR_SENSE_HALL_Open (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t
const *const p_cfg)

Opens and configures the angle hall sensor module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS MTR_ANGL_EST successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,873 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

◆ RM_MOTOR_SENSE_HALL_Close()

fsp_err_t RM_MOTOR_SENSE_HALL_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle Estimation module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_HALL_Reset()

fsp_err_t RM_MOTOR_SENSE_HALL_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle Estimation module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_HALL_CurrentSet()

fsp_err_t RM_MOTOR_SENSE_HALL_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,874 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

◆ RM_MOTOR_SENSE_HALL_SpeedSet()

fsp_err_t RM_MOTOR_SENSE_HALL_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_SUCCESS Data get successfully.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_HALL_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_SENSE_HALL_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

◆ RM_MOTOR_SENSE_HALL_AngleSpeedGet()

fsp_err_t RM_MOTOR_SENSE_HALL_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,875 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

◆ RM_MOTOR_SENSE_HALL_EstimatedComponentGet()

fsp_err_t RM_MOTOR_SENSE_HALL_EstimatedComponentGet (motor_angle_ctrl_t *const p_ctrl,
float *const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

◆ RM_MOTOR_SENSE_HALL_ParameterUpdate()

fsp_err_t RM_MOTOR_SENSE_HALL_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_HALL_InternalCalculate()

fsp_err_t RM_MOTOR_SENSE_HALL_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

◆ RM_MOTOR_SENSE_HALL_AngleAdjust()

fsp_err_t RM_MOTOR_SENSE_HALL_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,876 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)

◆ RM_MOTOR_SENSE_HALL_EncoderCyclic()

fsp_err_t RM_MOTOR_SENSE_HALL_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

◆ RM_MOTOR_SENSE_HALL_InfoGet()

fsp_err_t RM_MOTOR_SENSE_HALL_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Encoder Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

5.2.11.9 Motor Angle and Speed Calculation with induction sensor
(rm_motor_sense_induction)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Open (motor_angle_ctrl_t *const
p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Opens and configures the Angle module. Implements
motor_angle_api_t::open. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Close (motor_angle_ctrl_t *const
p_ctrl)

 Disables specified Angle module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Reset (motor_angle_ctrl_t *const
p_ctrl)

 Reset variables of Angle module. Implements
motor_angle_api_t::reset. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,877 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

fsp_err_t RM_MOTOR_SENSE_INDUCTION_InternalCalculate (motor_angle_ctrl_t
*const p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_AngleSpeedGet (motor_angle_ctrl_t
*const p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_AngleAdjust (motor_angle_ctrl_t
*const p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_EncoderCyclic (motor_angle_ctrl_t
*const p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CyclicProcess (motor_angle_ctrl_t
*const p_ctrl)

 Induction sensor Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::cyclicProcess. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_InfoGet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_encoder_info_t *const p_info)

 Gets information of Angle Module. Implements
motor_angle_api_t::infoGet. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CorrectReset (motor_angle_ctrl_t
*const p_ctrl)

 Reset to restart calibration Angle module. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_ErrorGet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_error_t *const p_error)

 Gets the error information about induction correction. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_ParameterUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,878 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

(motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const *const
p_cfg)

 Update the parameters of angle & speed calculation. Implements
motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_SensorDataSet (motor_angle_ctrl_t
*const p_ctrl, motor_angle_ad_data_t *const p_ad_data)

 Set A/D Converted Data. Implements
motor_angle_api_t::sensorDataSet. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CurrentSet (motor_angle_ctrl_t
*const p_ctrl, motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_SpeedSet (motor_angle_ctrl_t *const
p_ctrl, float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_FlagPiCtrlSet (motor_angle_ctrl_t
*const p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements
motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_SENSE_INDUCTION_EstimatedComponentGet
(motor_angle_ctrl_t *const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed calculation with induction sensor module is used to calculate rotor angle
and rotational speed in an application. This module is designed to be used with the motor current
module (rm_motor_current).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,879 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

Features

The motor angle and speed calculation with induction sensor module has the features listed below.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration
Build Time Configurations for rm_motor_sense_induction

The following build time configurations are defined in fsp_cfg/rm_motor_sense_induction_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Angle and Speed Calculation with induction sensor
(rm_motor_sense_induction)

This module can be added to the Stacks tab via New Stack > Motor > Motor Angle and Speed
Calculation with induction sensor (rm_motor_sense_induction).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_angle0 Module name.

Control type Speed
Position

Position Select control Type

Frequency of current
control (kHz)

Must be a valid non-
negative value.

20.0 Frequency of current
control

Decimation of Interrupt Must be a valid integer. 1 Decimation of Interrupt

Counts to get signal Must be a valid integer. 10 Counts to get analog
input signal

Limit of signal error Must be a valid integer. 100 Limit of signal error

Coefficent of speed LPF Must be a valid value 0.07 Coefficient of speed
LPF

A/D reference voltage Must be a valid non-
negative value.

3.3 Reference voltage of
A/D converter

A/D conversion scale Must be a valid non-
negative value.

4095.0 Conversion scale of A/D
converter

Openloop speed (rpm) Must be a valid non-
negative value.

6.0 Rotation speed at
calibration openloop
(rpm)

D-axis current at Must be a valid non- 1.0 D-axis current at

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,880 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

openloop (A) negative value. calibration openloop
(A)

Angle adjustment times Must be a valid integer. 512 Times to get signal at
angle adjustment

Calibration enable Disable
Enable

Enable Select enable/disable
of signal calibration

Induction sensor pole
pairs

Must be a valid integer. 4 Induction sensor pole
pairs

Motor pole pairs Must be a valid integer. 4 Motor pole pairs

Clock Configuration

Pin Configuration

Usage Notes
Limitations

Developers should be aware of the following limitations when using the motor angle and speed
calculation with induction sensor: all configurations should be set as positive values.

Examples
Basic Example

This is a basic example of minimal use of the motor angle and speed calculation with induction
sensor in an application.

void motor_sense_encoder_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SENSE_INDUCTION_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Initialize motor */

 (void) RM_MOTOR_SENSE_INDUCTION_AngleAdjust(&g_mtr_angle0_ctrl);

 /* Perform cyclic process*/

 (void) RM_MOTOR_SENSE_INDUCTION_CyclicProcess(&g_mtr_angle0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,881 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

 /* Calculate information with induction sensor signal input */

 (void) RM_MOTOR_SENSE_INDUCTION_InternalCalculate(&g_mtr_angle0_ctrl);

 /* Get angle/speed data */

 (void) RM_MOTOR_SENSE_INDUCTION_AngleSpeedGet(&g_mtr_angle0_ctrl,

&f_get_angle, &f_get_speed, &f_get_phase_err);

 }

 /* Reset the module */

 (void) RM_MOTOR_SENSE_INDUCTION_Reset(&g_mtr_angle0_ctrl);

 /* Close the module */

 (void) RM_MOTOR_SENSE_INDUCTION_Close(&g_mtr_angle0_ctrl);

}

Enumerations

enum motor_sense_induction_loop_t

enum motor_sense_induction_calibration_t

enum motor_sense_induction_mode_t

Enumeration Type Documentation

◆ motor_sense_induction_loop_t

enum motor_sense_induction_loop_t

Enumerator

MOTOR_SENSE_INDUCTION_LOOP_SPEED Speed control mode.

MOTOR_SENSE_INDUCTION_LOOP_POSITION Position control mode.

◆ motor_sense_induction_calibration_t

enum motor_sense_induction_calibration_t

Enumerator

MOTOR_SENSE_INDUCTION_CALIBRATION_DISAB
LE

Disable calibration.

MOTOR_SENSE_INDUCTION_CALIBRATION_ENAB
LE

Enable calibration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,882 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ motor_sense_induction_mode_t

enum motor_sense_induction_mode_t

Enumerator

MOTOR_SENSE_INDUCTION_MODE_INIT Initialize mode (Start status)

MOTOR_SENSE_INDUCTION_MODE_BOOT Boot mode (Angle adjustment status)

MOTOR_SENSE_INDUCTION_MODE_DRIVE Drive mode (Normal work status)

Function Documentation

◆ RM_MOTOR_SENSE_INDUCTION_Open()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Open (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Opens and configures the Angle module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS Angle Induction module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_SENSE_INDUCTION_Close()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,883 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ RM_MOTOR_SENSE_INDUCTION_Reset()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_InternalCalculate()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_AngleSpeedGet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float
*const p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,884 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ RM_MOTOR_SENSE_INDUCTION_AngleAdjust()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_EncoderCyclic()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_ERR_UNSUPPORTED Motor sense induction software

encoderCyclic is not supported.

◆ RM_MOTOR_SENSE_INDUCTION_CyclicProcess()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CyclicProcess (motor_angle_ctrl_t *const p_ctrl)

Induction sensor Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::cyclicProcess.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,885 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ RM_MOTOR_SENSE_INDUCTION_InfoGet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_CorrectReset()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CorrectReset (motor_angle_ctrl_t *const p_ctrl)

Reset to restart calibration Angle module.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_ErrorGet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_ErrorGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_error_t *const p_error)

Gets the error information about induction correction.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,886 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ RM_MOTOR_SENSE_INDUCTION_ParameterUpdate()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of angle & speed calculation. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_SensorDataSet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_SensorDataSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_ad_data_t *const p_ad_data)

Set A/D Converted Data. Implements motor_angle_api_t::sensorDataSet.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_INDUCTION_CurrentSet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense induction software currentSet

is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,887 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)

◆ RM_MOTOR_SENSE_INDUCTION_SpeedSet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense induction software speedSet is

not supported.

◆ RM_MOTOR_SENSE_INDUCTION_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t
const flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense induction software flagPiCtrlSet

is not supported.

◆ RM_MOTOR_SENSE_INDUCTION_EstimatedComponentGet()

fsp_err_t RM_MOTOR_SENSE_INDUCTION_EstimatedComponentGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_ERR_UNSUPPORTED Motor sense induction software

estimatedComponentGet is not supported.

5.2.11.10 Motor Current Controller (rm_motor_current)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_CURRENT_Open (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

 Opens and configures the Motor Current Module. Implements
motor_current_api_t::open. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,888 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

fsp_err_t RM_MOTOR_CURRENT_Close (motor_current_ctrl_t *const p_ctrl)

 Disables specified Motor Current Module. Implements
motor_current_api_t::close. More...

fsp_err_t RM_MOTOR_CURRENT_Reset (motor_current_ctrl_t *const p_ctrl)

 Reset variables of Motor Current Module. Implements
motor_current_api_t::reset. More...

fsp_err_t RM_MOTOR_CURRENT_Run (motor_current_ctrl_t *const p_ctrl)

 Run(Start) the Current Control. Implements motor_current_api_t::run.
More...

fsp_err_t RM_MOTOR_CURRENT_ParameterSet (motor_current_ctrl_t *const
p_ctrl, motor_current_input_t const *const p_st_input)

 Set (Input) Parameter Data. Implements
motor_current_api_t::parameterSet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentReferenceSet (motor_current_ctrl_t
*const p_ctrl, float const id_reference, float const iq_reference)

 Set Current Reference Data. Implements
motor_current_api_t::currentReferenceSet. More...

fsp_err_t RM_MOTOR_CURRENT_SpeedPhaseSet (motor_current_ctrl_t *const
p_ctrl, float const speed, float const phase)

 Set Current Speed & rotor phase Data. Implements
motor_current_api_t::speedPhaseSet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current,
motor_current_input_voltage_t const *const p_st_voltage)

 Set d/q-axis Current & Voltage Data. Implements
motor_current_api_t::currentSet. More...

fsp_err_t RM_MOTOR_CURRENT_ParameterGet (motor_current_ctrl_t *const
p_ctrl, motor_current_output_t *const p_st_output)

 Get Output Parameters. Implements
motor_current_api_t::parameterGet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentGet (motor_current_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,889 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

p_ctrl, float *const p_id, float *const p_iq)

 Get d/q-axis Current. Implements motor_current_api_t::currentGet.
More...

fsp_err_t RM_MOTOR_CURRENT_PhaseVoltageGet (motor_current_ctrl_t *const
p_ctrl, motor_current_get_voltage_t *const p_voltage)

 Gets the set phase voltage. Implements
motor_current_api_t::phaseVoltageGet. More...

fsp_err_t RM_MOTOR_CURRENT_ParameterUpdate (motor_current_ctrl_t *const
p_ctrl, motor_current_cfg_t const *const p_cfg)

 Update the parameters of Current Control. Implements
motor_current_api_t::parameterUpdate. More...

void rm_motor_current_encoder_cyclic (motor_current_instance_t const
*p_ctrl)

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor current
Interface.

Overview
The motor current is used to control the electric current of motor rotation in an appication. This
module should be called cyclically after the A/D conversion of electric current of each phase in an
application. This module calculates each phase voltage with input current reference, electric current
and rotor angle.

Features

The Motor Current Module has below features.

Calculate each phase(U/V/W) voltage.
Decoupling Control.
Voltage Error Compensation.

Configuration
Build Time Configurations for rm_motor_current

The following build time configurations are defined in fsp_cfg/rm_motor_current_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,890 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

Disabled included in the build.

Configurations for Motor > Motor Current Controller (rm_motor_current)

This module can be added to the Stacks tab via New Stack > Motor > Motor Current Controller
(rm_motor_current).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_current0 Module name.

Sensor type Sensorless
Encoder
Induction
Hall

Sensorless Select sensor type

Shunt type 1 shunt
2 shunt
3 shunt

2 shunt Select shunt type

Current control
decimation

Must be a valid non-
negative value.

0 Decimation of current
control.

PWM carrier frequency
(kHz)

Must be a valid value 20.0F PWM carrier frequency.

Input voltage (V) Must be a valid value 24.0F Input voltage for
limitation of current PI
control.

Sample delay
compensation

Disable
Enable

Enable Select enable/disable
sample delay
compensation.

Period magnification
value

Must be a valid non-
negative value.

1.5 Period magnification
value for sampling
delay compensation.

Voltage error
compensation

Disable
Enable

Enable Select enable/disable
voltage error
compensation.

Voltage error
compensation table of
voltage 1

Must be a valid value 0.672F Voltage error
compensation table of
voltage.

Voltage error
compensation table of
voltage 2

Must be a valid value 0.945F Voltage error
compensation table of
voltage.

Voltage error
compensation table of
voltage 3

Must be a valid value 1.054F Voltage error
compensation table of
voltage.

Voltage error
compensation table of
voltage 4

Must be a valid value 1.109F Voltage error
compensation table of
voltage.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,891 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

Voltage error
compensation table of
voltage 5

Must be a valid value 1.192F Voltage error
compensation table of
voltage.

Voltage error
compensation table of
current 1

Must be a valid value 0.013F Voltage error
compensation table of
current.

Voltage error
compensation table of
current 2

Must be a valid value 0.049F Voltage error
compensation table of
current.

Voltage error
compensation table of
current 3

Must be a valid value 0.080F Voltage error
compensation table of
current.

Voltage error
compensation table of
current 4

Must be a valid value 0.184F Voltage error
compensation table of
current.

Voltage error
compensation table of
current 5

Must be a valid value 0.751F Voltage error
compensation table of
current.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at A/D
conversion finish
interrupt.

Design Parameter

Current PI loop omega
(Hz)

Must be a valid value 300.0F Current PI loop omega

Current PI loop zeta Must be a valid value 1.0F Current PI loop zeta

Motor Parameter

Pole pairs Must be a valid non-
negative value.

2 Pole pairs

Resistance (ohm) Must be a valid value 8.5F Resistance

Inductance of d-axis
(H)

Must be a valid value 0.0045F Inductance of d-axis

Inductance of q-axis
(H)

Must be a valid value 0.0045F Inductance of q-axis

Permanent magnetic
flux (Wb)

Must be a valid value 0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid value 0.0000028F Rotor inertia

Clock Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,892 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the Period of Current Control with none-negative value.
Set the Reference Voltage with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the Motor Current in an application.

void motor_current_basic_example (void)

{

 motor_current_input_current_t temp_input_current;

 motor_current_input_voltage_t temp_input_voltage;

 motor_current_get_voltage_t temp_get_voltage;

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_CURRENT_Open(g_test_motor_current.p_ctrl,

g_test_motor_current.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Set current reference before get phase voltage */

 (void) RM_MOTOR_CURRENT_CurrentReferenceSet(g_test_motor_current.p_ctrl, 1.0F,

1.0F);

 /* Set speed and phase data before get phase voltage */

 (void) RM_MOTOR_CURRENT_SpeedPhaseSet(g_test_motor_current.p_ctrl, 104.72F,

1.0F);

 temp_input_current.iu = 1.0F;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,893 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

 temp_input_current.iv = 1.0F;

 temp_input_current.iw = 1.0F;

 temp_input_voltage.vdc = 24.0F;

 temp_input_voltage.va_max = 24.0F;

 /* Set electric current and voltage before get phase voltage */

 (void) RM_MOTOR_CURRENT_CurrentSet(g_test_motor_current.p_ctrl,

temp_input_current, temp_input_voltage);

 /* Activate the process. */

 (void) RM_MOTOR_CURRENT_Run(g_test_motor_current.p_ctrl);

 /* Get d/q-axis current*/

 (void) RM_MOTOR_CURRENT_CurrentGet(g_test_motor_current.p_ctrl, &f_get_id,

&f_get_iq);

 /* Get the flag of PI control */

 (void) RM_MOTOR_CURRENT_PhaseVolageGet(g_test_motor_current.p_ctrl,

&temp_get_voltage);

 /* Get Output Parameter */

 (void) RM_MOTOR_CURRENT_ParameterGet(g_test_motor_current.p_ctrl,

&test_output);

 (void) RM_MOTOR_CURRENT_ParameterUpdate(g_test_motor_current.p_ctrl,

g_test_motor_current.p_cfg);

 }

 /* Reset the process. */

 (void) RM_MOTOR_CURRENT_Reset(g_test_motor_current.p_ctrl);

 /* Close the module. */

 (void) RM_MOTOR_CURRENT_Close(g_test_motor_current.p_ctrl);

}

Enumerations

enum motor_current_shunt_type_t

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,894 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

◆ motor_current_shunt_type_t

enum motor_current_shunt_type_t

Selection of shunt type

Enumerator

MOTOR_CURRENT_SHUNT_TYPE_1_SHUNT Only use U phase current.

MOTOR_CURRENT_SHUNT_TYPE_2_SHUNT Use U and W phase current.

MOTOR_CURRENT_SHUNT_TYPE_3_SHUNT Use all phase current.

Function Documentation

◆ RM_MOTOR_CURRENT_Open()

fsp_err_t RM_MOTOR_CURRENT_Open (motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t
const *const p_cfg)

Opens and configures the Motor Current Module. Implements motor_current_api_t::open.

Return values
FSP_SUCCESS Motor Current successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_CURRENT_Close()

fsp_err_t RM_MOTOR_CURRENT_Close (motor_current_ctrl_t *const p_ctrl)

Disables specified Motor Current Module. Implements motor_current_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,895 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

◆ RM_MOTOR_CURRENT_Reset()

fsp_err_t RM_MOTOR_CURRENT_Reset (motor_current_ctrl_t *const p_ctrl)

Reset variables of Motor Current Module. Implements motor_current_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_Run()

fsp_err_t RM_MOTOR_CURRENT_Run (motor_current_ctrl_t *const p_ctrl)

Run(Start) the Current Control. Implements motor_current_api_t::run.

Return values
FSP_SUCCESS Successfully run.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_ParameterSet()

fsp_err_t RM_MOTOR_CURRENT_ParameterSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

Set (Input) Parameter Data. Implements motor_current_api_t::parameterSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input argument error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,896 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

◆ RM_MOTOR_CURRENT_CurrentReferenceSet()

fsp_err_t RM_MOTOR_CURRENT_CurrentReferenceSet (motor_current_ctrl_t *const p_ctrl, float
const id_reference, float const iq_reference)

Set Current Reference Data. Implements motor_current_api_t::currentReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_SpeedPhaseSet()

fsp_err_t RM_MOTOR_CURRENT_SpeedPhaseSet (motor_current_ctrl_t *const p_ctrl, float const
speed, float const phase)

Set Current Speed & rotor phase Data. Implements motor_current_api_t::speedPhaseSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_CurrentSet()

fsp_err_t RM_MOTOR_CURRENT_CurrentSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current, motor_current_input_voltage_t const
*const p_st_voltage)

Set d/q-axis Current & Voltage Data. Implements motor_current_api_t::currentSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,897 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

◆ RM_MOTOR_CURRENT_ParameterGet()

fsp_err_t RM_MOTOR_CURRENT_ParameterGet (motor_current_ctrl_t *const p_ctrl,
motor_current_output_t *const p_st_output)

Get Output Parameters. Implements motor_current_api_t::parameterGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_CURRENT_CurrentGet()

fsp_err_t RM_MOTOR_CURRENT_CurrentGet (motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

Get d/q-axis Current. Implements motor_current_api_t::currentGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_CURRENT_PhaseVoltageGet()

fsp_err_t RM_MOTOR_CURRENT_PhaseVoltageGet (motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

Gets the set phase voltage. Implements motor_current_api_t::phaseVoltageGet.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,898 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Current Controller (rm_motor_current)

◆ RM_MOTOR_CURRENT_ParameterUpdate()

fsp_err_t RM_MOTOR_CURRENT_ParameterUpdate (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Update the parameters of Current Control. Implements motor_current_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ rm_motor_current_encoder_cyclic()

void rm_motor_current_encoder_cyclic (motor_current_instance_t const * p_ctrl)

(end addtogroup MOTOR_CURRENT)

5.2.11.11 Motor Encoder Vector Control (rm_motor_encoder)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_ENCODER_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t
const *const p_cfg)

fsp_err_t RM_MOTOR_ENCODER_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Encoder Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_ENCODER_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Encoder Control block. Implements motor_api_t::reset.
More...

fsp_err_t RM_MOTOR_ENCODER_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_ENCODER_Stop (motor_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,899 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_ENCODER_ErrorSet (motor_ctrl_t *const p_ctrl,
motor_error_t const error)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_ENCODER_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_ENCODER_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference[degree]. Implements motor_api_t::positionSet.
More...

fsp_err_t RM_MOTOR_ENCODER_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t
*const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_ENCODER_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_ENCODER_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_ENCODER_ErrorCheck (motor_ctrl_t *const p_ctrl,
uint16_t *const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_ENCODER_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements motor_api_t::waitStopFlagGet. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,900 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

fsp_err_t RM_MOTOR_ENCODER_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

 Select using function. Implements motor_api_t::functionSelect.
More...

fsp_err_t RM_MOTOR_ENCODER_InertiaEstimateStart (motor_ctrl_t *const
p_ctrl)

 Start inertia estimation function. More...

fsp_err_t RM_MOTOR_ENCODER_InertiaEstimateStop (motor_ctrl_t *const
p_ctrl)

 Stop(Cancel) inertia estimation function. More...

fsp_err_t RM_MOTOR_ENCODER_ReturnOriginStart (motor_ctrl_t *const p_ctrl)

 Start return origin function. More...

fsp_err_t RM_MOTOR_ENCODER_ReturnOriginStop (motor_ctrl_t *const p_ctrl)

 Stop(Cancel) return origin function. More...

Detailed Description

Control a SPM motor on RA MCUs. This module implements the Motor Encoder Vector Control
(rm_motor_encoder).

Overview
The motor encoder vector control is used to control motor rotation in an application. This module is
meant to be used with Surface Permanent Magnet (SPM) motors and allows applications to start or
stop motor rotation easily.

Features

The motor encoder module has below features.

Start/stop motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Target Hardware

The below figure shows an example of target hardware of this Motor Encoder Module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,901 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 240: Example of target hardware of motor encoder module

Block Diagram

The below figure shows block diaram of encoder vector motor control.

Figure 241: Block diagram of encoder vector control (PI feedback loop)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,902 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Modulation

Sine wave modulation The modulation factor "m" is defined as follows.

Figure 242: Modulation factor

Space vector modulation In vector control of a permanent magnet synchronous motor,
generally, the desired voltage command value of each phase is generated sinusoidally.
However, if the generated value is used as-is for the modulation wave for PWM generation,
voltage utilization as applied to the motor (in terms of line voltage) is limited to a maximum
of 86.7 percents with respect to inverter bus voltage. As such, as shown in the following
expression, the average of the maximum and minimum values is calculated for the voltage
command value of each phase, and the value obtained by subtracting the average from the
voltage command value of each phase is used as the modulation wave. As a result, the
maximum amplitude of the modulation wave is multiplied by (square root 3)/2, while
voltage utilization becomes 100 percents and line voltage is unchanged.

Figure 243: Space vector modulation

State transition

The below figure shows a state transition diagram. Internal state is managed by "SYSTEM MODE".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,903 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 244: State transition diagram

 (1) SYSTEM MODE "SYSTEM MODE" indicates the operating states of the system. The state transits
on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop
(INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

(2) EVENT When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown the
table in above figure, according to that "EVENT". The occurrence factors of each event are shown
below.

EVENT name Occurrence factor

STOP by user operation

RUN by user operation

ERROR when the system detects an error

RESET by user operation

Flowchart

The below figures show flowcharts of motor encoder module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,904 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 245: Main process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,905 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 246: Current control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,906 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 247: Speed control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,907 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 248: Encoder interrupt process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,908 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Figure 249: Over current detection interrupt process

Configuration
Build Time Configurations for rm_motor_encoder

The following build time configurations are defined in fsp_cfg/rm_motor_encoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Encoder Vector Control (rm_motor_encoder)

This module can be added to the Stacks tab via New Stack > Motor > Motor Encoder Vector Control
(rm_motor_encoder).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,909 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

Name Name must be a valid
C symbol

g_motor_encoder0 Module name.

Limit of over current
(A)

Must be a valid value 2.0F Limit of over
current.(Detection
threshold)

Limit of over voltage
(V)

Must be a valid value 28.0F Limit of over
voltage.(Detection
threshold)

Limit of over speed
(rpm)

Must be a valid value 2100.0F Limit of over
speed.(Detection
threshold)

Limit of low voltage (V) Must be a valid value 18.0F Limit of low
voltage.(Detection
threshold)

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins. Please set used pins on configuration of each hardware modules.

Usage Notes
Limitations

Examples
Basic Example

This is a basic example of minimal use of the motor encoder module in an application.

void motor_encoder_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_ENCODER_Open(g_motor_encoder0.p_ctrl, g_motor_encoder0.p_cfg);

 handle_error(err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,910 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

 /* Set speed reference before motor run */

 (void) RM_MOTOR_ENCODER_SpeedSet(g_motor_encoder0.p_ctrl,

RM_MOTOR_ENCODER_TEST_OVER_SPEED_LIMIT);

 /* Set position reference before motor run */

 (void) RM_MOTOR_ENCODER_PositionSet(g_motor_encoder0.p_ctrl, &g_posref_sample1);

 /* Start motor rotation */

 (void) RM_MOTOR_ENCODER_Run(g_motor_encoder0.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_ENCODER_StatusGet(g_motor_encoder0.p_ctrl, &smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_ENCODER_AngleGet(g_motor_encoder0.p_ctrl, &smpl_angle);

 /* Get current motor speed */

 (void) RM_MOTOR_ENCODER_SpeedGet(g_motor_encoder0.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_ENCODER_ErrorCheck(g_motor_encoder0.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_Stop(g_motor_encoder0.p_ctrl);

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_ErrorSet(g_motor_encoder0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

 /* Reset Speed Control */

 (void) RM_MOTOR_ENCODER_Reset(g_motor_encoder0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_ENCODER_Close(g_motor_encoder0.p_ctrl);

}

Enumerations

enum motor_encoder_ctrl_t

enum motor_encoder_ctrl_event_t

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,911 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ motor_encoder_ctrl_t

enum motor_encoder_ctrl_t

Enumerator

MOTOR_ENCODER_CTRL_STOP Stop mode.

MOTOR_ENCODER_CTRL_RUN Run mode.

MOTOR_ENCODER_CTRL_ERROR Error mode.

◆ motor_encoder_ctrl_event_t

enum motor_encoder_ctrl_event_t

Enumerator

MOTOR_ENCODER_CTRL_EVENT_STOP Stop event.

MOTOR_ENCODER_CTRL_EVENT_RUN Run event.

MOTOR_ENCODER_CTRL_EVENT_ERROR Error event.

MOTOR_ENCODER_CTRL_EVENT_RESET Reset event.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,912 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Open()

fsp_err_t RM_MOTOR_ENCODER_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg
)

Configure the MOTOR in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_ENCODER_Open(g_motor_encoder0.p_ctrl, g_motor_encoder0.p_cfg);

Return values
FSP_SUCCESS MOTOR successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_ENCODER_Close()

fsp_err_t RM_MOTOR_ENCODER_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Encoder Control block. Implements motor_api_t::close.

Example:

 /* Close Speed Control */

 (void) RM_MOTOR_ENCODER_Close(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,913 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Reset()

fsp_err_t RM_MOTOR_ENCODER_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Encoder Control block. Implements motor_api_t::reset.

Example:

 /* Reset Speed Control */

 (void) RM_MOTOR_ENCODER_Reset(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_Run()

fsp_err_t RM_MOTOR_ENCODER_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_ENCODER_Run(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,914 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Stop()

fsp_err_t RM_MOTOR_ENCODER_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_Stop(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_ErrorSet()

fsp_err_t RM_MOTOR_ENCODER_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_ErrorSet(g_motor_encoder0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,915 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_SpeedSet()

fsp_err_t RM_MOTOR_ENCODER_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_ENCODER_SpeedSet(g_motor_encoder0.p_ctrl,

RM_MOTOR_ENCODER_TEST_OVER_SPEED_LIMIT);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_PositionSet()

fsp_err_t RM_MOTOR_ENCODER_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference[degree]. Implements motor_api_t::positionSet.

Example:

 /* Set position reference before motor run */

 (void) RM_MOTOR_ENCODER_PositionSet(g_motor_encoder0.p_ctrl, &g_posref_sample1);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data set pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,916 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_StatusGet()

fsp_err_t RM_MOTOR_ENCODER_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_ENCODER_StatusGet(g_motor_encoder0.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_ENCODER_AngleGet()

fsp_err_t RM_MOTOR_ENCODER_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_ENCODER_AngleGet(g_motor_encoder0.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,917 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_SpeedGet()

fsp_err_t RM_MOTOR_ENCODER_SpeedGet (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_ENCODER_SpeedGet(g_motor_encoder0.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_ENCODER_ErrorCheck()

fsp_err_t RM_MOTOR_ENCODER_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_ENCODER_ErrorCheck(g_motor_encoder0.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,918 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_WaitStopFlagGet()

fsp_err_t RM_MOTOR_ENCODER_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

Get wait stop flag. Implements motor_api_t::waitStopFlagGet.

Example:

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_ENCODER_FunctionSelect()

fsp_err_t RM_MOTOR_ENCODER_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

Select using function. Implements motor_api_t::functionSelect.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

◆ RM_MOTOR_ENCODER_InertiaEstimateStart()

fsp_err_t RM_MOTOR_ENCODER_InertiaEstimateStart (motor_ctrl_t *const p_ctrl)

Start inertia estimation function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,919 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_InertiaEstimateStop()

fsp_err_t RM_MOTOR_ENCODER_InertiaEstimateStop (motor_ctrl_t *const p_ctrl)

Stop(Cancel) inertia estimation function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

◆ RM_MOTOR_ENCODER_ReturnOriginStart()

fsp_err_t RM_MOTOR_ENCODER_ReturnOriginStart (motor_ctrl_t *const p_ctrl)

Start return origin function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,920 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Encoder Vector Control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_ReturnOriginStop()

fsp_err_t RM_MOTOR_ENCODER_ReturnOriginStop (motor_ctrl_t *const p_ctrl)

Stop(Cancel) return origin function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

5.2.11.12 Motor Inertia estimate (rm_motor_inertia_estimate)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Open (motor_inertia_estimate_ctrl_t
*const p_ctrl, motor_inertia_estimate_cfg_t const *const p_cfg)

 Opens and configures the motor inertia estimate module.
Implements motor_inertia_estimate_api_t::open. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Close (motor_inertia_estimate_ctrl_t
*const p_ctrl)

 Disables specified motor inertia estimate module. Implements
motor_inertia_estimate_api_t::close. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Start (motor_inertia_estimate_ctrl_t
*const p_ctrl)

 Start inertia estimation. Implements
motor_inertia_estimate_api_t::start. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Stop (motor_inertia_estimate_ctrl_t
*const p_ctrl)

 Stop (Cancel) inertia estimation. Implements
motor_inertia_estimate_api_t::stop. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,921 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Reset (motor_inertia_estimate_ctrl_t
*const p_ctrl)

 Reset variables of inertia estimate module. Implements
motor_inertia_estimate_api_t::reset. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_InfoGet
(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_info_t *const p_info)

 Get information of inertia estimation. Implements
motor_inertia_estimate_api_t::infoGet. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_DataSet
(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_set_data_t *const p_set_data)

 Set necessary data to inertia estimation. Implements
motor_inertia_estimate_api_t::dataSet. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_SpeedCyclic
(motor_inertia_estimate_ctrl_t *const p_ctrl)

 Cyclic process of inertia estimation at speed control period.
Implements motor_inertia_estimate_api_t::speedCyclic. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_CurrentCyclic
(motor_inertia_estimate_ctrl_t *const p_ctrl)

 Cyclic process of inertia estimation at current control period (called
at A/D conversion finish interrupt). Implements
motor_inertia_estimate_api_t::currentCyclic. More...

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_ParameterUpdate
(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_cfg_t const *const p_cfg)

 Update the parameters of inertia estimate. Implements
motor_inertia_estimate_api_t::parameterUpdate. More...

Detailed Description

Measurement and calculation proccess for the motor control on RA MCUs. This module implements
the Motor Inertia Estimate Interface.

Overview
The motor inertia estimation module is used to measure and calculate rotor inertia in an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,922 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

This module should be used with Renesas Motor Workbench (RMW) basically.

Features

The Motor Inertia Estimation Module has below features.

Measurement process work automatically
Calculate rotor inertia [kgm^2].

Configuration
Build Time Configurations for rm_motor_inertia_estimate

The following build time configurations are defined in fsp_cfg/rm_motor_inertia_estimate_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor inertia estimation (rm_motor_inertia_estimate)

This module can be added to the Stacks tab via New Stack > Motor > Motor inertia estimation
(rm_motor_inertia_estimate).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_inertia_estima
te0

Module name.

Moved position
distance to measure
(degree)

Must be set -360 to -10
or 10 to 360.

360 Moved position
distance to measure
inertia (degree)

Maximum speed (rpm) Must be set over 60. 500 Maximum rotation
speed (rpm)

Acceleration time Must be a valid non-
negative value.

0.3 Acceleration time

Motor inertia Manual Entry 0.0000041 Motor inertia

Low threshold to judge
speed

Must be set 0.1 to 0.5 0.1 Low threshold to judge
speed reached

High threshold to judge
speed

Must be set 0.5 to 0.9,
and greater than low
threshold

0.9 High threshold to judge
speed reached

Time to wait moving
stability (sec)

Must be a valid non-
negative value.

0.8 Time to wait moving
stability

Cyclic period of current
control (sec)

Must be a valid non-
negative value.

0.00005 Cyclic period of current
control (sec)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,923 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

Cyclic period of speed
control (sec)

Must be a valid non-
negative value.

0.0005 Cyclic period of speed
control (sec)

Motor pole pairs Must be a valid non-
negative value.

4 Motor pole pairs

Motor magnet flux
(Wb)

Must be a valid non-
negative value.

0.00623 Motor magnet flux
(Wb)

Interval time Must be a valid non-
negative value.

400.0 Interval time. Please
set same value as
Position control

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Examples
Basic Example

This is a basic example of minimal use of the Motor Inertia Estimation in an application.

void motor_inertia_estimate_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Open(&g_mtr_inertia_estimate0_ctrl,

&g_mtr_inertia_estimate0_cfg);

 assert(FSP_SUCCESS == err);

 /* Start process. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Start(&g_mtr_inertia_estimate0_ctrl);

 temp_set_data.f_iq = 1.0F;

 temp_set_data.f_speed_radian_control = 1.04F;

 temp_set_data.s2_position_degree = 180;

 temp_set_data.u1_position_state = 0;

 /* Set data to the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_DataSet(&g_mtr_inertia_estimate0_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,924 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

&temp_set_data);

 /* Get information from the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_InfoGet(&g_mtr_inertia_estimate0_ctrl,

&temp_information);

 /* Stop process. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Stop(&g_mtr_inertia_estimate0_ctrl);

 /* Close the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Close(&g_mtr_inertia_estimate0_ctrl);

}

Data Structures

struct motor_inertia_estimate_extended_cfg_t

struct motor_inertia_estimate_instance_ctrl_t

Data Structure Documentation

◆ motor_inertia_estimate_extended_cfg_t

struct motor_inertia_estimate_extended_cfg_t

Extended configurations for motor inertia estimate

Data Fields

int16_t s2_move_degree Moving position reference
[degree].

uint16_t u2_J_max_speed_rpm Maximum Speed [rpm].

float f_accel_time Acceleration time.

float f_rotor_inertia Initialized rotor inertia value.

float f_judge_low_threshold Low threshold to judge speed.

float f_judge_high_threshold High threshold to judge speed.

float f_change_mode_time Timing value to change internal
mode.

float f_current_ctrl_period Period of current control [sec].

float f_speed_ctrl_period Period of speed control [sec].

uint8_t u1_motor_polepairs Motor pole pairs.

float f_motor_m Motor magnet flux [Wb].

float f_position_interval Interval counts for reference
position change.

◆ motor_inertia_estimate_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,925 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

struct motor_inertia_estimate_instance_ctrl_t

Inertia estimate instance control block

Data Fields

uint32_t open Used to determine if the
module is configured.

motor_inertia_estimate_start_fla
g_t

start_flag start/stop flag

motor_inertia_estimate_mode_t mode Internal mode.

uint8_t u1_mode_count Use to manage internal mode.

motor_inertia_estimate_period_t speed_period Measure period.

motor_inertia_estimate_period_t speed_period_buffer Buffer of measure period to be
reffered by current cyclic.

uint32_t u4_measure_count Counter for speed control cycle.

uint32_t u4_wait_count Counter to wait change mode
timing.

uint8_t u1_position_move_mode Position move mode
(TRIANGLE/TRAPEZOID)

int16_t s2_initial_position_degree Initial position.

float f_iq_ad q-axis current [A]

float f_summary_iq_ad Summary of q-axis current.

float f_position_mode_time Summary of speed control
period to judge the timing.

float f_position_dt_time_sec Differencial time of move.

int16_t s2_position_reference_degree Position reference [degree].

float f_estimated_value Estimated inertia.

float f_inertia_value1 Buffer to calculate inertia 1.

float f_inertia_value2 Buffer to calculate inertia 2.

float f_interval_time Interval time about position
transition.

float f_inertia_speed_ctrl1

float f_inertia_speed_ctrl2

float f_inertia_speed_ctrl3

float f_inertia_speed_ctrl4

float f_inertia_speed_ctrl5

float f_inertia_speed_ctrl6

float f_inertia_speed_ctrl7

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,926 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

float f_inertia_speed_ctrl8

float f_inertia_integ_iq1

float f_inertia_integ_iq2

float f_inertia_integ_iq3

float f_inertia_integ_iq4

float f_inertia_integ_time1

float f_inertia_integ_time2

float f_inertia_integ_time3

float f_inertia_integ_time4

float f_inverse_motor_polepairs Inverse motor pole pairs (for
calculation)

motor_inertia_estimate_set_dat
a_t

receive_data Received data set from
speed(position) and current.

motor_inertia_estimate_cfg_t
const *

p_cfg Pointer of configuration
structure.

Function Documentation

◆ RM_MOTOR_INERTIA_ESTIMATE_Open()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Open (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_cfg_t const *const p_cfg)

Opens and configures the motor inertia estimate module. Implements
motor_inertia_estimate_api_t::open.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Open(&g_mtr_inertia_estimate0_ctrl,

&g_mtr_inertia_estimate0_cfg);

Return values
FSP_SUCCESS Motor inertia estimate module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,927 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

◆ RM_MOTOR_INERTIA_ESTIMATE_Close()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Close (motor_inertia_estimate_ctrl_t *const p_ctrl)

Disables specified motor inertia estimate module. Implements motor_inertia_estimate_api_t::close.

Example:

 /* Close the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Close(&g_mtr_inertia_estimate0_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_INERTIA_ESTIMATE_Start()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Start (motor_inertia_estimate_ctrl_t *const p_ctrl)

Start inertia estimation. Implements motor_inertia_estimate_api_t::start.

Example:

 /* Start process. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Start(&g_mtr_inertia_estimate0_ctrl);

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,928 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

◆ RM_MOTOR_INERTIA_ESTIMATE_Stop()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Stop (motor_inertia_estimate_ctrl_t *const p_ctrl)

Stop (Cancel) inertia estimation. Implements motor_inertia_estimate_api_t::stop.

Example:

 /* Stop process. */

 err = RM_MOTOR_INERTIA_ESTIMATE_Stop(&g_mtr_inertia_estimate0_ctrl);

Return values
FSP_SUCCESS Successfully stopped (canceled).

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_INERTIA_ESTIMATE_Reset()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_Reset (motor_inertia_estimate_ctrl_t *const p_ctrl)

Reset variables of inertia estimate module. Implements motor_inertia_estimate_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,929 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

◆ RM_MOTOR_INERTIA_ESTIMATE_InfoGet()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_InfoGet (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_info_t *const p_info)

Get information of inertia estimation. Implements motor_inertia_estimate_api_t::infoGet.

Example:

 /* Get information from the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_InfoGet(&g_mtr_inertia_estimate0_ctrl,

&temp_information);

Return values
FSP_SUCCESS Successfully get data.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Argument pointer is invalid.

◆ RM_MOTOR_INERTIA_ESTIMATE_DataSet()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_DataSet (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_set_data_t *const p_set_data)

Set necessary data to inertia estimation. Implements motor_inertia_estimate_api_t::dataSet.

Example:

 /* Set data to the module. */

 err = RM_MOTOR_INERTIA_ESTIMATE_DataSet(&g_mtr_inertia_estimate0_ctrl,

&temp_set_data);

Return values
FSP_SUCCESS Successfully set data.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,930 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Inertia estimate (rm_motor_inertia_estimate)

◆ RM_MOTOR_INERTIA_ESTIMATE_SpeedCyclic()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_SpeedCyclic (motor_inertia_estimate_ctrl_t *const p_ctrl)

Cyclic process of inertia estimation at speed control period. Implements
motor_inertia_estimate_api_t::speedCyclic.

Return values
FSP_SUCCESS Successfully perform the process.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_INERTIA_ESTIMATE_CurrentCyclic()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_CurrentCyclic (motor_inertia_estimate_ctrl_t *const
p_ctrl)

Cyclic process of inertia estimation at current control period (called at A/D conversion finish
interrupt). Implements motor_inertia_estimate_api_t::currentCyclic.

Return values
FSP_SUCCESS Successfully perform the process.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_INERTIA_ESTIMATE_ParameterUpdate()

fsp_err_t RM_MOTOR_INERTIA_ESTIMATE_ParameterUpdate (motor_inertia_estimate_ctrl_t *const
p_ctrl, motor_inertia_estimate_cfg_t const *const p_cfg)

Update the parameters of inertia estimate. Implements
motor_inertia_estimate_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,931 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

5.2.11.13 Motor Position Controller (rm_motor_position)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_POSITION_Open (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

 Opens and configures the Motor Position Module. Implements
motor_position_api_t::open. More...

fsp_err_t RM_MOTOR_POSITION_Close (motor_position_ctrl_t *const p_ctrl)

 Disables specified Motor Position Module. Implements
motor_position_api_t::close. More...

fsp_err_t RM_MOTOR_POSITION_Reset (motor_position_ctrl_t *const p_ctrl)

 Reset the variables of Motor Position Module. Implements
motor_position_api_t::reset. More...

fsp_err_t RM_MOTOR_POSITION_PositionGet (motor_position_ctrl_t *const
p_ctrl, int16_t *const p_position)

 Get Rotor Position Data [degree]. Implements
motor_position_api_t::positionGet. More...

fsp_err_t RM_MOTOR_POSITION_PositionSet (motor_position_ctrl_t *const
p_ctrl, float const position_rad)

 Set Position Data from Encoder [radian]. Implements
motor_position_api_t::positionSet. More...

fsp_err_t RM_MOTOR_POSITION_PositionReferenceSet (motor_position_ctrl_t
*const p_ctrl, int16_t const position_reference_deg)

 Set Position Reference Data [degree]. Implements
motor_position_api_t::positionReferenceSet. More...

fsp_err_t RM_MOTOR_POSITION_ControlModeSet (motor_position_ctrl_t *const
p_ctrl, motor_position_ctrl_mode_t const mode)

 Set Position Control Mode. Implements
motor_position_api_t::controlModeSet. More...

fsp_err_t RM_MOTOR_POSITION_PositionControl (motor_position_ctrl_t *const
p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,932 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

 Calculates internal position reference.(Main process of Position
Control) Implements motor_position_api_t::positionControl. More...

fsp_err_t RM_MOTOR_POSITION_IpdSpeedPControl (motor_position_ctrl_t
*const p_ctrl, float const ref_speed_rad, float const speed_rad, float
*const p_iq_ref)

 Calculates the q-axis current reference by P control. Implements
motor_position_api_t::ipdSpeedPControl. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferencePControlGet
(motor_position_ctrl_t *const p_ctrl, float *const p_speed_ref)

 Get Speed Reference by P Control. Implements
motor_position_api_t::speedReferencePControlGet. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceIpdControlGet
(motor_position_ctrl_t *const p_ctrl, float const max_speed_rad, float
*const p_speed_ref)

 Get Speed Reference by IPD Control. Implements
motor_position_api_t::speedReferenceIpdControlGet. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet
(motor_position_ctrl_t *const p_ctrl, float *const p_speed_ref)

 Get Speed Reference by Feedforward. Implements
motor_position_api_t::speedReferenceFeedforwardGet. More...

fsp_err_t RM_MOTOR_POSITION_InfoGet (motor_position_ctrl_t *const p_ctrl,
motor_position_info_t *const p_info)

 Get position information. More...

fsp_err_t RM_MOTOR_POSITION_ParameterUpdate (motor_position_ctrl_t
*const p_ctrl, motor_position_cfg_t const *const p_cfg)

 Update the parameters of Position Control Calculation. Implements
motor_position_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor position
Interface.

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,933 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

The motor position is used to control the position of motor rotor in an appication. This module should
be called cyclically in an application (e.g. in cyclic timer interrupt). This module calculates speed
reference with inputted position reference and current rotational speed.

Features

The Motor Position Module has below features.

Calculate speed reference.

Configuration
Build Time Configurations for rm_motor_position

The following build time configurations are defined in fsp_cfg/rm_motor_position_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Position Controller (rm_motor_position)

This module can be added to the Stacks tab via New Stack > Motor > Motor Position Controller
(rm_motor_position).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_position0 Module name.

Position dead band Must be a valid non-
negative value.

1U Ignored area of
position control.

Position band limit Must be a valid non-
negative value.

3U Ignored area of
position control.

Speed feedforward
ratio

Must be a valid value 0.8F Speed feedforward
ratio.

Encoder counts per one
rotation

Must be a valid value 1200.0F Encoder counts per one
rotation.

Position omega Must be a valid value 10.0F Position control omega.

Period of speed control
(sec)

Must be a valid value 0.0005F Period of speed control.

IPD

IPD LPF Disable
Enable

Disable IPD LPF process enable
or disable

Position Kp ratio Must be a valid value 0.3F Position Kp ratio.

Position feedforward Must be a valid value 0.0F Position feedforward

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,934 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

ratio ratio.

Speed K ratio Must be a valid value 2.0F Speed K ratio

Error Limit #1 Must be a valid value 10.0F Error limitation #1

Error limit #2 Must be a valid value 0.2F Error limitation #2

LPF omega Must be a valid value 500.0F LPF omega.

LPF zeta Must be a valid value 1.0F LPF zeta.

Position Profiling

Interval time Must be a valid non-
negative value.

400U Interval time.

Accel time Must be a valid value 0.3F Accel time.

Maximum accel time
(sec)

Must be a valid value 8117.96F Maximum accelaration
time (sec)

Accelaration maximum
speed

Must be a valid value 2000.0F Accelaration maximum
speed.

Update step of timer Must be a valid value 0.0005F Update step of timer.

Motor Parameter

Pole pair Value must be non-
negative

7 Pole pair

Resistance (ohm) Must be a valid value 0.453F Resistance

Inductance of d-axis
(H)

Must be a valid value 0.0009447F Inductance of d-axis

Inductance of q-axis
(H)

Must be a valid value 0.0009447F Inductance of q-axis

Permanent magnetic
flux (Wb)

Must be a valid value 0.006198F Permanent magnetic
flux

Motor Parameter >
Motor inertia (kgm^2)

Must be a valid value 0.00000962F Motor inertia

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the period of speed control with non-negative value.
Set the limit of speed change step with non-negative value.
Set the maximum speed with non-negative value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,935 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

Examples
Basic Example

This is a basic example of using the Motor Position module in an application.

void motor_position_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_POSITION_Open(g_motor_position0.p_ctrl, g_motor_position0.p_cfg);

 handle_error(err);

 /* Set working mode */

 RM_MOTOR_POSITION_ModeSet(g_motor_position0.p_ctrl,

MOTOR_POSITION_CTRL_MODE_STEP);

 /* Set position reference */

 RM_MOTOR_POSITION_PositionReferenceSet(g_motor_position0.p_ctrl, 180U);

 /* Basically run this module at cyclic interrupt (e.g. AGT timer).

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Perform Position Control Process */

 RM_MOTOR_POSITION_PositionControl(g_motor_position0.p_ctrl);

 /* Perform Speed IPD Control Process */

 RM_MOTOR_POSITION_IpdSpeedPControl(g_motor_position0.p_ctrl, 0.0F, 0.0F,

&temp_iq_ref);

 /* Get Position */

 RM_MOTOR_POSITION_PositionGet(g_motor_position0.p_ctrl, &temp_position);

 /* Update parameters */

 RM_MOTOR_POSITION_ParameterUpdate(g_motor_position0.p_ctrl,

&g_motor_position0.p_cfg);

 }

 /* Reset Speed Control */

 RM_MOTOR_POSITION_Reset(g_motor_position0.p_ctrl);

 /* Close Speed Control */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,936 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

 RM_MOTOR_POSITION_Close(g_motor_position0.p_ctrl);

}

Enumerations

enum motor_position_ipd_lpf_t

Enumeration Type Documentation

◆ motor_position_ipd_lpf_t

enum motor_position_ipd_lpf_t

Enumerator

MOTOR_POSITION_IPD_LPF_DISABLE ipd control is disabled

MOTOR_POSITION_IPD_LPF_ENABLE ipd control is enabled

Function Documentation

◆ RM_MOTOR_POSITION_Open()

fsp_err_t RM_MOTOR_POSITION_Open (motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t
const *const p_cfg)

Opens and configures the Motor Position Module. Implements motor_position_api_t::open.

Return values
FSP_SUCCESS Motor Position Module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Set parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,937 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

◆ RM_MOTOR_POSITION_Close()

fsp_err_t RM_MOTOR_POSITION_Close (motor_position_ctrl_t *const p_ctrl)

Disables specified Motor Position Module. Implements motor_position_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_Reset()

fsp_err_t RM_MOTOR_POSITION_Reset (motor_position_ctrl_t *const p_ctrl)

Reset the variables of Motor Position Module. Implements motor_position_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_PositionGet()

fsp_err_t RM_MOTOR_POSITION_PositionGet (motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

Get Rotor Position Data [degree]. Implements motor_position_api_t::positionGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,938 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

◆ RM_MOTOR_POSITION_PositionSet()

fsp_err_t RM_MOTOR_POSITION_PositionSet (motor_position_ctrl_t *const p_ctrl, float const
position_rad)

Set Position Data from Encoder [radian]. Implements motor_position_api_t::positionSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_PositionReferenceSet()

fsp_err_t RM_MOTOR_POSITION_PositionReferenceSet (motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

Set Position Reference Data [degree]. Implements motor_position_api_t::positionReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_ControlModeSet()

fsp_err_t RM_MOTOR_POSITION_ControlModeSet (motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

Set Position Control Mode. Implements motor_position_api_t::controlModeSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,939 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

◆ RM_MOTOR_POSITION_PositionControl()

fsp_err_t RM_MOTOR_POSITION_PositionControl (motor_position_ctrl_t *const p_ctrl)

Calculates internal position reference.(Main process of Position Control) Implements
motor_position_api_t::positionControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_IpdSpeedPControl()

fsp_err_t RM_MOTOR_POSITION_IpdSpeedPControl (motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

Calculates the q-axis current reference by P control. Implements
motor_position_api_t::ipdSpeedPControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_SpeedReferencePControlGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferencePControlGet (motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

Get Speed Reference by P Control. Implements motor_position_api_t::speedReferencePControlGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,940 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

◆ RM_MOTOR_POSITION_SpeedReferenceIpdControlGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceIpdControlGet (motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

Get Speed Reference by IPD Control. Implements
motor_position_api_t::speedReferenceIpdControlGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet (motor_position_ctrl_t *const
p_ctrl, float *const p_speed_ref)

Get Speed Reference by Feedforward. Implements
motor_position_api_t::speedReferenceFeedforwardGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_InfoGet()

fsp_err_t RM_MOTOR_POSITION_InfoGet (motor_position_ctrl_t *const p_ctrl, motor_position_info_t
*const p_info)

Get position information.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,941 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Position Controller (rm_motor_position)

◆ RM_MOTOR_POSITION_ParameterUpdate()

fsp_err_t RM_MOTOR_POSITION_ParameterUpdate (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Update the parameters of Position Control Calculation. Implements
motor_position_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

5.2.11.14 Motor Sensorless Vector Control (rm_motor_sensorless)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_SENSORLESS_Open (motor_ctrl_t *const p_ctrl,
motor_cfg_t const *const p_cfg)

fsp_err_t RM_MOTOR_SENSORLESS_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Sensorless Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_SENSORLESS_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Sensorless Control block. Implements motor_api_t::reset
. More...

fsp_err_t RM_MOTOR_SENSORLESS_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_SENSORLESS_Stop (motor_ctrl_t *const p_ctrl)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_SENSORLESS_ErrorSet (motor_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,942 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

motor_error_t const error)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_SENSORLESS_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSORLESS_StatusGet (motor_ctrl_t *const p_ctrl,
uint8_t *const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_SENSORLESS_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_SENSORLESS_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_SENSORLESS_ErrorCheck (motor_ctrl_t *const p_ctrl,
uint16_t *const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_SENSORLESS_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference. Implements motor_api_t::positionSet. More...

fsp_err_t RM_MOTOR_SENSORLESS_WaitStopFlagGet (motor_ctrl_t *const
p_ctrl, motor_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements motor_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_SENSORLESS_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

 Select function. Implements motor_api_t::functionSelect. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,943 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Detailed Description

Usual control of a SPM motor on RA MCUs. This module implements the Motor Sensorless Vector
Control (rm_motor_sensorless).

Overview
The motor sensorless vector control is used to control a motor rotation in an appication. This module
is implemented with using SPM motor. User can start/stop motor rotation simply.

Features

The Motor Sensorless Module has below features.

Start/Stop a motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Target Hardware

The below figure shows an example of target hardware of this Motor Sensorless Module.

Figure 250: Example of target hardware of motor sensorless module

Block Diagram

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,944 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

The below figures show block diaram of sensorless vector motor control. The 1st shows as an open-
loop state, 2nd as a PI feedback loop state.

Figure 251: Block diagram of sensorless vector control (open-loop)

Figure 252: Block diagram of sensorless vector control (PI feedback loop)

Modulation

Sine wave modulation The modulation factor "m" is defined as follows.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,945 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 253: Modulation factor

Space vector modulation In vector control of a permanent magnet synchronous motor,
generally, the desired voltage command value of each phase is generated sinusoidally.
However, if the generated value is used as-is for the modulation wave for PWM generation,
voltage utilization as applied to the motor (in terms of line voltage) is limited to a maximum
of 86.7 percents with respect to inverter bus voltage. As such, as shown in the following
expression, the average of the maximum and minimum values is calculated for the voltage
command value of each phase, and the value obtained by subtracting the average from the
voltage command value of each phase is used as the modulation wave. As a result, the
maximum amplitude of the modulation wave is multiplied by (square root 3)/2, while
voltage utilization becomes 100 percents and line voltage is unchanged.

Figure 254: Space vector modulation

State transition

The below figure shows a state transition diagram. Internal state is managed by "SYSTEM MODE".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,946 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 255: State transition diagram

 (1) SYSTEM MODE "SYSTEM MODE" indicates the operating states of the system. The state transits
on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop
(INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

(2) EVENT When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown the
table in above figure, according to that "EVENT". The occurrence factors of each event are shown
below.

EVENT name Occurrence factor

STOP by user operation

RUN by user operation

ERROR when the system detects an error

RESET by user operation

Flowchart

The below figures show flowcharts of motor sensorless module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,947 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 256: Main process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,948 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 257: Current control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,949 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 258: Speed control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,950 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Figure 259: Over current detection interrupt process

Configuration
Build Time Configurations for rm_motor_sensorless

The following build time configurations are defined in fsp_cfg/rm_motor_sensorless_cfg.h:

Configuration Options Default Description

Parameter checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

This module can be added to the Stacks tab via New Stack > Motor > Motor Sensorless Vector
Control (rm_motor_sensorless).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,951 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

Name Name must be a valid
C symbol

g_motor_sensorless0 Module name.

Limit of over current
(A)

Must be a valid value 0.42F Limit of over
current.(Detection
threshold)

Limit of over voltage
(V)

Must be a valid value 28.0F Limit of over
voltage.(Detection
threshold)

Limit of over speed
(rpm)

Must be a valid value 3000.0F Limit of over
speed.(Detection
threshold)

Limit of low voltage (V) Must be a valid value 14.0F Limit of low
voltage.(Detection
threshold)

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins. Please set used pins on configuration of each hardware modules.

Usage Notes
Limitations

Set the limit of electric current with non-negative value.
Set the limit of input voltage with non-negative value.
Set the limit of rotational speed with non-negative value.

Examples
Basic Example

This is a basic example of minimal use of the Motor Sensorless in an application.

void motor_sensorless_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,952 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

 err = RM_MOTOR_SENSORLESS_Open(g_motor_sensorless0.p_ctrl,

g_motor_sensorless0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_SENSORLESS_SpeedSet(g_motor_sensorless0.p_ctrl,

DEF_SENSORLESS_TEST_OVSPD_LIM);

 /* Start motor rotation */

 (void) RM_MOTOR_SENSORLESS_Run(g_motor_sensorless0.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_SENSORLESS_StatusGet(g_motor_sensorless0.p_ctrl, &smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_SENSORLESS_AngleGet(g_motor_sensorless0.p_ctrl, &smpl_angle);

 /* Get current motor speed */

 (void) RM_MOTOR_SENSORLESS_SpeedGet(g_motor_sensorless0.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_SENSORLESS_ErrorCheck(g_motor_sensorless0.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_Stop(g_motor_sensorless0.p_ctrl);

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_ErrorSet(g_motor_sensorless0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

 /* Reset Speed Control */

 (void) RM_MOTOR_SENSORLESS_Reset(g_motor_sensorless0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_SENSORLESS_Close(g_motor_sensorless0.p_ctrl);

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,953 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Open()

fsp_err_t RM_MOTOR_SENSORLESS_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const
p_cfg)

Configure the MOTOR in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_SENSORLESS_Open(g_motor_sensorless0.p_ctrl,

g_motor_sensorless0.p_cfg);

Return values
FSP_SUCCESS MOTOR successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_SENSORLESS_Close()

fsp_err_t RM_MOTOR_SENSORLESS_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Sensorless Control block. Implements motor_api_t::close.

Example:

 /* Close Speed Control */

 (void) RM_MOTOR_SENSORLESS_Close(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,954 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Reset()

fsp_err_t RM_MOTOR_SENSORLESS_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Sensorless Control block. Implements motor_api_t::reset.

Example:

 /* Reset Speed Control */

 (void) RM_MOTOR_SENSORLESS_Reset(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_Run()

fsp_err_t RM_MOTOR_SENSORLESS_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_SENSORLESS_Run(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,955 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Stop()

fsp_err_t RM_MOTOR_SENSORLESS_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_Stop(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_ErrorSet()

fsp_err_t RM_MOTOR_SENSORLESS_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error
)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_ErrorSet(g_motor_sensorless0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,956 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_SpeedSet()

fsp_err_t RM_MOTOR_SENSORLESS_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_SENSORLESS_SpeedSet(g_motor_sensorless0.p_ctrl,

DEF_SENSORLESS_TEST_OVSPD_LIM);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_StatusGet()

fsp_err_t RM_MOTOR_SENSORLESS_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status
)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_SENSORLESS_StatusGet(g_motor_sensorless0.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,957 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_AngleGet()

fsp_err_t RM_MOTOR_SENSORLESS_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad
)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_SENSORLESS_AngleGet(g_motor_sensorless0.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_SENSORLESS_SpeedGet()

fsp_err_t RM_MOTOR_SENSORLESS_SpeedGet (motor_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_SENSORLESS_SpeedGet(g_motor_sensorless0.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,958 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_ErrorCheck()

fsp_err_t RM_MOTOR_SENSORLESS_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const
p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_SENSORLESS_ErrorCheck(g_motor_sensorless0.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_SENSORLESS_PositionSet()

fsp_err_t RM_MOTOR_SENSORLESS_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference. Implements motor_api_t::positionSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_SENSORLESS_WaitStopFlagGet()

fsp_err_t RM_MOTOR_SENSORLESS_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

Get wait stop flag. Implements motor_api_t::waitStopFlagGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,959 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_FunctionSelect()

fsp_err_t RM_MOTOR_SENSORLESS_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

Select function. Implements motor_api_t::functionSelect.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

5.2.11.15 Motor Speed Controller (rm_motor_speed)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_SPEED_Open (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

 Opens and configures the Motor Speed Module. Implements
motor_speed_api_t::open. More...

fsp_err_t RM_MOTOR_SPEED_Close (motor_speed_ctrl_t *const p_ctrl)

 Disables specified Motor Speed Module. Implements
motor_speed_api_t::close. More...

fsp_err_t RM_MOTOR_SPEED_Reset (motor_speed_ctrl_t *const p_ctrl)

 Reset the variables of Motor Speed Module. Implements
motor_speed_api_t::reset. More...

fsp_err_t RM_MOTOR_SPEED_Run (motor_speed_ctrl_t *const p_ctrl)

 Run(Start) the Motor Speed Control. Implements
motor_speed_api_t::run. More...

fsp_err_t RM_MOTOR_SPEED_SpeedReferenceSet (motor_speed_ctrl_t *const
p_ctrl, float const speed_reference_rpm)

 Set Speed Reference Data. Implements
motor_speed_api_t::speedReferenceSet. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,960 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

fsp_err_t RM_MOTOR_SPEED_PositionReferenceSet (motor_speed_ctrl_t *const
p_ctrl, motor_speed_position_data_t const *const p_position_data)

 Set Position Reference Data. Implements
motor_speed_api_t::positionReferenceSet. More...

fsp_err_t RM_MOTOR_SPEED_ParameterSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

 Set Input parameters. Implements motor_speed_api_t::parameterSet.
More...

fsp_err_t RM_MOTOR_SPEED_SpeedControl (motor_speed_ctrl_t *const p_ctrl)

 Calculates the d/q-axis current reference.(Main process of Speed
Control) Implements motor_speed_api_t::speedControl. More...

fsp_err_t RM_MOTOR_SPEED_ParameterGet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

 Get Speed Control Parameters. Implements
motor_speed_api_t::parameterGet. More...

fsp_err_t RM_MOTOR_SPEED_ParameterUpdate (motor_speed_ctrl_t *const
p_ctrl, motor_speed_cfg_t const *const p_cfg)

 Update the parameters of Speed Control Calculation. Implements
motor_speed_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor speed
Interface.

Overview
The motor speed is used to control the speed of motor rotation in an appication. This module should
be called cyclically in an application (e.g. in cyclic timer interrupt). This module caliculates d/q-axis
current reference with input speed reference, current rotational speed, and d/q-axis current.

Features

The motor speed module has below features.

Calculate d/q-axis electric current reference.
Flux weakening process at high speed rotation.
Open loop damping control when using sensorless type.
Low pass filter of input rotational speed.
Speed observer function when using encoder type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,961 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

Configuration
Build Time Configurations for rm_motor_speed

The following build time configurations are defined in fsp_cfg/rm_motor_speed_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Position Support Enabled
Disabled

Disabled Enable position
algorithm support.

Configurations for Motor > Motor Speed Controller (rm_motor_speed)

This module can be added to the Stacks tab via New Stack > Motor > Motor Speed Controller
(rm_motor_speed).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_speed0 Module name.

Speed control period
(sec)

Must be a valid non-
negative value

0.0005F Period of speed control
function.

Step of speed climbing
(rpm)

Must be a valid non-
negative value

0.5F Step of speed change
at start of open-loop.

Maximum rotational
speed (rpm)

Must be a valid non-
negative value.

2650.0F Maximum rotational
speed (Limit speed).

Speed LPF omega Must be a valid non-
negative value

10.0F Design parameter for
speed LPF.

Limit of q-axis current
(A)

Must be a valid non-
negative value

0.42F Limit of q-axis current.

Step of speed feedback
at open-loop

Must be a valid non-
negative value

0.20F Step of speed feedback
at open-loop.

Natural frequency Must be a valid non-
negative value.

100.0F Natural frequency for
disturbance speed
observer.

Open-loop damping Disable
Enable

Enable Select enable/disable
Open-loop damping
control.

Flux weakening Disable
Enable

Disable Select enable/disable
flux weakening control.

Torque compensation
for sensorless
transition

Disable
Enable

Enable Select enable/disable
torque compensation
for sensorless

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,962 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

transition.

Speed observer Disable
Enable

Enable Select enable/disable
Speed observer
process.

Selection of speed
observer

Normal
Disturbance

Normal Select speed observer
type.

Control method PID
IPD

PID Select the control
method [PID or IPD].

Control type Sensoreless
Encoder
Induction
Hall

Sensoreless

Open-Loop

Step of d-axis current
climbing

Must be a valid non-
negative value

0.3F Step of d-axis current
climbing

Step of d-axis current
descending

Must be a valid non-
negative value

0.3F Step of d-axis current
descending

Step of q-axis current
descending ratio

Must be a valid non-
negative value

1.0F Step of q-axis current
descending ratio

Reference of d-axis
current

Must be a valid non-
negative value

0.3F Reference of d-axis
current

Threshold of speed
control descending

Must be a valid value 600.0F When rotational speed
reaches this speed, d-
axis current is
controlled descending.

Threshold of speed
control climbing

Must be a valid value 500.0F Until rotational speed
reaches this speed, d-
axis current is
controlled climbing.

Period between open-
loop to BEMF (sec)

Must be a valid non-
negative value

0.025F Margin time between
open-loop control
changes to BEMF PI
control.

Phase error(degree) to
decide sensor-less
switch timing

Must be a valid value 10.0F Phase error(degree) to
decide sensor-less
switch timing.

Design parameter

Speed PI loop omega Must be a valid non-
negative value

5.0F Speed PI loop omega

Speed PI loop zeta Must be a valid non-
negative value

1.0F Speed PI loop zeta

Estimated d-axis HPF
omega

Must be a valid non-
negative value

2.5F HPF cutoff frequency
for ed (Hz)

Open-loop damping Must be a valid non- 1.0F Damping ratio of open-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,963 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

zeta negative value loop damping control

Cutoff frequency of
phase error LPF

Must be a valid non-
negative value

10.0F Cutoff frequency of
phase error LPF

Speed observer omega Must be a valid non-
negative value

200.0F Speed observer loop
omega

Speed observer zeta Must be a valid non-
negative value

1.0F Speed observer loop
zeta

Motor Parameter

Pole pairs Must be a valid non-
negative value.

2 Pole pairs

Resistance (ohm) Must be a valid non-
negative value

8.5F Resistance

Inductance of d-axis
(H)

Must be a valid non-
negative value

0.0045F Inductance of d-axis

Inductance of q-axis
(H)

Must be a valid non-
negative value

0.0045F Inductance of q-axis

Permanent magnetic
flux (Wb)

Must be a valid non-
negative value

0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid non-
negative value

0.0000028F Rotor inertia

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at timer
interrupt.

Input data Name must be a valid
C symbol

NULL Structure for Speed
control Input. If you set
this content, Speed
Control function read
these data
automatically. (No
need to use Set API.)

Output data Name must be a valid
C symbol

NULL Structure for Speed
control Output. If you
set this content, Speed
Control function write
need data
automatically. (No
need to use Get API.)

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,964 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

This module does not use I/O pins.

Usage Notes
Limitations

Set the period of speed control with none-negative value.
Set the limit of speed change step with none-negative value.
Set the maximum speed with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor speed in an application.

void motor_speed_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SPEED_Open(g_motor_speed0.p_ctrl, g_motor_speed0.p_cfg);

 handle_error(err);

 /* Set speed reference before get current reference */

 (void) RM_MOTOR_SPEED_SpeedReferenceSet(g_motor_speed0.p_ctrl, 104.72F);

 /* Set position reference before get current reference

 * (Basically Exclusive to SpeedReferenceSet. This is only sample,) */

 (void) RM_MOTOR_SPEED_PositionReferenceSet(g_motor_speed0.p_ctrl,

&g_posref_sample);

 /* Basically run this module at cyclic interrupt (e.g. AGT timer).

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Set input parameter data before get current reference */

 (void) RM_MOTOR_SPEED_ParameterSet(g_motor_speed0.p_ctrl,

&g_test_speed_input);

 /* Activate Speed Process */

 (void) RM_MOTOR_SPEED_Run(g_motor_speed0.p_ctrl);

 /* Perform Speed Control Process */

 (void) RM_MOTOR_SPEED_SpeedControl(g_motor_speed0.p_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,965 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

 /* Get output parameters */

 (void) RM_MOTOR_SPEED_ParameterGet(g_motor_speed0.p_ctrl,

&g_test_speed_output);

 //

 /* Update parameters */

 (void) RM_MOTOR_SPEED_ParameterUpdate(g_motor_speed0.p_ctrl,

&g_motor_speed0.p_cfg);

 }

 /* Reset Speed Control */

 (void) RM_MOTOR_SPEED_Reset(g_motor_speed0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_SPEED_Close(g_motor_speed0.p_ctrl);

}

Enumerations

enum motor_speed_control_type_t

enum motor_speed_openloop_damping_t

enum motor_speed_flux_weaken_t

enum motor_speed_less_switch_t

enum motor_speed_observer_switch_t

enum motor_speed_observer_select_t

enum motor_speed_ctrl_status_t

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,966 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ motor_speed_control_type_t

enum motor_speed_control_type_t

Enumerator

MOTOR_SPEED_CONTROL_TYPE_SENSORLESS Sensorless type.

MOTOR_SPEED_CONTROL_TYPE_ENCODER Encoder type.

MOTOR_SPEED_CONTROL_TYPE_HALL Hall type.

MOTOR_SPEED_CONTROL_TYPE_INDUCTION Induction type.

◆ motor_speed_openloop_damping_t

enum motor_speed_openloop_damping_t

Enumerator

MOTOR_SPEED_OPENLOOP_DAMPING_DISABLE Disable openloop damping.

MOTOR_SPEED_OPENLOOP_DAMPING_ENABLE Enable openloop damping.

◆ motor_speed_flux_weaken_t

enum motor_speed_flux_weaken_t

Enumerator

MOTOR_SPEED_FLUX_WEAKEN_DISABLE Disable flux-weakening control.

MOTOR_SPEED_FLUX_WEAKEN_ENABLE Enable flux-weakening control.

◆ motor_speed_less_switch_t

enum motor_speed_less_switch_t

Enumerator

MOTOR_SPEED_LESS_SWITCH_DISABLE Disable soft switching between open-loop
mode and normal field oriented control mode.

MOTOR_SPEED_LESS_SWITCH_ENABLE Enable soft switching between open-loop mode
and normal field oriented control mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,967 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ motor_speed_observer_switch_t

enum motor_speed_observer_switch_t

Enumerator

MOTOR_SPEED_OBSERVER_SWITCH_DISABLE Disable speed observer.

MOTOR_SPEED_OBSERVER_SWITCH_ENABLE Enable speed observer.

◆ motor_speed_observer_select_t

enum motor_speed_observer_select_t

Enumerator

MOTOR_SPEED_OBSERVER_SELECT_NORMAL Normal speed observer.

MOTOR_SPEED_OBSERVER_SELECT_DISTURBAN
CE

Disturbance speed observer.

◆ motor_speed_ctrl_status_t

enum motor_speed_ctrl_status_t

Enumerator

MOTOR_SPEED_CTRL_STATUS_INIT Speed control status is INIT.

MOTOR_SPEED_CTRL_STATUS_BOOT Speed control status is BOOT.

MOTOR_SPEED_CTRL_STATUS_RUN Speed control status is RUN.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,968 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ RM_MOTOR_SPEED_Open()

fsp_err_t RM_MOTOR_SPEED_Open (motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

Opens and configures the Motor Speed Module. Implements motor_speed_api_t::open.

Return values
FSP_SUCCESS Motor Speed Module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_SPEED_Close()

fsp_err_t RM_MOTOR_SPEED_Close (motor_speed_ctrl_t *const p_ctrl)

Disables specified Motor Speed Module. Implements motor_speed_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_Reset()

fsp_err_t RM_MOTOR_SPEED_Reset (motor_speed_ctrl_t *const p_ctrl)

Reset the variables of Motor Speed Module. Implements motor_speed_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,969 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ RM_MOTOR_SPEED_Run()

fsp_err_t RM_MOTOR_SPEED_Run (motor_speed_ctrl_t *const p_ctrl)

Run(Start) the Motor Speed Control. Implements motor_speed_api_t::run.

Return values
FSP_SUCCESS Successfully start.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_SpeedReferenceSet()

fsp_err_t RM_MOTOR_SPEED_SpeedReferenceSet (motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

Set Speed Reference Data. Implements motor_speed_api_t::speedReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_PositionReferenceSet()

fsp_err_t RM_MOTOR_SPEED_PositionReferenceSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

Set Position Reference Data. Implements motor_speed_api_t::positionReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input structure pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,970 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ RM_MOTOR_SPEED_ParameterSet()

fsp_err_t RM_MOTOR_SPEED_ParameterSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

Set Input parameters. Implements motor_speed_api_t::parameterSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_SPEED_SpeedControl()

fsp_err_t RM_MOTOR_SPEED_SpeedControl (motor_speed_ctrl_t *const p_ctrl)

Calculates the d/q-axis current reference.(Main process of Speed Control) Implements
motor_speed_api_t::speedControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_ParameterGet()

fsp_err_t RM_MOTOR_SPEED_ParameterGet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

Get Speed Control Parameters. Implements motor_speed_api_t::parameterGet.

Return values
FSP_SUCCESS Successfully the flag is gotten.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,971 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Speed Controller (rm_motor_speed)

◆ RM_MOTOR_SPEED_ParameterUpdate()

fsp_err_t RM_MOTOR_SPEED_ParameterUpdate (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Update the parameters of Speed Control Calculation. Implements
motor_speed_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

5.2.11.16 Motor Vector Control with hall sensors (rm_motor_hall)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_HALL_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t
const *const p_cfg)

fsp_err_t RM_MOTOR_HALL_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Hall Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_HALL_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Hall Control block. Implements motor_api_t::reset.
More...

fsp_err_t RM_MOTOR_HALL_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_HALL_Stop (motor_ctrl_t *const p_ctrl)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_HALL_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,972 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

const error)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_HALL_SpeedSet (motor_ctrl_t *const p_ctrl, float const
speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_HALL_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t
*const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_HALL_AngleGet (motor_ctrl_t *const p_ctrl, float *const
p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_HALL_SpeedGet (motor_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_HALL_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t
*const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_HALL_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference. Implements motor_api_t::positionSet. More...

fsp_err_t RM_MOTOR_HALL_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements motor_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_HALL_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

 Select function. Implements motor_api_t::functionSelect. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,973 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Detailed Description

Usual control of a SPM motor on RA MCUs. This module implements the Motor Vector Control with
hall sensors (rm_motor_hall).

Overview
The motor vector control with hall sensors is used to control a motor rotation in an appication. This
module is meant to be used with Surface Permanent Magnet (SPM) motors and allows applications to
start or stop motor rotation easily.

Features

The motor vector control with hall sensors has below features.

Start/Stop a motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Target Hardware

The below figure shows an example of target hardware of this Motor Hall Module.

Figure 260: Example of target hardware of motor hall module

Block Diagram

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,974 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

The below figure shows block diaram of vector motor control with hall sensors.

Figure 261: Block diagram of vector control with hall sensors

Modulation

Sine wave modulation The modulation factor "m" is defined as follows.

Figure 262: Modulation factor

Space vector modulation In vector control of a permanent magnet synchronous motor,
generally, the desired voltage command value of each phase is generated sinusoidally.
However, if the generated value is used as-is for the modulation wave for PWM generation,
voltage utilization as applied to the motor (in terms of line voltage) is limited to a maximum
of 86.7 percents with respect to inverter bus voltage. As such, as shown in the following
expression, the average of the maximum and minimum values is calculated for the voltage
command value of each phase, and the value obtained by subtracting the average from the
voltage command value of each phase is used as the modulation wave. As a result, the
maximum amplitude of the modulation wave is multiplied by (square root 3)/2, while
voltage utilization becomes 100 percents and line voltage is unchanged.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,975 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Figure 263: Space vector modulation

State transition

The below figure shows a state transition diagram. Internal state is managed by "SYSTEM MODE".

Figure 264: State transition diagram

 (1) SYSTEM MODE "SYSTEM MODE" indicates the operating states of the system. The state transits
on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop
(INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,976 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

(2) EVENT When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown the
table in above figure, according to that "EVENT". The occurrence factors of each event are shown
below.

EVENT name Occurrence factor

STOP by user operation

RUN by user operation

ERROR when the system detects an error

RESET by user operation

Flowchart

The below figures show flowcharts of motor hall module.

Figure 265: Main process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,977 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Figure 266: Current control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,978 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Figure 267: Speed control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,979 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Figure 268: Over current detection interrupt process

Configuration
Build Time Configurations for rm_motor_hall

The following build time configurations are defined in fsp_cfg/rm_motor_hall_cfg.h:

Configuration Options Default Description

Parameter checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor Vector Control with hall sensors(rm_motor_hall)

This module can be added to the Stacks tab via New Stack > Motor > Motor Vector Control with hall
sensors(rm_motor_hall).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,980 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

Name Name must be a valid
C symbol

g_motor_hall0 Module name.

Limit of over current
(A)

Must be a valid value 0.42F Limit of over
current.(Detection
threshold)

Limit of over voltage
(V)

Must be a valid value 28.0F Limit of over
voltage.(Detection
threshold)

Limit of over speed
(rpm)

Must be a valid value 3000.0F Limit of over
speed.(Detection
threshold)

Limit of low voltage (V) Must be a valid value 14.0F Limit of low
voltage.(Detection
threshold)

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins. Please set used pins on configuration of each hardware modules.

Usage Notes
Limitations

Set the limit of electric current with non-negative value.
Set the limit of input voltage with non-negative value.
Set the limit of rotational speed with non-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor vector control with hall sensors in an application.

void motor_hall_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,981 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

 err = RM_MOTOR_HALL_Open(g_motor_hall0_smpl.p_ctrl, g_motor_hall0_smpl.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_HALL_SpeedSet(g_motor_hall0_smpl.p_ctrl,

DEF_HALL_TEST_OVSPD_LIM);

 /* Start motor rotation */

 (void) RM_MOTOR_HALL_Run(g_motor_hall0_smpl.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_HALL_StatusGet(g_motor_hall0_smpl.p_ctrl, &smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_HALL_AngleGet(g_motor_hall0_smpl.p_ctrl, &smpl_angle);

 /* Get current motor speed */

 (void) RM_MOTOR_HALL_SpeedGet(g_motor_hall0_smpl.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_HALL_ErrorCheck(g_motor_hall0_smpl.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_HALL_Stop(g_motor_hall0_smpl.p_ctrl);

 /* When error is detected with extra Hardware */

 (void) RM_MOTOR_HALL_ErrorSet(g_motor_hall0_smpl.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

 /* Reset motor control (Clear error status) */

 (void) RM_MOTOR_HALL_Reset(g_motor_hall0_smpl.p_ctrl);

 /* Close motor control */

 (void) RM_MOTOR_HALL_Close(g_motor_hall0_smpl.p_ctrl);

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,982 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_Open()

fsp_err_t RM_MOTOR_HALL_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg)

Configure the MOTOR HALL in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_HALL_Open(g_motor_hall0_smpl.p_ctrl, g_motor_hall0_smpl.p_cfg);

Return values
FSP_SUCCESS MOTOR HALL successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_HALL_Close()

fsp_err_t RM_MOTOR_HALL_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Hall Control block. Implements motor_api_t::close.

Example:

 /* Close motor control */

 (void) RM_MOTOR_HALL_Close(g_motor_hall0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,983 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_Reset()

fsp_err_t RM_MOTOR_HALL_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Hall Control block. Implements motor_api_t::reset.

Example:

 /* Reset motor control (Clear error status) */

 (void) RM_MOTOR_HALL_Reset(g_motor_hall0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_HALL_Run()

fsp_err_t RM_MOTOR_HALL_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_HALL_Run(g_motor_hall0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,984 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_Stop()

fsp_err_t RM_MOTOR_HALL_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_HALL_Stop(g_motor_hall0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_HALL_ErrorSet()

fsp_err_t RM_MOTOR_HALL_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* When error is detected with extra Hardware */

 (void) RM_MOTOR_HALL_ErrorSet(g_motor_hall0_smpl.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,985 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_SpeedSet()

fsp_err_t RM_MOTOR_HALL_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_HALL_SpeedSet(g_motor_hall0_smpl.p_ctrl,

DEF_HALL_TEST_OVSPD_LIM);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_HALL_StatusGet()

fsp_err_t RM_MOTOR_HALL_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_HALL_StatusGet(g_motor_hall0_smpl.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,986 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_AngleGet()

fsp_err_t RM_MOTOR_HALL_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_HALL_AngleGet(g_motor_hall0_smpl.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_HALL_SpeedGet()

fsp_err_t RM_MOTOR_HALL_SpeedGet (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_HALL_SpeedGet(g_motor_hall0_smpl.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,987 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_ErrorCheck()

fsp_err_t RM_MOTOR_HALL_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_HALL_ErrorCheck(g_motor_hall0_smpl.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_HALL_PositionSet()

fsp_err_t RM_MOTOR_HALL_PositionSet (motor_ctrl_t *const p_ctrl, motor_speed_position_data_t
const *const p_position)

Set position reference. Implements motor_api_t::positionSet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_HALL_WaitStopFlagGet()

fsp_err_t RM_MOTOR_HALL_WaitStopFlagGet (motor_ctrl_t *const p_ctrl, motor_wait_stop_flag_t
*const p_flag)

Get wait stop flag. Implements motor_api_t::waitStopFlagGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,988 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor Vector Control with hall sensors (rm_motor_hall)

◆ RM_MOTOR_HALL_FunctionSelect()

fsp_err_t RM_MOTOR_HALL_FunctionSelect (motor_ctrl_t *const p_ctrl, motor_function_select_t
const function)

Select function. Implements motor_api_t::functionSelect.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

5.2.11.17 Motor return origin (rm_motor_return_origin)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Open (motor_return_origin_ctrl_t *const
p_ctrl, motor_return_origin_cfg_t const *const p_cfg)

 Opens and configures the motor return origin module. Implements
motor_return_origin_api_t::open. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Close (motor_return_origin_ctrl_t
*const p_ctrl)

 Disables specified motor return origin module. Implements
motor_return_origin_api_t::close. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Start (motor_return_origin_ctrl_t *const
p_ctrl)

 Start return origin function. Implements
motor_return_origin_api_t::start. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Stop (motor_return_origin_ctrl_t *const
p_ctrl)

 Stop (Cancel) return origin function. Implements
motor_return_origin_api_t::stop. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Reset (motor_return_origin_ctrl_t
*const p_ctrl)

 Reset variables of return origin module. Implements

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,989 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

motor_return_origin_api_t::reset. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_InfoGet (motor_return_origin_ctrl_t
*const p_ctrl, motor_return_origin_info_t *const p_info)

 Get information of return origin. Implements
motor_return_origin_api_t::infoGet. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_DataSet (motor_return_origin_ctrl_t
*const p_ctrl, motor_return_origin_set_data_t *const p_set_data)

 Set necessary data to return origin function. Implements
motor_return_origin_api_t::dataSet. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_SpeedCyclic (motor_return_origin_ctrl_t
*const p_ctrl)

 Cyclic process of return origin function at speed control period.
(Called at timer interrupt.) Implements
motor_return_origin_api_t::speedCyclic. More...

fsp_err_t RM_MOTOR_RETURN_ORIGIN_ParameterUpdate
(motor_return_origin_ctrl_t *const p_ctrl, motor_return_origin_cfg_t
const *const p_cfg)

 Update the parameters of return origin function. Implements
motor_return_origin_api_t::parameterUpdate. More...

Detailed Description

Search origin position proccess for the motor control on RA MCUs. This module implements the Motor
Return Origin Function Interface.

Overview
The motor return origin module is used to search origin position in an application. This module
should be used with Renesas Motor Workbench (RMW) basically.

Features

The Motor return origin module has below features.

Search origin position automatically.

Configuration
Build Time Configurations for rm_motor_return_origin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,990 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

The following build time configurations are defined in fsp_cfg/rm_motor_return_origin_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor return origin function (rm_motor_return_origin)

This module can be added to the Stacks tab via New Stack > Motor > Motor return origin function
(rm_motor_return_origin).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_motor_return_origin0 Module name.

Using mode Search by pushing Search by pushing Select using mode

Search speed (rpm) Must be a valid non-
negative value.

10.0 Speed to search origin
position (rpm)

Acceleration of speed
(rpm/sec)

Must be set 1 to 10000. 10000.0 Acceleration of rotation
speed at return moving
(rpm/sec)

Cyclic period of speed
control (sec)

Must be a valid non-
negative value.

0.0005 Cyclic period of speed
control (sec)

Maximum current (A) Must be a valid non-
negative value.

1.8 Maximum current (A).
Please set to match
used motor.

Percentage of current
to judge pushing (%)

Must be a valid non-
negative value.

30.0 Perentage of current to
judge pushing (%)

Pushing time (sec) Must be a valid non-
negative value.

1.0 Time to push the
stopper (sec)

Degree to judge none
stopper

Must be set -360 to
360.

360.0 When the motor runs
over this value, it is
judged impossible to
search the stopper.

Degree to return Must be a valid non-
negative value.

3.0 Degree to return from
the stopper (degree)

Mechanical gear ratio Must be a valid non-
negative value.

1.0 Mechanical gear ratio

Clock Configuration

This module doesn't depend on clock setting.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,991 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

This module does not use I/O pins.

Usage Notes
Limitations

Examples
Basic Example

This is a basic example of minimal use of the Motor Return origin in an application.

void motor_return_origin_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_RETURN_ORIGIN_Open(&g_mtr_return_origin0_ctrl,

&g_mtr_return_origin0_cfg);

 assert(FSP_SUCCESS == err);

 /* Start process. */

 err = RM_MOTOR_RETURN_ORIGIN_Start(&g_mtr_return_origin0_ctrl);

 temp_set_data.f_iq = 1.0F;

 temp_set_data.f_position_degree = 180.0F;

 /* Set data to the module. */

 err = RM_MOTOR_RETURN_ORIGIN_DataSet(&g_mtr_return_origin0_ctrl, &temp_set_data);

 /* Get information from the module. */

 err = RM_MOTOR_RETURN_ORIGIN_InfoGet(&g_mtr_return_origin0_ctrl, &temp_info);

 /* Stop process. */

 err = RM_MOTOR_RETURN_ORIGIN_Stop(&g_mtr_return_origin0_ctrl);

 /* Close the module. */

 err = RM_MOTOR_RETURN_ORIGIN_Close(&g_mtr_return_origin0_ctrl);

}

Data Structures

struct motor_return_origin_extended_cfg_t

struct motor_return_origin_pushing_t

struct motor_return_origin_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,992 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

Data Structure Documentation

◆ motor_return_origin_extended_cfg_t

struct motor_return_origin_extended_cfg_t

Extended configurations for return origin function

Data Fields

float f_search_speed_rpm Speed to search origin position
[rpm].

float f_return_accel_rpm Acceleration speed when return
[rpm/s].

float f_speed_ctrl_period Period of speed control [sec].

float f_maximum_current Maximum current [A].

float f_current_limit_percent_push Percentage of current at
pushing.

float f_pushing_time Keep pushing time [sec].

float f_over_degree Angle to judge search
impossible [degree].

float f_return_degree Return angle from pushing
position [degree].

float f_mechanical_gear_ratio Mechanical gear ratio.

◆ motor_return_origin_pushing_t

struct motor_return_origin_pushing_t

Variables for rerutn origin with pushing

Data Fields

uint32_t u4_time_counter Counter of speed cyclic (to
judge the time)

float f_sum_position Summary of position data.

uint32_t u4_sum_counter Counter of summary.

float f_move_amount Movement amount [degree].

float f_judge_iq q-axis current to judge pushing

float f_pushing_counts Counts to measure pushing
time.

◆ motor_return_origin_instance_ctrl_t

struct motor_return_origin_instance_ctrl_t

Return origin function instance control block

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,993 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

uint32_t open Used to determine if the
module is configured.

motor_return_origin_start_flag_t start_flag start/stop flag

motor_return_origin_state_t state State number of return origin
process.

int8_t s1_direction Moving direction.

float f_angle_degree_on_edge Rotor angle on the edge
[degree].

float f_current_speed Current speed.

float f_origin_position_angle_degree Searched origin position
[degree].

float f_search_speed Speed to search origin position
[rad / sampling time].

float f_accel_speed Speed accelaration.

float f_position_reference_degree Position reference [degree].

motor_return_origin_pushing_t st_pushing Variables for pushing.

motor_return_origin_set_data_t receive_data Received data from
speed(position) & current.

motor_return_origin_cfg_t const
*

p_cfg Pointer of configuration
structure.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,994 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

◆ RM_MOTOR_RETURN_ORIGIN_Open()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Open (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *const p_cfg)

Opens and configures the motor return origin module. Implements motor_return_origin_api_t::open
.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_RETURN_ORIGIN_Open(&g_mtr_return_origin0_ctrl,

&g_mtr_return_origin0_cfg);

Return values
FSP_SUCCESS Motor return origin module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_RETURN_ORIGIN_Close()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Close (motor_return_origin_ctrl_t *const p_ctrl)

Disables specified motor return origin module. Implements motor_return_origin_api_t::close.

Example:

 /* Close the module. */

 err = RM_MOTOR_RETURN_ORIGIN_Close(&g_mtr_return_origin0_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,995 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

◆ RM_MOTOR_RETURN_ORIGIN_Start()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Start (motor_return_origin_ctrl_t *const p_ctrl)

Start return origin function. Implements motor_return_origin_api_t::start.

Example:

 /* Start process. */

 err = RM_MOTOR_RETURN_ORIGIN_Start(&g_mtr_return_origin0_ctrl);

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_RETURN_ORIGIN_Stop()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Stop (motor_return_origin_ctrl_t *const p_ctrl)

Stop (Cancel) return origin function. Implements motor_return_origin_api_t::stop.

Example:

 /* Stop process. */

 err = RM_MOTOR_RETURN_ORIGIN_Stop(&g_mtr_return_origin0_ctrl);

Return values
FSP_SUCCESS Successfully stopped (canceled).

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_RETURN_ORIGIN_Reset()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_Reset (motor_return_origin_ctrl_t *const p_ctrl)

Reset variables of return origin module. Implements motor_return_origin_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,996 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

◆ RM_MOTOR_RETURN_ORIGIN_InfoGet()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_InfoGet (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_info_t *const p_info)

Get information of return origin. Implements motor_return_origin_api_t::infoGet.

Example:

 /* Get information from the module. */

 err = RM_MOTOR_RETURN_ORIGIN_InfoGet(&g_mtr_return_origin0_ctrl, &temp_info);

Return values
FSP_SUCCESS Successfully get data.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_RETURN_ORIGIN_DataSet()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_DataSet (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_set_data_t *const p_set_data)

Set necessary data to return origin function. Implements motor_return_origin_api_t::dataSet.

Example:

 /* Set data to the module. */

 err = RM_MOTOR_RETURN_ORIGIN_DataSet(&g_mtr_return_origin0_ctrl, &temp_set_data);

Return values
FSP_SUCCESS Successfully set data.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,997 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor return origin (rm_motor_return_origin)

◆ RM_MOTOR_RETURN_ORIGIN_SpeedCyclic()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_SpeedCyclic (motor_return_origin_ctrl_t *const p_ctrl)

Cyclic process of return origin function at speed control period. (Called at timer interrupt.)
Implements motor_return_origin_api_t::speedCyclic.

Return values
FSP_SUCCESS Successfully perform the process.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_RETURN_ORIGIN_ParameterUpdate()

fsp_err_t RM_MOTOR_RETURN_ORIGIN_ParameterUpdate (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *const p_cfg)

Update the parameters of return origin function. Implements
motor_return_origin_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

5.2.11.18 Motor vector control with induction sensor (rm_motor_induction)
Modules » Motor

Functions

fsp_err_t RM_MOTOR_INDUCTION_Open (motor_ctrl_t *const p_ctrl,
motor_cfg_t const *const p_cfg)

fsp_err_t RM_MOTOR_INDUCTION_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Induction Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_INDUCTION_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Induction Control block. Implements motor_api_t::reset.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,998 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

More...

fsp_err_t RM_MOTOR_INDUCTION_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_INDUCTION_Stop (motor_ctrl_t *const p_ctrl)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_INDUCTION_ErrorSet (motor_ctrl_t *const p_ctrl,
motor_error_t const error)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_INDUCTION_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_INDUCTION_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference[degree]. Implements motor_api_t::positionSet.
More...

fsp_err_t RM_MOTOR_INDUCTION_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t
*const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_INDUCTION_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_INDUCTION_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_INDUCTION_ErrorCheck (motor_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 1,999 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

uint16_t *const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_INDUCTION_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

 Get wait stop flag. Implements motor_api_t::waitStopFlagGet. More...

fsp_err_t RM_MOTOR_INDUCTION_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

 Select using function. Implements motor_api_t::functionSelect.
More...

fsp_err_t RM_MOTOR_INDUCTION_InertiaEstimateStart (motor_ctrl_t *const
p_ctrl)

 Start inertia estimation function. More...

fsp_err_t RM_MOTOR_INDUCTION_InertiaEstimateStop (motor_ctrl_t *const
p_ctrl)

 Stop(Cancel) inertia estimation function. More...

fsp_err_t RM_MOTOR_INDUCTION_ReturnOriginStart (motor_ctrl_t *const
p_ctrl)

 Start return origin function. More...

fsp_err_t RM_MOTOR_INDUCTION_ReturnOriginStop (motor_ctrl_t *const p_ctrl)

 Stop(Cancel) return origin function. More...

Detailed Description

Control a SPM motor on RA MCUs. This module implements the Motor vector control with induction
sensor (rm_motor_induction).

Overview
The motor vector control with induction sensor is used to control motor rotation in an application.
This module is meant to be used with Surface Permanent Magnet (SPM) motors and allows
applications to start or stop motor rotation easily.

Features

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,000 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

The motor induction module has below features.

Start/stop motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Target Hardware

The below figure shows an example of target hardware of this Motor Induction Module.

Figure 269: Example of target hardware of motor induction module

Block Diagram

The below figures show block diaram of vector motor control with using induction sensor.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,001 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Figure 270: Block diagram of vector control with using induction sensor (PI feedback loop)

Modulation

Sine wave modulation The modulation factor "m" is defined as follows.

Figure 271: Modulation factor

Space vector modulation In vector control of a permanent magnet synchronous motor,
generally, the desired voltage command value of each phase is generated sinusoidally.
However, if the generated value is used as-is for the modulation wave for PWM generation,
voltage utilization as applied to the motor (in terms of line voltage) is limited to a maximum
of 86.7 percents with respect to inverter bus voltage. As such, as shown in the following
expression, the average of the maximum and minimum values is calculated for the voltage
command value of each phase, and the value obtained by subtracting the average from the
voltage command value of each phase is used as the modulation wave. As a result, the
maximum amplitude of the modulation wave is multiplied by (square root 3)/2, while
voltage utilization becomes 100 percents and line voltage is unchanged.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,002 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Figure 272: Space vector modulation

State transition

The below figure shows a state transition diagram. Internal state is managed by "SYSTEM MODE".

Figure 273: State transition diagram

 (1) SYSTEM MODE "SYSTEM MODE" indicates the operating states of the system. The state transits
on occurrence of each event (EVENT). "SYSTEM MODE" has 3 states that are motor drive stop
(INACTIVE), motor drive (ACTIVE), and abnormal condition (ERROR).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,003 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

(2) EVENT When "EVENT" occurs in each "SYSTEM MODE", "SYSTEM MODE" changes as shown the
table in above figure, according to that "EVENT". The occurrence factors of each event are shown
below.

EVENT name Occurrence factor

STOP by user operation

RUN by user operation

ERROR when the system detects an error

RESET by user operation

Flowchart

The below figures show flowcharts of motor induction module.

Figure 274: Main process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,004 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Figure 275: Current control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,005 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Figure 276: Speed control process

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,006 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Figure 277: Over current detection interrupt process

Configuration
Build Time Configurations for rm_motor_induction

The following build time configurations are defined in fsp_cfg/rm_motor_induction_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Motor > Motor vector control with induction sensor
(rm_motor_induction)

This module can be added to the Stacks tab via New Stack > Motor > Motor vector control with
induction sensor (rm_motor_induction).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,007 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

Name Name must be a valid
C symbol

g_motor_induction0 Module name.

Limit of over current
(A)

Must be a valid value 2.0F Limit of over
current.(Detection
threshold)

Limit of over voltage
(V)

Must be a valid value 28.0F Limit of over
voltage.(Detection
threshold)

Limit of over speed
(rpm)

Must be a valid value 3000.0F Limit of over
speed.(Detection
threshold)

Limit of low voltage (V) Must be a valid value 18.0F Limit of low
voltage.(Detection
threshold)

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins. Please set used pins on configuration of each hardware modules.

Usage Notes
Limitations

Set the limit of electric current with non-negative value.
Set the limit of input voltage with non-negative value.
Set the limit of rotational speed with non-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor induction module in an application.

void motor_induction_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,008 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

 err = RM_MOTOR_INDUCTION_Open(g_motor_induction0_smpl.p_ctrl,

g_motor_induction0_smpl.p_cfg);

 handle_error(err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_INDUCTION_SpeedSet(g_motor_induction0_smpl.p_ctrl,

RM_MOTOR_INDUCTION_TEST_OVER_SPEED_LIMIT);

 /* Set position reference before motor run */

 (void) RM_MOTOR_INDUCTION_PositionSet(g_motor_induction0_smpl.p_ctrl,

&g_posref_sample1);

 /* Start motor rotation */

 (void) RM_MOTOR_INDUCTION_Run(g_motor_induction0_smpl.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_INDUCTION_StatusGet(g_motor_induction0_smpl.p_ctrl,

&smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_INDUCTION_AngleGet(g_motor_induction0_smpl.p_ctrl, &smpl_angle);

 /* Get current motor rotational speed */

 (void) RM_MOTOR_INDUCTION_SpeedGet(g_motor_induction0_smpl.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_INDUCTION_ErrorCheck(g_motor_induction0_smpl.p_ctrl,

&smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_INDUCTION_Stop(g_motor_induction0_smpl.p_ctrl);

 /* If need, set extra error status */

 (void) RM_MOTOR_INDUCTION_ErrorSet(g_motor_induction0_smpl.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

 /* Reset motor control */

 (void) RM_MOTOR_INDUCTION_Reset(g_motor_induction0_smpl.p_ctrl);

 /* Close motor control */

 (void) RM_MOTOR_INDUCTION_Close(g_motor_induction0_smpl.p_ctrl);

}

Enumerations

enum motor_induction_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,009 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

enum motor_induction_ctrl_event_t

Enumeration Type Documentation

◆ motor_induction_ctrl_t

enum motor_induction_ctrl_t

Enumerator

MOTOR_INDUCTION_CTRL_STOP Stop mode.

MOTOR_INDUCTION_CTRL_RUN Run mode.

MOTOR_INDUCTION_CTRL_ERROR Error mode.

◆ motor_induction_ctrl_event_t

enum motor_induction_ctrl_event_t

Enumerator

MOTOR_INDUCTION_CTRL_EVENT_STOP Stop event.

MOTOR_INDUCTION_CTRL_EVENT_RUN Run event.

MOTOR_INDUCTION_CTRL_EVENT_ERROR Error event.

MOTOR_INDUCTION_CTRL_EVENT_RESET Reset event.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,010 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_Open()

fsp_err_t RM_MOTOR_INDUCTION_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const
p_cfg)

Configure the MOTOR in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_INDUCTION_Open(g_motor_induction0_smpl.p_ctrl,

g_motor_induction0_smpl.p_cfg);

Return values
FSP_SUCCESS MOTOR successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_INDUCTION_Close()

fsp_err_t RM_MOTOR_INDUCTION_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Induction Control block. Implements motor_api_t::close.

Example:

 /* Close motor control */

 (void) RM_MOTOR_INDUCTION_Close(g_motor_induction0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,011 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_Reset()

fsp_err_t RM_MOTOR_INDUCTION_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Induction Control block. Implements motor_api_t::reset.

Example:

 /* Reset motor control */

 (void) RM_MOTOR_INDUCTION_Reset(g_motor_induction0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_INDUCTION_Run()

fsp_err_t RM_MOTOR_INDUCTION_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_INDUCTION_Run(g_motor_induction0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,012 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_Stop()

fsp_err_t RM_MOTOR_INDUCTION_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_INDUCTION_Stop(g_motor_induction0_smpl.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_INDUCTION_ErrorSet()

fsp_err_t RM_MOTOR_INDUCTION_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* If need, set extra error status */

 (void) RM_MOTOR_INDUCTION_ErrorSet(g_motor_induction0_smpl.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,013 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_SpeedSet()

fsp_err_t RM_MOTOR_INDUCTION_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_INDUCTION_SpeedSet(g_motor_induction0_smpl.p_ctrl,

RM_MOTOR_INDUCTION_TEST_OVER_SPEED_LIMIT);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_INDUCTION_PositionSet()

fsp_err_t RM_MOTOR_INDUCTION_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference[degree]. Implements motor_api_t::positionSet.

Example:

 /* Set position reference before motor run */

 (void) RM_MOTOR_INDUCTION_PositionSet(g_motor_induction0_smpl.p_ctrl,

&g_posref_sample1);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data set pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,014 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_StatusGet()

fsp_err_t RM_MOTOR_INDUCTION_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_INDUCTION_StatusGet(g_motor_induction0_smpl.p_ctrl,

&smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_INDUCTION_AngleGet()

fsp_err_t RM_MOTOR_INDUCTION_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_INDUCTION_AngleGet(g_motor_induction0_smpl.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,015 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_SpeedGet()

fsp_err_t RM_MOTOR_INDUCTION_SpeedGet (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm
)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor rotational speed */

 (void) RM_MOTOR_INDUCTION_SpeedGet(g_motor_induction0_smpl.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_INDUCTION_ErrorCheck()

fsp_err_t RM_MOTOR_INDUCTION_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_INDUCTION_ErrorCheck(g_motor_induction0_smpl.p_ctrl,

&smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,016 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_WaitStopFlagGet()

fsp_err_t RM_MOTOR_INDUCTION_WaitStopFlagGet (motor_ctrl_t *const p_ctrl,
motor_wait_stop_flag_t *const p_flag)

Get wait stop flag. Implements motor_api_t::waitStopFlagGet.

Example:

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

◆ RM_MOTOR_INDUCTION_FunctionSelect()

fsp_err_t RM_MOTOR_INDUCTION_FunctionSelect (motor_ctrl_t *const p_ctrl,
motor_function_select_t const function)

Select using function. Implements motor_api_t::functionSelect.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

◆ RM_MOTOR_INDUCTION_InertiaEstimateStart()

fsp_err_t RM_MOTOR_INDUCTION_InertiaEstimateStart (motor_ctrl_t *const p_ctrl)

Start inertia estimation function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,017 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_InertiaEstimateStop()

fsp_err_t RM_MOTOR_INDUCTION_InertiaEstimateStop (motor_ctrl_t *const p_ctrl)

Stop(Cancel) inertia estimation function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

◆ RM_MOTOR_INDUCTION_ReturnOriginStart()

fsp_err_t RM_MOTOR_INDUCTION_ReturnOriginStart (motor_ctrl_t *const p_ctrl)

Start return origin function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,018 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Motor > Motor vector control with induction sensor (rm_motor_induction)

◆ RM_MOTOR_INDUCTION_ReturnOriginStop()

fsp_err_t RM_MOTOR_INDUCTION_ReturnOriginStop (motor_ctrl_t *const p_ctrl)

Stop(Cancel) return origin function.

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Mode unmatch

Note

5.2.12 Networking
Modules

Detailed Description

Networking Modules.

Modules

AWS Cellular Interface on GM (rm_cellular_gm_aws)

 Middleware implementing the AWS Cellular API for GM cellular
modems.

AWS MQTT

 This module provides the AWS MQTT integration documentation.

AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)

 AWS OTA PAL layer implementation for downloading firmware
updates.

AWS PKCS11 PAL on LittleFS (rm_aws_pkcs11_pal_littlefs)

 PKCS#11 PAL LittleFS layer implementation for use by FreeRTOS
TLS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,019 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking

AWS coreHTTP

 This module provides the AWS coreHTTP library.

Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

BLE Abstraction (rm_ble_abs)

 Middleware for the Bluetooth peripheral on RA MCUs. This module
implements the BLE ABS Interface.

BLE Driver (r_ble_balance)

 Driver for the Radio peripheral on RA MCUs. This module implements
the BLE Interface.

BLE Driver (r_ble_compact)

 Driver for the Radio peripheral on RA MCUs. This module implements
the BLE Interface.

BLE Driver (r_ble_extended)

 Driver for the Radio peripheral on RA MCUs. This module implements
the BLE Interface.

BLE Mesh Network Modules

 BLE Mesh Network Modules.

Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

 Middleware implementing the AWS Cellular Comm Interface for the
FSP UART API.

DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

 Transport layer implementation for linking DA16XXX Drivers with
Communications layer.

Ethernet (r_ether)

 Driver for the Ethernet peripheral on RA MCUs. This module
implements the Ethernet Interface.

Ethernet (r_ether_phy)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,020 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking

 The Ethernet PHY module (r_ether_phy) provides an API for standard
Ethernet PHY communications applications that use the ETHERC
peripheral. It implements the Ethernet PHY Interface.

FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

 Middleware for using TCP on RA MCUs.

GTL BLE Abstraction (rm_ble_abs_gtl)

 Middleware for the Bluetooth peripheral on RA MCUs. This module
implements the BLE ABS Interface.

NetX Duo Ethernet Driver (rm_netxduo_ether)

NetX Duo WiFi Driver (rm_netxduo_wifi)

On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

 HTTP client implementation using the DA16XXX WiFi module on RA
MCUs.

On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

 MQTT client implementation using the DA16XXX WiFi module on RA
MCUs.

PTP (r_ptp)

 Driver for the PTP peripheral on RA MCUs. This module implements
the PTP Interface.

SPP BLE Abstraction (rm_ble_abs_spp)

 Middleware for the Bluetooth peripheral on RA MCUs. This module
implements the BLE ABS Interface.

WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

 Wifi and Socket implementation using the DA16XXX WiFi module on
RA MCUs.

WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

 Wifi and Socket implementation using the Silex SX-ULPGN WiFi
module on RA MCUs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,021 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking

lwIP Baremetal Porting Layer (rm_lwip_sys_baremetal)

lwIP Ethernet Driver (rm_lwip_ether)

lwIP FreeRTOS Porting Layer (rm_lwip_sys_freertos)

5.2.12.1 AWS Cellular Interface on GM (rm_cellular_gm_aws)
Modules » Networking

Middleware implementing the AWS Cellular API for GM cellular modems.

Note
This page has been updated to reference GM cellular modules. GM cellular modules are a replacement for RYZ.
RYZ cellular modules are deprecated and will be removed from FSP in a future release.

Overview
See AWS documentation for how the Cellular API works: https://www.freertos.org/Documentation/api-
ref/cellular/index.html

Features

The following GM modems are supported by this port:

GM02S (https://sequans.com/products/monarch-2-gm02s/)

Please see the data sheets for hardware configuration for modems.

All APIs are supported by the RYZ port with the exception of the following RAT APIs:

Cellular_SetRatPriority
Cellular_GetRatPriority

The following URCs are supported by the RYZ port:

CEREG (Cellular_RegisterUrcNetworkRegistrationEventCallback)
SYSSTART (Cellular_RegisterModemEventCallback)
SHUTDOWN (Cellular_RegisterModemEventCallback)
SQNSRING (Cellular_SocketRegisterDataReadyCallback)

Support for other GM URCs can be possibly added by request in future releases.

Limitations

This module does not handle module reset pins. The user should manually configure any
reset pins in order to reset the module.
The GM can only be used in buffer reception mode, not transparent mode. When calling
Cellular_SocketConnect only CELLULAR_ACCESSMODE_BUFFER is supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,022 / 5,560

https://www.freertos.org/Documentation/api-ref/cellular/index.html
https://www.freertos.org/Documentation/api-ref/cellular/index.html
https://sequans.com/products/monarch-2-gm02s/

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

The AWS Cellular APIs don't currently allow the local port to be set for UDP. It can be set by
modifying the localPort field in CellularSocketHandle_t after calling Cellular_CreateSocket
but before calling Cellular_SocketConnect.

Configuration
AWS Cellular Interface

Build Time Configurations for source

The following build time configurations are defined in aws/cellular_interface/cellular_config.h:

Configuration Options Default Description

Mobile Country Code
Max Size

Value must be a
positive integer

3 Mobile country code
max size.

Mobile Network Node
Max Size

Value must be a
positive integer

3 Mobile network code
max size.

Integrated Circuit Card
Identity Max Size

Value must be a
positive integer

20 Integrated circuit card
identity max size.

International Mobile
Subscriber Identity Max
Size

Value must be a
positive integer

15 International Mobile
Subscriber Identity
max size.

Firmware Version Max
Size

Value must be a
positive integer

32 Cellular module
firmware version max
size.

Hardware Version Max
Size

Value must be a
positive integer

12 Cellular module
hardware version max
size.

Serial Number Max Size Value must be a
positive integer

12 Cellular module serial
number max size.

International Mobile
Equipment Identity
Max Size

Value must be a
positive integer

15 International Mobile
Equipment Identity
number max size.

Registered Network
operator Name Max
Size

Value must be a
positive integer

32 Registered network
operator name max
size.

Access Point Name Max
Size

Value must be a
positive integer

64 Access point name
max size.

Packet Data Network
Username Max Size

Value must be a
positive integer

32 Packet data network
username max size.

Packet Data Network
Password Max Size

Value must be a
positive integer

32 Packet data network
password max size.

Data Network IP
Address Max Size

Value must be a
positive integer

40 Cellular data network
IP address max size.

AT Command Max Size Value must be a
positive integer

200 Cellular AT command
max size.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,023 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

Max Number of Sockets Value must be a
positive integer

6 Cellular module
number of socket max
size.

Manufacturer ID Max
Size

Value must be a
positive integer

20 Cellular module
manufacturer ID max
size.

Model ID Max Size Value must be a
positive integer

10 Model ID max size.

EDRX List Max Size Value must be a
positive integer

4 EDRX list max size.

PDN Context ID Min
Value

Value must be a
positive integer

1 PDN context ID min
value.

PDN Context ID Max
Value

Value must be a
positive integer

16 PDN context ID max
value.

RAT Priority Count Value must be a
positive integer

3 RAT (radio access
technology) priority
count.

Socket Max Send Data
Length (bytes)

Value must be in the
range 1 - 1500

1460 Socket max send data
length.

Socket Max Receive
Data Length (bytes)

Value must be in the
range 1 - 1500

1500 Socket max receive
data length.

GetHostByName
Support

Enabled
(default)
Disabled

Enabled (default) Enables/disable
GetHostByName.

Comm Interface Send
Timeout (ms)

Value must be a
positive integer

1000 Cellular comm
interface receive
timeout in ms.

Comm Interface
Receive Timeout (ms)

Value must be a
positive integer

50 Cellular comm
interface receive
timeout in ms.

Static Allocation
Context

Enabled
Disabled
(default)

Disabled (default) Use statically allocated
context.

Comm Interface Static
Allocation Context

Enabled
Disabled
(default)

Disabled (default) Use statically allocated
context for comm
interface.

Default RAT GSM
WCDMA
EDGE
HSDPA
HSUPA
HSDPAHSUPA
LTE
CATM1
NBIOT

CATM1 Default Radio Access
Technology.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,024 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

GSM Support Enabled
Disabled
(default)

Disabled (default) This should be disabled
when a modem doesn't
support GSM or the
AT+CGREG command.

Static Socket Context Enabled
Disabled
(default)

Disabled (default) Use statically allocated
socket.

AT Command Timeout
(ms)

Value must be a
positive integer

5000 Cellular common AT
command timeout.

AT Command Raw
Timeout (ms)

Value must be a
positive integer

5000 Cellular AT command
raw timeout.

AT Command Response
prefix length

Value must be a
positive integer

5000 Cellular AT command
response prefix string
length.

GM Cellular Interface Port

Configurations for Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

This module can be added to the Stacks tab via New Stack > Networking > AWS Cellular Interface on
GM (rm_cellular_gm_aws).

Configuration Options Default Description

Module Reset Pin (Port
Number)

Refer to the RA
Configuration tool for
available options.

00 Specify the reset
control port for the GM
module. This property
is only used in
devassist.

Module Reset Pin (Pin
Number)

Refer to the RA
Configuration tool for
available options.

00 Specify the reset
control pin for the GM
module. This property
is only used in
devassist.

Examples
Basic Example

void rm_cellular_gm_aws_basic_example (void)

{

 CellularHandle_t cellular_handle = NULL;

 CellularSimCardStatus_t sim_card_status;

 /* Initialize Cellular Modem. */

 CellularError_t err = Cellular_Init(&cellular_handle,

&g_cellular_comm_interface_on_uart);

 assert(CELLULAR_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,025 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

 /* Get the SIM card status */

 err = Cellular_GetSimCardStatus(cellular_handle, &sim_card_status);

 assert(CELLULAR_SUCCESS == err);

 assert(CELLULAR_SIM_CARD_INSERTED == sim_card_status.simCardState);

}

Socket Example

#define SOCKET_EXAMPLE_BUFFER_SIZE (256)

#define SOCKET_EXAMPLE_TIMEOUT (UINT32_MAX)

#define SOCKET_EXAMPLE_IP ("255.255.255.255")

#define SOCKET_EXAMPLE_PORT (80)

uint32_t g_recv_event_count = 0;

void socket_example_data_ready_callback (CellularSocketHandle_t socketHandle, void *

pCallbackContext)

{

 FSP_PARAMETER_NOT_USED(socketHandle);

 FSP_PARAMETER_NOT_USED(pCallbackContext);

 g_recv_event_count++;

}

void rm_cellular_gm_aws_socket_example (void)

{

 CellularHandle_t cellular_handle = NULL;

 char * p_data = "hello_world";

 char recv_buffer[SOCKET_EXAMPLE_BUFFER_SIZE] = "\0";

 uint32_t sent_data_length = 0;

 uint32_t received_data_length = 0;

 uint32_t timeout_ms = SOCKET_EXAMPLE_TIMEOUT;

 CellularSocketHandle_t socket_handle;

 CellularSocketAddress_t socket_address =

 {

 .ipAddress =

 {

 CELLULAR_IP_ADDRESS_V4,

 SOCKET_EXAMPLE_IP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,026 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

 },

 .port = SOCKET_EXAMPLE_PORT

 };

 /* Initialize Cellular Modem. */

 CellularError_t err = Cellular_Init(&cellular_handle,

&g_cellular_comm_interface_on_uart);

 assert(CELLULAR_SUCCESS == err);

 /* Create a TCP socket */

 err = Cellular_CreateSocket(cellular_handle,

 1,

 CELLULAR_SOCKET_DOMAIN_AF_INET,

 CELLULAR_SOCKET_TYPE_STREAM,

 CELLULAR_SOCKET_PROTOCOL_TCP,

 &socket_handle);

 assert(CELLULAR_SUCCESS == err);

 /* Register the data ready callback */

 err = Cellular_SocketRegisterDataReadyCallback(cellular_handle,

 socket_handle,

 socket_example_data_ready_callback

,

 NULL);

 assert(CELLULAR_SUCCESS == err);

 g_recv_event_count = 0;

 /* Connect the TCP socket */

 err = Cellular_SocketConnect(cellular_handle, socket_handle,

CELLULAR_ACCESSMODE_BUFFER, &socket_address);

 assert(CELLULAR_SUCCESS == err);

 /* Send data over the socket */

 err = Cellular_SocketSend(cellular_handle, socket_handle, (uint8_t *) p_data,

strlen(p_data), &sent_data_length);

 assert(CELLULAR_SUCCESS == err);

 assert(strlen(p_data) == sent_data_length);

 /* Wait for data ready callback */

 timeout_ms = SOCKET_EXAMPLE_TIMEOUT;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,027 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

 while (timeout_ms > 0)

 {

 if (g_recv_event_count > 0)

 {

 break;

 }

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 assert(0 != timeout_ms);

 /* Receive data back */

 err = Cellular_SocketRecv(cellular_handle,

 socket_handle,

 (uint8_t *) recv_buffer,

 SOCKET_EXAMPLE_BUFFER_SIZE,

 &received_data_length);

 assert(CELLULAR_SUCCESS == err);

 /* Close the socket */

 err = Cellular_SocketClose(cellular_handle, socket_handle);

 assert(CELLULAR_SUCCESS == err);

}

Setting UDP local port

#define UDP_EXAMPLE_IP ("255.255.255.255")

#define UDP_EXAMPLE_REMOTE_PORT (80)

#define UDP_EXAMPLE_LOCAL_PORT (5000)

void rm_cellular_gm_aws_udp_local_port_set_example (void)

{

 CellularHandle_t cellular_handle = NULL;

 CellularSocketHandle_t socket_handle = NULL;

 CellularSocketAddress_t socket_address =

 {

 .ipAddress =

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,028 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS Cellular Interface on GM (rm_cellular_gm_aws)

 CELLULAR_IP_ADDRESS_V4,

 UDP_EXAMPLE_IP

 },

 .port = UDP_EXAMPLE_REMOTE_PORT

 };

 /* Initialize Cellular Modem. */

 CellularError_t err = Cellular_Init(&cellular_handle,

&g_cellular_comm_interface_on_uart);

 assert(CELLULAR_SUCCESS == err);

 /* Create a UDP socket */

 err = Cellular_CreateSocket(cellular_handle,

 1,

 CELLULAR_SOCKET_DOMAIN_AF_INET,

 CELLULAR_SOCKET_TYPE_DGRAM,

 CELLULAR_SOCKET_PROTOCOL_UDP,

 &socket_handle);

 assert(CELLULAR_SUCCESS == err);

 /* Set the local port */

 socket_handle->localPort = UDP_EXAMPLE_LOCAL_PORT;

 /* Connect the UDP socket */

 err = Cellular_SocketConnect(cellular_handle, socket_handle,

CELLULAR_ACCESSMODE_BUFFER, &socket_address);

 assert(CELLULAR_SUCCESS == err);

}

5.2.12.2 AWS MQTT
Modules » Networking

This module provides the AWS MQTT integration documentation.

Overview
The AWS MQTT library can connect to either AWS or a third party MQTT broker such as Mosquitto.
The documentation for the library can be found at the following link: coreMQTT.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,029 / 5,560

https://mosquitto.org/
https://www.freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

Features

MQTT connections over TLS to an AWS IoT Endpoint or Mosquitto server

Configuration
Memory Usage

The AWS CoreMQTT library relies heavily on dynamic memory allocation for thread/task creation as
well as other uses. Depending on the configuration it may be required to provide as much as 110k
heap. To decrease this it is recommended to tweak the thread stack configuration values based on
usage. Notable values are:

FreeRTOS Thread

General|Minimal Stack Size

FreeRTOS Plus TCP

Stack size in words (not bytes)

Usage Notes
A transport interface is required to use the CoreMQTT library
(https://www.freertos.org/network-interface.html).
For FSP, a transport interface over MbedTLS is provided. This transport interface can
connect to RA ethernet, WiFi, and cellular modules via sockets wrappers for each module.
TLS_FreeRTOS_Connect should be used before calling any CoreMQTT APIs. See the example
for more information.
Not all MQTT servers support maintaining a TLS session after a MQTT disconnect.
TLS_FreeRTOS_Disconnect and TLS_FreeRTOS_Connect should be called to establish a new
TLS session before attempting to reconnect with CoreMQTT APIs if the server does not
support TLS session resumption.

Limitations

aws_clientcredential.h and aws_clientcredential_keys.h need to be added manually.
MbedTLS must be initialized and key provisioning must be done before starting a secure
connection.

Examples

Connection example using MbedTLS/PKCS11 Transport Interface

#define EXAMPLE_PDN_CONTEXT_NUMBER (1)

#define EXAMPLE_TIMEOUT_MS (5000)

#define EXAMPLE_DISABLE_SNI (false)

#define EXAMPLE_MQTT_HOST ("mqtt_host_server")

#define EXAMPLE_MQTT_HOST_PORT (8883)

#define EXAMPLE_MQTT_SEND_TIMEOUT (5000)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,030 / 5,560

https://www.freertos.org/network-interface.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

#define EXAMPLE_MQTT_RECEIVE_TIMEOUT (5000)

#define EXAMPLE_MQTT_TOPIC ("example_topic")

#define EXAMPLE_MQTT_CLIENT_IDENTIFIER ("client_id")

#define EXAMPLE_MQTT_KEEP_ALIVE_SECONDS (60)

#define EXAMPLE_MQTT_PAYLOAD ("helloworld")

struct NetworkContext

{

 TlsTransportParams_t * pParams;

};

static const char SERVER_CERTIFICATE_PEM[] =

 "-----BEGIN CERTIFICATE-----\n"

 "MIIDazCCAlOgAwIBAgIURabL79ayIywQv0y8SPnbZ1FYDRIwDQYJKoZIhvcNAQEL\n"

 "BQAwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoM\n"

 "GEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDAeFw0xOTA5MTEyMTIyMjZaFw0yMDA5\n"

 "MTAyMTIyMjZaMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEw\n"

 "HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwggEiMA0GCSqGSIb3DQEB\n"

 "AQUAA4IBDwAwggEKAoIBAQDSA3h+5sT58FHgnovnQzsVHQ0H/3TsnEKwVzyBwTQl\n"

 "s4PbG6VXCWyyJWjdJ4XMH1oU8gAlxauFbwOO98Aquei4K3Pi/ynKNBeX4VJcLyE5\n"

 "Azq7nRIIwt4+OoZ5kV7v8JIoLY5i+Ktn3zq1t0y1ZmK6Uk/rRPonb+Kx7wQPx7jq\n"

 "ZIZGda+CgF6ZedidPcABuggqD1y3U2gLiRPoBhe9nN2hG60rRp7vhbWMF0pzTDXu\n"

 "BKF7XSTbhYz3pl6NeOCLh5E3t8x908Ui5W1zDN3iOysrcwQFtCiGTvzNtxSfli1+\n"

 "PugIt9Q2vlYmuz5qI+juxHftJSXO86M5SV7exqUOXP9RAgMBAAGjUzBRMB0GA1Ud\n"

 "DgQWBBQG8VNJEJUjpTKMjmrOY3XApNp5lDAfBgNVHSMEGDAWgBQG8VNJEJUjpTKM\n"

 "jmrOY3XApNp5lDAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQAt\n"

 "CabfjsYUnG8tt3/GDdhjsuG+SfeQe11S73pZi3+L616bPH5MNUv+LkgR/1AFEqt5\n"

 "WadKVTgzW5Ork1t7CfkYwrOHbyhyaaDPzERjMCfCcl8lQluBy6vE/lEb0hWq6XlO\n"

 "f6+8i+VKxWkSIXs2ZQqqYSOTTzAjHSsiiuE5WsC00ErvCvnC7uD6+3Y7W1uQRkFZ\n"

 "uSd9AN1ixPvAFi69FF/ymlJv6vII5GXOVDrIwdr50bMNuezMEx6qMNDADRH8iEaL\n"

 "JaSgfklczGiI1i7MPD4JTtsXOgKwxcBDAa0zQDVA5uBGEIOhva3m5X70N4iO7W0V\n"

 "eEhZekKeg3Fl3t/CXi8l\n"

 "-----END CERTIFICATE-----";

#define keyCLIENT_CERTIFICATE_PEM \

 "-----BEGIN CERTIFICATE-----\n" \

 "MIIDETCCAfkCFHwd2yn8zn5qB2ChYUT9Mvbi9Xp1MA0GCSqGSIb3DQEBCwUAMEUx\n" \

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,031 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

 "CzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRl\n" \

 "cm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTkwOTExMjEyMjU0WhcNMjAwOTEwMjEy\n" \

 "MjU0WjBFMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE\n" \

 "CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOC\n" \

 "AQ8AMIIBCgKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCdqq59ubdRY9EiV3bleKXeqG7+8HgBHdm0X9dgq10nD37p00YLyuZLE9NM\n" \

 "066G/VcflGrx/Nzw+/UuI7/UuBbBS/3ppHRnsZqBIl8nnr/ULrFQy8z3vKtL1q3C\n" \

 "DxabjPONlPO2keJeTTA71N/RCEMwJoa8i0XKXGdu/hQo6x4n+Gq73fEiGCl99xsc\n" \

 "4tIO4yPS4lv+uXBzEUzoEy0CLIkiDesnT5lLeCyPmUNoU89HU95IusZT7kygCHHd\n" \

 "72am1ic3X8PKc268KT3ilr3VMhK67C+iIIkfrM5AiU+oOIRrIHSC/p0RigJg3rXA\n" \

 "GBIRHvt+OYF9fDeG7U4QDJNCfGW+\n" \

 "-----END CERTIFICATE-----"

#define keyCLIENT_PRIVATE_KEY_PEM \

 "-----BEGIN RSA PRIVATE KEY-----\n" \

 "MIIEowIBAAKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABAoIBAQCGR2hC/ZVJhqIM\n" \

 "c2uuJZKpElpIIBBPOObZwwS3IYR4UUjzVgMn7UbbmxflLXD8lzfZU4YVp0vTH5lC\n" \

 "07qvYuXpHqtnj+GEok837VYCtUY9AuHeDM/2paV3awNV15E1PFG1Jd3pqnH7tJw6\n" \

 "VBZBDiGNNt1agN/UnoSlMfvpU0r8VGPXCBNxe3JY5QyBJPI1wF4LcxRI+eYmr7Ja\n" \

 "/cjn97DZotgz4B7gUNu8XIEkUOTwPabZINY1zcLWiXTMA+8qTniPVk653h14Xqt4\n" \

 "4o4D4YCTpwJcmxSV1m21/6+uyuXr9SIKAE+Ys2cYLA46x+rwLaW5fUoQ5hHa0Ytb\n" \

 "RYJ4SrtBAoGBANWtwlE69N0hq5xDPckSbNGubIeG8P4mBhGkJxIqYoqugGLMDiGX\n" \

 "4bltrjr2TPWaxTo3pPavLJiBMIsENA5KU+c/r0jLkxgEp9MIVJrtNgkCiDQqogBG\n" \

 "j4IJL2iQwXoLCqk2tx/dh9Mww+7SETE7EPNrv4UrYaGN5AEvpf5W+NHPAoGBAMQ6\n" \

 "wVa0Mx1PlA4enY2rfE3WXP8bzjleSOwR75JXqG2WbPC0/cszwbyPWOEqRpBZfvD/\n" \

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,032 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

 "QFkKx06xp1C09XwiQanr2gDucYXHeEKg/9iuJV1UkMQp95ojlhtSXdRZV7/l4pmN\n" \

 "fpB2vcAptX/4gY4tDrWMO08JNnRjE7duC+rmmk1hAoGAS4L0QLCNB/h2JOq+Uuhn\n" \

 "/FGfmOVfFPFrA6D3DbxcxpWUWVWzSLvb0SOphryzxbfEKyau7V5KbDp7ZSU/IC20\n" \

 "KOygjSEkAkDi7fjrrTRW/Cgg6g6G4YIOBO4qCtHdDbwJMHNdk6096qw5EZS67qLp\n" \

 "Apz5OZ5zChySjri/+HnTxJECgYBysGSP6IJ3fytplTtAshnU5JU2BWpi3ViBoXoE\n" \

 "bndilajWhvJO8dEqBB5OfAcCF0y6TnWtlT8oH21LHnjcNKlsRw0Dvllbd1oylybx\n" \

 "3da41dRG0sCEtoflMB7nHdDLt/DZDnoKtVvyFG6gfP47utn+Ahgn+Zp6K+46J3eP\n" \

 "s3g8AQKBgE/PJiaF8pbBXaZOuwRRA9GOMSbDIF6+jBYTYp4L9wk4+LZArKtyI+4k\n" \

 "Md2DUvHwMC+ddOtKqjYnLm+V5cSbvu7aPvBZtwxghzTUDcf7EvnA3V/bQBh3R0z7\n" \

 "pVsxTyGRmBSeLdbUWACUbX9LXdpudarPAJ59daWmP3mBEVmWdzUw\n" \

 "-----END RSA PRIVATE KEY-----"

/* Callback to handle MQTT events, user should add their own processing */

static void prvEventCallback(MQTTContext_t * pxMQTTContext,

 MQTTPacketInfo_t * pxPacketInfo,

 MQTTDeserializedInfo_t * pxDeserializedInfo);

static void prvEventCallback (MQTTContext_t * pxMQTTContext,

 MQTTPacketInfo_t * pxPacketInfo,

 MQTTDeserializedInfo_t * pxDeserializedInfo)

{

 FSP_PARAMETER_NOT_USED(pxMQTTContext);

 FSP_PARAMETER_NOT_USED(pxPacketInfo);

 FSP_PARAMETER_NOT_USED(pxDeserializedInfo);

}

/* Callback to get current time */

static uint32_t prvGetTimeMs(void);

static uint32_t prvGetTimeMs (void)

{

 TickType_t xTickCount = 0;

 uint32_t ulTimeMs = 0UL;

 /* Get the current tick count. */

 xTickCount = xTaskGetTickCount();

 /* Convert the ticks to milliseconds. */

 ulTimeMs = (uint32_t) xTickCount * (1000U / configTICK_RATE_HZ); //

NOLINT(readability-magic-numbers)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,033 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

 return ulTimeMs;

}

NetworkContext_t networkContext;

void rm_aws_transport_interface_port_basic_example (void)

{

 ProvisioningParams_t params;

 NetworkCredentials_t credentials;

 TransportInterface_t transport;

 MQTTContext_t mqtt_context;

 TlsTransportParams_t transport_params;

 static uint8_t buffer[1024]; // NOLINT(readability-magic-numbers)

 MQTTFixedBuffer_t networkBuffer;

 MQTTConnectInfo_t connectInfo;

 MQTTPublishInfo_t lwtInfo;

 bool session_present;

 /* Open little FS flash and format in order to store keys */

 assert(FSP_SUCCESS == RM_LITTLEFS_FLASH_Open(g_rm_littlefs0.p_ctrl,

g_rm_littlefs0.p_cfg));

 assert(0 == lfs_format(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 assert(0 == lfs_mount(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 /* Write the keys into a secure region in data flash. */

 params.pucClientCertificate = (uint8_t *) keyCLIENT_CERTIFICATE_PEM;

 params.ulClientCertificateLength = sizeof(keyCLIENT_CERTIFICATE_PEM);

 params.pucClientPrivateKey = (uint8_t *) keyCLIENT_PRIVATE_KEY_PEM;

 params.ulClientPrivateKeyLength = sizeof(keyCLIENT_PRIVATE_KEY_PEM);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 vAlternateKeyProvisioning(¶ms);

 /* Initialize network context */

 networkContext.pParams = &transport_params;

 /* Setup network credentials */

 credentials.pAlpnProtos = NULL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,034 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

 credentials.disableSni = EXAMPLE_DISABLE_SNI;

 credentials.pRootCa = (const unsigned char *) SERVER_CERTIFICATE_PEM;

 credentials.rootCaSize = sizeof(SERVER_CERTIFICATE_PEM);

 credentials.pUserName = NULL;

 credentials.userNameSize = 0;

 credentials.pPassword = NULL;

 credentials.passwordSize = 0;

 credentials.pClientCertLabel = pkcs11configLABEL_DEVICE_CERTIFICATE_FOR_TLS;

 credentials.pPrivateKeyLabel = pkcs11configLABEL_DEVICE_PRIVATE_KEY_FOR_TLS;

 /* Set transport interface */

 transport.pNetworkContext = &networkContext;

 transport.recv = TLS_FreeRTOS_recv;

 transport.send = TLS_FreeRTOS_send;

 /* Connect to a MQTT host */

 TLS_FreeRTOS_Connect(&networkContext,

 EXAMPLE_MQTT_HOST,

 EXAMPLE_MQTT_HOST_PORT,

 &credentials,

 EXAMPLE_MQTT_RECEIVE_TIMEOUT,

 EXAMPLE_MQTT_SEND_TIMEOUT);

 /* Fill the values for network buffer. */

 networkBuffer.pBuffer = buffer;

 networkBuffer.size = 1024; // NOLINT

 /* Initialize MQTT */

 assert(MQTTSuccess == MQTT_Init(&mqtt_context, &transport, prvGetTimeMs,

prvEventCallback, &networkBuffer));

 /* Set connection info for MQTT session */

 connectInfo.cleanSession = true;

 connectInfo.clientIdentifierLength = sizeof(EXAMPLE_MQTT_CLIENT_IDENTIFIER) - 1;

 connectInfo.pClientIdentifier = EXAMPLE_MQTT_CLIENT_IDENTIFIER;

 connectInfo.keepAliveSeconds = EXAMPLE_MQTT_KEEP_ALIVE_SECONDS;

 connectInfo.pUserName = NULL;

 connectInfo.userNameLength = 0U;

 connectInfo.pPassword = NULL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,035 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS MQTT

 connectInfo.passwordLength = 0U;

 /* LWT Info. */

 lwtInfo.pTopicName = EXAMPLE_MQTT_TOPIC;

 lwtInfo.topicNameLength = sizeof(EXAMPLE_MQTT_TOPIC) - 1;

 lwtInfo.pPayload = EXAMPLE_MQTT_PAYLOAD;

 lwtInfo.payloadLength = strlen(EXAMPLE_MQTT_PAYLOAD);

 lwtInfo.qos = MQTTQoS0;

 lwtInfo.dup = false;

 lwtInfo.retain = false;

 /* Send MQTT CONNECT packet to broker. */

 assert(MQTTSuccess == MQTT_Connect(&mqtt_context, &connectInfo, &lwtInfo, 20000,

&session_present));

}

5.2.12.3 AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)
Modules » Networking

AWS OTA PAL layer implementation for downloading firmware updates.

Overview
This module provides the hardware port layer for the AWS IoT Over-the-air Update Library. Refer to
the AWS OTA documentation: https://docs.aws.amazon.com/freertos/latest/userguide/integrate-ota-
agent.html.

Configuration
Build Time Configurations for rm_aws_ota_pal_mcuboot

The following build time configurations are defined in fsp_cfg/rm_aws_ota_pal_mcuboot_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Filepath to Slot ID
Callback Function

Must be a valid C
symbol

NULL Callback function for
determining which Slot

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,036 / 5,560

https://docs.aws.amazon.com/freertos/latest/userguide/integrate-ota-agent.html
https://docs.aws.amazon.com/freertos/latest/userguide/integrate-ota-agent.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)

ID the image should be
downloaded to.

OTA code signing
signature algorithm

sig-sha256-ecdsa sig-sha256-ecdsa Code signing algorithm
used by AWS to sign
the downloaded image.

Configurations for Storage > AWS OTA PAL (rm_aws_ota_pal_mcuboot)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_aws_ota_pal_mcu
boot0

Module name.

Common AWS Configuration

Build Time Configurations for source

The following build time configurations are defined in aws/ota_config.h:

Configuration Options Default Description

Version

Major Value must be a non-
negative integer

0 Major Version number
used when updating.

Minor Value must be a non-
negative integer

0 Minor Version number
used when updating.

Build Value must be a non-
negative integer

1 Build Version number
used when updating.

Custom ota_config.h Manual Entry Add a path to your
custom ota_config.h
file. It can be used to
override some or all of
the configurations
defined here, and to
define additional
configurations.

Log2 File Block Size Value must be a non-
negative integer

11 Log base 2 of the size
of the file data block
message (excluding
the header). e.g. 11:
2^11 = 2048bytes

Self Test Response
Wait (ms)

Value must be a non-
negative integer

16000 Milliseconds to wait for
the self test phase to
succeed before we
force reset.

File Request Wait (ms) Value must be a non-
negative integer

10000 Milliseconds to wait
before requesting data
blocks from the OTA
service if nothing is
happening.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,037 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)

Max Thingname Length Value must be a non-
negative integer

64 The maximum allowed
length of the thing
name used by the OTA
agent.

Max Num Blocks
Request

Value must be a non-
negative integer

1 The maximum number
of data blocks
requested from OTA
streaming service.

Max Num Request
Momentum

Value must be a non-
negative integer

32 The maximum number
of requests allowed to
send without a
response before we
abort.

Ota Update Status
Frequency

Value must be a non-
negative integer

64 How frequently the
device will report its
OTA progress to the
cloud.

Max Num OTA Data
Buffers

Value must be a non-
negative integer

1 The number of data
buffers reserved by the
OTA agent.

Allow Downgrade Allowed
Disallowed

Disallowed Flag to enable booting
into updates that have
an identical or lower
version than the
current version.

Ota Firmware Update
File Type ID

Value must be a non-
negative integer

0 The file type id
received in the job
document.

Enabled Control
Protocol

OTA Control Over MQTT OTA Control Over MQTT The protocol selected
for OTA control
operations.

Enabled Data Protcols OTA Data Over
MQTT
OTA Data Over
HTTP
OTA Data Over
MQTT and HTTP

OTA Data Over MQTT The protocol selected
for OTA data
operations.

OTA Primary Data
Protocol

OTA Data Over
MQTT
OTA Data Over
HTTP

OTA Data Over MQTT The preferred protocol
selected for OTA data
operations.

OTA Events Polling
Timeout (ms)

Value must be a non-
negative integer

1000 The polling timeout
(milliseconds) to
receive messages from
event queue.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,038 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)

The current implementation utilizes MCUboot Port (rm_mcuboot_port) for switching images.

Limitations

Currently only the only supported signature method is sig-sha256-ecdsa.

5.2.12.4 AWS PKCS11 PAL on LittleFS (rm_aws_pkcs11_pal_littlefs)
Modules » Networking

PKCS#11 PAL LittleFS layer implementation for use by FreeRTOS TLS.

Overview
Note

The PKCS#11 PAL LittleFS Interface does not provide any interfaces to the user. Consult the AWS
documentation for more info: https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html.

Configuration
There is no user configuration for this module

Usage Notes
The current implementation utilizes LittleFS on Flash (rm_littlefs_flash) for storage.

Limitations

Credential access is not limited in any way.

5.2.12.5 AWS coreHTTP
Modules » Networking

This module provides the AWS coreHTTP library.

Overview
The AWS coreHTTP library can be used to send HTTP and HTTPS requests. The documentation for the
library can be found at the following link: coreHTTP.

Features

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,039 / 5,560

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://www.freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

Secure and Non-secure HTTP requests
Mutually authenticated connections

Configuration
Memory Usage

The AWS coreHTTP stack relies on dynamic memory allocation for thread/task creation as well as
other uses. It is recommended to tweak the thread stack configuration values based on usage.
Notable values are:

FreeRTOS Thread

General|Minimal Stack Size
Memory Allocation|Total Heap Size

FreeRTOS Plus TCP

Stack size in words (not bytes)

Usage Notes
A transport interface is required to use the CoreHTTP library
(https://www.freertos.org/network-interface.html).
For FSP, a transport interface over MbedTLS is provided. This transport interface can
connect to RA ethernet, WiFi, and cellular modules via sockets wrappers for each module.
TLS_FreeRTOS_Connect should be used before calling any CoreHTTP APIs. See the example
for more information.

Limitations

MbedTLS must be initialized and key provisioning must be done before starting a secure
connection.

Examples

HTTPS GET request

/* Certificate copied from https://www.amazontrust.com/repository/AmazonRootCA1.pem

*/

static const char g_server_certificate[] = "-----BEGIN CERTIFICATE-----\n" \

 "MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkqhkiG9w0BAQsF\n" \

 "ADA5MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6\n" \

 "b24gUm9vdCBDQSAxMB4XDTE1MDUyNjAwMDAwMFoXDTM4MDExNzAwMDAwMFowOTEL\n" \

 "MAkGA1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJv\n" \

 "b3QgQ0EgMTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALJ4gHHKeNXj\n" \

 "ca9HgFB0fW7Y14h29Jlo91ghYPl0hAEvrAIthtOgQ3pOsqTQNroBvo3bSMgHFzZM\n" \

 "9O6II8c+6zf1tRn4SWiw3te5djgdYZ6k/oI2peVKVuRF4fn9tBb6dNqcmzU5L/qw\n" \

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,040 / 5,560

https://docs.aws.amazon.com/freertos/latest/userguide/core-http-ma-demo.html
https://www.freertos.org/network-interface.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

 "IFAGbHrQgLKm+a/sRxmPUDgH3KKHOVj4utWp+UhnMJbulHheb4mjUcAwhmahRWa6\n" \

 "VOujw5H5SNz/0egwLX0tdHA114gk957EWW67c4cX8jJGKLhD+rcdqsq08p8kDi1L\n" \

 "93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GfID5yHI9Y/QCB/IIDEgEw+OyQm\n" \

 "jgSubJrIqg0CAwEAAaNCMEAwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" \

 "AYYwHQYDVR0OBBYEFIQYzIU07LwMlJQuCFmcx7IQTgoIMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCY8jdaQZChGsV2USggNiMOruYou6r4lK5IpDB/G/wkjUu0yKGX9rbxenDI\n" \

 "U5PMCCjjmCXPI6T53iHTfIUJrU6adTrCC2qJeHZERxhlbI1Bjjt/msv0tadQ1wUs\n" \

 "N+gDS63pYaACbvXy8MWy7Vu33PqUXHeeE6V/Uq2V8viTO96LXFvKWlJbYK8U90vv\n" \

 "o/ufQJVtMVT8QtPHRh8jrdkPSHCa2XV4cdFyQzR1bldZwgJcJmApzyMZFo6IQ6XU\n" \

 "5MsI+yMRQ+hDKXJioaldXgjUkK642M4UwtBV8ob2xJNDd2ZhwLnoQdeXeGADbkpy\n" \

 "rqXRfboQnoZsG4q5WTP468SQvvG5\n" \

 "-----END CERTIFICATE-----";

/* Default settings to use if DHCP fails. */

const uint8_t g_default_ip_address[4] = {192, 168, 0, 100};

const uint8_t g_default_subnet_mask[4] = {255, 255, 255, 0};

const uint8_t g_default_gateway[4] = {192, 168, 0, 1};

const uint8_t g_default_dns[4] = {8, 8, 8, 8};

#if defined(ipconfigIPv4_BACKWARD_COMPATIBLE) && (ipconfigIPv4_BACKWARD_COMPATIBLE ==

0)

static NetworkInterface_t xInterfaces[1];

static NetworkEndPoint_t xEndPoints[1];

extern NetworkInterface_t * pxFillInterfaceDescriptor(BaseType_t xEMACIndex,

NetworkInterface_t * pxInterface);

#endif

void https_example_entry (void * pvParameters)

{

 FSP_PARAMETER_NOT_USED(pvParameters);

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 /* In order to use the PKCS11 PAL, littlefs must be configured. */

 fsp_err_t fsp_err_status = RM_LITTLEFS_FLASH_Open(g_rm_littlefs0.p_ctrl,

g_rm_littlefs0.p_cfg);

 assert(FSP_SUCCESS == fsp_err_status);

 /* Reformat littlefs to ensure that data flash is in a known state. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,041 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

 assert(0 == lfs_format(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 /* Mount littlefs. */

 assert(0 == lfs_mount(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 /*

 * Write the keys into data flash using the PKCS11 PAL so that they can be used

during TLS setup

 * Note that in an application this will only be done when provisioning a device

with a private key.

 * Once a device has been provisioned, the keys will persist in data flash.

 */

 ProvisioningParams_t params;

 params.pucClientPrivateKey = (uint8_t *) g_client_private_key;

 params.pucClientCertificate = (uint8_t *) g_client_certificate;

 params.ulClientPrivateKeyLength = sizeof(g_client_private_key);

 params.ulClientCertificateLength = sizeof(g_client_certificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 uint32_t err = (uint32_t) vAlternateKeyProvisioning(¶ms);

 assert(0 == err);

#if defined(ipconfigIPv4_BACKWARD_COMPATIBLE) && (ipconfigIPv4_BACKWARD_COMPATIBLE ==

0)

 /* Initialize the interface descriptor. */

 pxFillInterfaceDescriptor(0, xInterfaces);

 FreeRTOS_FillEndPoint(xInterfaces,

 xEndPoints,

 g_default_ip_address,

 g_default_subnet_mask,

 g_default_gateway,

 g_default_dns,

 g_ether0.p_cfg->p_mac_address);

 /* Initialise the TCP/IP stack. */

 FreeRTOS_IPInit_Multi();

#else

 /* Start up the network stack. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,042 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

 FreeRTOS_IPInit(g_default_ip_address,

 g_default_subnet_mask,

 g_default_gateway,

 g_default_dns,

 g_ether0.p_cfg->p_mac_address);

#endif

#if defined(ipconfigIPv4_BACKWARD_COMPATIBLE) && (ipconfigIPv4_BACKWARD_COMPATIBLE ==

0)

 while (pdFALSE == FreeRTOS_IsEndPointUp(xEndPoints))

#else

 while (pdFALSE == FreeRTOS_IsNetworkUp())

#endif

 {

 vTaskDelay(10);

 }

 NetworkCredentials_t xSocketsConfig = {0};

 TlsTransportStatus_t xNetworkStatus = TLS_TRANSPORT_SUCCESS;

 TlsTransportParams_t transport_params;

 /* Configure credentials for TLS authenticated session. */

 xSocketsConfig.pAlpnProtos = NULL;

 xSocketsConfig.disableSni = false;

 xSocketsConfig.pRootCa = (const unsigned char *) g_server_certificate;

 xSocketsConfig.rootCaSize = sizeof(g_server_certificate);

 NetworkContext_t xNetworkContext = {0};

 /* Initialize network context */

 xNetworkContext.pParams = &transport_params;

 /* Attempt to create a authenticated TLS connection. */

 TLS_FreeRTOS_Connect(&xNetworkContext,

 "postman-echo.com",

 HTTPS_EXAMPLE_TLS_PORT,

 &xSocketsConfig,

 HTTPS_EXAMPLE_TIMEOUT,

 HTTPS_EXAMPLE_TIMEOUT);

 assert(TLS_TRANSPORT_SUCCESS == xNetworkStatus);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,043 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

 TransportInterface_t xTransportInterface;

 /* Define the transport interface. */

 xTransportInterface.pNetworkContext = &xNetworkContext;

 xTransportInterface.send = TLS_FreeRTOS_send;

 xTransportInterface.recv = TLS_FreeRTOS_recv;

 HTTPRequestInfo_t xRequestInfo = {0};

 HTTPRequestHeaders_t xRequestHeaders = {0};

 /* Configure a GET request. */

 xRequestInfo.pHost = "postman-echo.com";

 xRequestInfo.hostLen = strlen(xRequestInfo.pHost);

 xRequestInfo.pMethod = HTTP_METHOD_GET;

 xRequestInfo.methodLen = strlen(HTTP_METHOD_GET);

 xRequestInfo.pPath = "/get?arg1=val1&arg2=val2";

 xRequestInfo.pathLen = strlen(xRequestInfo.pPath);

 xRequestInfo.reqFlags = HTTP_REQUEST_KEEP_ALIVE_FLAG;

 /* Set the buffer used for storing request headers. */

 static uint8_t ucUserBuffer[HTTPS_EXAMPLE_USER_BUFFER_SIZE];

 xRequestHeaders.pBuffer = ucUserBuffer;

 xRequestHeaders.bufferLen = sizeof(ucUserBuffer);

 /* Initialize the request. */

 HTTPStatus_t xHTTPStatus = HTTPClient_InitializeRequestHeaders(&xRequestHeaders,

&xRequestInfo);

 assert(HTTPSuccess == xHTTPStatus);

 /* Reuse the user buffer for storing the response headers. */

 HTTPResponse_t xResponse = {0};

 xResponse.pBuffer = ucUserBuffer;

 xResponse.bufferLen = sizeof(ucUserBuffer);

 /* Send the request. */

 xHTTPStatus = HTTPClient_Send(&xTransportInterface, &xRequestHeaders, (uint8_t *)

NULL, 0, &xResponse, 0);

 assert(HTTPSuccess == xHTTPStatus);

 TLS_FreeRTOS_Disconnect(&xNetworkContext);

 /* The HTTPS request has completed. The result is stored in xResponse. */

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,044 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > AWS coreHTTP

5.2.12.6 Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)
Modules » Networking

Note
This page has been updated to reference GM cellular modules. GM cellular modules are a direct replacement
for RYZ. RYZ cellular modules are deprecated and will be removed from FSP in a future release.
The Azure Embedded Wireless Framework is still in beta and not all APIs may be fully implemented yet.

Overview
This documentation is for the GMxxx ports of the Azure Embedded Wireless Framework.

For more information on the framework see the documenation:
https://azure.github.io/embedded-wireless-framework/html/index.html.

There are also various examples available for the RA6M4_EK:
https://github.com/Azure/embedded-wireless-framework/tree/main/examples/EK-
RA6M4.

For more GM02S hardware information including pin and baud rate info please see the
GM02S page: https://sequans.com/products/monarch-2-gm02s/.

Features

Various APIs to control/access GMxxx modem features via AT commands.
Raw AT command APIs
IPv4 sockets using TCP/UDP
The EWF framework is usable standalone with bare metal and ThreadX.
The framework can also be used with NetX when coupled with a EWF NetX middleware
layer.

Limitations

The following are the limitations of the Azure EWF Library:

DTC is not supported. The lower level interface using R_UART relies on processing data one
byte at a time via the interrupt callback and UART_EVENT_RX_CHAR.
Server mode sockets should be supported but have not been fully tested due to APN
limitations.
There are potential issues when using the default (-Os) optimization or above with AC6. All
files under embedded_wireless_framework should be set to compile with no optimization
(-O0) when using AC6.
nx_ip_status_check does not currently work for the EWF middleware.
When using socket send functions (ewf_adapter_tcp_send and ewf_adapter_udp_send) the
GM port is limited to sending only 1460 bytes at a time. Data sent using these functions
should be broken into 1460 byte chunks or less.

When using NetX the packet size for the driver packet pool should be set to 1460
bytes or less. Using larger packet sizes will work but the NetX Middleware Driver
will potentially break up the packets inefficiently.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,045 / 5,560

https://azure.github.io/embedded-wireless-framework/html/index.html
https://github.com/Azure/embedded-wireless-framework/tree/main/examples/EK-RA6M4
https://github.com/Azure/embedded-wireless-framework/tree/main/examples/EK-RA6M4
https://sequans.com/products/monarch-2-gm02s/

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

Unsupported NetX Duo Features

These features are handled directly on the GMxxx hardware or are not supported yet in the EWF
library. NetX APIs for these features should not be used:

IPv6 functionality (the EWF library doesn't yet support IPv6)
ARP is handled directly by the cellular modem
DHCP is handled directly by the cellular modem.

Configuration
The GM02S port for the Embedded Wireless Framework can be added to the Stacks tab via New
Stack > Networking > Azure EWF Adapter on GM02S.

Build Time Configurations for Common

The following build time configurations are defined in fsp_cfg/azure/ewf/ewf.config.h:

Configuration Options Default Description

Parameter Checking Enabled
Disabled

Enabled This enables checking
of function parameters.
When this is disabled,
parameter checking
code is not present and
the footprint is reduced

Enable Logging Enabled
Disabled

Disabled This enables logging
and the compilation of
debug code. When
disabled, logging and
debug code is not
present and the
footprint is reduced.

Verbose Logging Enabled
Disabled

Disabled This enables verbose
logging. Verbose
logging will only work if
a EWF Log Function is
set and logging is
enabled.

EWF Log Function Manual Entry printf(__VA_ARGS__) Function the library
uses for standard log
messages when
logging is enabled.

EWF Log Error Function Manual Entry printf(__VA_ARGS__) Function the library
uses for error log
messages when
logging is enabled.

Usage Notes
The basic setup for the library is as follows:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,046 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

Note
**The message allocator (EWF_ALLOCATOR_THREADX_STATIC_DECLARE) should be at least 1500 bytes for
GM**

1. Declare an allocator, interface, and adapter using appropriate macros (EWF_ALLOCATOR_T
HREADX_STATIC_DECLARE/EWF_ALLOCATOR_MEMORY_POOL_STATIC_DECLARE/EWF_ALLOC
ATOR_C_HEAP_STATIC_DECLARE, EWF_INTERFACE_RA_UART_STATIC_DECLARE,
EWF_ADAPTER_RENESAS_GM02S_STATIC_DECLARE).

2. Start the adapter with ewf_adapter_start.
3. Setup modem service if necessary with functions from ewf_adapter_api_modem.h and other

included api_modem_* files.
4. Set functionality with ewf_adapter_modem_functionality_set.
5. Wait for network registration (can use ewf_adapter_modem_network_registration_check to

wait).
6. Do a service activate to set desired PDP context with

ewf_adapter_modem_packet_service_activate. This should be called regardless of whether
context is already activated as it sets an internal library context number for functions like
ewf_adapter_get_ipv4_address.

7. Call other network functions as needed from desired headers (i.e. TCP functions are in
ewf_adapter_api_tcp.h).

When using NetX Duo the following must be done:

Before creating an IP instance make sure that the modem adapter is started and connected
to a network.
After creating an IP instance the adapter pointer has to be stored manually to the IP
instance: g_ip.nx_ip_interface->nx_interface_additional_link_info = adapter_ptr;.
After creating an IP instance the gateway address should be set to the IP of the modem in
order to satisfy NetX Duo's internal routing algorithms (packets are actually routed by the
modem hardware): nx_ip_gateway_address_set(&g_ip, RM_NETXDUO_TESTS_IP_ADDR);.

Examples
Basic TCP Socket Example

Note
The user should choose the relevant EWF_ALLOCATOR and EWF_ADAPTER macros from this example to use
based on the hardware and RTOS being used

#define EWF_LOG_BUFFER_SIZE (256)

#define EWF_MODEM_NETWORK_WAIT_TIME_SECONDS (30)

#define EWF_HTTP_GET_SERVER "www.microsoft.com"

#define EWF_HTTP_GET "GET / HTTP/1.1\r\nHost:www.microsoft.com\r\n\r\n"

#define EWF_HTTP_PORT (80)

ewf_allocator * message_allocator_ptr = NULL;

ewf_interface * interface_ptr = NULL;

ewf_adapter * adapter_ptr = NULL;

char ewf_log_buffer[EWF_LOG_BUFFER_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,047 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

void rm_azure_ewf_gm_example ()

{

 static uint8_t buffer[2048]; // NOLINT

 uint32_t buffer_length = sizeof(buffer);

 /* Azure library has macros to declare/allocate structs and pointers.

 * Different ones should be used depending on Adapter and whether the library is

being used on bare metal or ThreadX */

 /* This is for the memory allocator using ThreadX block pools */

 EWF_ALLOCATOR_THREADX_STATIC_DECLARE(message_allocator_ptr, message_allocator,

12, 2048);

 /* This is for the memory allocator using static memory on bare metal */

 EWF_ALLOCATOR_MEMORY_POOL_STATIC_DECLARE(message_allocator_ptr,

message_allocator, 12, 2048);

 /* This is for the memory allocator using the heap on bare metal */

 EWF_ALLOCATOR_C_HEAP_STATIC_DECLARE(message_allocator_ptr, message_allocator, 12,

2048);

 /* This is for the communications interface using R_UART */

 EWF_INTERFACE_RA_UART_STATIC_DECLARE(interface_ptr, sci_uart);

 /* If using GM01Q */

 EWF_ADAPTER_RENESAS_GM01Q_STATIC_DECLARE(adapter_ptr, renesas_gm01q,

message_allocator_ptr, NULL, interface_ptr);

 /* If using GM02S */

 EWF_ADAPTER_RENESAS_GM02S_STATIC_DECLARE(adapter_ptr, renesas_gm02s,

message_allocator_ptr, NULL, interface_ptr);

 /* Start the adapter */

 assert(EWF_RESULT_OK == ewf_adapter_start(adapter_ptr));

 /* Set the ME functionality */

 assert(EWF_RESULT_OK == ewf_adapter_modem_functionality_set(adapter_ptr, "1"));

 /* Wait for the modem functionality to be up */

 assert(EWF_RESULT_OK ==

 ewf_adapter_modem_network_registration_check(adapter_ptr,

EWF_ADAPTER_MODEM_CMD_QUERY_EPS_NETWORK_REG,

EWF_MODEM_NETWORK_WAIT_TIME_SECONDS));

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,048 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

 /* Do a service activate to set context num correctly */

 ewf_adapter_modem_packet_service_activate(adapter_ptr, 1);

 ewf_socket_tcp socket_tcp = {0};

 /* Open TCP Socket */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_open(adapter_ptr, &socket_tcp));

 /* Connect to server */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_connect(&socket_tcp, EWF_HTTP_GET_SERVER,

EWF_HTTP_PORT));

 /* Send HTTP GET */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_send(&socket_tcp, (const uint8_t *)

EWF_HTTP_GET, strlen(EWF_HTTP_GET)));

 /* Receive HTTP GET response */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_receive(&socket_tcp, buffer,

&buffer_length, true));

 /* Shutdown socket connection to server */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_shutdown(&socket_tcp));

 /* Close/destroy socket */

 assert(EWF_RESULT_OK == ewf_adapter_tcp_close(&socket_tcp));

}

NetX Duo Example

#define NETXDUO_EXAMPLE_PACKET_SIZE (1568U)

#define NETXDUO_EXAMPLE_PACKET_NUM (100U)

#define NETXDUO_EXAMPLE_PACKET_POOL_SIZE ((sizeof(NX_PACKET) +

NETXDUO_EXAMPLE_PACKET_SIZE) * \

 NETXDUO_EXAMPLE_PACKET_NUM)

#define NETXDUO_EXAMPLE_IP_STACK_SIZE (2048U)

NX_PACKET_POOL g_packet_pool;

NX_IP g_ip;

static uint8_t g_ip_stack_memory[NETXDUO_EXAMPLE_IP_STACK_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_packet_pool_memory[NETXDUO_EXAMPLE_PACKET_POOL_SIZE]

BSP_ALIGN_VARIABLE(4);

void rm_azure_ewf_gm_netx_example ()

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,049 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

{

 uint32_t modem_ip_addr;

 /* Azure library has macros to declare/allocate structs and pointers.

 * Different ones should be used depending on Adapter and whether the library is

being used on bare metal or ThreadX */

 /* This is for the memory allocator using ThreadX block pools */

 EWF_ALLOCATOR_THREADX_STATIC_DECLARE(message_allocator_ptr, message_allocator,

12, 2048);

 /* This is for the communications interface using R_UART */

 EWF_INTERFACE_RA_UART_STATIC_DECLARE(interface_ptr, sci_uart);

 /* If using GM01Q */

 EWF_ADAPTER_RENESAS_GM01Q_STATIC_DECLARE(adapter_ptr, renesas_gm01q,

message_allocator_ptr, NULL, interface_ptr);

 /* If using GM02S */

 EWF_ADAPTER_RENESAS_GM02S_STATIC_DECLARE(adapter_ptr, renesas_gm02s,

message_allocator_ptr, NULL, interface_ptr);

 /* Start the adapter */

 assert(EWF_RESULT_OK == ewf_adapter_start(adapter_ptr));

 /* Set the ME functionality */

 assert(EWF_RESULT_OK == ewf_adapter_modem_functionality_set(adapter_ptr, "1"));

 /* Wait for the modem functionality to be up */

 assert(EWF_RESULT_OK ==

 ewf_adapter_modem_network_registration_check(adapter_ptr,

EWF_ADAPTER_MODEM_CMD_QUERY_EPS_NETWORK_REG,

EWF_MODEM_NETWORK_WAIT_TIME_SECONDS));

 /* Do a service activate to set context num correctly */

 ewf_adapter_modem_packet_service_activate(adapter_ptr, 1);

 /* Get modem IP */

 assert(EWF_RESULT_OK == ewf_adapter_get_ipv4_address(adapter_ptr,

&modem_ip_addr));

 UINT status;

 /* Create a packet pool */

 status = nx_packet_pool_create(&g_packet_pool,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,050 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using EWF middleware */

 status = nx_ip_create(&g_ip,

 "IP Instance",

 modem_ip_addr,

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool,

 nx_driver_ewf_adapter,

 &g_ip_stack_memory[0],

 sizeof(g_ip_stack_memory),

 15);

 assert(NX_SUCCESS == status);

 /* Save the adapter pointer in the IP instance */

 g_ip.nx_ip_interface->nx_interface_additional_link_info = adapter_ptr;

 /* EWF requires gateway address to be set */

 status = nx_ip_gateway_address_set(&g_ip, modem_ip_addr);

 assert(NX_SUCCESS == status);

}

5.2.12.7 BLE Abstraction (rm_ble_abs)
Modules » Networking

Functions

fsp_err_t RM_BLE_ABS_Open (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const
*const p_cfg)

fsp_err_t RM_BLE_ABS_Close (ble_abs_ctrl_t *const p_ctrl)

 Close the BLE channel. Implements ble_abs_api_t::close. More...

fsp_err_t RM_BLE_ABS_Reset (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t
init_callback)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,051 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

fsp_err_t RM_BLE_ABS_StartLegacyAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartExtendedAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartNonConnectableAdvertising (ble_abs_ctrl_t *const
p_ctrl, ble_abs_non_connectable_advertising_parameter_t const
*const p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartPeriodicAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartScanning (ble_abs_ctrl_t *const p_ctrl,
ble_abs_scan_parameter_t const *const p_scan_parameter)

fsp_err_t RM_BLE_ABS_CreateConnection (ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const
p_connection_parameter)

fsp_err_t RM_BLE_ABS_SetLocalPrivacy (ble_abs_ctrl_t *const p_ctrl, uint8_t
const *const p_lc_irk, uint8_t privacy_mode)

fsp_err_t RM_BLE_ABS_StartAuthentication (ble_abs_ctrl_t *const p_ctrl,
uint16_t connection_handle)

fsp_err_t RM_BLE_ABS_DeleteBondInformation (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const
p_bond_information_parameter)

fsp_err_t RM_BLE_ABS_ImportKeyInformation (ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

fsp_err_t RM_BLE_ABS_ExportKeyInformation (ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

Detailed Description

Middleware for the Bluetooth peripheral on RA MCUs. This module implements the BLE ABS Interface
.

Overview
This module provides BLE GAP functionality that complies with the Bluetooth Core Specification

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,052 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

version 5.0 specified by the Bluetooth SIG. This module is configured via the QE for BLE. QE for BLE
provides standard services defined by standardization organization and custom services defined by
user. Bluetooth LE Profile API Document User's Manual describes the APIs for standard services.

Features

The Bluetooth Low Energy (BLE) Abstraction module supports the following features:

following GAP Role support
Central: The device that sends a connection request to the Peripheral device.
Peripheral: The device that accepts a connection request from Central and
establishes a connection.
Observer : The device that scans for advertising.
Broadcaster : The device that sends advertising.

LE 2M PHY
BLE communication is supported on the 2 Msym/s PHY.

LE Coded PHY -Supports BLE communication on the Coded PHY. This enables
communication over longer distances than 1M PHY and 2M PHY.
LE Advertising Extensions

Up to four independent adverts can be executed simultaneously.
The size of Advertising Data/Scan Response Data has been expanded to a
maximum of 1650 bytes.
Periodic Advertising is available.

LE Channel Selection Algorithm #2
With the hopping channel selection algorithm added in Version 5.0, the machine
that selects the channel It is possible.

High Duty Cycle Non-Connectable Advertising
The ability to support non-connectable advertising with a minimum interval of up
to 20 msec.

LE Secure Connections
Elliptic curve Diffie-Hellman key sharing (ECDH) for pairing with passive
eavesdropping support.

Link Layer privacy
This feature avoids being tracked by other BLE devices by periodically changing
the Bluetooth device address.

Link Layer Extended Scanner Filter policies
Scan Filter support for Resolvable private addresses.

LE Data Packet Length Extension
This function expands the packet size of BLE data communications. It is possible to
scale up to 251 bytes.

LE L2CAP Connection Oriented Channel Support
The ability to support communication using the L2CAP credit based flow control
channel.

Low Duty Cycle Directed Advertising
The ability to support the advertising of the Low Duty Cycle for reconnecting to a
known device.

LE Link Layer Topology
It supports both Master and Slave roles and can operate as Master when
connected to one remote device and as Slave when connected to another remote
device.

LE Ping
This function checks whether the link is maintained or not by requesting the
transmission of packets containing MIC after link encryption.

BLE Library Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,053 / 5,560

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

There are three types of BLE Protocol Stacks, and the functions provided are different depending on
the type of BLE Protocol Stack you select.

BLE library feature Extended Balance Compact

GAP Role Central Peripheral
Observer Broadcaster

Central Peripheral
Observer Broadcaster

Peripheral Broadcaster

LE 2M PHY Yes Yes No

LE Coded PHY Yes Yes No

LE Advertising
Extensions

Yes No No

LE Channel Selection
Algorithm #2

Yes Yes No

High Duty Cycle Non-
Connectable
Advertising

Yes Yes Yes

LE Secure Connections Yes Yes Yes

Link Layer privacy Yes Yes Yes

Link Layer Extended
Scanner Filter policies

Yes Yes No

LE Data Packet Length
Extension

Yes Yes Yes

LE L2CAP Connection
Oriented Channel
Support

Yes No No

Low Duty Cycle
Directed Advertising

Yes Yes Yes

LE Link Layer Topology Yes Yes No

LE Ping Yes Yes Yes

32-bit UUID Support in
LE

Yes Yes Yes

Target Devices

The BLE Abstraction module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_abs

The following build time configurations are defined in fsp_cfg/rm_ble_abs_cfg.h:

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,054 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

Parameter Checking Default (BSP)
Enable
Disable

Default (BSP) Specify whether to
include code for API
parameter checking.
Valid settings include.

Debug Public Address Must be a valid device
address

FF:FF:FF:50:90:74 Public Address of
firmware initial value.

Debug Random
Address

Must be a valid device
address

FF:FF:FF:FF:FF:FF Random Address of
firmware initial value.

Maximum number of
connections

Value must be an
integer between 1 and
7, and lower than the
value defined in ble
module.

7 Maximum number of
connections.

Maximum connection
data length

Value must be an
integer between 27
and 251, and lower
than the value defined
in ble module.

251 Maximum connection
data length.

Maximum advertising
data length

Value must be an
integer between 31
and 1650, and lower
than the value defined
in ble module.

1650 Maximum advertising
data length.

Maximum advertising
set number

Value must be an
integer between 1 and
4, and lower than the
value defined in ble
module.

4 Maximum advertising
set number.

Maximum periodic sync
set number.

Value must be an
integer between 1 and
2, and lower than the
value defined in ble
module.

2 Maximum periodic sync
set number.

Store Security Data Disable
Enable

Disable Store Security Data in
DataFlash.

Data Flash Block for
Security Data

Value must be an
integer between 0 and
7, and lower than the
value defined in ble
module.

0 Data Flash Block for
Security Data
Management.

Remote Device
Bonding Number

Value must be an
integer between 1 and
7, and lower than the
value defined in ble
module.

7 Number of remote
device bonding
information.

Connection Event Start
Notify

Disable
Enable

Disable Set Connection event
start notify
enable/disable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,055 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

Connection Event Close
Notify

Disable
Enable

Disable Set Connection event
close notify
enable/disable.

Advertising Event Start
Notify

Disable
Enable

Disable Set Advertising event
start notify
enable/disable.

Advertising Event Close
Notify

Disable
Enable

Disable Set Advertising event
close notify
enable/disable.

Scanning Event Start
Notify

Disable
Enable

Disable Set Scanning event
start notify
enable/disable.

Scanning Event Close
Notify

Disable
Enable

Disable Set Scanning event
close notify
enable/disable.

Initiating Event Start
Notify

Disable
Enable

Disable Set Initiating event
start notify
enable/disable.

Initiating Event Close
Notify

Disable
Enable

Disable Set Initiating event
close notify
enable/disable.

RF Deep Sleep Start
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
start notify
enable/disable.

RF Deep Sleep Wakeup
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
wakeup notify
enable/disable.

Bluetooth dedicated
clock

Value must be an
integer between 0 and
15, and lower than the
value defined in ble
module.

6 Load capacitance
adjustment.

DC-DC converter Disable
Enable

Disable Set DC-DC converter
for RF part.

Slow Clock Source Use RF_LOCO
Use External
32.768kHz

Use RF_LOCO Set slow clock source
for RF part.

MCU CLKOUT Port P109
P205

P109 When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, Set port of MCU
CLKOUT.

MCU CLKOUT
Frequency Output

MCU CLKOUT
frequency
32.768kHz
MCU CLKOUT
frequency
16.384kHz

MCU CLKOUT
frequency 32.768kHz

When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, set frequency
output from CLKOUT of
MCU part.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,056 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

Sleep Clock
Accuracy(SCA)

Value must be an
integer between 0 and
500, and lower than
the value defined in ble
module.

250 When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, set Sleep Clock
Accuracy(SCA) for RF
slow clock.

Transmission Power
Maximum Value

max +0dBm
max +4dBm

max +4dBm Set transmission power
maximum value.

Transmission Power
Default Value

High 0dBm(Tra
nsmission
Power
Maximum Value
= +0dBm) / +4
dBm(Transmissi
on Power
Maximum Value
= +4dBm)
Mid 0dBm(Tran
smission Power
Maximum Value
= +0dBm) / 0d
Bm(Transmissio
n Power
Maximum Value
= +4dBm)
Low -18dBm(Tr
ansmission
Power
Maximum Value
= +0dBm) / -20
dBm(Transmissi
on Power
Maximum Value
= +4dBm)

High
0dBm(Transmission
Power Maximum Value
= +0dBm) /
+4dBm(Transmission
Power Maximum Value
= +4dBm)

Set default transmit
power. Default transmit
power is dependent on
the configuration of
Maximum transmission
power(BLE_ABS_CFG_R
F_DEF_TX_POW).

CLKOUT_RF Output No output
4MHz output
2MHz output
1MHz output

No output Set CLKOUT_RF output
setting.

RF_DEEP_SLEEP
Transition

Disable
Enable

Enable Set RF_DEEP_SLEEP
transition.

MCU Main Clock
Frequency

Value must be an
integer between 1000
and 20000, and lower
than the value defined
in ble module.

8000 Set MCU Main Clock
Frequency (kHz). Set
clock source according
to your board
environment. HOCO:
don't care. / Main
Clock: 1000 to 20000
kHz / PLL Circuit: 4000
to 12500 kHz

Code Flash(ROM)
Device Data Block

Value must be an
integer between -1 and
255, and lower than

255 Device specific data
block on Code Flash
(ROM).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,057 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

the value defined in ble
module.

Device Specific Data
Flash Block

Value must be an
integer between -1 and
7, and lower than the
value defined in ble
module.

-1 Device specific data
block on E2 Data Flash.

MTU Size Configured Value must be an
integer between 23
and 247, and lower
than the value defined
in ble module.

247 MTU Size configured by
GATT MTU exchange
procedure.

Timer Slot Maximum
Number

Value must be an
integer between 1 and
10, and lower than the
value defined in ble
module.

10 The maximum number
of timer slot.

Configurations for Networking > BLE Abstraction (rm_ble_abs)

This module can be added to the Stacks tab via New Stack > Networking > BLE Abstraction
(rm_ble_abs).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_ble_abs0 Module name.

Gap callback Name must be a valid
C symbol

gap_cb A user callback
function must be
provided if the
BLE_ABS is configured
to generate a GAP. If
QE is used, set to
NULL.

Vendor specific
callback

Name must be a valid
C symbol

vs_cb A user callback
function must be
provided if the
BLE_ABS is configured
to generate a Vendor
Specific. If QE is used,
set to NULL.

GATT server callback
parameter

Name must be a valid
C symbol

gs_abs_gatts_cb_param Set GATT server
callback parameter. If
QE is used, set to
NULL.

GATT server callback
number

Must be a valid number 2 The number of GATT
Server callback
functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,058 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

GATT client callback
parameter

Name must be a valid
C symbol

gs_abs_gattc_cb_param Set GATT client
callback parameter. If
QE is used, set to
NULL.

GATT client callback
number

Must be a valid number 2 The number of GATT
Server callback
functions.

Security

Pairing parameters Name must be a valid
C symbol

gs_abs_pairing_param Set pairing parameters.

IO capabilities of local
device.

BLE_GAP_IOCAP
_DISPLAY_ONLY
BLE_GAP_IOCAP
_DISPLAY_YESN
O
BLE_GAP_IOCAP
_KEYBOARD_ON
LY
BLE_GAP_IOCAP
_NOINPUT_NOO
UTPUT
BLE_GAP_IOCAP
_KEYBOARD_DI
SPLAY

BLE_GAP_IOCAP_NOINP
UT_NOOUTPUT

Select IO capabilities of
local device.

MITM protection policy. BLE_GAP_SEC_
MITM_BEST_EFF
ORT
BLE_GAP_SEC_
MITM_STRICT

BLE_GAP_SEC_MITM_BE
ST_EFFORT

Select MITM protection
policy.

Determine whether to
accept only Secure
Connections or not.

BLE_GAP_SC_BE
ST_EFFORT
BLE_GAP_SC_ST
RICT

BLE_GAP_SC_BEST_EFF
ORT

Select determine
whether to accept only
Secure Connections or
not.

Type of keys to be
distributed from local
device.

BLE_GAP_KEY_D
IST_ENCKEY
BLE_GAP_KEY_D
IST_IDKEY
BLE_GAP_KEY_D
IST_SIGNKEY

Select type of keys to
be distributed from
local device.

Type of keys which
local device requests a
remote device to
distribute.

BLE_GAP_KEY_D
IST_ENCKEY
BLE_GAP_KEY_D
IST_IDKEY
BLE_GAP_KEY_D
IST_SIGNKEY

Set type of keys which
local device requests a
remote device to
distribute.

Maximum LTK size. Valid range is 7 - 16 16 Set Maximum LTK size.

Interrupts

Callback provided Name must be a valid NULL Callback provided

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,059 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

when an ISR occurs C symbol when BLE ABS ISR
occurs

Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Stack Size Configuration

Note
When you use BLE on RTOS environment, make sure that thread stack size must be 0x1000 or more which call
R_BLE_Execute.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the BLE_ABS:

Examples
BLE_ABS Basic Example

This is a basic example of minimal use of the BLE_ABS in an application.

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_ON (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_DISCONN_IND (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP (0x01 << 5)

#define BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME 'E', 'x', 'a', 'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME 'T', 'E', 'S', 'T', '_', 'E', 'x', 'a',

'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL (0x00000640)

void ble_abs_peripheral_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,060 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 fsp_err_t err = FSP_SUCCESS;

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 ble_device_address_t local_identity_address;

 uint8_t local_irk[BLE_GAP_IRK_SIZE];

 uint8_t local_csrk[BLE_GAP_CSRK_SIZE];

 uint8_t * p_local_irk = NULL;

 uint8_t privacy_mode = BLE_GAP_NET_PRIV_MODE;

 uint8_t advertising_data[] =

 {

 /* Flags */

 0x02,

 0x01,

 (0x1a),

 /* Shortened Local Name */

 0x08,

 0x08,

 BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME,

 };

 /* Scan Response Data */

 uint8_t scan_response_data[] =

 {

 /* Complete Local Name */

 0x0D,

 0x09,

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME,

 };

 ble_abs_legacy_advertising_parameter_t legacy_advertising_parameter =

 {

 .p_peer_address =

NULL,

 .slow_advertising_interval =

BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL,

 .slow_advertising_period =

0x0000,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,061 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 .p_advertising_data =

advertising_data,

 .advertising_data_length = sizeof

(advertising_data),

 .p_scan_response_data =

scan_response_data,

 .scan_response_data_length = sizeof

(scan_response_data),

 .advertising_filter_policy = BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY

,

 .advertising_channel_map = (BLE_GAP_ADV_CH_37 | BLE_GAP_ADV_CH_38 |

BLE_GAP_ADV_CH_39),

 .own_bluetooth_address_type = BLE_GAP_ADDR_PUBLIC

,

 .own_bluetooth_address = {0},

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_STACK_ON event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 /* Set local privacy. */

 err = RM_BLE_ABS_SetLocalPrivacy(&g_ble_abs0_ctrl, p_local_irk, privacy_mode);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP & g_ble_event_flag) && (--timeout >

0U))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,062 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if (BLE_ABS_EVENT_FLAG_ADV_OFF & g_ble_event_flag)

 {

 /* Restart advertise, when stop advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 if (FSP_SUCCESS == err)

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 }

 else if (FSP_ERR_INVALID_STATE == err)

 {

 /* BLE driver state is busy. */

 ;

 }

 else

 {

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 }

 }

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,063 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 /* Stop advertising after a certain amount of time */

 R_BLE_GAP_StopAdv(g_advertising_handle);

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Export local key information. */

 err = RM_BLE_ABS_ExportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_REPT_IND (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_PAIRING_COMP (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT (0x01 << 5)

#define BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP (0x01 << 6)

#define BLE_ABS_EXAMPLE_FAST_SCAN_INTERVAL (0x0060)

#define BLE_ABS_EXAMPLE_FAST_SCAN_WINDOW (0x0030)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_INTERVAL (0x0800)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_WINDOW (0x0012)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,064 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

#define BLE_ABS_EXAMPLE_FAST_SCAN_PERIOD (0x0BB8)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_PERIOD (0x0000)

#define BLE_ABS_EXAMPLE_CONNECTION_INTERVAL (0x0028)

#define BLE_ABS_EXAMPLE_SUPERVISION_TIMEOUT (0x0200)

#define BLE_ABS_EXAMPLE_DEVICE_ADDRESS 0x88, 0x88, 0x88, 0x88, 0x88, 0x88

#define BLE_ABS_EXAMPLE_IRK 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5,

0xA5

#define BLE_ABS_EXAMPLE_CSRK 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5,

0xA5

#define BLE_ABS_SCAN_FILTER_DATA_LENGTH (12)

/* Scan filter data (data type: Complete Local Name) */

static uint8_t g_filter_data[] =

{

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME

};

/* Connection phy parameters */

ble_abs_connection_phy_parameter_t g_connection_phy_parameter =

{

 .connection_interval = BLE_ABS_EXAMPLE_CONNECTION_INTERVAL, /* 50.0(ms) */

 .supervision_timeout = BLE_ABS_EXAMPLE_SUPERVISION_TIMEOUT, /* 5,120(ms) */

 .connection_slave_latency = 0x0000,

};

/* Connection device address */

ble_device_address_t g_connection_device_address;

/* Connection parameters */

ble_abs_connection_parameter_t g_connection_parameter =

{

 .p_connection_phy_parameter_1M = &g_connection_phy_parameter,

 .p_device_address = &g_connection_device_address,

 .filter_parameter = BLE_GAP_INIT_FILT_USE_ADDR,

 .connection_timeout = 0x05, /* 5(s) */

};

ble_abs_bond_information_parameter_t g_bond_information_parameter =

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,065 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 .local_bond_information = BLE_ABS_LOCAL_BOND_INFORMATION_ALL,

 .remote_bond_information = BLE_ABS_REMOTE_BOND_INFORMATION_ALL,

 .delete_non_volatile_area = BLE_ABS_DELETE_NON_VOLATILE_AREA_ENABLE,

 .p_address = NULL,

 .abs_delete_bond_callback = delete_bond_cb,

};

void ble_abs_central_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 g_connection_handle = BLE_GAP_INVALID_CONN_HDL;

 ble_device_address_t local_identity_address =

 {

 .addr = {BLE_ABS_EXAMPLE_DEVICE_ADDRESS},

 .type = BLE_GAP_ADDR_PUBLIC

 };

 uint8_t local_irk[BLE_GAP_IRK_SIZE] = {BLE_ABS_EXAMPLE_IRK};

 uint8_t local_csrk[BLE_GAP_CSRK_SIZE] = {BLE_ABS_EXAMPLE_CSRK};

 static ble_abs_scan_phy_parameter_t scan_phy_parameter =

 {

 .fast_scan_interval = BLE_ABS_EXAMPLE_FAST_SCAN_INTERVAL, /* 60.0(ms) */

 .fast_scan_window = BLE_ABS_EXAMPLE_FAST_SCAN_WINDOW, /* 30.0(ms) */

 .slow_scan_interval = BLE_ABS_EXAMPLE_SLOW_SCAN_INTERVAL, /* 1,280.0(ms) */

 .slow_scan_window = BLE_ABS_EXAMPLE_SLOW_SCAN_WINDOW, /* 11.25(ms) */

 .scan_type = BLE_GAP_SCAN_ACTIVE

 };

 /* Scan parameters */

 ble_abs_scan_parameter_t scan_parameter =

 {

 .p_phy_parameter_1M = &scan_phy_parameter,

 .fast_scan_period = BLE_ABS_EXAMPLE_FAST_SCAN_PERIOD, /* 30,000(ms)

*/

 .slow_scan_period = BLE_ABS_EXAMPLE_SLOW_SCAN_PERIOD,

 .p_filter_data = g_filter_data,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,066 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 .filter_data_length = (uint16_t) BLE_ABS_SCAN_FILTER_DATA_LENGTH,

 .filter_ad_type = 0x09, /* Data type:

Complete Local Name */

 .device_scan_filter_policy = BLE_GAP_SCAN_ALLOW_ADV_ALL,

 .filter_duplicate = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Connection parameters */

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 /* Import local key information. */

 err = RM_BLE_ABS_ImportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while ((BLE_ABS_EVENT_FLAG_ADV_REPT_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if ((BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT & g_ble_event_flag) || (BLE_GAP_EVENT_SCAN_OFF

& g_ble_event_flag))

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT;

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,067 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 }

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

 /* Stop scanning after a certain amount of time */

 R_BLE_GAP_StopScan();

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 g_ble_event_flag = 0;

 time_out_handle_error(timeout);

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_CONN_IND event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_PAIRING_COMP event is notified. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,068 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 while (!(BLE_ABS_EVENT_FLAG_PAIRING_COMP & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait delete_bond_cb application callback function is called. */

 while (!(BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP & g_ble_event_flag) && (--timeout >

0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

void delete_bond_cb (st_ble_dev_addr_t * p_addr) {

 (void) p_addr;

 g_ble_event_flag = g_ble_event_flag | BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP;

}

Data Structures

struct abs_advertising_parameter_t

struct abs_scan_parameter_t

struct ble_abs_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,069 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

Typedefs

typedef void(* ble_abs_timer_cb_t) (uint32_t timer_hdl)

Enumerations

enum e_ble_timer_type_t

Data Structure Documentation

◆ abs_advertising_parameter_t

struct abs_advertising_parameter_t

advertising set parameters structure

Data Fields

union
abs_advertising_parameter_t

advertising_parameter Advertising parameters.

uint32_t advertising_status Advertising status.

ble_device_address_t remote_device_address Remote device address for
direct advertising.

◆ abs_scan_parameter_t

struct abs_scan_parameter_t

scan parameters structure

Data Fields

ble_abs_scan_parameter_t scan_parameter Scan parameters.

ble_abs_scan_phy_parameter_t scan_phy_parameter_1M 1M phy parameters for scan.

ble_abs_scan_phy_parameter_t scan_phy_parameter_coded Coded phy parameters for scan.
*/.

uint32_t scan_status

◆ ble_abs_instance_ctrl_t

struct ble_abs_instance_ctrl_t

BLE ABS private control block. DO NOT MODIFY. Initialization occurs when RM_BLE_ABS_Open() is
called.

Data Fields

uint32_t open Indicates whether the open()
API has been successfully
called.

void const * p_context Placeholder for user data.
Passed to the user callback in
ble_abs_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,070 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

ble_gap_application_callback_t abs_gap_callback GAP callback function.

ble_vendor_specific_application
_callback_t

abs_vendor_specific_callback Vendor specific callback
function.

ble_abs_delete_bond_applicatio
n_callback_t

abs_delete_bond_callback Delete bond information
callback function.

uint32_t connection_timer_handle Cancel a request for connection
timer.

uint32_t advertising_timer_handle Advertising timer for legacy
advertising.

uint32_t scan_timer_handle Scan interval timer.

abs_advertising_parameter_t advertising_set
s[
BLE_MAX_NO_OF_ADV_SETS_SU
PPORTED]

Advertising set information.

abs_scan_parameter_t abs_scan Scan information.

st_ble_dev_addr_t loc_bd_addr Local device address.

uint8_t privacy_mode Privacy mode.

uint32_t set_privacy_status Local privacy status.

ble_abs_timer_t timer[BLE_ABS_CFG_TIMER_NU
MBER_OF_SLOT]

uint8_t local_irk[BLE_GAP_IRK_SIZE]

ble_abs_identity_address_info_t identity_address_info

uint32_t current_timeout_ms Current timeout.

uint32_t elapsed_timeout_ms Elapsed timeout.

ble_abs_cfg_t const * p_cfg Pointer to the BLE ABS
configuration block.

Typedef Documentation

◆ ble_abs_timer_cb_t

typedef void(* ble_abs_timer_cb_t) (uint32_t timer_hdl)

The timer callback invoked when the timer expired.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,071 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ e_ble_timer_type_t

enum e_ble_timer_type_t

The timer type.

Enumerator

BLE_TIMER_ONE_SHOT One shot timer type

BLE_TIMER_PERIODIC Periodic timer type

Function Documentation

◆ RM_BLE_ABS_Open()

fsp_err_t RM_BLE_ABS_Open (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback functions are registered with this function. In order to receive the GAP, GATT,
Vendor specific event, it's necessary to register a callback function. The result of this API call is
notified in BLE_GAP_EVENT_STACK_ON event. Implements ble_abs_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_MODE Invalid mode during open call

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback functions are registered with this function. In order to receive the GAP, GATT,
Vendor specific event, it's necessary to register a callback function. The result of this API call is
notified in BLE_GAP_EVENT_STACK_ON event. Implements ble_abs_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Null pointer presented.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,072 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_MODE Invalid mode during open call

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback functions are registered with this function. In order to receive the GAP, GATT,
Vendor specific event, it's necessary to register a callback function. The result of this API call is
notified in BLE_GAP_EVENT_STACK_ON event. Implements ble_abs_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_INVALID_CHANNEL The channel number is invalid.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,073 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_Close()

fsp_err_t RM_BLE_ABS_Close (ble_abs_ctrl_t *const p_ctrl)

Close the BLE channel. Implements ble_abs_api_t::close.

Example:

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

Example:

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

Example:

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,074 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_Reset()

fsp_err_t RM_BLE_ABS_Reset (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

This function is not implemented. To perform this function call R_BLE_Close followed by
R_BLE_Open. Implements ble_abs_api_t::reset.

Return values
FSP_ERR_UNSUPPORTED Function is not supported

BLE is reset with this function. The process is carried out in the following order. R_BLE_Close() ->
R_BLE_GAP_Terminate() -> R_BLE_Open() -> R_BLE_SetEvent(). The init_cb callback initializes the
others (Host Stack, timer, etc...). Implements ble_abs_api_t::reset.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,075 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartLegacyAdvertising()

fsp_err_t RM_BLE_ABS_StartLegacyAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const p_advertising_parameter)

Start Legacy Advertising after setting advertising parameters, advertising data and scan response
data. The legacy advertising uses the advertising set whose advertising handle is 0. The
advertising type is connectable and scannable(ADV_IND). The address type of local device is Public
Identity Address or RPA(If the resolving list contains no matching entry, use the public address.).
Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startLegacyAdvertising

Example:

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

Return values
FSP_SUCCESS Operation succeeded

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

Start Legacy Advertising after setting advertising parameters, advertising data and scan response
data. The legacy advertising uses the advertising set whose advertising handle is 0. The
advertising type is connectable and scannable(ADV_IND). The address type of local device is Public
Identity Address or RPA(If the resolving list contains no matching entry, use the public address.).
Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startLegacyAdvertising

Example:

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

Return values
FSP_SUCCESS Operation succeeded

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,076 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

Start Legacy Advertising after setting advertising parameters, advertising data and scan response
data. The legacy advertising uses the advertising set whose advertising handle is 0. The
advertising type is connectable and scannable(ADV_IND). The address type of local device is Public
Identity Address or RPA(If the resolving list contains no matching entry, use the public address.).
Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startLegacyAdvertising

Example:

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

Return values
FSP_SUCCESS Operation succeeded

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,077 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartExtendedAdvertising()

fsp_err_t RM_BLE_ABS_StartExtendedAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const p_advertising_parameter)

Start Extended Advertising after setting advertising parameters, advertising data. The extended
advertising uses the advertising set whose advertising handle is 1. The advertising type is
connectable and non-scannable. The address type of local device is Public Identity Address or
RPA(If the resolving list contains no matching entry, use the public address.). Scan request
event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startExtendedAdvertising

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_UNSUPPORTED Subordinate modules do not support this
feature.

Start Extended Advertising after setting advertising parameters, advertising data. The extended
advertising uses the advertising set whose advertising handle is 1. The advertising type is
connectable and non-scannable. The address type of local device is Public Identity Address or
RPA(If the resolving list contains no matching entry, use the public address.). Scan request
event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startExtendedAdvertising

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

FSP_ERR_UNSUPPORTED Subordinate modules do not support this
feature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,078 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartNonConnectableAdvertising()

fsp_err_t RM_BLE_ABS_StartNonConnectableAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_non_connectable_advertising_parameter_t const *const p_advertising_parameter)

Start Non-Connectable Advertising after setting advertising parameters, advertising data. The non-
connectable advertising uses the advertising set whose advertising handle is 2. The advertising
type is non-connectable and non-scannable. The address type of local device is Public Identity
Address or RPA(If the resolving list contains no matching entry, use the public address.). Scan
request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Secondary Advertising Max Skip is
0. Implements ble_abs_api_t::startNonConnectableAdvertising.

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_UNSUPPORTED Feature not yet supported.

Start Non-Connectable Advertising after setting advertising parameters, advertising data. The non-
connectable advertising uses the advertising set whose advertising handle is 2. The advertising
type is non-connectable and non-scannable. The address type of local device is Public Identity
Address or RPA(If the resolving list contains no matching entry, use the public address.). Scan
request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Secondary Advertising Max Skip is
0. Implements ble_abs_api_t::startNonConnectableAdvertising.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,079 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartPeriodicAdvertising()

fsp_err_t RM_BLE_ABS_StartPeriodicAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const p_advertising_parameter)

Start Periodic Advertising after setting advertising parameters, periodic advertising parameters,
advertising data and periodic advertising data. The periodic advertising uses the advertising set
whose advertising handle is 3. The advertising type is non-connectable and non-scannable. The
address type of local device is Public Identity Address or RPA(If the resolving list contains no
matching entry, use the public address.). Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is
not notified. Secondary Advertising Max Skip is 0. Implements
ble_abs_api_t::startPeriodicAdvertising

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_UNSUPPORTED Subordinate modules do not support this
feature.

Start Periodic Advertising after setting advertising parameters, periodic advertising parameters,
advertising data and periodic advertising data. The periodic advertising uses the advertising set
whose advertising handle is 3. The advertising type is non-connectable and non-scannable. The
address type of local device is Public Identity Address or RPA(If the resolving list contains no
matching entry, use the public address.). Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is
not notified. Secondary Advertising Max Skip is 0. Implements
ble_abs_api_t::startPeriodicAdvertising

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,080 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartScanning()

fsp_err_t RM_BLE_ABS_StartScanning (ble_abs_ctrl_t *const p_ctrl, ble_abs_scan_parameter_t
const *const p_scan_parameter)

Start scanning after setting scan parameters. The scanner address type is Public Identity Address.
Fast scan is followed by slow scan. The end of fast scan or slow scan is notified with
BLE_GAP_EVENT_SCAN_TO event. If fast_period is 0, only slow scan is carried out. If scan_period is
0, slow scan continues. Implements ble_abs_api_t::startScanning.

Example:

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_scan_parameter is specified as NULL.

FSP_ERR_UNSUPPORTED Function is not supported

Start scanning after setting scan parameters. The scanner address type is Public Identity Address.
Fast scan is followed by slow scan. The end of fast scan or slow scan is notified with
BLE_GAP_EVENT_SCAN_TO event. If fast_period is 0, only slow scan is carried out. If scan_period is
0, slow scan continues. Implements ble_abs_api_t::startScanning.

Example:

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_scan_parameter is specified as NULL.

FSP_ERR_UNSUPPORTED Function is not supported

Start scanning after setting scan parameters. The scanner address type is Public Identity Address.
Fast scan is followed by slow scan. The end of fast scan or slow scan is notified with
BLE_GAP_EVENT_SCAN_TO event. If fast_period is 0, only slow scan is carried out. If scan_period is
0, slow scan continues. Implements ble_abs_api_t::startScanning.

Example:

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

Return values

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,081 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_scan_parameter is specified as NULL.

FSP_ERR_INVALID_ARGUMENT The scan parameter is out of range.

FSP_ERR_IN_USE This API is called in scanning.

FSP_ERR_BLE_ABS_NOT_FOUND Usable timer slot not found.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

◆ RM_BLE_ABS_CreateConnection()

fsp_err_t RM_BLE_ABS_CreateConnection (ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const p_connection_parameter)

Request create connection. The initiator address type is Public Identity Address. The scan interval
is 60ms and the scan window is 30ms in case of 1M PHY or 2M PHY. The scan interval is 180ms and
the scan window is 90ms in case of coded PHY. The Minimum CE Length and the Maximum CE
Length are 0xFFFF. When the request for a connection has been received by the Controller,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified. When a link has beens established,
BLE_GAP_EVENT_CONN_IND event is notified. Implements ble_abs_api_t::createConnection.

Example:

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_connection_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The create connection parameter is out of
range.

FSP_ERR_UNSUPPORTED Function is not supported

Request create connection. The initiator address type is Public Identity Address. The scan interval
is 60ms and the scan window is 30ms in case of 1M PHY or 2M PHY. The scan interval is 180ms and
the scan window is 90ms in case of coded PHY. The Minimum CE Length and the Maximum CE
Length are 0xFFFF. When the request for a connection has been received by the Controller,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified. When a link has beens established,
BLE_GAP_EVENT_CONN_IND event is notified. Implements ble_abs_api_t::createConnection.

Example:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,082 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_connection_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The create connection parameter is out of
range.

FSP_ERR_UNSUPPORTED Function is not supported

Request create connection. The initiator address type is Public Identity Address. The scan interval
is 60ms and the scan window is 30ms in case of 1M PHY or 2M PHY. The scan interval is 180ms and
the scan window is 90ms in case of coded PHY. The Minimum CE Length and the Maximum CE
Length are 0xFFFF. When the request for a connection has been received by the Controller,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified. When a link has beens established,
BLE_GAP_EVENT_CONN_IND event is notified. Implements ble_abs_api_t::createConnection.

Example:

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_connection_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The create connection parameter is out of
range.

FSP_ERR_IN_USE This API is called while creating a link by
previous API call.

FSP_ERR_BLE_ABS_NOT_FOUND Couldn't find a valid timer.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,083 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_SetLocalPrivacy()

fsp_err_t RM_BLE_ABS_SetLocalPrivacy (ble_abs_ctrl_t *const p_ctrl, uint8_t const *const p_lc_irk,
uint8_t privacy_mode)

Generate a IRK, add it to the resolving list, set privacy mode and enable RPA function. Register
vendor specific callback function, if IRK is generated by this function. After configuring local device
privacy, BLE_GAP_ADDR_RPA_ID_PUBLIC is specified as own device address in
theadvertising/scan/create connection API. Implements ble_abs_api_t::setLocalPrivacy

Return values
FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT The privacy_mode parameter is out of
range.

FSP_ERR_UNSUPPORTED Function is not supported

Generate a IRK, add it to the resolving list, set privacy mode and enable RPA function. Register
vendor specific callback function, if IRK is generated by this function. After configuring local device
privacy, BLE_GAP_ADDR_RPA_ID_PUBLIC is specified as own device address in
theadvertising/scan/create connection API. Implements ble_abs_api_t::setLocalPrivacy

Example:

 /* Set local privacy. */

 err = RM_BLE_ABS_SetLocalPrivacy(&g_ble_abs0_ctrl, p_local_irk, privacy_mode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT The privacy_mode parameter is out of
range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,084 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartAuthentication()

fsp_err_t RM_BLE_ABS_StartAuthentication (ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

Start pairing or encryption. If pairing has been done, start encryption. The pairing parameters are
configured by RM_BLE_ABS_Open() or R_BLE_GAP_SetPairingParams(). If the pairing parameters are
configure by RM_BLE_ABS_Open(),

bonding policy is that bonding information is stored.
Key press notification is not supported. Implements ble_abs_api_t::startAuthentication.

Example:

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

Return values
FSP_ERR_ASSERTION p_instance_ctrl or connection_handle are

specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_UNSUPPORTED Function is not supported

Start pairing or encryption. If pairing has been done, start encryption. The pairing parameters are
configured by RM_BLE_ABS_Open() or R_BLE_GAP_SetPairingParams(). If the pairing parameters are
configure by RM_BLE_ABS_Open(),

bonding policy is that bonding information is stored.
Key press notification is not supported. Implements ble_abs_api_t::startAuthentication.

Example:

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

Return values
FSP_ERR_ASSERTION p_instance_ctrl or connection_handle are

specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_UNSUPPORTED Function is not supported

Start pairing or encryption. If pairing has been done, start encryption. The pairing parameters are
configured by RM_BLE_ABS_Open() or R_BLE_GAP_SetPairingParams(). If the pairing parameters are
configure by RM_BLE_ABS_Open(),

bonding policy is that bonding information is stored.
Key press notification is not supported. Implements ble_abs_api_t::startAuthentication.

Example:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,085 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl or connection_handle are
specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT The connection handle parameter is out of
range.

◆ RM_BLE_ABS_DeleteBondInformation()

fsp_err_t RM_BLE_ABS_DeleteBondInformation (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const p_bond_information_parameter)

Delete bonding information from BLE stack and storage. Implements
ble_abs_api_t::deleteBondInformation.

Example:

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

Return values
FSP_SUCCESS Operation was successful

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter
p_bond_information_parameter is NULL.

FSP_ERR_NOT_OPEN Control block not open.

Delete bonding information from BLE stack and storage. Implements
ble_abs_api_t::deleteBondInformation.

Example:

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

Return values
FSP_SUCCESS Operation was successful

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,086 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

FSP_ERR_INVALID_POINTER The parameter
p_bond_information_parameter is NULL.

FSP_ERR_NOT_OPEN Control block not open.

Delete bonding information from BLE stack and storage. Implements
ble_abs_api_t::deleteBondInformation.

Example:

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter
p_bond_information_parameter is NULL.

FSP_ERR_NOT_OPEN Control block not open.

◆ RM_BLE_ABS_ImportKeyInformation()

fsp_err_t RM_BLE_ABS_ImportKeyInformation (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t *
p_local_identity_address, uint8_t * p_local_irk, uint8_t * p_local_csrk)

Import key information to BLE stack and storage. Implements ble_abs_api_t::importKeyInformation.

Example:

 /* Import local key information. */

 err = RM_BLE_ABS_ImportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_local_identity_address,
p_local_irk or p_local_csrk is NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_HW_CONDITION Failure to access internal storage.

FSP_ERR_UNSUPPORTED Not supported in this configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,087 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_ExportKeyInformation()

fsp_err_t RM_BLE_ABS_ExportKeyInformation (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t *
p_local_identity_address, uint8_t * p_local_irk, uint8_t * p_local_csrk)

Export key information to BLE stack and storage. Implements ble_abs_api_t::exportKeyInformation.

Example:

 /* Export local key information. */

 err = RM_BLE_ABS_ExportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_local_identity_address,
p_local_irk or p_local_csrk is NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_BUFFER_EMPTY Dynamic memory allocation failed.

FSP_ERR_OUT_OF_MEMORY Failure to access internal storage.

FSP_ERR_NOT_INITIALIZED Not initialized internal storage.

FSP_ERR_UNSUPPORTED Not supported in this configuration.

5.2.12.8 BLE Driver (r_ble_balance)
Modules » Networking

Driver for the Radio peripheral on RA MCUs. This module implements the BLE Interface.

Overview
The Bluetooth Low Energy (BLE) library in Balance configuration (r_ble) provides an API to control the
Radio peripheral. This module is configured via the QE for BLE. QE for BLE provides standard services
defined by standardization organization and custom services defined by user. Bluetooth LE Profile
API Document User's Manual describes the APIs for standard services.

Features

Common
Open/Close the BLE protocol stack.
Execute the BLE job.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,088 / 5,560

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_balance)

Add an event in the BLE protocol stack internal queue.
GAP

Initialization of the Host stack.
Start/Stop Advertising.
Start/Stop Scan.
Connect/Disconnect a link.
Initiate/Respond a pairing request.

GATT Common
Get MTU size.

GATT Server
Initialization of GATT Server.
Notification/Indication.

GATT Client
Discovery services, characteristics.
Read/Write characteristic.

Vendor Specific
DTM.
Set/Get transmit power.
Set/Get BD_ADDR.

Supported functions

The supported functions are listed in the table below. Choose the configuration that best suits the
functions that target system requires.

BLE library feature Extended Balance Compact

Common API Supported Supported Supported

GAP API Supported *1 Limited *1 *2 Limited

GATT Common API Supported Supported Supported

GATT Client API Supported Supported Supported

GATT Client API Supported Supported Supported

L2CAP API Supported Not Supported Not supported

Vendor Specific API *3 Limited *3 Limited *3 Limited

Note
1. This configuration dose not support LE Advertising Extensions functionality APIs.
2. This configuration dose not support Central and Observer functionality APIs.
3. This configuration dose not support vender specific firmware update functionality APIs.

Target Devices

The Renesas BLE Library supports the following devices.

RA4W1

Configuration
Clock Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,089 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_balance)

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Figure shows the software structure of the BLE FSP module.

Figure 278: BLE software structure

 The BLE FSP module consists of the BLE library.
The BLE Application uses the BLE functions via the R_BLE API provided by the BLE Library.
The QE for BLE generates the source codes (BLE base skeleton program) as a base for the BLE
Application and the BLE Profile codes including the Profile API.

Initialize the BLE protocol stack

Note
It takes around 250msec to initialize BLE protocol stack.
R_BLE_Open API will be occupied MCU resources during the initialization.

Limitations

Developers should be aware of the following limitations when using the ble:

Note
- This configuration dose not support LE Advertising Extensions functionality APIs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,090 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_balance)

If those functionalities need your system, select BLE Driver (r_ble_extended) configration.
- This configuration dose not support L2CAP functionality APIs.
If those functionalities need your system, select BLE Driver (r_ble_extended) configration.
- This configuration dose not support vender specific firmware update functionality APIs.
Those APIs are only supported by SPP BLE Abstraction (rm_ble_abs_spp) module.

Limitations on FreeRTOS environment

Developers should be aware of the following limitations when using the ble on FreeRTOS
environment: When use deep sleep, sleep mode or standby mode, there is following two wake up
option from RF module.

Using Semaphore
Using Event Groups

Note
Event Groups is processing as a delay handler by timer task.
Therefore, if blocked by interrupts or if the timer task is blocked by another high-priority task,
the existing connection will be broken.

5.2.12.9 BLE Driver (r_ble_compact)
Modules » Networking

Driver for the Radio peripheral on RA MCUs. This module implements the BLE Interface.

Overview
The Bluetooth Low Energy (BLE) library in Compact configuration (r_ble) provides an API to control
the Radio peripheral. This module is configured via the QE for BLE. QE for BLE provides standard
services defined by standardization organization and custom services defined by user. Bluetooth LE
Profile API Document User's Manual describes the APIs for standard services.

Features

Common
Open/Close the BLE protocol stack.
Execute the BLE job.
Add an event in the BLE protocol stack internal queue.

GAP
Initialization of the Host stack.
Start/Stop Advertising.
Initiate/Respond a pairing request.

GATT Common
Get MTU size.

GATT Server
Initialization of GATT Server.
Notification/Indication.

GATT Client
Discovery services, characteristics.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,091 / 5,560

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_compact)

Read/Write characteristic.
Vendor Specific

DTM.
Set/Get transmit power.
Set/Get BD_ADDR.

Supported functions

The supported functions are listed in the table below. Choose the configuration that best suits the
functions that target system requires.

BLE library feature Extended Balance Compact

Common API Supported Supported Supported

GATT Common API Supported *1 Limited *1 *2 Limited

GATT Common API Supported Supported Supported

GATT Server API Supported Supported Supported

GATT Client API Supported Supported Supported

L2CAP API Supported Not supported Not supported

Vendor Specific API *3 Limited *3 Limited *3 Limited

Note
1. This configuration dose not support LE Advertising Extensions functionality APIs.
2. This configuration dose not support Central and Observer functionality APIs.
3. This configuration dose not support vender specific firmware update functionality APIs.

Target Devices

The Renesas BLE Library supports the following devices.

RA4W1

Configuration
Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Figure shows the software structure of the BLE FSP module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,092 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_compact)

Figure 279: BLE software structure

 The BLE FSP module consists of the BLE library.
The BLE Application uses the BLE functions via the R_BLE API provided by the BLE Library.
The QE for BLE generates the source codes (BLE base skeleton program) as a base for the BLE
Application and the BLE Profile codes including the Profile API.

Initialize the BLE protocol stack

Note
It takes around 250msec to initialize BLE protocol stack.
R_BLE_Open API will be occupied MCU resources during the initialization.

Limitations

Developers should be aware of the following limitations when using the ble:

Note
- This configuration dose not supports LE Advertising Extensions functionality APIs.
If those functionalities need your system, select BLE Driver (r_ble_extended) configration.
- This configuration dose not supports Central and Observer functionality APIs.
If those functionalities need your system, select BLE Driver (r_ble_extended) or BLE Driver (r_ble_balance)
configration.
- This configuration dose not supports L2CAP functionality APIs.
If those functionalities need your system, select BLE Driver (r_ble_extended) configration.
- This configuration dose not supports vender specific firmware update functionality APIs.
Those APIs are only supported by SPP BLE Abstraction (rm_ble_abs_spp) module.

Limitations on FreeRTOS environment

Developers should be aware of the following limitations when using the ble on FreeRTOS
environment: When use deep sleep, sleep mode or standby mode, there is following two wake up
option from RF module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,093 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_compact)

Using Semaphore
Using Event Groups

Note
Event Groups is processing as a delay handler by timer task.
Therefore, if blocked by interrupts or if the timer task is blocked by another high-priority task,
the existing connection will be broken.

5.2.12.10 BLE Driver (r_ble_extended)
Modules » Networking

Driver for the Radio peripheral on RA MCUs. This module implements the BLE Interface.

Overview
The Bluetooth Low Energy (BLE) library in Extended configuration (r_ble) provides an API to control
the Radio peripheral. This module is configured via the QE for BLE. QE for BLE provides standard
services defined by standardization organization and custom services defined by user. Bluetooth LE
Profile API Document User's Manual describes the APIs for standard services.

Features

Common
Open/Close the BLE protocol stack.
Execute the BLE job.
Add an event in the BLE protocol stack internal queue.

GAP
Initialization of the Host stack.
Start/Stop Advertising (Support LE Advertising Extensions).
Start/Stop Scan.
Connect/Disconnect a link.
Initiate/Respond a pairing request.

GATT Common
Get MTU size.

GATT Server
Initialization of GATT Server.
Notification/Indication.

GATT Client
Discovery services, characteristics.
Read/Write characteristic.

L2CAP
Credit-based flow control transaction.

Vendor Specific
DTM.
Set/Get transmit power.
Set/Get BD_ADDR.

Supported functions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,094 / 5,560

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_extended)

The supported functions are listed in the table below. Choose the configuration that best suits the
functions that target system requires.

BLE library feature Extended Balance Compact

Common API Supported Supported Supported

GAP API Supported *1 Limited *1 *2 Limited

GATT Common API Supported Supported Supported

GATT Server API Supported Supported Supported

GATT Client API Supported Supported Supported

L2CAP API Supported Not supported Not supported

Vendor Specific API *3 Limited *3 Limited *3 Limited

Note
1. This configuration dose not support LE Advertising Extensions functionality APIs.
2. This configuration dose not support Central and Observer functionality APIs.
3. This configuration dose not support vender specific firmware update functionality APIs.

Target Devices

The Renesas BLE Library supports the following devices.

RA4W1

Configuration
Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Figure shows the software structure of the BLE FSP module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,095 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_extended)

Figure 280: BLE software structure

 The BLE FSP module consists of the BLE library.
The BLE Application uses the BLE functions via the R_BLE API provided by the BLE Library.
The QE for BLE generates the source codes (BLE base skeleton program) as a base for the BLE
Application and the BLE Profile codes including the Profile API.

Initialize the BLE protocol stack

Note
It takes around 250msec to initialize BLE protocol stack.
R_BLE_Open API will be occupied MCU resources during the initialization.

Limitations

Developers should be aware of the following limitations when using the ble:

Note
- This configuration dose not support vender specific firmware update functionality APIs.
Those APIs are only supported by SPP BLE Abstraction (rm_ble_abs_spp) module.

Limitations on FreeRTOS environment

Developers should be aware of the following limitations when using the ble on FreeRTOS
environment: When use deep sleep, sleep mode or standby mode, there is following two wake up
option from RF module.

Using Semaphore
Using Event Groups

Note
Event Groups is processing as a delay handler by timer task.
Therefore, if blocked by interrupts or if the timer task is blocked by another high-priority task,
the existing connection will be broken.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,096 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Driver (r_ble_extended)

5.2.12.11 BLE Mesh Network Modules
Modules » Networking

Detailed Description

BLE Mesh Network Modules.

Modules

BLE Mesh Network (rm_ble_mesh)

BLE Mesh Network Access (rm_ble_mesh_access)

BLE Mesh Network Bearer (rm_ble_mesh_bearer)

BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

BLE Mesh Network Config Client (rm_mesh_config_clt)

BLE Mesh Network Config Server (rm_mesh_config_srv)

BLE Mesh Network Generic Admin Property Server
(rm_mesh_generic_admin_prop_srv)

BLE Mesh Network Generic Battery Client
(rm_mesh_generic_battery_clt)

BLE Mesh Network Generic Battery Server
(rm_mesh_generic_battery_srv)

BLE Mesh Network Generic Client Property Server
(rm_mesh_generic_client_prop_srv)

BLE Mesh Network Generic Default Transition Time Client
(rm_mesh_generic_dtt_clt)

BLE Mesh Network Generic Default Transition Time Server
(rm_mesh_generic_dtt_srv)

BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

BLE Mesh Network Generic Level Server
(rm_mesh_generic_level_srv)

BLE Mesh Network Generic Location Client
(rm_mesh_generic_loc_clt)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,097 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules

BLE Mesh Network Generic Location Server
(rm_mesh_generic_loc_srv)

BLE Mesh Network Generic Manufacturer Property Server
(rm_mesh_generic_mfr_prop_srv)

BLE Mesh Network Generic On Off Client
(rm_mesh_generic_on_off_clt)

BLE Mesh Network Generic On Off Server
(rm_mesh_generic_on_off_srv)

BLE Mesh Network Generic Power Level Client
(rm_mesh_generic_pl_clt)

BLE Mesh Network Generic Power Level Server
(rm_mesh_generic_pl_srv)

BLE Mesh Network Generic Power On Off Client
(rm_mesh_generic_poo_clt)

BLE Mesh Network Generic Power On Off Server
(rm_mesh_generic_poo_srv)

BLE Mesh Network Generic Property Client
(rm_mesh_generic_prop_clt)

BLE Mesh Network Generic User Property Server
(rm_mesh_generic_user_prop_srv)

BLE Mesh Network Health Client (rm_mesh_health_clt)

BLE Mesh Network Health Server (rm_mesh_health_srv)

BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

BLE Mesh Network Light Lightness Client
(rm_mesh_light_lightness_clt)

BLE Mesh Network Light Lightness Server
(rm_mesh_light_lightness_srv)

BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,098 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules

BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

BLE Mesh Network Network (rm_ble_mesh_network)

BLE Mesh Network Provision (rm_ble_mesh_provision)

BLE Mesh Network Scene Client (rm_mesh_scene_clt)

BLE Mesh Network Scene Server (rm_mesh_scene_srv)

BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

BLE Mesh Network Time Client (rm_mesh_time_clt)

BLE Mesh Network Time Server (rm_mesh_time_srv)

BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

 BLE Mesh Network (rm_ble_mesh)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_Open (rm_ble_mesh_ctrl_t *const p_ctrl,
rm_ble_mesh_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_Close (rm_ble_mesh_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_StartTransitionTimer (rm_ble_mesh_ctrl_t *const
p_ctrl, rm_ble_mesh_access_state_transition_t const *const
p_transition, uint16_t *const p_transition_time_handle)

fsp_err_t RM_BLE_MESH_StopTransitionTimer (rm_ble_mesh_ctrl_t *const
p_ctrl, uint16_t transition_time_handle)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,099 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

fsp_err_t RM_BLE_MESH_GetRemainingTransitionTime (rm_ble_mesh_ctrl_t
*const p_ctrl, uint16_t transition_time_handle, uint8_t *const
p_remaining_transition_time)

fsp_err_t RM_BLE_MESH_GetRemainingTransitionTimeWithOffset
(rm_ble_mesh_ctrl_t *const p_ctrl, uint16_t transition_time_handle,
uint32_t offset_in_ms, uint8_t *const p_remaining_transition_time)

fsp_err_t RM_BLE_MESH_ConvertTransitionTimeFromMs (rm_ble_mesh_ctrl_t
*const p_ctrl, uint32_t transition_time_in_ms, uint8_t *const
p_transition_time)

fsp_err_t RM_BLE_MESH_ConvertTransitionTimeToMs (rm_ble_mesh_ctrl_t
*const p_ctrl, uint8_t transition_time, uint32_t *const
p_transition_time_in_ms)

Detailed Description

Overview
Bluetooth Mesh defines a managed-flood-based mesh network. Any device in the network can send a
message at any time as long as there is a sufficient density of devices that are listening and relaying
messages. See sample application document and start up guide for information on how to create a
BLE MESH application.

Figure 281: Overview Of Bletooth Mesh

Features

The BLE Mesh middleware has the following features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,100 / 5,560

https://www.renesas.com/document/apn/ra4w1-group-bluetooth-mesh-sample-application
https://www.renesas.com/document/apn/ra4w1-group-bluetooth-mesh-startup-guide

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Supports one-to-one and one-to-many message transmission
Supports relay messages to other nodes
Supports secure message transmission against the following attack

Wiretap attack
Man-in-the-middle attack
Replay attack
Trash-can attack
Brute Force Key attack

Supports following optional features
Supports Relay feature
Supports Proxy feature
Supports Friend feature
Supports Low Power feature

Target Devices

The BLE Mesh Network module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enable
Disable

Default (BSP) Specify whether to
include code for API
parameter checking.
Valid settings include.

Configurations for Networking > BLE Mesh Network modules > BLE Mesh (rm_ble_mesh)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh (rm_ble_mesh).

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh0 Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Bearer

Network Interface
Number

Invalid Network
Interface Number

2 Network interfaces
number.

Provisioning Interface Invalid Provisioning 2 Provisioning interfaces

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,101 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Number Interface Number number.

Provisioning

Unprovisioned Device
Beacon Timeout in
Milliseconds

Invalid Unprovisioned
Device Beacon Timeout
in Milliseconds

200 Unprovisioned device
beacon timeout in
milliseconds.

Network

Network Cache Size Invalid Network Cache
Size

10 Network cache size.

Network Sequence
Number Cache Size

Invalid Network
Sequence Number
Cache Size

32 Network sequence
number cache size.

Maximum Number of
Subnet

Invalid Maximum
Number of Subnets

4 Maximum number of
subnets

Maximum Number of
Device Key

Invalid Maximum
Number of Device Keys

4 Maximum number of
device keys.

Proxy Filter List Size Invalid Proxy Filter List
Size

2 Maximum number of
addresses present in
each proxy filter list.

Network Sequence
Number Block Size

Invalid Network
Sequence Number
Block Size

2048 The distance between
the network sequence
numbers, for every
persistent storage
write.

Network Transmit
Count for Network
Packets

Invalid Network
Transmit Count for
Network Packets

1 Network transmit count
for network packets.

Network Interval Steps
for Network Packets

Invalid Network
Interval Steps for
Network Packets

4 Network interval steps
for network packets.

Network Transmit
Count for Relayed
Packets

Invalid Network
Transmit Count for
Relayed Packets

0 Network transmit count
for relayed packets.

Network Interval Steps
for Relayed Packets

Invalid Network
Interval Steps for
Relayed Packets

9 Network interval steps
for relayed packets.

Proxy ADV Network ID
Timeout for Each
Subnet in Milliseconds.

Invalid Proxy ADV
Network ID Timeout

100 Proxy ADV network ID
timeout for each
subnet in milliseconds.

Proxy ADV Node
Identity Timeout for
Each Subnet in
Milliseconds

Invalid Proxy ADV Node
Identity Timeout for
Each Subnet in
Milliseconds

300 Proxy ADV node
identity timeout for
each subnet in
milliseconds.

Proxy ADV Node
Identity Overall Time
Period in Seconds

Invalid Proxy ADV Node
Identity Overall Time
Period in Seconds

60 Proxy ADV node
identity overall time
period in seconds.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,102 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Maximum Number of
Queued Messages for
Transmission

Invalid Maximum
Number of Queued
Messages for
Transmission

64 Maximum number of
queued messages for
transmission.

Transport

Maximum Number of
LPN

Invalid Maximum
Number of LPNs

1 Maximum number of
LPNs.

Replay Protection
Cache Size

Invalid Replay
Protection Cache Size

10 Replay protection
cache size.

Reassembled Cache
Size

Invalid Reassembled
Cache Size

8 Reassembled cach
size.

Friend Poll Retry Count Invalid Friend Poll Retry
Count

10 Friend poll retry count.

Maximum Number of
Segmentation and
Reassembly Context

Invalid Maximum
Number of
Segmentation and
Reassembly Context

8 Number of
segmentation and
reassembly contexts.

Lower Transport
Segment Transmission
Timeout in Milliseconds

Invalid Lower Transport
Segment Transmission
Timeout in Milliseconds

300 Lower transport
segment transmission
timeout in milliseconds.

Lower Transport
Segment Re-
Transmission Count

Invalid Lower Transport
Segment Re-
Transmission Count

2 Lower transport
segment re-
transmission count.

Lower Transport
Acknowledgement
Timeout in Milliseconds

Invalid Lower Transport
Acknowledgement
Timeout in Milliseconds

200 Lower transport
acknowledgement
timeout in milliseconds.

Lower Transport
Incomplete Timeout in
Seconds

Invalid Lower Transport
Incomplete Timeout in
Seconds

20 Lower transport
incomplete timeout in
seconds.

Friendship Receive
Window

Invalid Friendship
Receive Window

100 Friendship receive
window.

Maximum Number of
Friend Message Queue

Invalid Maximum
Number of Friend
Messages Queue

15 Maximum number of
messages that the
friend is capabale to
queue for a single Low
Power Node.

Maximum Number of
Friend Subscription List

Invalid Maximum
Number of Friend
Subscription List

8 Maximum number of
subscription addresses
that the friend is
capable to store for a
single Low Power Node.

Friend Clear
Confirmation Timeout
in Milliseconds

Invalid Friend Clear
Confirmation Timeout
in Milliseconds

1000 Friend clear
confirmation timeout in
milliseconds.

Friend Clear Retry Invalid Friend Clear 5 Friend clear retry

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,103 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Count Retry Count count.

Friendship Retry
Timeout in Milliseconds

Invalid Friendship Retry
Timeout in Milliseconds

1200 Friendship retry
timeout in milliseconds.

Access

Maximum Number of
Element

Invalid Maximum
Number of Element

4 Maximum number of
elements.

Maximum Number of
Model

Invalid Maximum
Number of Model

60 Maximum number of
models.

Maximum Number of
Application

Invalid Maximum
Number of Application

8 Maximum number of
applications (keys) the
device can store
information about.

Maximum Number of
Virtual Address

Invalid Maximum
Number of Virtual
Address

8 Maximum number of
virtual addresses the
device can store
information about.

Maximum Number of
Non-Virtual Address

Invalid Maximum
Number of Non-Virtual
Address

8 Maximum number of
non-virtual addresses
the device can store
information about.

Maximum Number of
Transition Timers

Invalid Maximum
Number of Transition
Timers

5 Maximum number of
transition timers.

Maximum Number of
Periodic Step Timers

Invalid Maximum
Number of Periodic
Step Timers

5 Maximum number of
periodic step timers.

Foundation

Config Server Secure
Network Beacon
Interval

Invalid Config Server
Secure Network
Beacon Interval

10 Config server secure
network beacon
interval.

Maximum Number of
Health Server Instance

Invalid Maximum
Number of Health
Server Instance

2 Maximum number of
health server
instances.

Model

Maximum Number of
Light Lightness
Controller Server
Instance

Invalid Maximum
Number of Light
Lightness Controller
Server Instance

1 Maximum number of
light lightness
controller server
instances.

ID

Company ID Invalid Company ID 0x0036 Company ID.

Product ID Invalid Product ID 0x0001 Product ID.

Vendor ID Invalid Vendor ID 0x0100 Vendor ID.

Platform

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,104 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Platform > Storage

Block Number Invalid Block Number 5 Block number.

Platform > Memory Pool

Memory Pool Size Invalid Memory Pool
Size

0x4000 Memory pool size.

Platform > Logging

Packet Bitfield Network
Lower Trans
Upper Trans
Access

Specifies if this is
included in the
packet_bitfield mask.

Module Info Bitfield Network
Lower Trans
Upper Trans
Access

Specifies if this is
included in the module
information bitfield
mask.

Generic Log Bitfield Network
Lower Trans
Upper Trans
Access

Specifies if this is
included in the generic
log bitfield mask.

function Name Must Be a Valid
C Symbol

NULL

Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Mesh System Architecture

Purpose of each layer is,

Model layer

Model is a standardized typical functionality so that nodes perform operations in accordance with
application scenario.

Foundation Model layer

Foundation Models are models to configure and manage operations of elements.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,105 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Access layer

The access layer defines how higher layer applications can use the upper transport layer.

Upper transport layer

The upper transport layer encrypts, decrypts, and authenticates application data and is designed to
provide confidentiality of access messages.

Lower transport layer

The lower transport layer defines how upper transport layer messages are segmented and
reassembled into multiple Lower Transport PDUs to deliver large upper transport layer messages to
other nodes.

Network layer

The network layer defines how transport messages are addressed towards one or more elements.

Bearer layer

The bearer layer defines how network messages are transported between nodes.

Device Life Cycle

The device not joined in the mesh network is an Unprovisioned Device and the device joined in the
mesh network is called a Node.

Unprovisioned Device
Unprovisioned device cannot send or receive mesh messages. However, it will advertise its
presence to the provisioner. By the provisioner, Unprovisioned Devices are invited to join
the mesh network and become nodes(Provisioning).
Node
Nodes can send and receive mesh messages. It is managed by the configuration client
through the mesh network, which configures how the nodes communicate. The
configuration client can also remove a Node from the mesh network, which will return the
node to an Unprovisioned Device.

To communicate with other nodes by using Models, each node needs Configuration. By Configuration
process, information required for Model operation such as Application Keys, Publish Address,
Subscription Address is configured. Following shows a typical lifecycle of a node.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,106 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

Figure 282: Device Life Cycle Image

 Newly introduced device is provisioned by Provisioner and joins a network. Furthermore, this device
is configured by Configuration Client and becomes to be able to communicate with other nodes with
Mesh Model. Generally, Configuration Client is a smart phone or other mobile computing device.
Configuration Client removes a node from a network by sending Config Node Reset message.
Besides, Configuration Client updates encryption keys used in the network, and the removed node
becomes unable to communicate with other nodes.

Examples
BLE_MESH Basic Example

This is a basic example of minimal use of the BLE_MESH in an application.

License and Copyright Notice
Mesh library includes crackle. The license and copyright of crackle are as follows.

BSD 2-Clause License

Copyright (c) 2013-2018, Mike Ryan

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,107 / 5,560

https://github.com/mikeryan/crackle
https://github.com/mikeryan/crackle/blob/master/LICENSE

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Data Structures

struct rm_ble_mesh_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_instance_ctrl_t

struct rm_ble_mesh_instance_ctrl_t

RM_BLE_MESH_BEARER private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_BEARER_Open() is called.

Function Documentation

◆ RM_BLE_MESH_Open()

fsp_err_t RM_BLE_MESH_Open (rm_ble_mesh_ctrl_t *const p_ctrl, rm_ble_mesh_cfg_t const *const
p_cfg)

Open ble mesh middleware. API to initialize Mesh Stack. This is the first API that the application
should call before any other API. This function initializes all the internal stack modules and data
structures.

Implements rm_ble_mesh_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_Open(&g_ble_mesh0_ctrl, &g_ble_mesh0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,108 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

◆ RM_BLE_MESH_Close()

fsp_err_t RM_BLE_MESH_Close (rm_ble_mesh_ctrl_t *const p_ctrl)

Close ble mesh middleware. API to turn off Bluetooth Hardware. This API should be called after
RM_BLE_MESH_Open.

Implements rm_ble_mesh_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_Close(&g_ble_mesh0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_StartTransitionTimer()

fsp_err_t RM_BLE_MESH_StartTransitionTimer (rm_ble_mesh_ctrl_t *const p_ctrl,
rm_ble_mesh_access_state_transition_t const *const p_transition, uint16_t *const
p_transition_time_handle)

To start transition timer. API to start a transition timer.

Implements rm_ble_mesh_api_t::startTransitionTimer.

Example:

 /* Start transition timer. */

 err = RM_BLE_MESH_StartTransitionTimer(&g_ble_mesh0_ctrl, &transition,

&transition_time_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_transition is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,109 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

◆ RM_BLE_MESH_StopTransitionTimer()

fsp_err_t RM_BLE_MESH_StopTransitionTimer (rm_ble_mesh_ctrl_t *const p_ctrl, uint16_t
transition_time_handle)

To stop transition timer. API to stop a transition timer.

Implements rm_ble_mesh_api_t::stopTransitionTimer.

Example:

 /* Stop transition timer. */

 err = RM_BLE_MESH_StopTransitionTimer(&g_ble_mesh0_ctrl, transition_time_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_GetRemainingTransitionTime()

fsp_err_t RM_BLE_MESH_GetRemainingTransitionTime (rm_ble_mesh_ctrl_t *const p_ctrl, uint16_t
transition_time_handle, uint8_t *const p_remaining_transition_time)

To get remaining Transition Time. API to get remaining Transition Time.

Implements rm_ble_mesh_api_t::getRemainingTransitionTime.

Example:

 /* Get remaining transition time. */

 err = RM_BLE_MESH_GetRemainingTransitionTime(&g_ble_mesh0_ctrl,

transition_time_handle, &remaining_transition_time);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_remaining_transition_time
is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,110 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

◆ RM_BLE_MESH_GetRemainingTransitionTimeWithOffset()

fsp_err_t RM_BLE_MESH_GetRemainingTransitionTimeWithOffset (rm_ble_mesh_ctrl_t *const
p_ctrl, uint16_t transition_time_handle, uint32_t offset_in_ms, uint8_t *const
p_remaining_transition_time)

To get remaining Transition Time, with offset. API to get remaining Transition Time with offset in
ms.

Implements rm_ble_mesh_api_t::getRemainingTransitionTimeWithOffset.

Example:

 /* Get remaining transition time with offset. */

 err = RM_BLE_MESH_GetRemainingTransitionTimeWithOffset(&g_ble_mesh0_ctrl,

 transition_time_handle,

 offset_in_ms,

&remaining_transition_time);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_remaining_transition_time
is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,111 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

◆ RM_BLE_MESH_ConvertTransitionTimeFromMs()

fsp_err_t RM_BLE_MESH_ConvertTransitionTimeFromMs (rm_ble_mesh_ctrl_t *const p_ctrl,
uint32_t transition_time_in_ms, uint8_t *const p_transition_time)

To convert transition time from milisecond. API to convert transition timer in milisecond to Generic
Default Transition Time state format.

Implements rm_ble_mesh_api_t::convertTransitionTimeFromMs.

Example:

 /* Convert transition time from milliseconds. */

 err = RM_BLE_MESH_ConvertTransitionTimeFromMs(&g_ble_mesh0_ctrl,

transition_time_in_ms, &transition_time);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_transition_time is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ConvertTransitionTimeToMs()

fsp_err_t RM_BLE_MESH_ConvertTransitionTimeToMs (rm_ble_mesh_ctrl_t *const p_ctrl, uint8_t
transition_time, uint32_t *const p_transition_time_in_ms)

To convert transition time to milisecond. API to convert Generic Default Transition Time state
format to required transition time value in miliseconds.

Implements rm_ble_mesh_api_t::convertTransitionTimeToMs.

Example:

 /* Convert transition time to milliseconds. */

 err = RM_BLE_MESH_ConvertTransitionTimeToMs(&g_ble_mesh0_ctrl, transition_time,

&transition_time_in_ms);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_transition_time_in_ms is
NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,112 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network (rm_ble_mesh)

 BLE Mesh Network Access (rm_ble_mesh_access)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_ACCESS_Open (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_ACCESS_Close (rm_ble_mesh_access_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLE_MESH_ACCESS_RegisterModel (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_t const *const p_model,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetElementHandle
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t elem_addr,
rm_ble_mesh_access_element_handle_t *const p_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetElementHandleForModelHandle
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_element_handle_t *const p_elem_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetModelHandle (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_element_handle_t elem_handle,
rm_ble_mesh_access_model_id_t model_id,
rm_ble_mesh_access_model_handle_t *const p_handle)

fsp_err_t RM_BLE_MESH_ACCESS_Publish (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t const *const p_handle,
rm_ble_mesh_access_req_msg_raw_t const *const
p_publish_message, uint8_t reliable)

fsp_err_t RM_BLE_MESH_ACCESS_ReliablePublish (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t const *const
p_handle, rm_ble_mesh_access_req_msg_raw_t const *const
p_publish_message, uint32_t rsp_opcode)

fsp_err_t RM_BLE_MESH_ACCESS_Reply (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_req_msg_context_t const *const
p_req_msg_context, uint8_t ttl, rm_ble_mesh_access_req_msg_raw_t
const *const p_req_msg_raw)

fsp_err_t RM_BLE_MESH_ACCESS_ReplyAndPublish (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_req_msg_context_t const
*const p_req_msg_context, rm_ble_mesh_access_req_msg_raw_t
const *const p_req_msg_raw, rm_ble_mesh_access_publish_setting_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,113 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

const *const p_publish_setting)

fsp_err_t RM_BLE_MESH_ACCESS_SendPdu (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_pdu_t const *const p_pdu, uint8_t
reliable)

fsp_err_t RM_BLE_MESH_ACCESS_GetCompositionData
(rm_ble_mesh_access_ctrl_t *const p_ctrl, rm_ble_mesh_buffer_t
*const p_buffer)

fsp_err_t RM_BLE_MESH_ACCESS_Reset (rm_ble_mesh_access_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLE_MESH_ACCESS_GetElementCount
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t *const p_count)

fsp_err_t RM_BLE_MESH_ACCESS_SetPrimaryUnicastAddress
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t RM_BLE_MESH_ACCESS_GetPrimaryUnicastAddress
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t *const p_addr)

fsp_err_t RM_BLE_MESH_ACCESS_SetDefaultTtl (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t ttl)

fsp_err_t RM_BLE_MESH_ACCESS_GetDefaultTtl (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t const *const p_ttl)

fsp_err_t RM_BLE_MESH_ACCESS_SetIvIndex (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint32_t iv_index, uint8_t iv_update_flag)

fsp_err_t RM_BLE_MESH_ACCESS_GetIvIndex (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint32_t *const p_iv_index, uint8_t *const
p_iv_update_flag)

fsp_err_t RM_BLE_MESH_ACCESS_GetIvIndexByIvi (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t ivi, uint32_t *const p_iv_index)

fsp_err_t RM_BLE_MESH_ACCESS_SetFeaturesField
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t enable, uint8_t
feature)

fsp_err_t RM_BLE_MESH_ACCESS_GetFeaturesField
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t *const p_enable,
uint8_t feature)

fsp_err_t RM_BLE_MESH_ACCESS_GetFeatures (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t *const p_features)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,114 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

fsp_err_t RM_BLE_MESH_ACCESS_GetFriendshipRole
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t *const
p_friend_role)

fsp_err_t RM_BLE_MESH_ACCESS_SetFriendshipRole
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t friend_role)

fsp_err_t RM_BLE_MESH_ACCESS_AddDeviceKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t const *const p_dev_key,
rm_ble_mesh_network_address_t uaddr, uint8_t num_elements)

fsp_err_t RM_BLE_MESH_ACCESS_GetDeviceKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t dev_key_index, uint8_t **const p_dev_key)

fsp_err_t RM_BLE_MESH_ACCESS_RemoveAllDeviceKeys
(rm_ble_mesh_access_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_ACCESS_GetProvisionedDeviceList
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_provisioned_device_entry_t const *const
p_prov_dev_list, uint16_t *const p_num_entries)

fsp_err_t RM_BLE_MESH_ACCESS_GetDeviceKeyHandle
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t prim_elem_uaddr,
rm_ble_mesh_access_device_key_handle_t *const p_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_appkey_handle_t
appkey_handle, uint8_t **const p_app_key, uint8_t *const p_aid)

fsp_err_t RM_BLE_MESH_ACCESS_AddUpdateNetkey
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint16_t netkey_index,
uint32_t opcode, uint8_t const *const p_net_key)

fsp_err_t RM_BLE_MESH_ACCESS_AddFriendSecurityCredential
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
friend_index, rm_ble_mesh_access_friend_security_credential_info_t
info)

fsp_err_t RM_BLE_MESH_ACCESS_DeleteFriendSecurityCredential
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
friend_index)

fsp_err_t RM_BLE_MESH_ACCESS_FindSubnet (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint16_t netkey_index,
rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle)

fsp_err_t RM_BLE_MESH_ACCESS_FindMasterSubnet
(rm_ble_mesh_access_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,115 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

rm_ble_mesh_network_subnet_handle_t friend_subnet_handle,
rm_ble_mesh_network_subnet_handle_t *const
p_master_subnet_handle)

fsp_err_t RM_BLE_MESH_ACCESS_DeleteNetKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t
subnet_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetNetKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint8_t *const p_net_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetNetKeyIndexList
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint16_t *const
p_netkey_count, uint16_t *const p_netkey_index_list)

fsp_err_t RM_BLE_MESH_ACCESS_LookUpNid (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t nid, rm_ble_mesh_network_subnet_handle_t
*const p_subnet_handle, rm_ble_mesh_access_associated_keys_t
*const p_key_set)

fsp_err_t RM_BLE_MESH_ACCESS_LookUpNetworkId
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t const *const
p_network_id, rm_ble_mesh_network_subnet_handle_t *const
p_subnet_handle, rm_ble_mesh_access_associated_keys_t *const
p_key_set)

fsp_err_t RM_BLE_MESH_ACCESS_LookUpAid (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint8_t aid, rm_ble_mesh_network_appkey_handle_t
*const p_appkey_handle, uint8_t *const p_app_key)

fsp_err_t RM_BLE_MESH_ACCESS_SetProvisioningData
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_data_t const *const p_prov_data)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetNid (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t
*const p_nid)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetPrivacyKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_privacy_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetNetworkId
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_network_id)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetBeaconKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,116 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

p_beacon_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetIdentityKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_identity_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetEncryptionKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_encrypt_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetNodeIdentity (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint8_t *const p_id_state)

fsp_err_t RM_BLE_MESH_ACCESS_SetNodeIdentity (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint8_t *const p_id_state)

fsp_err_t RM_BLE_MESH_ACCESS_GetKeyRefreshPhase
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t
*const p_key_refresh_state)

fsp_err_t RM_BLE_MESH_ACCESS_SetKeyRefreshPhase
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t const
*const p_key_refresh_state)

fsp_err_t RM_BLE_MESH_ACCESS_SetTransmitState
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t tx_state_type,
uint8_t tx_state)

fsp_err_t RM_BLE_MESH_ACCESS_GetTransmitState
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t tx_state_type,
uint8_t *const p_tx_state)

fsp_err_t RM_BLE_MESH_ACCESS_AddAppKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint16_t appkey_index, uint8_t const *const p_app_key)

fsp_err_t RM_BLE_MESH_ACCESS_UpdateAppKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint16_t appkey_index, uint8_t const *const p_app_key)

fsp_err_t RM_BLE_MESH_ACCESS_DeleteAppKey (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint16_t appkey_index, uint8_t const *const p_app_key)

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKeyHandle
(rm_ble_mesh_access_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,117 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
appkey_index, uint8_t const *const p_app_key,
rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle)

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKeyIndexList
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
*const p_appkey_count, uint16_t *const p_appkey_index_list)

fsp_err_t RM_BLE_MESH_ACCESS_BindModelWithAppKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t
appkey_index)

fsp_err_t RM_BLE_MESH_ACCESS_UnbindModelWithAppKey
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t
appkey_index)

fsp_err_t RM_BLE_MESH_ACCESS_GetModelAppKeyList
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const
p_appkey_count, uint16_t *const p_appkey_index_list)

fsp_err_t RM_BLE_MESH_ACCESS_SetModelPublication
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_publish_info_t *const p_publish_info)

fsp_err_t RM_BLE_MESH_ACCESS_SetModelPublicationPeriodDivisor
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint8_t
period_divisor)

fsp_err_t RM_BLE_MESH_ACCESS_GetModelPublication
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_publish_info_t *const p_publish_info)

fsp_err_t RM_BLE_MESH_ACCESS_AddModelSubscription
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_address_t const *const p_sub_addr)

fsp_err_t RM_BLE_MESH_ACCESS_DeleteModelSubscription
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_address_t const *const p_sub_addr)

fsp_err_t RM_BLE_MESH_ACCESS_DeleteAllModelSubscription
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,118 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

fsp_err_t RM_BLE_MESH_ACCESS_GetModelSubscriptionList
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const
p_sub_addr_count, uint16_t *const p_sub_addr_list)

fsp_err_t RM_BLE_MESH_ACCESS_GetAllModelSubscriptionList
(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint16_t *const
p_sub_addr_count, uint16_t *const p_sub_addr_list)

fsp_err_t RM_BLE_MESH_ACCESS_IsValidElementAddress
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t RM_BLE_MESH_ACCESS_IsFixedGroupAddressToBeProcessed
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t RM_BLE_MESH_ACCESS_IsValidSubscriptionAddress
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t RM_BLE_MESH_ACCESS_EnableIvUpdateTestMode
(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_iv_update_test_mode_t mode)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Access module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_access

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_access_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Access
(rm_ble_mesh_access)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Access (rm_ble_mesh_access).

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,119 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_access
0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Location Descriptor Invalid Descriptor 0 Location descriptor.

Element Number Invalid Descriptor 0 Element number to
register the model.

Data Structures

struct rm_ble_mesh_access_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_access_instance_ctrl_t

struct rm_ble_mesh_access_instance_ctrl_t

RM_BLE_MESH_ACCESS private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_ACCESS_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,120 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_Open()

fsp_err_t RM_BLE_MESH_ACCESS_Open (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_cfg_t const *const p_cfg)

Open access middleware. This routine creates a new node in the device. This can be used by the
application to create extra nodes if required in addition to the default primary node. And this
routine registers an element that can be populated with the models information to a specific node
in the device identified by the node id.

Implements rm_ble_mesh_access_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_ACCESS_Open(&g_ble_mesh_access0_ctrl, &g_ble_mesh_access0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_Close()

fsp_err_t RM_BLE_MESH_ACCESS_Close (rm_ble_mesh_access_ctrl_t *const p_ctrl)

Close access middleware. Implements rm_ble_mesh_access_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_ACCESS_Close(&g_ble_mesh_access0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,121 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_RegisterModel()

fsp_err_t RM_BLE_MESH_ACCESS_RegisterModel (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_t const *const p_model, rm_ble_mesh_access_model_handle_t *const
p_model_handle)

Register a model with the access layer. This routine registers a model associated with an element
with the access layer.

Implements rm_ble_mesh_access_api_t::registerModel.

Example:

 /* Register a model with the access layer. */

 err = RM_BLE_MESH_ACCESS_RegisterModel(&g_ble_mesh_access0_ctrl, &model,

&model_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_model and
p_model_handle are NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,122 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetElementHandle()

fsp_err_t RM_BLE_MESH_ACCESS_GetElementHandle (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t elem_addr, rm_ble_mesh_access_element_handle_t *const
p_handle)

Get element handle. This routine searches for the element handle associated with specific element
address.

Implements rm_ble_mesh_access_api_t::getElementHandle.

Example:

 /* Get element handle. */

 err = RM_BLE_MESH_ACCESS_GetElementHandle(&g_ble_mesh_access0_ctrl, elem_addr,

&elem_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ADDRESS Invalid source address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,123 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetElementHandleForModelHandle()

fsp_err_t RM_BLE_MESH_ACCESS_GetElementHandleForModelHandle (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_element_handle_t *const p_elem_handle)

Get element handle for a given model handle. This routine searches for the element handle
associated with specific model handle.

Implements rm_ble_mesh_access_api_t::getElementHandleForModelHandle.

Example:

 /* Get element handle for a given model handle. */

 err = RM_BLE_MESH_ACCESS_GetElementHandleForModelHandle(&g_ble_mesh_access0_ctrl,

model_handle, &elem_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_elem_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,124 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetModelHandle()

fsp_err_t RM_BLE_MESH_ACCESS_GetModelHandle (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_element_handle_t elem_handle, rm_ble_mesh_access_model_id_t model_id,
rm_ble_mesh_access_model_handle_t *const p_handle)

Get model handle. This routine searches for the model handle associated with specific model ID.

Implements rm_ble_mesh_access_api_t::getModelHandle.

Example:

 /* Get model handle. */

 err = RM_BLE_MESH_ACCESS_GetModelHandle(&g_ble_mesh_access0_ctrl, elem_handle,

model_id, &model_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,125 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_Publish()

fsp_err_t RM_BLE_MESH_ACCESS_Publish (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle, rm_ble_mesh_access_req_msg_raw_t
const *const p_publish_message, uint8_t reliable)

API to publish access layer message. This routine publishes Access Layer message to the publish
address associated with the model.

Implements rm_ble_mesh_access_api_t::publish.

Example:

 /* Publish access layer message. */

 err = RM_BLE_MESH_ACCESS_Publish(&g_ble_mesh_access0_ctrl, &model_handle,

&publish_message, reliable);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle and
p_publish_message are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,126 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_ReliablePublish()

fsp_err_t RM_BLE_MESH_ACCESS_ReliablePublish (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle, rm_ble_mesh_access_req_msg_raw_t
const *const p_publish_message, uint32_t rsp_opcode)

API to reliably publish Access layer message. This routine reliably publishes Access Layer message
to the publish address associated with the model.

Implements rm_ble_mesh_access_api_t::reliablePublish.

Example:

 /* Reliably publish access layer message. */

 err = RM_BLE_MESH_ACCESS_ReliablePublish(&g_ble_mesh_access0_ctrl, &model_handle,

&req_msg_raw, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle and
p_publish_message are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,127 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_Reply()

fsp_err_t RM_BLE_MESH_ACCESS_Reply (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const p_req_msg_context, uint8_t ttl,
rm_ble_mesh_access_req_msg_raw_t const *const p_req_msg_raw)

API to reply to Access Layer message. This routine replies to Access Layer message.

Implements rm_ble_mesh_access_api_t::reply.

Example:

 /* Reply to access layer message. */

 err = RM_BLE_MESH_ACCESS_Reply(&g_ble_mesh_access0_ctrl, &req_msg_context, ttl,

&req_msg_raw);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_req_msg_context and
p_req_msg_raw are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,128 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_ReplyAndPublish()

fsp_err_t RM_BLE_MESH_ACCESS_ReplyAndPublish (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const p_req_msg_context,
rm_ble_mesh_access_req_msg_raw_t const *const p_req_msg_raw,
rm_ble_mesh_access_publish_setting_t const *const p_publish_setting)

API to reply to Access Layer message and optionally also to publish. This routine replies to Access
Layer message and also publish if requested by application.

Implements rm_ble_mesh_access_api_t::replyAndPublish.

Example:

 /* Reply to access layer message. */

 err =

 RM_BLE_MESH_ACCESS_ReplyAndPublish(&g_ble_mesh_access0_ctrl, &req_msg_context,

&req_msg_raw, &publish_setting);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_req_msg_context and
p_req_msg_raw are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,129 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SendPdu()

fsp_err_t RM_BLE_MESH_ACCESS_SendPdu (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_pdu_t const *const p_pdu, uint8_t reliable)

API to send access PDUs. This routine sends transport PDUs to peer device.

Implements rm_ble_mesh_access_api_t::sendPdu.

Example:

 /* Send Access PDUs. */

 err = RM_BLE_MESH_ACCESS_SendPdu(&g_ble_mesh_access0_ctrl, &pdu, reliable);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_pdu is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,130 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetCompositionData()

fsp_err_t RM_BLE_MESH_ACCESS_GetCompositionData (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_buffer_t *const p_buffer)

Get composition data.

Implements rm_ble_mesh_access_api_t::getCompositionData.

Example:

 /* Get composition data. */

 err = RM_BLE_MESH_ACCESS_GetCompositionData(&g_ble_mesh_access0_ctrl, &buffer);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_buffer is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_Reset()

fsp_err_t RM_BLE_MESH_ACCESS_Reset (rm_ble_mesh_access_ctrl_t *const p_ctrl)

To reset a node. This routine resets a node (other than a Provisioner) and removes it from the
network.

Implements rm_ble_mesh_access_api_t::reset.

Example:

 /* Reset a node. */

 err = RM_BLE_MESH_ACCESS_Reset(&g_ble_mesh_access0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,131 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetElementCount()

fsp_err_t RM_BLE_MESH_ACCESS_GetElementCount (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_count)

To get the number of elements in local node. This routine retrieves the number of elements in local
node.

Implements rm_ble_mesh_access_api_t::getElementCount.

Example:

 /* Get the number of elements in local node. */

 err = RM_BLE_MESH_ACCESS_GetElementCount(&g_ble_mesh_access0_ctrl, &count);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_count is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_SetPrimaryUnicastAddress()

fsp_err_t RM_BLE_MESH_ACCESS_SetPrimaryUnicastAddress (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr)

To set primary unicast address. This routine sets primary unicast address.

Implements rm_ble_mesh_access_api_t::setPrimaryUnicastAddress.

Example:

 /* Set primary unicast address. */

 err = RM_BLE_MESH_ACCESS_SetPrimaryUnicastAddress(&g_ble_mesh_access0_ctrl,

addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ADDRESS Invalid source address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,132 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetPrimaryUnicastAddress()

fsp_err_t RM_BLE_MESH_ACCESS_GetPrimaryUnicastAddress (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t *const p_addr)

To get primary unicast address. This routine gets primary unicast address.

Implements rm_ble_mesh_access_api_t::getPrimaryUnicastAddress.

Example:

 /* Get primary unicast address. */

 err = RM_BLE_MESH_ACCESS_GetPrimaryUnicastAddress(&g_ble_mesh_access0_ctrl,

&addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_addr is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_SetDefaultTtl()

fsp_err_t RM_BLE_MESH_ACCESS_SetDefaultTtl (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
ttl)

To set default TTL. This routine sets default TTL.

Implements rm_ble_mesh_access_api_t::setDefaultTtl.

Example:

 /* Set default TTL. */

 err = RM_BLE_MESH_ACCESS_SetDefaultTtl(&g_ble_mesh_access0_ctrl, ttl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,133 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetDefaultTtl()

fsp_err_t RM_BLE_MESH_ACCESS_GetDefaultTtl (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
const *const p_ttl)

To get default TTL. This routine gets default TTL.

Implements rm_ble_mesh_access_api_t::getDefaultTtl.

Example:

 /* Get default TTL. */

 err = RM_BLE_MESH_ACCESS_GetDefaultTtl(&g_ble_mesh_access0_ctrl, &ttl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_ttl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_SetIvIndex()

fsp_err_t RM_BLE_MESH_ACCESS_SetIvIndex (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint32_t
iv_index, uint8_t iv_update_flag)

To set IV Index. This routine sets IV Index.

Implements rm_ble_mesh_access_api_t::setIvIndex.

Example:

 /* Set IV Index. */

 err = RM_BLE_MESH_ACCESS_SetIvIndex(&g_ble_mesh_access0_ctrl, iv_index,

iv_update_flag);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

FSP_ERR_IN_USE Resource is busy.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,134 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetIvIndex()

fsp_err_t RM_BLE_MESH_ACCESS_GetIvIndex (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint32_t
*const p_iv_index, uint8_t *const p_iv_update_flag)

To get IV Index. This routine gets IV Index.

Implements rm_ble_mesh_access_api_t::getIvIndex.

Example:

 /* Get IV Index. */

 err = RM_BLE_MESH_ACCESS_GetIvIndex(&g_ble_mesh_access0_ctrl, &iv_index,

&iv_update_flag);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_iv_index and
p_iv_update_flag are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_GetIvIndexByIvi()

fsp_err_t RM_BLE_MESH_ACCESS_GetIvIndexByIvi (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t ivi, uint32_t *const p_iv_index)

To get IV Index by IVI. This routine gets IV Index based on the IVI in the received packet.

Implements rm_ble_mesh_access_api_t::getIvIndexByIvi.

Example:

 /* Get IV Index by IVI. */

 err = RM_BLE_MESH_ACCESS_GetIvIndexByIvi(&g_ble_mesh_access0_ctrl, ivi,

&iv_index);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_iv_index is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,135 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetFeaturesField()

fsp_err_t RM_BLE_MESH_ACCESS_SetFeaturesField (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t enable, uint8_t feature)

To enable/disable a feature. This routine enables/disables a feature field.

Implements rm_ble_mesh_access_api_t::setFeaturesField.

Example:

 /* Enable/Disable a feature. */

 err = RM_BLE_MESH_ACCESS_SetFeaturesField(&g_ble_mesh_access0_ctrl, enable,

features);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_GetFeaturesField()

fsp_err_t RM_BLE_MESH_ACCESS_GetFeaturesField (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_enable, uint8_t feature)

To get state of a feature. This routine gets the state of a feature field.

Implements rm_ble_mesh_access_api_t::getFeaturesField.

Example:

 /* Get state of a feature. */

 err = RM_BLE_MESH_ACCESS_GetFeaturesField(&g_ble_mesh_access0_ctrl, &enable,

features);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_enable is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,136 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetFeatures()

fsp_err_t RM_BLE_MESH_ACCESS_GetFeatures (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
*const p_features)

To get state of all features. This routine gets the state of all features.

Implements rm_ble_mesh_access_api_t::getFeatures.

Example:

 /* Get state of all features. */

 err = RM_BLE_MESH_ACCESS_GetFeatures(&g_ble_mesh_access0_ctrl, &features);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_features is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_GetFriendshipRole()

fsp_err_t RM_BLE_MESH_ACCESS_GetFriendshipRole (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_friend_role)

To get friendship role of the node. This routine gets the current friendship role of the node.

Implements rm_ble_mesh_access_api_t::getFriendshipRole.

Example:

 /* Get friendship role of the node. */

 err = RM_BLE_MESH_ACCESS_GetFriendshipRole(&g_ble_mesh_access0_ctrl,

&friend_role);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_friend_role is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,137 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetFriendshipRole()

fsp_err_t RM_BLE_MESH_ACCESS_SetFriendshipRole (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t friend_role)

To set friendship role of the node. This routine sets the current friendship role of the node.

Implements rm_ble_mesh_access_api_t::setFriendshipRole.

Example:

 /* Set friendship role of the node. */

 err = RM_BLE_MESH_ACCESS_SetFriendshipRole(&g_ble_mesh_access0_ctrl,

friend_role);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_AddDeviceKey()

fsp_err_t RM_BLE_MESH_ACCESS_AddDeviceKey (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
const *const p_dev_key, rm_ble_mesh_network_address_t uaddr, uint8_t num_elements)

To add Device Key. This routine adds Device Key entry, along with corresponding Primary Device
Address and Number of elements.

Implements rm_ble_mesh_access_api_t::addDeviceKey.

Example:

 /* Add Device Key. */

 err = RM_BLE_MESH_ACCESS_AddDeviceKey(&g_ble_mesh_access0_ctrl, &dev_key, uaddr,

num_elements);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_dev_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OVERFLOW Device key table is full.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,138 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetDeviceKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetDeviceKey (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
dev_key_index, uint8_t **const p_dev_key)

To get Device Key. This routine gets Device Key entry.

Implements rm_ble_mesh_access_api_t::getDeviceKey.

Example:

 /* Get Device Key. */

 err = RM_BLE_MESH_ACCESS_GetDeviceKey(&g_ble_mesh_access0_ctrl, dev_key_index,

p_dev_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_dev_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_RemoveAllDeviceKeys()

fsp_err_t RM_BLE_MESH_ACCESS_RemoveAllDeviceKeys (rm_ble_mesh_access_ctrl_t *const p_ctrl)

To remove all Device Keys. This routine removes all Device Keys from table.

Implements rm_ble_mesh_access_api_t::removeAllDeviceKeys.

Example:

 /* Remove all Device Keys. */

 err = RM_BLE_MESH_ACCESS_RemoveAllDeviceKeys(&g_ble_mesh_access0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,139 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetProvisionedDeviceList()

fsp_err_t RM_BLE_MESH_ACCESS_GetProvisionedDeviceList (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_provisioned_device_entry_t const *const p_prov_dev_list, uint16_t
*const p_num_entries)

To get list of Provisioned Device List. This routine returns list of Provisioned Devices from the
Device Key Table.

Implements rm_ble_mesh_access_api_t::getProvisionedDeviceList.

Example:

 /* Get list of provisioned device list. */

 err = RM_BLE_MESH_ACCESS_GetProvisionedDeviceList(&g_ble_mesh_access0_ctrl,

&prov_dev_list, &num_entries);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_prov_dev_list and
p_num_entries are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,140 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetDeviceKeyHandle()

fsp_err_t RM_BLE_MESH_ACCESS_GetDeviceKeyHandle (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t prim_elem_uaddr, rm_ble_mesh_access_device_key_handle_t
*const p_handle)

To get device key handle. This routine returns Device Key Handle for a given Primary Element
Address entry in Device Key Table.

Implements rm_ble_mesh_access_api_t::getDeviceKeyHandle.

Example:

 /* Get Device Key handle. */

 err = RM_BLE_MESH_ACCESS_GetDeviceKeyHandle(&g_ble_mesh_access0_ctrl,

prim_elem_uaddr, &handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,141 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_appkey_handle_t appkey_handle, uint8_t **const p_app_key, uint8_t
*const p_aid)

To get AppKey. This routine gets AppKey along with AID entry.

Implements rm_ble_mesh_access_api_t::getAppKey.

Example:

 /* Get AppKey. */

 err = RM_BLE_MESH_ACCESS_GetAppKey(&g_ble_mesh_access0_ctrl, appkey_handle,

p_app_key, &aid);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_app_key and p_aid are
NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,142 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_AddUpdateNetkey()

fsp_err_t RM_BLE_MESH_ACCESS_AddUpdateNetkey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint16_t netkey_index, uint32_t opcode, uint8_t const *const p_net_key)

To add/update NetKey. This routine adds/updates NetKey entry. Each NetKey is associated with a
subnet.

Implements rm_ble_mesh_access_api_t::addUpdateNetkey.

Example:

 /* Add/Update NetKey. */

 err = RM_BLE_MESH_ACCESS_AddUpdateNetkey(&g_ble_mesh_access0_ctrl, netkey_index,

opcode, &net_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_net_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,143 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_AddFriendSecurityCredential()

fsp_err_t RM_BLE_MESH_ACCESS_AddFriendSecurityCredential (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t friend_index,
rm_ble_mesh_access_friend_security_credential_info_t info)

To add Security Credential of a LPN or the Friend. This routine adds NID, privacy and encryption
keys associated with a friendship.

Implements rm_ble_mesh_access_api_t::addFriendSecurityCredential.

Example:

 /* Add security credential of a LPN or the friend. */

 err =

 RM_BLE_MESH_ACCESS_AddFriendSecurityCredential(&g_ble_mesh_access0_ctrl,

subnet_handle, friend_index, info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_DeleteFriendSecurityCredential()

fsp_err_t RM_BLE_MESH_ACCESS_DeleteFriendSecurityCredential (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t friend_index)

To delete the Security Credential of a LPN or the Friend. This routine deletes NID, privacy and
encryption keys associated with a friendship.

Implements rm_ble_mesh_access_api_t::deleteFriendSecurityCredential.

Example:

 /* Delete the security credential of a LPN or the Friend. */

 err = RM_BLE_MESH_ACCESS_DeleteFriendSecurityCredential(&g_ble_mesh_access0_ctrl,

subnet_handle, friend_index);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,144 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_FindSubnet()

fsp_err_t RM_BLE_MESH_ACCESS_FindSubnet (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint16_t
netkey_index, rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle)

To find a Subnet associated with the NetKey. This routine finds a Subnet based on the NetKey
entry. Each NetKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::findSubnet.

Example:

 /* Find a subnet associated with the NetKey. */

 err = RM_BLE_MESH_ACCESS_FindSubnet(&g_ble_mesh_access0_ctrl, netkey_index,

&subnet_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_subnet_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,145 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_FindMasterSubnet()

fsp_err_t RM_BLE_MESH_ACCESS_FindMasterSubnet (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t friend_subnet_handle,
rm_ble_mesh_network_subnet_handle_t *const p_master_subnet_handle)

To find the Master Subnet associated with the friend security credential, identified by Friend Subnet
Handle. This routine finds the Master Subnet based on the friend security credential, identified by
Friend Subnet Handle.

Implements rm_ble_mesh_access_api_t::findMasterSubnet.

Example:

 /* Close the module. */

 err =

 RM_BLE_MESH_ACCESS_FindMasterSubnet(&g_ble_mesh_access0_ctrl, friend_subnet_handle,

&master_subnet_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_master_subnet_handle is
NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_DeleteNetKey()

fsp_err_t RM_BLE_MESH_ACCESS_DeleteNetKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

To delete NetKey. This routine deletes a NetKey entry. Each NetKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::deleteNetKey.

Example:

 /* Delete NetKey. */

 err = RM_BLE_MESH_ACCESS_DeleteNetKey(&g_ble_mesh_access0_ctrl, subnet_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,146 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetNetKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetNetKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_net_key)

To get NetKey. This routine fetches a NetKey entry. Each NetKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::getNetKey.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_ACCESS_GetNetKey(&g_ble_mesh_access0_ctrl, subnet_handle,

&net_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_net_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_GetNetKeyIndexList()

fsp_err_t RM_BLE_MESH_ACCESS_GetNetKeyIndexList (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint16_t *const p_netkey_count, uint16_t *const p_netkey_index_list)

To get list of all known NetKeys. This routine returns a list of known NetKey Indices.

Implements rm_ble_mesh_access_api_t::getNetKeyIndexList.

Example:

 /* Get list of all known NetKeys. */

 err = RM_BLE_MESH_ACCESS_GetNetKeyIndexList(&g_ble_mesh_access0_ctrl,

&netkey_count, &netkey_index_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_netkey_count and
p_netkey_index_list are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,147 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_LookUpNid()

fsp_err_t RM_BLE_MESH_ACCESS_LookUpNid (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
nid, rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle,
rm_ble_mesh_access_associated_keys_t *const p_key_set)

To search for NID. This routine searches for matching NID in subnet table.

Implements rm_ble_mesh_access_api_t::lookUpNid.

Example:

 /* Search for NID. */

 err = RM_BLE_MESH_ACCESS_LookUpNid(&g_ble_mesh_access0_ctrl, nid, &subnet_handle,

&key_set);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_subnet_handle and
p_key_set are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,148 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_LookUpNetworkId()

fsp_err_t RM_BLE_MESH_ACCESS_LookUpNetworkId (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t const *const p_network_id, rm_ble_mesh_network_subnet_handle_t *const
p_subnet_handle, rm_ble_mesh_access_associated_keys_t *const p_key_set)

To search for Network ID. This routine searches for matching Network ID in subnet table.

Implements rm_ble_mesh_access_api_t::lookUpNetworkId.

Example:

 /* Search for NID. */

 err = RM_BLE_MESH_ACCESS_LookUpNid(&g_ble_mesh_access0_ctrl, nid, &subnet_handle,

&key_set);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_network_id,
p_subnet_handle and p_key_set are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,149 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_LookUpAid()

fsp_err_t RM_BLE_MESH_ACCESS_LookUpAid (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
aid, rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle, uint8_t *const p_app_key)

To search for AID. This routine searches for matching NID in subnet table.

Implements rm_ble_mesh_access_api_t::lookUpAid.

Example:

 /* Search for AID. */

 err = RM_BLE_MESH_ACCESS_LookUpAid(&g_ble_mesh_access0_ctrl, aid, &appkey_handle,

&app_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_appkey_handle and
p_app_key are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,150 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetProvisioningData()

fsp_err_t RM_BLE_MESH_ACCESS_SetProvisioningData (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_data_t const *const p_prov_data)

Set Provisioning Data. This routine configures the provisioning data with Access Layer.

Implements rm_ble_mesh_access_api_t::setProvisioningData.

Example:

 /* Set provisioning data. */

 err = RM_BLE_MESH_ACCESS_SetProvisioningData(&g_ble_mesh_access0_ctrl,

&prov_data);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_prov_data is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,151 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetSubnetNid()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetNid (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_nid)

To get NID associated with a subnet. This routine fetches the NID associated with a subnet.

Implements rm_ble_mesh_access_api_t::getSubnetNid.

Example:

 /* Get NID associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetNid(&g_ble_mesh_access0_ctrl, subnet_handle,

&nid);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_nid is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_GetSubnetPrivacyKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetPrivacyKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_privacy_key)

To get Privacy Key associated with a subnet. This routine fetches the Privacy Key associated with a
subnet.

Implements rm_ble_mesh_access_api_t::getSubnetPrivacyKey.

Example:

 /* Get Privacy Key associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetPrivacyKey(&g_ble_mesh_access0_ctrl,

subnet_handle, &privacy_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_privacy_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,152 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetSubnetNetworkId()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetNetworkId (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_network_id)

To get Network ID associated with a subnet. This routine fetches the Netowrk ID associated with a
subnet.

Implements rm_ble_mesh_access_api_t::getSubnetNetworkId.

Example:

 /* Get Network ID associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetNetworkId(&g_ble_mesh_access0_ctrl,

subnet_handle, &network_id);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_network_id is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,153 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetSubnetBeaconKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetBeaconKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_beacon_key)

To get Beacon Key associated with a subnet. This routine fetches the Beacon Key associated with a
subnet.

Implements rm_ble_mesh_access_api_t::getSubnetBeaconKey.

Example:

 /* Get Beacon Key associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetBeaconKey(&g_ble_mesh_access0_ctrl,

subnet_handle, &beacon_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_beacon_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,154 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetSubnetIdentityKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetIdentityKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_identity_key)

To get Identity Key associated with a subnet. This routine fetches the Identity Key associated with a
subnet.

Implements rm_ble_mesh_access_api_t::getSubnetIdentityKey.

Example:

 /* Get Identity Key associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetIdentityKey(&g_ble_mesh_access0_ctrl,

subnet_handle, &identity_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_identity_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,155 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetSubnetEncryptionKey()

fsp_err_t RM_BLE_MESH_ACCESS_GetSubnetEncryptionKey (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_encrypt_key)

To get Encryption Key associated with a subnet. This routine fetches the Encryption Key associated
with a subnet.

Implements rm_ble_mesh_access_api_t::getSubnetEncryptionKey.

Example:

 /* Get Encryption Key associated with a subnet. */

 err = RM_BLE_MESH_ACCESS_GetSubnetEncryptionKey(&g_ble_mesh_access0_ctrl,

subnet_handle, &encrypt_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_encrypt_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_GetNodeIdentity()

fsp_err_t RM_BLE_MESH_ACCESS_GetNodeIdentity (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_id_state)

To get Node Identity. This routine gets Node Identity State of a node

Implements rm_ble_mesh_access_api_t::getNodeIdentity.

Example:

 /* Get node identity. */

 err = RM_BLE_MESH_ACCESS_GetNodeIdentity(&g_ble_mesh_access0_ctrl, subnet_handle,

&id_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_id_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,156 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetNodeIdentity()

fsp_err_t RM_BLE_MESH_ACCESS_SetNodeIdentity (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_id_state)

To set Node Identity. This routine sets Node Identity State of a node.

Implements rm_ble_mesh_access_api_t::setNodeIdentity.

Example:

 /* Set node identity. */

 err = RM_BLE_MESH_ACCESS_SetNodeIdentity(&g_ble_mesh_access0_ctrl, subnet_handle,

&id_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_id_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_GetKeyRefreshPhase()

fsp_err_t RM_BLE_MESH_ACCESS_GetKeyRefreshPhase (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_key_refresh_state)

To get Key Refresh Phase. This routine gets Key Refresh Phase State of a node

Implements rm_ble_mesh_access_api_t::getKeyRefreshPhase.

Example:

 /* Get key refresh phase. */

 err = RM_BLE_MESH_ACCESS_GetKeyRefreshPhase(&g_ble_mesh_access0_ctrl,

subnet_handle, &key_refresh_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_key_refresh_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,157 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetKeyRefreshPhase()

fsp_err_t RM_BLE_MESH_ACCESS_SetKeyRefreshPhase (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t const *const p_key_refresh_state
)

To set Key Refresh Phase. This routine sets Key Refresh Phase State of a node.

Implements rm_ble_mesh_access_api_t::setKeyRefreshPhase.

Example:

 /* Set key refresh phase. */

 err = RM_BLE_MESH_ACCESS_SetKeyRefreshPhase(&g_ble_mesh_access0_ctrl,

subnet_handle, &key_refresh_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_key_refresh_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_SetTransmitState()

fsp_err_t RM_BLE_MESH_ACCESS_SetTransmitState (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t tx_state_type, uint8_t tx_state)

To set Network/Relay Transmit state. This routine sets Network/Relay Transmit state.

Implements rm_ble_mesh_access_api_t::setTransmitState.

Example:

 /* Set network/relay transmit state. */

 err = RM_BLE_MESH_ACCESS_SetTransmitState(&g_ble_mesh_access0_ctrl,

tx_state_type, tx_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,158 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetTransmitState()

fsp_err_t RM_BLE_MESH_ACCESS_GetTransmitState (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t tx_state_type, uint8_t *const p_tx_state)

To get Network/Relay Transmit state. This routine gets Network/Relay Transmit state.

Implements rm_ble_mesh_access_api_t::getTransmitState.

Example:

 /* Get network/relay transmit state. */

 err = RM_BLE_MESH_ACCESS_GetTransmitState(&g_ble_mesh_access0_ctrl,

tx_state_type, &tx_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_tx_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_ACCESS_AddAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_AddAppKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To add AppKey. This routine adds AppKey entry. Each AppKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::addAppKey.

Example:

 /* Add AppKey. */

 err = RM_BLE_MESH_ACCESS_AddAppKey(&g_ble_mesh_access0_ctrl, subnet_handle,

appkey_index, &app_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_app_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,159 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_UpdateAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_UpdateAppKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To update AppKey. This routine updates AppKey entry. Each AppKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::updateAppKey.

Example:

 /* Update AppKey. */

 err = RM_BLE_MESH_ACCESS_UpdateAppKey(&g_ble_mesh_access0_ctrl, subnet_handle,

appkey_index, &app_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_app_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,160 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_DeleteAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_DeleteAppKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To delete AppKey. This routine deletes AppKey entry. Each AppKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::deleteAppKey.

Example:

 /* Delete AppKey. */

 err = RM_BLE_MESH_ACCESS_DeleteAppKey(&g_ble_mesh_access0_ctrl, subnet_handle,

appkey_index, &app_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_app_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,161 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetAppKeyHandle()

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKeyHandle (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key, rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle)

To get AppKey Handle for a given AppKey Index. This routine gets AppKey Handle for a given
AppKey Index. Each AppKey is associated with a subnet.

Implements rm_ble_mesh_access_api_t::getAppKeyHandle.

Example:

 /* Get AppKey handle for a given AppKey index. */

 err = RM_BLE_MESH_ACCESS_GetAppKeyHandle(&g_ble_mesh_access0_ctrl,

 subnet_handle,

 appkey_index,

 &app_key,

 &appkey_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_appkey_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,162 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetAppKeyIndexList()

fsp_err_t RM_BLE_MESH_ACCESS_GetAppKeyIndexList (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t *const p_appkey_count, uint16_t
*const p_appkey_index_list)

To get list of all known AppKeys. This routine returns a list of known AppKey Indices associated with
a subnet.

Implements rm_ble_mesh_access_api_t::getAppKeyIndexList.

Example:

 /* Get list of all known AppKeys. */

 err = RM_BLE_MESH_ACCESS_GetAppKeyIndexList(&g_ble_mesh_access0_ctrl,

 subnet_handle,

 &appkey_count,

 &appkey_index_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_appkey_count and
p_appkey_index_list are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,163 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_BindModelWithAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_BindModelWithAppKey (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t appkey_index)

To bind a model with an AppKey. This routine binds a model with an AppKey.

Implements rm_ble_mesh_access_api_t::bindModelWithAppKey.

Example:

 /* Bind a model with an AppKey. */

 err = RM_BLE_MESH_ACCESS_BindModelWithAppKey(&g_ble_mesh_access0_ctrl,

model_handle, appkey_index);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_UnbindModelWithAppKey()

fsp_err_t RM_BLE_MESH_ACCESS_UnbindModelWithAppKey (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t appkey_index)

To unbind a model with an AppKey. This routine unbinds a model with an AppKey.

Implements rm_ble_mesh_access_api_t::unbindModelWithAppKey.

Example:

 /* Unbind a model with an AppKey. */

 err = RM_BLE_MESH_ACCESS_UnbindModelWithAppKey(&g_ble_mesh_access0_ctrl,

model_handle, appkey_index);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,164 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetModelAppKeyList()

fsp_err_t RM_BLE_MESH_ACCESS_GetModelAppKeyList (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const p_appkey_count, uint16_t
*const p_appkey_index_list)

To get list of all AppKeys associated with a model. This routine returns a list of known AppKey
Indices associated with a model.

Implements rm_ble_mesh_access_api_t::getModelAppKeyList.

Example:

 /* Get list of all AppKeys associated with a model. */

 err = RM_BLE_MESH_ACCESS_GetModelAppKeyList(&g_ble_mesh_access0_ctrl,

 model_handle,

 &appkey_count,

 &appkey_index_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_appkey_count and
p_appkey_index_list are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,165 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetModelPublication()

fsp_err_t RM_BLE_MESH_ACCESS_SetModelPublication (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_publish_info_t *const
p_publish_info)

To set Publication information associated with a model. This routine sets Publication information
associated with a model.

Implements rm_ble_mesh_access_api_t::setModelPublication.

Example:

 /* Set publication information associated with a model. */

 err = RM_BLE_MESH_ACCESS_SetModelPublication(&g_ble_mesh_access0_ctrl,

model_handle, &publish_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_publish_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,166 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_SetModelPublicationPeriodDivisor()

fsp_err_t RM_BLE_MESH_ACCESS_SetModelPublicationPeriodDivisor (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint8_t period_divisor)

To set Publication Fast Period Divisor information associated with a model. This routine sets
Publication Fast Period Divisor information associated with a model.

Implements rm_ble_mesh_access_api_t::setModelPublicationPeriodDivisor.

Example:

 /* Set publication fast period divisor information associated with a model. */

 err =

 RM_BLE_MESH_ACCESS_SetModelPublicationPeriodDivisor(&g_ble_mesh_access0_ctrl,

model_handle, period_divisor);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,167 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetModelPublication()

fsp_err_t RM_BLE_MESH_ACCESS_GetModelPublication (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_publish_info_t *const
p_publish_info)

To get Publication information associated with a model. This routine returns Publication information
associated with a model.

Implements rm_ble_mesh_access_api_t::getModelPublication.

Example:

 /* Get publication information associated with a model. */

 err = RM_BLE_MESH_ACCESS_GetModelPublication(&g_ble_mesh_access0_ctrl,

model_handle, &publish_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_publish_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,168 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_AddModelSubscription()

fsp_err_t RM_BLE_MESH_ACCESS_AddModelSubscription (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_address_t const *const
p_sub_addr)

To add an address to a model subscription list. This routine adds an address to a subscription list of
a model.

Implements rm_ble_mesh_access_api_t::addModelSubscription.

Example:

 /* Add an address to a model subscription list. */

 err = RM_BLE_MESH_ACCESS_AddModelSubscription(&g_ble_mesh_access0_ctrl,

model_handle, &sub_addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_sub_addr is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,169 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_DeleteModelSubscription()

fsp_err_t RM_BLE_MESH_ACCESS_DeleteModelSubscription (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_address_t const
*const p_sub_addr)

To delete an address to a model subscription list. This routine deletes an address to a subscription
list of a model.

Implements rm_ble_mesh_access_api_t::deleteModelSubscription.

Example:

 /* Delete an address to a model subscription list. */

 err = RM_BLE_MESH_ACCESS_DeleteModelSubscription(&g_ble_mesh_access0_ctrl,

model_handle, &sub_addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_sub_addr is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_BLE_MESH_ACCESS_DeleteAllModelSubscription()

fsp_err_t RM_BLE_MESH_ACCESS_DeleteAllModelSubscription (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle)

To discard a model subscription list. This routine discards a subscription list of a model.

Implements rm_ble_mesh_access_api_t::deleteAllModelSubscription.

Example:

 /* Discard a model subscription list. */

 err = RM_BLE_MESH_ACCESS_DeleteAllModelSubscription(&g_ble_mesh_access0_ctrl,

model_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,170 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetModelSubscriptionList()

fsp_err_t RM_BLE_MESH_ACCESS_GetModelSubscriptionList (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const p_sub_addr_count,
uint16_t *const p_sub_addr_list)

To get list of subscription addresses of a model. This routine returns a list of subscription addresses
of a model.

Implements rm_ble_mesh_access_api_t::getModelSubscriptionList.

Example:

 /* Get list of subscription addresses of a model. */

 err = RM_BLE_MESH_ACCESS_GetModelSubscriptionList(&g_ble_mesh_access0_ctrl,

 model_handle,

 &sub_addr_count,

 &sub_addr_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_sub_addr_count and
p_sub_addr_list are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,171 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_GetAllModelSubscriptionList()

fsp_err_t RM_BLE_MESH_ACCESS_GetAllModelSubscriptionList (rm_ble_mesh_access_ctrl_t *const
p_ctrl, uint16_t *const p_sub_addr_count, uint16_t *const p_sub_addr_list)

To get list of subscription addresses of all the models. This routine returns a consolidated list of
subscription addresses of all the models.

Implements rm_ble_mesh_access_api_t::getAllModelSubscriptionList.

Example:

 /* Get list of subscription addresses of all the models. */

 err = RM_BLE_MESH_ACCESS_GetAllModelSubscriptionList(&g_ble_mesh_access0_ctrl,

&sub_addr_count, &sub_addr_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_sub_addr_count and
p_sub_addr_list are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,172 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_IsValidElementAddress()

fsp_err_t RM_BLE_MESH_ACCESS_IsValidElementAddress (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr)

To check if valid element address to receive a packet. This routine checks if destination address in
a received packet matches with any of the known element address of local or friend device.

Implements rm_ble_mesh_access_api_t::isValidElementAddress.

Example:

 /* Check if valid element address to receive a packet. */

 err = RM_BLE_MESH_ACCESS_IsValidElementAddress(&g_ble_mesh_access0_ctrl, addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

◆ RM_BLE_MESH_ACCESS_IsFixedGroupAddressToBeProcessed()

fsp_err_t RM_BLE_MESH_ACCESS_IsFixedGroupAddressToBeProcessed (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t addr)

To check if Fixed Group Address in receive packet to be processed. This routine checks if
destination address in a received packet as a Fixed Group Address to be processed.

Implements rm_ble_mesh_access_api_t::isFixedGroupAddressToBeProcessed.

Example:

 /* Check if fixed group address in receive packet to be processed. */

 err =

RM_BLE_MESH_ACCESS_IsFixedGroupAddressToBeProcessed(&g_ble_mesh_access0_ctrl, addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,173 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Access (rm_ble_mesh_access)

◆ RM_BLE_MESH_ACCESS_IsValidSubscriptionAddress()

fsp_err_t RM_BLE_MESH_ACCESS_IsValidSubscriptionAddress (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr)

To check if valid subscription address to receive a packet. This routine checks if destination
address in a received packet matches with any of the known subscription address of local or friend
device.

Implements rm_ble_mesh_access_api_t::isValidSubscriptionAddress.

Example:

 /* Check if valid subscription address to receive a packet. */

 err = RM_BLE_MESH_ACCESS_IsValidSubscriptionAddress(&g_ble_mesh_access0_ctrl,

addr);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

◆ RM_BLE_MESH_ACCESS_EnableIvUpdateTestMode()

fsp_err_t RM_BLE_MESH_ACCESS_EnableIvUpdateTestMode (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_iv_update_test_mode_t mode)

To set the IV Update Test Mode feature. This routine is used to set the IV Update Test Mode flag.

Implements rm_ble_mesh_access_api_t::enableIvUpdateTestMode.

Example:

 /* Set the IV update test mode feature. */

 err = RM_BLE_MESH_ACCESS_EnableIvUpdateTestMode(&g_ble_mesh_access0_ctrl, mode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

 BLE Mesh Network Bearer (rm_ble_mesh_bearer)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,174 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_BEARER_Open (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, rm_ble_mesh_bearer_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_BEARER_Close (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLE_MESH_BEARER_RegisterInterface
(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_bearer_ntf_callback_result_t
(*p_callback)(rm_ble_mesh_bearer_ntf_callback_args_t *p_args))

fsp_err_t RM_BLE_MESH_BEARER_RegisterBeaconHandler
(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_beacon_type_t bcon_type,
void(*p_handler)(rm_ble_mesh_bearer_beacon_callback_args_t
*p_args))

fsp_err_t RM_BLE_MESH_BEARER_AddBearer (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_bearer_info_t const *const p_brr_info,
rm_ble_mesh_bearer_handle_t *const p_brr_handle)

fsp_err_t RM_BLE_MESH_BEARER_RemoveBearer (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_bearer_handle_t const *const p_brr_handle)

fsp_err_t RM_BLE_MESH_BEARER_ObserveBeacon (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, uint8_t bcon_type, uint8_t enable)

fsp_err_t RM_BLE_MESH_BEARER_BcastUnprovisionedBeacon
(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t type, uint8_t const
*const p_dev_uuid, uint16_t oob_info, rm_ble_mesh_buffer_t const
*const p_uri)

fsp_err_t RM_BLE_MESH_BEARER_BroadcastBeacon
(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t type, uint8_t const
*const p_packet, uint16_t length)

fsp_err_t RM_BLE_MESH_BEARER_StartProxyAdv (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, uint8_t type, uint8_t const *const p_data, uint16_t
datalen)

fsp_err_t RM_BLE_MESH_BEARER_SendPdu (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, rm_ble_mesh_bearer_handle_t const *const p_brr_handle,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_buffer_t const
*const p_buffer)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,175 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

fsp_err_t RM_BLE_MESH_BEARER_GetPacketRssi (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, uint8_t *p_rssi_value)

fsp_err_t RM_BLE_MESH_BEARER_Sleep (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLE_MESH_BEARER_Wakeup (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, uint8_t mode)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Bearer module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_bearer

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_bearer_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Bearer
(rm_ble_mesh_bearer)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Bearer (rm_ble_mesh_bearer).

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_bearer
0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Data Structures

struct rm_ble_mesh_bearer_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_bearer_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,176 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

struct rm_ble_mesh_bearer_instance_ctrl_t

RM_BLE_MESH_BEARER private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_BEARER_Open() is called.

Function Documentation

◆ RM_BLE_MESH_BEARER_Open()

fsp_err_t RM_BLE_MESH_BEARER_Open (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_cfg_t const *const p_cfg)

Open bearer middleware.

Implements rm_ble_mesh_bearer_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_BEARER_Open(&g_ble_mesh_bearer0_ctrl, &g_ble_mesh_bearer0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

◆ RM_BLE_MESH_BEARER_Close()

fsp_err_t RM_BLE_MESH_BEARER_Close (rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

Close bearer middleware. Implements rm_ble_mesh_bearer_api_t::close.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_BEARER_Close(&g_ble_mesh_bearer0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,177 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_RegisterInterface()

fsp_err_t RM_BLE_MESH_BEARER_RegisterInterface (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_ntf_callback_result_t(*)(
rm_ble_mesh_bearer_ntf_callback_args_t *p_args) p_callback)

Register interface with Bearer Layer. This routine registers interface with the Bearer Layer. Bearer
Layer supports single Application, hence this rouine shall be called once.

Implements rm_ble_mesh_bearer_api_t::registerInterface.

Example:

 /* Register Bearer interface. */

 err = RM_BLE_MESH_BEARER_RegisterInterface(&g_ble_mesh_bearer0_ctrl, brr_type,

rm_ble_mesh_bearer_ntf_callback);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,178 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_RegisterBeaconHandler()

fsp_err_t RM_BLE_MESH_BEARER_RegisterBeaconHandler (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, rm_ble_mesh_bearer_beacon_type_t bcon_type,
void(*)(rm_ble_mesh_bearer_beacon_callback_args_t *p_args) p_handler)

Register beacon interface with Bearer Layer. This routine registers interface with the Bearer Layer
to process Beacons. Bearer Layer supports single Application, hence this rouine shall be called
once.

Implements rm_ble_mesh_bearer_api_t::registerBeaconHandler.

Example:

 /* Register beacon handler. */

 err = RM_BLE_MESH_BEARER_RegisterBeaconHandler(&g_ble_mesh_bearer0_ctrl,

 RM_BLE_MESH_BEARER_TYPE_BCON,

 rm_ble_mesh_bearer_beacon_callback

);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,179 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_AddBearer()

fsp_err_t RM_BLE_MESH_BEARER_AddBearer (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_info_t const *const p_brr_info,
rm_ble_mesh_bearer_handle_t *const p_brr_handle)

Add a bearer to Bearer Layer. This routine adds a bearer that is setup by the application for use by
the Mesh Stack. Bearer Layer supports single Application, hence this rouine shall be called once.

Implements rm_ble_mesh_bearer_api_t::addBearer.

Example:

 /* Add Bearer. */

 err = RM_BLE_MESH_BEARER_AddBearer(&g_ble_mesh_bearer0_ctrl,

RM_BLE_MESH_BEARER_TYPE_BCON, &brr_info, &brr_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_brr_info and p_brr_handle
are NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,180 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_RemoveBearer()

fsp_err_t RM_BLE_MESH_BEARER_RemoveBearer (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_handle_t const *const p_brr_handle)

Remove a bearer from Bearer Layer. This routine removes a bearer from the Mesh Stack. Bearer
Layer supports single Application, hence this rouine shall be called once.

Implements rm_ble_mesh_bearer_api_t::removeBearer.

Example:

 /* Remove Bearer. */

 err = RM_BLE_MESH_BEARER_RemoveBearer(&g_ble_mesh_bearer0_ctrl,

RM_BLE_MESH_BEARER_TYPE_BCON, &brr_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_brr_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_BEARER_ObserveBeacon()

fsp_err_t RM_BLE_MESH_BEARER_ObserveBeacon (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t bcon_type, uint8_t enable)

Observe on/off for the beacon type. This routine sends enables/disables the observation procedure
for the given beacon type.

Implements rm_ble_mesh_bearer_api_t::observeBeacon.

Example:

 /* Observe beacon. */

 err = RM_BLE_MESH_BEARER_ObserveBeacon(&g_ble_mesh_bearer0_ctrl, bcon_type,

enable);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,181 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_BcastUnprovisionedBeacon()

fsp_err_t RM_BLE_MESH_BEARER_BcastUnprovisionedBeacon (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, uint8_t type, uint8_t const *const p_dev_uuid, uint16_t oob_info, rm_ble_mesh_buffer_t
const *const p_uri)

API to send unprovisioned device beacon. This routine sends Unprovisioned Device Beacon.

Implements rm_ble_mesh_bearer_api_t::bcastUnprovisionedBeacon.

Example:

 /* Broadcast unprovisioned beacon. */

 err = RM_BLE_MESH_BEARER_BcastUnprovisionedBeacon(&g_ble_mesh_bearer0_ctrl, type,

&dev_uuid, oob_info, &uri);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_dev_uuid and p_uri are
NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,182 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_BroadcastBeacon()

fsp_err_t RM_BLE_MESH_BEARER_BroadcastBeacon (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t type, uint8_t const *const p_packet, uint16_t length)

API to broadcast a beacon. This routine sends the beacon of given type on Adv and GATT bearers.

Implements rm_ble_mesh_bearer_api_t::broadcastBeacon.

Example:

 /* Broadcast beacon. */

 err = RM_BLE_MESH_BEARER_BroadcastBeacon(&g_ble_mesh_bearer0_ctrl, type, &packet,

length);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_packet is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,183 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_StartProxyAdv()

fsp_err_t RM_BLE_MESH_BEARER_StartProxyAdv (rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
type, uint8_t const *const p_data, uint16_t datalen)

API to send proxy device ADV. This routine sends Proxy Device ADV.

Implements rm_ble_mesh_bearer_api_t::startProxyAdv.

Example:

 /* Start proxy advertising. */

 err = RM_BLE_MESH_BEARER_StartProxyAdv(&g_ble_mesh_bearer0_ctrl, type, &data,

length);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_data is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,184 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_SendPdu()

fsp_err_t RM_BLE_MESH_BEARER_SendPdu (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_handle_t const *const p_brr_handle, rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_buffer_t const *const p_buffer)

Send a bearer PDU. This routine sends a PDU from the Mesh stack to over the bearer indicated by
the bearer handle.

Implements rm_ble_mesh_bearer_api_t::sendPdu.

Example:

 /* Send common Bearer PDUs. */

 err = RM_BLE_MESH_BEARER_SendPdu(&g_ble_mesh_bearer0_ctrl, &brr_handle,

RM_BLE_MESH_BEARER_TYPE_BCON, &buffer);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_brr_handle and p_buffer
are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,185 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_GetPacketRssi()

fsp_err_t RM_BLE_MESH_BEARER_GetPacketRssi (rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
* p_rssi_value)

Get the RSSI of current received packet being processed. This routine returns the RSSI value of the
received packet in its context when called from the Mesh stack.

Implements rm_ble_mesh_bearer_api_t::getPacketRssi.

Example:

 /* Get the RSSI of current received packet being processed. */

 err = RM_BLE_MESH_BEARER_GetPacketRssi(&g_ble_mesh_bearer0_ctrl, &rssi_value);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_rssi_value is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_BEARER_Sleep()

fsp_err_t RM_BLE_MESH_BEARER_Sleep (rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

Put the bearer to sleep. This routine requests the underlying bearer interface to sleep. Default
bearer interface is that of advertising bearer.

Implements rm_ble_mesh_bearer_api_t::sleep.

Example:

 /* Put the bearer to sleep. */

 err = RM_BLE_MESH_BEARER_Sleep(&g_ble_mesh_bearer0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,186 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer (rm_ble_mesh_bearer)

◆ RM_BLE_MESH_BEARER_Wakeup()

fsp_err_t RM_BLE_MESH_BEARER_Wakeup (rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
mode)

Wakeup the bearer. This routine requests the underlying bearer interface to wakeup. Default
bearer interface is that of advertising bearer.

Implements rm_ble_mesh_bearer_api_t::wakeup.

Example:

 /* Wakeup the bearer. */

 err = RM_BLE_MESH_BEARER_Wakeup(&g_ble_mesh_bearer0_ctrl, mode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

 BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_BEARER_PLATFORM_Open
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_BEARER_PLATFORM_Close
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_BEARER_PLATFORM_Setup
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_BEARER_PLATFORM_CallbackSet
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_gatt_iface_cb_t callback)

fsp_err_t RM_MESH_BEARER_PLATFORM_SetGattMode
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t RM_MESH_BEARER_PLATFORM_GetGattMode
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_gatt_mode_t *p_mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,187 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

fsp_err_t RM_MESH_BEARER_PLATFORM_SetScanResponseData
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint8_t *p_data,
uint8_t len)

fsp_err_t RM_MESH_BEARER_PLATFORM_ScanGattBearer
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_state_t state,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t RM_MESH_BEARER_PLATFORM_Connect
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint8_t
*p_remote_address, uint8_t address_type,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t RM_MESH_BEARER_PLATFORM_DiscoverService
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint16_t handle,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t RM_MESH_BEARER_PLATFORM_ConfigureNotification
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint16_t handle,
rm_mesh_bearer_platform_state_t state,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t RM_MESH_BEARER_PLATFORM_Disconnect
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint16_t handle)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Bearer Platform module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_bearer_platform

The following build time configurations are defined in fsp_cfg/rm_mesh_bearer_platform_cfg.h:

Configuration Options Default Description

Debug Public Address Must be a valid device
address

FF:FF:FF:50:90:74 Public Address of
firmware initial value.

Debug Random
Address

Must be a valid device
address

FF:FF:FF:FF:FF:FF Random Address of
firmware initial value.

Maximum number of Value must be an 7 Maximum number of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,188 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

connections integer between 1 and
7, and lower than the
value defined in ble
module.

connections.

Maximum connection
data length

Value must be an
integer between 27
and 251, and lower
than the value defined
in ble module.

251 Maximum connection
data length.

Maximum advertising
data length

Value must be an
integer between 31
and 1650, and lower
than the value defined
in ble module.

1650 Maximum advertising
data length.

Maximum advertising
set number

Value must be an
integer between 1 and
4, and lower than the
value defined in ble
module.

4 Maximum advertising
set number.

Maximum periodic sync
set number.

Value must be an
integer between 1 and
2, and lower than the
value defined in ble
module.

2 Maximum periodic sync
set number.

Store Security Data Disable
Enable

Disable Store Security Data in
DataFlash.

Data Flash Block for
Security Data

Value must be an
integer between 0 and
7, and lower than the
value defined in ble
module.

0 Data Flash Block for
Security Data
Management.

Remote Device
Bonding Number

Value must be an
integer between 1 and
7, and lower than the
value defined in ble
module.

7 Number of remote
device bonding
information.

Connection Event Start
Notify

Disable
Enable

Disable Set Connection event
start notify
enable/disable.

Connection Event Close
Notify

Disable
Enable

Disable Set Connection event
close notify
enable/disable.

Advertising Event Start
Notify

Disable
Enable

Disable Set Advertising event
start notify
enable/disable.

Advertising Event Close
Notify

Disable
Enable

Disable Set Advertising event
close notify
enable/disable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,189 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

Scanning Event Start
Notify

Disable
Enable

Disable Set Scanning event
start notify
enable/disable.

Scanning Event Close
Notify

Disable
Enable

Disable Set Scanning event
close notify
enable/disable.

Initiating Event Start
Notify

Disable
Enable

Disable Set Initiating event
start notify
enable/disable.

Initiating Event Close
Notify

Disable
Enable

Disable Set Initiating event
close notify
enable/disable.

RF Deep Sleep Start
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
start notify
enable/disable.

RF Deep Sleep Wakeup
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
wakeup notify
enable/disable.

Bluetooth dedicated
clock

Value must be an
integer between 0 and
15, and lower than the
value defined in ble
module.

6 Load capacitance
adjustment.

DC-DC converter Disable
Enable

Disable Set DC-DC converter
for RF part.

Slow Clock Source Use RF_LOCO
Use External
32.768kHz

Use RF_LOCO Set slow clock source
for RF part.

MCU CLKOUT Port P109
P205

P109 When MESH_BEARER_P
LATFORM_CFG_RF_EXT
ERNAL_32K_ENABLE =
1, Set port of MCU
CLKOUT.

MCU CLKOUT
Frequency Output

MCU CLKOUT
frequency
32.768kHz
MCU CLKOUT
frequency
16.384kHz

MCU CLKOUT
frequency 32.768kHz

When MESH_BEARER_P
LATFORM_CFG_RF_EXT
ERNAL_32K_ENABLE =
1, set frequency output
from CLKOUT of MCU
part.

Sleep Clock
Accuracy(SCA)

Value must be an
integer between 0 and
500, and lower than
the value defined in ble
module.

250 When MESH_BEARER_P
LATFORM_CFG_RF_EXT
ERNAL_32K_ENABLE =
1, set Sleep Clock
Accuracy(SCA) for RF
slow clock.

Transmission Power
Maximum Value

max +0dBm
max +4dBm

max +4dBm Set transmission power
maximum value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,190 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

Transmission Power
Default Value

High 0dBm(Tra
nsmission
Power
Maximum Value
= +0dBm) / +4
dBm(Transmissi
on Power
Maximum Value
= +4dBm)
Mid 0dBm(Tran
smission Power
Maximum Value
= +0dBm) / 0d
Bm(Transmissio
n Power
Maximum Value
= +4dBm)
Low -18dBm(Tr
ansmission
Power
Maximum Value
= +0dBm) / -20
dBm(Transmissi
on Power
Maximum Value
= +4dBm)

High
0dBm(Transmission
Power Maximum Value
= +0dBm) /
+4dBm(Transmission
Power Maximum Value
= +4dBm)

Set default transmit
power. Default transmit
power is dependent on
the configuration of
Maximum transmission
power(MESH_BEARER_
PLATFORM_CFG_RF_MA
X_TX_POW).

CLKOUT_RF Output No output
4MHz output
2MHz output
1MHz output

No output Set CLKOUT_RF output
setting.

RF_DEEP_SLEEP
Transition

Disable
Enable

Enable Set RF_DEEP_SLEEP
transition.

MCU Main Clock
Frequency

Value must be an
integer between 1000
and 20000, and lower
than the value defined
in ble module.

8000 Set MCU Main Clock
Frequency (kHz). Set
clock source according
to your board
environment. HOCO:
don't care. / Main
Clock: 1000 to 20000
kHz / PLL Circuit: 4000
to 12500 kHz

Code Flash(ROM)
Device Data Block

Value must be an
integer between -1 and
255, and lower than
the value defined in ble
module.

255 Device specific data
block on Code Flash
(ROM).

Device Specific Data
Flash Block

Value must be an
integer between -1 and
7, and lower than the
value defined in ble
module.

-1 Device specific data
block on E2 Data Flash.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,191 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

MTU Size Configured Value must be an
integer between 23
and 247, and lower
than the value defined
in ble module.

247 MTU Size configured by
GATT MTU exchange
procedure.

Timer Slot Maximum
Number

Value must be an
integer between 1 and
10, and lower than the
value defined in ble
module.

10 The maximum number
of timer slot.

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Bearer Platform
(rm_mesh_bearer_platform)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Bearer Platform (rm_mesh_bearer_platform).

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_mesh_bearer_pla
tform0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Device Address Type Invalid Device Address
Type

0 Select device address
type (public : 0,
random : 1).

GATT Server Callback
Number

Invalid Callback
Number

1 Number of GATT server
callback.

GATT Client Callback
Number

Invalid Callback
Number

1 Number of GATT client
callback.

Vender Specific
Callback

Name Must Be a Valid
C Symbol.

NULL Vendor specific
callback function
name.

Data Structures

struct rm_mesh_bearer_platform_instance_ctrl_t

struct rm_mesh_bearer_platform_extended_cfg_t

Typedefs

typedef void(* rm_mesh_bearer_platform_gatt_iface_cb_t) (uint8_t event_name,
uint8_t event_param, uint16_t conn_hdl, st_ble_dev_addr_t
*peer_addr)

 Callback function for GATT interface event. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,192 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

Enumerations

enum rm_mesh_bearer_platform_interface_event_t

Data Structure Documentation

◆ rm_mesh_bearer_platform_instance_ctrl_t

struct rm_mesh_bearer_platform_instance_ctrl_t

RM_BLE_MESH_BEARER private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_BEARER_Open() is called.

◆ rm_mesh_bearer_platform_extended_cfg_t

struct rm_mesh_bearer_platform_extended_cfg_t

Bearer port extension for renesas BLE stack.

Typedef Documentation

◆ rm_mesh_bearer_platform_gatt_iface_cb_t

typedef void(* rm_mesh_bearer_platform_gatt_iface_cb_t) (uint8_t event_name, uint8_t
event_param, uint16_t conn_hdl, st_ble_dev_addr_t *peer_addr)

Callback function for GATT interface event.

Parameters
event_name The event defined by

rm_mesh_bearer_platform_interface_event_t

event_param The mode of GATT connection
rm_mesh_bearer_platform_gatt_mode_t

conn_hdl The connection handle

peer_addr Pointer to the connected device address

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,193 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ rm_mesh_bearer_platform_interface_event_t

enum rm_mesh_bearer_platform_interface_event_t

GATT Interface Events

Enumerator

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_UP

The event GATT Bearer BLE Link Layer
connected

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_DOWN

The event GATT Bearer BLE Link Layer
disconnected

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_ENABLE

The event GATT Bearer service enabled for
communication

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_DISABLE

The event GATT Bearer service disabled for
communication

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_NOT_FOUND

The event discovery process is not completed

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_SCAN

The event that connectable device having
Mesh GATT Service is found

RM_MESH_BEARER_PLATFORM_INTERFACE_EVEN
T_CANCEL

The Event GATT/BLE link layer connection
creation is canceled

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,194 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_Open()

fsp_err_t RM_MESH_BEARER_PLATFORM_Open (rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_cfg_t const *const p_cfg)

Open Bearer Platform middleware. Initialize underlying BLE Protocol Stack to use as a Mesh Bearer.
API to initialize underlying BLE Protocol Stack to use as a Mesh Bearer. Completion of the
initialization is notified by the callback function.

Implements rm_mesh_bearer_platform_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_BEARER_PLATFORM_Open(&g_mesh_bearer_platform0_ctrl,

&g_mesh_bearer_platform0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

◆ RM_MESH_BEARER_PLATFORM_Close()

fsp_err_t RM_MESH_BEARER_PLATFORM_Close (rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

Close Bearer Platform middleware. Terminate BLE stack.

Implements rm_mesh_bearer_platform_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_BEARER_PLATFORM_Close(&g_mesh_bearer_platform0_ctrl);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,195 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_Setup()

fsp_err_t RM_MESH_BEARER_PLATFORM_Setup (rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

Register ADV bearer with Mesh stack and start scan. API to register ADV bearer with Mesh stack.
After registering, this routine starts Scan.

Parameters
[in] p_ctrl rm_mesh_bearer_platform

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_BEARER_PLATFORM_CallbackSet()

fsp_err_t RM_MESH_BEARER_PLATFORM_CallbackSet (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, rm_mesh_bearer_platform_gatt_iface_cb_t callback)

Register callback function to receive GATT interface events. API to register callback function to
receive GATT interface events.

Parameters
[in] p_ctrl rm_mesh_bearer_platform

control block.

[in] callback Callback function.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,196 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_SetGattMode()

fsp_err_t RM_MESH_BEARER_PLATFORM_SetGattMode (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, rm_mesh_bearer_platform_gatt_mode_t mode)

Set GATT Bearer mode.

Parameters
[in] p_ctrl rm_mesh_bearer_platform

control block.

[in] mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or RM_MESH_BEARER_PLATF
ORM_GATT_MODE_PROXY.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_BEARER_PLATFORM_GetGattMode()

fsp_err_t RM_MESH_BEARER_PLATFORM_GetGattMode (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, rm_mesh_bearer_platform_gatt_mode_t * p_mode)

Get current GATT Bearer mode.

Parameters
[in] p_ctrl rm_mesh_bearer_platform

control block.

[in] p_mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or RM_MESH_BEARER_PLATF
ORM_GATT_MODE_PROXY.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_mode is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,197 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_SetScanResponseData()

fsp_err_t RM_MESH_BEARER_PLATFORM_SetScanResponseData (rm_mesh_bearer_platform_ctrl_t
*const p_ctrl, uint8_t * p_data, uint8_t len)

Set scan response data in connectable and scannable undirected advertising event. API to Set Scan
Response Data in Connectable and scannable undirected Advertising event. Scan Response Data
can be used for indicating additional information such as << Complete Local Name>>.

Implements rm_mesh_bearer_platform_api_t::setScanResponseData.

Example:

 /* Set scan response data in connectable and scannable undirected advertising

event.. */

 err = RM_MESH_BEARER_PLATFORM_SetScanResponseData(&g_mesh_bearer_platform0_ctrl,

&data, length);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_data is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,198 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_ScanGattBearer()

fsp_err_t RM_MESH_BEARER_PLATFORM_ScanGattBearer (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, rm_mesh_bearer_platform_state_t state, rm_mesh_bearer_platform_gatt_mode_t mode)

Manage reporting connectable device having Mesh GATT service. API to manage reporting
connectable device having Mesh GATT service.

Parameters
[in] p_ctrl rm_mesh_bearer_platform

control block.

[in] state Notification configuration
flag; enable if RM_MESH_BEA
RER_PLATFORM_STATE_ENA
BLE, or disable if RM_MESH_
BEARER_PLATFORM_STATE_
DISABLE.

[in] mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or RM_MESH_BEARER_PLATF
ORM_GATT_MODE_PROXY.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,199 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_Connect()

fsp_err_t RM_MESH_BEARER_PLATFORM_Connect (rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
uint8_t * p_remote_address, uint8_t address_type, rm_mesh_bearer_platform_gatt_mode_t mode
)

Request to create connection. API to request to Create Connection. Completion of the establishing
a connection is notified by RM_BLE_MESH_BEARER_IFACE_UP. After establishing a connection,
RM_MESH_BEARER_PLATFORM_DiscoverService() is invoked automatically.

Implements rm_mesh_bearer_platform_api_t::connect.

Example:

 /* Request to create connection. */

 err = RM_MESH_BEARER_PLATFORM_Connect(&g_mesh_bearer_platform0_ctrl,

 &remote_address,

 bearer_address_type,

 RM_MESH_BEARER_PLATFORM_GATT_MODE_PROVISION);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_POINTER The parameter p_remote_address is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,200 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_DiscoverService()

fsp_err_t RM_MESH_BEARER_PLATFORM_DiscoverService (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, uint16_t handle, rm_mesh_bearer_platform_gatt_mode_t mode)

Start service discovery for Mesh GATT service. API to start Service Discovery for Mesh GATT
Service. If Mesh GATT Service specified by the "mode" argument, this routine enables Notification
of the Mesh GATT Service by invoking RM_MESH_BEARER_PLATFORM_ConfigureNotification().

Implements rm_mesh_bearer_platform_api_t::discoverService.

Example:

 /* Start service discovery for Mesh GATT service. */

 err = RM_MESH_BEARER_PLATFORM_DiscoverService(&g_mesh_bearer_platform0_ctrl,

 handle,

 RM_MESH_BEARER_PLATFORM_GATT_MODE_PROVISION);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,201 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

◆ RM_MESH_BEARER_PLATFORM_ConfigureNotification()

fsp_err_t RM_MESH_BEARER_PLATFORM_ConfigureNotification (rm_mesh_bearer_platform_ctrl_t
*const p_ctrl, uint16_t handle, rm_mesh_bearer_platform_state_t state,
rm_mesh_bearer_platform_gatt_mode_t mode)

Configure GATT notification of Mesh GATT service. API to configure GATT Notification of Mesh GATT
Service.

Implements rm_mesh_bearer_platform_api_t::configureNotification.

Example:

 /* Configure GATT notification of Mesh GATT service. */

 err =

RM_MESH_BEARER_PLATFORM_ConfigureNotification(&g_mesh_bearer_platform0_ctrl,

 handle,

 RM_MESH_BEARER_PLATFORM_STATE_ENABLE,

 RM_MESH_BEARER_PLATFORM_GATT_MODE_PROVISION);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MESH_BEARER_PLATFORM_Disconnect()

fsp_err_t RM_MESH_BEARER_PLATFORM_Disconnect (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, uint16_t handle)

Terminate Connection. API to terminate connection.

Implements rm_mesh_bearer_platform_api_t::disconnect.

Example:

 /* Terminate Connection. */

 err = RM_MESH_BEARER_PLATFORM_Disconnect(&g_mesh_bearer_platform0_ctrl, handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,202 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Bearer Platform (rm_mesh_bearer_platform)

 BLE Mesh Network Config Client (rm_mesh_config_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_CONFIG_CLT_Open (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, rm_ble_mesh_config_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_CONFIG_CLT_Close (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_SetServer (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t server_addr, uint8_t
*p_dev_key)

fsp_err_t RM_MESH_CONFIG_CLT_SendReliablePdu
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_CONFIG_CLT_BeaconGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_BeaconSet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_CompositionDataGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_DefaultTtlGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_DefaultTtlSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_GattProxyGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_GattProxySet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_RelayGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_RelaySet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,203 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationVaddrSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionAdd
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrAdd
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionDelete
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrDelete
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionOverwrite
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrOverwrite
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionDeleteAll
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_SigModelSubscriptionGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_VendorModelSubscriptionGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyAdd (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,204 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyUpdate
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyDelete
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyAdd
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyUpdate
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyDelete
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NodeIdentityGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NodeIdentitySet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelAppBind
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_ModelAppUnbind
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_SigModelAppGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_VendorModelAppGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NodeReset (rm_ble_mesh_config_client_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,205 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_FriendGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_FriendSet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_KeyrefreshPhaseGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_KeyrefreshPhaseSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatPublicationGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatPublicationSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatSubscriptionGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatSubscriptionSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_LpnPolltimeoutGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_CONFIG_CLT_NetworkTransmitGet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_CONFIG_CLT_NetworkTransmitSet
(rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Config Client module supports the following devices.

RA4W1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,206 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

Configuration
Build Time Configurations for rm_mesh_config_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_config_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Config Client
(rm_mesh_config_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Config Client (rm_mesh_config_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh config
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_config_clt0 Module name.

Data Structures

struct rm_mesh_config_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_config_clt_instance_ctrl_t

struct rm_mesh_config_clt_instance_ctrl_t

BLE mesh config instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_CONFIG_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,207 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_Open()

fsp_err_t RM_MESH_CONFIG_CLT_Open (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
rm_ble_mesh_config_client_cfg_t const *const p_cfg)

Open Configuration Client middleware. This is to initialize Configuration Client model and to
register with Access layer.

Implements rm_ble_mesh_config_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_CONFIG_CLT_Open(&g_mesh_config_clt0_ctrl, &g_mesh_config_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_CONFIG_CLT_Close()

fsp_err_t RM_MESH_CONFIG_CLT_Close (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

Close Configuration Client middleware.

Implements rm_ble_mesh_config_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_CONFIG_CLT_Close(&g_mesh_config_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,208 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_SetServer()

fsp_err_t RM_MESH_CONFIG_CLT_SetServer (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t server_addr, uint8_t * p_dev_key)

This is to sets the information about server which is to be configured.

Implements rm_ble_mesh_config_client_api_t::setServer.

Example:

 /* Sets the information about server which is to be configured. */

 err = RM_MESH_CONFIG_CLT_SetServer(&g_mesh_config_clt0_ctrl, server_addr,

&dev_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,209 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_SendReliablePdu()

fsp_err_t RM_MESH_CONFIG_CLT_SendReliablePdu (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_config_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_CONFIG_CLT_SendReliablePdu(&g_mesh_config_clt0_ctrl, req_opcode,

p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,210 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_BeaconGet()

fsp_err_t RM_MESH_CONFIG_CLT_BeaconGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config Beacon Get is an acknowledged message used to get the current Secure Network
Beacon state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,211 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_BeaconSet()

fsp_err_t RM_MESH_CONFIG_CLT_BeaconSet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Config Beacon Set is an acknowledged message used to set the current Secure Network
Beacon state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_beacon_
set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,212 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_CompositionDataGet()

fsp_err_t RM_MESH_CONFIG_CLT_CompositionDataGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Composition Data Get is an acknowledged message used to read one page of the
Composition Data.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_composi
tion_data_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,213 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_DefaultTtlGet()

fsp_err_t RM_MESH_CONFIG_CLT_DefaultTtlGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

Config Default TTL Get is an acknowledged message used to get the current Default TTL state of a
node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,214 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_DefaultTtlSet()

fsp_err_t RM_MESH_CONFIG_CLT_DefaultTtlSet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config Default TTL Set is an acknowledged message used to set the Default TTL state of a
node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_default_
ttl_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,215 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_GattProxyGet()

fsp_err_t RM_MESH_CONFIG_CLT_GattProxyGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config GATT Proxy Get is an acknowledged message used to get the GATT Proxy state of a
node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,216 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_GattProxySet()

fsp_err_t RM_MESH_CONFIG_CLT_GattProxySet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config GATT Proxy Set is an acknowledged message used to set the GATT Proxy state of a
node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_gatt_pro
xy_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,217 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_RelayGet()

fsp_err_t RM_MESH_CONFIG_CLT_RelayGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config Relay Get is an acknowledged message used to get the current Relay and Relay
Retransmit states of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,218 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_RelaySet()

fsp_err_t RM_MESH_CONFIG_CLT_RelaySet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Config Relay Set is an acknowledged message used to set the current Relay and Relay
Retransmit states of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_relay_se
t_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,219 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelPublicationGet()

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Model Publication Get is an acknowledged message used to get the publish address and
parameters of an outgoing message that originates from a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_p
ublication_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,220 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelPublicationSet()

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationSet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Model Publication Set is an acknowledged message used to set the Model Publication
state of an outgoing message that originates from a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_p
ublication_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,221 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelPublicationVaddrSet()

fsp_err_t RM_MESH_CONFIG_CLT_ModelPublicationVaddrSet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Publication Set is an acknowledged message used to set the Model Publication
state of an outgoing message that originates from a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_p
ublication_virtual_address_s
et_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,222 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionAdd()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionAdd (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Model Subscription Add is an acknowledged message used to add an address to a
Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_add_parameter_t
.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,223 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrAdd()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrAdd (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Subscription Add is an acknowledged message used to add an address to a
Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_virtual_address_
add_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,224 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionDelete()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionDelete (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Subscription Delete is an acknowledged message used to delete a subscription
address from the Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_delete_paramete
r_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,225 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrDelete()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrDelete (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Subscription Delete is an acknowledged message used to delete a subscription
address from the Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_virtual_address_
delete_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,226 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionOverwrite()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionOverwrite (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Subscription Overwrite is an acknowledged message used to discard the
Subscription List and add an address to the cleared Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_overwrite_param
eter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,227 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrOverwrite()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionVaddrOverwrite (
rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Config Model Subscription Overwrite is an acknowledged message used to discard the
Subscription List and add an address to the cleared Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_virtual_address_
overwrite_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,228 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelSubscriptionDeleteAll()

fsp_err_t RM_MESH_CONFIG_CLT_ModelSubscriptionDeleteAll (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Model Subscription Delete All is an acknowledged message used to discard the
Subscription List of a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_s
ubscription_delete_all_param
eter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,229 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_SigModelSubscriptionGet()

fsp_err_t RM_MESH_CONFIG_CLT_SigModelSubscriptionGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config SIG Model Subscription Get is an acknowledged message used to get the list of
subscription addresses of a model within the element. This message is only for SIG Models.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_sig_mod
el_subscription_get_paramet
er_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,230 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_VendorModelSubscriptionGet()

fsp_err_t RM_MESH_CONFIG_CLT_VendorModelSubscriptionGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config SIG Model Subscription Get is an acknowledged message used to get the list of
subscription addresses of a model within the element. This message is only for Vendor Models.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_vendor_
model_subscription_get_para
meter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,231 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetkeyAdd()

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyAdd (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Config NetKey Add is an acknowledged message used to add a NetKey to a NetKey List on a
node. The added NetKey is then used by the node to authenticate and decrypt messages it
receives, as well as authenticate and encrypt messages it sends.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_netkey_
add_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,232 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetkeyUpdate()

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyUpdate (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config NetKey Update is an acknowledged message used to update a NetKey on a node. The
updated NetKey is then used by the node to authenticate and decrypt messages it receives, as well
as authenticate and encrypt messages it sends, as defined by the Key Refresh procedure.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_netkey_
update_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,233 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetkeyDelete()

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyDelete (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config NetKey Delete is an acknowledged message used to delete a NetKey on a NetKey List
from a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_netkey_
delete_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,234 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetkeyGet()

fsp_err_t RM_MESH_CONFIG_CLT_NetkeyGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config NetKey Get is an acknowledged message used to report all NetKeys known to the node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,235 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_AppkeyAdd()

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyAdd (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Config AppKey Add is an acknowledged message used to add an AppKey to the AppKey List on
a node and bind it to the NetKey identified by NetKeyIndex. The added AppKey can be used by the
node only as a pair with the specified NetKey. The AppKey is used to authenticate and decrypt
messages it receives, as well as authenticate and encrypt messages it sends.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_appkey_
add_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,236 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_AppkeyUpdate()

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyUpdate (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config AppKey Update is an acknowledged message used to update an AppKey value on the
AppKey List on a node. The updated AppKey is used by the node to authenticate and decrypt
messages it receives, as well as authenticate and encrypt messages it sends, as defined by the Key
Refresh procedure.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_appkey_
update_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,237 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_AppkeyDelete()

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyDelete (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config AppKey Delete is an acknowledged message used to delete an AppKey from the AppKey
List on a node

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_appkey_
delete_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,238 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_AppkeyGet()

fsp_err_t RM_MESH_CONFIG_CLT_AppkeyGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The AppKey Get is an acknowledged message used to report all AppKeys bound to the NetKey.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_appkey_
get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,239 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NodeIdentityGet()

fsp_err_t RM_MESH_CONFIG_CLT_NodeIdentityGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config Node Identity Get is an acknowledged message used to get the current Node Identity
state for a subnet.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_node_id
_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,240 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NodeIdentitySet()

fsp_err_t RM_MESH_CONFIG_CLT_NodeIdentitySet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config Node Identity Set is an acknowledged message used to set the current Node Identity
state for a subnet.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_node_id
_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,241 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelAppBind()

fsp_err_t RM_MESH_CONFIG_CLT_ModelAppBind (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config Model App Bind is an acknowledged message used to bind an AppKey to a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_a
pp_bind_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,242 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_ModelAppUnbind()

fsp_err_t RM_MESH_CONFIG_CLT_ModelAppUnbind (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config Model App Unbind is an acknowledged message used to remove the binding between
an AppKey and a model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_model_a
pp_unbind_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,243 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_SigModelAppGet()

fsp_err_t RM_MESH_CONFIG_CLT_SigModelAppGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Config SIG Model App Get is an acknowledged message used to request report of all AppKeys
bound to the SIG Model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_sig_mod
el_app_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,244 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_VendorModelAppGet()

fsp_err_t RM_MESH_CONFIG_CLT_VendorModelAppGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Vendor Model App Get is an acknowledged message used to request report of all
AppKeys bound to the Vendor Model.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_vendor_
model_app_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,245 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NodeReset()

fsp_err_t RM_MESH_CONFIG_CLT_NodeReset (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config Node Reset is an acknowledged message used to reset a node (other than a
Provisioner) and remove it from the network.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,246 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_FriendGet()

fsp_err_t RM_MESH_CONFIG_CLT_FriendGet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

The Config Friend Get is an acknowledged message used to get the current Friend state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,247 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_FriendSet()

fsp_err_t RM_MESH_CONFIG_CLT_FriendSet (rm_ble_mesh_config_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Config Friend Set is an acknowledged message used to set the Friend state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_friend_s
et_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,248 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_KeyrefreshPhaseGet()

fsp_err_t RM_MESH_CONFIG_CLT_KeyrefreshPhaseGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Key Refresh Phase Get is an acknowledged message used to get the current Key
Refresh Phase state of the identified network key.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_key_refr
esh_phase_get_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,249 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_KeyrefreshPhaseSet()

fsp_err_t RM_MESH_CONFIG_CLT_KeyrefreshPhaseSet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Key Refresh Phase Set is an acknowledged message used to set the current Key Refresh
Phase state of the identified network key.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_key_refr
esh_phase_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,250 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_HeartbeatPublicationGet()

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatPublicationGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

The Config Heartbeat Publication Get is an acknowledged message used to get the current
Heartbeat Publication state of an element.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,251 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_HeartbeatPublicationSet()

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatPublicationSet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Heartbeat Publication Set is an acknowledged message used to set the current
Heartbeat Publication state of an element.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_heartbe
at_publication_set_paramete
r_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,252 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_HeartbeatSubscriptionGet()

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatSubscriptionGet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl)

The Config Heartbeat Subscription Get is an acknowledged message used to get the current
Heartbeat Subscription state of an element.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,253 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_HeartbeatSubscriptionSet()

fsp_err_t RM_MESH_CONFIG_CLT_HeartbeatSubscriptionSet (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Config Heartbeat Publication Set is an acknowledged message used to set the current
Heartbeat Subscription state of an element.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_heartbe
at_subscription_set_paramet
er_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,254 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_LpnPolltimeoutGet()

fsp_err_t RM_MESH_CONFIG_CLT_LpnPolltimeoutGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Low Power Node PollTimeout Get is an acknowledged message used to get the current
value of PollTimeout timer of the Low Power node within a Friend node. The message is sent to a
Friend node that has claimed to be handling messages by sending ACKs On Behalf Of (OBO) the
indicated Low Power node. This message should only be sent to a node that has the Friend feature
supported and enabled.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_low_po
wer_node_polling_timeout_g
et_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,255 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetworkTransmitGet()

fsp_err_t RM_MESH_CONFIG_CLT_NetworkTransmitGet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl)

The Config Network Transmit Get is an acknowledged message used to get the current Network
Transmit state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,256 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Client (rm_mesh_config_clt)

◆ RM_MESH_CONFIG_CLT_NetworkTransmitSet()

fsp_err_t RM_MESH_CONFIG_CLT_NetworkTransmitSet (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Config Network Transmit Set is an acknowledged message used to set the current Network
Transmit state of a node.

Parameters
[in] p_ctrl rm_mesh_config_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_config_clt_network
_transmit_set_parameter_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Config Server (rm_mesh_config_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_CONFIG_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_CONFIG_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,257 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Server (rm_mesh_config_srv)

fsp_err_t RM_MESH_CONFIG_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Config Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_config_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_config_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Config Server
(rm_mesh_config_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Config Server (rm_mesh_config_srv).

Configuration Options Default Description

Interrupts

Callback Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh config
client ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
admin property server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_config_srv
0

Module name.

Data Structures

struct rm_mesh_config_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_config_srv_instance_ctrl_t

struct rm_mesh_config_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,258 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Server (rm_mesh_config_srv)

BLE mesh config instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_CONFIG_SRV_Open() is called.

Function Documentation

◆ RM_MESH_CONFIG_SRV_Open()

fsp_err_t RM_MESH_CONFIG_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize configuration server model. This is to initialize configuration server model and to
register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_CONFIG_SRV_Open(&g_mesh_config_srv0_ctrl, &g_mesh_config_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,259 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Config Server (rm_mesh_config_srv)

◆ RM_MESH_CONFIG_SRV_Close()

fsp_err_t RM_MESH_CONFIG_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate configuration server model. This is to terminate configuration server model and to
register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_CONFIG_SRV_Close(&g_mesh_config_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_CONFIG_SRV_StateUpdate()

fsp_err_t RM_MESH_CONFIG_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_CONFIG_SRV_StateUpdate(&g_mesh_config_srv0_ctrl, &state);

Return values
FSP_ERR_UNSUPPORTED This function is unsupported.

 BLE Mesh Network Generic Admin Property Server (rm_mesh_generic_admin_prop_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,260 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Admin Property Server (rm_mesh_generic_admin_prop_srv)

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Admin Property Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_admin_prop_srv

The following build time configurations are defined in
fsp_cfg/rm_mesh_generic_admin_prop_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Admin Property Server (rm_mesh_generic_admin_prop_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Admin Property Server (rm_mesh_generic_admin_prop_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
admin property server
ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
admin property server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_ad
min_prop_srv0

Module name.

Data Structures

struct rm_mesh_generic_admin_prop_srv_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,261 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Admin Property Server (rm_mesh_generic_admin_prop_srv)

struct rm_mesh_generic_admin_prop_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_admin_prop_srv_info_t

struct rm_mesh_generic_admin_prop_srv_info_t

Generic Admin Property is a state representing a device property of an element that can be read or
written

Data Fields

uint16_t property_id Admin Property ID field is a
2-octet Assigned Number value
referencing a device property

uint8_t user_access Admin User Access field is an
enumeration indicating whether
the device property can be read
or written as a Generic User
Property

uint8_t * property_value Admin Property Value field is a
conditional field

uint16_t property_value_len

◆ rm_mesh_generic_admin_prop_srv_instance_ctrl_t

struct rm_mesh_generic_admin_prop_srv_instance_ctrl_t

BLE mesh generic admin prop instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_ADMIN_PROP_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,262 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Admin Property Server (rm_mesh_generic_admin_prop_srv)

◆ RM_MESH_GENERIC_ADMIN_PROP_SRV_Open()

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Admin_Property Server model. This is to initialize Generic_Admin_Property
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err =

 RM_MESH_GENERIC_ADMIN_PROP_SRV_Open(&g_mesh_generic_admin_prop_srv0_ctrl,

&g_mesh_generic_admin_prop_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_ADMIN_PROP_SRV_Close()

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Generic_Admin_Property Server model. This is to terminate
Generic_Admin_Property Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_ADMIN_PROP_SRV_Close(&g_mesh_generic_admin_prop_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,263 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Admin Property Server (rm_mesh_generic_admin_prop_srv)

◆ RM_MESH_GENERIC_ADMIN_PROP_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_ADMIN_PROP_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err =

RM_MESH_GENERIC_ADMIN_PROP_SRV_StateUpdate(&g_mesh_generic_admin_prop_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,264 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)

(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Get
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Battery Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_battery_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_battery_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Battery Client (rm_mesh_generic_battery_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Battery Client (rm_mesh_generic_battery_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
battery client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_ba
ttery_clt0

Module name.

Data Structures

struct rm_mesh_generic_battery_clt_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,265 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)

Data Structure Documentation

◆ rm_mesh_generic_battery_clt_instance_ctrl_t

struct rm_mesh_generic_battery_clt_instance_ctrl_t

BLE mesh generic battery instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_BATTERY_CLT_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_BATTERY_CLT_Open()

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic Battery Client middleware. This is to initialize Generic_Battery Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_BATTERY_CLT_Open(&g_mesh_generic_battery_clt0_ctrl,

&g_mesh_generic_battery_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,266 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)

◆ RM_MESH_GENERIC_BATTERY_CLT_Close()

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic Battery Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_BATTERY_CLT_Close(&g_mesh_generic_battery_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_GENERIC_BATTERY_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Battery client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic battery client model. */

 err =

RM_MESH_GENERIC_BATTERY_CLT_GetModelHandle(&g_mesh_generic_battery_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,267 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)

◆ RM_MESH_GENERIC_BATTERY_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err =

RM_MESH_GENERIC_BATTERY_CLT_SendReliablePdu(&g_mesh_generic_battery_clt0_ctrl,

 req_opcode,

 p_parameter,

 rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,268 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Client (rm_mesh_generic_battery_clt)

◆ RM_MESH_GENERIC_BATTERY_CLT_Get()

fsp_err_t RM_MESH_GENERIC_BATTERY_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Battery Get message is an acknowledged message used to get the Generic Battery state of
an element. The response to the Generic Battery Get message is a Generic Battery Status
message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_battery_cl

t control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Battery Server (rm_mesh_generic_battery_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,269 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Server (rm_mesh_generic_battery_srv)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Battery Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_battery_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_battery_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Battery Server (rm_mesh_generic_battery_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Battery Server (rm_mesh_generic_battery_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
battery server ISR
occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
battery server timeout
ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_ba
ttery_srv0

Module name.

Data Structures

struct rm_mesh_generic_battery_srv_info_t

struct rm_mesh_generic_battery_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_battery_srv_info_t

struct rm_mesh_generic_battery_srv_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,270 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Server (rm_mesh_generic_battery_srv)

Generic Battery state is a set of four values representing the state of a battery

Data Fields

uint8_t generic_battery_level Generic Battery Level state is a
value ranging from 0 percent
through 100 percent

uint32_t generic_battery_time_to_discha
rge

Generic Battery Time to
Discharge state is a 24-bit
unsigned value ranging from 0
through 0xFFFFFF

uint32_t generic_battery_time_to_charge Generic Battery Time to Charge
state is a 24-bit unsigned value
ranging from 0 through
0xFFFFFF

uint8_t generic_battery_flags Generic Battery Flags state is a
concatenation of four 2-bit bit
fields: Presence, Indicator,
Charging, and Serviceability

◆ rm_mesh_generic_battery_srv_instance_ctrl_t

struct rm_mesh_generic_battery_srv_instance_ctrl_t

BLE mesh generic_battery instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_BATTERY_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,271 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Server (rm_mesh_generic_battery_srv)

◆ RM_MESH_GENERIC_BATTERY_SRV_Open()

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Battery Server model. This is to initialize Generic_Battery Server model and
to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_BATTERY_SRV_Open(&g_mesh_generic_battery_srv0_ctrl,

&g_mesh_generic_battery_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_BATTERY_SRV_Close()

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Generic_Battery Server model. This is to terminate Generic_Battery Server model
and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_BATTERY_SRV_Close(&g_mesh_generic_battery_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,272 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Battery Server (rm_mesh_generic_battery_srv)

◆ RM_MESH_GENERIC_BATTERY_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_BATTERY_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_BATTERY_SRV_StateUpdate(&g_mesh_generic_battery_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Client Property Server (rm_mesh_generic_client_prop_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,273 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Client Property Server (rm_mesh_generic_client_prop_srv)

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Client Property Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_client_prop_srv

The following build time configurations are defined in
fsp_cfg/rm_mesh_generic_client_prop_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Client Property Server (rm_mesh_generic_client_prop_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Client Property Server (rm_mesh_generic_client_prop_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
client property server
ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
client property server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_cli
ent_prop_srv0

Module name.

Data Structures

struct rm_mesh_generic_client_prop_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_client_prop_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,274 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Client Property Server (rm_mesh_generic_client_prop_srv)

struct rm_mesh_generic_client_prop_srv_instance_ctrl_t

BLE mesh generic client prop instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_CLIENT_PROP_SRV_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_CLIENT_PROP_SRV_Open()

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Client_Property Server model. This is to initialize Generic_Client_Property
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_CLIENT_PROP_SRV_Open(&g_mesh_generic_client_prop_srv0_ctrl,

 &g_mesh_generic_client_prop_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,275 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Client Property Server (rm_mesh_generic_client_prop_srv)

◆ RM_MESH_GENERIC_CLIENT_PROP_SRV_Close()

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Generic_Client_Property Server model. This is to terminate
Generic_Client_Property Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err =

RM_MESH_GENERIC_CLIENT_PROP_SRV_Close(&g_mesh_generic_client_prop_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,276 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Client Property Server (rm_mesh_generic_client_prop_srv)

◆ RM_MESH_GENERIC_CLIENT_PROP_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_CLIENT_PROP_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err =

RM_MESH_GENERIC_CLIENT_PROP_SRV_StateUpdate(&g_mesh_generic_client_prop_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,277 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Set (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_GENERIC_DTT_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Default Transition Time Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_dtt_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_dtt_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Default Transition Time Client (rm_mesh_generic_dtt_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Default Transition Time Client (rm_mesh_generic_dtt_clt).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
default transition time

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,278 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_dtt
_clt0

Module name.

Data Structures

struct rm_mesh_generic_dtt_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_dtt_clt_instance_ctrl_t

struct rm_mesh_generic_dtt_clt_instance_ctrl_t

BLE mesh generic dtt instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_DTT_CLT_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_DTT_CLT_Open()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic Default Transition Time Client middleware. This is to initialize
Generic_Default_Transition_Time Client model and to register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_DTT_CLT_Open(&g_mesh_generic_dtt_clt0_ctrl,

&g_mesh_generic_dtt_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,279 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

◆ RM_MESH_GENERIC_DTT_CLT_Close()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic Default Transition Time Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_DTT_CLT_Close(&g_mesh_generic_dtt_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_GENERIC_DTT_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Default_Transition_Time client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic default transition time client model. */

 err = RM_MESH_GENERIC_DTT_CLT_GetModelHandle(&g_mesh_generic_dtt_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,280 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

◆ RM_MESH_GENERIC_DTT_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands */

 err = RM_MESH_GENERIC_DTT_CLT_SendReliablePdu(&g_mesh_generic_dtt_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,281 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

◆ RM_MESH_GENERIC_DTT_CLT_Get()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Default Transition Time Get is an acknowledged message used to get the Generic Default
Transition Time state of an element. The response to the Generic Default Transition Time Get
message is a Generic Default Transition Time Status message. There are no parameters for this
message.

Parameters
[in] p_ctrl rm_mesh_generic_dtt_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,282 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

◆ RM_MESH_GENERIC_DTT_CLT_Set()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Generic Default Transition Time Set is an acknowledged message used to set the Generic Default
Transition Time state of an element. The response to the Generic Default Transition Time Set
message is a Generic Default Transition Time Status message.

Parameters
[in] p_ctrl rm_mesh_generic_dtt_clt

control block.

[in] p_parameter Pointer to transition time.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,283 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Client (rm_mesh_generic_dtt_clt)

◆ RM_MESH_GENERIC_DTT_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_DTT_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Default Transition Time Set Unacknowledged is an unacknowledged message used to set
the Generic Default Transition Time state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_dtt_clt

control block.

[in] p_parameter Pointer to transition time.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Default Transition Time Server (rm_mesh_generic_dtt_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_DTT_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_DTT_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_DTT_SRV_GetTime

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,284 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Server (rm_mesh_generic_dtt_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_generic_dtt_srv_transtion_time_info_t *const p_info)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Default Transition Time Server module supports the following
devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_dtt_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_dtt_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Default Transition Time Server (rm_mesh_generic_dtt_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Default Transition Time Server (rm_mesh_generic_dtt_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Tmeout Occurs

Name must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
default transition time
server ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
default transition time
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_dtt
_srv0

Module name.

Data Structures

struct rm_mesh_generic_dtt_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_dtt_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,285 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Server (rm_mesh_generic_dtt_srv)

struct rm_mesh_generic_dtt_srv_instance_ctrl_t

BLE mesh generic dtt instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_DTT_SRV_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_DTT_SRV_Open()

fsp_err_t RM_MESH_GENERIC_DTT_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Default_Transition_Time Server model. This is to initialize
Generic_Default_Transition_Time Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_DTT_SRV_Open(&g_mesh_generic_dtt_srv0_ctrl,

&g_mesh_generic_dtt_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,286 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Default Transition Time Server (rm_mesh_generic_dtt_srv)

◆ RM_MESH_GENERIC_DTT_SRV_Close()

fsp_err_t RM_MESH_GENERIC_DTT_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Default_Transition_Time Server model. This is to terminate
Generic_Default_Transition_Time Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_DTT_SRV_Close(&g_mesh_generic_dtt_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_GENERIC_DTT_SRV_GetTime()

fsp_err_t RM_MESH_GENERIC_DTT_SRV_GetTime (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_generic_dtt_srv_transtion_time_info_t *const p_info)

API to get default transition time. This is to get default transition time.

Parameters
[in] p_ctrl rm_mesh_generic_dtt_srv

control block.

[in] p_info rm_mesh_generic_dtt_srv
status information.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

 BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)
Modules » Networking » BLE Mesh Network Modules

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,287 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

Functions

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Get
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Set
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_DeltaSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_DeltaSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_MoveSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_MoveSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,288 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

The BLE Mesh Network Generic Level Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_level_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_level_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Level Client (rm_mesh_generic_level_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Level Client (rm_mesh_generic_level_clt).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
level client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_le
vel_clt0

Module name.

Data Structures

struct rm_mesh_generic_level_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_level_clt_instance_ctrl_t

struct rm_mesh_generic_level_clt_instance_ctrl_t

BLE mesh generic level instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_LEVEL_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,289 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_Open()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Level Client middleware. This is to initialize Generic_Level Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_LEVEL_CLT_Open(&g_mesh_generic_level_clt0_ctrl,

&g_mesh_generic_level_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_LEVEL_CLT_Close()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Level Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_LEVEL_CLT_Close(&g_mesh_generic_level_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,290 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Level client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle().

Example:

 /* Get the handle of generic level client model. */

 err = RM_MESH_GENERIC_LEVEL_CLT_GetModelHandle(&g_mesh_generic_level_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,291 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err =

 RM_MESH_GENERIC_LEVEL_CLT_SendReliablePdu(&g_mesh_generic_level_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,292 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_Get()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Level Get is an acknowledged message used to get the Generic Level state of an element.
The response to the Generic Level Get message is a Generic Level Status message. There are no
parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,293 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_Set()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Generic Level Set is an acknowledged message used to set the Generic Level state of an element
to a new absolute value. The response to the Generic Level Set message is a Generic Level Status
message.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,294 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Level Set Unacknowledged is an unacknowledged message used to set the Generic Level
state of an element to a new absolute value.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,295 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_DeltaSet()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_DeltaSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Generic Delta Set is an acknowledged message used to set the Generic Level state of an element
by a relative value. The message is transactional, it supports changing the state by a cumulative
value with a sequence of messages that are part of a transaction. The response to the Generic
Delta Set message is a Generic Level Status message.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,296 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_DeltaSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_DeltaSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Delta Set Unacknowledged is an unacknowledged message used to set the Generic Level
state of an element by a relative value.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,297 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_MoveSet()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_MoveSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Generic Move Set is an acknowledged message used to start a process of changing the Generic
Level state of an element with a defined transition speed. The response to the Generic Move Set
message is a Generic Level Status message.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,298 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Client (rm_mesh_generic_level_clt)

◆ RM_MESH_GENERIC_LEVEL_CLT_MoveSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_LEVEL_CLT_MoveSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Move Set Unacknowledged is an unacknowledged message used to start a process of
changing the Generic Level state of an element with a defined transition speed.

Parameters
[in] p_ctrl rm_mesh_generic_level_clt

control block.

[in] p_parameter Pointer to Generic Level Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Level Server (rm_mesh_generic_level_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,299 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Server (rm_mesh_generic_level_srv)

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Level Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_level_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_level_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Level Server (rm_mesh_generic_level_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Level Server (rm_mesh_generic_level_srv).

Configuration Options Default Description

Interrupts

Callback Provided Shen
Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
level server ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
level server timeout
ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_le
vel_srv0

Module name.

Data Structures

struct rm_mesh_generic_level_srv_info_t

struct rm_mesh_generic_level_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_level_srv_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,300 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Server (rm_mesh_generic_level_srv)

struct rm_mesh_generic_level_srv_info_t

Generic Level state is a 16-bit signed integer (2-s complement) representing the state of an
element

Data Fields

uint16_t level Generic Level

uint32_t delta_level Delta Level

uint16_t move_level Move Level

uint8_t tid

uint8_t transition_time

uint8_t delay

uint16_t target_level Target Level

◆ rm_mesh_generic_level_srv_instance_ctrl_t

struct rm_mesh_generic_level_srv_instance_ctrl_t

BLE mesh generic level instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_LEVEL_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,301 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Server (rm_mesh_generic_level_srv)

◆ RM_MESH_GENERIC_LEVEL_SRV_Open()

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Level Server model. This is to initialize Generic_Level Server model and to
register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_LEVEL_SRV_Open(&g_mesh_generic_level_srv0_ctrl,

&g_mesh_generic_level_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_LEVEL_SRV_Close()

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Level Server model. This is to terminate Generic_Level Server model and
to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_LEVEL_SRV_Close(&g_mesh_generic_level_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,302 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Level Server (rm_mesh_generic_level_srv)

◆ RM_MESH_GENERIC_LEVEL_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_LEVEL_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_BATTERY_SRV_StateUpdate(&g_mesh_generic_battery_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_LOC_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,303 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Location Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_loc_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_loc_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,304 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

Location Client (rm_mesh_generic_loc_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Location Client (rm_mesh_generic_loc_clt).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
location client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_loc
_clt0

Module name.

Data Structures

struct rm_mesh_generic_loc_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_loc_clt_instance_ctrl_t

struct rm_mesh_generic_loc_clt_instance_ctrl_t

BLE mesh generic loc instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_LOC_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,305 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_Open()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Location Client middleware. This is to initialize Generic_Location Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_LOC_CLT_Open(&g_mesh_generic_loc_clt0_ctrl,

&g_mesh_generic_loc_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_LOC_CLT_Close()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Location Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_LOC_CLT_Close(&g_mesh_generic_loc_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,306 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Location client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic_location client model. */

 err = RM_MESH_GENERIC_LOC_CLT_GetModelHandle(&g_mesh_generic_loc_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,307 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands */

 err = RM_MESH_GENERIC_LOC_CLT_SendReliablePdu(&g_mesh_generic_loc_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,308 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationGlobalGet()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

Generic Location Global Get message is an acknowledged message used to get the selected fields
of the Generic Location state of an element. The response to the Generic Location Global Get
message is a Generic Location Global Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,309 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationGlobalSet()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Location Global Set is an acknowledged message used to set the selected fields of the
Generic Location state of an element. The response to the Generic Location Global Set message is
a Generic Location Global Status message.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

[in] p_parameter Pointer to Generic Location
Global Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,310 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationGlobalSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationGlobalSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Location Global Set Unacknowledged is an unacknowledged message used to set the
selected fields of the Generic Location state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

[in] p_parameter Pointer to Generic Location
Global Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,311 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationLocalGet()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Generic Location Local Get message is an acknowledged message used to get the selected fields of
the Generic Location state of an element. The response to the Generic Location Local Get message
is a Generic Location Local Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,312 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationLocalSet()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Generic Location Local Set is an acknowledged message used to set the selected fields of the
Generic Location state of an element. The response to the Generic Location Local Set message is a
Generic Location Local Status message.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

[in] p_parameter Pointer to Generic Location
Local Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,313 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Client (rm_mesh_generic_loc_clt)

◆ RM_MESH_GENERIC_LOC_CLT_LocationLocalSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_LOC_CLT_LocationLocalSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Location Local Set Unacknowledged is an unacknowledged message used to set the
selected fields of the Generic Location state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_loc_clt

control block.

[in] p_parameter Pointer to Generic Location
Local Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_LOC_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_LOC_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,314 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)

fsp_err_t RM_MESH_GENERIC_LOC_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_GENERIC_LOC_SRV_SetupServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Location Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_loc_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_loc_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Location Server (rm_mesh_generic_loc_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Location Server (rm_mesh_generic_loc_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
location server ISR
occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
location server timeout
ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_loc
_srv0

Module name.

Data Structures

struct rm_mesh_generic_loc_srv_global_info_t

struct rm_mesh_generic_loc_srv_local_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,315 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)

struct rm_mesh_generic_loc_srv_state_info_t

struct rm_mesh_generic_loc_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_loc_srv_global_info_t

struct rm_mesh_generic_loc_srv_global_info_t

Generic Global Location state defines location information of an element

Data Fields

uint32_t global_latitude Global Coordinates (Latitude)

uint32_t global_longitude Global Coordinates (Longitude)

uint16_t global_altitude Global Altitude

◆ rm_mesh_generic_loc_srv_local_info_t

struct rm_mesh_generic_loc_srv_local_info_t

Generic Local Location state defines location information of an element

Data Fields

uint16_t local_north Local Coordinates (North)

uint16_t local_east Local Coordinates (East)

uint16_t local_altitude Local Altitude

uint8_t floor_number Floor Number

uint16_t uncertainty Uncertainty

◆ rm_mesh_generic_loc_srv_state_info_t

struct rm_mesh_generic_loc_srv_state_info_t

Generic Location state is a composite state that includes a Generic Location Global state and a
Generic Location Local state

Data Fields

rm_mesh_generic_loc_srv_globa
l_info_t

global_location Global Location

rm_mesh_generic_loc_srv_local_
info_t

local_location Local Location

◆ rm_mesh_generic_loc_srv_instance_ctrl_t

struct rm_mesh_generic_loc_srv_instance_ctrl_t

BLE mesh generic loc instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_LOC_SRV_Open() is called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,316 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)

Function Documentation

◆ RM_MESH_GENERIC_LOC_SRV_Open()

fsp_err_t RM_MESH_GENERIC_LOC_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Location Server model and to initialize Generic_Location_Setup Server
model. This is to initialize Generic_Location Server model and to register with Access layer. And this
is to initialize Generic_Location_Setup Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_LOC_SRV_Open(&g_mesh_generic_loc_srv0_ctrl,

&g_mesh_generic_loc_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_LOC_SRV_Close()

fsp_err_t RM_MESH_GENERIC_LOC_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Location Server model. This is to terminate Generic_Location Server
model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_LOC_SRV_Close(&g_mesh_generic_loc_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,317 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)

◆ RM_MESH_GENERIC_LOC_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_LOC_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_LOC_SRV_StateUpdate(&g_mesh_generic_loc_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,318 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Location Server (rm_mesh_generic_loc_srv)

◆ RM_MESH_GENERIC_LOC_SRV_SetupServerStateUpdate()

fsp_err_t RM_MESH_GENERIC_LOC_SRV_SetupServerStateUpdate (
rm_ble_mesh_model_server_ctrl_t *const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_generic_loc_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Manufacturer Property Server
(rm_mesh_generic_mfr_prop_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_Close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,319 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Manufacturer Property Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_mfr_prop_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_mfr_prop_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
manufacturer property
server ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must be a Valid
C Symbol

NULL Callback provided
when mesh generic
manufacturer property
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_mf
r_prop_srv0

Module name.

Data Structures

struct rm_mesh_generic_mfr_prop_srv_info_t

struct rm_mesh_generic_mfr_prop_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,320 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv)

Data Structure Documentation

◆ rm_mesh_generic_mfr_prop_srv_info_t

struct rm_mesh_generic_mfr_prop_srv_info_t

Generic Manufacturer Property is a state representing a device property of an element that is
programmed by a manufacturer and can be read

Data Fields

uint16_t property_id Manufacturer Property ID field
is a 2-octet Assigned Number
value that references a device
property

uint8_t user_access Manufacturer User Access field
is an enumeration indicating
whether or not the device
property can be read as a
Generic User Property

uint8_t * property_value Manufacturer Property Value
field is a conditional field

uint16_t property_value_len

◆ rm_mesh_generic_mfr_prop_srv_instance_ctrl_t

struct rm_mesh_generic_mfr_prop_srv_instance_ctrl_t

BLE mesh generic mfr prop instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_MFR_PROP_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,321 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv)

◆ RM_MESH_GENERIC_MFR_PROP_SRV_Open()

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Manufacturer_Property Server model. This is to initialize
Generic_Manufacturer_Property Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_MFR_PROP_SRV_Open(&g_mesh_generic_mfr_prop_srv0_ctrl,

&g_mesh_generic_mfr_prop_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_MFR_PROP_SRV_Close()

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Generic_Manufacturer_Property Server model. This is to terminate
Generic_Manufacturer_Property Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_MFR_PROP_SRV_Close(&g_mesh_generic_mfr_prop_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,322 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Manufacturer Property Server (rm_mesh_generic_mfr_prop_srv)

◆ RM_MESH_GENERIC_MFR_PROP_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_MFR_PROP_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err =

RM_MESH_GENERIC_MFR_PROP_SRV_StateUpdate(&g_mesh_generic_mfr_prop_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,323 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Get
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Set
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic On Off Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_on_off_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_on_off_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
On Off Client (rm_mesh_generic_on_off_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic On Off Client (rm_mesh_generic_on_off_clt).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic on
off client ISR occurs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,324 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_on
_off_clt0

Module name.

Data Structures

struct rm_mesh_generic_on_off_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_on_off_clt_instance_ctrl_t

struct rm_mesh_generic_on_off_clt_instance_ctrl_t

BLE mesh generic on off instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_ON_OFF_CLT_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_ON_OFF_CLT_Open()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Onoff Client middleware. This is to initialize Generic_Onoff Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_ON_OFF_CLT_Open(&g_mesh_generic_on_off_clt0_ctrl,

&g_mesh_generic_on_off_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,325 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

◆ RM_MESH_GENERIC_ON_OFF_CLT_Close()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Onoff Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_ON_OFF_CLT_Close(&g_mesh_generic_on_off_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_GENERIC_ON_OFF_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Onoff client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic on_off client model. */

 err = RM_MESH_GENERIC_ON_OFF_CLT_GetModelHandle(&g_mesh_generic_on_off_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,326 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

◆ RM_MESH_GENERIC_ON_OFF_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err =

RM_MESH_GENERIC_ON_OFF_CLT_SendReliablePdu(&g_mesh_generic_on_off_clt0_ctrl,

 req_opcode,

 p_parameter,

 rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,327 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

◆ RM_MESH_GENERIC_ON_OFF_CLT_Get()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Generic OnOff Get is an acknowledged message used to get the Generic OnOff state of an
element.

Parameters
[in] p_ctrl rm_mesh_generic_on_off_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,328 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

◆ RM_MESH_GENERIC_ON_OFF_CLT_Set()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Generic OnOff Set is an acknowledged message used to get the Generic OnOff state of an
element.

Parameters
[in] p_ctrl rm_mesh_generic_on_off_clt

control block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_generic_on_off_set
_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,329 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Client (rm_mesh_generic_on_off_clt)

◆ RM_MESH_GENERIC_ON_OFF_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_ON_OFF_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Generic OnOff Set is an unacknowledged message used to get the Generic OnOff state of an
element.

Parameters
[in] p_ctrl rm_mesh_generic_on_off_clt

control block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_generic_on_off_set
_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic On Off Server (rm_mesh_generic_on_off_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_Close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,330 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Server (rm_mesh_generic_on_off_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic On Off Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_on_off_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_on_off_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
On Off Server (rm_mesh_generic_on_off_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic On Off Server (rm_mesh_generic_on_off_srv).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic on
off server ISR occurs

Callback Provided
When an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic on
off server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_on
_off_srv0

Module name.

Data Structures

struct rm_mesh_generic_on_off_srv_info_t

struct rm_mesh_generic_on_off_srv_instance_ctrl_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,331 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Server (rm_mesh_generic_on_off_srv)

◆ rm_mesh_generic_on_off_srv_info_t

struct rm_mesh_generic_on_off_srv_info_t

Generic OnOff state is a Boolean value that represents the state of an element

Data Fields

uint8_t onoff Generic On/Off

uint8_t target_onoff Target On/Off - Used in
response path

uint8_t last_onoff Last On/Off

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_generic_on_off_srv_instance_ctrl_t

struct rm_mesh_generic_on_off_srv_instance_ctrl_t

BLE mesh generic on off instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_ON_OFF_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,332 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Server (rm_mesh_generic_on_off_srv)

◆ RM_MESH_GENERIC_ON_OFF_SRV_Open()

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Onoff Server model. This is to initialize Generic_Onoff Server model and to
register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_ON_OFF_SRV_Open(&g_mesh_generic_on_off_srv0_ctrl,

&g_mesh_generic_on_off_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_ON_OFF_SRV_Close()

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Onoff Server model. This is to terminate Generic_Onoff Server model and
to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_ON_OFF_SRV_Close(&g_mesh_generic_on_off_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,333 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic On Off Server (rm_mesh_generic_on_off_srv)

◆ RM_MESH_GENERIC_ON_OFF_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_ON_OFF_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_ON_OFF_SRV_StateUpdate(&g_mesh_generic_on_off_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_PL_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_PL_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,334 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

fsp_err_t RM_MESH_GENERIC_PL_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_PL_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PL_CLT_LastGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,335 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

The BLE Mesh Network Generic Power Level Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_pl_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_pl_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Power Level Client (rm_mesh_generic_pl_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Power Level Client (rm_mesh_generic_pl_clt).

Configuration Options Default Description

Interrupts

Callback Provided
When Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power level client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_pl_
clt0

Module name.

Data Structures

struct rm_mesh_generic_pl_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_pl_clt_instance_ctrl_t

struct rm_mesh_generic_pl_clt_instance_ctrl_t

BLE mesh generic pl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_PL_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,336 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_Open()

fsp_err_t RM_MESH_GENERIC_PL_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Power_Level Client middleware. This is to initialize Generic_Power_Level Client model
and to register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_PL_CLT_Open(&g_mesh_generic_pl_clt0_ctrl,

&g_mesh_generic_pl_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_PL_CLT_Close()

fsp_err_t RM_MESH_GENERIC_PL_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Power_Level Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_PL_CLT_Close(&g_mesh_generic_pl_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,337 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_PL_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Power_Level client model. Implements
rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic power level client model. */

 err = RM_MESH_GENERIC_PL_CLT_GetModelHandle(&g_mesh_generic_pl_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,338 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_PL_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands. Implements
rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_GENERIC_PL_CLT_SendReliablePdu(&g_mesh_generic_pl_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,339 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_LevelGet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Power Level Get message is an acknowledged message used to get the Generic Power
Actual state of an element. The response to the Generic Power Level Get message is a Generic
Power Level Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,340 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_LevelSet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Generic Power Level Set is an acknowledged message used to set the Generic Power Actual state
of an element. The response to the Generic Power Level Set message is a Generic Power Level
Status message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Level Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,341 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_LevelSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PL_CLT_LevelSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Power Level Set Unacknowledged is an unacknowledged message used to set the Generic
Power Actual state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Level Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,342 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_LastGet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_LastGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Power Last Get is an acknowledged message used to get the Generic Power Last state of
an element. The response to a Generic Power Last Get message is a Generic Power Last Status
message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,343 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_DefaultGet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Power Default Get is an acknowledged message used to get the Generic Power Default
state of an element. The response to a Generic Power Default Get message is a Generic Power
Default Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,344 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_DefaultSet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Generic Power Default Set is an acknowledged message used to set the Generic Power Default
state of an element. The response to the Generic Power Default Set message is a Generic Power
Default Status message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Default Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,345 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_DefaultSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PL_CLT_DefaultSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Power Default Set Unacknowledged is an unacknowledged message used to set the
Generic Power Default state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Default Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,346 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_RangeGet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Power Range Get is an acknowledged message used to get the Generic Power Range state
of an element. The response to the Generic Power Range Get message is a Generic Power Range
Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,347 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_RangeSet()

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Generic Power Range Set is an acknowledged message used to set the Generic Power Range state
of an element. The response to the Generic Power Range Set message is a Generic Power Range
Status message.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Range Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,348 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Client (rm_mesh_generic_pl_clt)

◆ RM_MESH_GENERIC_PL_CLT_RangeSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PL_CLT_RangeSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Power Range Set Unacknowledged is an unacknowledged message used to set the Generic
Power Range state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_pl_clt

control block.

[in] p_parameter Pointer to Generic Power
Range Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_PL_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_PL_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,349 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

fsp_err_t RM_MESH_GENERIC_PL_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_GENERIC_PL_SRV_SetupServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Power Level Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_pl_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_pl_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Power Level Server (rm_mesh_generic_pl_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Power Level Server (rm_mesh_generic_pl_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power level server ISR
occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power level server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_pl_
srv0

Module name.

Data Structures

struct rm_mesh_generic_pl_srv_actual_state_info_t

struct rm_mesh_generic_pl_srv_last_state_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,350 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

struct rm_mesh_generic_pl_srv_default_state_info_t

struct rm_mesh_generic_pl_srv_range_state_info_t

struct rm_mesh_generic_pl_srv_state_info_t

struct rm_mesh_generic_pl_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_pl_srv_actual_state_info_t

struct rm_mesh_generic_pl_srv_actual_state_info_t

Generic Power Actual state determines the linear percentage of the maximum power level of an
element, representing a range from 0 percent through 100 percent

Data Fields

uint16_t power_actual Generic Power Actual

uint8_t tid

uint16_t power_target Generic Power Target - Used
only in response path

uint8_t transition_time Transition Time - Used in
request path Used as
Remaining Time in response
path

uint8_t delay

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_generic_pl_srv_last_state_info_t

struct rm_mesh_generic_pl_srv_last_state_info_t

Generic Power Last state is a 16-bit value representing a percentage ranging from (1/65535)
percent to 100 percent

Data Fields

uint16_t power_last Generic Power Last

◆ rm_mesh_generic_pl_srv_default_state_info_t

struct rm_mesh_generic_pl_srv_default_state_info_t

Generic Power Default state is a 16-bit value ranging from 0 through 65535

Data Fields

uint16_t power_default Generic Power Default

◆ rm_mesh_generic_pl_srv_range_state_info_t

struct rm_mesh_generic_pl_srv_range_state_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,351 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

Generic Power Range state determines the minimum and maximum power levels of an element
relative to the maximum power level an element can output

Data Fields

uint16_t power_range_min Generic Power Range -
Minimum

uint16_t power_range_max Generic Power Range -
Maximum

uint8_t status Status - Used only in the
response path

◆ rm_mesh_generic_pl_srv_state_info_t

struct rm_mesh_generic_pl_srv_state_info_t

Generic Power Level state is a composite state that includes a Generic Power Actual state, a
Generic Power Last state, a Generic Power Default state, and a Generic Power Range state

Data Fields

rm_mesh_generic_pl_srv_actual
_state_info_t

generic_power_actual Generic Power Actual

rm_mesh_generic_pl_srv_last_st
ate_info_t

generic_power_last Generic Power Last

rm_mesh_generic_pl_srv_defaul
t_state_info_t

generic_power_default Generic Power Default

rm_mesh_generic_pl_srv_range
_state_info_t

generic_power_range Generic Power Range

◆ rm_mesh_generic_pl_srv_instance_ctrl_t

struct rm_mesh_generic_pl_srv_instance_ctrl_t

BLE mesh generic pl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_PL_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,352 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

◆ RM_MESH_GENERIC_PL_SRV_Open()

fsp_err_t RM_MESH_GENERIC_PL_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Power_Level Server model and to initialize Generic_Power_Level_Setup
Server model. This is to initialize Generic_Power_Level Server model and to register with Access
layer. And this is to initialize Generic_Power_Level_Setup Server model and to register with Access
layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_PL_SRV_Open(&g_mesh_generic_pl_srv0_ctrl,

&g_mesh_generic_pl_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_PL_SRV_Close()

fsp_err_t RM_MESH_GENERIC_PL_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Power_Level Server model. This is to terminate Generic_Power_Level
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_PL_SRV_Close(&g_mesh_generic_pl_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,353 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

◆ RM_MESH_GENERIC_PL_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_PL_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_PL_SRV_StateUpdate(&g_mesh_generic_pl_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,354 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power Level Server (rm_mesh_generic_pl_srv)

◆ RM_MESH_GENERIC_PL_SRV_SetupServerStateUpdate()

fsp_err_t RM_MESH_GENERIC_PL_SRV_SetupServerStateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_generic_pl_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_POO_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_POO_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,355 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

fsp_err_t RM_MESH_GENERIC_POO_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_POO_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Power On Off Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_poo_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_poo_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Power On Off Client (rm_mesh_generic_poo_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Power On Off Client (rm_mesh_generic_poo_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power on off client ISR
occurs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,356 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_po
o_clt0

Module name.

Data Structures

struct rm_mesh_generic_poo_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_poo_clt_instance_ctrl_t

struct rm_mesh_generic_poo_clt_instance_ctrl_t

BLE mesh generic poo instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_POO_CLT_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_POO_CLT_Open()

fsp_err_t RM_MESH_GENERIC_POO_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Power_Onoff Client middleware. This is to initialize Generic_Power_Onoff Client
model and to register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_POO_CLT_Open(&g_mesh_generic_poo_clt0_ctrl,

&g_mesh_generic_poo_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,357 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

◆ RM_MESH_GENERIC_POO_CLT_Close()

fsp_err_t RM_MESH_GENERIC_POO_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Power_Onoff Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_POO_CLT_Close(&g_mesh_generic_poo_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_GENERIC_POO_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_POO_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Power_Onoff client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic power on off client model. */

 err = RM_MESH_GENERIC_POO_CLT_GetModelHandle(&g_mesh_generic_poo_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,358 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

◆ RM_MESH_GENERIC_POO_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_POO_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_GENERIC_POO_CLT_SendReliablePdu(&g_mesh_generic_poo_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,359 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

◆ RM_MESH_GENERIC_POO_CLT_OnpowerupGet()

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Generic OnPowerUp Get is an acknowledged message used to get the Generic OnPowerUp state of
an element. The response to the Generic OnPowerUp Get message is a Generic OnPowerUp Status
message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_generic_poo_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,360 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

◆ RM_MESH_GENERIC_POO_CLT_OnpowerupSet()

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Generic OnPowerUp Set is an acknowledged message used to set the Generic OnPowerUp state of
an element. The response to the Generic OnPowerUp Set message is a Generic OnPowerUp Status
message.

Parameters
[in] p_ctrl rm_mesh_generic_poo_clt

control block.

[in] p_parameter Pointer to Generic
OnPowerUp Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,361 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Client (rm_mesh_generic_poo_clt)

◆ RM_MESH_GENERIC_POO_CLT_OnpowerupSetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_POO_CLT_OnpowerupSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic OnPowerUp Set Unacknowledged is an unacknowledged message used to set the Generic
OnPowerUp state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_poo_clt

control block.

[in] p_parameter Pointer to Generic
OnPowerUp Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_POO_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_POO_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,362 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)

fsp_err_t RM_MESH_GENERIC_POO_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_GENERIC_POO_SRV_SetupServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Power On Off Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_poo_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_poo_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Power On Off Server (rm_mesh_generic_poo_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Power On Off Server (rm_mesh_generic_poo_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power on off server ISR
occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
power on off server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_po
o_srv0

Module name.

Data Structures

struct rm_mesh_generic_poo_srv_on_power_up_state_info_t

struct rm_mesh_generic_poo_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,363 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)

Data Structure Documentation

◆ rm_mesh_generic_poo_srv_on_power_up_state_info_t

struct rm_mesh_generic_poo_srv_on_power_up_state_info_t

Generic OnPowerUp state is an enumeration representing the behavior of an element when
powered up

Data Fields

uint8_t onpowerup Generic OnPowerUp

◆ rm_mesh_generic_poo_srv_instance_ctrl_t

struct rm_mesh_generic_poo_srv_instance_ctrl_t

BLE mesh generic poo instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_POO_SRV_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_POO_SRV_Open()

fsp_err_t RM_MESH_GENERIC_POO_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_Power_Onoff Server model and to initialize Generic_Power_Onoff_Setup
Server model. This is to initialize Generic_Power_Onoff Server model and to register with Access
layer. And this is to initialize Generic_Power_Onoff_Setup Server model and to register with Access
layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_POO_SRV_Open(&g_mesh_generic_poo_srv0_ctrl,

&g_mesh_generic_poo_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,364 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)

◆ RM_MESH_GENERIC_POO_SRV_Close()

fsp_err_t RM_MESH_GENERIC_POO_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Generic_Power_Onoff Server model. This is to terminate Generic_Power_Onoff
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_POO_SRV_Close(&g_mesh_generic_poo_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,365 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)

◆ RM_MESH_GENERIC_POO_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_POO_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_GENERIC_POO_SRV_StateUpdate(&g_mesh_generic_poo_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,366 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Power On Off Server (rm_mesh_generic_poo_srv)

◆ RM_MESH_GENERIC_POO_SRV_SetupServerStateUpdate()

fsp_err_t RM_MESH_GENERIC_POO_SRV_SetupServerStateUpdate (
rm_ble_mesh_model_server_ctrl_t *const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_generic_poo_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_PROP_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,367 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertiesGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertyGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertySet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertySetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertiesGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertyGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertySet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertySetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertiesGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertyGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySetUnacknowle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,368 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

dged (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ClientPropertiesGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic Property Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_prop_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_prop_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
Property Client (rm_mesh_generic_prop_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic Property Client (rm_mesh_generic_prop_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
property client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_pr
op_clt0

Module name.

Data Structures

struct rm_mesh_generic_prop_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_generic_prop_clt_instance_ctrl_t

struct rm_mesh_generic_prop_clt_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,369 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

BLE mesh generic prop instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_PROP_CLT_Open() is called.

Function Documentation

◆ RM_MESH_GENERIC_PROP_CLT_Open()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Generic_Property Client middleware. This is to initialize Generic_Property Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_PROP_CLT_Open(&g_mesh_generic_prop_clt0_ctrl,

&g_mesh_generic_prop_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_PROP_CLT_Close()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Generic_Property Client middleware. Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_PROP_CLT_Close(&g_mesh_generic_prop_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,370 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_GetModelHandle()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Generic_Property client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of generic property client model. */

 err = RM_MESH_GENERIC_PROP_CLT_GetModelHandle(&g_mesh_generic_prop_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,371 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_SendReliablePdu()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_GENERIC_PROP_CLT_SendReliablePdu(&g_mesh_generic_prop_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,372 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_UserPropertiesGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertiesGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

Generic User Properties Get is an acknowledged message used to get the list of Generic User
Property states of an element. The response to the Generic User Properties Get message is a
Generic User Properties Status message. The message has no parameters.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,373 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_UserPropertyGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertyGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic User Property Get is an acknowledged message used to get the Generic User Property
state of an element. The response to the Generic User Property Get message is a Generic User
Property Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic User
Property Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,374 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_UserPropertySet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertySet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic User Property Set is an acknowledged message used to set the Generic User Property state
of an element. The response to the Generic User Property Set message is a Generic User Property
Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic User
Property Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,375 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_UserPropertySetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_UserPropertySetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic User Property Set Unacknowledged is an unacknowledged message used to set the
Generic User Property state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic User
Property Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,376 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_AdminPropertiesGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertiesGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

Generic Admin Properties Get is an acknowledged message used to get the list of Generic Admin
Property states of an element. The response to the Generic Admin Properties Get message is a
Generic Admin Properties Status message. The message has no parameters.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,377 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_AdminPropertyGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertyGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Admin Property Get is an acknowledged message used to get the Generic Admin Property
state of an element. The response to the Generic Admin Property Get message is a Generic Admin
Property Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic Admin
Property Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,378 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_AdminPropertySet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertySet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Admin Property Set is an acknowledged message used to set the Generic Admin Property
state of an element. The response to the Generic Admin Property Set message is a Generic Admin
Property Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic Admin
Property Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,379 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_AdminPropertySetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_AdminPropertySetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Admin Property Set Unacknowledged is an unacknowledged message used to set the
Generic Admin Property state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic Admin
Property Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,380 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertiesGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertiesGet (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Generic Manufacturer Properties Get is an acknowledged message used to get the list of Generic
Manufacturer Property states of an element. The response to the Generic Manufacturer Properties
Get message is a Generic Manufacturer Properties Status message. The message has no
parameters.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,381 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertyGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertyGet (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Manufacturer Property Get is an acknowledged message used to get the Generic
Manufacturer Property state of an element. The response to the Generic Manufacturer Property Get
message is a Generic Manufacturer Property Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic
Manufacturer Property Get
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,382 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySet (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Generic Manufacturer Property Set is an acknowledged message used to set the Generic
Manufacturer Property User Access state of an element. The response to the Generic Manufacturer
Property Set message is a Generic Manufacturer Property Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic
Manufacturer Property Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,383 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySetUnacknowledged()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ManufacturerPropertySetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Generic Manufacturer Property Set Unacknowledged is an unacknowledged message used to
set the Generic Manufacturer Property User Access state of an element.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic
Manufacturer Property Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,384 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic Property Client (rm_mesh_generic_prop_clt)

◆ RM_MESH_GENERIC_PROP_CLT_ClientPropertiesGet()

fsp_err_t RM_MESH_GENERIC_PROP_CLT_ClientPropertiesGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Generic Client Properties Get is an acknowledged message used to get the list of Generic Client
Property states of an element. The response to the Generic Client Properties Get message is a
Generic Client Properties Status message.

Parameters
[in] p_ctrl rm_mesh_generic_prop_clt

control block.

[in] p_parameter Pointer to Generic Client
Properties Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Generic User Property Server (rm_mesh_generic_user_prop_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,385 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic User Property Server (rm_mesh_generic_user_prop_srv)

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Generic User Property Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_generic_user_prop_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_generic_user_prop_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Generic
User Property Server (rm_mesh_generic_user_prop_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Generic User Property Server (rm_mesh_generic_user_prop_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
user property server
ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh generic
user property server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_generic_us
er_prop_srv0

Module name.

Data Structures

struct rm_mesh_generic_user_prop_srv_info_t

struct rm_mesh_generic_user_prop_srv_instance_ctrl_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,386 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic User Property Server (rm_mesh_generic_user_prop_srv)

◆ rm_mesh_generic_user_prop_srv_info_t

struct rm_mesh_generic_user_prop_srv_info_t

Generic User Property is a state representing a device property of an element

Data Fields

uint16_t property_id User Property ID field is a
2-octet Assigned Number value
referencing a device property

uint8_t user_access User Access field is an
enumeration indicating whether
the device property can be read
or written as a Generic User
Property

uint8_t * property_value User Property Value field is a
conditional field

uint16_t property_value_len

◆ rm_mesh_generic_user_prop_srv_instance_ctrl_t

struct rm_mesh_generic_user_prop_srv_instance_ctrl_t

BLE mesh generic user prop instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_GENERIC_USER_PROP_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,387 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic User Property Server (rm_mesh_generic_user_prop_srv)

◆ RM_MESH_GENERIC_USER_PROP_SRV_Open()

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Generic_User_Property Server model. This is to initialize Generic_User_Property
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_GENERIC_USER_PROP_SRV_Open(&g_mesh_generic_user_prop_srv0_ctrl,

&g_mesh_generic_user_prop_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_GENERIC_USER_PROP_SRV_Close()

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Generic_User_Property Server model. This is to terminate Generic_User_Property
Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_GENERIC_USER_PROP_SRV_Close(&g_mesh_generic_user_prop_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,388 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Generic User Property Server (rm_mesh_generic_user_prop_srv)

◆ RM_MESH_GENERIC_USER_PROP_SRV_StateUpdate()

fsp_err_t RM_MESH_GENERIC_USER_PROP_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err =

RM_MESH_GENERIC_USER_PROP_SRV_StateUpdate(&g_mesh_generic_user_prop_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Health Client (rm_mesh_health_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_HEALTH_CLIENT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_HEALTH_CLIENT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,389 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

fsp_err_t RM_MESH_HEALTH_CLIENT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_HEALTH_CLIENT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultClearUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultClear
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultTest
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultTestUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,390 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Health Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_health_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_health_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Health
Client (rm_mesh_health_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Health Client (rm_mesh_health_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh health
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_health_clt0 Module name.

Data Structures

struct rm_mesh_health_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_health_clt_instance_ctrl_t

struct rm_mesh_health_clt_instance_ctrl_t

BLE mesh health client instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_HEALTH_CLIENT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,391 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_Open()

fsp_err_t RM_MESH_HEALTH_CLIENT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Health Client middleware. This is to initialize Health Client model and to register with Access
layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_HEALTH_CLIENT_Open(&g_mesh_health_clt0_ctrl,

&g_mesh_health_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_HEALTH_CLIENT_Close()

fsp_err_t RM_MESH_HEALTH_CLIENT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Health Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_HEALTH_CLIENT_Close(&g_mesh_health_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,392 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_GetModelHandle()

fsp_err_t RM_MESH_HEALTH_CLIENT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Health client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of health client model. */

 err = RM_MESH_HEALTH_CLIENT_GetModelHandle(&g_mesh_health_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,393 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_SendReliablePdu()

fsp_err_t RM_MESH_HEALTH_CLIENT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to set the handle of Health client model.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_HEALTH_CLIENT_SendReliablePdu(&g_mesh_health_clt0_ctrl, req_opcode,

p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,394 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_FaultGet()

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Health Fault Get is an acknowledged message used to get the current Registered Fault state
identified by Company ID of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_fault_ge
t_clear_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,395 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_FaultClearUnacknowledged()

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultClearUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Health Fault Clear Unacknowledged is an unacknowledged message used to clear the current
Registered Fault state identified by Company ID of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_fault_ge
t_clear_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,396 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_FaultClear()

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultClear (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Health Fault Clear is an acknowledged message used to clear the current Registered Fault
state identified by Company ID of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_fault_ge
t_clear_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,397 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_FaultTest()

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultTest (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Health Fault Test is an acknowledged message used to invoke a self-test procedure of an
element. The procedure is implementation specific and may result in changing the Health Fault
state of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_fault_te
st_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,398 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_FaultTestUnacknowledged()

fsp_err_t RM_MESH_HEALTH_CLIENT_FaultTestUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Health Fault Test Unacknowledged is an unacknowledged message used to invoke a self-test
procedure of an element. The procedure is implementation specific and may result in changing the
Health Fault state of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_fault_te
st_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,399 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_PeriodGet()

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Health Period Get is an acknowledged message used to get the current Health Period state of
an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,400 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_PeriodSetUnacknowledged()

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Health Period Set Unacknowledged is an unacknowledged message used to set the current
Health Period state of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_period_i
nfo_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,401 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_PeriodSet()

fsp_err_t RM_MESH_HEALTH_CLIENT_PeriodSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Health Period Set is an acknowledged message used to set the current Health Period state of
an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_period_i
nfo_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,402 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_AttentionGet()

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Health Attention Get is an acknowledged message used to get the current Attention Timer
state of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,403 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_AttentionSet()

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Health Attention Set is an acknowledged message used to set the Attention Timer state of an
element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_attentio
n_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,404 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Client (rm_mesh_health_clt)

◆ RM_MESH_HEALTH_CLIENT_AttentionSetUnacknowledged()

fsp_err_t RM_MESH_HEALTH_CLIENT_AttentionSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Health Attention Set Unacknowledged is an unacknowledged message used to set the
Attention Timer state of an element.

Parameters
[in] p_ctrl rm_mesh_health_clt control

block.

[in] p_parameter Pointer to the structure
populated as in
rm_mesh_health_clt_attentio
n_info_t.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Health Server (rm_mesh_health_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_HEALTH_SERVER_Open (rm_ble_mesh_health_server_ctrl_t
*const p_ctrl, rm_ble_mesh_health_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_HEALTH_SERVER_Close (rm_ble_mesh_health_server_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,405 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Server (rm_mesh_health_srv)

fsp_err_t RM_MESH_HEALTH_SERVER_ReportFault
(rm_ble_mesh_health_server_ctrl_t *const p_ctrl, const
rm_ble_mesh_access_model_handle_t *const model_handle, uint8_t
test_id, uint16_t company_id, uint8_t fault_code)

fsp_err_t RM_MESH_HEALTH_SERVER_PublishCurrentStatus
(rm_ble_mesh_health_server_ctrl_t *const p_ctrl, uint8_t *status,
uint16_t length)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Health Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_health_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_health_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Health
Server (rm_mesh_health_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Health Server (rm_mesh_health_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh health
server ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_health_srv
0

Module name.

Company ID Invalid Company Id 0 Select company id.

Number of Self Tests Invalid Number of Self
Tests

0 Select number of self
tests.

Self Tests Name Must Be a Valid
C Symbol

NULL Self test

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,406 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Server (rm_mesh_health_srv)

struct rm_mesh_health_server_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_health_server_instance_ctrl_t

struct rm_mesh_health_server_instance_ctrl_t

BLE mesh health server instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_HEALTH_SERVER_Open() is called.

Function Documentation

◆ RM_MESH_HEALTH_SERVER_Open()

fsp_err_t RM_MESH_HEALTH_SERVER_Open (rm_ble_mesh_health_server_ctrl_t *const p_ctrl,
rm_ble_mesh_health_server_cfg_t const *const p_cfg)

API to initialize Health Server model. This is to initialize Health Server model and to register with
Access layer.

Implements rm_ble_mesh_health_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_HEALTH_SERVER_Open(&g_mesh_health_srv0_ctrl,

&g_mesh_health_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,407 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Server (rm_mesh_health_srv)

◆ RM_MESH_HEALTH_SERVER_Close()

fsp_err_t RM_MESH_HEALTH_SERVER_Close (rm_ble_mesh_health_server_ctrl_t *const p_ctrl)

API to terminate Health Server model. This is to terminate Health Server model and to register with
Access layer.

Implements rm_ble_mesh_health_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_HEALTH_SERVER_Close(&g_mesh_health_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,408 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Server (rm_mesh_health_srv)

◆ RM_MESH_HEALTH_SERVER_ReportFault()

fsp_err_t RM_MESH_HEALTH_SERVER_ReportFault (rm_ble_mesh_health_server_ctrl_t *const p_ctrl,
const rm_ble_mesh_access_model_handle_t *const model_handle, uint8_t test_id, uint16_t
company_id, uint8_t fault_code)

API to report self-test fault. This is to report fault observed during self-test procedure.

Parameters
[in] p_ctrl rm_mesh_health_srv control

block.

[in] model_handle Model Handle identifying the
Health Server model
instance.

[in] test_id Identifier of the self-test.

[in] company_id Company Identifier.

[in] fault_code Fault value indicating the
error.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,409 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Health Server (rm_mesh_health_srv)

◆ RM_MESH_HEALTH_SERVER_PublishCurrentStatus()

fsp_err_t RM_MESH_HEALTH_SERVER_PublishCurrentStatus (rm_ble_mesh_health_server_ctrl_t
*const p_ctrl, uint8_t * status, uint16_t length)

API to publish current status.

Parameters
[in] p_ctrl rm_mesh_health_srv control

block.

[in] status Current status.

[in] length Length of status.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_GetModelHandle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,410 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Set (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,411 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Control Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_ctl_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_light_ctl_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Control Client (rm_mesh_light_ctl_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Control Client (rm_mesh_light_ctl_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
control client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_ctl_clt
0

Module name.

Data Structures

struct rm_mesh_light_ctl_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_ctl_clt_instance_ctrl_t

struct rm_mesh_light_ctl_clt_instance_ctrl_t

BLE mesh light ctl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_CTL_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,412 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_Open()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Light_Ctl Client middleware. This is to initialize Light_Ctl Client model and to register with
Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_CTL_CLT_Open(&g_mesh_light_ctl_clt0_ctrl,

&g_mesh_light_ctl_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_CTL_CLT_Close()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Light_Ctl Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_CTL_CLT_Close(&g_mesh_light_ctl_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,413 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_GetModelHandle()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Light_Ctl client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of light ctl client model. */

 err = RM_MESH_LIGHT_CTL_CLT_GetModelHandle(&g_mesh_light_ctl_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,414 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_SendReliablePdu()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_LIGHT_CTL_CLT_SendReliablePdu(&g_mesh_light_ctl_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,415 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_Get()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light CTL Get is an acknowledged message used to get the Light CTL state of an element. The
response to the Light CTL Get message is a Light CTL Status message. There are no parameters for
this message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,416 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_Set()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Light CTL Set is an acknowledged message used to set the Light CTL Lightness state, Light CTL
Temperature state, and the Light CTL Delta UV state of an element. The response to the Light CTL
Set message is a Light CTL Status message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,417 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Light CTL Set Unacknowledged is an unacknowledged message used to set the Light CTL Lightness
state, Light CTL Temperature state, and the Light CTL Delta UV state of an element

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,418 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureGet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Light CTL Temperature Get is an acknowledged message used to get the Light CTL Temperature
state of an element. The response to the Light CTL Temperature Get message is a Light CTL
Temperature Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,419 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureSet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Light CTL Temperature Set is an acknowledged message used to set the Light CTL
Temperature state and the Light CTL Delta UV state of an element. The response to the Light CTL
Temperature Set message is a Light CTL Temperature Status message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL
Temperature Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,420 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Light CTL Temperature Set Unacknowledged is an unacknowledged message used to set the
Light CTL Temperature state and the Light CTL Delta UV state of an element

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL
Temperature Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,421 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_DefaultGet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light CTL Default Get is an acknowledged message used to get the Light CTL Temperature Default
and Light CTL Delta UV Default states of an element. The response to the Light CTL Default Get
message is a Light CTL Default Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,422 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_DefaultSet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Light CTL Default Set is an acknowledged message used to set the Light CTL Temperature
Default state and the Light CTL Delta UV Default state of an element. The response to the Light CTL
Set message is a Light CTL Status message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,423 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_DefaultSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_DefaultSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light CTL Default Set Unacknowledged is an unacknowledged message used to set the Light
CTL Temperature Default state and the Light CTL Delta UV Default state of an element.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,424 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureRangeGet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

The Light CTL Temperature Range Get is an acknowledged message used to get the Light CTL
Temperature Range state of an element. The response to the Light CTL Temperature Range Get
message is a Light CTL Temperature Range Status message. There are no parameters for this
message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,425 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSet()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Light CTL Temperature Range Set Unacknowledged is an unacknowledged message used to set the
Light CTL Temperature Range state of an element.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL
Temperature Range Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,426 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Client (rm_mesh_light_ctl_clt)

◆ RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_CTL_CLT_TemperatureRangeSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Light CTL Temperature Range Set is an acknowledged message used to set the Light CTL
Temperature Range state of an element. The response to the Light CTL Temperature Range Get
message is a Light CTL Temperature Range Status message.

Parameters
[in] p_ctrl rm_mesh_light_ctl_clt control

block.

[in] p_parameter Pointer to Light CTL
Temperature Range Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_CTL_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_CTL_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,427 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

fsp_err_t RM_MESH_LIGHT_CTL_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_LIGHT_CTL_SRV_TemperatureServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Control Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_ctl_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_light_ctl_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Control Server (rm_mesh_light_ctl_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Control Server (rm_mesh_light_ctl_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
control server ISR
occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
control server timeout
ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_ctl_sr
v0

Module name.

Data Structures

struct rm_mesh_light_ctl_srv_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,428 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

struct rm_mesh_light_ctl_srv_default_info_t

struct rm_mesh_light_ctl_srv_temperature_info_t

struct rm_mesh_light_ctl_srv_temperature_range_info_t

struct rm_mesh_light_ctl_srv_extended_cfg_t

struct rm_mesh_light_ctl_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_ctl_srv_info_t

struct rm_mesh_light_ctl_srv_info_t

Light CTL state is a composite state that includes the Light CTL Lightness, the Light CTL
Temperature and the Light CTL Delta UV states

Data Fields

uint16_t ctl_lightness Light CTL Lightness

uint16_t target_ctl_lightness Target Light CTL Lightness -
Used in response path

uint16_t ctl_temperature Light CTL Temperature

uint16_t target_ctl_temperature Terget Light CTL Temperature -
Used in response path

uint16_t ctl_delta_uv Light CTL Delta UV

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_light_ctl_srv_default_info_t

struct rm_mesh_light_ctl_srv_default_info_t

Light CTL Default state is a composite state that includes the Light CTL Lightness, the Light CTL
Temperature and the Light CTL Delta UV states

Data Fields

uint16_t ctl_lightness Light CTL Lightness

uint16_t ctl_temperature Light CTL Temperature

uint16_t ctl_delta_uv Light CTL Delta UV

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,429 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

◆ rm_mesh_light_ctl_srv_temperature_info_t

struct rm_mesh_light_ctl_srv_temperature_info_t

Light CTL Temperature state is a composite state that includes the Light CTL Temperature and the
Light CTL Delta UV states

Data Fields

uint16_t ctl_temperature Light CTL Temperature

uint16_t target_ctl_temperature Target Light CTL Temperature -
Used in response path

uint16_t ctl_delta_uv Light CTL Delta UV

uint16_t target_ctl_delta_uv Target Light CTL Delta UV -
Used in response path

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

◆ rm_mesh_light_ctl_srv_temperature_range_info_t

struct rm_mesh_light_ctl_srv_temperature_range_info_t

Light CTL Temperature Range state determines the minimum and maximum color temperatures of
tunable white light an element is capable of emitting

Data Fields

uint16_t ctl_temperature_range_min CTL Temperature Range Min

uint16_t ctl_temperature_range_max CTL Temperature Range Max

uint8_t status Status - Used in response path

◆ rm_mesh_light_ctl_srv_extended_cfg_t

struct rm_mesh_light_ctl_srv_extended_cfg_t

BLE mesh light ctl extension for BLE mesh light ctl.

Data Fields

rm_ble_mesh_access_instance_t
const *

p_temperature_access_instance Pointer to access instance for
temperature model.

◆ rm_mesh_light_ctl_srv_instance_ctrl_t

struct rm_mesh_light_ctl_srv_instance_ctrl_t

BLE mesh light ctl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_CTL_SRV_Open() is called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,430 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

Function Documentation

◆ RM_MESH_LIGHT_CTL_SRV_Open()

fsp_err_t RM_MESH_LIGHT_CTL_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Light_Ctl Server model and to initialize Light_Ctl_Temperature Server model. This is
to initialize Light_Ctl Server model and to register with Access layer. And this is to initialize
Light_Ctl_Temperature Server model and to register with Access layer. Implements
rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_CTL_SRV_Open(&g_mesh_light_ctl_srv0_ctrl,

&g_mesh_light_ctl_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_CTL_SRV_Close()

fsp_err_t RM_MESH_LIGHT_CTL_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Light_Ctl Server model. This is to terminate Light_Ctl Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_CTL_SRV_Close(&g_mesh_light_ctl_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,431 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

◆ RM_MESH_LIGHT_CTL_SRV_StateUpdate()

fsp_err_t RM_MESH_LIGHT_CTL_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_LIGHT_CTL_SRV_StateUpdate(&g_mesh_light_ctl_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,432 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Control Server (rm_mesh_light_ctl_srv)

◆ RM_MESH_LIGHT_CTL_SRV_TemperatureServerStateUpdate()

fsp_err_t RM_MESH_LIGHT_CTL_SRV_TemperatureServerStateUpdate (
rm_ble_mesh_model_server_ctrl_t *const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_light_ctl_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,433 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Set (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_TargetGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,434 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Hsl Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_hsl_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_light_hsl_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light HSL
Client (rm_mesh_light_hsl_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light HSL Client (rm_mesh_light_hsl_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light HSL
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_hsl_cl
t0

Module name.

Data Structures

struct rm_mesh_light_hsl_clt_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,435 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

Data Structure Documentation

◆ rm_mesh_light_hsl_clt_instance_ctrl_t

struct rm_mesh_light_hsl_clt_instance_ctrl_t

BLE mesh light hsl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_HSL_CLT_Open() is called.

Function Documentation

◆ RM_MESH_LIGHT_HSL_CLT_Open()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Light_Hsl Client middleware. This is to initialize Light_Hsl Client model and to register with
Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_HSL_CLT_Open(&g_mesh_light_hsl_clt0_ctrl,

&g_mesh_light_hsl_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,436 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_Close()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Light_Hsl Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_HSL_CLT_Close(&g_mesh_light_hsl_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_LIGHT_HSL_CLT_GetModelHandle()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Light_Hsl client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of light hsl client model. */

 err = RM_MESH_LIGHT_HSL_CLT_GetModelHandle(&g_mesh_light_hsl_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,437 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_SendReliablePdu()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_LIGHT_HSL_CLT_SendReliablePdu(&g_mesh_light_hsl_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,438 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_Get()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light HSL Get is an acknowledged message used to get the Light HSL Lightness, Light HSL
Hue, and Light HSL Saturation states of an element. The response to the Light HSL Get message is
a Light HSL Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,439 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_Set()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Light HSL Set Unacknowledged is an unacknowledged message used to set the Light HSL
Lightness state, Light HSL Hue state, and the Light HSL Saturation state of an element.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,440 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Light HSL Set is an acknowledged message used to set the Light HSL Lightness state, Light HSL
Hue state, and the Light HSL Saturation state of an element. The response to the Light HSL Set
message is a Light HSL Status message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,441 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_TargetGet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_TargetGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light HSL Target Get is an acknowledged message used to get the target Light HSL Lightness, Light
HSL Hue, and Light HSL Saturation states of an element. The response to the Light HSL Target Get
message is a Light HSL Target Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,442 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_DefaultGet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light HSL Default Get is an acknowledged message used to get the Light Lightness Default, the
Light HSL Hue Default, and Light HSL Saturation Default states of an element. The response to the
Light HSL Default Get message is a Light HSL Default Status message. There are no parameters for
this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,443 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_DefaultSet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Light HSL Default Set is an acknowledged message used to set the Light Lightness Default, the
Light HSL Hue Default, and Light HSL Saturation Default states of an element. The response to the
Light HSL Default Set message is a Light HSL Default Status message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,444 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_DefaultSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_DefaultSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Light HSL Default Set Unacknowledged is an unacknowledged message used to set the Light
Lightness Default, the Light HSL Hue Default, and Light HSL Saturation Default states of an
element.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_RangeGet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light HSL Range Get is an acknowledged message used to get the Light HSL Hue Range and
Light HSL Saturation Range states of an element. The response to the Light HSL Range Get
message is a Light HSL Range Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_RangeSet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Light HSL Range Set is an acknowledged message used to set the Light HSL Hue Range and Light
HSL Saturation Range states of an element. The response to the Light HSL Range Set message is a
Light HSL Range Status message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Range
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_RangeSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_RangeSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Light HSL Range Set Unacknowledged is an unacknowledged message used to set the Light HSL
Hue Range and Light HSL Saturation Range states of an element.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Range
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_HueGet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light HSL Hue Get is an acknowledged message used to get the Light HSL Hue state of an
element. The response to the Light HSL Hue Get message is a Light HSL Hue Status message.
There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_HueSet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Light HSL Hue Set is an acknowledged message used to set the target Light HSL Hue state of
an element. The response to the Light HSL Hue Set message is a Light HSL Hue Status message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Hue Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_HueSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_HueSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light HSL Hue Set Unacknowledged is an unacknowledged message used to set the target
Light HSL Hue state of an element.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL Hue Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_SaturationGet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

The Light HSL Saturation Get is an acknowledged message used to get the Light HSL Saturation
state of an element. The response to the Light HSL Saturation Get message is a Light HSL
Saturation Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_SaturationSet()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Light HSL Saturation Set is an acknowledged message used to set the target Light HSL
Saturation state of an element. The response to the Light HSL Saturation Set message is a Light
HSL Saturation Status message.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL
Saturation Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Client (rm_mesh_light_hsl_clt)

◆ RM_MESH_LIGHT_HSL_CLT_SaturationSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_HSL_CLT_SaturationSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Light HSL Saturation Set Unacknowledged is an unacknowledged message used to set the
target Light HSL Saturation state of an element.

Parameters
[in] p_ctrl rm_mesh_light_hsl_clt

control block.

[in] p_parameter Pointer to Light HSL
Saturation Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_HSL_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_HSL_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_HSL_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_LIGHT_HSL_SRV_HueServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_LIGHT_HSL_SRV_SaturationServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Hsl Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_hsl_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_light_hsl_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light HSL
Server (rm_mesh_light_hsl_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light HSL Server (rm_mesh_light_hsl_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light HSL
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light HSL
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_hsl_sr
v0

Module name.

Data Structures

struct rm_mesh_light_hsl_srv_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

struct rm_mesh_light_hsl_srv_target_info_t

struct rm_mesh_light_hsl_srv_default_info_t

struct rm_mesh_light_hsl_srv_hue_info_t

struct rm_mesh_light_hsl_srv_saturation_info_t

struct rm_mesh_light_hsl_srv_range_info_t

struct rm_mesh_light_hsl_srv_extended_cfg_t

struct rm_mesh_light_hsl_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_hsl_srv_info_t

struct rm_mesh_light_hsl_srv_info_t

Light HSL state is a composite state that includes the Light HSL Lighness, the Light HSL Hue and
the Light HSL Saturation states

Data Fields

uint16_t hsl_lightness The perceived lightness of a
light emitted by the element

uint16_t target_hsl_lightness Target Perceived lightness -
used in the response path

uint16_t hsl_hue The 16-bit value representing
the hue

uint16_t target_hsl_hue Target hue - used in the
response path

uint16_t hsl_saturation The saturation of a color light

uint16_t target_hsl_saturation Target saturation - used in the
response path

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_light_hsl_srv_target_info_t

struct rm_mesh_light_hsl_srv_target_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

Light HSL Target state is a composite state that includes the Light HSL Lighness, the Light HSL Hue
and the Light HSL Saturation states

Data Fields

uint16_t hsl_lightness The perceived lightness of a
light emitted by the element

uint16_t hsl_hue The 16-bit value representing
the hue

uint16_t hsl_saturation The saturation of a color light

◆ rm_mesh_light_hsl_srv_default_info_t

struct rm_mesh_light_hsl_srv_default_info_t

Light HSL Default state is a composite state that includes the Light HSL Lighness, the Light HSL Hue
and the Light HSL Saturation states

Data Fields

uint16_t hsl_lightness The perceived lightness of a
light emitted by the element

uint16_t hsl_hue The 16-bit value representing
the hue

uint16_t hsl_saturation The saturation of a color light

◆ rm_mesh_light_hsl_srv_hue_info_t

struct rm_mesh_light_hsl_srv_hue_info_t

Light HSL Hue

Data Fields

uint16_t hsl_hue The 16-bit value representing
the hue

◆ rm_mesh_light_hsl_srv_saturation_info_t

struct rm_mesh_light_hsl_srv_saturation_info_t

Light HSL Saturation

Data Fields

uint16_t hsl_saturation The saturation of a color light

◆ rm_mesh_light_hsl_srv_range_info_t

struct rm_mesh_light_hsl_srv_range_info_t

Light HSL Range state is a composite state that includes Minimum and Maximum of the Light HSL
Hue and the Light HSL Saturation states

Data Fields

uint16_t hue_range_min The value of the Hue Range Min
field of the Light HSL Hue

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

Range state

uint16_t hue_range_max The value of the Hue Range
Max field of the Light HSL Hue
Range state

uint16_t saturation_range_min The value of the Saturation
Range Min field of the Light HSL
Saturation Range state

uint16_t saturation_range_max The value of the Saturation
Range Max field of the Light
HSL Saturation Range state

uint8_t status Status - Used only in response
path

◆ rm_mesh_light_hsl_srv_extended_cfg_t

struct rm_mesh_light_hsl_srv_extended_cfg_t

BLE mesh light hsl extension for BLE mesh light hsl.

Data Fields

rm_ble_mesh_access_instance_t
const *

p_hue_access_instance Pointer to access instance for
hue model.

rm_ble_mesh_access_instance_t
const *

p_saturation_access_instance Pointer to access instance for
saturation model.

◆ rm_mesh_light_hsl_srv_instance_ctrl_t

struct rm_mesh_light_hsl_srv_instance_ctrl_t

BLE mesh light hsl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_HSL_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

◆ RM_MESH_LIGHT_HSL_SRV_Open()

fsp_err_t RM_MESH_LIGHT_HSL_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Light_Hsl Server/Light_Hsl_Hue Server/Light_Hsl_Saturation Server model.

1. This is to initialize Light_Hsl Server model and to register with Access layer.
2. This is to initialize Light_Hsl_Hue Server model and to register with Access layer.
3. This is to initialize Light_Hsl_Saturation Server model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_HSL_SRV_Open(&g_mesh_light_hsl_srv0_ctrl,

&g_mesh_light_hsl_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_HSL_SRV_Close()

fsp_err_t RM_MESH_LIGHT_HSL_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Light_Hsl Server model. This is to terminate Light_Hsl Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_HSL_SRV_Close(&g_mesh_light_hsl_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

◆ RM_MESH_LIGHT_HSL_SRV_StateUpdate()

fsp_err_t RM_MESH_LIGHT_HSL_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_LIGHT_HSL_SRV_StateUpdate(&g_mesh_light_hsl_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

◆ RM_MESH_LIGHT_HSL_SRV_HueServerStateUpdate()

fsp_err_t RM_MESH_LIGHT_HSL_SRV_HueServerStateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_light_hsl_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Hsl Server (rm_mesh_light_hsl_srv)

◆ RM_MESH_LIGHT_HSL_SRV_SaturationServerStateUpdate()

fsp_err_t RM_MESH_LIGHT_HSL_SRV_SaturationServerStateUpdate (
rm_ble_mesh_model_server_ctrl_t *const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_light_hsl_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Open
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Close
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Get
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Set
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LastGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Lightness Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_lightness_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_light_lightness_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Lightness Client (rm_mesh_light_lightness_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Lightness Client (rm_mesh_light_lightness_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness client ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_lightn
ess_clt0

Module name.

Data Structures

struct rm_mesh_light_lightness_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_lightness_clt_instance_ctrl_t

struct rm_mesh_light_lightness_clt_instance_ctrl_t

BLE mesh light lightness instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_LIGHTNESS_CLT_Open() is called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

Function Documentation

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_Open()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Light_Lightness Client middleware. This is to initialize Light_Lightness Client model and to
register with Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_LIGHTNESS_CLT_Open(&g_mesh_light_lightness_clt0_ctrl,

&g_mesh_light_lightness_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_Close()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Light_Lightness Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_LIGHTNESS_CLT_Close(&g_mesh_light_lightness_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_GetModelHandle()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Light_Lightness client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of light lightness client model. */

 err =

RM_MESH_LIGHT_LIGHTNESS_CLT_GetModelHandle(&g_mesh_light_lightness_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_SendReliablePdu()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err =

RM_MESH_LIGHT_LIGHTNESS_CLT_SendReliablePdu(&g_mesh_light_lightness_clt0_ctrl,

 req_opcode,

 p_parameter,

 rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_Get()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light Lightness Get is an acknowledged message used to get the Light Lightness Actual state of an
element. The response to the Light Lightness Get message is a Light Lightn

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_Set()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Light Lightness Set is an acknowledged message used to set the Light Lightness Actual state of
an element. The response to the Light Lightness Set message is a Light Lightness Status message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light Lightness Set Unacknowledged is an unacknowledged message used to set the Light
Lightness Actual state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_LinearGet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Light Lightness Linear Get is an acknowledged message used to get the Light Lightness Linear
state of an element. The response to the Light Lightness Linear Get message is a Light Lightness
Linear Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Light Lightness Linear Set is an acknowledged message used to set the Light Lightness Linear
state of an element. The response to the Light Lightness Linear Set message is a Light Lightness
Linear Status message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Linear Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LinearSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Light Lightness Linear Set Unacknowledged is an unacknowledged message used to set the
Light Lightness Linear state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Linear Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_LastGet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_LastGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Light Lightness Last Get is an acknowledged message used to get the Light Lightness Last state of
an element. The response to the Light Lightness Last Get message is a Light Lightness Last Status
message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultGet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

Light Lightness Default Get is an acknowledged message used to get the Light Lightness Default
state of an element. The response to the Light Lightness Default Get message is a Light Lightness
Default Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Light Lightness Default Set is an acknowledged message used to set the Light Lightness
Default state of an element. The response to the Light Lightness Default Set message is a Light
Lightness Default Status message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Default Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_DefaultSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Light Lightness Default Set Unacknowledged is an unacknowledged message used to set the
Light Lightness Default state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Default Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_RangeGet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeGet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

The Light Lightness Range Get is an acknowledged message used to get the Light Lightness Range
state of an element. The response to the Light Lightness Range Get message is a Light Lightness
Range Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSet()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSet (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Light Lightness Range Set is an acknowledged message used to set the Light Lightness Range
state of an element. The response to the Light Lightness Range Get message is a Light Lightness
Range Status message.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Range Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Client (rm_mesh_light_lightness_clt)

◆ RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_CLT_RangeSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

Light Lightness Range Set Unacknowledged is an unacknowledged message used to set the Light
Lightness Range state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lightness_clt

control block.

[in] p_parameter Pointer to Light Lightness
Range Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_Open
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_StateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_SetupServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Lightness Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_lightness_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_light_lightness_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Lightness Server (rm_mesh_light_lightness_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Lightness Server (rm_mesh_light_lightness_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness server ISR
occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_lightn
ess_srv0

Module name.

Data Structures

struct rm_mesh_light_lightness_srv_linear_info_t

struct rm_mesh_light_lightness_srv_actual_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

struct rm_mesh_light_lightness_srv_last_info_t

struct rm_mesh_light_lightness_srv_default_info_t

struct rm_mesh_light_lightness_srv_range_info_t

struct rm_mesh_light_lightness_srv_info_t

struct rm_mesh_light_lightness_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_lightness_srv_linear_info_t

struct rm_mesh_light_lightness_srv_linear_info_t

Light Lightness Linear state represents the lightness of a light on a linear scale

Data Fields

uint16_t lightness_linear Light Lightness Linear

uint16_t lightness_target Light Lightness Target - Used in
response path.

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

◆ rm_mesh_light_lightness_srv_actual_info_t

struct rm_mesh_light_lightness_srv_actual_info_t

Light Lightness Actual state represents the lightness of a light on a perceptually uniform lightness
scale

Data Fields

uint16_t lightness_actual Light Lightness Actual

uint16_t lightness_target Light Lightness Target - Used in
response path.

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

◆ rm_mesh_light_lightness_srv_last_info_t

struct rm_mesh_light_lightness_srv_last_info_t

Light Lightness Last state represents the lightness of a light on a perceptually uniform lightness
scale

Data Fields

uint16_t lightness_last Light Lightness Last

◆ rm_mesh_light_lightness_srv_default_info_t

struct rm_mesh_light_lightness_srv_default_info_t

Light Lightness Default state is a value ranging from 0x0000 to 0xFFFF, representing a default
lightness level for the Light Lightness Actual state

Data Fields

uint16_t lightness_default Light Lightness Default

◆ rm_mesh_light_lightness_srv_range_info_t

struct rm_mesh_light_lightness_srv_range_info_t

Light Lightness Range state determines the minimum and maximum lightness of an element

Data Fields

uint16_t lightness_range_min Light Lightness Range Min

uint16_t lightness_range_max Light Lightness Range Max

◆ rm_mesh_light_lightness_srv_info_t

struct rm_mesh_light_lightness_srv_info_t

Light Lightness state is a composite state that includes the Light Lightness Linear, the Light
Lightness Actual, the Light Lightness Last, and the Light Lightness Default states

Data Fields

rm_mesh_light_lightness_srv_lin
ear_info_t

light_lightness_linear Light Lightness Linear state
represents the lightness of a
light on a linear scale

rm_mesh_light_lightness_srv_ac
tual_info_t

light_lightness_actual Light Lightness Actual state
represents the lightness of a
light on a perceptually uniform
lightness scale

rm_mesh_light_lightness_srv_la
st_info_t

light_lightness_last Light Lightness Last state
represents the lightness of a
light on a perceptually uniform
lightness scale

rm_mesh_light_lightness_srv_de
fault_info_t

light_lightness_default Light Lightness Default state is
a value ranging from 0x0000 to
0xFFFF, representing a default
lightness level for the Light
Lightness Actual state

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

rm_mesh_light_lightness_srv_ra
nge_info_t

light_lightness_range Light Lightness Range state.

uint8_t range_status Status field used only for the
Range Status

◆ rm_mesh_light_lightness_srv_instance_ctrl_t

struct rm_mesh_light_lightness_srv_instance_ctrl_t

BLE mesh light lightness instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_LIGHTNESS_SRV_Open() is called.

Function Documentation

◆ RM_MESH_LIGHT_LIGHTNESS_SRV_Open()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Light_Lightness Server model and to initialize Light_Lightness_Setup Server model.
This is to initialize Light_Lightness Server model and to register with Access layer. And this is to
initialize Light_Lightness_Setup Server model and to register with Access layer. Implements
rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_LIGHTNESS_SRV_Open(&g_mesh_light_lightness_srv0_ctrl,

&g_mesh_light_lightness_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

◆ RM_MESH_LIGHT_LIGHTNESS_SRV_Close()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to terminate Light_Lightness Server model. This is to terminate Light_Lightness Server model
and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_LIGHTNESS_SRV_Close(&g_mesh_light_lightness_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

◆ RM_MESH_LIGHT_LIGHTNESS_SRV_StateUpdate()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_LIGHT_LIGHTNESS_SRV_StateUpdate(&g_mesh_light_lightness_srv0_ctrl,

&state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Lightness Server (rm_mesh_light_lightness_srv)

◆ RM_MESH_LIGHT_LIGHTNESS_SRV_SetupServerStateUpdate()

fsp_err_t RM_MESH_LIGHT_LIGHTNESS_SRV_SetupServerStateUpdate (
rm_ble_mesh_model_server_ctrl_t *const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_light_lightness_srv

control block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_LC_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_LC_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

fsp_err_t RM_MESH_LIGHT_LC_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_LIGHT_LC_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertyGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertySet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertySetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Location Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_lc_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_light_lc_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Lightness Controller Client (rm_mesh_light_lc_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Lightness Controller Client (rm_mesh_light_lc_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness controller
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_lc_clt
0

Module name.

Data Structures

struct rm_mesh_light_lc_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_lc_clt_instance_ctrl_t

struct rm_mesh_light_lc_clt_instance_ctrl_t

BLE mesh light lc instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_LC_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_Open()

fsp_err_t RM_MESH_LIGHT_LC_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Light_Lc Client middleware. This is to initialize Light_Lc Client model and to register with
Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_LC_CLT_Open(&g_mesh_light_lc_clt0_ctrl,

&g_mesh_light_lc_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_LC_CLT_Close()

fsp_err_t RM_MESH_LIGHT_LC_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Light_Lc Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_LC_CLT_Close(&g_mesh_light_lc_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_GetModelHandle()

fsp_err_t RM_MESH_LIGHT_LC_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Light_Lc client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of light lc client model. */

 err = RM_MESH_LIGHT_LC_CLT_GetModelHandle(&g_mesh_light_lc_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_SendReliablePdu()

fsp_err_t RM_MESH_LIGHT_LC_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_LIGHT_LC_CLT_SendReliablePdu(&g_mesh_light_lc_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_ModeGet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light LC Mode Get is an acknowledged message used to get the Light LC Mode state of an element.
The response to the Light LC Mode Get message is a Light LC Mode Status message. There are no
parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_ModeSet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Light LC Mode Set is an acknowledged message used to set the Light LC Mode state of an
element. The response to the Light LC Mode Set message is a Light LC Mode Status message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Mode Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_ModeSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LC_CLT_ModeSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light LC Mode Set Unacknowledged is an unacknowledged message used to set the Light LC
Mode state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Mode Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_OmGet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light LC OM Get is an acknowledged message used to get the Light LC Occupancy Mode state of an
element. The response to the Light LC OM Get message is a Light LC OM Status message. There
are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_OmSet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

The Light LC OM Set is an acknowledged message used to set the Light LC Occupancy Mode state
of an element. The response to the Light LC OM Set message is a Light LC OM Status message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC OM Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_OmSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LC_CLT_OmSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light LC OM Set Unacknowledged is an unacknowledged message used to set the Light LC
Occupancy Mode state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC OM Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_LightOnOffGet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light LC Light OnOff Get is an acknowledged message used to get the Light LC Light OnOff state of
an element. The response to the Light LC Light OnOff Get message is a Light LC Light OnOff Status
message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_LightOnOffSet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Light LC Light OnOff Set is an acknowledged message used to set the Light LC Light OnOff
state of an element. The response to the Light LC Light OnOff Set message is a Light LC Light OnOff
Status message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Light
OnOff Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_LightOnOffSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LC_CLT_LightOnOffSetUnacknowledged (
rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const p_parameter)

The Light LC Light OnOff Set Unacknowledged is an unacknowledged message used to set the Light
LC Light OnOff state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Light
OnOff Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,501 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_PropertyGet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertyGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Light LC Property Get is an acknowledged message used to get the Light LC Property state of an
element. The response to the Light LC Property Get message is a Light LC Property Status
message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Property
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_PropertySet()

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertySet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

The Light LC Property Set is an acknowledged message used to set the Light LC Property state of
an element. The response to the Light LC Property Set message is a Light LC Property Status
message.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Property
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Client (rm_mesh_light_lc_clt)

◆ RM_MESH_LIGHT_LC_CLT_PropertySetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_LC_CLT_PropertySetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

The Light LC Property Set Unacknowledged is an unacknowledged message used to set the Light
LC Property state of an element.

Parameters
[in] p_ctrl rm_mesh_light_lc_clt control

block.

[in] p_parameter Pointer to Light LC Property
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_LC_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_LC_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LC_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,504 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_LIGHT_LC_SRV_SetTimeProperty
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_device_property_t property, uint32_t
time_in_ms)

fsp_err_t RM_MESH_LIGHT_LC_SRV_SetScenario
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_light_lc_srv_scenario_t const *const p_scenario)

fsp_err_t RM_MESH_LIGHT_LC_SRV_GetCurrentScenario
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_light_lc_srv_scenario_t *const p_scenario)

fsp_err_t RM_MESH_LIGHT_LC_SRV_ReportOccupancy
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_LC_SRV_ReportLightOnOff
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_light_lc_srv_light_state_t state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Location Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_lc_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_light_lc_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light
Lightness Controller Server (rm_mesh_light_lc_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light Lightness Controller Server (rm_mesh_light_lc_srv).

Configuration Options Default Description

Interrupts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness controller
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light
lightness controller
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_lc_srv
0

Module name.

Data Structures

struct rm_mesh_light_lc_srv_scenario_t

struct rm_mesh_light_lc_srv_mode_info_t

struct rm_mesh_light_lc_srv_om_info_t

struct rm_mesh_light_lc_srv_light_onoff_info_t

struct rm_mesh_light_lc_srv_property_id_info_t

struct rm_mesh_light_lc_srv_property_info_t

struct rm_mesh_light_lc_srv_extended_callback_args_t

struct rm_mesh_light_lc_srv_instance_ctrl_t

Enumerations

enum rm_ble_mesh_light_lc_srv_event_t

enum rm_ble_mesh_light_lc_srv_state_t

enum rm_mesh_light_lc_srv_light_state_t

Data Structure Documentation

◆ rm_mesh_light_lc_srv_scenario_t

struct rm_mesh_light_lc_srv_scenario_t

Light LC Server State Info

Data Fields

rm_ble_mesh_light_lc_srv_state
_t

state Light LC Server Current
Scenario

uint32_t remaining_time_in_ms Remaining Time in current
scenario

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

uint8_t occupancy_mode Light LC Occupancy Mode
Value

uint8_t mode Light LC Mode Value

rm_mesh_light_lc_srv_light_stat
e_t

present_light_state Current Light LC ONOFF State

rm_mesh_light_lc_srv_light_stat
e_t

target_light_state Target Light LC ONOFF State

◆ rm_mesh_light_lc_srv_mode_info_t

struct rm_mesh_light_lc_srv_mode_info_t

Light LC Mode state

Data Fields

uint8_t present_mode Light LC Mode state - present

uint8_t target_mode Light LC Mode state - target

◆ rm_mesh_light_lc_srv_om_info_t

struct rm_mesh_light_lc_srv_om_info_t

Light LC Occupancy Mode state

Data Fields

uint8_t present_mode Light LC Occupancy Mode state
- present

uint8_t target_mode Light LC Occupancy Mode state
- target

◆ rm_mesh_light_lc_srv_light_onoff_info_t

struct rm_mesh_light_lc_srv_light_onoff_info_t

Light LC Light OnOff State

Data Fields

uint8_t present_light_onoff Light LC Light OnOff State

uint8_t target_light_onoff Light LC Light OnOff State

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_light_lc_srv_property_id_info_t

struct rm_mesh_light_lc_srv_property_id_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

Property ID identifying a Light LC Property

Data Fields

uint16_t property_id Property ID identifying a Light
LC Property

◆ rm_mesh_light_lc_srv_property_info_t

struct rm_mesh_light_lc_srv_property_info_t

Light LC Property state

Data Fields

uint16_t property_id Property ID identifying a Light
LC Property

uint8_t * property_value Raw value for the Light LC
Property

uint16_t property_value_len

◆ rm_mesh_light_lc_srv_extended_callback_args_t

struct rm_mesh_light_lc_srv_extended_callback_args_t

Light LC Property state

Data Fields

rm_ble_mesh_access_model_ha
ndle_t *

p_handle Access model handle.

rm_ble_mesh_light_lc_srv_event
_t

event_type Application events defined for
Light LC Server Model.

uint8_t * p_event_data Event data.

uint16_t event_data_length Event data length.

◆ rm_mesh_light_lc_srv_instance_ctrl_t

struct rm_mesh_light_lc_srv_instance_ctrl_t

BLE mesh light lc instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_LC_SRV_Open() is called.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ rm_ble_mesh_light_lc_srv_event_t

enum rm_ble_mesh_light_lc_srv_event_t

Light LC light event

Enumerator

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_OFF Light LC Server Event Off.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_STANDB
Y

Light LC Server Event Standby.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_FADE_O
N

Light LC Server Event Fade On.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_RUN Light LC Server Event Run.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_FADE Light LC Server Event Fade.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_PROLON
G

Light LC Server Event Prolong.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_FADE_S
TANDBY_AUTO

Light LC Server Event Standby Auto.

RM_MESH_LIGHT_LC_SRV_LIGHT_EVENT_FADE_S
TANDBY_MANUAL

Light LC Server Event Standby Manual.

◆ rm_ble_mesh_light_lc_srv_state_t

enum rm_ble_mesh_light_lc_srv_state_t

Light LC state

Enumerator

RM_MESH_LIGHT_LC_SRV_STATE_OFF Light LC Server State Off.

RM_MESH_LIGHT_LC_SRV_STATE_STANDBY Light LC Server State Standby.

RM_MESH_LIGHT_LC_SRV_STATE_FADE_ON Light LC Server State Fade On.

RM_MESH_LIGHT_LC_SRV_STATE_RUN Light LC Server State Run.

RM_MESH_LIGHT_LC_SRV_STATE_FADE Light LC Server State Fade.

RM_MESH_LIGHT_LC_SRV_STATE_PROLONG Light LC Server State Prolong.

RM_MESH_LIGHT_LC_SRV_STATE_FADE_STANDB
Y_AUTO

Light LC Server State Standby Auto.

RM_MESH_LIGHT_LC_SRV_STATE_FADE_STANDB
Y_MANUAL

Light LC Server State Standby Manual.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ rm_mesh_light_lc_srv_light_state_t

enum rm_mesh_light_lc_srv_light_state_t

Light LC light state

Enumerator

RM_MESH_LIGHT_LC_SRV_LIGHT_STATE_OFF Light state Off.

RM_MESH_LIGHT_LC_SRV_LIGHT_STATE_ON Light state ON.

Function Documentation

◆ RM_MESH_LIGHT_LC_SRV_Open()

fsp_err_t RM_MESH_LIGHT_LC_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Light_Lc Server model. This is to initialize Light_Lc Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_LC_SRV_Open(&g_mesh_light_lc_srv0_ctrl,

&g_mesh_light_lc_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_Close()

fsp_err_t RM_MESH_LIGHT_LC_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Light_Lc Server model. This is to terminate Light_Lc Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_LC_SRV_Close(&g_mesh_light_lc_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_StateUpdate()

fsp_err_t RM_MESH_LIGHT_LC_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_LIGHT_LC_SRV_StateUpdate(&g_mesh_light_lc_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_SetTimeProperty()

fsp_err_t RM_MESH_LIGHT_LC_SRV_SetTimeProperty (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_device_property_t property, uint32_t time_in_ms)

API to set Light LC Sever Specific Time Properties. This is to update the Light LC Module with any
Light Control Time Properties values. Typically these LC Time properties will be needed to be
updated or informed to the Light LC Module during Power-Up, Scene Recall/Restore related
scenario or when ever the Local application desires to enforce an update in these device properties
values. Currently this interface handles only Time related Device Properties of Light LC Module like:
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_OCCUPANCY_DELAY
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_FADE_ON
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_RUN_ON
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_FADE
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_PROLONG
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_FADE_STANDBY_AUTO
RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPERTY_LIGHT_CONTROL_TIME_FADE_STANDBY_MANU
AL

Parameters
[in] p_ctrl Pointer to control structure.

[in] property LC Server Device Property ID

[in] time_in_ms Related Device Property
Value time in milliseconds

Example:

 /* Set Light LC Sever Specific Time Properties. */

 err = RM_MESH_LIGHT_LC_SRV_SetTimeProperty(&g_mesh_light_lc_srv0_ctrl, property,

time_in_ms);

Return values
FSP_SUCCESS Set the Light Control Time Properties values

successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_SetScenario()

fsp_err_t RM_MESH_LIGHT_LC_SRV_SetScenario (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_mesh_light_lc_srv_scenario_t const *const p_scenario)

API to locally trigger the Light LC Server state machine from the application. This typically is used
in Power-Up or Scene Recall/Restore Scenario where the Application could trigger the Light LC
Server from any desired LC State.

Example:

 /* Trigger to Recall/Restore the scenario. */

 err = RM_MESH_LIGHT_LC_SRV_SetScenario(&g_mesh_light_lc_srv0_ctrl, &scenario);

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_scenario Pointer to
rm_mesh_light_lc_srv_scenar
io_t where Light LC Server
State Informations are
present

Return values
FSP_SUCCESS Updated scenario successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_scenario is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_GetCurrentScenario()

fsp_err_t RM_MESH_LIGHT_LC_SRV_GetCurrentScenario (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_mesh_light_lc_srv_scenario_t *const p_scenario)

API to fetch the Light LC Server state machine related information from the Light LC Server Module.
This typically is used in Power-Up or Scene Recall/Restore Scenario where the Application uses this
to fetch and persistently store the Light LC State related details.

Example:

 /* Fetch the current scenario. */

 err = RM_MESH_LIGHT_LC_SRV_GetCurrentScenario(&g_mesh_light_lc_srv0_ctrl,

&scenario);

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_scenario Pointer to
rm_mesh_light_lc_srv_scenar
io_t where Light LC Server
State Informations are
present

Return values
FSP_SUCCESS Fetch information successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_scenario is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_ReportOccupancy()

fsp_err_t RM_MESH_LIGHT_LC_SRV_ReportOccupancy (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to report any occupancy to Light LC Server Model.

Example:

 /* Reports any occupancy. */

 err = RM_MESH_LIGHT_LC_SRV_ReportOccupancy(&g_mesh_light_lc_srv0_ctrl);

Parameters
[in] p_ctrl Pointer to control structure.

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Location Server (rm_mesh_light_lc_srv)

◆ RM_MESH_LIGHT_LC_SRV_ReportLightOnOff()

fsp_err_t RM_MESH_LIGHT_LC_SRV_ReportLightOnOff (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_mesh_light_lc_srv_light_state_t state)

API to report any Light ON or OFF to Light LC Server Model. There could be many triggering factors
to this Light related ON/OFF events from the upper layer. This API could be used for the following
scenarios

1. Manual/Physical trigger of Light ON/OFF
2. State Binding with Generic ON/OFF
3. Trigger of Light ON/OFF due to Ambient Light Sensor values

Example:

 /* Reports any Light ON or OFF. */

 err = RM_MESH_LIGHT_LC_SRV_ReportLightOnOff(&g_mesh_light_lc_srv0_ctrl, state);

Parameters
[in] p_ctrl Pointer to control structure.

[in] state Desired state value of Light
LC ONOFF.

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

 BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Set (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_SetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_TargetGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Xyl Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_xyl_clt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

The following build time configurations are defined in fsp_cfg/rm_mesh_light_xyl_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light XYL
Client (rm_mesh_light_xyl_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light XYL Client (rm_mesh_light_xyl_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light XYL
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_xyl_cl
t0

Module name.

Data Structures

struct rm_mesh_light_xyl_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_xyl_clt_instance_ctrl_t

struct rm_mesh_light_xyl_clt_instance_ctrl_t

BLE mesh light xyl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_XYL_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_Open()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Light_Xyl Client middleware. This is to initialize Light_Xyl Client model and to register with
Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_XYL_CLT_Open(&g_mesh_light_xyl_clt0_ctrl,

&g_mesh_light_xyl_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_XYL_CLT_Close()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Light_Xyl Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_XYL_CLT_Close(&g_mesh_light_xyl_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,520 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_GetModelHandle()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Light_Xyl client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of light xyl client model. */

 err = RM_MESH_LIGHT_XYL_CLT_GetModelHandle(&g_mesh_light_xyl_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_SendReliablePdu()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_LIGHT_XYL_CLT_SendReliablePdu(&g_mesh_light_xyl_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_Get()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light xyL Get is an acknowledged message used to get the Light xyL Lightness, Light xyL x,
and Light xyL y states of an element. Upon receiving a Light xyL Get message, the element shall
respond with a Light xyL Status message. The response to the Light xyL Get message is a Light xyL
Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_Set()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

The Light xyL Set is an acknowledged message used to set the Light xyL Lightness, Light xyL x
state, and the Light xyL y states of an element. The response to the Light xyL Set message is a
Light xyL Status message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light xyL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_SetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_SetUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

The Light xyL Set Unacknowledged is an unacknowledged message used to set the Light xyL
Lightness, Light xyL x, and the Light xyL y states of an element.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light xyL Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_TargetGet()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_TargetGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light xyL Target Get is an acknowledged message used to get the target Light xyL Lightness,
Light xyL x, and Light xyL y states of an element. The response to the Light xyL Target Get
message is a Light xyL Target Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_DefaultGet()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Light xyL Default Get is an acknowledged message used to get the Light Lightness Default, the
Light xyL x Default, and Light xyL y Default states of an element. The response to the Light xyL
Default Get message is a Light xyL Default Status message. There are no parameters for this
message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_DefaultSet()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Light xyL Default Set is an acknowledged message used to set the Light Lightness Default, the
Light xyL x Default, and Light xyL y Default states of an element. The response to the Light xyL
Default Set message is a Light xyL Default Status message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light HSL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_DefaultSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_DefaultSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Light xyL Default Set Unacknowledged is an unacknowledged message used to set the Light
Lightness Default, the Light xyL x Default, and Light xyL y Default states of an element.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light HSL Default
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_RangeGet()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

The Light xyL Range Get is an acknowledged message used to get the Light xyL x Range and Light
xyL y Range states of an element. The response to the Light xyL Range Get message is a Light xyL
Range Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_RangeSet()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Light xyL Range Set is an acknowledged message used to set the Light xyL x Range and Light xyL y
Range states of an element. The response to the Light xyL Range Set message is a Light xyL Range
Status message.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light xyL Range
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Client (rm_mesh_light_xyl_clt)

◆ RM_MESH_LIGHT_XYL_CLT_RangeSetUnacknowledged()

fsp_err_t RM_MESH_LIGHT_XYL_CLT_RangeSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Light xyL Range Set Unacknowledged is an unacknowledged message used to set the Light xyL x
Range and Light xyL y Range states of an element.

Parameters
[in] p_ctrl rm_mesh_light_xyl_clt

control block.

[in] p_parameter Pointer to Light xyL Range
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_LIGHT_XYL_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_LIGHT_XYL_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_LIGHT_XYL_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Light Xyl Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_light_xyl_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_light_xyl_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Light XYL
Server (rm_mesh_light_xyl_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Light XYL Server (rm_mesh_light_xyl_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light XYL
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh light XYL
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_light_xyl_sr
v0

Module name.

Data Structures

struct rm_mesh_light_xyl_srv_info_t

struct rm_mesh_light_xyl_srv_target_info_t

struct rm_mesh_light_xyl_srv_default_info_t

struct rm_mesh_light_xyl_srv_range_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

struct rm_mesh_light_xyl_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_light_xyl_srv_info_t

struct rm_mesh_light_xyl_srv_info_t

Light xyL state is a composite state that includes the xyL Lightness, the Light xyL x and the Light
xyL y states

Data Fields

uint16_t xyl_lightness The perceived lightness of a
light emitted by the element

uint16_t target_xyl_lightness Target perceived lightness -
used in response path

uint16_t xyl_x The 16-bit value representing
the x coordinate of a CIE1931
color light

uint16_t target_xyl_x Target x coordinate - used in
response path

uint16_t xyl_y The 16-bit value representing
the y coordinate of a CIE1931
color light

uint16_t target_xyl_y Target y coordinate - used in
response path

uint8_t tid TID - Used in request path

uint8_t transition_time Transition Time - Used in
request path. Used as
remaining time in response
path.

uint8_t delay Delay - Used in request path

uint16_t transition_time_handle Transition Timer Handle

◆ rm_mesh_light_xyl_srv_target_info_t

struct rm_mesh_light_xyl_srv_target_info_t

Light xyL target state is a composite state that includes the xyL Lightness, the Light xyL x and the
Light xyL y states

Data Fields

uint16_t xyl_lightness The perceived lightness of a
light emitted by the element

uint16_t xyl_x The 16-bit value representing
the x coordinate of a CIE1931
color light

uint16_t xyl_y The 16-bit value representing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

the y coordinate of a CIE1931
color light

◆ rm_mesh_light_xyl_srv_default_info_t

struct rm_mesh_light_xyl_srv_default_info_t

Light xyL default state is a composite state that includes the xyL Lightness, the Light xyL x and the
Light xyL y states

Data Fields

uint16_t xyl_lightness The perceived lightness of a
light emitted by the element

uint16_t xyl_x The 16-bit value representing
the x coordinate of a CIE1931
color light

uint16_t xyl_y The 16-bit value representing
the y coordinate of a CIE1931
color light

◆ rm_mesh_light_xyl_srv_range_info_t

struct rm_mesh_light_xyl_srv_range_info_t

Light xyL Range state determines the minimum and maximum values of the Light xyL x and syL y
state of an element

Data Fields

uint16_t xyl_x_range_min The minimum value of a Light
xyL x state of an element

uint16_t xyl_x_range_max The maximum value of a Light
xyL x state of an element

uint16_t xyl_y_range_min The minimum value of a Light
xyL y state of an element

uint16_t xyl_y_range_max The maximum value of a Light
xyL y state of an element

uint8_t status Status - Used in the response
path

◆ rm_mesh_light_xyl_srv_instance_ctrl_t

struct rm_mesh_light_xyl_srv_instance_ctrl_t

BLE mesh light xyl instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_LIGHT_XYL_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

◆ RM_MESH_LIGHT_XYL_SRV_Open()

fsp_err_t RM_MESH_LIGHT_XYL_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Light_Xyl Server model. This is to initialize Light_Xyl Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_LIGHT_XYL_SRV_Open(&g_mesh_light_xyl_srv0_ctrl,

&g_mesh_light_xyl_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_LIGHT_XYL_SRV_Close()

fsp_err_t RM_MESH_LIGHT_XYL_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Light_Xyl Server model. This is to terminate Light_Xyl Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_LIGHT_XYL_SRV_Close(&g_mesh_light_xyl_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Light Xyl Server (rm_mesh_light_xyl_srv)

◆ RM_MESH_LIGHT_XYL_SRV_StateUpdate()

fsp_err_t RM_MESH_LIGHT_XYL_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_LIGHT_XYL_SRV_StateUpdate(&g_mesh_light_xyl_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_LOWER_TRANS_Open
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_Close (rm_ble_mesh_provision_ctrl_t
*const p_ctrl)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_SendPdu

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_transmit_setting_t const *const
p_transmit_setting, rm_ble_mesh_buffer_t const *const p_buffer,
rm_ble_mesh_lower_trans_reliable_t reliable)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ClearSarContexts
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ClearSubnetSarContexts
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ReinitReplayCache
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_LOWER_TRANS_TriggerPendingTransmits
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Lower Trans module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_lower_trans

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_lower_trans_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Lower Trans
(rm_ble_mesh_lower_trans)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Lower Trans (rm_ble_mesh_lower_trans).

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_lower_t
rans0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,538 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

hardware.

Notification Enable Enabled
Disabled

Disabled Whether to enable the
notification or not.

Callback Name Must Be a Valid
C Symbol

NULL Callback function
name.

Data Structures

struct rm_ble_mesh_lower_trans_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_lower_trans_instance_ctrl_t

struct rm_ble_mesh_lower_trans_instance_ctrl_t

RM_BLE_MESH_LOWER_TRANS private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_LOWER_TRANS_Open() is called.

Function Documentation

◆ RM_BLE_MESH_LOWER_TRANS_Open()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_Open (rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_cfg_t const *const p_cfg)

Register Inerface with Lower Transport Layer. This routine registers interface with the Lower
Transport Layer. Transport Layer supports single Application, hence this rouine shall be called
once.

Implements rm_ble_mesh_lower_trans_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_LOWER_TRANS_Open(&g_ble_mesh_lower_trans0_ctrl,

&g_ble_mesh_lower_trans0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

◆ RM_BLE_MESH_LOWER_TRANS_Close()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_Close (rm_ble_mesh_provision_ctrl_t *const p_ctrl)

Unregister Inerface with Lower Transport Layer. Implements rm_ble_mesh_lower_trans_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_LOWER_TRANS_Close(&g_ble_mesh_lower_trans0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

◆ RM_BLE_MESH_LOWER_TRANS_SendPdu()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_SendPdu (rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_transmit_setting_t const *const p_transmit_setting,
rm_ble_mesh_buffer_t const *const p_buffer, rm_ble_mesh_lower_trans_reliable_t reliable)

API to send transport PDUs. This routine sends transport PDUs to peer device.

Implements rm_ble_mesh_lower_trans_api_t::sendPdu.

Example:

 /* Send transport PDUs. */

 err = RM_BLE_MESH_LOWER_TRANS_SendPdu(&g_ble_mesh_lower_trans0_ctrl,

 &transmit_setting,

 &buffer,

 RM_BLE_MESH_LOWER_TRANS_RELIABLE_ENABLE);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_transmit_setting and
p_buffer are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

◆ RM_BLE_MESH_LOWER_TRANS_ClearSarContexts()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ClearSarContexts (rm_ble_mesh_lower_trans_ctrl_t *const
p_ctrl)

To clear all segmentation and reassembly contexts. This routine clears all segmentation and
reassembly contexts.

Implements rm_ble_mesh_lower_trans_api_t::clearSarContexts.

Example:

 /* Clear all segmentation and reassembly contexts. */

 err = RM_BLE_MESH_LOWER_TRANS_ClearSarContexts(&g_ble_mesh_lower_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_LOWER_TRANS_ClearSubnetSarContexts()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ClearSubnetSarContexts (rm_ble_mesh_lower_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle)

To clear all segmentation and reassembly contexts for a given subnet. This routine clears all
segmentation and reassembly contexts.

Implements rm_ble_mesh_lower_trans_api_t::clearSubnetSarContexts.

Example:

 /* Clear all segmentation and reassembly contexts for a given subnet. */

 err =

RM_BLE_MESH_LOWER_TRANS_ClearSubnetSarContexts(&g_ble_mesh_lower_trans0_ctrl,

subnet_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Lower Trans (rm_ble_mesh_lower_trans)

◆ RM_BLE_MESH_LOWER_TRANS_ReinitReplayCache()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_ReinitReplayCache (rm_ble_mesh_lower_trans_ctrl_t
*const p_ctrl)

To reinitialize all Lower Transport replay cache entries. This routine clears and reinitializes all
Transport Replay Cache Entries. This needs to be invoked by the upper layer when the Network
moves to a newer IV Index (Normal State) and the Sequence numbers are reset.

Implements rm_ble_mesh_lower_trans_api_t::reinitReplayCache.

Example:

 /* Reinitialize all Lower Transport replay cache Entries. */

 err = RM_BLE_MESH_LOWER_TRANS_ReinitReplayCache(&g_ble_mesh_lower_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_LOWER_TRANS_TriggerPendingTransmits()

fsp_err_t RM_BLE_MESH_LOWER_TRANS_TriggerPendingTransmits (rm_ble_mesh_lower_trans_ctrl_t
*const p_ctrl)

To trigger any LTRN pending transmissions. Trigger pending transmits is an interface to check for
pending segments in the tx queue and schedule for transmission, which is mainly used by the LPN
operation.

Implements rm_ble_mesh_lower_trans_api_t::triggerPendingTransmits.

Example:

 /* Trigger any Lower Transport pending transmissions. */

 err =

RM_BLE_MESH_LOWER_TRANS_TriggerPendingTransmits(&g_ble_mesh_lower_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

 BLE Mesh Network Network (rm_ble_mesh_network)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_NETWORK_Open (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_NETWORK_Close (rm_ble_mesh_network_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLE_MESH_NETWORK_BroadcastSecureBeacon
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

fsp_err_t RM_BLE_MESH_NETWORK_SendPduOnInterface
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_network_header_t const *const p_header,
rm_ble_mesh_buffer_t const *const p_buffer)

fsp_err_t RM_BLE_MESH_NETWORK_GetAddressType
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr,
rm_ble_mesh_network_address_type_t *const p_type)

fsp_err_t RM_BLE_MESH_NETWORK_FetchProxyState
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_gatt_proxy_state_t *const p_proxy_state)

fsp_err_t RM_BLE_MESH_NETWORK_SetProxyFilter
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_filter_type_t type)

fsp_err_t RM_BLE_MESH_NETWORK_ConfigProxyFilter
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_config_opcode_t opcode,
rm_ble_mesh_network_proxy_address_list_t *const p_addr_list)

fsp_err_t RM_BLE_MESH_NETWORK_StartProxyServerAdv
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle,
rm_ble_mesh_network_gatt_proxy_adv_mode_t proxy_adv_mode)

fsp_err_t RM_BLE_MESH_NETWORK_StopProxyServerAdv
(rm_ble_mesh_network_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_NETWORK_AllocateSeqNumber
(rm_ble_mesh_network_ctrl_t *const p_ctrl, uint32_t *const
p_seq_num)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

fsp_err_t RM_BLE_MESH_NETWORK_GetSeqNumberState
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_seq_number_state_t *const p_seq_num_state)

fsp_err_t RM_BLE_MESH_NETWORK_SetSeqNumberState
(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_seq_number_state_t const *const
p_seq_num_state)

fsp_err_t RM_BLE_MESH_NETWORK_ResetNetCache
(rm_ble_mesh_network_ctrl_t *const p_ctrl)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Network module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_network

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_network_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Network
(rm_ble_mesh_network)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Network (rm_ble_mesh_network).

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_networ
k0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Ignore Netcache
Wrapping

Processed
Dropped

Dropped Ignore netcache
wrapping.

RX Callback Event
Enable

Enabled
Disabled

Disabled Whether to enable the
RX callback event or

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

not.

TX Callback Event
Enable

Enabled
Disabled

Disabled Whether to enable the
TX callback event or
not.

Callback Name Must Be a Valid
C Symbol

NULL Callback function
name.

Data Structures

struct rm_ble_mesh_network_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_network_instance_ctrl_t

struct rm_ble_mesh_network_instance_ctrl_t

RM_BLE_MESH_NETWORK private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_NETWORK_Open() is called.

Function Documentation

◆ RM_BLE_MESH_NETWORK_Open()

fsp_err_t RM_BLE_MESH_NETWORK_Open (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_cfg_t const *const p_cfg)

Register Inerface with Network Layer. This routine registers interface with the Network Layer.
Network Layer supports only one upper layer, hence this routine shall be called once.

Implements rm_ble_mesh_network_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_NETWORK_Open(&g_ble_mesh_network0_ctrl,

&g_ble_mesh_network0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_Close()

fsp_err_t RM_BLE_MESH_NETWORK_Close (rm_ble_mesh_network_ctrl_t *const p_ctrl)

Unregister Inerface with Network Layer. Implements rm_ble_mesh_network_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_NETWORK_Close(&g_ble_mesh_network0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_NETWORK_BroadcastSecureBeacon()

fsp_err_t RM_BLE_MESH_NETWORK_BroadcastSecureBeacon (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle)

API to send Secure Network Beacon. This routine sends Secure Network Beacon for the given
subnet handle.

Implements rm_ble_mesh_network_api_t::broadcastSecureBeacon.

Example:

 /* Send secure network beacon. */

 err = RM_BLE_MESH_NETWORK_BroadcastSecureBeacon(&g_ble_mesh_network0_ctrl,

subnet_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_SendPduOnInterface()

fsp_err_t RM_BLE_MESH_NETWORK_SendPduOnInterface (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_network_header_t const *const p_header, rm_ble_mesh_buffer_t const *const
p_buffer)

Extension API to send Network PDUs on selected network interfaces. This routine sends NETWORK
PDUs on all or selected Network Interfaces.

Implements rm_ble_mesh_network_api_t::sendPduOnInterface.

Example:

 /* Send network PDUs on selected network interfaces. */

 err = RM_BLE_MESH_NETWORK_SendPduOnInterface(&g_ble_mesh_network0_ctrl,

&route_info, &header, &buffer);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_route_info, p_header and
p_buffer are NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_GetAddressType()

fsp_err_t RM_BLE_MESH_NETWORK_GetAddressType (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr, rm_ble_mesh_network_address_type_t *const p_type)

To get address type. This routine is to get address type for a given address.

Implements rm_ble_mesh_network_api_t::getAddressType.

Example:

 /* Get address type. */

 err = RM_BLE_MESH_NETWORK_GetAddressType(&g_ble_mesh_network0_ctrl, addr, &type);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_type is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_FetchProxyState()

fsp_err_t RM_BLE_MESH_NETWORK_FetchProxyState (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_gatt_proxy_state_t *const p_proxy_state)

Check if the proxy module is ready to handle proxy messages/events. This routine returns the
current state of the Proxy. The valid states of proxy are:

1. RM_BLE_MESH_NETWORK_GATT_PROXY_STATE_NULL - If no callback registered by Upper
Layers

2. RM_BLE_MESH_NEgTWORK_GATT_PROXY_STATE_READY - If callback registered and Proxy
not connected

3. RM_BLE_MESH_NETWORK_GATT_PROXY_STATE_CONNECTED - if callback registered and
Proxy connected

Implements rm_ble_mesh_network_api_t::fetchProxyState.

Example:

 /* Check if the proxy module is ready to handle proxy messages/events. */

 err = RM_BLE_MESH_NETWORK_FetchProxyState(&g_ble_mesh_network0_ctrl,

&proxy_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_proxy_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_SetProxyFilter()

fsp_err_t RM_BLE_MESH_NETWORK_SetProxyFilter (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info, rm_ble_mesh_proxy_filter_type_t
type)

Set proxy server's filter type. This function is used by the Proxy Client to set the filter type on the
Proxy Server.

Implements rm_ble_mesh_network_api_t::setProxyFilter.

Example:

 /* Set proxy server's filter type. */

 err = RM_BLE_MESH_NETWORK_SetProxyFilter(&g_ble_mesh_network0_ctrl, &route_info,

filter_type);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_route_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_ConfigProxyFilter()

fsp_err_t RM_BLE_MESH_NETWORK_ConfigProxyFilter (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_config_opcode_t opcode, rm_ble_mesh_network_proxy_address_list_t *const
p_addr_list)

Add or Delete/Remove addresses to/from proxy filter list. This function is used by the Proxy Client
to add/delete Addresses to/from the Proxy Server's filter List.

Implements rm_ble_mesh_network_api_t::configProxyFilter.

Example:

 /* Add or delete/remove addresses to/from proxy filter list. */

 err = RM_BLE_MESH_NETWORK_ConfigProxyFilter(&g_ble_mesh_network0_ctrl,

&route_info, opcode, &addr_list);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_route_info and p_addr_list
are NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_StartProxyServerAdv()

fsp_err_t RM_BLE_MESH_NETWORK_StartProxyServerAdv (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
rm_ble_mesh_network_gatt_proxy_adv_mode_t proxy_adv_mode)

Start connectable advertisements for a proxy server. This function is used by the Proxy Server to
start Connectable Undirected Advertisements.

Implements rm_ble_mesh_network_api_t::startProxyServerAdv.

Example:

 /* Start connectable advertisements for a proxy server. */

 err = RM_BLE_MESH_NETWORK_StartProxyServerAdv(&g_ble_mesh_network0_ctrl,

subnet_handle, proxy_adv_mode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The internal parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_StopProxyServerAdv()

fsp_err_t RM_BLE_MESH_NETWORK_StopProxyServerAdv (rm_ble_mesh_network_ctrl_t *const
p_ctrl)

Stop connectable advertisements for a proxy server. This function is used by the Proxy Server to
stop Connectable Undirected Advertisements.

Implements rm_ble_mesh_network_api_t::stopProxyServerAdv.

Example:

 /* Stop connectable advertisements for a proxy server. */

 err = RM_BLE_MESH_NETWORK_StopProxyServerAdv(&g_ble_mesh_network0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_NETWORK_AllocateSeqNumber()

fsp_err_t RM_BLE_MESH_NETWORK_AllocateSeqNumber (rm_ble_mesh_network_ctrl_t *const
p_ctrl, uint32_t *const p_seq_num)

To allocate sequence number. This function is used to allocate Sequence Number.

Implements rm_ble_mesh_network_api_t::allocateSeqNumber.

Example:

 /* Allocate sequence number. */

 err = RM_BLE_MESH_NETWORK_AllocateSeqNumber(&g_ble_mesh_network0_ctrl, &seq_num);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_seq_num is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_GetSeqNumberState()

fsp_err_t RM_BLE_MESH_NETWORK_GetSeqNumberState (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_seq_number_state_t *const p_seq_num_state)

To get current sequence number state. This function is used to get current Sequence Number
state.

Implements rm_ble_mesh_network_api_t::getSeqNumberState.

Example:

 /* Get current sequence number state. */

 err = RM_BLE_MESH_NETWORK_GetSeqNumberState(&g_ble_mesh_network0_ctrl,

&seq_num_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_seq_num_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_NETWORK_SetSeqNumberState()

fsp_err_t RM_BLE_MESH_NETWORK_SetSeqNumberState (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_seq_number_state_t const *const p_seq_num_state)

To set current sequence number state. This function is used to get current Sequence Number state,
which acquiring lock. Used from persistent storage.

Implements rm_ble_mesh_network_api_t::setSeqNumberState.

Example:

 /* Set current sequence number state. */

 err = RM_BLE_MESH_NETWORK_SetSeqNumberState(&g_ble_mesh_network0_ctrl,

&seq_num_state);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_seq_num_state is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Network (rm_ble_mesh_network)

◆ RM_BLE_MESH_NETWORK_ResetNetCache()

fsp_err_t RM_BLE_MESH_NETWORK_ResetNetCache (rm_ble_mesh_network_ctrl_t *const p_ctrl)

To reinitialize all Network Layer cache entries. This routine clears and reinitializes all Network
Cache Entries. This needs to be invoked by the upper layer when the Network moves to a newer IV
Index (Normal State) and the Sequence numbers are reset.

Implements rm_ble_mesh_network_api_t::resetNetCache.

Example:

 /* Reinitialize all Network Layer cache entries. */

 err = RM_BLE_MESH_NETWORK_ResetNetCache(&g_ble_mesh_network0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

 BLE Mesh Network Provision (rm_ble_mesh_provision)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_PROVISION_Open (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_PROVISION_Close (rm_ble_mesh_provision_ctrl_t
*const p_ctrl)

fsp_err_t RM_BLE_MESH_PROVISION_Setup (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_role_t role,
rm_ble_mesh_provision_device_info_t info, uint16_t timeout)

fsp_err_t RM_BLE_MESH_PROVISION_Bind (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_device_info_t info, uint8_t
attention, rm_ble_mesh_provision_handle_t *const p_handle)

fsp_err_t RM_BLE_MESH_PROVISION_SendPdu (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_handle_t const *const
p_handle, rm_ble_mesh_provision_pdu_type_t type,
rm_ble_mesh_buffer_t pdu_data)

fsp_err_t RM_BLE_MESH_PROVISION_SetAuthVal (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_handle_t const *const
p_handle, rm_ble_mesh_buffer_t auth_value)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,556 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

fsp_err_t RM_BLE_MESH_PROVISION_Abort (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, rm_ble_mesh_provision_handle_t const *const
p_handle, rm_ble_mesh_provision_link_close_reason_t reason)

fsp_err_t RM_BLE_MESH_PROVISION_GetLocalPublicKey
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t *const
p_public_key)

fsp_err_t RM_BLE_MESH_PROVISION_SetLocalPublicKey
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t const *const
p_public_key)

fsp_err_t RM_BLE_MESH_PROVISION_GenerateRandomizedNumber
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t *const p_key)

fsp_err_t RM_BLE_MESH_PROVISION_SetOobPublicKey
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t const *const
p_key, uint8_t size)

fsp_err_t RM_BLE_MESH_PROVISION_SetOobAuthInfo
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t const *const
p_auth_info, uint8_t size)

fsp_err_t RM_BLE_MESH_PROVISION_GenerateEcdhKey
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t *const
p_public_key)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Provision module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_provision

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_provision_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Provision
(rm_ble_mesh_provision)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Provision (rm_ble_mesh_provision).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,557 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

Configuration Options Default Description

General

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_provisi
on0

Module name.

Provision Capabilities

Number of Elements Invalid Number of
Elements

1 Provision capabilities
number of elements.

Supported Algorithms Invalid Supported
Algorithms

0 Provision capabilities
supported algorithms.

Public Key Type Invalid Public Key Type 0 Provision capabilities
public key type.

Static OOB Type Invalid Static OOB Type 0 Provision capabilities
static OOB type.

Output OOB Action Invalid Output OOB
Action

0 Provision capabilities
output OOB action.

Output OOB Size Invalid Output OOB
Size

0 Provision capabilities
output OOB size.

Input OOB Action Invalid Input OOB
Action

0 Provision capabilities
input OOB action.

Input OOB Size Invalid Input OOB Size 0 Provision capabilities
iutput OOB size.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Provision Callback Name Must Be a Valid
C Symbol.

NULL Provision callback
function name.

Data Structures

struct rm_ble_mesh_provision_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_provision_instance_ctrl_t

struct rm_ble_mesh_provision_instance_ctrl_t

RM_BLE_MESH_PROVISION private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_PROVISION_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,558 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_Open()

fsp_err_t RM_BLE_MESH_PROVISION_Open (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_cfg_t const *const p_cfg)

Open access middleware. This function registers the provisioning capabilities of the application
along with the application callback to notify events during the provisioning procedure.

Implements rm_ble_mesh_provision_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_PROVISION_Open(&g_ble_mesh_provision0_ctrl,

&g_ble_mesh_provision0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

◆ RM_BLE_MESH_PROVISION_Close()

fsp_err_t RM_BLE_MESH_PROVISION_Close (rm_ble_mesh_provision_ctrl_t *const p_ctrl)

Close access middleware. Implements rm_ble_mesh_provision_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_PROVISION_Close(&g_ble_mesh_provision0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,559 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_Setup()

fsp_err_t RM_BLE_MESH_PROVISION_Setup (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_role_t role, rm_ble_mesh_provision_device_info_t info, uint16_t timeout)

Setup the device for provisioning. This function configures the device to get in a provisionable state
by specifying the role, bearer and creating a context.

Implements rm_ble_mesh_provision_api_t::setup.

Example:

 /* Setup the device for provisioning. */

 err = RM_BLE_MESH_PROVISION_Setup(&g_ble_mesh_provision0_ctrl, role, info,

timeout);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER The parameter info->p_device is NULL.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,560 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_Bind()

fsp_err_t RM_BLE_MESH_PROVISION_Bind (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_device_info_t info, uint8_t attention, rm_ble_mesh_provision_handle_t
*const p_handle)

Bind to the peer device for provisioning. This function establishes a provisioning link with the peer
device and exchanges the capabilities for provisioning.

Implements rm_ble_mesh_provision_api_t::bind.

Example:

 /* Bind to the peer device for provisioning. */

 err = RM_BLE_MESH_PROVISION_Bind(&g_ble_mesh_provision0_ctrl, info, attention,

&provision_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,561 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_SendPdu()

fsp_err_t RM_BLE_MESH_PROVISION_SendPdu (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle, rm_ble_mesh_provision_pdu_type_t type,
rm_ble_mesh_buffer_t pdu_data)

Send provisioning PDUs to the peer. This function is used by the provisioning application to send
the provisioning PDUs to the peer device during the procedure.

Implements rm_ble_mesh_provision_api_t::sendPdu.

Example:

 /* Send provisioning PDUs to the peer. */

 err = RM_BLE_MESH_PROVISION_SendPdu(&g_ble_mesh_provision0_ctrl,

&provision_handle, type, pdu_data);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_UNSUPPORTED The pdu type is not supported.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,562 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_SetAuthVal()

fsp_err_t RM_BLE_MESH_PROVISION_SetAuthVal (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle, rm_ble_mesh_buffer_t auth_value)

Set the display authval. This function shall be used by the provisioning application to set the
authval being displayed to the user on receiving
RM_BLE_MESH_PROVISION_EVENT_TYPE_OOB_DISPLAY event with the respective OOB Action and
Size.

Implements rm_ble_mesh_provision_api_t::setAuthVal.

Example:

 rm_ble_mesh_buffer_t auth_value = {.payload = NULL, .length = 0};;

 /* Set the display authval. */

 err = RM_BLE_MESH_PROVISION_SetAuthVal(&g_ble_mesh_provision0_ctrl,

&provision_handle, auth_value);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,563 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_Abort()

fsp_err_t RM_BLE_MESH_PROVISION_Abort (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle,
rm_ble_mesh_provision_link_close_reason_t reason)

Abort the provisioning procedure. This API can be used by the application to abort the ongoing
provisioning procedure. This routine closes the provisioning link with the reason as specified.

Implements rm_ble_mesh_provision_api_t::abort.

Example:

 /* Abort the provisioning procedure. */

 err = RM_BLE_MESH_PROVISION_Abort(&g_ble_mesh_provision0_ctrl, &provision_handle,

reason);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,564 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_GetLocalPublicKey()

fsp_err_t RM_BLE_MESH_PROVISION_GetLocalPublicKey (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t *const p_public_key)

Utility API to get current ECDH public key to be used for provisioning. This API can be used by the
application to fetch the current ECDH P256 Public Key which is to be used for the Provisioning
Procedure.

Implements rm_ble_mesh_provision_api_t::getLocalPublicKey.

Example:

 /* Get current ECDH Public Key to be used for Provisioning. */

 err = RM_BLE_MESH_PROVISION_GetLocalPublicKey(&g_ble_mesh_provision0_ctrl,

&public_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_public_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,565 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_SetLocalPublicKey()

fsp_err_t RM_BLE_MESH_PROVISION_SetLocalPublicKey (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t const *const p_public_key)

Utility API to set current ECDH public key to be used for provisioning. This API can be used by the
application to fetch the current ECDH P256 Public Key which is to be used for the Provisioning
Procedure.

Implements rm_ble_mesh_provision_api_t::setLocalPublicKey.

Example:

 /* Set current ECDH Public Key to be used for Provisioning. */

 err = RM_BLE_MESH_PROVISION_SetLocalPublicKey(&g_ble_mesh_provision0_ctrl,

&public_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_public_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,566 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_GenerateRandomizedNumber()

fsp_err_t RM_BLE_MESH_PROVISION_GenerateRandomizedNumber (rm_ble_mesh_provision_ctrl_t
*const p_ctrl, uint8_t *const p_key)

Utility API to generate 128bits (16 bytes) randomized number to be used for provisioning. The
randomized number can be used for UUID, Net Key and Application Key.

Implements rm_ble_mesh_provision_api_t::generateRandomizedNumber.

Example:

 /* Generate 128bits (16 bytes) randomized number. */

 err = RM_BLE_MESH_PROVISION_GenerateRandomizedNumber(&g_ble_mesh_provision0_ctrl,

p_net_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_PROVISION_SetOobPublicKey()

fsp_err_t RM_BLE_MESH_PROVISION_SetOobPublicKey (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t const *const p_key, uint8_t size)

Utility API to set device out of band public key for provisioning.

Implements rm_ble_mesh_provision_api_t::setOobPublicKey.

Example:

 /* Set device out of band public key. */

 err = RM_BLE_MESH_PROVISION_SetOobPublicKey(&g_ble_mesh_provision0_ctrl,

p_public_key, size);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_key is NULL.

FSP_ERR_INVALID_ARGUMENT The parameter size is more than 64.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,567 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Provision (rm_ble_mesh_provision)

◆ RM_BLE_MESH_PROVISION_SetOobAuthInfo()

fsp_err_t RM_BLE_MESH_PROVISION_SetOobAuthInfo (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t const *const p_auth_info, uint8_t size)

Utility API to set device out of band authentication information for provisioning.

Implements rm_ble_mesh_provision_api_t::setOobAuthInfo.

Example:

 /* Set device out of band authentication information. */

 err = RM_BLE_MESH_PROVISION_SetOobAuthInfo(&g_ble_mesh_provision0_ctrl,

p_auth_info, size);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_auth_info is NULL.

FSP_ERR_INVALID_ARGUMENT The parameter size is more than 16.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_PROVISION_GenerateEcdhKey()

fsp_err_t RM_BLE_MESH_PROVISION_GenerateEcdhKey (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t *const p_public_key)

Utility API to generate ECDH public key to be used for provisioning.

Implements rm_ble_mesh_provision_api_t::generateEcdhKey.

Example:

 /* Generate ECDH Public Key for Provisioning. */

 err = RM_BLE_MESH_PROVISION_GenerateEcdhKey(&g_ble_mesh_provision0_ctrl,

&public_key);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_public_key is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,568 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

 BLE Mesh Network Scene Client (rm_mesh_scene_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SCENE_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SCENE_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SCENE_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_SCENE_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_SCENE_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

fsp_err_t RM_MESH_SCENE_CLT_Recall (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SCENE_CLT_RecallUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SCENE_CLT_RegisterGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SCENE_CLT_Store (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SCENE_CLT_StoreUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SCENE_CLT_Delete (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SCENE_CLT_DeleteUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,569 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

Overview
Target Devices

The BLE Mesh Network Scene Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_scene_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_scene_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Scene
Client (rm_mesh_scene_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Scene Client (rm_mesh_scene_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scene
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_scene_clt0 Module name.

Data Structures

struct rm_mesh_scene_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_scene_clt_instance_ctrl_t

struct rm_mesh_scene_clt_instance_ctrl_t

BLE mesh scene instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SCENE_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,570 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_Open()

fsp_err_t RM_MESH_SCENE_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

open Scene Client middleware. This is to initialize Scene Client model and to register with Access
layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SCENE_CLT_Open(&g_mesh_scene_clt0_ctrl, &g_mesh_scene_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_SCENE_CLT_Close()

fsp_err_t RM_MESH_SCENE_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Scene Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SCENE_CLT_Close(&g_mesh_scene_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,571 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_GetModelHandle()

fsp_err_t RM_MESH_SCENE_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Scene client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of scene client model. */

 err = RM_MESH_SCENE_CLT_GetModelHandle(&g_mesh_scene_clt0_ctrl, &model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,572 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_SendReliablePdu()

fsp_err_t RM_MESH_SCENE_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_SCENE_CLT_SendReliablePdu(&g_mesh_scene_clt0_ctrl, req_opcode,

p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,573 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_Get()

fsp_err_t RM_MESH_SCENE_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Scene Get is an acknowledged message used to get the current status of a currently active scene
of an element. The response to the Scene Get message is a Scene Status message. There are no
parameters for this message.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,574 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_Recall()

fsp_err_t RM_MESH_SCENE_CLT_Recall (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Scene Recall is an acknowledged message that is used to recall the current state of an element
from a previously stored scene. The response to the Scene Recall message is a Scene Status
message.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Recall
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,575 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_RecallUnacknowledged()

fsp_err_t RM_MESH_SCENE_CLT_RecallUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Scene Recall Unacknowledged is an unacknowledged message used to recall the current state of
an element from a previously stored Scene.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Recall
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,576 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_RegisterGet()

fsp_err_t RM_MESH_SCENE_CLT_RegisterGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Scene Register Get is an acknowledged message used to get the current status of the Scene
Register of an element. The response to the Scene Register Get message is a Scene Register
Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,577 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_Store()

fsp_err_t RM_MESH_SCENE_CLT_Store (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Scene Store is an acknowledged message used to store the current state of an element as a Scene,
which can be recalled later. The response to the Scene Store message is a Scene Register Status
message.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Store
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,578 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_StoreUnacknowledged()

fsp_err_t RM_MESH_SCENE_CLT_StoreUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Scene Store Unacknowledged is an unacknowledged message used to store the current state of an
element as a Scene, which can be recalled later.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Store
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,579 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_Delete()

fsp_err_t RM_MESH_SCENE_CLT_Delete (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Scene Delete is an acknowledged message used to delete a Scene from the Scene Register state of
an element. The response to the Scene Delete message is a Scene Register Status message.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Delete
parameter.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,580 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Client (rm_mesh_scene_clt)

◆ RM_MESH_SCENE_CLT_DeleteUnacknowledged()

fsp_err_t RM_MESH_SCENE_CLT_DeleteUnacknowledged (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

Scene Delete Unacknowledged is an unacknowledged message used to delete a scene from the
Scene Register state of an element.

Parameters
[in] p_ctrl rm_mesh_scene_clt control

block.

[in] p_parameter Pointer to Scene Delete
parameter.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Scene Server (rm_mesh_scene_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SCENE_SRV_Open (rm_ble_mesh_scene_server_ctrl_t
*const p_ctrl, rm_ble_mesh_scene_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SCENE_SRV_Close (rm_ble_mesh_scene_server_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SCENE_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,581 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Server (rm_mesh_scene_srv)

(rm_ble_mesh_scene_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Scene Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_scene_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_scene_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Scene
Server (rm_mesh_scene_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Scene Server (rm_mesh_scene_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scene
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scene
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_scene_srv0 Module name.

Model Handle Invalid Model Handle 0 Select model handle.

Setup Server Handle Invalid Setup Server
Handle

0 Select setup server
handle.

Data Structures

struct rm_mesh_scene_srv_number_info_t

struct rm_mesh_scene_srv_status_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,582 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Server (rm_mesh_scene_srv)

struct rm_mesh_scene_srv_register_status_info_t

struct rm_mesh_scene_srv_ext_tid_and_transition_info_t

struct rm_mesh_scene_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_scene_srv_number_info_t

struct rm_mesh_scene_srv_number_info_t

The state to identify a scene

Data Fields

uint16_t number The number to identify a scene

◆ rm_mesh_scene_srv_status_info_t

struct rm_mesh_scene_srv_status_info_t

The current status of a currently active scene

Data Fields

uint8_t status_code Status Code

uint16_t current_scene Scene Number of a current
scene.

uint16_t target_scene Scene Number of a target
scene.

uint8_t remaining_time

◆ rm_mesh_scene_srv_register_status_info_t

struct rm_mesh_scene_srv_register_status_info_t

The current status of scene register

Data Fields

uint8_t status_code Status Code

uint16_t current_scene Scene Number of a current
scene.

uint16_t * scenes A list of scenes stored within an
element

uint16_t scenes_count

◆ rm_mesh_scene_srv_ext_tid_and_transition_info_t

struct rm_mesh_scene_srv_ext_tid_and_transition_info_t

TID and Transition is a structure which contains Transaction ID (TID) as mandatory field. Other two
fields, Transition Time and Delay are optional.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,583 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Server (rm_mesh_scene_srv)

TID field is a transaction identifier indicating whether the message is a new message or a
retransmission of a previously sent message.

If present, the Transition Time field identifies the time that an element will take to transition to the
target state from the present state.

The Delay field shall be present when the Transition Time field is present. It identifies the message
execution delay, representing a time interval between receiving the message by a model and
executing the associated model behaviors.

◆ rm_mesh_scene_srv_instance_ctrl_t

struct rm_mesh_scene_srv_instance_ctrl_t

BLE mesh scene instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SCENE_SRV_Open() is called.

Function Documentation

◆ RM_MESH_SCENE_SRV_Open()

fsp_err_t RM_MESH_SCENE_SRV_Open (rm_ble_mesh_scene_server_ctrl_t *const p_ctrl,
rm_ble_mesh_scene_server_cfg_t const *const p_cfg)

API to initialize Scene Server model. This is to initialize Scene Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SCENE_SRV_Open(&g_mesh_scene_srv0_ctrl, &g_mesh_scene_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,584 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Server (rm_mesh_scene_srv)

◆ RM_MESH_SCENE_SRV_Close()

fsp_err_t RM_MESH_SCENE_SRV_Close (rm_ble_mesh_scene_server_ctrl_t *const p_ctrl)

API to terminate Scene Server model. This is to terminate Scene Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SCENE_SRV_Close(&g_mesh_scene_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,585 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scene Server (rm_mesh_scene_srv)

◆ RM_MESH_SCENE_SRV_StateUpdate()

fsp_err_t RM_MESH_SCENE_SRV_StateUpdate (rm_ble_mesh_scene_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_SCENE_SRV_StateUpdate(&g_mesh_scene_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SCHEDULER_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SCHEDULER_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SCHEDULER_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,586 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_SCHEDULER_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_SCHEDULER_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Scheduler Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_scheduler_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_scheduler_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model
Scheduler Client (rm_mesh_scheduler_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Scheduler Client (rm_mesh_scheduler_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scheduler

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,587 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_scheduler_
clt0

Module name.

Data Structures

struct rm_mesh_scheduler_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_scheduler_clt_instance_ctrl_t

struct rm_mesh_scheduler_clt_instance_ctrl_t

BLE mesh scheduler instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SCHEDULER_CLT_Open() is called.

Function Documentation

◆ RM_MESH_SCHEDULER_CLT_Open()

fsp_err_t RM_MESH_SCHEDULER_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Scheduler Client middleware. This is to initialize Scheduler Client model and to register with
Access layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SCHEDULER_CLT_Open(&g_mesh_scheduler_clt0_ctrl,

&g_mesh_scheduler_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,588 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_Close()

fsp_err_t RM_MESH_SCHEDULER_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Scheduler Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SCHEDULER_CLT_Close(&g_mesh_scheduler_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

◆ RM_MESH_SCHEDULER_CLT_GetModelHandle()

fsp_err_t RM_MESH_SCHEDULER_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Scheduler client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of scheduler client model. */

 err = RM_MESH_SCHEDULER_CLT_GetModelHandle(&g_mesh_scheduler_clt0_ctrl,

&model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,589 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_SendReliablePdu()

fsp_err_t RM_MESH_SCHEDULER_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_SCHEDULER_CLT_SendReliablePdu(&g_mesh_scheduler_clt0_ctrl,

req_opcode, p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,590 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_Get()

fsp_err_t RM_MESH_SCHEDULER_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Scheduler Get is an acknowledged message used to get the current Schedule Register state of an
element. The response to the Scheduler Get message is a Scheduler Status message. There are no
parameters for this message.

Parameters
[in] p_ctrl rm_mesh_scheduler_clt

control block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,591 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_ActionGet()

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Scheduler Action Get is an acknowledged message used to report the action defined by the entry
of the Schedule Register state of an element, identified by the Index field. The response to the
Scheduler Action Get message is a Scheduler Action Status message.

Parameters
[in] p_ctrl rm_mesh_scheduler_clt

control block.

[in] p_parameter Pointer to Scheduler Action
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,592 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_ActionSet()

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Scheduler Action Set is an acknowledged message used to set the entry of the Schedule Register
state of an element, identified by the Index field. The response to the Scheduler Action Set
message is a Scheduler Action Status message.

Parameters
[in] p_ctrl rm_mesh_scheduler_clt

control block.

[in] p_parameter Pointer to Scheduler Action
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,593 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Client (rm_mesh_scheduler_clt)

◆ RM_MESH_SCHEDULER_CLT_ActionSetUnacknowledged()

fsp_err_t RM_MESH_SCHEDULER_CLT_ActionSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Scheduler Action Set Unacknowledged is an unacknowledged message used to set the entry of the
Schedule Register state of an element, identified by the Index field.

Parameters
[in] p_ctrl rm_mesh_scheduler_clt

control block.

[in] p_parameter Pointer to Scheduler Action
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SCHEDULER_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SCHEDULER_SRV_Close
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_SCHEDULER_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,594 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Scheduler Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_scheduler_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_scheduler_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model
Scheduler Server (rm_mesh_scheduler_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Scheduler Server (rm_mesh_scheduler_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scheduler
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh scheduler
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_scheduler_
srv0

Module name.

Data Structures

struct rm_mesh_scheduler_srv_schedules_info_t

struct rm_mesh_scheduler_srv_entry_index_info_t

struct rm_mesh_scheduler_srv_entry_info_t

struct rm_mesh_scheduler_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,595 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

Data Structure Documentation

◆ rm_mesh_scheduler_srv_schedules_info_t

struct rm_mesh_scheduler_srv_schedules_info_t

The current Schedule Register state of an element.

Data Fields

uint16_t schedules Bit field indicating defined
Actions in the Schedule
Register

◆ rm_mesh_scheduler_srv_entry_index_info_t

struct rm_mesh_scheduler_srv_entry_index_info_t

The entry index of the Schedule Register state

Data Fields

uint8_t index Index of the Schedule Register
entry

◆ rm_mesh_scheduler_srv_entry_info_t

struct rm_mesh_scheduler_srv_entry_info_t

The entry of the Schedule Register state

Data Fields

uint8_t index Index of the Schedule Register
entry

uint8_t year Scheduled year for the action

uint16_t month Scheduled month for the action

uint8_t day Scheduled day of the month for
the action

uint8_t hour Scheduled hour for the action

uint8_t minute Scheduled minute for the
action

uint8_t second Scheduled second for the
action

uint8_t dayofweek Schedule days of the week for
the action

uint8_t action Action to be performed at the
scheduled time

uint8_t transition_time Transition time for this action

uint16_t scene_number Scene number to be used for
some actions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,596 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

◆ rm_mesh_scheduler_srv_instance_ctrl_t

struct rm_mesh_scheduler_srv_instance_ctrl_t

BLE mesh scheduler instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SCHEDULER_SRV_Open() is called.

Function Documentation

◆ RM_MESH_SCHEDULER_SRV_Open()

fsp_err_t RM_MESH_SCHEDULER_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Scheduler Server model. This is to initialize Scheduler Server model and to register
with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SCHEDULER_SRV_Open(&g_mesh_scheduler_srv0_ctrl,

&g_mesh_scheduler_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,597 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

◆ RM_MESH_SCHEDULER_SRV_Close()

fsp_err_t RM_MESH_SCHEDULER_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Scheduler Server model. This is to terminate Scheduler Server model and to
register with Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SCHEDULER_SRV_Close(&g_mesh_scheduler_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,598 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Scheduler Server (rm_mesh_scheduler_srv)

◆ RM_MESH_SCHEDULER_SRV_StateUpdate()

fsp_err_t RM_MESH_SCHEDULER_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_SCHEDULER_SRV_StateUpdate(&g_mesh_scheduler_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SENSOR_CLT_Open (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SENSOR_CLT_Close (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SENSOR_CLT_GetModelHandle
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,599 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_SENSOR_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_SENSOR_CLT_DescriptorGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_Get (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_ColumnGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_SeriesGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_CadenceGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_CadenceSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_CadenceSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_SettingsGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_SettingGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_SettingSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_SENSOR_CLT_SettingSetUnacknowledged
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

Detailed Description

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,600 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

Target Devices

The BLE Mesh Network Sensor Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_sensor_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_sensor_clt_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Sensor
Client (rm_mesh_sensor_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Sensor Client (rm_mesh_sensor_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh sensor
client ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_sensor_clt0 Module name.

Data Structures

struct rm_mesh_sensor_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_sensor_clt_instance_ctrl_t

struct rm_mesh_sensor_clt_instance_ctrl_t

BLE mesh sensor instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SENSOR_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,601 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_Open()

fsp_err_t RM_MESH_SENSOR_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Sensor Client middleware. This is to initialize Sensor Client model and to register with Access
layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SENSOR_CLT_Open(&g_mesh_sensor_clt0_ctrl, &g_mesh_sensor_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_SENSOR_CLT_Close()

fsp_err_t RM_MESH_SENSOR_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Sensor Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SENSOR_CLT_Close(&g_mesh_sensor_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,602 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_GetModelHandle()

fsp_err_t RM_MESH_SENSOR_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Sensor client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of sensor client model. */

 err = RM_MESH_SENSOR_CLT_GetModelHandle(&g_mesh_sensor_clt0_ctrl, &model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,603 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SendReliablePdu()

fsp_err_t RM_MESH_SENSOR_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_SENSOR_CLT_SendReliablePdu(&g_mesh_sensor_clt0_ctrl, req_opcode,

p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,604 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_DescriptorGet()

fsp_err_t RM_MESH_SENSOR_CLT_DescriptorGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Sensor Descriptor Get is an acknowledged message used to get the Sensor Descriptor state of all
sensors within an element. The response to a Sensor Descriptor Get message is a Sensor
Descriptor Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Descriptor
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,605 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_Get()

fsp_err_t RM_MESH_SENSOR_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Sensor Get is an acknowledged message used to get the Sensor Data state. The response to the
Sensor Get message is a Sensor Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Get
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,606 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_ColumnGet()

fsp_err_t RM_MESH_SENSOR_CLT_ColumnGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Sensor Column Get is an acknowledged message used to get the Sensor Series Column state. The
response to the Sensor Column Get message is a Sensor Column Status message

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Column
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,607 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SeriesGet()

fsp_err_t RM_MESH_SENSOR_CLT_SeriesGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Sensor Series Get is an acknowledged message used to get a sequence of the Sensor Series
Column states. The response to the Sensor Series Get message is a Sensor Series Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Series Get
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,608 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_CadenceGet()

fsp_err_t RM_MESH_SENSOR_CLT_CadenceGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Sensor Cadence Get is an acknowledged message used to get the Sensor Cadence state of an
element. The response to the Sensor Cadence Get message is a Sensor Cadence Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Cadence
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,609 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_CadenceSet()

fsp_err_t RM_MESH_SENSOR_CLT_CadenceSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Sensor Cadence Set is an acknowledged message used to set the Sensor Cadence state of an
element. The response to the Sensor Cadence Set message is a Sensor Cadence Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Cadence
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,610 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_CadenceSetUnacknowledged()

fsp_err_t RM_MESH_SENSOR_CLT_CadenceSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Sensor Cadence Set Unacknowledged is an unacknowledged message used to set the Sensor
Cadence state of an element.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Cadence
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,611 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SettingsGet()

fsp_err_t RM_MESH_SENSOR_CLT_SettingsGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
void const *const p_parameter)

Sensor Settings Get is an acknowledged message used to get the list of Sensor Setting states of an
element. The response to the Sensor Settings Get message is a Sensor Settings Status message

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Settings
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,612 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SettingGet()

fsp_err_t RM_MESH_SENSOR_CLT_SettingGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Sensor Setting Get is an acknowledged message used to get the Sensor Setting state of an
element. The response to the Sensor Setting Get message is a Sensor Setting Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Settings
Get message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,613 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SettingSet()

fsp_err_t RM_MESH_SENSOR_CLT_SettingSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

Sensor Setting Set is an acknowledged message used to set the Sensor Setting state of an
element. The response to the Sensor Setting Set message is a Sensor Setting Status message.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Settings
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,614 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Client (rm_mesh_sensor_clt)

◆ RM_MESH_SENSOR_CLT_SettingSetUnacknowledged()

fsp_err_t RM_MESH_SENSOR_CLT_SettingSetUnacknowledged (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Sensor Setting Set Unacknowledged is an unacknowledged message used to set the Sensor Setting
state of an element.

Parameters
[in] p_ctrl rm_mesh_sensor_clt control

block.

[in] p_parameter Pointer to Sensor Settings
Set message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_SENSOR_SRV_Open (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_SENSOR_SRV_Close (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_SENSOR_SRV_StateUpdate

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,615 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

fsp_err_t RM_MESH_SENSOR_SRV_SetupServerStateUpdate
(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Sensor Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_sensor_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_sensor_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Sensor
Server (rm_mesh_sensor_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Sensor Server (rm_mesh_sensor_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh sensor
server ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh sensor
server timeout ISR
occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_sensor_srv
0

Module name.

Data Structures

struct rm_mesh_sensor_srv_descriptor_info_t

struct rm_mesh_sensor_srv_settings_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,616 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

struct rm_mesh_sensor_srv_setting_info_t

struct rm_mesh_sensor_srv_cadence_info_t

struct rm_mesh_sensor_srv_data_info_t

struct rm_mesh_sensor_srv_series_column_info_t

struct rm_mesh_sensor_srv_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_sensor_srv_descriptor_info_t

struct rm_mesh_sensor_srv_descriptor_info_t

Sensor Descriptor state represents the attributes describing the sensor data

Data Fields

uint16_t sensor_property_id Sensor Property ID field is a
2-octet value referencing a
device property that describes
the meaning and the format of
data reported by a sensor

uint16_t sensor_positive_tolerance Sensor Positive Tolerance field
is a 12-bit value representing
the magnitude of a possible
positive error associated with
the measurements that the
sensor is reporting

uint16_t sensor_negative_tolerance Sensor Negative Tolerance field
is a 12-bit value representing
the magnitude of a possible
negative error associated with
the measurements that the
sensor is reporting

uint8_t sensor_sampling_function Sensor Sampling Function field
specifies the averaging
operation or type of sampling
function applied to the
measured value

uint8_t sensor_measurement_period Sensor Measurement Period
field specifies a uint8 value n
that represents the averaging
time span, accumulation time,
or measurement period in
seconds over which the
measurement is taken

uint8_t sensor_update_interval measurement reported by a
sensor is internally refreshed at

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,617 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

the frequency indicated in the
Sensor Update Interval field

uint8_t status Status - used in response to
indicate if other fields to be
included

◆ rm_mesh_sensor_srv_settings_info_t

struct rm_mesh_sensor_srv_settings_info_t

Sensor Settings state controls parameters of a sensor

Data Fields

uint16_t sensor_property_id Property ID of a sensor

uint16_t * setting_property_ids Property ID of a setting within a
sensor

uint16_t setting_property_ids_count

◆ rm_mesh_sensor_srv_setting_info_t

struct rm_mesh_sensor_srv_setting_info_t

Sensor Setting state controls parameters of a sensor

Data Fields

uint16_t sensor_property_id Property ID of a sensor

uint16_t sensor_setting_property_id Property ID of a setting within a
sensor

uint8_t sensor_setting_access Read/Write access rights for the
setting

uint8_t * sensor_setting_raw Raw value of a setting within a
sensor

uint16_t sensor_setting_raw_len

uint8_t status

◆ rm_mesh_sensor_srv_cadence_info_t

struct rm_mesh_sensor_srv_cadence_info_t

Sensor Cadence state controls the cadence of sensor reports

Data Fields

uint16_t sensor_property_id Property ID of a sensor

uint8_t fast_cadence_period_divisor Divisor for the Publish Period

uint8_t status_trigger_type Defines the unit and format of
the Status Trigger Delta fields

uint8_t * status_trigger_delta_down Delta down value that triggers
a status message

uint16_t status_trigger_delta_down_len

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,618 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

uint8_t * status_trigger_delta_up Delta up value that triggers a
status message

uint16_t status_trigger_delta_up_len

uint8_t status_min_interval Minimum interval between two
consecutive Status messages
APPLICATION NOTE: The
Current Sensor Server Model
implementation does not
inherantly check for the time
interval between two
consecutive status messages.
The application layer which
manages the data for the
Sensor Server Model holds the
responsibility for interleaving
consecutive status messages
with the configured Minimum
time interval for statuses.

uint8_t * fast_cadence_low Low value for the fast cadence
range

uint16_t fast_cadence_low_len

uint8_t * fast_cadence_high High value for the fast cadence
range

uint16_t fast_cadence_high_len

uint8_t status Status - used in response path

◆ rm_mesh_sensor_srv_data_info_t

struct rm_mesh_sensor_srv_data_info_t

The Sensor Data state is a sequence of one or more pairs of Sensor Property ID and Raw Value
fields, with each Raw Value field size and representation defined by the characteristics referenced
by the Sensor Property ID

Data Fields

uint16_t property_id_1 ID of the 1st device property of
the sensor

uint8_t * raw_value_1 Raw Value field with a size and
representation defined by the
1st device property

uint16_t raw_value_1_len

uint16_t property_id_2 ID of the 2nd device property of
the sensor

uint8_t * raw_value_2 Raw Value field with a size and
representation defined by the
2nd device property

uint16_t raw_value_2_len

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,619 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

uint16_t property_id_n ID of the nth device property of
the sensor

uint8_t * raw_value_n Raw Value field with a size and
representation defined by the
nth device property

uint16_t raw_value_n_len

uint8_t status Status - used in response path

◆ rm_mesh_sensor_srv_series_column_info_t

struct rm_mesh_sensor_srv_series_column_info_t

Values measured by sensors may be organized as arrays (and represented as series of columns,
such as histograms

Data Fields

uint16_t sensor_property_id Property describing the data
series of the sensor

uint8_t * sensor_raw_value_x Raw value representing the left
corner of a column on the X
axis

uint16_t sensor_raw_value_x_len

uint8_t * sensor_column_width Raw value representing the
width of the column

uint16_t sensor_column_width_len

uint8_t * sensor_raw_value_y Raw value representing the
height of the column on the Y
axis

uint16_t sensor_raw_value_y_len

uint8_t status Status - used in response path

◆ rm_mesh_sensor_srv_instance_ctrl_t

struct rm_mesh_sensor_srv_instance_ctrl_t

BLE mesh sensor instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_SENSOR_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,620 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

◆ RM_MESH_SENSOR_SRV_Open()

fsp_err_t RM_MESH_SENSOR_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Sensor Server model and to initialize Sensor_Setup Server model. This is to initialize
Sensor Server model and to register with Access layer. And this is to initialize Sensor_Setup Server
model and to register with Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_SENSOR_SRV_Open(&g_mesh_sensor_srv0_ctrl, &g_mesh_sensor_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_SENSOR_SRV_Close()

fsp_err_t RM_MESH_SENSOR_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Sensor Server model. This is to terminate Sensor Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_SENSOR_SRV_Close(&g_mesh_sensor_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,621 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

◆ RM_MESH_SENSOR_SRV_StateUpdate()

fsp_err_t RM_MESH_SENSOR_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_SENSOR_SRV_StateUpdate(&g_mesh_sensor_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,622 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Sensor Server (rm_mesh_sensor_srv)

◆ RM_MESH_SENSOR_SRV_SetupServerStateUpdate()

fsp_err_t RM_MESH_SENSOR_SRV_SetupServerStateUpdate (rm_ble_mesh_model_server_ctrl_t
*const p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Parameters
[in] p_ctrl rm_mesh_sensor_srv control

block.

[in] p_state To send reply for a request
or to inform change in state.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Time Client (rm_mesh_time_clt)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_TIME_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_TIME_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

fsp_err_t RM_MESH_TIME_CLT_GetModelHandle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,623 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t RM_MESH_TIME_CLT_SendReliablePdu
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, uint32_t req_opcode,
void const *const p_parameter, uint32_t rsp_opcode)

fsp_err_t RM_MESH_TIME_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl)

fsp_err_t RM_MESH_TIME_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const
p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_TIME_CLT_ZoneGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_TIME_CLT_ZoneSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

fsp_err_t RM_MESH_TIME_CLT_TaiUtcDeltaGet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t RM_MESH_TIME_CLT_TaiUtcDeltaSet
(rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const *const
p_parameter)

fsp_err_t RM_MESH_TIME_CLT_RoleGet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl)

fsp_err_t RM_MESH_TIME_CLT_RoleSet (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, void const *const p_parameter)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Time Client module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_time_clt

The following build time configurations are defined in fsp_cfg/rm_mesh_time_clt_cfg.h:

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,624 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Time
Client (rm_mesh_time_clt)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Time Client (rm_mesh_time_clt).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh time client
ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_time_clt0 Module name.

Data Structures

struct rm_mesh_time_clt_instance_ctrl_t

Data Structure Documentation

◆ rm_mesh_time_clt_instance_ctrl_t

struct rm_mesh_time_clt_instance_ctrl_t

BLE mesh time instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_TIME_CLT_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,625 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_Open()

fsp_err_t RM_MESH_TIME_CLT_Open (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

Open Time Client middleware. This is to initialize Time Client model and to register with Access
layer.

Implements rm_ble_mesh_model_client_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_TIME_CLT_Open(&g_mesh_time_clt0_ctrl, &g_mesh_time_clt0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_TIME_CLT_Close()

fsp_err_t RM_MESH_TIME_CLT_Close (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Close Time Client middleware.

Implements rm_ble_mesh_model_client_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_TIME_CLT_Close(&g_mesh_time_clt0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,626 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_GetModelHandle()

fsp_err_t RM_MESH_TIME_CLT_GetModelHandle (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

This is to get the handle of Time client model.

Implements rm_ble_mesh_model_client_api_t::getModelHandle.

Example:

 /* Get the handle of time client model. */

 err = RM_MESH_TIME_CLT_GetModelHandle(&g_mesh_time_clt0_ctrl, &model_handle);

Return values
FSP_SUCCESS Got model handle successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_POINTER The parameter p_model_handle is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,627 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_SendReliablePdu()

fsp_err_t RM_MESH_TIME_CLT_SendReliablePdu (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

This is to initialize sending acknowledged commands.

Implements rm_ble_mesh_model_client_api_t::sendReliablePdu.

Example:

 /* Initialize sending acknowledged commands. */

 err = RM_MESH_TIME_CLT_SendReliablePdu(&g_mesh_time_clt0_ctrl, req_opcode,

p_parameter, rsp_opcode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,628 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_Get()

fsp_err_t RM_MESH_TIME_CLT_Get (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Time Get is a message used to get the Time state of neighbor nodes. The response to the Time Get
message is a Time Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,629 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_Set()

fsp_err_t RM_MESH_TIME_CLT_Set (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Time Set is an acknowledged message used to set the Time state of an element. The response to
the Time Set message is a Time Status message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

[in] p_parameter Pointer to Time Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,630 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_ZoneGet()

fsp_err_t RM_MESH_TIME_CLT_ZoneGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Time Zone Get is an acknowledged message used to get the Time Zone Offset Current state, the
Time Zone Offset New state , and the TAI of Zone Change state. The response to the Time Zone
Get message is a Time Zone Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,631 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_ZoneSet()

fsp_err_t RM_MESH_TIME_CLT_ZoneSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Time Zone Set is an acknowledged message used to set the Time Zone Offset New state and the
TAI of Zone Change state.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

[in] p_parameter Pointer to Time Zone Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,632 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_TaiUtcDeltaGet()

fsp_err_t RM_MESH_TIME_CLT_TaiUtcDeltaGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

TAI-UTC Delta Get is an acknowledged message used to get the TAI-UTC Delta Current state, the
TAI-UTC Delta New state, and the TAI of Delta Change state. The response to the TAI-UTC Delta Get
message is a TAI-UTC Delta Status message. There are no parameters for this message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,633 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_TaiUtcDeltaSet()

fsp_err_t RM_MESH_TIME_CLT_TaiUtcDeltaSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void
const *const p_parameter)

TAI-UTC Delta Set is an acknowledged message used to set the TAI-UTC Delta New state and the
TAI of Delta Change state.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

[in] p_parameter Pointer to TAI-UTC Delta Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,634 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_RoleGet()

fsp_err_t RM_MESH_TIME_CLT_RoleGet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

Time Role Get is an acknowledged message used to get the Time Role state of an element. The
response to the Time Role Get message is a Time Role Status message. There are no parameters
for this message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,635 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Client (rm_mesh_time_clt)

◆ RM_MESH_TIME_CLT_RoleSet()

fsp_err_t RM_MESH_TIME_CLT_RoleSet (rm_ble_mesh_model_client_ctrl_t *const p_ctrl, void const
*const p_parameter)

Time Role Set is an acknowledged message used to set the Time Role state of an element. The
response to the Time Role Set message is a Time Role Status message.

Parameters
[in] p_ctrl rm_mesh_time_clt control

block.

[in] p_parameter Pointer to Time Role Set
message.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_INVALID_POINTER The parameter p_parameter is NULL.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Time Server (rm_mesh_time_srv)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_MESH_TIME_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t RM_MESH_TIME_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

fsp_err_t RM_MESH_TIME_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,636 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Server (rm_mesh_time_srv)

*const p_ctrl, rm_ble_mesh_access_server_state_t const *const
p_state)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Time Server module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_mesh_time_srv

The following build time configurations are defined in fsp_cfg/rm_mesh_time_srv_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Model Time
Server (rm_mesh_time_srv)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Model Time Server (rm_mesh_time_srv).

Configuration Options Default Description

Interrupts

Callback Provided
when Timeout Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh time server
ISR occurs

Callback Provided
when an Timeout ISR
Occurs

Name Must Be a Valid
C Symbol

NULL Callback provided
when mesh time server
timeout ISR occurs

Name Name Must Be a Valid
C Symbol

g_rm_mesh_time_srv0 Module name.

Data Structures

struct rm_mesh_time_srv_info_t

struct rm_mesh_time_srv_zone_info_t

struct rm_mesh_time_srv_tai_utc_delta_info_t

struct rm_mesh_time_srv_role_info_t

struct rm_mesh_time_srv_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,637 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Server (rm_mesh_time_srv)

Data Structure Documentation

◆ rm_mesh_time_srv_info_t

struct rm_mesh_time_srv_info_t

Mesh defines times based on International Atomic Time (TAI). The base representation of times is
the number of seconds after 00:00:00 TAI on 2000-01-01 (that is, 1999-12-31T23:59:28 UTC)

Data Fields

uint8_t tai_seconds[5] Current TAI time in seconds
since the epoch.

uint8_t subsecond The sub-second time in units of
1/256s.

uint8_t uncertainty Estimated uncertainty in
10-millisecond steps.

uint8_t time_authority 0 = No Time Authority. The
element does not have a
trusted OOB source of time,
such as GPS or NTP. 1 = Time
Authority. The element has a
trusted OOB source of time,
such as GPS or NTP or a battery-
backed, properly initialized
RTC.

uint16_t tai_utc_delta Current difference between TAI
and UTC in seconds

uint8_t time_zone_offset The local time zone offset in
15-minute increments

◆ rm_mesh_time_srv_zone_info_t

struct rm_mesh_time_srv_zone_info_t

Time Zone

Data Fields

uint8_t time_zone_offset_current Current local time zone offset.
Meaningful only in 'Time Zone
Status' response.

uint8_t time_zone_offset_new Upcoming local time zone
offset.

uint8_t tai_of_zone_change[5] Absolute TAI time when the
Time Zone Offset will change
from Current to New.

◆ rm_mesh_time_srv_tai_utc_delta_info_t

struct rm_mesh_time_srv_tai_utc_delta_info_t

TAI-UTC Delta

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,638 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Server (rm_mesh_time_srv)

Data Fields

uint16_t tai_utc_delta_current Current difference between TAI
and UTC in seconds. Meaningful
only in 'TAI-UTC Delta Status'
response.

uint16_t tai_utc_delta_new Upcoming difference between
TAI and UTC in seconds.

uint8_t padding Always 0b0. Other values are
Prohibited.

uint8_t tai_of_delta_change[5] TAI Seconds time of the
upcoming TAI-UTC Delta
change

◆ rm_mesh_time_srv_role_info_t

struct rm_mesh_time_srv_role_info_t

The Time Role state of an element

Data Fields

uint8_t role Time Role

◆ rm_mesh_time_srv_instance_ctrl_t

struct rm_mesh_time_srv_instance_ctrl_t

BLE mesh time instance control block. DO NOT INITIALIZE. Initialization occurs when
RM_MESH_TIME_SRV_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,639 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Server (rm_mesh_time_srv)

◆ RM_MESH_TIME_SRV_Open()

fsp_err_t RM_MESH_TIME_SRV_Open (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to initialize Time Server model. This is to initialize Time Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::open.

Example:

 /* Open the module. */

 err = RM_MESH_TIME_SRV_Open(&g_mesh_time_srv0_ctrl, &g_mesh_time_srv0_cfg);

Return values
FSP_SUCCESS Model opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Model is already open.

FSP_ERR_NOT_FOUND The number of models has exceeded the
limit.

FSP_ERR_ABORTED Model initialization is failed.

◆ RM_MESH_TIME_SRV_Close()

fsp_err_t RM_MESH_TIME_SRV_Close (rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

API to terminate Time Server model. This is to terminate Time Server model and to register with
Access layer.

Implements rm_ble_mesh_model_server_api_t::close.

Example:

 /* Close the module. */

 err = RM_MESH_TIME_SRV_Close(&g_mesh_time_srv0_ctrl);

Return values
FSP_SUCCESS Model successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Model is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,640 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Time Server (rm_mesh_time_srv)

◆ RM_MESH_TIME_SRV_StateUpdate()

fsp_err_t RM_MESH_TIME_SRV_StateUpdate (rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change. This is to send reply for a request or to inform change
in state.

Implements rm_ble_mesh_model_server_api_t::stateUpdate.

Example:

 /* Update server status. */

 err = RM_MESH_TIME_SRV_StateUpdate(&g_mesh_time_srv0_ctrl, &state);

Return values
FSP_SUCCESS Updated server status successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_state is NULL.

FSP_ERR_NOT_OPEN Model is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_APPROXIMATION Lower layer is invalid state.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_ADDRESS Invalid source address.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_ABORTED Operation is failed.

 BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)
Modules » Networking » BLE Mesh Network Modules

Functions

fsp_err_t RM_BLE_MESH_UPPER_TRANS_Open
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_cfg_t const *const p_cfg)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_Close (rm_ble_mesh_provision_ctrl_t
*const p_ctrl)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SendAccessPdu

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,641 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_access_layer_pdu_t const *const
p_access_layer_pdu, rm_ble_mesh_lower_trans_reliable_t reliable)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SendControlPdu
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_control_pdu_t const *const p_control_pdu)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_friendship_setting_t const *const
p_setting)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_control_opcode_t action, uint16_t const
*const p_addr_list, uint16_t count)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnPoll
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_IsValidLpnElementAddress
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_IsValidLpnSubscriptionAddress
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetLpnPolltimeout
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t lpn_addr, uint32_t *const
p_poll_timeout)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetFriendshipInfo
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_friend_role_t role, uint16_t lpn_index,
rm_ble_mesh_upper_trans_friendship_info_t *const p_node)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnRegisterSecurityUpdate
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t flag,
uint32_t ivindex)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_ClearAllLpn
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,642 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SetHeartbeatPublication
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const
p_info)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetHeartbeatPublication
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const
p_info)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SetHeartbeatSubscription
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const
p_info)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetHeartbeatSubscription
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const
p_info)

fsp_err_t RM_BLE_MESH_UPPER_TRANS_TriggerHeartbeat
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, uint8_t
change_in_feature_bit)

Detailed Description

Overview
Target Devices

The BLE Mesh Network Upper Trans module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_mesh_upper_trans

The following build time configurations are defined in fsp_cfg/rm_ble_mesh_upper_trans_cfg.h:

Configuration Options Default Description

Configurations for Networking > BLE Mesh Network modules > BLE Mesh Upper Trans
(rm_ble_mesh_upper_trans)

This module can be added to the Stacks tab via New Stack > Networking > BLE Mesh Network
modules > BLE Mesh Upper Trans (rm_ble_mesh_upper_trans).

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,643 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

Name Name Must Be a Valid
C Symbol

g_rm_ble_mesh_upper_
trans0

Module name.

Channel Number Invalid Channel
Number

0 Select channel
corresponding to the
channel number of the
hardware.

Control Message Event
Enable

Enabled
Disabled

Disabled Whether to enable the
control message event
or not.

Access Message Event
Enable

Enabled
Disabled

Disabled Whether to enable the
access message event
or not.

Callback Name Must Be a Valid
C Symbol

NULL Callback function
name.

Data Structures

struct rm_ble_mesh_upper_trans_instance_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_upper_trans_instance_ctrl_t

struct rm_ble_mesh_upper_trans_instance_ctrl_t

RM_BLE_MESH_UPPER_TRANS private control block. DO NOT MODIFY. Initialization occurs when
RM_BLE_MESH_UPPER_TRANS_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,644 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_Open()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_Open (rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_cfg_t const *const p_cfg)

Register Inerface with Transport Layer. This routine registers interface with the Transport Layer.
Transport Layer supports single Application, hence this rouine shall be called once.

Implements rm_ble_mesh_upper_trans_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_MESH_UPPER_TRANS_Open(&g_ble_mesh_upper_trans0_ctrl,

&g_ble_mesh_upper_trans0_cfg);

Return values
FSP_SUCCESS Module opened successfully.

FSP_ERR_ASSERTION Pointer to control block or configuration
structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

◆ RM_BLE_MESH_UPPER_TRANS_Close()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_Close (rm_ble_mesh_provision_ctrl_t *const p_ctrl)

Unregister Inerface with Transport Layer. Implements rm_ble_mesh_upper_trans_api_t::close.

Example:

 /* Close the module. */

 err = RM_BLE_MESH_UPPER_TRANS_Close(&g_ble_mesh_upper_trans0_ctrl);

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,645 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_SendAccessPdu()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SendAccessPdu (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_access_layer_pdu_t const *const p_access_layer_pdu,
rm_ble_mesh_lower_trans_reliable_t reliable)

API to send Access Layer PDUs. This routine sends Access Layer PDUs to peer device.

Implements rm_ble_mesh_upper_trans_api_t::sendAccessPdu.

Example:

 /* Send Access Layer PDUs. */

 err = RM_BLE_MESH_UPPER_TRANS_SendAccessPdu(&g_ble_mesh_upper_trans0_ctrl,

 &access_layer_pdu,

 RM_BLE_MESH_LOWER_TRANS_RELIABLE_ENABLE);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_access_layer_pdu is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,646 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_SendControlPdu()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SendControlPdu (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_control_pdu_t const *const p_control_pdu)

API to send transport Control PDUs. This routine sends transport Control PDUs to peer device.

Implements rm_ble_mesh_upper_trans_api_t::sendControlPdu.

Example:

 /* Send Upper Transport control PDUs. */

 err = RM_BLE_MESH_UPPER_TRANS_SendControlPdu(&g_ble_mesh_upper_trans0_ctrl,

&control_pdu);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_control_pdu is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,647 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_friendship_setting_t const *const p_setting)

API to setup Friendship. This routine is used by the device acting as a low power node to setup a
friendship procedure to any available friend nodes.

Implements rm_ble_mesh_upper_trans_api_t::lpnSetupFriendship.

Example:

 /* Setup friendship. */

 err = RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship(&g_ble_mesh_upper_trans0_ctrl,

&setting);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_setting is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Lower layer is invalid state.

◆ RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl)

API to terminate friendship. This routine is used by the device acting as a low power node
terminate friendship with an active Friend node.

Implements rm_ble_mesh_upper_trans_api_t::lpnClearFriendship.

Example:

 /* Terminate friendship. */

 err = RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship(&g_ble_mesh_upper_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,648 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_control_opcode_t action, uint16_t const *const
p_addr_list, uint16_t count)

API to manage friend subscription list. This routine is used by the device acting as a low power
node add/remove addresses to/from the friends subscription list.

Implements rm_ble_mesh_upper_trans_api_t::lpnManageSubscription.

Example:

 /* Manage friend subscription list. */

 err =

RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription(&g_ble_mesh_upper_trans0_ctrl,

 RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCODE_FRIEND_POLL,

 &addr_list,

 count);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_addr_list is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,649 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_LpnPoll()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnPoll (rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

To trigger Friend Poll from application. This routine enables the application to trigger a Friend Poll
even before the expiry of an active poll period configured during the friendship establishment. The
poll peroid will get reset at this point.

Implements rm_ble_mesh_upper_trans_api_t::lpnPoll.

Example:

 /* Trigger friend poll from application. */

 err = RM_BLE_MESH_UPPER_TRANS_LpnPoll(&g_ble_mesh_upper_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_UPPER_TRANS_IsValidLpnElementAddress()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_IsValidLpnElementAddress (
rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

To check if address matches with any of the LPN. This routine checks if destination address in a
received packet matches with any of the known element address of LPN.

Implements rm_ble_mesh_upper_trans_api_t::isValidLpnElementAddress.

Example:

 /* Check if address matches with any of the LPN. */

 err =

RM_BLE_MESH_UPPER_TRANS_IsValidLpnElementAddress(&g_ble_mesh_upper_trans0_ctrl, addr,

&lpn_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_lpn_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,650 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_IsValidLpnSubscriptionAddress()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_IsValidLpnSubscriptionAddress (
rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

To check if valid subscription address of an LPN to receive a packet. This routine checks if
destination address in a received packet matches with any of the known subscription address of an
LPN.

Implements rm_ble_mesh_upper_trans_api_t::isValidLpnSubscriptionAddress.

Example:

 /* Check if valid subscription address of an LPN to receive a packet. */

 err =

RM_BLE_MESH_UPPER_TRANS_IsValidLpnSubscriptionAddress(&g_ble_mesh_upper_trans0_ctrl,

addr, &lpn_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_lpn_handle is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_FOUND Input parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,651 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_GetLpnPolltimeout()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetLpnPolltimeout (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t lpn_addr, uint32_t *const p_poll_timeout)

To get Poll Timeout of an LPN. This routine checks if LPN address is valid and then returns Poll
Timeout configured for the LPN.

Implements rm_ble_mesh_upper_trans_api_t::getLpnPolltimeout.

Example:

 /* Get poll timeout of an LPN. */

 err = RM_BLE_MESH_UPPER_TRANS_GetLpnPolltimeout(&g_ble_mesh_upper_trans0_ctrl,

addr, &poll_timeout);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_poll_timeout is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,652 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_GetFriendshipInfo()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetFriendshipInfo (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_friend_role_t role, uint16_t lpn_index,
rm_ble_mesh_upper_trans_friendship_info_t *const p_node)

To get the LPN node information. This routine fetches the node information of the LPN element at
the given index

Implements rm_ble_mesh_upper_trans_api_t::getFriendshipInfo.

Example:

 /* Get the LPN node information. */

 err = RM_BLE_MESH_UPPER_TRANS_GetFriendshipInfo(&g_ble_mesh_upper_trans0_ctrl,

 RM_BLE_MESH_UPPER_TRANS_FRIEND_ROLE_FRIEND,

 lpn_index,

 &node);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_node is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,653 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_LpnRegisterSecurityUpdate()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_LpnRegisterSecurityUpdate (
rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_subnet_handle_t
subnet_handle, uint8_t flag, uint32_t ivindex)

To add the security update information. This routine updates the security state of the network to all
the active LPN elements. This will be forwarded to the elements when it polls for the next packet
available.

Implements rm_ble_mesh_upper_trans_api_t::lpnRegisterSecurityUpdate.

Example:

 /* Add the security update information. */

 err =

 RM_BLE_MESH_UPPER_TRANS_LpnRegisterSecurityUpdate(&g_ble_mesh_upper_trans0_ctrl,

subnet_handle, flag, ivindex);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLE_MESH_UPPER_TRANS_ClearAllLpn()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_ClearAllLpn (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl)

To clear information related to all LPNs. This routine clears information related to all LPNs.

Implements rm_ble_mesh_upper_trans_api_t::clearAllLpn.

Example:

 /* Clear information related to all LPNs. */

 err = RM_BLE_MESH_UPPER_TRANS_ClearAllLpn(&g_ble_mesh_upper_trans0_ctrl);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,654 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_SetHeartbeatPublication()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SetHeartbeatPublication (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const p_info)

To set the Heartbeat publication data. This routine configures the Heartbeat publication
information

Implements rm_ble_mesh_upper_trans_api_t::setHeartbeatPublication.

Example:

 /* Set the heartbeat publication data. */

 err =

RM_BLE_MESH_UPPER_TRANS_SetHeartbeatPublication(&g_ble_mesh_upper_trans0_ctrl,

&ut_hp_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,655 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_GetHeartbeatPublication()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetHeartbeatPublication (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const p_info)

To get the Heartbeat publication data. This routine retrieves the Heartbeat publication information

Implements rm_ble_mesh_upper_trans_api_t::getHeartbeatPublication.

Example:

 /* Get the heartbeat publication data. */

 err =

RM_BLE_MESH_UPPER_TRANS_GetHeartbeatPublication(&g_ble_mesh_upper_trans0_ctrl,

&ut_hp_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,656 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_SetHeartbeatSubscription()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_SetHeartbeatSubscription (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const p_info)

To set the Heartbeat subscription data. This routine configures the Heartbeat subscription
information

Implements rm_ble_mesh_upper_trans_api_t::setHeartbeatSubscription.

Example:

 /* Set the heartbeat subscription data. */

 err =

RM_BLE_MESH_UPPER_TRANS_SetHeartbeatSubscription(&g_ble_mesh_upper_trans0_ctrl,

&ut_hs_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ADDRESS Invalid source address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,657 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_GetHeartbeatSubscription()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_GetHeartbeatSubscription (
rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const p_info)

To get the Heartbeat subscription data. This routine retrieves the Heartbeat subscription
information

Implements rm_ble_mesh_upper_trans_api_t::getHeartbeatSubscription.

Example:

 /* Get the heartbeat subscription data. */

 err =

RM_BLE_MESH_UPPER_TRANS_GetHeartbeatSubscription(&g_ble_mesh_upper_trans0_ctrl,

&ut_hs_info);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_info is NULL.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,658 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > BLE Mesh Network Modules > BLE Mesh Network Upper Trans (rm_ble_mesh_upper_trans)

◆ RM_BLE_MESH_UPPER_TRANS_TriggerHeartbeat()

fsp_err_t RM_BLE_MESH_UPPER_TRANS_TriggerHeartbeat (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, uint8_t change_in_feature_bit)

To trigger Heartbeat send on change in feature. This routine triggers the Heartbeat send on change
in state of supported features.

Implements rm_ble_mesh_upper_trans_api_t::triggerHeartbeat.

Example:

 /* Trigger heartbeat send on change in feature. */

 err = RM_BLE_MESH_UPPER_TRANS_TriggerHeartbeat(&g_ble_mesh_upper_trans0_ctrl,

change_in_feature_bit);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter is invalid.

FSP_ERR_OUT_OF_MEMORY Memory allocation is failed.

FSP_ERR_OVERFLOW TX queue is full.

FSP_ERR_UNDERFLOW TX queue is empty.

FSP_ERR_NOT_FOUND Input parameter is not found.

FSP_ERR_INVALID_POINTER The internal parameter is NULL.

5.2.12.12 Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)
Modules » Networking

Functions

CellularCommInterfaceError
_t

RM_CELLULAR_COMM_UART_AWS_Open
(rm_cellular_comm_uart_aws_instance_ctrl_t *p_instance_ctrl,
CellularCommInterfaceReceiveCallback_t receive_callback, void
*pUserData)

CellularCommInterfaceError
_t

RM_CELLULAR_COMM_UART_AWS_Send
(CellularCommInterfaceHandle_t commInterfaceHandle, const uint8_t
*pData, uint32_t dataLength, uint32_t timeoutMilliseconds, uint32_t
*pDataSentLength)

CellularCommInterfaceError RM_CELLULAR_COMM_UART_AWS_Receive

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,659 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

_t (CellularCommInterfaceHandle_t commInterfaceHandle, uint8_t
*pBuffer, uint32_t bufferLength, uint32_t timeoutMilliseconds,
uint32_t *pDataReceivedLength)

CellularCommInterfaceError
_t

RM_CELLULAR_COMM_UART_AWS_Close
(CellularCommInterfaceHandle_t commInterfaceHandle)

void comm_uart_aws_callback (uart_callback_args_t *p_args)

Detailed Description

Middleware implementing the AWS Cellular Comm Interface for the FSP UART API.

Overview
See AWS documentation for how the Cellular Comm Interface works:
https://www.freertos.org/Documentation/api-
ref/cellular/cellular_porting.html#cellular_porting_comm_if

Configuration
Note

Using DTC with UART is recommended to reduce the number of interrupts in the system.

Build Time Configurations for rm_cellular_comm_uart_aws

The following build time configurations are defined in
fsp_cfg/middleware/rm_cellular_comm_uart_aws_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

Receive Buffer Size should be greater
than zero

256 Temporary buffer for
received bytes. When
read function is called
reamaining bytes will
be read directly into
buffer specified by read
function argument.

Receive Transfer Size Size should be greater
than zero

512 The comm interface
will break down UART
reads into smaller read
requests based on this
number. For instance if
this is set to 512 bytes
then the interface will
request 512 bytes at a
time until the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,660 / 5,560

https://www.freertos.org/Documentation/api-ref/cellular/cellular_porting.html#cellular_porting_comm_if
https://www.freertos.org/Documentation/api-ref/cellular/cellular_porting.html#cellular_porting_comm_if

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

requested length is
met or timeout. This is
helpful for making use
of DTC without having
a long timeout period.
AWS Cellular Interface
Common->Comm
Interface Receive
Timeout is the timeout
used for individual
reads and should set
accordingly based on
this setting.

Configurations for Networking > Cellular Comm Interface on UART
(rm_cellular_comm_uart_aws)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_cellular_comm_u
art0

Module name.

Function Documentation

◆ RM_CELLULAR_COMM_UART_AWS_Open()

CellularCommInterfaceError_t RM_CELLULAR_COMM_UART_AWS_Open (
rm_cellular_comm_uart_aws_instance_ctrl_t * p_instance_ctrl,
CellularCommInterfaceReceiveCallback_t receive_callback, void * pUserData)

Implements open for CellularCommInterface_t

Parameters
[in] receive_callback Callback to call upon

receiving data

[in] pUserData Pointer to user data to be
passed through callback

[in] p_instance_ctrl Pointer to a rm_cellular_com
m_uart_aws_instance_ctrl_t

Return values
IOT_COMM_INTERFACE_SUCCESS Open succeeded

IOT_COMM_INTERFACE_BAD_PARAMETER Bad parameter was passed in

IOT_COMM_INTERFACE_FAILURE General failure

IOT_COMM_INTERFACE_DRIVER_ERROR Lower level failure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,661 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

◆ RM_CELLULAR_COMM_UART_AWS_Send()

CellularCommInterfaceError_t RM_CELLULAR_COMM_UART_AWS_Send (
CellularCommInterfaceHandle_t commInterfaceHandle, const uint8_t * pData, uint32_t
dataLength, uint32_t timeoutMilliseconds, uint32_t * pDataSentLength)

Implements send for CellularCommInterface_t. This function will block the calling thread until data
is sent.

Parameters
[in] commInterfaceHandle CellularCommInterfaceHandl

e_t assigned in open

[in] pData Pointer to data to send

[in] dataLength Length of data to send

[in] timeoutMilliseconds Timeout in MS to wait for
data to send

[in] pDataSentLength Actual length of data sent

Return values
IOT_COMM_INTERFACE_SUCCESS Send succeeded

IOT_COMM_INTERFACE_BAD_PARAMETER Bad parameter was passed in

IOT_COMM_INTERFACE_FAILURE General failure

IOT_COMM_INTERFACE_DRIVER_ERROR Lower level failure

IOT_COMM_INTERFACE_TIMEOUT Send operation timed out

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,662 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

◆ RM_CELLULAR_COMM_UART_AWS_Receive()

CellularCommInterfaceError_t RM_CELLULAR_COMM_UART_AWS_Receive (
CellularCommInterfaceHandle_t commInterfaceHandle, uint8_t * pBuffer, uint32_t bufferLength,
uint32_t timeoutMilliseconds, uint32_t * pDataReceivedLength)

Implements receive for CellularCommInterface_t. This function will block the calling thread until
data is received.

Parameters
[in] commInterfaceHandle CellularCommInterfaceHandl

e_t assigned in open

[in] pBuffer Pointer to buffer to receive
to

[in] bufferLength Length of buffer

[in] timeoutMilliseconds Timeout in MS to wait for
data reception

[in] pDataReceivedLength Actual length of data
received

Return values
IOT_COMM_INTERFACE_SUCCESS Receieve succeeded

IOT_COMM_INTERFACE_BAD_PARAMETER Bad parameter was passed in

IOT_COMM_INTERFACE_FAILURE General failure

IOT_COMM_INTERFACE_DRIVER_ERROR Lower level failure

◆ RM_CELLULAR_COMM_UART_AWS_Close()

CellularCommInterfaceError_t RM_CELLULAR_COMM_UART_AWS_Close (
CellularCommInterfaceHandle_t commInterfaceHandle)

Implements close for CellularCommInterface_t

Parameters
[in] commInterfaceHandle CellularCommInterfaceHandl

e_t assigned in open

Return values
IOT_COMM_INTERFACE_SUCCESS Close succeeded

IOT_COMM_INTERFACE_BAD_PARAMETER Bad parameter was passed in

IOT_COMM_INTERFACE_FAILURE General failure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,663 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)

◆ comm_uart_aws_callback()

void comm_uart_aws_callback (uart_callback_args_t * p_args)

Callback for UART driver

Parameters
[in] p_args Arguments from UART RX/TX

callback

5.2.12.13 DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)
Modules » Networking

Functions

void rm_at_transport_da16xxx_uart_callback (uart_callback_args_t
*p_args)

fsp_err_t rm_at_transport_da16xxx_uartOpen (at_transport_da16xxx_ctrl_t
*const p_ctrl, at_transport_da16xxx_cfg_t const *const p_cfg)

fsp_err_t rm_at_transport_da16xxx_uart_atCommandSendThreadSafe
(at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_data_t *p_at_cmd)

fsp_err_t rm_at_transport_da16xxx_uart_atCommandSend
(at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_data_t *p_at_cmd)

fsp_err_t rm_at_transport_da16xxx_uart_giveMutex
(at_transport_da16xxx_ctrl_t *const p_ctrl, uint32_t mutex_flag)

fsp_err_t rm_at_transport_da16xxx_uart_takeMutex
(at_transport_da16xxx_ctrl_t *const p_ctrl, uint32_t mutex_flag)

size_t rm_at_transport_da16xxx_uart_bufferRecv
(at_transport_da16xxx_ctrl_t *const p_ctrl, const char *p_data,
uint32_t length, uint32_t rx_timeout)

fsp_err_t rm_at_transport_da16xxx_statusGet (at_transport_da16xxx_ctrl_t
*const p_ctrl, at_transport_da16xxx_status_t *p_status)

fsp_err_t rm_at_transport_da16xxx_uartClose (at_transport_da16xxx_ctrl_t
*const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,664 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

Detailed Description

Transport layer implementation for linking DA16XXX Drivers with Communications layer.

Overview
This Transport Layer provides an abstraction interface between the DA16XXX driver and
communications layers. Currently, the module supports only UART, but will support SPI in future.

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Features

Configuring internal send/receive buffers.
Providing thread-safe access to the communications interface (mutex) when sending AT
commands.
Implementing AT command send function based on user communication option (UART or
SPI (future)). This function must be able to check the module response.
Implement a receive function based on user communication option (UART or SPI (future)).
Handles income data from the communications interface and stacks it on an internal buffer.

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Configuration
Build Time Configurations for rm_at_transport_da16xxx_uart

The following build time configurations are defined in fsp_cfg/rm_at_transport_da16xxx_uart_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Size of RX buffer for
CMD Port

Manual Entry 3000

Semaphore maximum
timeout

Manual Entry 10000

Number of retries for
AT commands

Manual Entry 10

Module Reset Port Refer to the RA
Configuration tool for
available options.

06 Specify the module
reset pin port for the
MCU.

Module Reset Pin Refer to the RA
Configuration tool for
available options.

03 Specify the module
reset pin for the MCU.

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Interrupt Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,665 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

Refer to UART (r_sci_uart).

Clock Configuration

Refer to UART (r_sci_uart).

Pin Configuration

Refer to UART (r_sci_uart).

Usage Notes
This module is not designed to be used directly, users will access this module via the
DA16XXX driver

Limitations

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Data Structures

struct at_transport_da16xxx_extended_cfg_t

struct at_transport_da16xxx_instance_ctrl_t

Data Structure Documentation

◆ at_transport_da16xxx_extended_cfg_t

struct at_transport_da16xxx_extended_cfg_t

User configuration structure, used in open function

Data Fields

const uint32_t num_uarts Number of UART interfaces to
use.

const uart_instance_t * uart_instances[AT_TRANSPORT_
DA16XXX_CFG_MAX_NUMBER_U
ART_PORTS]

SCI UART instances.

const bsp_io_port_pin_t reset_pin Reset pin used for module.

◆ at_transport_da16xxx_instance_ctrl_t

struct at_transport_da16xxx_instance_ctrl_t

AT_TRANSPORT_DA16XXX private control block. DO NOT MODIFY.

Data Fields

at_transport_da16xxx_cfg_t
const *

p_cfg

 Pointer to initial configurations.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,666 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

uint32_t num_uarts

 number of UARTS currently used for communication with module

uint32_t curr_cmd_port

 Current UART instance index for AT commands.

uint32_t open

 Flag to indicate if transport instance has been initialized.

uint8_t cmd_rx_queue_buf
[AT_TRANSPORT_DA16XXX_CFG_CMD_RX_BUF_SIZE]

 Command port receive buffer used by byte queue // FreeRTOS.

StreamBufferHandle_t socket_byteq_hdl

 Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct

 Structure to hold stream buffer info.

SemaphoreHandle_t tx_sem

 Transmit binary semaphore handle.

SemaphoreHandle_t rx_sem

 Receive binary semaphore handle.

SemaphoreHandle_t uart_tei_sem
[AT_TRANSPORT_DA16XXX_CFG_MAX_NUMBER_UART_PORTS]

 UART transmission end binary semaphore.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,667 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

uart_instance_t * uart_instance_objects
[AT_TRANSPORT_DA16XXX_CFG_MAX_NUMBER_UART_PORTS]

 UART instance object.

const bsp_io_port_pin_t reset_pin

 Reset pin used for module.

bool(* p_callback)(at_transport_da16xxx_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

◆ rm_at_transport_da16xxx_uart_callback()

void rm_at_transport_da16xxx_uart_callback (uart_callback_args_t * p_args)

UART Callback routine.

Parameters
[in] p_args Pointer to uart callback

structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,668 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

◆ rm_at_transport_da16xxx_uartOpen()

fsp_err_t rm_at_transport_da16xxx_uartOpen (at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_cfg_t const *const p_cfg)

Opens and configures the WIFI_DA16XXX Middleware module.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] p_cfg Pointer to pin configuration
structure.

Return values
FSP_SUCCESS WIFI_DA16XXX successfully configured.

FSP_ERR_ASSERTION The parameter p_cfg or p_instance_ctrl is
NULL.

FSP_ERR_OUT_OF_MEMORY There is no more heap memory available.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed.

◆ rm_at_transport_da16xxx_uart_atCommandSendThreadSafe()

fsp_err_t rm_at_transport_da16xxx_uart_atCommandSendThreadSafe (at_transport_da16xxx_ctrl_t
*const p_ctrl, at_transport_da16xxx_data_t * p_at_cmd)

Send an AT command with testing for return response.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] p_at_cmd Pointer to AT command data
structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,669 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

◆ rm_at_transport_da16xxx_uart_atCommandSend()

fsp_err_t rm_at_transport_da16xxx_uart_atCommandSend (at_transport_da16xxx_ctrl_t *const
p_ctrl, at_transport_da16xxx_data_t * p_at_cmd)

Send and receive an AT command with testing for return. Thread-Safe

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] p_at_cmd Pointer to Transport layer
instance data structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION Assertion error occurred.

◆ rm_at_transport_da16xxx_uart_giveMutex()

fsp_err_t rm_at_transport_da16xxx_uart_giveMutex (at_transport_da16xxx_ctrl_t *const p_ctrl,
uint32_t mutex_flag)

Give the mutex for the send basic call.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] mutex_flag Flags for the mutex.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred giving the mutex.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,670 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

◆ rm_at_transport_da16xxx_uart_takeMutex()

fsp_err_t rm_at_transport_da16xxx_uart_takeMutex (at_transport_da16xxx_ctrl_t *const p_ctrl,
uint32_t mutex_flag)

Take the mutex for the send basic call.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] mutex_flag Flags for the mutex.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred taking the mutex.

◆ rm_at_transport_da16xxx_uart_bufferRecv()

size_t rm_at_transport_da16xxx_uart_bufferRecv (at_transport_da16xxx_ctrl_t *const p_ctrl, const
char * p_data, uint32_t length, uint32_t rx_timeout)

Receive data from stream buffer.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] p_data Pointer to data.

[in] length Data length.

[in] rx_timeout Timeout for receiving data
on the buffer.

Return values
Number of bytes pulled from Streambuffer

FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION Assertion error occurred.

FSP_ERR_INVALID_DATA Accuracy of data is not guaranteed

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,671 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)

◆ rm_at_transport_da16xxx_statusGet()

fsp_err_t rm_at_transport_da16xxx_statusGet (at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_status_t * p_status)

Gets the status of the configured DA16xxx transport.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

◆ rm_at_transport_da16xxx_uartClose()

fsp_err_t rm_at_transport_da16xxx_uartClose (at_transport_da16xxx_ctrl_t *const p_ctrl)

Closes the AT Transport DA16XXX Middleware module.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

Return values
FSP_SUCCESS WIFI_DA16XXX successfully configured.

FSP_ERR_ASSERTION The parameter p_cfg or p_instance_ctrl is
NULL.

FSP_ERR_NOT_OPEN The Transport layer instance is not open.

5.2.12.14 Ethernet (r_ether)
Modules » Networking

Functions

fsp_err_t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const
p_cfg)

 After ETHERC, EDMAC and PHY-LSI are reset in software, an auto
negotiation of PHY-LSI is begun. Afterwards, the link signal change
interrupt is permitted. Implements ether_api_t::open. More...

fsp_err_t R_ETHER_Close (ether_ctrl_t *const p_ctrl)

 Disables interrupts. Removes power and releases hardware lock.
Implements ether_api_t::close. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,672 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

fsp_err_t R_ETHER_BufferRelease (ether_ctrl_t *const p_ctrl)

 Move to the next buffer in the circular receive buffer list. Implements
ether_api_t::bufferRelease. More...

fsp_err_t R_ETHER_RxBufferUpdate (ether_ctrl_t *const p_ctrl, void *const
p_buffer)

 Change the buffer pointer of the current rx buffer descriptor.
Implements ether_api_t::rxBufferUpdate. More...

fsp_err_t R_ETHER_LinkProcess (ether_ctrl_t *const p_ctrl)

 The Link up processing, the Link down processing, and the magic
packet detection processing are executed. Implements
ether_api_t::linkProcess. More...

fsp_err_t R_ETHER_WakeOnLANEnable (ether_ctrl_t *const p_ctrl)

 The setting of ETHERC is changed from normal sending and
receiving mode to magic packet detection mode. Implements
ether_api_t::wakeOnLANEnable. More...

fsp_err_t R_ETHER_Read (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t *const length_bytes)

 Receive Ethernet frame. Receives data to the location specified by
the pointer to the receive buffer. In zero copy mode, the address of
the receive buffer is returned. In non zero copy mode, the received
data in the internal buffer is copied to the pointer passed by the
argument. Implements ether_api_t::read. More...

fsp_err_t R_ETHER_Write (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t const frame_length)

 Transmit Ethernet frame. Transmits data from the location specified
by the pointer to the transmit buffer, with the data size equal to the
specified frame length. In the non zero copy mode, transmits data
after being copied to the internal buffer. Implements
ether_api_t::write. More...

fsp_err_t R_ETHER_TxStatusGet (ether_ctrl_t *const p_ctrl, void *const
p_buffer_address)

fsp_err_t R_ETHER_CallbackSet (ether_ctrl_t *const p_api_ctrl,
void(*p_callback)(ether_callback_args_t *), void const *const
p_context, ether_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,673 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

Detailed Description

Driver for the Ethernet peripheral on RA MCUs. This module implements the Ethernet Interface.

Overview
This module performs Ethernet frame transmission and reception using an Ethernet controller and an
Ethernet DMA controller.

Features

The Ethernet module supports the following features:

Transmit/receive processing
Optional zero-copy buffering
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support
Broadcast filtering support
Promiscuous mode support

Configuration
Build Time Configurations for r_ether

The following build time configurations are defined in fsp_cfg/r_ether_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

ET0_LINKSTA Pin Status
Flag

Fall -> Rise
Rise -> Fall

Fall -> Rise Specify the polarity of
the link signal output
by the PHY-LSI. When 0
is specified, link-up and
link-down correspond
respectively to the fall
and rise of the LINKSTA
signal. When 1 is
specified, link-up and
link-down correspond
respectively to the rise
and fall of the LINKSTA
signal.

Link Signal Change
Flag

Unused
Used

Unused Use LINKSTA signal for
detect link status
changes 0 = unused
(use PHY-LSI status
register) 1 = use (use
LINKSTA signal)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,674 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

Interrupt event
backward compatibility

Do not keep
compatibility
Keep
compatibility

Keep compatibility Keep backword
compatibility of
interrupt events. 0 =
Do not keep
compatibility, use
separate events for
each cause of
interrupt. 1 = Keep
compatibility, use
common events for all
interrupts.

Configurations for Networking > Ethernet (r_ether)

This module can be added to the Stacks tab via New Stack > Networking > Ethernet (r_ether). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_ether0 Module name.

Channel 0 0 Select the ether
channel number.

MAC address Must be a valid MAC
address

00:11:22:33:44:55 MAC address of this
channel.

Zero-copy Mode Disable
Enable

Disable Enable or disable zero-
copy mode.

Flow control
functionality

Disable
Enable

Disable Enable or disable flow
control.

Filters

Multicast Mode Disable
Enable

Enable Enable or disable
multicast frame
reception.

Promiscuous Mode Disable
Enable

Disable Enable this option to
receive packets
addressed to other
NICs.

Broadcast filter Must be a valid non-
negative integer with
maximum configurable
value of 65535.

0 Limit of the number of
broadcast frames
received continuously

Buffers

Number of TX buffer Must be an integer
from 1 to 8

1 Number of transmit
buffers

Number of RX buffer Must be an integer 1 Number of receive

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,675 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

from 1 to 8 buffers

Allocate RX buffer Disable
Enable

Enable Allocates the RX buffer
when generating the
configuration structure

Buffer size Must be at least 1514
which is the maximum
Ethernet frame size.

1514 Size of Ethernet buffer

Padding size Disable
1 Byte
2 Bytes
3 Bytes

Disable The padding size that
is automatically
inserted into the
received packets

Padding offset Must be less than 64
bytes.

0 The offset into a
receive buffer to insert
padding bytes.

Interrupts

EESR event Refer to the RA
Configuration tool for
available options.

module.driver.ether.ee
sr_event_mask.rfof,mo
dule.driver.ether.eesr_
event_mask.rde,modul
e.driver.ether.eesr_eve
nt_mask.fr,module.driv
er.ether.eesr_event_ma
sk.tc,module.driver.eth
er.eesr_event_mask.tfu
f,module.driver.ether.e
esr_event_mask.tde

Select event list for
each bit of EESR.

ECSR event ICD
MPD
LCHNG
PSRTO
BFR

Select event list for
each bit of ECSR.

Interrupt priority MCU Specific Options Select the EDMAC
interrupt priority.

Callback Name must be a valid
C symbol

NULL Callback provided
when an ISR occurs

Interrupt Configuration

The first R_ETHER_Open function call sets EINT interrupts. The user could provide callback function
which would be invoked when EINT interrupt handler has been completed. The callback arguments
will contain information about a channel number, the ETHERC and EDMAC status, the event code,
and a pointer to the user defined context.

Callback Configuration

The user could provide callback function which would be invoked when either a magic packet or a
link signal change is detected. When the callback function is called, a variable in which the channel

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,676 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

number for which the detection occurred and a constant shown in Table 2.4 are stored is passed as
an argument. If the value of this argument is to be used outside the callback function, its value
should be copied into, for example, a global variable.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA4E2 PCLKA

RA4T1 PCLKA

RA6E1 PCLKA

RA6E2 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T3 PCLKA

Note
1. When using ETHERC, the PCLKA frequency is in the range 12.5 MHz <= PCLKA <= 120 MHz.
2. When using ETHERC, PCLKA = ICLK.

Pin Configuration

To use the Ethernet module, input/output signals of the peripheral function have to be allocated to
pins with the multi-function pin controller (MPC). Please perform the pin setting before calling the
R_ETHER_Open function.

Usage Notes
Ethernet Frame Format

The Ethernet module supports the Ethernet II/IEEE 802.3 frame format.

Frame Format for Data Transmission and Reception

Figure 283: Frame Format Image

 The preamble and SFD signal the start of an Ethernet frame. The FCS contains the CRC of the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,677 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

Ethernet frame and is calculated on the transmitting side. When data is received the CRC value of
the frame is calculated in hardware, and the Ethernet frame is discarded if the values do not match.
When the hardware determines that the data is normal, the valid range of receive data is:
(transmission destination address) + (transmission source address) + (length/type) + (data).

PAUSE Frame Format

Figure 284: Pause Frame Format Image

 The transmission destination address is specified as 01:80:C2:00:00:01 (a multicast address
reserved for PAUSE frames). At the start of the payload the length/type is specified as 0x8808 and
the operation code as 0x0001. The pause duration in the payload is specified by the value of the
automatic PAUSE (AP) bits in the automatic PAUSE frame setting register (APR), or the manual PAUSE
time setting (MP) bits in the manual PAUSE frame setting register (MPR).

Magic Packet Frame Format

Figure 285: Magic Packet Frame Format Image

 In a Magic Packet, the value FF:FF:FF:FF:FF:FF followed by the transmission destination address
repeated 16 times is inserted somewhere in the Ethernet frame data.

Limitations

Memory alignment limitation for Ethernet buffer

The Ethernet Driver has several alignment constraints:

16-byte alignment for the descriptor
32-byte aligned read buffer for R_ETHER_RxBufferUpdate when zero copy mode is enabled

Functional limitations in TrustZone Security Extensions

The Ethernet Driver has several security constraints:

MCU Has Security
Extension

Support Flat
project

Support TrustZone project

Secure Non-Secure

RA6M2 - x - -

RA6M3 - x - -

RA6M4 - *1 x - x

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,678 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

RA6M5 - *1 x - x

RA8M1 x x x x

Note
1. ETHERC/EDMAC is always Non-secure peripheral in this MCU.

Examples
ETHER Basic Example

This is a basic example of minimal use of the ETHER in an application.

Note
In this example zero-copy mode is disabled and there are no restrictions on buffer alignment.

#define ETHER_EXAMPLE_MAXIMUM_ETHERNET_FRAME_SIZE (1514)

#define ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE (60)

#define ETHER_EXAMPLE_SOURCE_MAC_ADDRESS 0x74, 0x90, 0x50, 0x00, 0x79, 0x01

#define ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS 0x74, 0x90, 0x50, 0x00, 0x79, 0x02

#define ETHER_EXAMPLE_FRAME_TYPE 0x00, 0x2E

#define ETHER_EXAMPLE_PAYLOAD 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

/* Receive data buffer */

static uint8_t gp_read_buffer[ETHER_EXAMPLE_MAXIMUM_ETHERNET_FRAME_SIZE] = {0};

/* Transmit data buffer */

static uint8_t gp_send_data[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

void ether_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,679 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 /* Source MAC Address */

 static uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 uint32_t read_data_size = 0;

 g_ether0_cfg.p_mac_address = mac_address_source;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 /* Transmission is non-blocking. */

 /* User data copy to internal buffer and is transferred by DMA in the background. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data, sizeof(gp_send_data));

 assert(FSP_SUCCESS == err);

 /* received data copy to user buffer from internal buffer. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) gp_read_buffer, &read_data_size);

 assert(FSP_SUCCESS == err);

 /* Disable transmission and receive function and close the ether instance. */

 R_ETHER_Close(&g_ether0_ctrl);

}

ETHER Advanced Example

The example demonstrates using send and receive function in zero copy mode. Transmit buffers
must be 32-byte aligned and the receive buffer must be released once its contents have been used.

#define ETHER_EXAMPLE_FLAG_ON (1U)

#define ETHER_EXAMPLE_FLAG_OFF (0U)

#define ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK (1UL << 18)

#define ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK (1UL << 21)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,680 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

#define ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK (1UL << 1)

#define ETHER_EXAMPLE_ALIGNMENT_32_BYTE (32)

static volatile uint32_t g_example_receive_complete = 0;

static volatile uint32_t g_example_transfer_complete = 0;

static volatile uint32_t g_example_magic_packet_done = 0;

static uint8_t gp_send_data_internal[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

void ether_example_callback (ether_callback_args_t * p_args) {

 switch (p_args->event)

 {

 case ETHER_EVENT_INTERRUPT:

 {

 if (ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK == (p_args->status_ecsr &

ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK))

 {

 g_example_magic_packet_done = ETHER_EXAMPLE_FLAG_ON;

 }

 if (ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK == (p_args->status_eesr &

ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK))

 {

 g_example_transfer_complete = ETHER_EXAMPLE_FLAG_ON;

 }

 if (ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK == (p_args->status_eesr &

ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK))

 {

 g_example_receive_complete = ETHER_EXAMPLE_FLAG_ON;

 }

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,681 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 default:

 {

 }

 }

}

void ether_advanced_use_internal_buffer_example (void) {

 fsp_err_t err = FSP_SUCCESS;

 /* Source MAC Address */

 static uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 static uint8_t * p_read_buffer_nocopy;

 uint32_t read_data_size = 0;

 g_ether0_cfg.p_mac_address = mac_address_source;

 g_ether0_cfg.zerocopy = ETHER_ZEROCOPY_ENABLE;

 g_ether0_cfg.p_callback = (void (*)(ether_callback_args_t

*))ether_example_callback;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set user buffer to TX descriptor and enable transmission. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data_internal, sizeof

(gp_send_data_internal));

 if (FSP_SUCCESS == err)

 {

 /* Wait for the transmission to complete. */

 /* Data array should not change in zero copy mode until transfer complete. */

 while (ETHER_EXAMPLE_FLAG_ON != g_example_transfer_complete)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,682 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 {

 ;

 }

 }

 /* Get receive buffer from RX descriptor. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) &p_read_buffer_nocopy,

&read_data_size);

 assert(FSP_SUCCESS == err);

 /* Process received data here */

 /* Release receive buffer to RX descriptor. */

 err = R_ETHER_BufferRelease(&g_ether0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Disable transmission and receive function and close the ether instance. */

 R_ETHER_Close(&g_ether0_ctrl);

}

#define ETHER_EXAMPLE_ALIGNMENT_32_BYTE (32)

#define ETHER_EXAMPLE_ETHERNET_FRAME_PAYLOAD_OFFSET (14)

/* The data buffer must be 32-byte aligned when using zero copy mode. */

static uint8_t gp_send_data_external[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

typedef struct st_buffer_node

{

 uint8_t * p_buffer;

 struct st_buffer_node * p_next;

} buffer_node_t;

void ether_advanced_use_external_buffer_example (void) {

 fsp_err_t err = FSP_SUCCESS;

 /* Source MAC Address */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,683 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 uint8_t * p_tx_buffer = NULL;

 uint8_t * p_rx_buffer = NULL;

 uint8_t * p_rx_allocate_buffer = NULL;

 uint8_t * p_tx_last_sent_buffer = NULL;

 buffer_node_t * p_tx_buffer_head;

 buffer_node_t * p_tx_buffer_tail;

 uint32_t read_data_size = 0;

 uint8_t i;

 g_ether0_cfg.p_mac_address = mac_address_source;

 g_ether0_cfg.zerocopy = ETHER_ZEROCOPY_ENABLE;

 g_ether0_cfg.pp_ether_buffers = NULL;

 /* Create ring buffer structure to manage transmit buffer.*/

 p_tx_buffer_head = (buffer_node_t *) malloc(sizeof(buffer_node_t));

 p_tx_buffer_tail = p_tx_buffer_head;

 for (i = 0; i < g_ether0_cfg.num_tx_descriptors - 1; i++)

 {

 p_tx_buffer_tail->p_buffer = NULL;

 p_tx_buffer_tail->p_next = (buffer_node_t *) malloc(sizeof(buffer_node_t));

 p_tx_buffer_tail = p_tx_buffer_tail->p_next;

 }

 p_tx_buffer_tail->p_buffer = NULL;

 p_tx_buffer_tail->p_next = p_tx_buffer_head;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 i = 0;

 /* Initialize receive buffer in Ethernet driver. */

 while (i < g_ether0_cfg.num_rx_descriptors)

 {

 if (posix_memalign((void **) &p_rx_allocate_buffer, ETHER_EXAMPLE_ALIGNMENT_32_BYTE,

 g_ether0_cfg.ether_buffer_size * sizeof(char)))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,684 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 /* Set receive buffer to Ethernet driver. */

 err = R_ETHER_RxBufferUpdate(&g_ether0_ctrl, (void *)

p_rx_allocate_buffer);

 if (FSP_SUCCESS == err)

 {

 i++;

 }

 }

 else

 {

 assert(0);

 }

 }

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 while (1)

 {

 if (NULL == p_tx_buffer_tail->p_buffer)

 {

 /* Allocate memory to transmit buffer */

 p_tx_buffer = (uint8_t *) malloc(sizeof(gp_send_data_external));

 /* Process transmit data here. */

 memcpy(p_tx_buffer, gp_send_data_external, sizeof

(gp_send_data_external));

 gp_send_data_external[ETHER_EXAMPLE_ETHERNET_FRAME_PAYLOAD_OFFSET]++;

 /* Set user buffer to TX descriptor and enable transmission. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data_external,

sizeof(gp_send_data_external));

 /* Register transmit buffer to ring buffer. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,685 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 if (FSP_SUCCESS == err)

 {

 p_tx_buffer_tail->p_buffer = p_tx_buffer;

 p_tx_buffer_tail = p_tx_buffer_tail->p_next;

 }

 else

 {

 /* Release transmit buffer. */

 free(p_tx_buffer);

 }

 }

 /* Get receive buffer from RX descriptor. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) &p_rx_buffer, &read_data_size);

 if (FSP_SUCCESS == err)

 {

 /* Allocate new receive buffer and update receive buffer to RX descriptor. */

 if (0 ==

 posix_memalign((void **) &p_rx_allocate_buffer,

ETHER_EXAMPLE_ALIGNMENT_32_BYTE,

 g_ether0_cfg.ether_buffer_size * sizeof(char)))

 {

 R_ETHER_RxBufferUpdate(&g_ether0_ctrl, p_rx_allocate_buffer);

 }

 else

 {

 assert(0);

 }

 /* Process received data here. */

 /* Release receive buffer. */

 free(p_rx_buffer);

 }

 /* Release all transmitted buffer from the ring buffer. */

 if (FSP_SUCCESS == R_ETHER_TxStatusGet(&g_ether0_ctrl, (void *)

&p_tx_last_sent_buffer))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,686 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

 {

 buffer_node_t * p_tx_buffer_current = p_tx_buffer_head;

 for (i = 0; i < g_ether0_cfg.num_tx_descriptors; i++)

 {

 if (p_tx_last_sent_buffer == p_tx_buffer_current->p_buffer)

 {

 do

 {

 free(p_tx_buffer_head->p_buffer);

 p_tx_buffer_head->p_buffer = NULL;

 p_tx_buffer_head = p_tx_buffer_head->p_next;

 } while (p_tx_buffer_head != p_tx_buffer_current);

 free(p_tx_buffer_head->p_buffer);

 p_tx_buffer_head->p_buffer = NULL;

 break;

 }

 p_tx_buffer_current = p_tx_buffer_current->p_next;

 }

 }

 }

}

Data Structures

struct ether_instance_descriptor_t

struct ether_extended_cfg_t

struct ether_instance_ctrl_t

Enumerations

enum ether_previous_link_status_t

enum ether_link_change_t

enum ether_magic_packet_t

enum ether_link_establish_status_t

enum ether_eesr_event_mask_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,687 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

enum ether_ecsr_event_mask_t

Data Structure Documentation

◆ ether_instance_descriptor_t

struct ether_instance_descriptor_t

EDMAC descriptor as defined in the hardware manual. Structure must be packed at 1 byte.

◆ ether_extended_cfg_t

struct ether_extended_cfg_t

ETHER extension configures the buffer descriptor for ETHER.

Data Fields

ether_instance_descriptor_t * p_rx_descriptors Receive descriptor buffer pool.

ether_instance_descriptor_t * p_tx_descriptors Transmit descriptor buffer pool.

uint32_t eesr_event_filter Filter for EESR related event.

uint8_t ecsr_event_filter Filter for ECSR related event.

◆ ether_instance_ctrl_t

struct ether_instance_ctrl_t

ETHER control block. DO NOT INITIALIZE. Initialization occurs when ether_api_t::open is called.

Data Fields

uint32_t open

 Used to determine if the channel is configured.

ether_cfg_t const * p_ether_cfg

 Pointer to initial configurations.

ether_instance_descriptor_t
*

p_rx_descriptor

 Pointer to the currently referenced transmit descriptor.

ether_instance_descriptor_t
*

p_tx_descriptor

 Pointer to the currently referenced receive descriptor.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,688 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

void * p_reg_etherc

 Base register of ethernet controller for this channel.

void * p_reg_edmac

 Base register of EDMA controller for this channel.

ether_previous_link_status_t previous_link_status

 Previous link status.

ether_link_change_t link_change

 status of link change

ether_magic_packet_t magic_packet

 status of magic packet detection

ether_link_establish_status_t link_establish_status

 Current Link status.

Enumeration Type Documentation

◆ ether_previous_link_status_t

enum ether_previous_link_status_t

Enumerator

ETHER_PREVIOUS_LINK_STATUS_DOWN Previous link status is down.

ETHER_PREVIOUS_LINK_STATUS_UP Previous link status is up.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,689 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ ether_link_change_t

enum ether_link_change_t

Enumerator

ETHER_LINK_CHANGE_NO_CHANGE Link status is no change.

ETHER_LINK_CHANGE_LINK_DOWN Link status changes to down.

ETHER_LINK_CHANGE_LINK_UP Link status changes to up.

◆ ether_magic_packet_t

enum ether_magic_packet_t

Enumerator

ETHER_MAGIC_PACKET_NOT_DETECTED Magic packet is not detected.

ETHER_MAGIC_PACKET_DETECTED Magic packet is detected.

◆ ether_link_establish_status_t

enum ether_link_establish_status_t

Enumerator

ETHER_LINK_ESTABLISH_STATUS_DOWN Link establish status is down.

ETHER_LINK_ESTABLISH_STATUS_UP Link establish status is up.

◆ ether_eesr_event_mask_t

enum ether_eesr_event_mask_t

Event mask for EESR register

Enumerator

ETHER_EESR_EVENT_MASK_CERF CERF event.

ETHER_EESR_EVENT_MASK_PRE PRE event.

ETHER_EESR_EVENT_MASK_RTSF RTSF event.

ETHER_EESR_EVENT_MASK_RTLF RTLF event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,690 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

ETHER_EESR_EVENT_MASK_RRF PRF event.

ETHER_EESR_EVENT_MASK_RMAF RMAF event.

ETHER_EESR_EVENT_MASK_TRO TRO event.

ETHER_EESR_EVENT_MASK_CD CD event.

ETHER_EESR_EVENT_MASK_DLC DLC event.

ETHER_EESR_EVENT_MASK_CND CND event.

ETHER_EESR_EVENT_MASK_RFOF RFOF event.

ETHER_EESR_EVENT_MASK_RDE RDE event.

ETHER_EESR_EVENT_MASK_FR FR event.

ETHER_EESR_EVENT_MASK_TFUF TFUF event.

ETHER_EESR_EVENT_MASK_TDE TDE event.

ETHER_EESR_EVENT_MASK_TC TC event.

ETHER_EESR_EVENT_MASK_ECI ECI event.

ETHER_EESR_EVENT_MASK_ADE ADE event.

ETHER_EESR_EVENT_MASK_RFCOF RFCOF event.

ETHER_EESR_EVENT_MASK_RABT RABT event.

ETHER_EESR_EVENT_MASK_TABT TABT event.

ETHER_EESR_EVENT_MASK_TWB TWB event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,691 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ ether_ecsr_event_mask_t

enum ether_ecsr_event_mask_t

Event mask for ECSR register

Enumerator

ETHER_ECSR_EVENT_MASK_ICD ICD event.

ETHER_ECSR_EVENT_MASK_MPD MPD event.

ETHER_ECSR_EVENT_MASK_LCHNG LCHNG event.

ETHER_ECSR_EVENT_MASK_PSRTO PSRTO event.

ETHER_ECSR_EVENT_MASK_BFR BFR event.

Function Documentation

◆ R_ETHER_Open()

fsp_err_t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const p_cfg)

After ETHERC, EDMAC and PHY-LSI are reset in software, an auto negotiation of PHY-LSI is begun.
Afterwards, the link signal change interrupt is permitted. Implements ether_api_t::open.

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block or
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATI
ON

Initialization of PHY-LSI failed.

FSP_ERR_INVALID_CHANNEL Invalid channel number is given.

FSP_ERR_INVALID_POINTER Pointer to extend config structure or MAC
address is NULL.

FSP_ERR_INVALID_ARGUMENT Interrupt is not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of PHY-LSI failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,692 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ R_ETHER_Close()

fsp_err_t R_ETHER_Close (ether_ctrl_t *const p_ctrl)

Disables interrupts. Removes power and releases hardware lock. Implements ether_api_t::close.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_ETHER_BufferRelease()

fsp_err_t R_ETHER_BufferRelease (ether_ctrl_t *const p_ctrl)

Move to the next buffer in the circular receive buffer list. Implements ether_api_t::bufferRelease.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,693 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ R_ETHER_RxBufferUpdate()

fsp_err_t R_ETHER_RxBufferUpdate (ether_ctrl_t *const p_ctrl, void *const p_buffer)

Change the buffer pointer of the current rx buffer descriptor. Implements
ether_api_t::rxBufferUpdate.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION A pointer argument is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_POINTER The pointer of buffer is NULL or not aligned
on a 32-bit boundary.

FSP_ERR_INVALID_MODE Driver is configured to non zero copy mode.

FSP_ERR_ETHER_RECEIVE_BUFFER_ACTIVE All descriptor is active.

◆ R_ETHER_LinkProcess()

fsp_err_t R_ETHER_LinkProcess (ether_ctrl_t *const p_ctrl)

The Link up processing, the Link down processing, and the magic packet detection processing are
executed. Implements ether_api_t::linkProcess.

Return values
FSP_SUCCESS Link is up.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Link is down.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATI
ON

When reopening the PHY interface
initialization of the PHY-LSI failed.

FSP_ERR_ALREADY_OPEN When reopening the PHY interface it was
already opened.

FSP_ERR_INVALID_CHANNEL When reopening the PHY interface an
invalid channel was passed.

FSP_ERR_INVALID_POINTER When reopening the PHY interface the MAC
address pointer was NULL.

FSP_ERR_INVALID_ARGUMENT When reopening the PHY interface the
interrupt was not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of the PHY-LSI failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,694 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ R_ETHER_WakeOnLANEnable()

fsp_err_t R_ETHER_WakeOnLANEnable (ether_ctrl_t *const p_ctrl)

The setting of ETHERC is changed from normal sending and receiving mode to magic packet
detection mode. Implements ether_api_t::wakeOnLANEnable.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of PHY-LSI failed.

◆ R_ETHER_Read()

fsp_err_t R_ETHER_Read (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t *const
length_bytes)

Receive Ethernet frame. Receives data to the location specified by the pointer to the receive
buffer. In zero copy mode, the address of the receive buffer is returned. In non zero copy mode, the
received data in the internal buffer is copied to the pointer passed by the argument. Implements
ether_api_t::read.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_NO_DATA There is no data in receive buffer.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

FSP_ERR_ETHER_ERROR_FILTERING Multicast Frame filter is enable, and
Multicast Address Frame is received.

FSP_ERR_INVALID_POINTER Value of the pointer is NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,695 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ R_ETHER_Write()

fsp_err_t R_ETHER_Write (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t const
frame_length)

Transmit Ethernet frame. Transmits data from the location specified by the pointer to the transmit
buffer, with the data size equal to the specified frame length. In the non zero copy mode, transmits
data after being copied to the internal buffer. Implements ether_api_t::write.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER
_FULL

Transmit buffer is not empty.

FSP_ERR_INVALID_POINTER Value of the pointer is NULL.

FSP_ERR_INVALID_ARGUMENT Value of the send frame size is out of range.

◆ R_ETHER_TxStatusGet()

fsp_err_t R_ETHER_TxStatusGet (ether_ctrl_t *const p_ctrl, void *const p_buffer_address)

Provides status of Ethernet driver in the user provided pointer. Implements
ether_api_t::txStatusGet.

Return values
FSP_SUCCESS Transmit buffer address is stored in

provided p_buffer_address.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_POINTER p_status is NULL.

FSP_ERR_NOT_FOUND Transmit buffer address has been
overwritten in transmit descriptor.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,696 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether)

◆ R_ETHER_CallbackSet()

fsp_err_t R_ETHER_CallbackSet (ether_ctrl_t *const p_api_ctrl, void(*)(ether_callback_args_t *)
p_callback, void const *const p_context, ether_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements ether_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.12.15 Ethernet (r_ether_phy)
Modules » Networking

Functions

fsp_err_t R_ETHER_PHY_Open (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t
const *const p_cfg)

 Resets Ethernet PHY device. Implements ether_phy_api_t::open.
More...

fsp_err_t R_ETHER_PHY_Close (ether_phy_ctrl_t *const p_ctrl)

 Close Ethernet PHY device. Implements ether_phy_api_t::close.
More...

fsp_err_t R_ETHER_PHY_StartAutoNegotiate (ether_phy_ctrl_t *const p_ctrl)

 Starts auto-negotiate. Implements
ether_phy_api_t::startAutoNegotiate. More...

fsp_err_t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy_ctrl_t *const p_ctrl,
uint32_t *const p_line_speed_duplex, uint32_t *const p_local_pause,
uint32_t *const p_partner_pause)

 Reports the other side's physical capability. Implements
ether_phy_api_t::linkPartnerAbilityGet. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,697 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

fsp_err_t R_ETHER_PHY_LinkStatusGet (ether_phy_ctrl_t *const p_ctrl)

 Returns the status of the physical link. Implements
ether_phy_api_t::linkStatusGet. More...

fsp_err_t R_ETHER_PHY_ChipInit (ether_phy_ctrl_t *const p_ctrl,
ether_phy_cfg_t const *const p_cfg)

 Initialize Ethernet PHY device. Implements ether_phy_api_t::chipInit.
More...

fsp_err_t R_ETHER_PHY_Read (ether_phy_ctrl_t *const p_ctrl, uint32_t
reg_addr, uint32_t *const p_data)

 Read data from register of PHY-LSI . Implements
ether_phy_api_t::read. More...

fsp_err_t R_ETHER_PHY_Write (ether_phy_ctrl_t *const p_ctrl, uint32_t
reg_addr, uint32_t data)

 Write data to register of PHY-LSI . Implements ether_phy_api_t::write.
More...

Detailed Description

The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications that use the ETHERC peripheral. It implements the Ethernet PHY Interface.

Overview
The Ethernet PHY module is used to setup and manage an external Ethernet PHY device for use with
the on-chip Ethernet Controller (ETHERC) peripheral. It performs auto-negotiation to determine the
optimal connection parameters between link partners. Once initialized the connection between the
external PHY and the onboard controller is automatically managed in hardware.

Features

The Ethernet PHY module supports the following features:

Auto negotiation support
Flow control support
Link status check support

Configuration
Build Time Configurations for r_ether_phy

The following build time configurations are defined in fsp_cfg/r_ether_phy_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,698 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

KSZ8091RNB Target Disabled
Enabled

Disabled Select whether to use
KSZ8091RNB Phy LSI or
not.

KSZ8041 Target Disabled
Enabled

Disabled Select whether to use
KSZ8041 Phy LSI or
not.

DP83620 Target Disabled
Enabled

Disabled Select whether to use
DP83620 Phy LSI or
not.

ICS1894 Target Disabled
Enabled

Disabled Select whether to use
ICS1894 Phy LSI or not.

User Own Target Disabled
Enabled

Disabled Select whether to use
User own Phy LSI or
not.

Reference Clock Default
Enabled
Disabled

Default Select whether to use
the RMII reference
clock. Selecting
'Default' will
automatically choose
the correct option
when using a Renesas
development board.

Reference Clock Default
Enabled
Disabled

Default Select whether to use
the RMII reference
clock. Selecting
'Default' will
automatically choose
the correct option
when using a Renesas
development board.

Automatic Phy LSI
Initialization

Enabled
Disabled

Enabled Select whether to
initialize the Ethernet
Phy LSI in the open
function.

Configurations for Networking > Ethernet (r_ether_phy)

This module can be added to the Stacks tab via New Stack > Networking > Ethernet (r_ether_phy).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_ether_phy0 Module name.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,699 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

Channel 0
1

0 Select the Ethernet
controller channel
number.

PHY-LSI Address Specify a value
between 0 and 31.

0 Specify the address of
the PHY-LSI used.

PHY-LSI Reset
Completion Timeout

Specify a value
between 0x1 and
0xFFFFFFFF.

0x00020000 Specify the number of
times to read the PHY-
LSI control register
while waiting for reset
completion. This value
should be adjusted
experimentally based
on the PHY-LSI used.

Select MII type MII
RMII

RMII Specify whether to use
MII or RMII.

Phy LSI type Kit Component
DEFAULT
KSZ8091RNB
KSZ8041
DP83620
ICS1894
User own PHY

Kit Component Select the Phy LSI
target. Selecting 'Kit
Component' will
automatically choose
the correct option
when using a Renesas
development board.

Port Custom Init
Function

Name must be a valid
C symbol

NULL Set the initial function
of the PHY-LSI, When
using your own PHY-
LSI.

Port Custom Link
Partner Ability Get
Function

Name must be a valid
C symbol

NULL Set the link partner
ability get function of
the PHY-LSI, When
using your own PHY-
LSI.

MII/RMII Register
Access Wait-time

Specify a value
between 0x1 and
0x7FFFFFFF.

8 Specify the bit timing
for MII/RMII register
accesses during PHY
initialization. This value
should be adjusted
experimentally based
on the PHY-LSI used.

Flow Control Disable
Enable

Disable Select whether to
enable or disable flow
control.

Usage Notes
Note

See the example below for details on how to initialize the Ethernet PHY module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,700 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

Accessing the MII and RMII Registers

Use the PIR register to access the MII and RMII registers in the PHY-LSI. Serial data in the MII and
RMII management frame format is transmitted and received through the ET0_MDC and ET0_MDIO
pins controlled by software.

MII and RMII management frame format

The below table lists the MII and RMII management frame formats.

Access type MII and RMII management frame

Item PRE ST OP PHYAD REGAD TA DATA IDLE

Number
of bits

32 2 2 5 5 2 16 1

Read 1...1 01 10 00001 RRRRR Z0 DDDDD
DDDDD
DDDDD
D

Z

Write 1...1 01 01 00001 RRRRR 10 DDDDD
DDDDD
DDDDD
D

Z

Note
- PRE (preamble): Send 32 consecutive 1s.
- ST (start of frame): Send 01b.
- OP (operation code): Send 10b for read or 01b for write.
- PHYAD (PHY address): Up to 32 PHY-LSIs can be connected to one MAC. PHY-LSIs are selected with these 5
bits. When the PHY-LSI address is 1, send 00001b.
- REGAD (register address): One register is selected from up to 32 registers in the PHY-LSI. When the register
address is 1, send 00001b.
- TA (turnaround): Use 2-bit turnaround time to avoid contention between the register address and data during a
read operation.
Send 10b during a write operation. Release the bus for 1 bit during a read operation (Z is output).
(This is indicated as Z0 because 0 is output from the PHY-LSI on the next clock cycle.)
- DATA (data): 16-bit data. Sequentially send or receive starting from the MSB.
- IDLE (IDLE condition): Wait time before inputting the next MII or RMII management format. Release the bus
during a write
operation (Z is output). No control is required, because a bus was already released during a read operation.

Limitations

The r_ether_phy module may need to be customized for PHY devices other than the ones
currently supported. Use the existing code as a starting point for creating a custom
implementation. Supported PHY devices are as follows.

KSZ8091RNB
KSZ8041
DP83620
ICS1894

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,701 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

ETHER PHY Basic Example

This is a basic example of minimal use of the ETHER PHY in an application.

void ether_phy_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_ether_phy0_ctrl.open = 0U;

 g_ether_phy0_cfg.channel = 0;

 /* Initializes the module. */

 err = R_ETHER_PHY_Open(&g_ether_phy0_ctrl, &g_ether_phy0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start auto negotiation. */

 err = R_ETHER_PHY_StartAutoNegotiate(&g_ether_phy0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Polling until link is established. */

 while (FSP_SUCCESS != R_ETHER_PHY_LinkStatusGet(&g_ether_phy0_ctrl))

 {

 /* Do nothing */

 }

 /* Get link partner ability from phy interface. */

 err = R_ETHER_PHY_LinkPartnerAbilityGet(&g_ether_phy0_ctrl,

 &g_ether_phy0_line_speed_duplex,

 &g_ether_phy0_local_pause,

 &g_ether_phy0_partner_pause);

 assert(FSP_SUCCESS == err);

 /* Check current link status. */

 err = R_ETHER_PHY_LinkStatusGet(&g_ether_phy0_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct ether_phy_instance_ctrl_t

struct ether_phy_extended_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,702 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

Enumerations

enum ether_phy_interface_status_t

Data Structure Documentation

◆ ether_phy_instance_ctrl_t

struct ether_phy_instance_ctrl_t

ETHER PHY control block. DO NOT INITIALIZE. Initialization occurs when ether_phy_api_t::open is
called.

Data Fields

uint32_t open Used to determine if the
channel is configured.

ether_phy_cfg_t const * p_ether_phy_cfg Pointer to initial configurations.

volatile uint32_t * p_reg_pir Pointer to ETHERC peripheral
registers.

uint32_t local_advertise Capabilities bitmap for local
advertising.

ether_phy_interface_status_t interface_status Initialized status of ETHER PHY
interface.

◆ ether_phy_extended_cfg_t

struct ether_phy_extended_cfg_t

ETHER PHY extended configuration.

Data Fields

void(* p_target_init)(ether_phy_instance_ctrl_t *p_instance_ctrl)

 Pointer to callback that is called to initialize the target.

bool(* p_target_link_partner_ability_get)(ether_phy_instance_ctrl_t
*p_instance_ctrl, uint32_t line_speed_duplex)

 Pointer to callback that is called to get the link partner ability.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,703 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

◆ ether_phy_interface_status_t

enum ether_phy_interface_status_t

Initialization state for read/write

Enumerator

ETHER_PHY_INTERFACE_STATUS_UNINITIALIZED ETHER PHY interface is uninitialized.

ETHER_PHY_INTERFACE_STATUS_INITIALIZED ETHER PHY interface is initialized.

Function Documentation

◆ R_ETHER_PHY_Open()

fsp_err_t R_ETHER_PHY_Open (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const p_cfg
)

Resets Ethernet PHY device. Implements ether_phy_api_t::open.

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block or
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_INVALID_CHANNEL Invalid channel number is given.

FSP_ERR_INVALID_POINTER Pointer to p_cfg is NULL.

FSP_ERR_TIMEOUT PHY-LSI Reset wait timeout.

FSP_ERR_INVALID_ARGUMENT Register address is incorrect

FSP_ERR_NOT_INITIALIZED The control block has not been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,704 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

◆ R_ETHER_PHY_Close()

fsp_err_t R_ETHER_PHY_Close (ether_phy_ctrl_t *const p_ctrl)

Close Ethernet PHY device. Implements ether_phy_api_t::close.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_ETHER_PHY_StartAutoNegotiate()

fsp_err_t R_ETHER_PHY_StartAutoNegotiate (ether_phy_ctrl_t *const p_ctrl)

Starts auto-negotiate. Implements ether_phy_api_t::startAutoNegotiate.

Return values
FSP_SUCCESS ETHER_PHY successfully starts auto-

negotiate.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_INVALID_ARGUMENT Register address is incorrect

FSP_ERR_INVALID_POINTER Pointer to read buffer is NULL.

FSP_ERR_NOT_INITIALIZED The control block has not been initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,705 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

◆ R_ETHER_PHY_LinkPartnerAbilityGet()

fsp_err_t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy_ctrl_t *const p_ctrl, uint32_t *const
p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const p_partner_pause)

Reports the other side's physical capability. Implements ether_phy_api_t::linkPartnerAbilityGet.

Return values
FSP_SUCCESS ETHER_PHY successfully get link partner

ability.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_INVALID_POINTER Pointer to arguments are NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_PHY_ERROR_LINK PHY-LSI is not link up.

FSP_ERR_ETHER_PHY_NOT_READY The auto-negotiation isn't completed

FSP_ERR_INVALID_ARGUMENT Status register address is incorrect

FSP_ERR_NOT_INITIALIZED The control block has not been initialized

◆ R_ETHER_PHY_LinkStatusGet()

fsp_err_t R_ETHER_PHY_LinkStatusGet (ether_phy_ctrl_t *const p_ctrl)

Returns the status of the physical link. Implements ether_phy_api_t::linkStatusGet.

Return values
FSP_SUCCESS ETHER_PHY successfully get link partner

ability.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_PHY_ERROR_LINK PHY-LSI is not link up.

FSP_ERR_INVALID_ARGUMENT Status register address is incorrect

FSP_ERR_INVALID_POINTER Pointer to read buffer is NULL.

FSP_ERR_NOT_INITIALIZED The control block has not been initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,706 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

◆ R_ETHER_PHY_ChipInit()

fsp_err_t R_ETHER_PHY_ChipInit (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const
p_cfg)

Initialize Ethernet PHY device. Implements ether_phy_api_t::chipInit.

Return values
FSP_SUCCESS PHY device initialized successfully.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block or
configuration structure is NULL.

FSP_ERR_INVALID_ARGUMENT Address or data is not a valid size.

FSP_ERR_INVALID_POINTER Pointer to p_cfg is NULL.

FSP_ERR_NOT_INITIALIZED The control block has not been initialized.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_TIMEOUT PHY-LSI Reset wait timeout.

◆ R_ETHER_PHY_Read()

fsp_err_t R_ETHER_PHY_Read (ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t *const
p_data)

Read data from register of PHY-LSI . Implements ether_phy_api_t::read.

Return values
FSP_SUCCESS ETHER_PHY successfully read data.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_INVALID_POINTER Pointer to read buffer is NULL.

FSP_ERR_INVALID_ARGUMENT Address is not a valid size

FSP_ERR_NOT_INITIALIZED The control block has not been initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,707 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > Ethernet (r_ether_phy)

◆ R_ETHER_PHY_Write()

fsp_err_t R_ETHER_PHY_Write (ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t data)

Write data to register of PHY-LSI . Implements ether_phy_api_t::write.

Return values
FSP_SUCCESS ETHER_PHY successfully write data.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_INVALID_ARGUMENT Address or data is not a valid size

FSP_ERR_NOT_INITIALIZED The control block has not been initialized

5.2.12.16 FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)
Modules » Networking

Middleware for using TCP on RA MCUs.

Overview
FreeRTOS Plus TCP is a TCP stack created for use with FreeRTOS.

This module provides the NetworkInterface required to use FreeRTOS Plus TCP with the Ethernet
(r_ether) driver.

Please refer to the FreeRTOS Plus TCP documentation for further details.

Configuration
Build Time Configurations for FreeRTOS_Plus_TCP

The following build time configurations are defined in aws/FreeRTOSIPConfig.h:

Configuration Options Default Description

Print debug messages Disable
Enable

Disable If ipconfigHAS_DEBUG_
PRINTF is set to 1 then
FreeRTOS_debug_printf
should be defined to
the function used to
print out the debugging
messages.

Backward Compatible
Mode

No
Yes

Yes Run the code in
backward compatible

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,708 / 5,560

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

mode

Enable IPV6 Disable
Enable

Disable Stack supports
handling IPv6 packets
(including handling
IPv6 header, ND, RA,
and so on) when
enabled

Print info messages Disable
Enable

Disable Set to 1 to print out
non debugging
messages, for example
the output of the
FreeRTOS_netstat()
command, and ping
replies. If
ipconfigHAS_PRINTF is
set to 1 then
FreeRTOS_printf should
be set to the function
used to print out the
messages.

Byte order of the target
MCU

pdFREERTOS_LITTLE_E
NDIAN

pdFREERTOS_LITTLE_E
NDIAN

Define the byte order
of the target MCU

IP/TCP/UDP checksums Disable
Enable

Enable If the network
card/driver includes
checksum offloading
(IP/TCP/UDP
checksums) then set ip
configDRIVER_INCLUDE
D_RX_IP_CHECKSUM to
1 to prevent the
software stack
repeating the
checksum calculations.

Receive Block Time Value must be a non-
negative integer

10000 Amount of time
FreeRTOS_recv() will
block for. The timeouts
can be set per socket,
using setsockopt().

Send Block Time Value must be a non-
negative integer

10000 Amount of time
FreeRTOS_send() will
block for. The timeouts
can be set per socket,
using setsockopt().

DNS caching Disable
Enable

Enable DNS caching

DNS Request Attempts Value must be an
integer

2 When a cache is
present, ipconfigDNS_R
EQUEST_ATTEMPTS can
be kept low and also
DNS may use small

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,709 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

timeouts.

IP stack task priority Only symbols, numbers
and arithmetic
operators are valid.

configMAX_PRIORITIES
- 2

Set the priority of the
task that executes the
IP stack.

Stack size in words (not
bytes)

Only symbols, numbers
and arithmetic
operators are valid.

configMINIMAL_STACK_
SIZE * 5

The size, in words (not
bytes), of the stack
allocated to the
FreeRTOS+TCP stack.

Network Events call vA
pplicationIPNetworkEve
ntHook

Disable
Enable

Enable vApplicationIPNetworkE
ventHook is called
when the network
connects or
disconnects.

Max UDP send block
time

Only symbols, numbers
and arithmetic
operators are valid.

15000 /
portTICK_PERIOD_MS

Max UDP send block
time

Use DHCP Disable
Enable

Enable If ipconfigUSE_DHCP is
1 then FreeRTOS+TCP
will attempt to retrieve
an IP address,
netmask, DNS server
address and gateway
address from a DHCP
server.

DHCP Register
Hostname

Disable
Enable

Enable Register hostname
when using DHCP

DHCP Uses Unicast Disable
Enable

Enable DHCP uses unicast.

DHCP callback function Disable
Enable

Disable Provide an
implementation of the
DHCP callback function
(xApplicationDHCPHook
)

Interval between
transmissions

Only symbols, numbers
and arithmetic
operators are valid.

120000 /
portTICK_PERIOD_MS

When
ipconfigUSE_DHCP is
set to 1, DHCP requests
will be sent out at
increasing time
intervals until either a
reply is received from a
DHCP server and
accepted, or the
interval between
transmissions reaches i
pconfigMAXIMUM_DISC
OVER_TX_PERIOD.

ARP Cache Entries Value must be an
integer

6 The maximum number
of entries that can exist
in the ARP table at any

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,710 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

one time

ARP Request
Retransmissions

Value must be an
integer

5 ARP requests that do
not result in an ARP
response will be re-
transmitted a
maximum of ipconfigM
AX_ARP_RETRANSMISSI
ONS times before the
ARP request is aborted.

Maximum time before
ARP table entry
becomes stale

Value must be an
integer

150 The maximum time
between an entry in
the ARP table being
created or refreshed
and the entry being
removed because it is
stale

Use string for IP
Address

Disable
Enable

Enable Take an IP in decimal
dot format (for
example,
"192.168.0.1") as its
parameter FreeRTOS_in
et_addr_quick() takes
an IP address as four
separate numerical
octets (for example,
192, 168, 0, 1) as its
parameters

Total number of
available network
buffers

Value must be an
integer

10 Define the total
number of network
buffer that are
available to the IP
stack

Set the maximum
number of events

Only symbols, numbers
and arithmetic
operators are valid.

ipconfigNUM_NETWORK
_BUFFER_DESCRIPTORS
+ 5

Set the maximum
number of events that
can be queued for
processing at any one
time. The event queue
must be a minimum of
5 greater than the total
number of network
buffers

Enable
FreeRTOS_sendto()
without calling Bind

Enable
Disable

Disable Set to 1 then calling
FreeRTOS_sendto() on
a socket that has not
yet been bound will
result in the IP stack
automatically binding
the socket to a port
number from the range
socketAUTO_PORT_ALL
OCATION_START_NUMB

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,711 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

ER to 0xffff. If ipconfigA
LLOW_SOCKET_SEND_
WITHOUT_BIND is set
to 0 then calling
FreeRTOS_sendto() on
a socket that has not
yet been bound will
result in the send
operation being
aborted.

TTL values for UDP
packets

Value must be an
integer

128 Define the Time To Live
(TTL) values used in
outgoing UDP packets

TTL values for TCP
packets

Value must be an
integer

128 Defines the Time To
Live (TTL) values used
in outgoing TCP
packets

Use TCP and all its
features

Disable
Enable

Enable Use TCP and all its
features

Let TCP use windowing
mechanism

Disable
Enable

Disable Let TCP use windowing
mechanism

Maximum number of
bytes the payload of a
network frame can
contain

Value must be an
integer

1500 Maximum number of
bytes the payload of a
network frame can
contain

Basic DNS client or
resolver

Disable
Enable

Enable Set ipconfigUSE_DNS to
1 to include a basic
DNS client/resolver.
DNS is used through
the FreeRTOS_gethostb
yname() API function.

Reply to incoming ICMP
echo (ping) requests

Disable
Enable

Enable If ipconfigREPLY_TO_IN
COMING_PINGS is set
to 1 then the IP stack
will generate replies to
incoming ICMP echo
(ping) requests.

FreeRTOS_SendPingRe
quest() is available

Disable
Enable

Disable If ipconfigSUPPORT_OU
TGOING_PINGS is set to
1 then the FreeRTOS_S
endPingRequest() API
function is available.

FreeRTOS_select() (and
associated) API
function is available

Disable
Enable

Disable If ipconfigSUPPORT_SEL
ECT_FUNCTION is set to
1 then the
FreeRTOS_select() (and
associated) API
function is available

Filter out non Ethernet Disable Enable If ipconfigFILTER_OUT_

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,712 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

II frames. Enable NON_ETHERNET_II_FRA
MES is set to 1 then
Ethernet frames that
are not in Ethernet II
format will be dropped.
This option is included
for potential future IP
stack developments

Responsibility of the
Ethernet interface to
filter out packets

Disable
Enable

Disable If ipconfigETHERNET_D
RIVER_FILTERS_FRAME_
TYPES is set to 1 then it
is the responsibility of
the Ethernet interface
to filter out packets
that are of no interest.

Access 32-bit fields in
the IP packets

Value must be an
integer

2 To access 32-bit fields
in the IP packets with
32-bit memory
instructions, all packets
will be stored 32-bit-
aligned, plus 16-bits.
This has to do with the
contents of the IP-
packets: all 32-bit
fields are 32-bit-
aligned, plus 16-bit

Size of the pool of TCP
window descriptors

Value must be an
integer

240 Define the size of the
pool of TCP window
descriptors

Size of Rx buffer for
TCP sockets

Value must be an
integer

3000 Define the size of Rx
buffer for TCP sockets

Size of Tx buffer for
TCP sockets

Value must be an
integer

3000 Define the size of Tx
buffer for TCP sockets

TCP keep-alive Disable
Enable

Enable TCP keep-alive is
avaiable or not

TCP keep-alive interval Value must be an
integer

120 TCP keep-alive interval
in second

The socket semaphore
to unblock the MQTT
task
(USER_SEMAPHORE)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (WAKE_CALLBACK)

Disable
Enable

Enable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (USE_CALLBACKS)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore Disable Disable The socket semaphore

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,713 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

to unblock the MQTT
task (TX_DRIVER)

Enable is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (RX_DRIVER)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

Possible optimisation
for expert users

Disable
Enable

Disable Possible optimisation
for expert users -
requires network driver
support. It is is useful
when there is high
network traffic. If non-
zero value then instead
of passing received
packets into the IP task
one at a time the
network interface can
chain received packets
together and pass
them into the IP task in
one go. If set to 0 then
only one buffer will be
sent at a time.

Usage Notes
In order to use the NetworkInterface implementation provided by Renesas for RA devices:

Configure an r_ether instance and provide a pointer to the instance of the NetworkInterface
as follows:

/* Reference used by the NetworkInterface to access the ethernet instance. */

extern ether_instance_t const * gp_freertos_ether;

...

/* Make it reference the configured ether instance. */

ether_instance_t const * gp_freertos_ether = &g_ether_instance;

Some of the stack initialisation APIs have been deprecated as of FreeRTOS V4.0.0 onwards.
Please refer to FreeRTOS+TCP Networking Tutorial: Initializing the TCP/IP Stack for the new
APIs supporting IPv6, Multiple Endpoints and Multiple interfaces. To use the deprecated APIs
please set it to "Yes" for the stack property "Common|Backward Compatible Mode".

Note
The MAC address passed to FreeRTOS_FillEndPoint must match the MAC address configured in the r_ether
instance.
g_ether_instance must have vEtherISRCallback configured as the callback.
The xApplicationGetRandomNumber and ulApplicationGetNextSequenceNumber functions should be implemented
in systems using FreeRTOS Plus TCP without Secure Sockets.
To connect to a server using an IP address the macro ipconfigINCLUDE_FULL_INET_ADDR must be set to 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,714 / 5,560

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial_Initialising_TCP.updated.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)

Limitations

Zero-copy is not currently supported by the NetworkInterface.

5.2.12.17 GTL BLE Abstraction (rm_ble_abs_gtl)
Modules » Networking

Middleware for the Bluetooth peripheral on RA MCUs. This module implements the BLE ABS Interface
.

Overview
This module provides BLE GAP functionality that complies with the Bluetooth Core Specification
version 5.0 specified by the Bluetooth SIG. This module is configured via the QE for BLE. QE for BLE
provides standard and custom services defined by the user.

The module supports the Renesas Electronics DA14531 and DA14535 Bluetooth® Low Energy 5
Modules. The rm_ble_abs_gtl driver interfaces with the DA14531/DA14535 module over UART.

Features

The Bluetooth® Low Energy Abstraction module with GTL supports the following features:

Common functionality
Boot from host or DA14531/DA14535 flash.
Use 1-wire (default) or 2-wire UART for booting.
Open/Close the BLE protocol stack.

The following GAP Role support
Peripheral: The device that accepts a connection request from Central and
establishes a connection.

GAP functionality
Initialize the Host stack.
Setting address.
Start/Stop Advertising.
Connect/Disconnect a link.

GATT Common functionality
Get MTU Size.

GATT Server functionality
Initialization of GATT Server.
Loading of Profile definition.
Notification of characteristics modification.
Read/Write of GATT Profile from host.

Security functionality (DA14531/DA14535 module acting as Peripheral)
Legacy Pairing supporting Just works functionality.
Legacy Pairing supporting Passkey functionality.
Initiate security request procedure from Peripheral as well.

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,715 / 5,560

https://www.renesas.com/qe-ble

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

Pin Configuration

Pins used by the BLE driver to control the DA14531/DA14535 module:

Reset Pin : Active low reset line for DA14531/DA14535 module.
UART Interface : RX/TX Pins

Usage Notes
Getting Started Guide

The below guide walks users through building a fully working solution that allows booting from the
host via 1-wire UART in order to run a BLE application from the RA MCU using the GTL interface.

https://lpccs-docs.renesas.com/DA1453x-FSP_BLE_Framework/UM-B-172/index.html

Addresses

When using a public BD address the address pre-programmed into the DA14531/DA14535 will be
used and can't be overridden.

A random address can be set by calling the R_BLE_VS_SetBdAddr function before the R_BLE_GAP_Init
function is called.

Heap Requirements

Ensure the BSP heap size is set to at least 2K bytes.

When using FreeRTOS ensure the heap 4 size is set to a minimum of 2K bytes.

Module Firmware Compatibility

This middleware module is compatible with GTL binary version 6.0.22 and later. You must ensure
that the DA14531/DA14535 Module (or PMOD) you are using contains this version (or later) firmware
or that you use the boot from host feature and have the host MCU load the binary into the
DA14531/DA14535. Note that DA14531 and DA14535 are not firmware compatible even though the
GTL API is the same.

Instructions detailing how to upgrade the firmware in a DA14531 Module can be found here:

https://lpccs-docs.renesas.com/US159-DA14531EVZ_Firmware_Upgrade/index.html

The GTL binary file can be downloaded using the tool described in the above instructions, or by using
the following link:

https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-
programming?r=1564826

Limitations

Developers should be aware of the following limitations when using the BLE_ABS:

Following a power on reset, the R_BLE_VS_GetRand function always returns the same number.
Subsequent calls to this function produce random numbers.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,716 / 5,560

https://lpccs-docs.renesas.com/DA1453x-FSP_BLE_Framework/UM-B-172/index.html
https://lpccs-docs.renesas.com/US159-DA14531EVZ_Firmware_Upgrade/index.html
https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-programming?r=1564826
https://www.renesas.com/us/en/document/swo/fsp-gtl-binary-us159-da14531evz-pmod-programming?r=1564826

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

Service and characteristic write callback functions, created when using the QE Tool are not
supported

The boot from host feature currently supports 1-wire and 2-wire UART operation. If using a 1-wire
boot from host the UART RX and TX pins on the host RA MCU must be tied together using a 1K ohm
resistor in order to boot the DA14531/DA14535 - this resistor can remain in place after the boot
operation has been completed. Boot from host using 2-wire UART is not supported when using a
DA14531MOD module because not all the required pins are exposed. Boot from host using 2-wire
UART is supported when a DA14535PMOD with SmartBoot (UM-B-171) is already flashed in DA14535.
In this case the same pins used for GTL communication are also used for 2-wire boot.

Legacy pairing functionality currently works with the DA14531/DA14535 module acting as a
Peripheral. Bonding data supports only one connection. Bonding data is stored in RAM and not in
Flash. Data will be lost after a reset.

Currently supported rm_ble_abs_gtl interface functions:

RM_BLE_ABS_Open
RM_BLE_ABS_Close
RM_BLE_ABS_StartLegacyAdvertising

Currently supported r_ble_api interface functions:

R_BLE_Open
R_BLE_Close
R_BLE_Execute
R_BLE_IsTaskFree
R_BLE_GetVersion
R_BLE_GAP_Init
R_BLE_GAP_Terminate
R_BLE_GAP_UpdConn
R_BLE_GAP_SetDataLen
R_BLE_GAP_Disconnect
R_BLE_GAP_GetVerInfo
R_BLE_GAP_ReadRssi
R_BLE_GAP_ReadChMap
R_BLE_GAP_SetAdvParam
R_BLE_GAP_SetAdvSresData
R_BLE_GAP_StartAdv
R_BLE_GAP_StopAdv
R_BLE_GAP_GetRemainAdvBufSize
R_BLE_GAP_GetRemDevInfo
R_BLE_GATTS_SetDbInst
R_BLE_GATT_GetMtu
R_BLE_GATTS_RegisterCb
R_BLE_GATTS_DeregisterCb
R_BLE_GATTS_Notification
R_BLE_GATTS_Indication
R_BLE_GATTS_GetAttr
R_BLE_GATTS_SetAttr
R_BLE_GATTC_RegisterCb
R_BLE_GATTC_DeregisterCb
R_BLE_GATTC_ReqExMtu
R_BLE_GATTC_DiscAllPrimServ
R_BLE_GATTC_DiscIncServ

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,717 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

R_BLE_GATTC_ReadChar
R_BLE_GATTC_WriteCharWithoutRsp
R_BLE_GATTC_SignedWriteChar
R_BLE_GATTC_WriteChar
R_BLE_GATTC_WriteLongChar
R_BLE_GATTC_ExecWrite
R_BLE_VS_Init
R_BLE_VS_GetBdAddr
R_BLE_VS_SetBdAddr
R_BLE_VS_GetRand
R_BLE_GAP_SetPairingParams
R_BLE_GAP_ReplyPairing
R_BLE_GAP_ReplyLtkReq
R_BLE_GAP_ReplyExKeyInfoReq
R_BLE_GAP_StartPairing

Currently supported callback events:

BLE_GAP_EVENT_STACK_ON
BLE_GAP_EVENT_STACK_OFF
BLE_GAP_EVENT_CONN_IND
BLE_GAP_EVENT_DISCONN_IND
BLE_GAP_EVENT_DATA_LEN_CHG
BLE_GAP_EVENT_CONN_PARAM_UPD_COMP
BLE_GAP_EVENT_ADV_ON
BLE_GAP_EVENT_ADV_OFF
BLE_GAP_EVENT_SET_DATA_LEN_COMP
BLE_GAP_EVENT_LOC_VER_INFO
BLE_GAP_EVENT_RSSI_RD_COMP
BLE_GAP_EVENT_CH_MAP_RD_COMP
BLE_GAP_EVENT_GET_REM_DEV_INFO
BLE_GATTS_EVENT_WRITE_RSP_COMP
BLE_GATTS_EVENT_HDL_VAL_CNF
BLE_GATTS_EVENT_DB_ACCESS_IND
BLE_GATTC_EVENT_EX_MTU_RSP
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND
BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP
BLE_GAP_EVENT_EX_KEY_REQ
BLE_GAP_EVENT_PASSKEY_ENTRY_REQ
BLE_GAP_EVENT_PEER_KEY_INFO
BLE_GAP_EVENT_PAIRING_COMP
BLE_GAP_EVENT_LTK_REQ
BLE_GAP_EVENT_ENC_CHG
BLE_GAP_EVENT_LTK_RSP_COMP

Examples
BLE_ABS_GTL Basic Example

This is a basic example of minimal use of the BLE_ABS_GTL in an application.

/* The callback is called when peripheral event occurs. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,718 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

void gap_peripheral_cb (uint16_t type, ble_status_t result, st_ble_evt_data_t *

p_data)

{

 FSP_PARAMETER_NOT_USED(result);

 FSP_PARAMETER_NOT_USED(p_data);

 switch (type)

 {

 case BLE_GAP_EVENT_STACK_ON:

 {

 g_ble_event_flag = g_ble_event_flag | BLE_ABS_EVENT_FLAG_STACK_ON;

 break;

 }

 case BLE_GAP_EVENT_ADV_ON:

 {

 st_ble_gap_adv_set_evt_t * p_gap_adv_set_evt_param = (st_ble_gap_adv_set_evt_t *)

p_data->p_param;

 g_advertising_handle = p_gap_adv_set_evt_param->adv_hdl;

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_ADV_ON;

 break;

 }

 case BLE_GAP_EVENT_ADV_OFF:

 {

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_ADV_OFF;

 break;

 }

 case BLE_GAP_EVENT_CONN_IND:

 {

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_CONN_IND;

 break;

 }

 {

 /* Do nothing. */

 break;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,719 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

 default:

 break;

 }

}

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_ON (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_DISCONN_IND (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP (0x01 << 5)

#define BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME 'E', 'x', 'a', 'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME 'T', 'E', 'S', 'T', '_', 'E', 'x', 'a',

'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL (0x00000640)

void ble_abs_peripheral_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 uint8_t advertising_data[] =

 {

 /* Flags */

 0x02,

 0x01,

 (0x1a),

 /* Shortened Local Name */

 0x08,

 0x08,

 BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME,

 };

 /* Scan Response Data */

 uint8_t scan_response_data[] =

 {

 /* Complete Local Name */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,720 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

 0x0D,

 0x09,

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME,

 };

 ble_abs_legacy_advertising_parameter_t legacy_advertising_parameter =

 {

 .p_peer_address =

NULL,

 .slow_advertising_interval =

BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL,

 .slow_advertising_period =

0x0000,

 .p_advertising_data =

advertising_data,

 .advertising_data_length = sizeof

(advertising_data),

 .p_scan_response_data =

scan_response_data,

 .scan_response_data_length = sizeof

(scan_response_data),

 .advertising_filter_policy = BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY

,

 .advertising_channel_map = (BLE_GAP_ADV_CH_37 | BLE_GAP_ADV_CH_38 |

BLE_GAP_ADV_CH_39),

 .own_bluetooth_address_type = BLE_GAP_ADDR_PUBLIC

,

 .own_bluetooth_address = {0},

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure the Transmit Level */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,721 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

 err = (fsp_err_t) R_BLE_VS_SetTxPower(0, BLE_ABS_TRANSMIT_POWER);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_STACK_ON event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if (BLE_ABS_EVENT_FLAG_ADV_OFF & g_ble_event_flag)

 {

 /* Restart advertise, when stop advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 if (FSP_SUCCESS == err)

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 }

 else if (FSP_ERR_INVALID_STATE == err)

 {

 /* BLE driver state is busy. */

 ;

 }

 else

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,722 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > GTL BLE Abstraction (rm_ble_abs_gtl)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 }

 }

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

 /* Stop advertising after a certain amount of time */

 R_BLE_GAP_StopAdv(g_advertising_handle);

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

5.2.12.18 NetX Duo Ethernet Driver (rm_netxduo_ether)
Modules » Networking

Overview
This module provides a NetX Duo driver that is implemented using the Ethernet Interface.

Please refer to the NetXDuo documentation for further details.

Features

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,723 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/netx-duo/overview-netx-duo

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo Ethernet Driver (rm_netxduo_ether)

Packet Types Supported
ARP
IPv4
IPv6

Link status callback
Configurable IP MTU

Configuration

Configurations for Networking > NetX Duo Ethernet Driver (rm_netxduo_ether)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_netxduo_ether_0 Module name.

IP MTU Value must be in the
range [576, 1500]
bytes.

1500 IP MTU

Usage Notes
Calculating the Packet Size for an IP instance

In order to ensure that there is enough space to store an entire Ethernet frame, the packet pool used
for receiving packets must have a payload size that is 32 bytes larger than the configured
ether_cfg_t::ether_buffer_size. The extra 32 bytes is needed in order to ensure that the allocated
packets are properly aligned to 32 bytes.

ether_cfg_t::ether_buffer_size is calcualted from the IP MTU using the following formula:

ceil((rm_netxduo_ether_cfg_t::mtu + Ethernet Header (14) + Padding Bytes (2)) / 32) * 32

Examples
Basic Example

This is a basic example of minimal use of the NetX Duo Ether Driver in an application.

#define NETXDUO_EXAMPLE_IP_STACK_SIZE (2048U)

#define NETXDUO_EXAMPLE_ARP_CACHE_SIZE (2048U)

#define NETXDUO_EXAMPLE_PACKET_SIZE (1568U)

#define NETXDUO_EXAMPLE_PACKET_NUM (100U)

#define NETXDUO_EXAMPLE_PACKET_POOL_SIZE ((sizeof(NX_PACKET) +

NETXDUO_EXAMPLE_PACKET_SIZE) * \

 NETXDUO_EXAMPLE_PACKET_NUM)

#define NETXDUO_EXAMPLE_MAC_ADDRESS_MSW (0)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,724 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo Ethernet Driver (rm_netxduo_ether)

#define NETXDUO_EXAMPLE_MAC_ADDRESS_LSW (0)

static NX_IP g_ip;

static NX_PACKET_POOL g_packet_pool;

static uint8_t g_ip_stack_memory[NETXDUO_EXAMPLE_IP_STACK_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_packet_pool_memory[NETXDUO_EXAMPLE_PACKET_POOL_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_ip_arp_cache_memory[NETXDUO_EXAMPLE_ARP_CACHE_SIZE]

BSP_ALIGN_VARIABLE(4);

static void rm_netxduo_ether0 (NX_IP_DRIVER * driver_req_ptr)

{

 /* Pass the driver request and ethernet driver configuration to the NetX Duo Ether

Driver. */

 rm_netxduo_ether(driver_req_ptr, &g_netxduo_ether_instance);

}

void rm_netxduo_ether_example ()

{

 UINT status;

 nx_system_initialize();

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_ether driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool,

 rm_netxduo_ether0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,725 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo Ethernet Driver (rm_netxduo_ether)

 &g_ip_stack_memory[0],

 sizeof(g_ip_stack_memory),

 0);

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

 status = nx_arp_enable(&g_ip, g_ip_arp_cache_memory, sizeof

(g_ip_arp_cache_memory));

 assert(NX_SUCCESS == status);

 status = nx_tcp_enable(&g_ip);

 assert(NX_SUCCESS == status);

 status = nx_icmp_enable(&g_ip);

 assert(NX_SUCCESS == status);

}

Changing MAC address Example

This is an example of changing the MAC address after an IP instance has already been created.

void rm_netxduo_ether_change_mac_address_example ()

{

 ULONG driver_status;

 UINT status;

 /* Disable the link. */

 status = nx_ip_driver_interface_direct_command(&g_ip, NX_LINK_DISABLE, 0,

&driver_status);

 assert(NX_SUCCESS == status);

 /* Update the MAC address. */

 status = nx_ip_interface_physical_address_set(&g_ip,

 0,

 NETXDUO_EXAMPLE_MAC_ADDRESS_MSW,

 NETXDUO_EXAMPLE_MAC_ADDRESS_LSW,

 NX_TRUE);

 assert(NX_SUCCESS == status);

 /* Re-enable the link. */

 status = nx_ip_driver_interface_direct_command(&g_ip, NX_LINK_ENABLE, 0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,726 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo Ethernet Driver (rm_netxduo_ether)

&driver_status);

 assert(NX_SUCCESS == status);

}

5.2.12.19 NetX Duo WiFi Driver (rm_netxduo_wifi)
Modules » Networking

Overview
This module provides a NetX Duo driver that is implemented using the rm_wifi_onchip_silex driver.

Please refer to the NetXDuo documentation for further details.

Features

Packet Types Supported
TCP/IPv4
UDP

Configurable IP MTU

Configuration

Build Time Configurations for rm_netxduo_wifi

The following build time configurations are defined in fsp_cfg/middleware/rm_netxduo_wifi_cfg.h:

Configuration Options Default Description

IP MTU (bytes) Value must be in the
range [576, 1500]
bytes.

1500 IP MTU

Usage Notes
Connecting to a Wireless Network

NetX Duo does not support connecting to a wireless network directly and instead the driver functions
should be called directly to establish a connection.

rm_wifi_onchip_silex_open() should be called to initialize the WiFi module driver.
rm_wifi_onchip_silex_scan() should be used to scan for access points.
rm_wifi_onchip_silex_connect() should be used before opening a NetX IP instance in order to
connect it to a network.
rm_wifi_onchip_silex_network_info_get() should be used after an access point connection

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,727 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/netx-duo/overview-netx-duo

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

has been established to get DHCP acquired IP address, subnet mask, and gateway.

Unsupported NetX Duo Features

These features are currently not supported due to lack of support in the rm_wifi_onchip_silex driver
or in the WiFi module hardware/firmware:

IPv6 functionality
TCP/UDP server mode
ARP is handled directly by the WiFi module
DHCP is always enabled on module by the rm_wifi_onchip_silex driver, thus the software
DHCP stack is unsupported.
The source port will not be used when binding a TCP or UDP socket. Applications should set
the source port to NX_ANY_PORT.

On Module Alternatives

Instead of using NetX Duo Software Addons the following features can be performed directly on the
WiFi module by calling the appropriate function instead if desired:

DNS: The user can preform a DNS lookup by calling rm_wifi_onchip_silex_dns_query().
ICMP: The user can perform a ping by calling rm_wifi_onchip_silex_ping().
SNTP: The WiFi module has multiple public APIs for time related functions:

RM_WIFI_ONCHIP_SILEX_EpochTimeGet()
RM_WIFI_ONCHIP_SILEX_LocalTimeGet()
RM_WIFI_ONCHIP_SILEX_SntpEnableSet()
RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet()
RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet()

Examples
Basic Example

This is a basic example of minimal use of the NetX Duo WiFi Driver in an application.

#define NETXDUO_EXAMPLE_IP_STACK_SIZE (2048U)

#define NETXDUO_EXAMPLE_ARP_CACHE_SIZE (2048U)

#define NETXDUO_EXAMPLE_PACKET_SIZE (1568U)

#define NETXDUO_EXAMPLE_PACKET_NUM (100U)

#define NETXDUO_EXAMPLE_PACKET_POOL_SIZE ((sizeof(NX_PACKET) +

NETXDUO_EXAMPLE_PACKET_SIZE) * \

 NETXDUO_EXAMPLE_PACKET_NUM)

#define NETXDUO_EXAMPLE_SSID "ssidName"

#define NETXDUO_EXAMPLE_PASSWORD "password"

static NX_IP g_ip0;

static NX_PACKET_POOL g_packet_pool0;

static uint8_t g_ip0_stack_memory[NETXDUO_EXAMPLE_IP_STACK_SIZE]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,728 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

BSP_ALIGN_VARIABLE(4);

static uint8_t g_packet_pool0_pool_memory[NETXDUO_EXAMPLE_PACKET_POOL_SIZE]

BSP_ALIGN_VARIABLE(4);

extern wifi_onchip_silex_cfg_t g_wifi_onchip_silex_cfg;

void rm_netxduo_wifi_example ()

{

 UINT status;

 fsp_err_t err;

 nx_system_initialize();

 /* Open WiFi module */

 err = rm_wifi_onchip_silex_open(&g_wifi_onchip_silex_cfg);

 assert(FSP_SUCCESS == err);

 /* Connect to desired AP */

 err = rm_wifi_onchip_silex_connect(NETXDUO_EXAMPLE_SSID, eWiFiSecurityWPA2,

NETXDUO_EXAMPLE_PASSWORD);

 assert(FSP_SUCCESS == err);

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool0,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool0_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_wifi driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip0,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool0,

 rm_netxduo_wifi,

 &g_ip0_stack_memory[0],

 sizeof(g_ip0_stack_memory),

 0);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,729 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

 status = nx_tcp_enable(&g_ip0);

 assert(NX_SUCCESS == status);

 status = nx_udp_enable(&g_ip0);

 assert(NX_SUCCESS == status);

}

TLS Example

This is a basic example of connecting a TLS socket.

#define NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE (18000U)

#define NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE (4000U)

#define NETXDUO_EXAMPLE_PORT (3005U)

#define NETXDUO_EXAMPLE_SERVER_PORT (9050U)

#define NETXDUO_EXAMPLE_IP IP_ADDRESS(1, 2, 3, 5)

NX_SECURE_TLS_CRYPTO g_nx_crypto_tls_test_ciphers;

static UCHAR g_tls_crypto_metadata[NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE];

static UCHAR g_tls_packet_buffer[NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE];

static NX_SECURE_X509_CERT g_certificate;

extern const UCHAR g_trusted_ca_data; // User trusted certificates

extern USHORT g_trusted_ca_length;

void rm_netxduo_wifi_tls_example ()

{

 UINT status;

 fsp_err_t err;

 NX_TCP_SOCKET * p_socket;

 NX_SECURE_TLS_SESSION tls_session;

 nx_system_initialize();

 /* Initialize NetX Crypto */

 status = nx_crypto_initialize();

 assert(NX_SUCCESS == status);

 /* Open WiFi module */

 err = rm_wifi_onchip_silex_open(&g_wifi_onchip_silex_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,730 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

 assert(FSP_SUCCESS == err);

 /* Connect to desired AP */

 err = rm_wifi_onchip_silex_connect(NETXDUO_EXAMPLE_SSID, eWiFiSecurityWPA2,

NETXDUO_EXAMPLE_PASSWORD);

 assert(FSP_SUCCESS == err);

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool0,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool0_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_wifi driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip0,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool0,

 rm_netxduo_wifi,

 &g_ip0_stack_memory[0],

 sizeof(g_ip0_stack_memory),

 0);

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

 status = nx_tcp_enable(&g_ip0);

 assert(NX_SUCCESS == status);

 /* Initialize the NetX Secure TLS system. */

 nx_secure_tls_initialize();

 /* Create a TCP socket to use for the TLS session. */

 status = nx_tcp_socket_create(&g_ip0,

 p_socket,

 "TLS Client Socket",

 NX_IP_NORMAL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,731 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

 NX_FRAGMENT_OKAY,

 NX_IP_TIME_TO_LIVE,

 1024 * 4,

 NX_NULL,

 NX_NULL);

 assert(NX_SUCCESS == status);

 /* Create a TLS session for our socket. This sets up the TLS session object for

 * later use */

 status =

 nx_secure_tls_session_create(&tls_session,

 &g_nx_crypto_tls_test_ciphers,

 g_tls_crypto_metadata,

 NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE);

 assert(NX_SUCCESS == status);

 /* Set the packet reassembly buffer for this TLS session. */

 status = nx_secure_tls_session_packet_buffer_set(&tls_session,

 g_tls_packet_buffer,

NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE);

 assert(NX_SUCCESS == status);

 /* Initialize an X.509 certificate with the CA root certificate data. */

 status = nx_secure_x509_certificate_initialize(&g_certificate,

 (UCHAR *) g_trusted_ca_data,

 g_trusted_ca_length,

 NX_NULL,

 0,

 NX_NULL,

 0,

 NX_SECURE_X509_KEY_TYPE_NONE);

 assert(NX_SUCCESS == status);

 /* Add the initialized certificate as a trusted root certificate. */

 status = nx_secure_tls_trusted_certificate_add(&tls_session, &g_certificate);

 assert(NX_SUCCESS == status);

 /* Bind the socket to a port. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,732 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

 status = nx_tcp_client_socket_bind(p_socket, NETXDUO_EXAMPLE_PORT,

NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

 /* Connect TCP socket */

 status = nx_tcp_client_socket_connect(p_socket, NETXDUO_EXAMPLE_IP,

NETXDUO_EXAMPLE_SERVER_PORT, NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

 /* Start the TLS Session using the connected TCP socket. This function will

 * ascertain from the TCP socket state that this is a TLS Client session. */

 status = nx_secure_tls_session_start(&tls_session, p_socket, NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

}

UDP Example

This is a basic example of connecting a UDP socket.

#define NETXDUO_TESTS_SOCKET_TIMEOUT (3000)

#define NETXDUO_TESTS_UDP_TX_PORT (5000)

#define NETXDUO_TESTS_SERVER_IP (0xC0A80064)

void rm_netxduo_wifi_udp_example (void)

{

 NX_UDP_SOCKET udp_client_socket;

 /* IP Address of the remote socket. */

 NXD_ADDRESS g_ip_address = NETXDUO_TESTS_SERVER_IP;

 /* Create the socket. */

 nx_udp_socket_create(&g_ip, &udp_client_socket, "Socket 0", NX_IP_NORMAL,

NX_FRAGMENT_OKAY, 0, 5);

 /* Bind to the UDP port. */

 nx_udp_socket_bind(&udp_client_socket, NETXDUO_TESTS_UDP_TX_PORT,

TX_WAIT_FOREVER);

 NX_PACKET * p_nx_packet = NX_NULL;

 /* Allocate a packet for message data */

 nx_packet_allocate(&g_packet_pool0, &p_nx_packet, NX_UDP_PACKET,

NETXDUO_TESTS_SOCKET_TIMEOUT)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,733 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > NetX Duo WiFi Driver (rm_netxduo_wifi)

 /* Append message data to packet */

 nx_packet_data_append(&p_nx_packet, "Hello World", 12, &g_packet_pool0,

NX_WAIT_FOREVER);

 /* Send UDP message to server */

 nx_udp_socket_send(&udp_client_socket, &p_nx_packet, &g_ip_address,

NETXDUO_TESTS_UDP_TX_PORT);

 NX_PACKET * p_nx_packet_recv;

 /* Receive any response from UDP server */

 nx_udp_socket_receive(&udp_client_socket, &p_nx_packet_recv,

NETXDUO_TESTS_SOCKET_TIMEOUT);

 /* Unbind and delete the udp socket. */

 nx_udp_socket_unbind(&udp_client_socket);

 nx_udp_socket_delete(&udp_client_socket);

}

5.2.12.20 On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)
Modules » Networking

Functions

fsp_err_t RM_HTTP_DA16XXX_Open (http_onchip_da16xxx_instance_ctrl_t
*p_ctrl, http_onchip_da16xxx_cfg_t const *const p_cfg)

fsp_err_t RM_HTTP_DA16XXX_Send (http_onchip_da16xxx_instance_ctrl_t
*p_ctrl, http_onchip_da16xxx_request_t *p_request,
http_onchip_da16xxx_buffer_t *p_buffer)

fsp_err_t RM_HTTP_DA16XXX_Close (http_onchip_da16xxx_instance_ctrl_t
*p_ctrl)

Detailed Description

HTTP client implementation using the DA16XXX WiFi module on RA MCUs.

Overview
This Middleware module supplies an implementation for the HTTP Client on the DA16XXX module.
The network stack is run on the DA16XXX and this module inherits and extends the core functionality
from the DA16XXX WiFi driver. The DA16XXX HTTP module only supports FreeRTOS currently
(Microsoft Azure support expected in future release).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,734 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

The DA16XXX module supports the following modules:

DA16200
DA16600

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Features

The HTTP Onchip da16xxx Middleware driver supplies these features:

Supports sending a request header (GET, PUT, and POST) to an HTTP server and receiving a
response header
Supports unsecure and secure connection via TLS encryption
Supports parsing of the response header and returning to the user
Supports other optional configurations such as Server Name Indication (SNI) and ALPNs

Configuration
Build Time Configurations for rm_http_onchip_da16xxx

The following build time configurations are defined in fsp_cfg/rm_http_onchip_da16xxx_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Interrupt Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx).

Clock Configuration

Refer to UART (r_sci_uart).

Pin Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx)

Usage Notes
Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

When the user intends to use secure TLS in their application, they need to provide
certificates (root certificate authority, client certificate, and private key) in a header file
The user must provide certificate macro names in the FSP Configurator properties, as well
as the name of the header file (to link the module, certificates, and header together)
If the user provides these credentials in the Configurator, they must create a new header

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,735 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

file in their /src/ folder with the same name as they provided in the Configurator properties.
When the code is generated, a build error will occur if the header file is not created

Limitations

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

This module is not a standalone module - ensure that the WiFi module APIs are invoked first
to configure the DA16XXX module and connect to an Access Point before using the HTTP
module
Ensure that DA16XXX SDK version v3.2.6 or later is being used, where the default buffer
size for incoming TLS is 6KB and outgoing TLS is 4KB. Using earlier versions may result in
failure to connect to an HTTP server with TLS (unless buffer size settings are altered
manually)

Examples
Basic Example

This is a basic example of minimal use of HTTP Middleware in an application.

void http_onchip_basic_example (void)

{

 WIFIReturnCode_t wifi_err;

 fsp_err_t http_err;

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucChannel = 0,

 .xPassword.xWPA.cPassphrase = WIFI_PWD,

 .ucSSID = WIFI_SSID,

 .xPassword.xWPA.ucLength = sizeof(WIFI_PWD),

 .ucSSIDLength = sizeof(WIFI_SSID),

 .xSecurity = eWiFiSecurityWPA2,

 };

 /* Open connection to the Wifi Module */

 wifi_err = WIFI_On();

 assert(eWiFiSuccess == wifi_err);

 /* Connect to the Access Point */

 wifi_err = WIFI_ConnectAP(&net_params);

 assert(eWiFiSuccess == wifi_err);

 /* Initialize the HTTP Client connection */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,736 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

 http_err = RM_HTTP_DA16XXX_Open(&g_rm_http_onchip_da16xxx_instance,

&g_http_onchip_da16xxx_cfg);

 assert(FSP_SUCCESS == http_err);

 /* Initialize the HTTP Client connection */

 http_err = RM_HTTP_DA16XXX_Send(&g_rm_http_onchip_da16xxx_instance, &test_req,

&user_buf);

 assert(FSP_SUCCESS == http_err);

 /* Close the HTTP Client module */

 http_err = RM_HTTP_DA16XXX_Close(&g_rm_http_onchip_da16xxx_instance);

 assert(FSP_SUCCESS == http_err);

}

Data Structures

struct http_onchip_da16xxx_request_t

struct http_onchip_da16xxx_buffer_t

struct http_onchip_da16xxx_cfg_t

struct http_onchip_da16xxx_instance_ctrl_t

Macros

#define HTTP_ONCHIP_DA16XXX_MAX_ALPN

 Maximum number of ALPNs supported by DA16XXX.

#define HTTP_ONCHIP_DA16XXX_MAX_SNI_LEN

 Maximum length of SNI supported by DA16XXX.

#define HTTP_ONCHIP_DA16XXX_MAX_GET_LEN

 Maximum length of HTTP GET request.

Enumerations

enum http_onchip_da16xxx_method_t

enum http_onchip_da16xxx_tls_auth_t

Data Structure Documentation

◆ http_onchip_da16xxx_request_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,737 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

struct http_onchip_da16xxx_request_t

HTTP Request Buffer

Data Fields

const char * p_http_endpoint Defines the URL to send HTTP
requests to.

const char * p_request_body Pointer to optional buffer for
body.

http_onchip_da16xxx_method_t method Request method to be used.

uint32_t length Length of optional body buffer.

◆ http_onchip_da16xxx_buffer_t

struct http_onchip_da16xxx_buffer_t

HTTP User Buffers

Data Fields

char * p_request_buffer User HTTP request buffer.

uint32_t req_length Size of HTTP request buffer.

char * p_response_buffer User HTTP request buffer.

uint32_t resp_length Size of HTTP request buffer.

◆ http_onchip_da16xxx_cfg_t

struct http_onchip_da16xxx_cfg_t

HTTP Configuration

Data Fields

at_transport_da16xxx_instance_
t
const *

p_transport_instance

const char * p_alpns[
HTTP_ONCHIP_DA16XXX_MAX_A
LPN]

Buffer for storing ALPN names.

uint8_t alpn_count ALPN Protocols count. Max
value is 3.

const char * p_sni_name Pointer to Server Name
Indication.

http_onchip_da16xxx_tls_auth_t tls_level Set TLS Authentication Level (0,
1, or 2)

const char * p_root_ca String representing a trusted
server root certificate.

uint32_t root_ca_size Size associated with root CA
Certificate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,738 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

const char * p_client_cert String representing a Client
certificate.

uint32_t client_cert_size Size associated with Client
certificate.

const char * p_client_private_key String representing Client
Private Key.

uint32_t private_key_size Size associated with Client
Private Key.

◆ http_onchip_da16xxx_instance_ctrl_t

struct http_onchip_da16xxx_instance_ctrl_t

HTTP_ONCHIP_DA16XXX private control block. DO NOT MODIFY.

Data Fields

uint32_t open Flag to indicate if HTTP has
been opened.

http_onchip_da16xxx_cfg_t
const *

p_cfg Pointer to p_cfg for HTTP.

Enumeration Type Documentation

◆ http_onchip_da16xxx_method_t

enum http_onchip_da16xxx_method_t

HTTP Request Method

Enumerator

HTTP_ONCHIP_DA16XXX_GET Value converted to "get" string.

HTTP_ONCHIP_DA16XXX_POST Value converted to "post" string.

HTTP_ONCHIP_DA16XXX_PUT Value converted to "put" string.

◆ http_onchip_da16xxx_tls_auth_t

enum http_onchip_da16xxx_tls_auth_t

HTTP TLS Authentication Level

Enumerator

HTTP_ONCHIP_DA16XXX_TLS_VERIFY_NONE TLS verification is not used.

HTTP_ONCHIP_DA16XXX_TLS_VERIFY_OPTIONAL TLS verification is optional.

HTTP_ONCHIP_DA16XXX_TLS_VERIFY_REQUIRED TLS verification is required.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,739 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

Function Documentation

◆ RM_HTTP_DA16XXX_Open()

fsp_err_t RM_HTTP_DA16XXX_Open (http_onchip_da16xxx_instance_ctrl_t * p_ctrl,
http_onchip_da16xxx_cfg_t const *const p_cfg)

Initialize the DA16XXX on-chip HTTP Client service.

Parameters
[in] p_ctrl Pointer to HTTP Client

instance control structure.

[in] p_cfg Pointer to HTTP Client
configuration structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION Parameter checking was unsuccessful.

FSP_ERR_INVALID_ARGUMENT Data size is too large or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,740 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)

◆ RM_HTTP_DA16XXX_Send()

fsp_err_t RM_HTTP_DA16XXX_Send (http_onchip_da16xxx_instance_ctrl_t * p_ctrl,
http_onchip_da16xxx_request_t * p_request, http_onchip_da16xxx_buffer_t * p_buffer)

Send the HTTP request with the configured buffers.

Parameters
[in] p_ctrl Pointer to HTTP Client

instance control structure.

[in] p_request Pointer to HTTP request
control structure.

[in] p_buffer Pointer to HTTP user buffer
struct for request and
response.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION Parameter checking was unsuccessful.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_INVALID_ARGUMENT Data size is too large.

FSP_ERR_INVALID_DATA Data was not received correctly.

◆ RM_HTTP_DA16XXX_Close()

fsp_err_t RM_HTTP_DA16XXX_Close (http_onchip_da16xxx_instance_ctrl_t * p_ctrl)

Close the DA16XXX HTTP Client service.

Parameters
[in] p_ctrl Pointer to HTTP Client

instance control structure.

Return values
FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION Parameter checking was unsuccessful.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,741 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

5.2.12.21 On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)
Modules » Networking

Functions

fsp_err_t RM_MQTT_DA16XXX_Open (mqtt_onchip_da16xxx_instance_ctrl_t
*p_ctrl, mqtt_onchip_da16xxx_cfg_t const *const p_cfg)

fsp_err_t RM_MQTT_DA16XXX_Disconnect
(mqtt_onchip_da16xxx_instance_ctrl_t *p_ctrl)

fsp_err_t RM_MQTT_DA16XXX_Connect (mqtt_onchip_da16xxx_instance_ctrl_t
*p_ctrl, uint32_t timeout_ms)

fsp_err_t RM_MQTT_DA16XXX_Publish (mqtt_onchip_da16xxx_instance_ctrl_t
*p_ctrl, mqtt_onchip_da16xxx_pub_info_t *const p_pub_info)

fsp_err_t RM_MQTT_DA16XXX_Subscribe
(mqtt_onchip_da16xxx_instance_ctrl_t *p_ctrl,
mqtt_onchip_da16xxx_sub_info_t *const p_sub_info, size_t
subscription_count)

fsp_err_t RM_MQTT_DA16XXX_UnSubscribe
(mqtt_onchip_da16xxx_instance_ctrl_t *p_ctrl,
mqtt_onchip_da16xxx_sub_info_t *const p_sub_info)

fsp_err_t RM_MQTT_DA16XXX_Receive (mqtt_onchip_da16xxx_instance_ctrl_t
*p_ctrl, mqtt_onchip_da16xxx_cfg_t const *const p_cfg)

fsp_err_t RM_MQTT_DA16XXX_Close (mqtt_onchip_da16xxx_instance_ctrl_t
*p_ctrl)

Detailed Description

MQTT client implementation using the DA16XXX WiFi module on RA MCUs.

Overview
This Middleware module supplies an implementation for the MQTT Client on the DA16XXX module.
The network stack is run on the DA16XXX and this module inherits and extends the core functionality
from the DA16XXX WiFi driver. The DA16XXX MQTT module only supports FreeRTOS currently
(Microsoft Azure support expected in future release).

The DA16XXX module supports the following modules:

DA16200
DA16600

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,742 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

Features

The MQTT Onchip da16xxx Middleware driver supplies these features:

Supports connect/disconnect to an MQTT broker via hostname, port, and user credentials
Supports unsecure and secure connection via TLS encryption
Supports the MQTT subscribe/publish model for multiple topics
Supports other optional configurations such as MQTT v3.1.1, Quality-of-service (QoS) level,
TLS cipher suites, and ALPNs

Configuration
Build Time Configurations for rm_mqtt_onchip_da16xxx

The following build time configurations are defined in fsp_cfg/rm_mqtt_onchip_da16xxx_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Size of MQTT RX buffer Must be an integer
greater than 0

512 Size in bytes of the
MQTT buffer used for
receiving subscribed
data. Must be an
integer greater than 0.

Size of MQTT TX buffer Must be an integer
greater than 200 and
less than 2064

512 Size in bytes of the
MQTT buffer used for
sending commands
and publishing data.
Maximum publishing
length is 2063 bytes

Configurations for Networking > MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

This module can be added to the Stacks tab via New Stack > Networking > MQTT Client on DA16XXX
(rm_mqtt_onchip_da16xxx).

Configuration Options Default Description

Certificates

MQTT Certificates
Header File

Must be a valid C
symbol

Name of header file
that will contain
certificates (macros).
User must create
header file if this field
is populated.

Root CA Must be a valid C
symbol

ROOT_CA Links to user-defined
macro of the same
name for Root CA
which user must define
in application header.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,743 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

Client Certificate Must be a valid C
symbol

CLIENT_CERT Links to user-defined
macro of the same
name for client
certificate which user
must define in
application header.

Private Key Must be a valid C
symbol

PRIVATE_KEY Links to user-defined
macro of the same
name for private key
which user must define
in application header.

ALPN

ALPN 1 Manual Entry Select Application
Layer Protocol
Negotiations (ALPNs)

ALPN 2 Manual Entry Select Application
Layer Protocol
Negotiations (ALPNs)

ALPN 3 Manual Entry Select Application
Layer Protocol
Negotiations (ALPNs)

Interrupts

Callback Must be a valid C
symbol

mqtt0_callback A user callback
function. This callback
function must be
provided. It is called
from the MQTT Receive
function to process
subscribed MQTT
messages.

Use MQTT protocol
v3.1.1

Disabled
Enabled

Enabled

MQTT Receive
Maximum Timeout (ms)

Timeout must be an
integer greater than 0
and less than 65535

10 Timeout for the MQTT
Receive function to
check the buffer for
incoming MQTT
messages in
milliseconds.

MQTT Transit Maximum
Timeout (ms)

Timeout must be an
integer greater than 0
and less than 65535

10 Timeout for publishing
MQTT messages in
milliseconds.

Clean Session Disabled
Enabled

Enabled

Keep Alive (s) Must be an integer
greater than 0 and less
than 65535

60 MQTT ping period to
check if connection is
still active.

Client Identifier Manual Entry

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,744 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

Host Name (or IP
address)

Manual Entry

MQTT Port Must be an integer
greater than 0 and less
than 65535

8883

MQTT User Name Must be a valid C
symbol

MQTT Password Must be a valid C
symbol

Last Will Topic Manual Entry Topic for MQTT Last
Will message.

Last Will Message Manual Entry Payload for MQTT Last
Will message.

Server Name Indication
(SNI)

Manual Entry

Last Will QoS 0
1
2

0 Quality-of-Service for
MQTT Last Will
message.

TLS Cipher Suites Refer to the RA
Configuration tool for
available options.

0U Select TLS Cipher
Suites

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Note: This module provides the basic configurations in the FSP Configurator required to connect to
an MQTT broker such as credential information (user, password, client key, etc.), publish/subscribe
topics, and optional configurations as required. The user can then copy these configurations to a new
structure if they want to connect to a new endpoint/make changes to the configurations dynamically.

Interrupt Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx).

Clock Configuration

Refer to UART (r_sci_uart).

Pin Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx)

Usage Notes
Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

This module is not a standalone module - ensure that the WiFi module APIs are invoked first
to configure the DA16XXX module and connect to an Access Point before using the MQTT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,745 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

module where the default buffer size for incoming TLS is 6KB and outgoing TLS is 4KB.
When the user intends to use secure TLS in their application, they need to provide
certificates (root certificate authority, client certificate, and private key) in a header file
The user must provide certificate macro names in the FSP Configurator properties, as well
as the name of the header file (to link the module, certificates, and header together)
If the user provides these credentials in the Configurator, they must create a new header
file in their /src/ folder with the same name as they provided in the Configurator properties.
When the code is generated, a build error will occur if the header file is not created
If only using username and password, these fields can be left blank (default), and a header
file does not need to be created

Limitations

Refer to WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx).

Ensure that DA16XXX SDK version v3.2.6 or later is being used, where the default buffer
size for incoming TLS is 6KB and outgoing TLS is 4KB. Using earlier versions may result in
failure to connect to an MQTT broker with TLS (unless buffer size settings are altered
manually)
For publish/subscribe topics, a separate QoS level cannot be set per topic - only one QoS
level can be set which applies to all messages
Currently the module only supports unsecured MQTT with username/password or secure
MQTT/TLS with certificates (root CA, client certificate, and private key). The module does
not accept username/password with certificates.

Examples
Basic Example

This is a basic example of minimal use of MQTT Middleware in an application.

void mqtt_onchip_basic_example (void)

{

 WIFIReturnCode_t wifi_err;

 fsp_err_t mqtt_err;

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucChannel = 0,

 .xPassword.xWPA.cPassphrase = WIFI_PWD,

 .ucSSID = WIFI_SSID,

 .xPassword.xWPA.ucLength = sizeof(WIFI_PWD),

 .ucSSIDLength = sizeof(WIFI_SSID),

 .xSecurity = eWiFiSecurityWPA2,

 };

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,746 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

 /* Open connection to the Wifi Module */

 wifi_err = WIFI_On();

 assert(eWiFiSuccess == wifi_err);

 /* Connect to the Access Point */

 wifi_err = WIFI_ConnectAP(&net_params);

 assert(eWiFiSuccess == wifi_err);

 /* Initialize the MQTT Client connection */

 mqtt_err = RM_MQTT_DA16XXX_Open(&g_rm_mqtt_onchip_da16xxx_instance,

&g_mqtt_onchip_da16xxx_cfg);

 assert(FSP_SUCCESS == mqtt_err);

 /* Subscribe to MQTT topics to be received */

 mqtt_err = RM_MQTT_DA16XXX_Subscribe(&g_rm_mqtt_onchip_da16xxx_instance,

subTopics, 1);

 assert(FSP_SUCCESS == mqtt_err);

 /* Connect to the MQTT Broker */

 mqtt_err = RM_MQTT_DA16XXX_Connect(&g_rm_mqtt_onchip_da16xxx_instance,

CONNECT_TIMEOUT);

 assert(FSP_SUCCESS == mqtt_err);

 /* Publish data to the MQTT Broker */

 mqtt_err = RM_MQTT_DA16XXX_Publish(&g_rm_mqtt_onchip_da16xxx_instance,

&pubTopics[0]);

 assert(FSP_SUCCESS == mqtt_err);

 /* Loop to receive data from the MQTT Broker */

 do

 {

 RM_MQTT_DA16XXX_Receive(&g_rm_mqtt_onchip_da16xxx_instance,

&g_mqtt_onchip_da16xxx_cfg);

 R_BSP_SoftwareDelay(CONNECT_TIMEOUT, BSP_DELAY_UNITS_MILLISECONDS);

 } while (cb_flag == 0);

 /* Disconnect from the MQTT Broker */

 mqtt_err = RM_MQTT_DA16XXX_Disconnect(&g_rm_mqtt_onchip_da16xxx_instance);

 assert(FSP_SUCCESS == mqtt_err);

 /* Close the MQTT Client module */

 mqtt_err = RM_MQTT_DA16XXX_Close(&g_rm_mqtt_onchip_da16xxx_instance);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,747 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

 assert(FSP_SUCCESS == mqtt_err);

}

Data Structures

struct mqtt_onchip_da16xxx_sub_info_t

struct mqtt_onchip_da16xxx_pub_info_t

struct mqtt_onchip_da16xxx_callback_args_t

struct mqtt_onchip_da16xxx_cfg_t

struct mqtt_onchip_da16xxx_instance_ctrl_t

Macros

#define MQTT_ONCHIP_DA16XXX_MAX_ALPN

 Maximum number of ALPNs supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_MAX_SNI_LEN

 Maximum length of SNI supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_TLS_CIPHER_SUITE_MAX

 Maximum number of TLS cipher suites supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_TLS_CIPHER_MAX_CNT

 Maximum number of TLS cipher suites supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_MAX_TOPIC_LEN

 Maximum total length for topics supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_MAX_PUBMSG_LEN

 Maximum total length for message supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_MAX_PUBTOPICMSG_LEN

 Maximum total length for message + topic supported by DA16XXX.

#define MQTT_ONCHIP_DA16XXX_SUBTOPIC_MAX_CNT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,748 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

 Maximum number of subscription topics allowed.

Enumerations

enum mqtt_onchip_da16xxx_qos_t

enum mqtt_onchip_da16xxx_tls_cipher_suites_t

Data Structure Documentation

◆ mqtt_onchip_da16xxx_sub_info_t

struct mqtt_onchip_da16xxx_sub_info_t

MQTT SUBSCRIBE packet parameters

Data Fields

mqtt_onchip_da16xxx_qos_t qos Quality of Service for
subscription.

const char * p_topic_filter Topic filter to subscribe to.

uint16_t topic_filter_length Length of subscription topic
filter.

◆ mqtt_onchip_da16xxx_pub_info_t

struct mqtt_onchip_da16xxx_pub_info_t

MQTT PUBLISH packet parameters

Data Fields

mqtt_onchip_da16xxx_qos_t qos Quality of Service for
subscription.

const char * p_topic_name Topic name on which the
message is published.

uint16_t topic_name_Length Length of topic name.

const char * p_payload Message payload.

uint32_t payload_length Message payload length.

◆ mqtt_onchip_da16xxx_callback_args_t

struct mqtt_onchip_da16xxx_callback_args_t

MQTT Packet info structure to be passed to user callback

Data Fields

uint8_t * p_data Payload received from
subscribed MQTT topic.

const char * p_topic Topic to which the message
payload belongs to.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,749 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

uint32_t data_length Length of the MQTT payload.

void const * p_context Placeholder for user data.

◆ mqtt_onchip_da16xxx_cfg_t

struct mqtt_onchip_da16xxx_cfg_t

MQTT Configuration

Data Fields

const uint8_t use_mqtt_v311

 Flag to use MQTT v3.1.1.

const uint16_t rx_timeout

 MQTT Rx timeout in milliseconds.

const uint16_t tx_timeout

 MQTT Tx timeout in milliseconds.

void(* p_callback)(mqtt_onchip_da16xxx_callback_args_t *p_args)

 Location of user callback.

void const * p_context

 Placeholder for user data. Passed to the user callback in
mqtt_onchip_da16xxx_callback_args_t.

uint8_t clean_session

 Whether to establish a new, clean session or resume a previous
session.

uint8_t alpn_count

 ALPN Protocols count. Max value is 3.

const char * p_alpns [MQTT_ONCHIP_DA16XXX_MAX_ALPN]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,750 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

 ALPN Protocols.

uint8_t tls_cipher_count

 TLS Cipher suites count. Max value is 17.

uint16_t keep_alive_seconds

 MQTT keep alive period.

const char * p_client_identifier

 MQTT Client identifier. Must be unique per client.

uint16_t client_identifier_length

 Length of the client identifier.

const char * p_host_name

 MQTT endpoint host name.

uint16_t mqtt_port

 MQTT Port number.

const char * p_mqtt_user_name

 MQTT user name. Set to NULL if not used.

uint16_t user_name_length

 Length of MQTT user name. Set to 0 if not used.

const char * p_mqtt_password

 MQTT password. Set to NULL if not used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,751 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

uint16_t password_length

 Length of MQTT password. Set to 0 if not used.

const char * p_root_ca

 String representing a trusted server root certificate.

uint32_t root_ca_size

 Size associated with root CA Certificate.

const char * p_client_cert

 String representing a Client certificate.

uint32_t client_cert_size

 Size associated with Client certificate.

const char * p_client_private_key

 String representing Client Private Key.

uint32_t private_key_size

 Size associated with Client Private Key.

const char * p_will_topic

 String representing Will Topic.

const char * p_will_msg

 String representing Will Message.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,752 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

const char * p_sni_name

 Server Name Indication.

mqtt_onchip_da16xxx_qos_t will_qos_level

 Will Topic QoS level.

mqtt_onchip_da16xxx_tls_ci
pher_suites_t

p_tls_cipher_suites [MQTT_ONCHIP_DA16XXX_TLS_CIPHER_MAX_CNT]

 TLS Cipher suites supported.

◆ mqtt_onchip_da16xxx_instance_ctrl_t

struct mqtt_onchip_da16xxx_instance_ctrl_t

MQTT_ONCHIP_DA16XXX private control block. DO NOT MODIFY.

Data Fields

uint8_t cmd_tx_buff[MQTT_ONCHIP_DA
16XXX_CFG_CMD_TX_BUF_SIZE]

Command send buffer.

uint8_t cmd_rx_buff[MQTT_ONCHIP_DA
16XXX_CFG_CMD_RX_BUF_SIZE
]

Command receive buffer.

uint32_t open Flag to indicate if MQTT has
been opened.

bool is_mqtt_connected Flag to track MQTT connection
status.

mqtt_onchip_da16xxx_cfg_t
const *

p_cfg Pointer to p_cfg for MQTT.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,753 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ mqtt_onchip_da16xxx_qos_t

enum mqtt_onchip_da16xxx_qos_t

MQTT Quality-of-service (QoS) levels

Enumerator

MQTT_ONCHIP_DA16XXX_QOS_0 Delivery at most once.

MQTT_ONCHIP_DA16XXX_QOS_1 Delivery at least once.

MQTT_ONCHIP_DA16XXX_QOS_2 Delivery exactly once.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,754 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ mqtt_onchip_da16xxx_tls_cipher_suites_t

enum mqtt_onchip_da16xxx_tls_cipher_suites_t

MQTT TLS Cipher Suites

Enumerator

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
protocol.

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
protocol.

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
protocol.

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
protocol.

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
protocol.

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
protocol.

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
protocol.

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
protocol.

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA2
56 protocol.

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA3
84 protocol.

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2
56 protocol.

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3
84 protocol.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,755 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_Open()

fsp_err_t RM_MQTT_DA16XXX_Open (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl,
mqtt_onchip_da16xxx_cfg_t const *const p_cfg)

Initialize the DA16XXX on-chip MQTT Client service.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] p_cfg Pointer to MQTT Client
configuration structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_cfg instance is NULL.

FSP_ERR_INVALID_ARGUMENT Data size is too large or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

◆ RM_MQTT_DA16XXX_Disconnect()

fsp_err_t RM_MQTT_DA16XXX_Disconnect (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl)

Disconnect from DA16XXX MQTT Client service.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_ctrl instance is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened or the
client is not connected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,756 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_Connect()

fsp_err_t RM_MQTT_DA16XXX_Connect (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl, uint32_t
timeout_ms)

Configure and connect the DA16XXX MQTT Client service.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] timeout_ms Timeout in milliseconds.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_ctrl is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_IN_USE The MQTT client is already connected.

FSP_ERR_INVALID_DATA Response does not contain Connect status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,757 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_Publish()

fsp_err_t RM_MQTT_DA16XXX_Publish (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl,
mqtt_onchip_da16xxx_pub_info_t *const p_pub_info)

Publish a message for a given MQTT topic.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] p_pub_info MQTT Publish packet
parameters.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_ctrl, p_pub_info is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened or the
client is not connected.

FSP_ERR_INVALID_DATA Data size is too large.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,758 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_Subscribe()

fsp_err_t RM_MQTT_DA16XXX_Subscribe (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl,
mqtt_onchip_da16xxx_sub_info_t *const p_sub_info, size_t subscription_count)

Subscribe to DA16XXX MQTT topics.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] p_sub_info List of MQTT subscription
info.

[in] subscription_count Number of topics to
subscribe to.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_ctrl, p_sub_info is NULL or
subscription_count is 0.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_INVALID_DATA Data size is too large.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,759 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_UnSubscribe()

fsp_err_t RM_MQTT_DA16XXX_UnSubscribe (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl,
mqtt_onchip_da16xxx_sub_info_t *const p_sub_info)

Unsubscribe from DA16XXX MQTT topics.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] p_sub_info List of MQTT subscription
info.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_ctrl, p_sub_info is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened or the
client is not connected.

FSP_ERR_INVALID_DATA Data size is too large.

◆ RM_MQTT_DA16XXX_Receive()

fsp_err_t RM_MQTT_DA16XXX_Receive (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl,
mqtt_onchip_da16xxx_cfg_t const *const p_cfg)

Receive data subscribed to on DA16XXX MQTT Client service.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

[in] p_cfg Pointer to MQTT Client
configuration structure.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The p_ctrl, p_textstring, p_ip_addr is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened or the
client is not connected.

FSP_ERR_INVALID_DATA Receive function did not receive valid
publish data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,760 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)

◆ RM_MQTT_DA16XXX_Close()

fsp_err_t RM_MQTT_DA16XXX_Close (mqtt_onchip_da16xxx_instance_ctrl_t * p_ctrl)

Close the DA16XXX MQTT Client service.

Parameters
[in] p_ctrl Pointer to MQTT Client

instance control structure.

Return values
FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The p_ctrl, p_textstring, p_ip_addr is NULL.

5.2.12.22 PTP (r_ptp)
Modules » Networking

Functions

fsp_err_t R_PTP_Open (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

fsp_err_t R_PTP_MacAddrSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

fsp_err_t R_PTP_IpAddrSet (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

fsp_err_t R_PTP_LocalClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id)

fsp_err_t R_PTP_MasterClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id, uint16_t port_id)

fsp_err_t R_PTP_MessageFlagsSet (ptp_ctrl_t *const p_ctrl,
ptp_message_type_t message_type, ptp_message_flags_t flags)

fsp_err_t R_PTP_CurrentUtcOffsetSet (ptp_ctrl_t *const p_ctrl, uint16_t offset)

fsp_err_t R_PTP_PortStateSet (ptp_ctrl_t *const p_ctrl, uint32_t state)

fsp_err_t R_PTP_MessageSend (ptp_ctrl_t *const p_ctrl, ptp_message_t const
*const p_message, uint8_t const *const p_tlv_data, uint16_t
tlv_data_size)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,761 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

fsp_err_t R_PTP_LocalClockValueSet (ptp_ctrl_t *const p_ctrl, ptp_time_t const
*const p_time)

fsp_err_t R_PTP_LocalClockValueGet (ptp_ctrl_t *const p_ctrl, ptp_time_t
*const p_time)

fsp_err_t R_PTP_PulseTimerCommonConfig (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *const p_timer_cfg)

fsp_err_t R_PTP_PulseTimerEnable (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

fsp_err_t R_PTP_PulseTimerDisable (ptp_ctrl_t *const p_ctrl, uint32_t channel)

fsp_err_t R_PTP_Close (ptp_ctrl_t *const p_ctrl)

fsp_err_t R_PTP_BestMasterClock (ptp_message_t const *const p_announce1,
ptp_message_t const *const p_announce2, int8_t *const
p_comparison)

Detailed Description

Driver for the PTP peripheral on RA MCUs. This module implements the PTP Interface.

Overview
PTP allows for multiple devices on a network to synchronize their clocks with very high precision. The
PTP peripheral generates and processes PTP messages automatically. In slave mode, it also corrects
the local time in order to adjust for any offset from the master clock time.

Features

Ordinary clock
Master mode
Slave mode

Peer-to-peer
End-to-end
Frame fromats

Ethernet II frames
IEEE802.3 + LLC + SNAP frames
IPv4 + UDP

Clock correction modes
Mode 1: Add the offsetFromMaster value to the local time whenever it is updated.
Mode 2: Calculate a clock gradient and continuously adjust the local time in order
to minimize the offsetFromMaster value.

Configuration
Build Time Configurations for r_ptp

The following build time configurations are defined in fsp_cfg/r_ptp_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,762 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Networking > PTP (r_ptp)

This module can be added to the Stacks tab via New Stack > Networking > PTP (r_ptp).

Configuration Options Default Description

Clock Properties

Priority 1 Value must in the
range [0,255].

128 Priority1 field
advertised in
generated announce
packets.

Class Value must in the
range [0,255].

248 Class field advertised
in generated announce
packets.

Accuracy Value must in the
range [0,255].

0xFE Accuracy field
advertised in
generated announce
packets.

Variance Value must in the
range [0,65535].

0xFFFF Variance field
advertised in
generated announce
packets.

Priority 2 Value must in the
range [0,255].

128 Priority2 field
advertised in
generated announce
packets.

Time Source Value must in the
range [0,255].

160 Time Source field
advertised in
generated announce
packets.

Ethernet

Multicast Filter MAC
address

Must be a valid MAC
address

01:1B:19:00:00:00 In Multicast Filtered
mode, only multicast
addresses that match
this address are
received by the
ETHERC EDMAC.

Primary Destination
MAC address

Must be a valid MAC
address

01:1B:19:00:00:00 The destination MAC
address for primary
PTP messages.

PDelay Destination
MAC address

Must be a valid MAC
address

01:80:C2:00:00:0E The destination MAC
address for PDelay
messages.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,763 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

IP

Primary Destination IP
address

Must be a valid IP
address

224.0.1.129 The destination IPv4
address for primary
messages.

PDelay Destination IP
address

Must be a valid IP
address

224.0.0.107 The destination IPv4
address for PDelay
messages.

Event Message TOS Value must in the
range [0,255].

0 The IP packet TOS for
event messages.

General Message TOS Value must in the
range [0,255].

0 The IP packet TOS for
general messages.

Primary Message TTL Value must in the
range [0,255].

1 The IP packet TTL for
primary messages.

PDelay Message TTL Value must in the
range [0,255].

1 The IP packet TTL for
p_delay messages.

Event Port Value must in the
range [0,65535].

319 The UDP port for event
messages.

General Port Value must in the
range [0,65535].

320 The UDP port for
general messages.

Synchronization Detection

Threshold
(Nanoseconds)

Value must be greater
than 0.

1000000 The minimum
offsetFromMaster value
required in order to
synchronize with the
master clock.

Count Value must in the
range [0,15].

5 The number of times
the calculated
offsetFromMaster value
must be less than the
threshold in order to
synchronize with the
master clock.

Synchronization Lost Detection

Threshold
(Nanoseconds)

Value must be greater
than 0.

10000000 The minimum
offsetFromMaster value
required in order to
lose synchronization
with the master clock.

Count Value must in the
range [0,15].

5 The number of times
the calculated
offsetFromMaster value
must be greater than
the threshold in order
to lose synchronization
with the master.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,764 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

Interrupts

Callback Name must be a valid
C symbol

ptp0_user_callback Called when a
STCA/SYNFP event
occurs, a PTP message
is received, or if a Pulse
Timer event occurs.

MINT Interrupt priority MCU Specific Options Select the EPTPC MINT
interrupt priority.

Pulse Timer Interrupt
priority

MCU Specific Options Select the EPTPC IPLS
priority.

Name Name must be a valid
C symbol

g_ptp0 Module name.

Ethernet PHY Interface
Type

MII
RMII

RMII The interface type used
to communicate with
the Ethernet PHY.

Frame Filter Extended
Promiscuous
Mode
Unicast and
Multicast
Unicast and
Multicast
Filtered
Unicast

Unicast Selects how packets
are filtered based on
their destination MAC
address. Packets that
pass the filter are
transferred to the
ETHERC EDMAC.

Frame Format Ethernet II
Ethernet II |
IPv4 | UDP
IEEE802.3 | LLC
| SNAP
IEEE802.3 | LLC
| SNAP | IPv4 |
UDP

Ethernet II The format of the
frames that
encapsulate the PTP
messages.

Clock Domain Value must in the
range [0,255].

0 The PTP clock will only
respond to clocks in its
domain.

Clock Domain Filter Enable
Disable

Enable Filter out PTP
messages from other
clock domains.

Buffer Size Value must in the
range [64,1536].

1536 The maximum Ethernet
packet size that can be
transmitted or received
by the application from
the EDMAC.

Number of transmit
buffers

Value must in the
range [1,16].

4 The number of transmit
buffers in the packet
queue.

Number of receive Value must in the 4 The number of receive

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,765 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

buffers range [1,16]. buffers in the packet
queue.

Announce message
interval.

MCU Specific Options The period of time
between generated
announce messages.

Sync message interval. MCU Specific Options The period of time
between generated
sync messages.

Delay_req message
interval.

MCU Specific Options The period of time
between generated
delay_req messages.

Message timeout Value must be greater
than 0.

4000 The time in
milliseconds needed to
generate timeout
events after not
receiving a sync or
delay_resp message.

Clock Source PCLKA / 1
PCLKA / 2
PCLKA / 3
PCLKA / 4
PCLKA / 5
PCLKA / 6
REF50CK0

PCLKA / 6 The STCA clock source
must be 20Mhz, 25Mhz,
50Mhz, or 100Mhz.
When REF50CK0 is
selected, the STCA
frequency is 25Mhz.

Clock Correction Mode Clock
Correction
Mode 1
Clock
Correction
Mode 2

Clock Correction Mode
1

Clock correction mode
1 corrects the local
clock using the current
offsetFromMaster
value. Clock correction
mode 2 calculates a
clock gradient in order
to continuously correct
the local clock.

Gradient Worst10
Interval

Value must in the
range [0,255].

32 The number of sync
messages to use when
calculating the worst10
gradient values (Only
applies to clock
correction mode 2).

Clock Configuration

The STCA input clock can be the following clock sources:

PCLKA / 1
PCLKA / 2
PCLKA / 3
PCLKA / 4
PCLKA / 5
PCLKA / 6
REF50CK0

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,766 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

The STCA input clock is restricted to the following frequencies:

20 Mhz
25 Mhz
50 Mhz
100 Mhz

When REF50CK0 is selected, the input clock frequency is 25 Mhz.

Pin Configuration

The PTP module requires the Ethernet (r_ether) instance in order to initialize the Ethernet PHY. This
means that the ETHERC pins must be configured.

Usage Notes
PTP Port State

The current PTP port state determines which messages need to be generated and processed by the
PTP peripheral. It is the application's responsibility to determine what the current state of the PTP
port should be.

The following messages can be generated by the PTP peripheral:

Announce
Sync
Delay_req
Delay_resp
PDelay_req
PDelay_resp

The following messages can be processed by the PTP peripheral:

Sync
Follow_up
Delay_req
Delay_resp
PDelay_req
PDelay_resp
PDelay_resp_follow_up

The application must receive the following messages in order to determine the current state of its
PTP port:

Announce
Management
Signaling

The following messages can only be sent manually:

Management
Signaling

The PTP API defines the following states:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,767 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

State Generated Messages Processed Messages Received Messages

Disabled N/A N/A N/A

Passive N/A N/A Announce, Signaling,
Management

E2E/P2P Slave Delay_req/(PDelay_req,
PDelay_resp)

Sync, Follow_up,
Delay_resp/(PDelay_req
, PDelay_resp)

Announce, Signaling,
Management

E2E/P2P Master Announce, Sync,
Delay_resp/(PDelay_req
, PDelay_resp)

delay_req/(PDelay_req,
PDelay_resp)

Announce, Signaling,
Management

Pulse Timers

Pulse Timers are configurable timers used to generate interrupts and ELC events. Each pulse timer
has a configurable start time, pulse, and period. At the start of each timer period, a rising edge
occurs. After the pulse time has elapsed, a falling edge occurs. ELC events and IRQs can be
generated on rising and/or falling edges for each Pulse Timer. There are two types of interrupts
generated by each Pulse Timer; MINT and IPLS.

ELC Events

Pulse timers may be configured to generate the following ELC events:

EPTPC_TIMERn_RISE - Generated on the rising edge of pulse timer channel n1.
EPTPC_TIMERn_FALL - Generated on the falling edge of pulse timer channel n1.

Note
1. n = [0,5] corresponds to the channel of the pulse timer.

MINT Interrupts

MINT IRQs are only generated on the rising edge of a Pulse Timer channel. The callback will provide
the channel number of the pulse timer that caused the interrupt.

IPLS Interrupts

Each Pulse Timer channel can be configured as a source for generating IPLS IRQs. All of the pulse
timers that are selected as IPLS sources are OR'd together and rising and falling edge IRQs can be
generated from the resulting signal. Below is an example of a resulting signal from two IPLS sources.
Unlike MINT interrupts, IPLS interrupts do not provide any information about which Pulse Timer
caused the IRQ because the IRQs from all the Pulse Timers are OR'd together.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,768 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

Figure 286: IPLS IRQ Generation

Ethernet Frame Filter

The PTP driver can filter Ethernet frames that are received by Ethernet (r_ether). There are four
different filtering modes:

Extended Promiscuous - All Ethernet frames are received by Ethernet (r_ether).
Unicast and Multicast - All Unicast frames destined for the PTP and Multicast frames are
received by Ethernet (r_ether).
Unicast and Multicast Filtered - All Unicast frames destined for the PTP are received by
Ethernet (r_ether). All multicast frames that match ptp_synfp_cfg_t::p_multicast_addr_filter
are received by Ethernet (r_ether).
Unicast - Only Unicast frames destined for the PTP are received by Ethernet (r_ether).

Limitations

Developers should be aware of the following limitations when using the PTP:

PTP will not automatically initialize Ethernet (r_ether). This provides flexibility by allowing
PTP to be used alongside 3rd party IP stacks (Eg. FreeRTOS+TCP Wrapper to r_ether
(rm_freertos_plus_tcp)), however this means the application must execute the Ethernet
(r_ether) link process in order to use PTP.
The driver will not detect announce message timeouts. This functionality must be handled
by the application.
When IP + UDP frame format is selected, the driver will not automatically join the multicast
group. This must be done by the application.
In order to call PTP API functions from ISRs, the MINT and IPLS interrupt priorities must be
configured to be lower than BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION. This is to
guarantee that PTP register accesses are atomic.
When IEEE802.3 | LLC | SNAP | IP | UDP or IEEE802.3 | LLC | SNAP Frame Format is selected,
the PTP peripheral sets the OUI field in the SNAP frame to the first 3 bytes of the MAC
address configured in the Ethernet (r_ether) module's configuration property. In order for
the PID field of SNAP to be interpreted as EtherType, the OUI field should be set to '0'.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,769 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

Slave Mode

This is a basic example of minimal use of PTP in slave mode.

volatile bool g_first_announce_message_received = false;

volatile bool g_sync_acquired = false;

void slave_mode_basic_example (void)

{

 /* The PTP Instance must be opened before R_ETHER is opened. */

 fsp_err_t err = R_PTP_Open(&g_ptp_ctrl, &g_ptp_cfg);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP MAC address. */

 err = R_PTP_MacAddrSet(&g_ptp_ctrl, g_ptp_mac_address);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP Local Clock ID (Usually generated from MAC address). */

 err = R_PTP_LocalClockIdSet(&g_ptp_ctrl, g_ptp_clock_id);

 assert(FSP_SUCCESS == err);

 /* Open the r_ether_api instance. */

 err = R_ETHER_Open(&g_ether_ctrl, &g_ether_cfg);

 assert(FSP_SUCCESS == err);

 /* Wait for the link to be established. */

 do

 {

 err = R_ETHER_LinkProcess(&g_ether_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set the PTP instance to passive state and listen for announce message. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_PASSIVE);

 assert(FSP_SUCCESS == err);

 /* Wait for the first announce message (This will provide the master clock ID). */

 uint32_t timeout = EXAMPLE_TIMEOUT;

 while (!g_first_announce_message_received && --timeout)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

 assert(0U != timeout);

 /* When a master clock is found, change to the slave state to start synchronizing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,770 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 * the local clock to the master clock. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_E2E_SLAVE);

 assert(FSP_SUCCESS == err);

 /* Wait for local clock to be synchronized with the master clock. */

 timeout = EXAMPLE_TIMEOUT;

 while (!g_sync_acquired && --timeout)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

 assert(0U != timeout);

 /* The local clock is now synchronized with the grand master clock. */

}

/* Callback called whenever a PTP event occurs. */

void g_ptp_slave_callback_example (ptp_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case PTP_EVENT_SYNC_ACQUIRED:

 {

 /* The offsetFromMaster value is now within the configured threshold to be

 * synchronized with the master clock.

 */

 g_sync_acquired = true;

 break;

 }

 case PTP_EVENT_MESSAGE_RECEIVED:

 {

 static ptp_message_t g_current_master_announce_message;

 switch (p_args->p_message->header.message_type)

 {

 case PTP_MESSAGE_TYPE_ANNOUNCE:

 {

 int8_t comparison = 0;

 if (!g_first_announce_message_received)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,771 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 {

 /* If this is the first announce packet, immediately switch to this master clock. */

 comparison = 1;

 g_first_announce_message_received = true;

 }

 else

 {

 /*

 * Run the "Best Master Clock Algorithm" to determine if the clock defined in this

announce

 * packet is better than the current master clock.

 */

 fsp_err_t err = R_PTP_BestMasterClock(&g_current_master_announce_message,

 p_args->p_message,

 &comparison);

 assert(FSP_SUCCESS == err);

 }

 if (1 == comparison)

 {

 /* Save the message as the new master announce message. */

 g_current_master_announce_message = *p_args->p_message;

 /* Set the master clock ID and sourcePortID in the PTP instance so that it

 * synchronizes with the new best master clock.

 */

 fsp_err_t err = R_PTP_MasterClockIdSet(&g_ptp_ctrl,

 g_current_master_annou

nce_message.header.clock_id,

 g_current_master_annou

nce_message.header.source_port_id);

 assert(FSP_SUCCESS == err);

 }

 break;

 }

 default:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,772 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 {

 break;

 }

 }

 break;

 }

 default:

 {

 break;

 }

 }

}

Master Mode

This is a basic example of minimal use of PTP in master mode.

#define PTP_EXAMPLE_CURRENT_UTC_OFFSET (37)

void master_mode_basic_example (void)

{

 /* The PTP Instance must be opened before R_ETHER is opened. */

 fsp_err_t err = R_PTP_Open(&g_ptp_ctrl, &g_ptp_cfg);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP MAC address. */

 err = R_PTP_MacAddrSet(&g_ptp_ctrl, g_ptp_mac_address);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP Local Clock ID (Usually generated from MAC address). */

 err = R_PTP_LocalClockIdSet(&g_ptp_ctrl, g_ptp_clock_id);

 assert(FSP_SUCCESS == err);

 /* Get the current time from an external time source (Eg. RTC). */

 ptp_time_t current_time;

 get_current_time_example(¤t_time);

 /* Set the PTP local time to the current time. */

 err = R_PTP_LocalClockValueSet(&g_ptp_ctrl, ¤t_time);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,773 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 /* Set the currentUtcOffset field in announce messages. */

 err = R_PTP_CurrentUtcOffsetSet(&g_ptp_ctrl, PTP_EXAMPLE_CURRENT_UTC_OFFSET);

 assert(FSP_SUCCESS == err);

 /* Set message flags in announce messages to indicate that the current UTC offset is

valid and that the PTP timescale is used. */

 ptp_message_flags_t flags;

 flags.value = 0;

 flags.value_b.currentUtcOffsetValid = 1;

 flags.value_b.ptpTimescale = 1;

 err = R_PTP_MessageFlagsSet(&g_ptp_ctrl, PTP_MESSAGE_TYPE_ANNOUNCE, flags);

 assert(FSP_SUCCESS == err);

 /* Open the r_ether_api instance. */

 err = R_ETHER_Open(&g_ether_ctrl, &g_ether_cfg);

 assert(FSP_SUCCESS == err);

 /* Wait for the link to be established. */

 do

 {

 err = R_ETHER_LinkProcess(&g_ether_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set the PTP instance to passive state and listen for announce message. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_E2E_MASTER);

 assert(FSP_SUCCESS == err);

 /*

 * The master clock is now operational and will automatically generate announce and

sync messages

 * as well as respond to delay_req messages.

 */

}

Send PTP Messages

This is a basic example of how to send PTP messages.

#define PTP_MANAGEMENT_ACTION_GET (0U)

#define PTP_TLV_TYPE_MANAGEMENT (1U)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,774 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

#define PTP_TLV_MANAGEMENT_ID_CLOCK_DESCRIPTION (1U)

static uint32_t g_transmit_complete = 0U;

void send_message_example (void)

{

 static ptp_message_t message;

 static uint8_t p_tlv_data[6];

 memset(&message, 0, sizeof(ptp_message_t));

 /* Fill in the required fields for the message header (Note that appropriate fields

will be endian swapped). */

 message.header.message_type = PTP_MESSAGE_TYPE_MANAGEMENT;

 message.header.version = 2;

 /* The message length is the total number of bytes in the PTP message (Including the

message header). */

 message.header.message_length = (uint16_t) (sizeof(ptp_message_header_t) +

 sizeof(ptp_message_management_t) +

 sizeof(p_tlv_data));

 memcpy(message.header.clock_id, g_ptp_clock_id, sizeof(g_ptp_clock_id));

 message.header.control_field = PTP_CTRL_FIELD_MANAGEMENT;

 /* Fill in the required fields for the management message. */

 memcpy(message.management.target_clock_id, g_target_clock_id, sizeof

(g_target_clock_id));

 message.management.target_port_id = 1;

 message.management.starting_boundary_hops = 1;

 message.management.boundary_hops = 1;

 message.management.action = PTP_MANAGEMENT_ACTION_GET;

 /*

 * Fill in TLV data (Note that TLV data is big endian).

 *

 * Type (Management)

 */

 p_tlv_data[0] = 0;

 p_tlv_data[1] = PTP_TLV_TYPE_MANAGEMENT;

 /* Length */

 p_tlv_data[2] = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,775 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 p_tlv_data[3] = 2;

 /* Management ID (Clock Description) */

 p_tlv_data[4] = 0;

 p_tlv_data[5] = PTP_TLV_MANAGEMENT_ID_CLOCK_DESCRIPTION;

 /* Send the message. */

 fsp_err_t err = R_PTP_MessageSend(&g_ptp_ctrl, &message, p_tlv_data, sizeof

(p_tlv_data));

 assert(FSP_SUCCESS == err);

 uint32_t timeout = EXAMPLE_TIMEOUT;

 while (0U == g_transmit_complete && --timeout)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MICROSECONDS);

 }

}

/* Callback called whenever a PTP event occurs. */

void g_ptp_send_message_callback_example (ptp_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case PTP_EVENT_MESSAGE_TRANSMIT_COMPLETE:

 {

 g_transmit_complete = 1U;

 break;

 }

 case PTP_EVENT_MESSAGE_RECEIVED:

 {

 switch (p_args->p_message->header.message_type)

 {

 case PTP_MESSAGE_TYPE_MANAGEMENT:

 {

 /* Handle the response message. */

 break;

 }

 default:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,776 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

 {

 break;

 }

 }

 }

 default:

 {

 break;

 }

 }

}

Data Structures

struct ptp_instance_ctrl_t

Data Structure Documentation

◆ ptp_instance_ctrl_t

struct ptp_instance_ctrl_t

PTP instance control block.

Data Fields

uint32_t open Marks if the instance has been
opened.

uint32_t tx_buffer_write_index Index into the descriptor list to
write the next packet.

uint32_t tx_buffer_complete_index Index into the descriptor list of
the last transmitted packet.

uint32_t rx_buffer_index Index into the descriptor of the
last received packet.

uint32_t tslatr Keep track of whether tslatr
was set.

ptp_cfg_t const * p_cfg Pointer to the configuration
structure.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,777 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_Open()

fsp_err_t R_PTP_Open (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

This function initializes PTP. Implements ptp_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Configures the peripheral registers acording to the configuration.
Initialize the control structure for use in other PTP Interface functions.

Return values
FSP_SUCCESS The instance has been successfully

configured.

FSP_ERR_ALREADY_OPEN Instance was already initialized.

FSP_ERR_NOT_OPEN The EDMAC instance was not opened
correctly.

FSP_ERR_ASSERTION An invalid argument was given in the
configuration structure.

◆ R_PTP_MacAddrSet()

fsp_err_t R_PTP_MacAddrSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_mac_addr)

This function sets the MAC address for the PTP instance. Implements ptp_api_t::macAddrSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.

Return values
FSP_SUCCESS The MAC address has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_INVALID_MODE The instance is not in the correct state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,778 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_IpAddrSet()

fsp_err_t R_PTP_IpAddrSet (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

This function sets the IP address for the PTP instance. Implements ptp_api_t::ipAddrSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.

Return values
FSP_SUCCESS The IP address has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_INVALID_MODE The configured
ptp_synfp_cfg_t::frame_format is not
configured to use IP packets, or the instance
is not in the correct state.

◆ R_PTP_LocalClockIdSet()

fsp_err_t R_PTP_LocalClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id)

This function sets the local clock ID for the PTP instance. Implements ptp_api_t::localClockIdSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.
Typically the clock ID is derived from the MAC address (E.g. {b1,b2,b3,0xFF,0xFE,b4,b5,b6}).

Return values
FSP_SUCCESS The local clock ID has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_INVALID_MODE The instance is not in the correct state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,779 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_MasterClockIdSet()

fsp_err_t R_PTP_MasterClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id,
uint16_t port_id)

This function sets the master clock ID and port ID that the local clock will synchronize with.
Implements ptp_api_t::masterClockIdSet.

Return values
FSP_SUCCESS The master clock ID and port ID have been

set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_MessageFlagsSet()

fsp_err_t R_PTP_MessageFlagsSet (ptp_ctrl_t *const p_ctrl, ptp_message_type_t message_type,
ptp_message_flags_t flags)

This function sets the flags field for the given message type. Implements
ptp_api_t::messageFlagsSet.

Return values
FSP_SUCCESS The master clock ID and port ID have been

set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_CurrentUtcOffsetSet()

fsp_err_t R_PTP_CurrentUtcOffsetSet (ptp_ctrl_t *const p_ctrl, uint16_t offset)

This function sets the currentUtcOffset value in announce messages. ptp_api_t::currentUtcOffsetSet
.

Return values
FSP_SUCCESS The currentUtcOffset has been updated.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,780 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_PortStateSet()

fsp_err_t R_PTP_PortStateSet (ptp_ctrl_t *const p_ctrl, uint32_t state)

This function changes the current state of the PTP instance. Implements ptp_api_t::portStateSet.

Return values
FSP_SUCCESS The instance will transition to the new state.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_MessageSend()

fsp_err_t R_PTP_MessageSend (ptp_ctrl_t *const p_ctrl, ptp_message_t const *const p_message,
uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

This function sends a PTP message. ptp_api_t::messageSend.

Return values
FSP_SUCCESS The packet has been written to the transmit

descriptor.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER
_FULL

There is no space for the packet in the
transmit queue.

◆ R_PTP_LocalClockValueSet()

fsp_err_t R_PTP_LocalClockValueSet (ptp_ctrl_t *const p_ctrl, ptp_time_t const *const p_time)

This function sets the local clock value. Implements ptp_api_t::localClockValueSet.

Return values
FSP_SUCCESS The local clock value has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,781 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_LocalClockValueGet()

fsp_err_t R_PTP_LocalClockValueGet (ptp_ctrl_t *const p_ctrl, ptp_time_t *const p_time)

This function gets the local clock value. Implements ptp_api_t::localClockValueGet.

Return values
FSP_SUCCESS The local clock value has been written in

p_time.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_PulseTimerCommonConfig()

fsp_err_t R_PTP_PulseTimerCommonConfig (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *const p_timer_cfg)

This function configures IPLS IRQ settings that are common to all pulse timer channels. Implements
ptp_api_t::pulseTimerCommonConfig.

Return values
FSP_SUCCESS The pulse timer has been enabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_PulseTimerEnable()

fsp_err_t R_PTP_PulseTimerEnable (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

This function enables a pulse timer channel. Implements ptp_api_t::pulseTimerEnable.

Return values
FSP_SUCCESS The pulse timer has been enabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

FSP_ERR_INVALID_ARGUMENT The start time must be set to a value that is
later than current time.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,782 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > PTP (r_ptp)

◆ R_PTP_PulseTimerDisable()

fsp_err_t R_PTP_PulseTimerDisable (ptp_ctrl_t *const p_ctrl, uint32_t channel)

This function disables a pulse timer channel. Implements ptp_api_t::pulseTimerDisable.

Return values
FSP_SUCCESS The pulse timer has been disabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_Close()

fsp_err_t R_PTP_Close (ptp_ctrl_t *const p_ctrl)

Disable the PTP instance. Implements ptp_api_t::close.

Return values
FSP_SUCCESS The pulse timer has been disabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_BestMasterClock()

fsp_err_t R_PTP_BestMasterClock (ptp_message_t const *const p_announce1, ptp_message_t const
*const p_announce2, int8_t *const p_comparison)

This function compares two clocks to determine which one is the better master clock.

p_comparison:

Set to -1 if p_announce1 defines the best master clock.
Set to 1 if p_announce2 defines the best master clock.
Set to 0 if p_announce1 and p_announce2 define the same clock.

Return values
FSP_SUCCESS The valid result has been written to

p_use_announce_clock.

FSP_ERR_ASSERTION An argument was NULL.

5.2.12.23 SPP BLE Abstraction (rm_ble_abs_spp)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,783 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

Modules » Networking

Middleware for the Bluetooth peripheral on RA MCUs. This module implements the BLE ABS Interface
.

Overview
This module provides BLE GAP functionality that complies with the Bluetooth Core Specification
version 5.0 specified by the Bluetooth SIG. This module is configured via the QE for BLE. QE for BLE
provides standard and custom services defined by the user.

The module supports the Renesas Electronics RYZ012 Bluetooth® Low Energy 5 Module. The
rm_ble_abs_spp driver interfaces with the RYZ012 module over UART or SPI.

Features

The Bluetooth Low Energy (BLE) Abstraction module with SPP supports the following features:

Common functionality
Open/Close the BLE protocol stack.
Setting Transmit Power Level.

The following GAP Role support
Peripheral: The device that accepts a connection request from Central and
establishes a connection.

GAP functionality
Initialize the Host stack.
Setting address.
Start/Stop Advertising.
Connect/Disconnect a link.

GATT Common functionality
Get MTU Size.

GATT Server functionality
Initialization of GATT Server.
Loading of Profile definition.
Notification of characteristics modification.
Read/Write of GATT Profile from host.

Selectable Communication Interfaces
SPI Interface
UART Interface

Target Devices

The BLE Abstraction module supports the following devices.

RA6 line of devices using the RYZ012 module
RA4 Line of devices using the RYZ012 module

Configuration
Build Time Configurations for rm_ble_abs_spp

The following build time configurations are defined in fsp_cfg/rm_ble_abs_spp_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,784 / 5,560

https://www.renesas.com/qe-ble

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enable
Disable

Default (BSP) Specify whether to
include code for API
parameter checking.

Reset Port Refer to the RA
Configuration tool for
available options.

03 Specify the module
reset pin port for the
MCU.

Reset Pin Refer to the RA
Configuration tool for
available options.

10 Specify the module
reset pin for the MCU.

UART/SPI Select Port
(PB5)

Refer to the RA
Configuration tool for
available options.

03 Specify the module PB5
(UART/SPI select) port
for the MCU.

UART/SPI Select Pin
(PB5)

Refer to the RA
Configuration tool for
available options.

11 Specify the module PB5
(UART/SPI select) pin
for the MCU.

SPI Software SSL Port Refer to the RA
Configuration tool for
available options.

Disabled Specify the port to use
for controlling SSL
using the ioport
module.

SPI Software SSL Pin Refer to the RA
Configuration tool for
available options.

Disabled Specify the pin to use
for controlling SSL
using the ioport
module.

Transmit Power Level
(in dBm)

Refer to the RA
Configuration tool for
available options.

4.57 Specify the module
transmit power in dBm.

Configurations for Networking > SPP BLE Abstraction (rm_ble_abs_spp)

This module can be added to the Stacks tab via New Stack > Networking > SPP BLE Abstraction
(rm_ble_abs_spp).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_ble_abs0 Module name.

GAP callback Name must be a valid
C symbol

gap_cb If QE is used, set to
"gap_cb".

Vendor specific
callback

Name must be a valid
C symbol

vs_cb If QE is used, set to
"vs_cb".

GATT server callback
parameter

Name must be a valid
C symbol

gs_abs_gatts_cb_param If QE is used, set to "gs
_abs_gattc_cb_param".

GATT server callback
number

Must be a valid number 2 The number of GATT
Server callback
functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,785 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

GATT client callback
parameter

Name must be a valid
C symbol

gs_abs_gattc_cb_param Set GATT client
callback parameter. If
QE is used, set to "gs_a
bs_gattc_cb_param".

GATT client callback
number

Must be a valid number 2 The number of GATT
Server callback
functions.

Pin Configuration

Pins used by the BLE driver to control the RYZ012 module:

Reset Pin : Active low reset line for RYZ012 module
UART/SPI Select Pin : Allows selection between UART or SPI for module communication.
UART is selected with output low and SPI with output high.
UART Interface : RX/TX Pins
SPI Interface : MOSI/MISO/SCK/SSL Pins

Data Ready Pin : When the SPI Interface is selected as the communication
interface, the Data Ready pin is asserted in order to notify the MCU that there is
data ready to be read.
Software SSL Pin : Can be optionally configured in order to drive the SSL Pin using
software instead of hardware1.

Note
1. The software SSL Pin is required when using the SPI (r_sci_spi) driver.
2. When using software SSL, the pin must be configured as "Output mode (Initial High)" in the pin configuration
editor in addition to being configured in the "stacks" tab.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the BLE_ABS:

Currently supported rm_ble_abs_spp interface functions:

RM_BLE_ABS_Open
RM_BLE_ABS_Close
RM_BLE_ABS_StartLegacyAdvertising

Currently supported r_ble_spp_api interface functions:

R_BLE_Open
R_BLE_Close
R_BLE_SetEvent
R_BLE_GAP_Init
R_BLE_GAP_StopAdv
R_BLE_GAP_SetAdvSresData
R_BLE_GAP_StartAdv
R_BLE_GAP_SetAdvParam
R_BLE_GATT_GetMtu
R_BLE_GATTS_SetDbInst
R_BLE_GATTS_Init
R_BLE_GATTS_GetAttr

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,786 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

R_BLE_GATTS_SetAttr
R_BLE_GATTS_Notification
R_BLE_GATTS_Indication
R_BLE_GATTS_RegisterCb
R_BLE_GATTC_Init
R_BLE_GATTC_RegisterCb
R_BLE_VS_SetBdAddr
R_BLE_VS_SetTxPower

Currently supported callback events:

BLE_GAP_EVENT_CONN_IND
BLE_GAP_EVENT_DISCONN_IND
BLE_GAP_EVENT_ADV_ON
BLE_GAP_EVENT_ADV_OFF
BLE_GATTC_EVENT_CONN_IND
BLE_GATTS_EVENT_CONN_IND
BLE_GATTC_EVENT_DISCONN_IND
BLE_GATTS_EVENT_DISCONN_IND
BLE_GATTS_EVENT_WRITE_RSP_COMP

Transmit Power
Specific Operational Use Conditions for RYZ012 BLE module:

Please consult the laws and regulations of the region(s) in which the device will be used
to verify the information below before using this device.

North America (FCC) The module must not be operated at power levels above 10.0 dBm. Host
devices that need higher output power may not be marketed without prior re-certification.

Europe (RED) The module must not be operated at power levels above 8.4 dBm. Host devices that
need higher output power may not be marketed in regions covered by RED regulation without prior
re-certification.

Japan (MIC) The module must be operated at power level 4.5 dBm. Host devices that need to change
output power may not be marketed without prior re-certification.

The current default level used in the e² studio Configurator is 4.57 dBm for the transmit power level.

Examples
BLE_ABS_SPP Basic Example

This is a basic example of minimal use of the BLE_ABS_SPP in an application.

/* The callback is called when peripheral event occurs. */

void gap_peripheral_cb (uint16_t type, ble_status_t result, st_ble_evt_data_t *

p_data)

{

 FSP_PARAMETER_NOT_USED(result);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,787 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 FSP_PARAMETER_NOT_USED(p_data);

 switch (type)

 {

 case BLE_GAP_EVENT_STACK_ON:

 {

 g_ble_event_flag = g_ble_event_flag | BLE_ABS_EVENT_FLAG_STACK_ON;

 break;

 }

 case BLE_GAP_EVENT_ADV_ON:

 {

 st_ble_gap_adv_set_evt_t * p_gap_adv_set_evt_param = (st_ble_gap_adv_set_evt_t *)

p_data->p_param;

 g_advertising_handle = p_gap_adv_set_evt_param->adv_hdl;

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_ADV_ON;

 break;

 }

 case BLE_GAP_EVENT_ADV_OFF:

 {

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_ADV_OFF;

 break;

 }

 case BLE_GAP_EVENT_CONN_IND:

 {

 g_ble_event_flag |= BLE_ABS_EVENT_FLAG_CONN_IND;

 break;

 }

 {

 /* Do nothing. */

 break;

 }

 default:

 break;

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,788 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_ON (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_DISCONN_IND (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP (0x01 << 5)

#define BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME 'E', 'x', 'a', 'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME 'T', 'E', 'S', 'T', '_', 'E', 'x', 'a',

'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL (0x00000640)

void ble_abs_peripheral_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 uint8_t advertising_data[] =

 {

 /* Flags */

 0x02,

 0x01,

 (0x1a),

 /* Shortened Local Name */

 0x08,

 0x08,

 BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME,

 };

 /* Scan Response Data */

 uint8_t scan_response_data[] =

 {

 /* Complete Local Name */

 0x0D,

 0x09,

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME,

 };

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,789 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 ble_abs_legacy_advertising_parameter_t legacy_advertising_parameter =

 {

 .p_peer_address =

NULL,

 .slow_advertising_interval =

BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL,

 .slow_advertising_period =

0x0000,

 .p_advertising_data =

advertising_data,

 .advertising_data_length = sizeof

(advertising_data),

 .p_scan_response_data =

scan_response_data,

 .scan_response_data_length = sizeof

(scan_response_data),

 .advertising_filter_policy = BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY

,

 .advertising_channel_map = (BLE_GAP_ADV_CH_37 | BLE_GAP_ADV_CH_38 |

BLE_GAP_ADV_CH_39),

 .own_bluetooth_address_type = BLE_GAP_ADDR_PUBLIC

,

 .own_bluetooth_address = {0},

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure the Transmit Level */

 err = R_BLE_VS_SetTxPower(0, BLE_ABS_TRANSMIT_POWER);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_STACK_ON event is notified. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,790 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if (BLE_ABS_EVENT_FLAG_ADV_OFF & g_ble_event_flag)

 {

 /* Restart advertise, when stop advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 if (FSP_SUCCESS == err)

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 }

 else if (FSP_ERR_INVALID_STATE == err)

 {

 /* BLE driver state is busy. */

 ;

 }

 else

 {

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,791 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

 /* Stop advertising after a certain amount of time */

 R_BLE_GAP_StopAdv(g_advertising_handle);

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

BLE_ABS_SPP Firmware Update Example

This is a basic example of performing a firmware update.

void ble_abs_firmware_update_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 assert(FSP_SUCCESS == err);

 /* Complete the firmware update (This function blocks until the procedure has

completed). */

 ble_status_t status = R_BLE_VS_UpdateModuleFirmware(g_firmware_image,

g_firmware_image_size);

 assert(BLE_SUCCESS == status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,792 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 /* Close the module. */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 assert(FSP_SUCCESS == err);

 /* The RYZ012 is now using the updated firmware. Call open to re-initialize the

module using the new firmware. */

}

BLE_ABS_SPP Firmware Update Asynchronous Example

This is an example of performing a firmware update using the asynchronous API.

volatile uint32_t g_firmware_update_complete = 0;

void vs_cb (uint16_t type, ble_status_t result, st_ble_vs_evt_data_t * p_data)

{

 FSP_PARAMETER_NOT_USED(p_data);

 if (BLE_SUCCESS != result)

 {

 /* Stop the firmware update process if there was an error. */

 return;

 }

 static uint16_t index = 0;

 switch (type)

 {

 /* The response to the START_FW_UPDATE command was received (Fall through to send

the next data frame). */

 case BLE_VS_EVENT_START_FW_UPDATE_COMP:

 /* The response to the SEND_FW_DATA command was received. */

 case BLE_VS_EVENT_SEND_FW_DATA_COMP:

 {

 if (BLE_VS_EVENT_START_FW_UPDATE_COMP == index)

 {

 index = 0;

 }

 uint16_t length = 0;

 uint8_t * p_firmware_data = NULL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,793 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 /*

 * Get next firmware data frame.

 * Note that app_data_frame_get() is an application defined function.

 */

 app_data_frame_get(index, &p_firmware_data, &length);

 if (length > 0)

 {

 /* Send the firmware data frame. */

 R_BLE_VS_SendFirmwareData(index, length, p_firmware_data);

 index++;

 }

 else

 {

 /* The previously completed data frame was the last data frame. Send the firmware

update end command. */

 R_BLE_VS_EndFirmwareUpdate(index - 1);

 }

 break;

 }

 /* The response to the END_FW_UPDATE command was received. */

 case BLE_VS_EVENT_END_FW_UPDATE_COMP:

 {

 /* After the BLE_VS_EVENT_END_FW_UPDATE_COMP command is sent, send the restart

command. */

 R_BLE_VS_RestartModule();

 break;

 }

 /* The module has finished restarting and the MODULE_READY event has been received.

*/

 case BLE_VS_EVENT_MODULE_READY_COMP:

 {

 /* Firmware update process has completed. */

 g_firmware_update_complete = 1;

 break;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,794 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > SPP BLE Abstraction (rm_ble_abs_spp)

 }

 default:

 {

 break;

 }

 }

}

void ble_abs_firmware_update_async_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 assert(FSP_SUCCESS == err);

 /* Start the firmware update process. */

 ble_status_t status = R_BLE_VS_StartFirmwareUpdate();

 assert(BLE_SUCCESS == status);

 /* main loop */

 while (0 == g_firmware_update_complete)

 {

 /* Process BLE Event */

 R_BLE_Execute();

 }

 /* Close the module. */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 assert(FSP_SUCCESS == err);

 /* The RYZ012 is now using the updated firmware. Call open to re-initialize the

module using the new firmware. */

}

5.2.12.24 WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)
Modules » Networking

Functions

fsp_err_t RM_WIFI_DA16XXX_SntpServerIpAddressSet (uint8_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,795 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

*p_server_ip_addr)

fsp_err_t RM_WIFI_DA16XXX_SntpEnableSet (wifi_da16xxx_sntp_enable_t
enable)

fsp_err_t RM_WIFI_DA16XXX_SntpTimeZoneSet (int utc_offset_in_hours,
uint32_t minutes, wifi_da16xxx_sntp_daylight_savings_enable_t
daylightSavingsEnable)

fsp_err_t RM_WIFI_DA16XXX_LocalTimeGet (uint8_t *p_local_time, uint32_t
size_string)

fsp_err_t RM_WIFI_DA16XXX_GenericAtSendRcv (char const *const at_string,
char *const response_buffer, uint32_t length)

Detailed Description

Wifi and Socket implementation using the DA16XXX WiFi module on RA MCUs.

Overview
This Middleware module currently supplies an implementation for using the DA16XXX module in two
different configurations.

The first is for the FreeRTOS WiFi interface, where the network stack is located on the MCU using a
socket interface, and the DA16XXX Wi-Fi module provides a connection to the internet. This
configuration requires FreeRTOS to be used.

The second configuration is for use with the DA16XXX on-chip MQTT and HTTP client modules, where
the network stack is located on the DA16XXX module. In this configuration, this Middleware driver
supports FreeRTOS as well as Baremetal (Microsoft Azure support expected in future release).

DA16XXX is a low power Wi-Fi networking SoC that delivers a dramatic breakthrough in battery life
even for devices that are continuously connected to the Wi-Fi network. The module comes readily
equipped with radio certification for Japan, North America and Europe. More information about this
module can be found at the DA16XXX Web Site

The DA16XXX module supports the following modules:

DA16200
DA16600 (currently Wi-Fi features only)

Features

The WiFi Onchip da16xxx Middleware driver supplies these features:

Supports connect/disconnect to a b/g/n (2.4GHz) WiFi Access Point using Open, WPA, and
WPA2 security. Encryption types can be either TKIP, or CCMP(AES).
Supports retrieval of the module device MAC address.
Once connected you can acquire the assigned module device IP.
Supports a WiFi network scan capability to get a list of local Access Points.
Supports a Ping function to test network connectivity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,796 / 5,560

https://github.com/aws/amazon-freertos
https://www.renesas.com/us/en/products/interface-connectivity/wireless-communications/wi-fi/low-power-wi-fi#parametric_options

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

Supports a DNS Query call to retrieve the IPv4 address of a supplied URL.
Supports TCP client sockets.
Drive supports 1 UART for interfacing with the DA16XXX module.

Configuration
Build Time Configurations for rm_wifi_da16xxx

The following build time configurations are defined in fsp_cfg/rm_wifi_da16xxx_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Enable DA16600
Support

Enabled
Disabled

Disabled Enabled if using the
DA16600 module

Check Minimum SDK
Version

Disabled
Enabled

Enabled Enable or disable
comparing the current
DA16XXX module's
SDK version to the
minimum required

Number of supported
socket instances (not
used with on-chip APIs)

1 1 Enable number of
socket instances

Size of RX buffer for
socket (not used with
on-chip APIs)

Manual Entry 8192

Size of TX buffer for
CMD Port

Manual Entry 1500

Size of RX buffer for
CMD Port

Manual Entry 3000

Enable SNTP Client Enabled
Disabled

Disabled Should the SNTP client
of the module be
enabled

Configurations for Networking > WiFi DA16XXX Framework Driver (rm_wifi_da16xxx)

Configuration Options Default Description

Country code in ISO
3166-1 alpha-2
standard

Manual Entry US

SNTP server IPv4
address

Must be a valid IPv4
address

0.0.0.0

SNTP Timezone UTC
Offset in Hours

Refer to the RA
Configuration tool for
available options.

0 Value in hours from 12
to -12

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,797 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

Note: It is suggested that when using the DA16XXX module that DTC and FIFO are enabled in the
UART configuration to facilitate a more reliable data transfer between module and MCU.

Note: If you wish to use flow control then you must enable flow control in the RA Configuration
editor. This can be found in the UART setting. It is advantageous to use flow control all the time since
it allows the hardware to gate the flow of data across the serial bus. Without hardware flow control
for faster data rate you will most likely see an overflow condition between MCU and the module
device.

Note: Higher baud rates are supported in the RA Configuration editor and should be changed in the
first UART configuration. There is no need to change the second UART baud rate since it is only used
as an AT command channel.

Note: It is a good idea to also enable the FIFO in the UART configuration settings if you plan to use
higher baud rates.

Interrupt Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx).

Clock Configuration

Refer to UART (r_sci_uart).

Pin Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip DA16XXX Framework Driver
(rm_wifi_da16xxx)

Usage Notes
When the DA16XXX Wi-Fi configures the UART baud rate on the DA16XXX module based on
the user settings in the UART driver configuration properties, the UART Baud rate settings
will be stored in the NVM memory of the DA16XXX. After reboot, the DA16XXX comes up
with the previously updated UART baud rate settings.
When using the DA16600 Pmod module, make sure that the SDK has been updated to the
latest version that supports AT commands. The default SDK that comes from the factory
doesn't support the AT command interface, which will cause the WIFI_On() API to fail. This is
not required for the DA16200 Pmod module.

Limitations

WiFi AP connections do not currently support WEP security.
The default UART baud rate supported by v3.2.1 Wi-Fi SDK is 115200 and v3.2.4 Wi-Fi SDK
is 230400. User needs to explicitly configure the default UART baud settings in the UART
driver configurator properties based on the version of Wi-Fi SDK used in their testing.
In v3.2.1 Wi-Fi SDK, the daylight savings time setting is disabled by default. The user needs
to mandatorily set the following parameters such as minutes = 0, daylight savings to
disable when calling RM_WIFI_DA16XXX_SntpTimeZoneSet() API.
Network connection parameters SSID and Passphrase for the Access Point can not contain
any commas. This is a current limitation of the da16xxx module firmware. The
rm_wifi_da16xxx_connect() function will return an error if a comma is detected.
Wi-Fi AP Scanning is currently limited to max of 10 Access Points.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,798 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

Examples
Basic Example

This is a basic example of minimal use of WiFi Middleware in an application.

void wifi_basic_example (void)

{

 WIFIReturnCode_t wifi_err;

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucChannel = 0,

 .xPassword.xWPA.cPassphrase = "password",

 .ucSSID = "access_point_ssid",

 .xPassword.xWPA.ucLength = 8,

 .ucSSIDLength = 17,

 .xSecurity = eWiFiSecurityWPA2,

 };

 memset(scan_data, 0, sizeof(WIFIScanResult_t) * MAX_WIFI_SCAN_RESULTS);

 memset(g_socket_recv_buffer, 0, sizeof(uint8_t) * SX_WIFI_SOCKET_RX_BUFFER_SIZE);

 /* Open connection to the Wifi Module */

 wifi_err = WIFI_On();

 assert(eWiFiSuccess == wifi_err);

 /* Connect to the Access Point */

 wifi_err = WIFI_ConnectAP(&net_params);

 assert(eWiFiSuccess == wifi_err);

 /* Get address assigned by AP */

 WIFIIPConfiguration_t ipInfo;

 wifi_err = WIFI_GetIPInfo(&ipInfo);

 assert(eWiFiSuccess == wifi_err);

 /* Ping an address accessible on the network */

 uint8_t ip_address[4] = {216, 58, 194, 174}; // NOLINT

 const uint16_t ping_count = 3;

 const uint32_t intervalMS = 100;

 wifi_err = WIFI_Ping(&ip_address[0], ping_count, intervalMS);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,799 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

 assert(eWiFiSuccess == wifi_err);

 /* Scan the local Wifi network for other APs */

 wifi_err = WIFI_Scan(&scan_data[0], MAX_WIFI_SCAN_RESULTS);

 assert(eWiFiSuccess == wifi_err);

 /* Shutdown the WIFI */

 WIFI_Off();

}

SNTP example

An example of using Simple Network Time Protocol (SNTP) on WiFi in an application.

#define RM_WIFI_DA16XXX_TEMP_BUFFER_SIZE (64)

/*

 * Example of the use of SNTP with Wifi. Example gets the epoch time and local

 * system time strings. It is also demonstrated how the user will need to disconnect

 * from the access point to make changes to the SNTP configuration during runtime.

 *

 * Function assumes that the SNTP has been enabled and configured with proper

 * SNTP server address. For brevity error checking has not been implemented.

 *

 */

void wifi_sntp_example (void)

{

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucSSID = "access_point_ssid",

 .ucSSIDLength = 17,

 .xPassword.xWPA.cPassphrase = "password",

 .xPassword.xWPA.ucLength = 8,

 .ucChannel = 0,

 .xSecurity = eWiFiSecurityWPA2

 };

 uint8_t local_time[RM_WIFI_DA16XXX_TEMP_BUFFER_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,800 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

 time_t current_sys_time = 0;

 // SNTP IP address

 uint8_t ip_address_sntp_server_valid[4] = {216, 239, 35, 0}; // NOLINT : Static

IP address

 memset(local_time, 0, sizeof(local_time));

 /* Open connection to the Wifi Module */

 WIFI_On();

 /* Connect to the Access Point */

 WIFI_ConnectAP(&net_params);

 /* Get the local time string */

 RM_WIFI_DA16XXX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the access point to make changes to the SNTP configuration */

 WIFI_Disconnect();

 /* Change the IP address of the server */

 RM_WIFI_DA16XXX_SntpServerIpAddressSet((uint8_t *) ip_address_sntp_server_valid);

 /* Change the timezone to PST with daylight saving enabled */

 RM_WIFI_DA16XXX_SntpTimeZoneSet(-8, 0, WIFI_DA16XXX_SNTP_DAYLIGHT_SAVINGS_DISABLE);

 /* Connect back to the access point */

 WIFI_ConnectAP(&net_params);

 /* Get the local time string in format [DayOfWeek Month DayOfMonth Year

Hour:Minute:Second] */

 RM_WIFI_DA16XXX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the Access Point and shutdown the WIFI module*/

 WIFI_Disconnect();

 WIFI_Off();

}

Data Structures

struct wifi_da16xxx_cfg_t

struct da16xxx_socket_t

struct wifi_da16xxx_instance_ctrl_t

Enumerations

enum wifi_da16xxx_sntp_enable_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,801 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

enum da16xxx_socket_status_t

enum da16xxx_socket_rw

enum da16xxx_recv_state

enum wifi_da16xxx_sntp_daylight_savings_enable_t

Data Structure Documentation

◆ wifi_da16xxx_cfg_t

struct wifi_da16xxx_cfg_t

User configuration structure, used in open function

Data Fields

at_transport_da16xxx_instance_
t
const *

p_transport_instance

const uint32_t num_sockets Number of sockets to initialize.

const uint8_t * country_code Country code defined in
ISO3166-1 alpha-2 standard.

const uint8_t * sntp_server_ip The SNTP server IP address
string.

const int32_t sntp_utc_offset_in_hours Timezone offset in secs (-43200
- 43200)

void const * p_context User defined context passed
into callback function.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ da16xxx_socket_t

struct da16xxx_socket_t

DA16XXX Wifi internal socket instance structure

Data Fields

uint8_t remote_ipaddr[4] Remote IP address.

int remote_port Remote Port.

int socket_recv_data_len Data length of incoming socket
data.

int socket_type Socket type (TCP Server | TCP
Client | UDP)

uint32_t socket_status Current socket status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,802 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

uint32_t socket_recv_error_count Socket receive error count.

uint32_t socket_create_flag Flag to determine in socket has
been created.

uint32_t socket_read_write_flag flag to determine if read and/or
write channels are active.

da16xxx_recv_state socket_recv_state Incoming Socket data header
information.

StreamBufferHandle_t socket_byteq_hdl Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct Structure to hold stream buffer
info.

uint8_t socket_recv_buff[WIFI_DA16XX
X_CFG_MAX_SOCKET_RX_SIZE]

Socket receive buffer used by
byte queue.

◆ wifi_da16xxx_instance_ctrl_t

struct wifi_da16xxx_instance_ctrl_t

WIFI_DA16XXX private control block. DO NOT MODIFY.

Data Fields

wifi_da16xxx_cfg_t const * p_wifi_da16xxx_cfg Pointer to initial configurations.

uint32_t num_creatable_sockets Number of simultaneous
sockets supported.

uint32_t curr_socket Current Socket index for AT
commands.

uint32_t open Flag to indicate if wifi instance
has been initialized.

uint8_t is_sntp_enabled Flag to indicate Enable/Disable
of SNTP Client.

uint8_t cmd_tx_buff[WIFI_DA16XXX_CF
G_CMD_TX_BUF_SIZE]

Command send buffer.

uint8_t cmd_rx_buff[WIFI_DA16XXX_CF
G_CMD_RX_BUF_SIZE]

Command receive buffer.

volatile uint32_t curr_socket_index Currently active socket
instance.

uint8_t curr_ipaddr[4] Current IP address of module.

uint8_t curr_subnetmask[4] Current Subnet Mask of
module.

uint8_t curr_gateway[4] Current GAteway of module.

da16xxx_socket_t sockets[WIFI_DA16XXX_CFG_NU
M_CREATEABLE_SOCKETS]

Internal socket instances.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,803 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

◆ wifi_da16xxx_sntp_enable_t

enum wifi_da16xxx_sntp_enable_t

DA16XXX WiFi module enable/disable for SNTP

◆ da16xxx_socket_status_t

enum da16xxx_socket_status_t

DA16XXX Wifi socket status types

◆ da16xxx_socket_rw

enum da16xxx_socket_rw

DA16XXX socket shutdown channels

◆ da16xxx_recv_state

enum da16xxx_recv_state

DA16XXX socket receive state

◆ wifi_da16xxx_sntp_daylight_savings_enable_t

enum wifi_da16xxx_sntp_daylight_savings_enable_t

DA16XXX WiFi module enable/disable for SNTP Daylight

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,804 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

◆ RM_WIFI_DA16XXX_SntpServerIpAddressSet()

fsp_err_t RM_WIFI_DA16XXX_SntpServerIpAddressSet (uint8_t * p_server_ip_addr)

Set the SNTP Client Server IP Address

Parameters
[in] p_server_ip_addr Pointer to IP address of SNTP

server in byte array format.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_ASSERTION The parameter p_server_ip_addr is NULL.

Update the SNTP Server IP Address

◆ RM_WIFI_DA16XXX_SntpEnableSet()

fsp_err_t RM_WIFI_DA16XXX_SntpEnableSet (wifi_da16xxx_sntp_enable_t enable)

Set the SNTP Client to Enable or Disable

Parameters
[in] enable Flag to indicate

enable/disable for SNTP
support.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

Enable or Disable the SNTP Client Service

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,805 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

◆ RM_WIFI_DA16XXX_SntpTimeZoneSet()

fsp_err_t RM_WIFI_DA16XXX_SntpTimeZoneSet (int utc_offset_in_hours, uint32_t minutes,
wifi_da16xxx_sntp_daylight_savings_enable_t daylightSavingsEnable)

Set the SNTP Client Timezone

Parameters
[in] utc_offset_in_hours Timezone in UTC offset in

hours

[in] minutes Number of minutes used for
timezone offset from GMT.

[in] daylightSavingsEnable Enable/Disable daylight
saving in the timezone
calculation.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Parameter passed into function was invalid.

Update the SNTP Timezone

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,806 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

◆ RM_WIFI_DA16XXX_LocalTimeGet()

fsp_err_t RM_WIFI_DA16XXX_LocalTimeGet (uint8_t * p_local_time, uint32_t size_string)

Get the current local time based on current timezone in a string . Exp: YYYY-MM-
DD,HOUR:MIN:SECS

Parameters
[out] p_local_time Returns local time in string

format.

[in] size_string Size of p_local_time string
buffer.The size of this string
needs to be at least 25 bytes

Return values
FSP_SUCCESS Successfully returned the local time string.

FSP_ERR_ASSERTION The parameter local_time or p_instance_ctrl
is NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE String size value passed in exceeds
maximum.

Get the current local time based on current timezone in a string format

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,807 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)

◆ RM_WIFI_DA16XXX_GenericAtSendRcv()

fsp_err_t RM_WIFI_DA16XXX_GenericAtSendRcv (char const *const at_string, char *const
response_buffer, uint32_t length)

Sends any AT command compatible with the DA16XXX module. Provide optional buffer to receive
the response.

Parameters
[in] at_string Input AT command string

from the user.

[in] response_buffer Optional buffer for receiving
the response.

[in] length Size of optional buffer.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input was not a valid AT command.

Send a generic AT command to the DA16XXX and optionally receive a response

5.2.12.25 WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)
Modules » Networking

Functions

fsp_err_t rm_wifi_onchip_silex_open (wifi_onchip_silex_cfg_t const *const
p_cfg)

fsp_err_t rm_wifi_onchip_silex_close ()

fsp_err_t rm_wifi_onchip_silex_disconnect ()

fsp_err_t rm_wifi_onchip_silex_socket_connected (fsp_err_t *p_status)

fsp_err_t rm_wifi_onchip_silex_network_info_get (uint32_t *p_ip_addr, uint32_t
*p_subnet_mask, uint32_t *p_gateway)

fsp_err_t rm_wifi_onchip_silex_connect (const char *p_ssid, WIFISecurity_t
security, const char *p_passphrase)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,808 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

fsp_err_t rm_wifi_onchip_silex_mac_addr_get (uint8_t *p_macaddr)

fsp_err_t rm_wifi_onchip_silex_scan (WIFIScanResult_t *p_results, uint32_t
maxNetworks)

fsp_err_t rm_wifi_onchip_silex_ping (uint8_t *p_ip_addr, uint32_t count,
uint32_t interval_ms)

fsp_err_t rm_wifi_onchip_silex_ip_addr_get (uint32_t *p_ip_addr)

fsp_err_t rm_wifi_onchip_silex_avail_socket_get (uint32_t *p_socket_id)

fsp_err_t rm_wifi_onchip_silex_socket_status_get (uint32_t socket_no, uint32_t
*p_socket_status)

int32_t rm_wifi_onchip_silex_tcp_shutdown (uint32_t socket_no, uint32_t
shutdown_channels)

fsp_err_t rm_wifi_onchip_silex_socket_create (uint32_t socket_no, uint32_t
type, uint32_t ipversion)

fsp_err_t rm_wifi_onchip_silex_tcp_connect (uint32_t socket_no, uint32_t
ipaddr, uint32_t port)

fsp_err_t rm_wifi_onchip_silex_udp_connect (uint32_t socket_no, uint32_t
ipaddr, uint32_t port, uint32_t type)

int32_t rm_wifi_onchip_silex_send (uint32_t socket_no, const uint8_t
*p_data, uint32_t length, uint32_t timeout_ms)

int32_t rm_wifi_onchip_silex_recv (uint32_t socket_no, uint8_t *p_data,
uint32_t length, uint32_t timeout_ms)

fsp_err_t rm_wifi_onchip_silex_socket_disconnect (uint32_t socket_no)

fsp_err_t rm_wifi_onchip_silex_dns_query (const char *p_textstring, uint8_t
*p_ip_addr)

fsp_err_t RM_WIFI_ONCHIP_SILEX_EpochTimeGet (time_t *p_utc_time)

fsp_err_t RM_WIFI_ONCHIP_SILEX_LocalTimeGet (uint8_t *p_local_time,
uint32_t size_string)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpEnableSet
(wifi_onchip_silex_sntp_enable_t enable)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet (uint8_t
*p_ip_address)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet (int32_t hours, uint32_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,809 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

minutes, wifi_onchip_silex_sntp_daylight_savings_enable_t
daylightSavingsEnable)

Detailed Description

Wifi and Socket implementation using the Silex SX-ULPGN WiFi module on RA MCUs.

Overview
This Middleware module supplies an implementation for the FreeRTOS WiFi interface and AzureRTOS
NetxDuo WiFi interface using the Silex SX-ULPGN module.

You can find specifics about the WiFi and Secure Socket interface APIs supported by this module at
these web sites: Wifi API.

The SX-ULPGN is a low-power, compact IEEE 802.11b/g/n 2.4GHz 1x1 Wireless LAN module equipped
with the Qualcomm® QCA4010 Wireless SOC. The module comes readily equipped with radio
certification for Japan, North America and Europe. More information about this module can be found
at the Silex Web Site

Features

The WiFi Onchip Silex Middleware driver supplies these features:

Supports connect/disconnect to a b/g/n (2.4GHz) WiFi Access Point using Open, WPA, and
WPA2 security. Encryption types can be either TKIP, or CCMP(AES).
Supports retrieval of the module device MAC address.
Once connected you can acquire the assigned module device IP.
Supports a WiFi network scan capability to get a list of local Access Points.
Supports a Ping function to test network connectivity.
Supports a DNS Query call to retrieve the IPv4 address of a supplied URL.
Supports both TCP and UDP client sockets.
Drive supports 1 or 2 UARTs for interfacing with the SX-ULPGN module. The second UART is
considered optional.

Configuration
Build Time Configurations for rm_wifi_onchip_silex

The following build time configurations are defined in fsp_cfg/rm_wifi_onchip_silex_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Number of supported
socket instances

Refer to the RA
Configuration tool for
available options.

1 Enable number of
socket instances

Size of RX buffer for
socket

Manual Entry 4096

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,810 / 5,560

https://github.com/aws/amazon-freertos
https://github.com/azure-rtos/netxduo
https://github.com/azure-rtos/netxduo
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html
https://www.silextechnology.com/connectivity-solutions/embedded-wireless/sx-ulpgn

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

Size of TX buffer for
CMD Port

Manual Entry 1500

Size of RX buffer for
CMD Port

Manual Entry 3000

Semaphore maximum
timeout

Manual Entry 10000

Number of retries for
AT commands

Manual Entry 10

Module Reset Port Refer to the RA
Configuration tool for
available options.

06 Specify the module
reset pin port for the
MCU.

Module Reset Pin Refer to the RA
Configuration tool for
available options.

03 Specify the module
reset pin for the MCU.

Enable SNTP Client Enabled
Disabled

Disabled Should the SNTP client
of the module be
enabled

Configurations for Networking > WiFi Onchip Silex Driver using UART
(rm_wifi_onchip_silex)

Configuration Options Default Description

SNTP server IPv4
address

Must be a valid IPv4
address

0.0.0.0

SNTP Timezone Offset
from UTC Hours

Must be between 12
and -12 hours

0 Value in hours from 12
to -12

SNTP Timezone Offset
from UTC Minutes

Must be between 0 and
59 minutes

0 Value in minutes from
0 to 59

Use Daylight Savings
Time

Enabled
Disabled

Disabled Specify if daytime
savings should be used
for local time calulation

Note: It is suggested that when using the Silex Module that DTC and FIFO are enabled in the UART
configuration to facilitate a more reliable data transfer between module and MCU.

Note: If you wish to use flow control then you must enable flow control in the RA Configuration
editor. This can be found in the UART setting. It is advantageous to use flow control all the time since
it allows the hardware to gate the flow of data across the serial bus. Without hardware flow control
for faster data rate you will most likely see an overflow condition between MCU and the module
device.

Note: Higher baud rates are supported in the RA Configuration editor and should be changed in the
first UART configuration. There is no need to change the second UART baud rate since it is only used
as an AT command channel.

Note: It is a good idea to also enable the FIFO in the UART configuration settings if you plan to use
higher baud rates.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,811 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

Interrupt Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip Silex Driver using r_sci_uart
(rm_wifi_onchip_silex).

Clock Configuration

Refer to UART (r_sci_uart).

Pin Configuration

Refer to UART (r_sci_uart). R_SCI_UART_Open() is called by WiFi Onchip Silex Driver using r_sci_uart
(rm_wifi_onchip_silex)

Usage Notes
Limitations

WiFi AP connections do not currently support WEP security.
When operating with a single UART only single socket connections are possible. To support
multiple sockets two UART channels must be connected to the module. When using the
Renesas-provided SX-ULPGN PMOD board the second UART channel is on pins 9 and 10 of
the PMOD header.
Network connection parameters SSID and Passphrase for the Access Point can not contain
any commas. This is a current limitation of the Silex module firmware. The
rm_wifi_onchip_silex_connect() function will return an error if a comma is detected.
When operating with a single UART and there is an active socket connection you cannot call
WIFI_Scan(), WIFI_Ping(), WIFI_GetMAC(), or WIFI_GetIPInfo(). Calling one of these function
will return an error code in this situation. These commands are blocked in the one UART
case during an active socket connection because they could cause data loss. To avoid this
limitation please configure the hardware to use both UARTs.
The Silex WiFi modules SNTP support requires all configuration changes to made when the
WiFi is disconnected from an Access Point. This is a limitation of the Silex module firmware.
If changes to the default SNTP settings are required then the application will have to close
the current AP connection, make the necessary SNTP changes, and then re-establish the
original connection.

Examples
Basic Example

This is a basic example of minimal use of WiFi Middleware in an application.

void wifi_onchip_basic_example (void)

{

 WIFIReturnCode_t wifi_err;

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucChannel = 0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,812 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

 .xPassword.xWPA.cPassphrase = "password",

 .ucSSID = "access_point_ssid",

 .xPassword.xWPA.ucLength = 8,

 .ucSSIDLength = 17,

 .xSecurity = eWiFiSecurityWPA2,

 };

 memset(scan_data, 0, sizeof(WIFIScanResult_t) * MAX_WIFI_SCAN_RESULTS);

 memset(g_socket_recv_buffer, 0, sizeof(uint8_t) * SX_WIFI_SOCKET_RX_BUFFER_SIZE);

 /* Open connection to the Wifi Module */

 wifi_err = WIFI_On();

 assert(eWiFiSuccess == wifi_err);

 /* Connect to the Access Point */

 wifi_err = WIFI_ConnectAP(&net_params);

 assert(eWiFiSuccess == wifi_err);

 /* Get address assigned by AP */

 WIFIIPConfiguration_t ipInfo;

 wifi_err = WIFI_GetIPInfo(&ipInfo);

 assert(eWiFiSuccess == wifi_err);

 /* Ping an address accessible on the network */

 uint8_t ip_address[4] = {216, 58, 194, 174}; // NOLINT

 const uint16_t ping_count = 3;

 const uint32_t intervalMS = 100;

 wifi_err = WIFI_Ping(&ip_address[0], ping_count, intervalMS);

 assert(eWiFiSuccess == wifi_err);

 /* Scan the local Wifi network for other APs */

 wifi_err = WIFI_Scan(&scan_data[0], MAX_WIFI_SCAN_RESULTS);

 assert(eWiFiSuccess == wifi_err);

 /* Shutdown the WIFI */

 WIFI_Off();

}

SNTP example

An example of using Simple Network Time Protocol (SNTP) on WiFi in an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,813 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

#define RM_WIFI_ONCHIP_SILEX_TEMP_BUFFER_SIZE (64)

/*

 * Example of the use of SNTP with Wifi. Example gets the epoch time and local

 * system time strings. It is also demonstrated how the user will need to disconnect

 * from the access point to make changes to the SNTP configuration during runtime.

 *

 * Function assumes that the SNTP has been enabled and configured with proper

 * SNTP server address. For brevity error checking has not been implemented.

 *

 */

void wifi_onchip_sntp_example (void)

{

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucSSID = "access_point_ssid",

 .ucSSIDLength = 17,

 .xPassword.xWPA.cPassphrase = "password",

 .xPassword.xWPA.ucLength = 8,

 .ucChannel = 0,

 .xSecurity = eWiFiSecurityWPA2

 };

 uint8_t local_time[RM_WIFI_ONCHIP_SILEX_TEMP_BUFFER_SIZE];

 time_t current_sys_time = 0;

 // SNTP IP address

 uint8_t ip_address_sntp_server_valid[4] = {216, 239, 35, 0}; // NOLINT : Static

IP address

 memset(local_time, 0, sizeof(local_time));

 /* Open connection to the Wifi Module */

 WIFI_On();

 /* Connect to the Access Point */

 WIFI_ConnectAP(&net_params);

 /* Get the Epoch time in seconds since Jan 1, 1970 UTC */

 RM_WIFI_ONCHIP_SILEX_EpochTimeGet(¤t_sys_time);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,814 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

 /* Get the local time string */

 RM_WIFI_ONCHIP_SILEX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the access point to make changes to the SNTP configuration */

 WIFI_Disconnect();

 /* Change the IP address of the server */

 RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet((uint8_t *)

ip_address_sntp_server_valid);

 /* Change the timezone to PST with daylight saving enabled */

 RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet(-7, 0,

WIFI_ONCHIP_SILEX_SNTP_DAYLIGHT_SAVINGS_ENABLE);

 /* Connect back to the access point */

 WIFI_ConnectAP(&net_params);

 /* Get the Epoch time in seconds since Jan 1, 1970 UTC */

 RM_WIFI_ONCHIP_SILEX_EpochTimeGet(¤t_sys_time);

 /* Get the local time string in format [DayOfWeek Month DayOfMonth Year

Hour:Minute:Second] */

 RM_WIFI_ONCHIP_SILEX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the Access Point and shutdown the WIFI module*/

 WIFI_Disconnect();

 WIFI_Off();

}

Data Structures

struct wifi_onchip_silex_cfg_t

struct ulpgn_socket_t

struct wifi_onchip_silex_instance_ctrl_t

Enumerations

enum sx_ulpgn_socket_status_t

enum sx_ulpgn_socket_rw

enum wifi_onchip_silex_sntp_enable_t

enum wifi_onchip_silex_sntp_daylight_savings_enable_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,815 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

Data Structure Documentation

◆ wifi_onchip_silex_cfg_t

struct wifi_onchip_silex_cfg_t

User configuration structure, used in open function

Data Fields

const uint32_t num_uarts Number of UART interfaces to
use.

const uint32_t num_sockets Number of sockets to initialize.

const bsp_io_port_pin_t reset_pin Reset pin used for module.

const uart_instance_t * uart_instances[WIFI_ONCHIP_SI
LEX_CFG_MAX_NUMBER_UART_
PORTS]

SCI UART instances.

const
wifi_onchip_silex_sntp_enable_t

sntp_enabled Enable/Disable the SNTP Client.

const uint8_t * sntp_server_ip The SNTP server IP address
string.

const int32_t sntp_timezone_offset_from_utc_
hours

Timezone offset from UTC in
(+/-) hours.

const uint32_t sntp_timezone_offset_from_utc_
minutes

Timezone offset from UTC in
minutes.

const
wifi_onchip_silex_sntp_daylight_
savings_enable_t

sntp_timezone_use_daylight_sa
vings

Enable/Disable use of daylight
saving time.

void const * p_context User defined context passed
into callback function.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ ulpgn_socket_t

struct ulpgn_socket_t

Silex ULPGN Wifi internal socket instance structure

Data Fields

StreamBufferHandle_t socket_byteq_hdl Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct Structure to hold stream buffer
info.

uint8_t socket_recv_buff[WIFI_ONCHIP_
SILEX_CFG_MAX_SOCKET_RX_SI
ZE]

Socket receive buffer used by
byte queue.

uint32_t socket_status Current socket status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,816 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

uint32_t socket_recv_error_count Socket receive error count.

uint32_t socket_create_flag Flag to determine in socket has
been created.

uint32_t socket_read_write_flag flag to determine if read and/or
write channels are active.

◆ wifi_onchip_silex_instance_ctrl_t

struct wifi_onchip_silex_instance_ctrl_t

WIFI_ONCHIP_SILEX private control block. DO NOT MODIFY.

Data Fields

uint32_t open Flag to indicate if wifi instance
has been initialized.

wifi_onchip_silex_cfg_t const * p_wifi_onchip_silex_cfg Pointer to initial configurations.

bsp_io_port_pin_t reset_pin Wifi module reset pin.

uint32_t num_uarts number of UARTS currently
used for communication with
module

uint32_t tx_data_size Size of the data to send.

uint32_t num_creatable_sockets Number of simultaneous
sockets supported.

uint32_t curr_cmd_port Current UART instance index for
AT commands.

uint32_t curr_data_port Current UART instance index for
data.

uint8_t cmd_rx_queue_buf[WIFI_ONCHI
P_SILEX_CFG_CMD_RX_BUF_SIZ
E]

Command port receive buffer
used by byte queue //
FreeRTOS.

StreamBufferHandle_t socket_byteq_hdl Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct Structure to hold stream buffer
info.

volatile uint32_t curr_socket_index Currently active socket
instance.

uint8_t cmd_tx_buff[WIFI_ONCHIP_SILE
X_CFG_CMD_TX_BUF_SIZE]

Command send buffer.

uint8_t cmd_rx_buff[WIFI_ONCHIP_SILE
X_CFG_CMD_RX_BUF_SIZE]

Command receive buffer.

uint32_t at_cmd_mode Current command mode.

uint8_t curr_ipaddr[4] Current IP address of module.

uint8_t curr_subnetmask[4] Current Subnet Mask of
module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,817 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

uint8_t curr_gateway[4] Current GAteway of module.

SemaphoreHandle_t tx_sem Transmit binary semaphore
handle.

SemaphoreHandle_t rx_sem Receive binary semaphore
handle.

uint8_t last_data[WIFI_ONCHIP_SILEX_R
ETURN_TEXT_LENGTH]

Tailing buffer used for
command parser.

uart_instance_t * uart_instance_objects[WIFI_ONC
HIP_SILEX_CFG_MAX_NUMBER_
UART_PORTS]

UART instance objects.

SemaphoreHandle_t uart_tei_sem[WIFI_ONCHIP_SILE
X_CFG_MAX_NUMBER_UART_PO
RTS]

UART transmission end binary
semaphore.

ulpgn_socket_t sockets[WIFI_ONCHIP_SILEX_CF
G_NUM_CREATEABLE_SOCKETS]

Internal socket instances.

Enumeration Type Documentation

◆ sx_ulpgn_socket_status_t

enum sx_ulpgn_socket_status_t

Silex ULPGN Wifi socket status types

◆ sx_ulpgn_socket_rw

enum sx_ulpgn_socket_rw

Silex socket shutdown channels

◆ wifi_onchip_silex_sntp_enable_t

enum wifi_onchip_silex_sntp_enable_t

Silex WiFi module enable/disable for SNTP

◆ wifi_onchip_silex_sntp_daylight_savings_enable_t

enum wifi_onchip_silex_sntp_daylight_savings_enable_t

Silex WiFi module enable/disable for SNTP

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,818 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_open()

fsp_err_t rm_wifi_onchip_silex_open (wifi_onchip_silex_cfg_t const *const p_cfg)

Opens and configures the WIFI_ONCHIP_SILEX Middleware module.

Parameters
[in] p_cfg Pointer to pin configuration

structure.

Return values
FSP_SUCCESS WIFI_ONCHIP_SILEX successfully configured.

FSP_ERR_ASSERTION The parameter p_cfg or p_instance_ctrl is
NULL.

FSP_ERR_OUT_OF_MEMORY There is no more heap memory available.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ rm_wifi_onchip_silex_close()

fsp_err_t rm_wifi_onchip_silex_close ()

Disables WIFI_ONCHIP_SILEX.

Return values
FSP_SUCCESS WIFI_ONCHIP_SILEX closed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,819 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_disconnect()

fsp_err_t rm_wifi_onchip_silex_disconnect ()

Disconnects from connected AP.

Return values
FSP_SUCCESS WIFI_ONCHIP_SILEX disconnected

successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

◆ rm_wifi_onchip_silex_socket_connected()

fsp_err_t rm_wifi_onchip_silex_socket_connected (fsp_err_t * p_status)

Check if a specific socket instance is connected.

Parameters
[out] p_status Pointer to integer holding

the socket connection
status.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The parameter p_status is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,820 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_network_info_get()

fsp_err_t rm_wifi_onchip_silex_network_info_get (uint32_t * p_ip_addr, uint32_t * p_subnet_mask,
uint32_t * p_gateway)

Return the network information for the connection to the access point.

Parameters
[out] p_ip_addr Pointer to integer holding

the IP address.

[out] p_subnet_mask Pointer to integer holding
the subnet mask.

[out] p_gateway Pointer to integer holding
the gateway.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION A parameter pointer is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_WIFI_AP_NOT_CONNECTED No connection to access point has
happened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,821 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_connect()

fsp_err_t rm_wifi_onchip_silex_connect (const char * p_ssid, WIFISecurity_t security, const char *
p_passphrase)

Connects to the specified Wifi Access Point.

Parameters
[in] p_ssid Pointer to SSID of Wifi

Access Point.

[in] security Security type to use for
connection.

[in] p_passphrase Pointer to the passphrase to
use for connection.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The parameter p_ssid or p_passphrase is
NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_INVALID_ARGUMENT No commas are accepted in the SSID or
Passphrase.

◆ rm_wifi_onchip_silex_mac_addr_get()

fsp_err_t rm_wifi_onchip_silex_mac_addr_get (uint8_t * p_macaddr)

Get MAC address.

Parameters
[out] p_macaddr Pointer array to hold mac

address.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The parameter p_macaddr is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,822 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_scan()

fsp_err_t rm_wifi_onchip_silex_scan (WIFIScanResult_t * p_results, uint32_t maxNetworks)

Get the information about local Wifi Access Points.

Parameters
[out] p_results Pointer to a structure array

holding scanned Access
Points.

[in] maxNetworks Size of the structure array
for holding APs.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The parameter p_results or p_instance_ctrl
is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

◆ rm_wifi_onchip_silex_ping()

fsp_err_t rm_wifi_onchip_silex_ping (uint8_t * p_ip_addr, uint32_t count, uint32_t interval_ms)

Ping an IP address on the network.

Parameters
[in] p_ip_addr Pointer to IP address array.

[in] count Number of pings to attempt.

[in] interval_ms Interval between ping
attempts.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The parameter p_ip_addr is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,823 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_ip_addr_get()

fsp_err_t rm_wifi_onchip_silex_ip_addr_get (uint32_t * p_ip_addr)

Get the assigned module IP address.

Parameters
[out] p_ip_addr Pointer an array to hold the

IP address.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The parameter p_ip_addr is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

◆ rm_wifi_onchip_silex_avail_socket_get()

fsp_err_t rm_wifi_onchip_silex_avail_socket_get (uint32_t * p_socket_id)

Get the next available socket ID.

Parameters
[out] p_socket_id Pointer to an integer to hold

the socket ID.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The parameter p_socket_id is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_WIFI_FAILED Error occured in the execution of this
function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,824 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_socket_status_get()

fsp_err_t rm_wifi_onchip_silex_socket_status_get (uint32_t socket_no, uint32_t * p_socket_status
)

Get the socket status.

Parameters
[in] socket_no Socket ID number.

[out] p_socket_status Pointer to an integer to hold
the socket status

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The parameter p_instance_ctrl or
p_socket_status is NULL. The value of
socket_no is greater than/equal
num_creatable_sockets.

FSP_ERR_NOT_OPEN The instance has not been opened.

◆ rm_wifi_onchip_silex_tcp_shutdown()

int32_t rm_wifi_onchip_silex_tcp_shutdown (uint32_t socket_no, uint32_t shutdown_channels)

Shutdown portion of a socket

Parameters
[in] socket_no Socket ID number.

[in] shutdown_channels Specify if read or write
channel is shutdown for
socket

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL. The
value of socket_no is greater than/equal
num_creatable_sockets.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,825 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_socket_create()

fsp_err_t rm_wifi_onchip_silex_socket_create (uint32_t socket_no, uint32_t type, uint32_t
ipversion)

Create a new socket instance.

Parameters
[in] socket_no Socket ID number.

[in] type Socket type.

[in] ipversion Socket IP type.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

◆ rm_wifi_onchip_silex_tcp_connect()

fsp_err_t rm_wifi_onchip_silex_tcp_connect (uint32_t socket_no, uint32_t ipaddr, uint32_t port)

Connect to a specific IP and Port using socket.

Parameters
[in] socket_no Socket ID number.

[in] ipaddr IP address for socket
connection.

[in] port Port number for socket
connection.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,826 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_udp_connect()

fsp_err_t rm_wifi_onchip_silex_udp_connect (uint32_t socket_no, uint32_t ipaddr, uint32_t port,
uint32_t type)

Connect to a specific IP and Port using UDP socket.

Parameters
[in] socket_no Socket ID number.

[in] ipaddr IP address for socket
connection. 0 if type is
server.

[in] port Port number for socket
connection.

[in] type Type of UDP connection. Can
be client or server.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,827 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_send()

int32_t rm_wifi_onchip_silex_send (uint32_t socket_no, const uint8_t * p_data, uint32_t length,
uint32_t timeout_ms)

Send data over TCP to a server.

Parameters
[in] socket_no Socket ID number.

[in] p_data Pointer to data to send.

[in] length Length of data to send.

[in] timeout_ms Timeout to wait for transmit
end event

Return values
FSP_ERR_WIFI_FAILED Error occurred with command to Wifi

module.

FSP_ERR_ASSERTION The p_instance_ctrl or parameter p_data is
NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,828 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_recv()

int32_t rm_wifi_onchip_silex_recv (uint32_t socket_no, uint8_t * p_data, uint32_t length, uint32_t
timeout_ms)

Receive data over TCP from a server.

Parameters
[in] socket_no Socket ID number.

[out] p_data Pointer to data received
from socket.

[in] length Length of data array used
for receive.

[in] timeout_ms Timeout to wait for data to
be received from socket.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION The p_instance_ctrl or parameter p_data is
NULL.

◆ rm_wifi_onchip_silex_socket_disconnect()

fsp_err_t rm_wifi_onchip_silex_socket_disconnect (uint32_t socket_no)

Disconnect a specific socket connection.

Parameters
[in] socket_no Socket ID to disconnect

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_INVALID_ARGUMENT Bad parameter value was passed into
function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,829 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ rm_wifi_onchip_silex_dns_query()

fsp_err_t rm_wifi_onchip_silex_dns_query (const char * p_textstring, uint8_t * p_ip_addr)

Initiate a DNS lookup for a given URL.

Parameters
[in] p_textstring Pointer to array holding URL

to query from DNS.

[out] p_ip_addr Pointer to IP address
returned from look up.

Return values
FSP_SUCCESS Function completed successfully.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_ASSERTION The p_instance_ctrl, p_textstring, p_ip_addr
is NULL.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_INVALID_ARGUMENT The URL passed in is to long.

◆ RM_WIFI_ONCHIP_SILEX_EpochTimeGet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_EpochTimeGet (time_t * p_utc_time)

This will retrieve time info from an NTP server at the address entered via an during configuration. If
the server isn't set or the client isn't enabled, then it will return an error. The date/time is retrieved
as the number of seconds since 00:00:00 UTC January 1, 1970

Parameters
[out] p_utc_time Returns the epoch time in

seconds.

Return values
FSP_SUCCESS Successfully retrieved the system time from

module.

FSP_ERR_ASSERTION The parameter utc_time or p_instance_ctrl is
NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

Get the current system time as the number of seconds since epoch 1970-01-01 00:00:00 UTC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,830 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_LocalTimeGet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_LocalTimeGet (uint8_t * p_local_time, uint32_t size_string)

Get the current local time based on current timezone in a string . Exp: Wed Oct 15 1975 07:06:00

Parameters
[out] p_local_time Returns local time in string

format.

[in] size_string Size of p_local_time string
buffer.The size of this string
needs to be at least 25 bytes

Return values
FSP_SUCCESS Successfully returned the local time string.

FSP_ERR_ASSERTION The parameter local_time or p_instance_ctrl
is NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE String size value passed in exceeds
maximum.

Get the current local time based on current timezone in a string format

◆ RM_WIFI_ONCHIP_SILEX_SntpEnableSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpEnableSet (wifi_onchip_silex_sntp_enable_t enable)

Set the SNTP Client to Enable or Disable

Parameters
[in] enable Can be set to enable/disable

for SNTP support.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

Enable or Disable the SNTP Client Service

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,831 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet (uint8_t * p_ip_address)

Set the SNTP Client Server IP Address

Parameters
[in] p_ip_address Pointer to IP address of SNTP

server in byte array format.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_ASSERTION The parameter p_ip_address or
p_instance_ctrl is NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

Update the SNTP Server IP Address

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,832 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet (int32_t hours, uint32_t minutes,
wifi_onchip_silex_sntp_daylight_savings_enable_t daylightSavingsEnable)

Set the SNTP Client Timezone

Parameters
[in] hours Number of hours (+/-) used

for timezone offset from
GMT.

[in] minutes Number of minutes used for
timezone offset from GMT.

[in] daylightSavingsEnable Enable/Disable daylight
saving in the timezone
calculation.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Parameter passed into function was invalid.

Update the SNTP Timezone

5.2.12.26 lwIP Baremetal Porting Layer (rm_lwip_sys_baremetal)
Modules » Networking

Overview
This module provides system timer feature for baremetal.

Please refer to the lwIP documentation for further details.

Features

This porting layer includes the following features.

Timer
Critical sections
Compiler/Platform abstraction.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,833 / 5,560

https://www.nongnu.org/lwip/2_1_x/group__lwip__nosys.html

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > lwIP Baremetal Porting Layer (rm_lwip_sys_baremetal)

5.2.12.27 lwIP Ethernet Driver (rm_lwip_ether)
Modules » Networking

Functions

err_t rm_lwip_ether_init (struct netif *p_netif)

void rm_lwip_ether_callback (ether_callback_args_t *p_args)

Detailed Description

Overview
This module provides a lwIP driver that is implemented using the Ethernet Interface.

Please refer to the lwIP documentation for further details.

Features

Packet Types Supported
ARP
IPv4
IPv6

UDP (User Datagram Protocol) including experimental UDP-lite extensions
TCP (Transmission Control Protocol) with congestion control, RTT estimation fast
recovery/fast retransmit and sending SACKs
raw/native API for enhanced performance
Link status callback

Configuration
Configurations for Networking > lwIP Wrapper to r_ether (rm_lwip_ether)

Configuration Options Default Description

RTOS

RX thread stacksize Must be a positive
integer

1024 Stack size of RX thread.

RX thread priority Must be a positive
integer

4 Priority of RX thread.

Name Name must be a valid
C symbol

g_lwip_ether0 Module name.

MTU Must be an integer
from 576 to 1500

1500 MTU size.

Netif flags UP
BROADCAST

module.middleware.lwi
p_ether.netif_flags.broa

Flags representing the
capabilities of the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,834 / 5,560

https://www.nongnu.org/lwip

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > lwIP Ethernet Driver (rm_lwip_ether)

LINK_UP
ETHARP
ETHERNET
IGMP
MLD6

dcast,module.middlewa
re.lwip_ether.netif_flag
s.etharp

Ethernet device

Zero-copy mode Disable
Enable

Disable Enable or disable zero-
copy mode.

RX buffer pool size Must be a positive
integer

10 Buffer pool size for zero-
copy RX.

Link check interval Must be a positive
integer

100 Interval for checking
link status.

Usage Notes
Limitations

Examples
Basic Example

This is a basic example of minimal use of the lwIP Ether Driver in an application.

#include "lwip/tcp.h"

#include "lwip/timeouts.h"

#include "lwip/init.h"

#include "lwip/ip4.h"

#define LWIP_EXAMPLE_PORT_NUMBER 9000

/* TCP callback functions. */

static err_t lwip_example_connected_callback(void * arg, struct tcp_pcb * tpcb, err_t

err);

err_t lwip_example_sent_callback(void * arg, struct tcp_pcb * tpcb, u16_t len);

volatile uint8_t g_lwip_example_connected_flag;

volatile uint8_t g_lwip_example_sent_flag;

void rm_lwip_ether_example () {

 struct netif netif;

 struct tcp_pcb * pcb = NULL;

 ip_addr_t ipaddr;

 ip_addr_t netmask;

 ip_addr_t gw;

 ip_addr_t server_ip;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,835 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > lwIP Ethernet Driver (rm_lwip_ether)

 const char data[] = "lwIP Hello world.";

 /* Initializing lwIP core. */

 lwip_init();

 /* Set ip address of the board. */

 IP4_ADDR(&ipaddr, 192, 168, 10, 4);

 IP4_ADDR(&netmask, 255, 255, 255, 0);

 IP4_ADDR(&gw, 192, 168, 10, 1);

 /* Initialize netif. Please pass rm_lwip_ether_init() function and the instance of

rm_lwip_ether to netif_add(). */

 netif_add(&netif, &ipaddr, &netmask, &gw, &g_lwip_ether_instance,

rm_lwip_ether_init, netif_input);

 /* Set netif as default and enable */

 netif_set_default(&netif);

 netif_set_up(&netif);

 netif_set_link_up(&netif);

 /* Create a pcb for client. */

 pcb = tcp_new();

 /* Start connection to the server. */

 g_lwip_example_connected_flag = false;

 IP4_ADDR(&server_ip, 192, 168, 10, 1);

 tcp_connect(pcb, &server_ip, LWIP_EXAMPLE_PORT_NUMBER,

lwip_example_connected_callback);

 /* Waiting for connection to be established. */

 while (false == g_lwip_example_connected_flag)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 sys_check_timeouts();

 }

 /* Set callback for sending complete. */

 g_lwip_example_sent_flag = false;

 tcp_sent(pcb, lwip_example_sent_callback);

 /* Send a message. */

 tcp_write(pcb, data, sizeof(data), TCP_WRITE_FLAG_COPY);

 while (false == g_lwip_example_sent_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,836 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > lwIP Ethernet Driver (rm_lwip_ether)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 sys_check_timeouts();

 }

 /* Close TCP client and netif. */

 tcp_close(pcb);

 netif_remove(&netif);

}

err_t lwip_example_connected_callback (void * arg, struct tcp_pcb * tpcb, err_t err)

{

 FSP_PARAMETER_NOT_USED(arg);

 FSP_PARAMETER_NOT_USED(err);

 FSP_PARAMETER_NOT_USED(tpcb);

 g_lwip_example_connected_flag = true;

 return err;

}

err_t lwip_example_sent_callback (void * arg, struct tcp_pcb * tpcb, u16_t len) {

 FSP_PARAMETER_NOT_USED(arg);

 FSP_PARAMETER_NOT_USED(tpcb);

 FSP_PARAMETER_NOT_USED(len);

 g_lwip_example_sent_flag = true;

 return ERR_OK;

}

Function Documentation

◆ rm_lwip_ether_init()

err_t rm_lwip_ether_init (struct netif * p_netif)

Initialize ethernet hardware and lwIP network interface. This function is passed to netif_add()

◆ rm_lwip_ether_callback()

void rm_lwip_ether_callback (ether_callback_args_t * p_args)

Callback of Ethernet interrupt subroutine. This function is set to ethernet driver callback by
configurator.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,837 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Networking > lwIP Ethernet Driver (rm_lwip_ether)

5.2.12.28 lwIP FreeRTOS Porting Layer (rm_lwip_sys_freertos)
Modules » Networking

Overview
This module provides a lwIP porting layer for FreeRTOS.

Please refer to the lwIP documentation for further details.

Features

This porting layer includes the following features.

Compiler/Platform abstraction.

All other features of FreeRTOS porting layer are provided by the lwIP library.

5.2.13 Power
Modules

Detailed Description

Power Modules.

Modules

Low Power Modes (r_lpm)

 Driver for the LPM peripheral on RA MCUs. This module implements
the Low Power Modes Interface.

5.2.13.1 Low Power Modes (r_lpm)
Modules » Power

Functions

fsp_err_t R_LPM_Open (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const
p_cfg)

fsp_err_t R_LPM_LowPowerReconfigure (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,838 / 5,560

https://www.nongnu.org/lwip/2_1_x/group__lwip__os.html

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

const *const p_cfg)

fsp_err_t R_LPM_LowPowerModeEnter (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_IoKeepClear (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_Close (lpm_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the LPM peripheral on RA MCUs. This module implements the Low Power Modes Interface.

Overview
The low power modes driver is used to configure and place the device into the desired low power
mode. Various sources can be configured to wake from standby, request snooze mode, end snooze
mode or end deep standby mode.

Features

The LPM HAL module has the following key features:

Supports the following low power modes:
Deep Software Standby mode (On supported MCUs)
Deep Sleep (On supported MCUs)
Software Standby mode
Sleep mode
Snooze mode (On supported MCUs)

Supports reducing power consumption when in deep software standby mode through
internal power supply control and by resetting the states of I/O ports.
Supports disabling and enabling the MCU's other hardware peripherals

Configuration
Build Time Configurations for r_lpm

The following build time configurations are defined in fsp_cfg/r_lpm_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Standby Limit Enabled
Disabled

Disabled If enabled, standby
configuration only
applies in R_LPM_LowP
owerModeEnter.
Otherwise, standby
configuration applies to
any WFI call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,839 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

Configurations for Power > Low Power Modes (r_lpm)

This module can be added to the Stacks tab via New Stack > Power > Low Power Modes (r_lpm). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_lpm0 Module name.

Low Power Mode MCU Specific Options Power mode to be
entered.

Output port state in
standby and deep
standby

MCU Specific Options Select the state of
output pins during
standby. Applies to
address output, data
output, and other bus
control output pins.

Supply of SOSC clock
to peripheral function
in standby

MCU Specific Options If enabled, SOSC clock
is provided to
peripheral functions in
Software Standby and
Snooze modes.

Startup speed of the
HOCO in Standby and
Snooze modes

MCU Specific Options If enabled, the HOCO
enters high-speed
startup mode,
shortening standby
release time, and
snooze transition time.

Flash mode in sleep or
snooze

MCU Specific Options Select flash mode in
sleep mode or in
snooze mode.

Deep Sleep and Standby Options

Deep Sleep and Standby Options > Snooze Options (Not available on every MCU)

Snooze Request Source MCU Specific Options Select the event that
will enter snooze.

Snooze End Sources MCU Specific Options Enable wake from
snooze from these
sources.

DTC state in Snooze
Mode

MCU Specific Options Enable wake from
snooze from this
source.

Snooze Cancel Source MCU Specific Options Select an interrupt
source to cancel
snooze.

Wake Sources MCU Specific Options Enable wake from deep

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,840 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

sleep and standby from
these Sources.

Wake Sources 2 MCU Specific Options Enable wake from deep
sleep and standby from
these Sources.

RAM Retention Control (Not available on every MCU)

RAM retention in
Standby mode

MCU Specific Options Select the memory
regions that are
retained in standby
mode.

TCM retention in Deep
Sleep and Standby
modes

MCU Specific Options Select if Tightly
Coupled Memory (TCM)
is retained in deep
sleep and standby
modes.

Standby RAM retention
in Standby and Deep
Standby modes

MCU Specific Options Select if Standby RAM
is retained in standby
and deep standby
modes.

Oscillator LDO Control (Not available on every MCU)

PLL1 LDO State in
standby mode

MCU Specific Options Select the state PLL1
LDO state in standby
mode.

PLL2 LDO State in
standby mode

MCU Specific Options Select the state PLL2
LDO state in standby
mode.

HOCO LDO State in
standby mode

MCU Specific Options Select the state HOCO
LDO state in standby
mode.

Deep Standby Options (Not available on every MCU)

I/O Port Retention MCU Specific Options Select the state of the
IO Pins after exiting
deep standby mode.

Power-Supply Control MCU Specific Options Select the state of the
internal power supply
in deep standby mode.

Cancel Sources MCU Specific Options Enable wake from deep
standby using these
sources.

Cancel Edges MCU Specific Options Falling edge trigger is
default. Select sources
to enable wake from
deep standby with
rising edge.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,841 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

Clock Configuration

This module does not have any selectable clock sources.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Sleep Mode

At power on, by default sleep is set as the low-power mode. Sleep mode is the most convenient low-
power mode available, as it does not require any special configuration (other than configuring and
enabling a suitable interrupt or event to wake the MCU from sleep) to return to normal program-
execution mode. The states of the SRAM, the processor registers, and the hardware peripherals are
all maintained in sleep mode, and the time needed to enter and wake from sleep is minimal. Any
interrupt causes the MCU device to wake from sleep mode, including the SysTick interrupt used by
the RTOS scheduler.

Deep Sleep Mode

Deep sleep mode is similar to sleep mode with the exception that DTC and DMAC are stopped,
access to TCM memory is not available, and only a subset of interrupts are available for waking the
CPU.

Software Standby Mode

In software-standby mode, the CPU, as well as most of the on-chip peripheral functions and all of the
internal oscillators, are stopped. The contents of the CPU internal registers and SRAM data, the
states of on-chip peripheral functions, and I/O Ports are all retained. Software-standby mode allows
significant reduction in power consumption, because most of the oscillators are stopped in this
mode. Like sleep mode, standby mode requires an interrupt or event be configured and enabled to
wake up.

Snooze Mode

Snooze mode can be used with some MCU peripherals to execute basic tasks while keeping the MCU
in a low-power state. Many core peripherals and all clocks can be selected to run during Snooze,
allowing for more flexible low-power configuration than Software Standby mode. To enable Snooze,
select "Software Standby mode with Snooze mode enabled" for the "Low Power Mode" configuration
option. Snooze mode settings (including entry/exit sources) are available under "Standby Options".

Deep Software Standby Mode

The MCU always wakes from Deep Software Standby Mode by going through reset, either by the
negation of the reset pin or by one of the wakeup sources configurable in the "Deep Standby
Options" configuration group.

The Reset Status Registers can be used to determine if the reset occurred after coming out of deep
software standby. For example, R_SYSTEM->RSTSR0_b.DPSRSTF is set to 1 after a deep software
standby reset.

I/O Port Retention can be enabled to maintain I/O port configuration across a deep software standby

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,842 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

reset. Retention can be cancelled through the R_LPM_IoKeepClear API.

Limitations

Developers should be aware of the following limitations when using the LPM:

Flash stop (code flash disable) is not supported. See the section "Flash Operation Control
Register (FLSTOP)" of the RA2/RA4 Family Hardware User's Manual.
Reduced SRAM retention area in software standby mode is not supported. See the section
"Power Save Memory Control Register (PSMCR)" of the RA4 Hardware User's Manual.
Only one Snooze Request Source can be used at a time.
When using Snooze mode with SCI0 RXD as the snooze source the system clock must be
HOCO and the MOCO, Main Oscillator and PLL clocks must be turned off.
If the main oscillator or PLL with main oscillator source is used for the system clock, the
wake time from standby mode can be affected by the Main Oscillator Wait Time Setting in
the MOSCWTCR register. This register setting is available to be changed through the Main
Oscillator Wait Time setting in the CGC module properties. See the "Wakeup Timing and
Duration" table in Electrical Characteristics for more information.
When using the DC-DC regulator (where available), the MCU will temporarily switch to the
LDO if Software Standby or Snooze is requested and back again when it is cancelled.
Switching to the LDO incurs a 60 microsecond critical section wherein all interrupts AND
peripherals are stopped. Switching back to DCDC from the LDO incurs an additional 22
microsecond critical section (peripherals running).
On RA8, there are delays inserted before and after switching to a lower power mode based
on BSP configuration options and current CPUCLK speed. These delays do not disable
interrupts for the entire delay as required by the RA8 Hardware Manual. Interrupts should
be disabled by the application when possible before sleeping to meet the requirements, or
the control of interrupts and the delay should be managed by the user to ensure the
requirement is fully met.

Examples
LPM Sleep Example

This is a basic example of minimal use of the LPM in an application. The LPM instance is opened and
the configured low-power mode is entered.

void r_lpm_sleep (void)

{

 fsp_err_t err = R_LPM_Open(&g_lpm_ctrl, &g_lpm_cfg_sleep);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_LPM_LowPowerModeEnter(&g_lpm_ctrl);

 assert(FSP_SUCCESS == err);

}

LPM Deep Software Standby Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,843 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

void r_lpm_deep_software_standby (void)

{

 fsp_err_t err;

#if !BSP_MCU_GROUP_RA0E1

 /* Check the Deep Software Standby Reset Flag. If it is set, then the MCU is exiting

 * Deep Software Standby mode. */

 if (1U == R_SYSTEM->RSTSR0_b.DPSRSTF)

 {

 /* Clear the IOKEEP bit to allow I/O Port use.

 * Note that this function should be called before opening the LPM driver. */

 err = R_LPM_IoKeepClear(&g_lpm_ctrl);

 assert(FSP_SUCCESS == err);

 }

#endif

 err = R_LPM_Open(&g_lpm_ctrl, &g_lpm_cfg_deep_software_standby);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Add user code here. */

 /* Reconfigure the module to set the IOKEEP bit before entering deep software

standby. */

 err = R_LPM_LowPowerReconfigure(&g_lpm_ctrl, &g_lpm_cfg_deep_software_standby);

 assert(FSP_SUCCESS == err);

 err = R_LPM_LowPowerModeEnter(&g_lpm_ctrl);

 /* Code after R_LPM_LowPowerModeEnter when using Deep Software Standby never be

executed.

 * Deep software standby exits by resetting the MCU. */

 assert(FSP_SUCCESS == err);

}

Data Structures

struct lpm_instance_ctrl_t

Data Structure Documentation

◆ lpm_instance_ctrl_t

struct lpm_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,844 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

LPM private control block. DO NOT MODIFY. Initialization occurs when R_LPM_Open() is called.

Function Documentation

◆ R_LPM_Open()

fsp_err_t R_LPM_Open (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

Perform any necessary initialization

Return values
FSP_SUCCESS LPM instance opened

FSP_ERR_ASSERTION Null Pointer

FSP_ERR_ALREADY_OPEN LPM instance is already open

FSP_ERR_UNSUPPORTED This MCU does not support Deep Software
Standby

FSP_ERR_INVALID_ARGUMENT One of the following:

Invalid snooze entry source
Invalid snooze end sources

FSP_ERR_INVALID_MODE One of the following:

Invalid low power mode
Invalid DTC option for snooze mode
Invalid deep standby end sources
Invalid deep standby end sources
edges
Invalid power supply option for deep
standby
Invalid IO port option for deep
standby
Invalid output port state setting for
standby or deep standby
Invalid sources for wake from
standby mode
Invalid power supply option for
standby
Invalid IO port option for standby
Invalid standby end sources
Invalid standby end sources edges

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,845 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

◆ R_LPM_LowPowerReconfigure()

fsp_err_t R_LPM_LowPowerReconfigure (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg
)

Configure a low power mode

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
FSP_SUCCESS Low power mode successfuly applied

FSP_ERR_ASSERTION Null Pointer

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_UNSUPPORTED This MCU does not support Deep Software
Standby

FSP_ERR_INVALID_ARGUMENT One of the following:

Invalid snooze entry source
Invalid snooze end sources

FSP_ERR_INVALID_MODE One of the following:

Invalid low power mode
Invalid DTC option for snooze mode
Invalid deep standby end sources
Invalid deep standby end sources
edges
Invalid power supply option for deep
standby
Invalid IO port option for deep
standby
Invalid output port state setting for
standby or deep standby
Invalid sources for wake from
standby mode
Invalid power supply option for
standby
Invalid IO port option for standby
Invalid standby end sources
Invalid standby end sources edges

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,846 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

◆ R_LPM_LowPowerModeEnter()

fsp_err_t R_LPM_LowPowerModeEnter (lpm_ctrl_t *const p_api_ctrl)

Enter low power mode (sleep/deep sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
FSP_SUCCESS Successful.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_INVALID_MODE One of the following:

HOCO was not system clock when
using snooze mode with SCI0/RXD0.
HOCO was not stable when using
snooze mode with SCI0/RXD0.
MOCO was running when using
snooze mode with SCI0/RXD0.
MAIN OSCILLATOR was running
when using snooze mode with
SCI0/RXD0.
PLL was running when using snooze
mode with SCI0/RXD0.
Unable to disable ocillator stop
detect when using standby or deep
standby.

◆ R_LPM_IoKeepClear()

fsp_err_t R_LPM_IoKeepClear (lpm_ctrl_t *const p_api_ctrl)

Clear the IOKEEP bit after deep software standby

Return values
FSP_SUCCESS DPSBYCR_b.IOKEEP bit cleared Successfully.

FSP_ERR_UNSUPPORTED Deep standby mode not supported on this
MCU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,847 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Power > Low Power Modes (r_lpm)

◆ R_LPM_Close()

fsp_err_t R_LPM_Close (lpm_ctrl_t *const p_api_ctrl)

Close the LPM Instance

Return values
FSP_SUCCESS LPM driver closed

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_ASSERTION Null Pointer

5.2.14 RTOS
Modules

Detailed Description

RTOS Modules.

Modules

Azure RTOS ThreadX Port (rm_threadx_port)

 ThreadX port for RA MCUs.

FreeRTOS Port (rm_freertos_port)

 FreeRTOS port for RA MCUs.

5.2.14.1 Azure RTOS ThreadX Port (rm_threadx_port)
Modules » RTOS

ThreadX port for RA MCUs.

Overview
Note

The ThreadX Port does not provide any interfaces to the user. Consult the ThreadX documentation at
https://docs.microsoft.com/en-us/azure/rtos/threadx/ for further information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,848 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/threadx/

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

Features

The RA ThreadX port supports the following features:

Standard ThreadX configurations
Hardware stack monitor

Configuration
Build Time Configurations for ThreadX

The following build time configurations are defined in fsp_cfg/azure/tx/tx_user.h:

Configuration Options Default Description

General

Custom tx_user.h Manual Entry Add a path to your
custom tx_user.h file. It
can be used to override
some or all of the
configurations defined
here, and to define
additional
configurations.

Error Checking Enabled
Disabled

Enabled The ThreadX basic API
error checking can be
bypassed by compiling
with the symbol TX_DIS
ABLE_ERROR_CHECKIN
G defined.

Max Priorities Value must be a
multiple of 32 and in
range 32 to 1024 or
empty

32 Define the priority
levels for ThreadX.
Legal values range
from 32 to 1024 and
MUST be evenly
divisible by 32.

Minimum Stack Value must be greater
than 0 or empty

200 Define the minimum
stack for a ThreadX
thread on this
processor. If the size
supplied during thread
creation is less than
this value, the thread
create call will return
an error.

Stack Filling Enabled
Disabled

Enabled Determine is stack
filling is enabled. By
default, ThreadX stack
filling is enabled, which
places an 0xEF pattern
in each byte of each

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,849 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

thread's stack. This is
used by debuggers
with ThreadX-
awareness and by the
ThreadX run-time stack
checking feature.

Preemption Threshold Enabled
Disabled

Disabled Determine if
preemption-threshold
should be disabled. By
default, preemption-
threshold is disabled. If
the application does
not use preemption-
threshold, it may be
disabled to reduce
code size and improve
performance.

Notify Callbacks Enabled
Disabled

Disabled Determine if the notify
callback option should
be disabled. By default,
notify callbacks are
disabled. If the
application does not
use notify callbacks,
they may be disabled
to reduce code size
and improve
performance.

Inline Thread Resume
Suspend

Enabled
Disabled

Disabled Determine if the
tx_thread_resume and
tx_thread_suspend
services should have
their internal code in-
line. This results in a
larger image, but
improves the
performance of the
thread resume and
suspend services.

Not Interruptable Enabled
Disabled

Disabled Determine if the
internal ThreadX code
is non-interruptable.
This results in smaller
code size and less
processing overhead,
but increases the
interrupt lockout time.

IAR Library Support Enabled
Disabled

Disabled Enable IAR library
support (IAR compiler
only). When IAR Library
Support is Enabled,
enable the linker option

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,850 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

--threaded_lib. In the
IAR IDE, this can be
enabled in Project >
Options > General
Options > Library
Configuration > Enable
thread support in
library.

BSD Support Enabled
Disabled

Disabled Defines TX_THREAD_EX
TENSION_1 to
bsd_err_no in order to
support NXD BSD.

FileX Pointer Enabled
Disabled

Enabled Determine if there is a
FileX pointer in the
thread control block.
By default, the pointer
is there for
legacy/backwards
compatibility. The
pointer must also be
there for applications
using FileX. Disable this
to save space in the
thread control block.

Timer

Timer Ticks Per Second Value must be greater
than 0 or empty

100 Define the number of
times the system timer
runs per second.
Default is 100 ticks per
second, which results
in a tick every 10ms.

Timer Thread Stack
Size

Value must be greater
than 0 or empty

1024 Define the system
timer thread's default
stack size and priority.
These are only
applicable if TX_TIMER_
PROCESS_IN_ISR is
disabled.

Timer Thread Priority Value must be greater
than 0 or empty

0 Define the system
timer thread's default
stack size and priority.
These are only
applicable if TX_TIMER_
PROCESS_IN_ISR is
disabled.

Timer Process In ISR Enabled
Disabled

Enabled Determine if timer
expirations (application
timers, timeouts, and
tx_thread_sleep calls
should be processed
within the a system

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,851 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

timer thread or directly
in the timer ISR. When
disabled, the timer
thread is used. When
enabled, timer
expiration processing is
done directly from the
timer ISR, thereby
eliminating the timer
thread control block,
stack, and context
switching to activate it.

Reactivate Inline Enabled
Disabled

Disabled Determine if in-line
timer reactivation
should be used within
the timer expiration
processing. By default,
this is disabled and a
function call is used.
When enabled,
reactivating is
performed in-line
resulting in faster timer
processing but slightly
larger code size.

Timer Enabled
Disabled

Enabled Determine if no timer
processing is required.
This option will help
eliminate the timer
processing when not
needed.

Trace

Event Trace Enabled
Disabled

Disabled Determine if the trace
event logging code
should be enabled. This
causes slight increases
in code size and
overhead, but provides
the ability to generate
system trace
information which is
available for viewing in
TraceX.

Trace Buffer Name Name must be a valid
C symbol

g_tx_trace_buffer Name of trace buffer
symbol, only used if
Event Trace is enabled.

Memory section for
Trace Buffer

Manual Entry .bss Specify the memory
section where the
Trace Buffer will be
allocated, only used if
Event Trace is enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,852 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

To view TraceX data,
export this buffer as
raw binary data to a
file (.trx extension
recommended) and
open it with Azure
RTOS TraceX.

Trace Buffer Size Value must be greater
than 0

65536 Trace buffer size in
bytes, only used if
Event Trace is enabled

Trace Buffer Number of
Registries

Value must be greater
than 0

30 Number of registries
available to TraceX,
only used if Event
Trace is enabled

Performance

Block Pool Performance
Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers block
pool performance
information.

Byte Pool Performance
Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers byte
pool performance
information.

Event Flags
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers event
flags performance
information.

Mutex Performance
Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers mutex
performance
information.

Queue Performance
Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers queue
performance
information.

Semaphore
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers
semaphore
performance
information.

Thread Performance
Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers
thread performance
information.

Timer Performance Info Enabled
Disabled

Disabled When enabled,
ThreadX gathers timer
performance
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,853 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

RA

Hardware Thread Stack
Monitoring

MCU Specific Options Use RA Hardware Stack
Monitors to monitor
thread stacks for
overflow. Not available
on MCUs that support
PSPLIM.

Interrupts

SysTick Interrupt
Priority

MCU Specific Options Select the Systick
interrupt priority.

Maximum Interrupt
Priority

MCU Specific Options The maximum priority
(lowest numerical
value) an interrupt can
have and use scheduler
services. Interrupts
with higher priority can
interrupt most
scheduler critical
sections. Setting this to
Priority 0 (highest)
disables this feature.
This feature is not
available on MCUs that
do not have the
BASEPRI register.

Clock Configuration

The ThreadX port uses the SysTick timer as the system clock. The timer rate is configured in the
ThreadX component under General > Timer Ticks Per Second.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Interrupt Priorities

When no threads are ready to run, the ThreadX port spins in the PendSV_Handler, which is fixed at
the lowest interrupt priority. The MCU does not service any other interrupts of the lowest priority
while no threads are ready to run.

To get around this limitation, the application can create an idle thread that is always ready to run. If
the idle thread enters a lower power mode, make sure all interrupts that are required to resume the
scheduler can wake the MCU in the configured power mode. If the application expects to wake after
a certain number of ticks, the idle thread should not enter standby mode because the SysTick cannot
wake the MCU from standby mode. See Low Power Modes (r_lpm) for more information regarding low
power modes.

Warning
Do not attempt to wake a thread from an interrupt with the lowest available interrupt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,854 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

priority unless the application has created an idle thread.

Hardware Stack Monitor

The hardware stack monitor generates an NMI if the PSP goes out of the memory area for the stack
allocated for the current thread. A callback can be registered using R_BSP_GroupIrqWrite() to be
called whenever a stack overflow or underflow of the PSP for a particular thread is detected.

Low Power Modes

The idle processing executes WFI() when no thread is ready to run. If the MCU is configured to enter
software standby mode or deep software standby mode when the idle processing executes WFI(),
the RA ThreadX port changes the low power mode to sleep mode so the idle processing can wake
from SysTick. The low power mode settings are restored when the MCU wakes from sleep mode.

TrustZone Integration

When using an RTOS in a TrustZone project, Arm recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the thread has allocated a secure context
(using tx_thread_secure_stack_allocate).

The secure context can be freed by deleting the thread or calling tx_thread_secure_stack_free.

Examples
Stack Monitor Example

This is an example of using the stack monitor in an application.

#if BSP_FEATURE_BSP_HAS_SP_MON

void stack_monitor_callback(bsp_grp_irq_t irq);

void stack_monitor_callback (bsp_grp_irq_t irq)

{

 FSP_PARAMETER_NOT_USED(irq);

 if (1U == R_MPU_SPMON->SP[0].CTL_b.ERROR)

 {

 /* Handle main stack monitor error here. */

 }

 if (1U == R_MPU_SPMON->SP[1].CTL_b.ERROR)

 {

 /* Handle process stack monitor error here. */

 }

}

void rm_threadx_port_stack_monitor_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,855 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

 /* Register a callback to be called when the stack goes outside the allocated stack

area. */

 R_BSP_GroupIrqWrite(BSP_GRP_IRQ_MPU_STACK, stack_monitor_callback);

}

#else

/* Allocate stack space to return from UsageFault. */

uint32_t g_stack_overflow_exception_stack[8] BSP_ALIGN_VARIABLE(BSP_STACK_ALIGNMENT)

BSP_PLACE_IN_SECTION(

 BSP_SECTION_STACK);

/* MCUs that do not have an SPMON stack monitor use PSPLIM to detect stack overflows.

When a stack overflow error

 * occurs, the UsageFault_Handler fires if it has been enabled. */

void UsageFault_Handler (void)

{

 register uint32_t cfsr = SCB->CFSR;

 if (cfsr & SCB_CFSR_STKOF_Msk)

 {

 /* Update PSP and PSPLIM to point to an exception stack frame allocated for stack

overflows. */

 register uint32_t * p_exception_stack_frame = (uint32_t *)

(&g_stack_overflow_exception_stack);

 __set_PSP((uint32_t) p_exception_stack_frame);

 __set_PSPLIM((uint32_t) p_exception_stack_frame);

 /* Clear XPSR, only set T-bit. */

 p_exception_stack_frame[7] = 1U << 24;

 /* Set PC to stack overflow error while loop. When execution returns from the

UsageFault, it will go to the

 * stack_overflow_error_occurred function. It cannot return to the location where

the fault occurred because

 * the MCU does not save the exception stack frame to the stack when a stack

overflow error occurs. */

 p_exception_stack_frame[6] = (uint32_t) stack_overflow_error_occurred;

 }

 /* Clear flags. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,856 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

 SCB->CFSR = cfsr;

}

/* This function is called from UsageFault_Handler after a stack overflow occurs. */

void stack_overflow_error_occurred (void)

{

 /* When recovering from a stack overflow, move the thread to a while(1) loop. */

 while (1)

 {

 /* Do nothing. */

 }

}

void rm_threadx_port_stack_monitor_example (void)

{

 /* Enable usage fault. */

 SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;

}

#endif

TrustZone Example

This is an example of calling tx_thread_secure_stack_allocate before calling any non-secure callable
functions in a thread.

extern TX_THREAD * _tx_thread_current_ptr;

void rm_threadx_port_trustzone_thread_example (void)

{

 /* When ThreadX is used in a non-secure TrustZone application,

tx_thread_secure_stack_allocate must be called prior

 * to calling any non-secure callable function in a thread. The first parameter is a

pointer to the thread control block.

 * This function can be called when the thread is created or in the thread before an

non-secure callable function is

 * called. The second parameter is unused in the FSP implementation. */

 UINT status = tx_thread_secure_stack_allocate(_tx_thread_current_ptr, 0);

 assert(TX_SUCCESS == status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,857 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > Azure RTOS ThreadX Port (rm_threadx_port)

 rm_threadx_port_nsc_function();

}

5.2.14.2 FreeRTOS Port (rm_freertos_port)
Modules » RTOS

FreeRTOS port for RA MCUs.

Overview
Note

The FreeRTOS Port does not provide any interfaces to the user. Consult the FreeRTOS documentation at
https://www.freertos.org/Documentation for further information.

Features

The RA FreeRTOS port supports the following features:

Standard FreeRTOS configurations
Hardware stack monitor

Configuration
Note

The FreeRTOS Port and libraries use printf by default when logging is enabled. printf requires a heap (BSP Tab
-> Properties -> RA Common -> Heap size (bytes)).

Build Time Configurations for all

The following build time configurations are defined in aws/FreeRTOSConfig.h:

Configuration Options Default Description

General

Custom
FreeRTOSConfig.h

Manual Entry Add a path to your
custom
FreeRTOSConfig.h file.
It can be used to
override some or all of
the configurations
defined here, and to
define additional
configurations.

Use Preemption Enabled
Disabled

Enabled Set to Enabled to use
the preemptive RTOS
scheduler, or Disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,858 / 5,560

https://www.freertos.org/Documentation

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

to use the cooperative
RTOS scheduler.

Use Port Optimised
Task Selection

Enabled
Disabled

Disabled Some FreeRTOS ports
have two methods of
selecting the next task
to execute - a generic
method, and a method
that is specific to that
port.

The Generic method:
Is used when Use Port
Optimized Task
Selection is set to 0, or
when a port specific
method is not
implemented.
Can be used with all
FreeRTOS ports.
Is completely written in
C, making it less
efficient than a port
specific method.
Does not impose a limit
on the maximum
number of available
priorities.

A port specific method:
Is not available for all
ports.
Is used when Use Port
Optimized Task
Selection is Enabled.
Relies on one or more
architecture specific
assembly instructions
(typically a Count
Leading Zeros [CLZ] or
equivalent instruction)
so can only be used
with the architecture
for which it was
specifically written.
Is more efficient than
the generic method.
Typically imposes a
limit of 32 on the
maximum number of
available priorities.

Use Tickless Idle Enabled
Disabled

Disabled Set Use Tickless Idle to
Enabled to use the low
power tickless mode,
or Disabled to keep the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,859 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

tick interrupt running
at all times. Low power
tickless
implementations are
not provided for all
FreeRTOS ports.

Cpu Clock Hz Manual Entry SystemCoreClock Enter the frequency in
Hz at which the
internal clock that
drives the peripheral
used to generate the
tick interrupt will be
executing - this is
normally the same
clock that drives the
internal CPU clock. This
value is required in
order to correctly
configure timer
peripherals.

Tick Rate Hz Value must be greater
than 0

1000 The frequency of the
RTOS tick interrupt.
The tick interrupt is
used to measure time.
Therefore a higher tick
frequency means time
can be measured to a
higher resolution.
However, a high tick
frequency also means
that the RTOS kernel
will use more CPU time
so be less efficient. The
RTOS demo
applications all use a
tick rate of 1000Hz.
This is used to test the
RTOS kernel and is
higher than would
normally be required.

More than one task can
share the same
priority. The RTOS
scheduler will share
processor time
between tasks of the
same priority by
switching between the
tasks during each RTOS
tick. A high tick rate
frequency will
therefore also have the
effect of reducing the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,860 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

'time slice' given to
each task.

Max Priorities Must be an integer and
greater than 0

5 The number of
priorities available to
the application tasks.
Any number of tasks
can share the same
priority.
Each available priority
consumes RAM within
the RTOS kernel so this
value should not be set
any higher than
actually required by
your application.

Minimal Stack Size Must be an integer and
greater than 0

128 The size of the stack
used by the idle task.
Generally this should
not be reduced from
the value set in the
FreeRTOSConfig.h file
provided with the
demo application for
the port you are using.
Like the stack size
parameter to the
xTaskCreate() and
xTaskCreateStatic()
functions, the stack
size is specified in
words, not bytes. If
each item placed on
the stack is 32-bits,
then a stack size of 100
means 400 bytes (each
32-bit stack item
consuming 4 bytes).

Max Task Name Len Must be an integer and
greater than 0

16 The maximum
permissible length of
the descriptive name
given to a task when
the task is created. The
length is specified in
the number of
characters including
the NULL termination
byte.

Use 16-bit Ticks Disabled Disabled Time is measured in
'ticks' - which is the
number of times the
tick interrupt has
executed since the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,861 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

RTOS kernel was
started. The tick count
is held in a variable of
type TickType_t.
Defining
configUSE_16_BIT_TICK
S as 1 causes
TickType_t to be
defined (typedef'ed) as
an unsigned 16bit type.
Defining
configUSE_16_BIT_TICK
S as 0 causes
TickType_t to be
defined (typedef'ed) as
an unsigned 32bit type.

Using a 16-bit type will
greatly improve
performance on 8- and
16-bit architectures,
but limits the
maximum specifiable
time period to 65535
'ticks'. Therefore,
assuming a tick
frequency of 250Hz,
the maximum time a
task can delay or block
when a 16bit counter is
used is 262 seconds,
compared to 17179869
seconds when using a
32-bit counter.

Idle Should Yield Enabled
Disabled

Enabled This parameter
controls the behaviour
of tasks at the idle
priority. It only has an
effect if:
The preemptive
scheduler is being
used.
The application creates
tasks that run at the
idle priority.
If Use Time Slicing is
Enabled then tasks that
share the same priority
will time slice. If none
of the tasks get
preempted then it
might be assumed that
each task at a given
priority will be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,862 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

allocated an equal
amount of processing
time - and if the
priority is above the
idle priority then this is
indeed the case.
When tasks share the
idle priority the
behaviour can be
slightly different. If Idle
Should Yield is Enabled
then the idle task will
yield immediately if
any other task at the
idle priority is ready to
run. This ensures the
minimum amount of
time is spent in the idle
task when application
tasks are available for
scheduling. This
behaviour can however
have undesirable
effects (depending on
the needs of your
application) as
depicted below:

The diagram above
shows the execution
pattern of four tasks
that are all running at
the idle priority. Tasks
A, B and C are
application tasks. Task
I is the idle task. A
context switch occurs
with regular period at
times T0, T1, ..., T6.
When the idle task
yields task A starts to
execute - but the idle
task has already
consumed some of the
current time slice. This
results in task I and
task A effectively
sharing the same time
slice. The application
tasks B and C therefore
get more processing
time than the
application task A.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,863 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

This situation can be
avoided by:

If appropriate, using an
idle hook in place of
separate tasks at the
idle priority.
Creating all application
tasks at a priority
greater than the idle
priority.
Setting Idle Should
Yield to Disabled.
Setting Idle Should
Yield to Disabled
prevents the idle task
from yielding
processing time until
the end of its time
slice. This ensure all
tasks at the idle
priority are allocated
an equal amount of
processing time (if
none of the tasks get
pre-empted) - but at
the cost of a greater
proportion of the total
processing time being
allocated to the idle
task.

Use Task Notifications Enabled
Disabled

Enabled Setting Use Task
Notifications to Enabled
will include direct to
task notification
functionality and its
associated API in the
build.
Setting Use Task
Notifications to
Disabled will exclude
direct to task
notification
functionality and its
associated API from the
build.

Each task consumes 8
additional bytes of RAM
when direct to task
notifications are
included in the build.

Task Notification Array
Entries

Must be an integer and
greater than 0

1 Set the Task
Notifications Array

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,864 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

Entries to enter the
size of array needed

Use Mutexes Enabled
Disabled

Disabled Set to Enabled to
include mutex
functionality in the
build, or Disabled to
omit mutex
functionality from the
build. Readers should
familiarise themselves
with the differences
between mutexes and
binary semaphores in
relation to the
FreeRTOS functionality.

Use Recursive Mutexes Enabled
Disabled

Disabled Set to Enabled to
include recursive
mutex functionality in
the build, or Disabled
to omit recursive
mutex functionality
from the build.

Use Counting
Semaphores

Enabled
Disabled

Enabled Set to Enabled to
include counting
semaphore
functionality in the
build, or Disabled to
omit counting
semaphore
functionality from the
build.

Queue Registry Size Value must be positive
integer greater than or
equal to 0

10 The queue registry has
two purposes, both of
which are associated
with RTOS kernel
aware debugging:
It allows a textual
name to be associated
with a queue for easy
queue identification
within a debugging
GUI.
It contains the
information required by
a debugger to locate
each registered queue
and semaphore.
The queue registry has
no purpose unless you
are using a RTOS
kernel aware
debugger. Registry

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,865 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

Size defines the
maximum number of
queues and
semaphores that can
be registered. Only
those queues and
semaphores that you
want to view using a
RTOS kernel aware
debugger need be
registered. See the API
reference
documentation for
vQueueAddToRegistry(
) and vQueueUnregiste
rQueue() for more
information.

Use Queue Sets Enabled
Disabled

Disabled Set to Enabled to
include queue set
functionality (the
ability to block, or
pend, on multiple
queues and
semaphores), or
Disabled to omit queue
set functionality.

Use Time Slicing Enabled
Disabled

Disabled If Use Time Slicing is
Enabled, FreeRTOS
uses prioritised
preemptive scheduling
with time slicing. That
means the RTOS
scheduler will always
run the highest priority
task that is in the
Ready state, and will
switch between tasks
of equal priority on
every RTOS tick
interrupt. If Use Time
Slicing is Disabled then
the RTOS scheduler will
still run the highest
priority task that is in
the Ready state, but
will not switch between
tasks of equal priority
just because a tick
interrupt has occurred.

Use Newlib Reentrant Enabled
Disabled

Disabled If Use Newlib Reentrant
is Enabled then a
newlib reent structure
will be allocated for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,866 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

each created task.
Note Newlib support
has been included by
popular demand, but is
not used by the
FreeRTOS maintainers
themselves. FreeRTOS
is not responsible for
resulting newlib
operation. User must
be familiar with newlib
and must provide
system-wide
implementations of the
necessary stubs. Be
warned that (at the
time of writing) the
current newlib design
implements a system-
wide malloc() that must
be provided with locks.

Enable Backward
Compatibility

Enabled
Disabled

Disabled The FreeRTOS.h header
file includes a set of
#define macros that
map the names of data
types used in versions
of FreeRTOS prior to
version 8.0.0 to the
names used in
FreeRTOS version
8.0.0. The macros
allow application code
to update the version
of FreeRTOS they are
built against from a pre
8.0.0 version to a post
8.0.0 version without
modification. Setting
Enable Backward
Compatibility to
Disabled in
FreeRTOSConfig.h
excludes the macros
from the build, and in
so doing allowing
validation that no pre
version 8.0.0 names
are being used.

Num Thread Local
Storage Pointers

Value must be positive
integer greater than or
equal to 0

5 Sets the number of
indexes in each task's
thread local storage
array.

Stack Depth Type Manual Entry uint32_t Sets the type used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,867 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

specify the stack depth
in calls to
xTaskCreate(), and
various other places
stack sizes are used
(for example, when
returning the stack
high water mark).
Older versions of
FreeRTOS specified
stack sizes using
variables of type
UBaseType_t, but that
was found to be too
restrictive on 8-bit
microcontrollers. Stack
Depth Type removes
that restriction by
enabling application
developers to specify
the type to use.

Message Buffer Length
Type

Manual Entry size_t FreeRTOS Message
buffers use variables of
type Message Buffer
Length Type to store
the length of each
message. If Message
Buffer Length Type is
not defined then it will
default to size_t. If the
messages stored in a
message buffer will
never be larger than
255 bytes then defining
Message Buffer Length
Type to uint8_t will
save 3 bytes per
message on a 32-bit
microcontroller.
Likewise if the
messages stored in a
message buffer will
never be larger than
65535 bytes then
defining Message
Buffer Length Type to
uint16_t will save 2
bytes per message on
a 32-bit
microcontroller.

Library Max Syscall
Interrupt Priority

MCU Specific Options The highest interrupt
priority that can be
used by any interrupt
service routine that

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,868 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

makes calls to interrupt
safe FreeRTOS API
functions. DO NOT
CALL INTERRUPT SAFE
FREERTOS API
FUNCTIONS FROM ANY
INTERRUPT THAT HAS
A HIGHER PRIORITY
THAN THIS! (higher
priorities are lower
numeric values)

Below is explanation
for macros that are set
based on this value
from FreeRTOS
website.

In the RA port, configKE
RNEL_INTERRUPT_PRIO
RITY is not used and
the kernel runs at the
lowest priority.

Note in the following
discussion that only API
functions that end in
"FromISR" can be
called from within an
interrupt service
routine.

configMAX_SYSCALL_IN
TERRUPT_PRIORITY
sets the highest
interrupt priority from
which interrupt safe
FreeRTOS API functions
can be called.

A full interrupt nesting
model is achieved by
setting configMAX_SYS
CALL_INTERRUPT_PRIO
RITY above (that is, at
a higher priority level)
than configKERNEL_INT
ERRUPT_PRIORITY. This
means the FreeRTOS
kernel does not
completely disable
interrupts, even inside
critical sections.
Further, this is
achieved without the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,869 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

disadvantages of a
segmented kernel
architecture.

Interrupts that do not
call API functions can
execute at priorities
above configMAX_SYSC
ALL_INTERRUPT_PRIORI
TY and therefore never
be delayed by the
RTOS kernel execution.

A special note for Arm
Cortex-M users: Please
read the page
dedicated to interrupt
priority settings on Arm
Cortex-M devices. As a
minimum, remember
that Arm Cortex-M
cores use numerically
low priority numbers to
represent HIGH priority
interrupts, which can
seem counter-intuitive
and is easy to forget! If
you wish to assign an
interrupt a low priority
do NOT assign it a
priority of 0 (or other
low numeric value) as
this can result in the
interrupt actually
having the highest
priority in the system -
and therefore
potentially make your
system crash if this
priority is above config
MAX_SYSCALL_INTERR
UPT_PRIORITY.

The lowest priority on a
Arm Cortex-M core is in
fact 255 - however
different Arm Cortex-M
vendors implement a
different number of
priority bits and supply
library functions that
expect priorities to be
specified in different
ways. For example, on
the RA6M3 the lowest

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,870 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

priority you can specify
is 15 - and the highest
priority you can specify
is 0.

Assert Manual Entry assert(x) The semantics of the
configASSERT() macro
are the same as the
standard C assert()
macro. An assertion is
triggered if the
parameter passed into
configASSERT() is zero.
configASSERT() is
called throughout the
FreeRTOS source files
to check how the
application is using
FreeRTOS. It is highly
recommended to
develop FreeRTOS
applications with
configASSERT()
defined.

The example definition
(shown at the top of
the file and replicated
below) calls
vAssertCalled(),
passing in the file
name and line number
of the triggering
configASSERT() call
(__FILE__ and __LINE__
are standard macros
provided by most
compilers). This is just
for demonstration as
vAssertCalled() is not a
FreeRTOS function,
configASSERT() can be
defined to take
whatever action the
application writer
deems appropriate.

It is normal to define
configASSERT() in such
a way that it will
prevent the application
from executing any
further. This if for two
reasons; stopping the
application at the point

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,871 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

of the assertion allows
the cause of the
assertion to be
debugged, and
executing past a
triggered assertion will
probably result in a
crash anyway.

Note defining
configASSERT() will
increase both the
application code size
and execution time.
When the application is
stable the additional
overhead can be
removed by simply
commenting out the
configASSERT()
definition in
FreeRTOSConfig.h.

/* Define
configASSERT() to call
vAssertCalled() if the
assertion fails. The
assertion
has failed if the value
of the parameter
passed into
configASSERT() equals
zero. */
#define configASSERT(
(x)) if((x) == 0)
vAssertCalled(__FILE__,
__LINE__)
If running FreeRTOS
under the control of a
debugger, then
configASSERT() can be
defined to just disable
interrupts and sit in a
loop, as demonstrated
below. That will have
the effect of stopping
the code on the line
that failed the assert
test - pausing the
debugger will then
immediately take you
to the offending line so
you can see why it
failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,872 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

/* Define
configASSERT() to
disable interrupts and
sit in a loop. */
#define configASSERT(
(x)) if((x) == 0) { t
askDISABLE_INTERRUP
TS(); for(;;); }

Include Application
Defined Privileged
Functions

Enabled
Disabled

Disabled Include Application
Defined Privileged
Functions is only used
by FreeRTOS MPU.
If Include Application
Defined Privileged
Functions is Enabled
then the application
writer must provide a
header file called "appli
cation_defined_privileg
ed_functions.h", in
which functions the
application writer
needs to execute in
privileged mode can be
implemented. Note
that, despite having a
.h extension, the
header file should
contain the
implementation of the
C functions, not just
the functions'
prototypes.

Functions implemented
in "application_defined
_privileged_functions.h
" must save and
restore the processor's
privilege state using
the prvRaisePrivilege()
function and
portRESET_PRIVILEGE()
macro respectively. For
example, if a library
provided print function
accesses RAM that is
outside of the control
of the application
writer, and therefore
cannot be allocated to
a memory protected
user mode task, then
the print function can

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,873 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

be encapsulated in a
privileged function
using the following
code:

void MPU_debug_printf(
const char *pcMessage
)
{
/* State the privilege
level of the processor
when the function was
called. */
BaseType_t
xRunningPrivileged =
prvRaisePrivilege();

/* Call the library
function, which now
has access to all RAM.
*/
debug_printf(
pcMessage);

/* Reset the processor
privilege level to its
original value. */
portRESET_PRIVILEGE(
xRunningPrivileged);
}
This technique should
only be use during
development, and not
deployment, as it
circumvents the
memory protection.

Hooks

Use Idle Hook Enabled
Disabled

Enabled Set to Enabled if you
wish to use an idle
hook, or Disabled to
omit an idle hook.

Use Malloc Failed Hook Enabled
Disabled

Disabled The kernel uses a call
to pvPortMalloc() to
allocate memory from
the heap each time a
task, queue or
semaphore is created.
The official FreeRTOS
download includes four
sample memory
allocation schemes for
this purpose. The
schemes are

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,874 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

implemented in the
heap_1.c, heap_2.c,
heap_3.c, heap_4.c and
heap_5.c source files
respectively. Use
Malloc Failed Hook is
only relevant when one
of these three sample
schemes is being used.
The malloc() failed
hook function is a hook
(or callback) function
that, if defined and
configured, will be
called if pvPortMalloc()
ever returns NULL.
NULL will be returned
only if there is
insufficient FreeRTOS
heap memory
remaining for the
requested allocation to
succeed.

If Use Malloc Failed
Hook is Enabled then
the application must
define a malloc() failed
hook function. If Use
Malloc Failed Hook is
set to Dosab;ed then
the malloc() failed hook
function will not be
called, even if one is
defined. Malloc() failed
hook functions must
have the name and
prototype shown
below.

void vApplicationMalloc
FailedHook(void);

Use Daemon Task
Startup Hook

Enabled
Disabled

Disabled If Use Timers and Use
Daemon Task Startup
Hook are both Enabled
then the application
must define a hook
function that has the
exact name and
prototype as shown
below. The hook
function will be called
exactly once when the
RTOS daemon task

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,875 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

(also known as the
timer service task)
executes for the first
time. Any application
initialisation code that
needs the RTOS to be
running can be placed
in the hook function.
void void vApplicationD
aemonTaskStartupHoo
k(void);

Use Tick Hook Enabled
Disabled

Disabled Set to Enabled if you
wish to use an tick
hook, or Disabled to
omit an tick hook.

Check For Stack
Overflow

Enabled
Disabled

Disabled The stack overflow
detection page
describes the use of
this parameter. This is
not recommended for
RA MCUs with
hardware stack monitor
support. RA MCU
designs should enable
the RA hardware stack
monitor instead.

Stats

Use Trace Facility Enabled
Disabled

Disabled Set to Enabled if you
wish to include
additional structure
members and functions
to assist with execution
visualisation and
tracing.

Use Stats Formatting
Functions

Enabled
Disabled

Disabled Set Use Trace Facility
and Use Stats
Formatting Functions
to Enabled to include
the vTaskList() and vTa
skGetRunTimeStats()
functions in the build.
Setting either to
Disabled will omit
vTaskList() and vTaskG
etRunTimeStates()
from the build.

Generate Run Time
Stats

Enabled
Disabled

Disabled The Run Time Stats
page describes the use
of this parameter.

Memory Allocation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,876 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

Clear Memory on Free Enabled
Disabled

Disabled If set to 1, then blocks
of memory allocated
using pvPortMalloc()
will be cleared when
freed using vPortFree()

Support Static
Allocation

Enabled
Disabled

Enabled If Support Static
Allocation is Enabled
then RTOS objects can
be created using RAM
provided by the
application writer.
If Support Static
Allocation is Disabled
then RTOS objects can
only be created using
RAM allocated from the
FreeRTOS heap.

If Support Static
Allocation is left
undefined it will default
to 0.

If Support Static
Allocation is Enabled
then the application
writer must also
provide two callback
functions: vApplication
GetIdleTaskMemory()
to provide the memory
for use by the RTOS
Idle task, and (if Use
Timers is Enabled) vAp
plicationGetTimerTask
Memory() to provide
memory for use by the
RTOS Daemon/Timer
Service task. Examples
are provided below.

/* Support Static
Allocation is Enabled,
so the application must
provide an
implementation of vAp
plicationGetIdleTaskMe
mory() to provide the
memory that is
used by the Idle task. */
void vApplicationGetIdl
eTaskMemory(
StaticTask_t **ppxIdleT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,877 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

askTCBBuffer,

StackType_t **ppxIdleT
askStackBuffer,

uint32_t
*pulIdleTaskStackSize)
{
/* If the buffers to be
provided to the Idle
task are declared
inside this
function then they
must be declared static
- otherwise they will be
allocated on
the stack and so not
exists after this
function exits. */
static StaticTask_t
xIdleTaskTCB;
static StackType_t
uxIdleTaskStack[config
MINIMAL_STACK_SIZE];

/* Pass out a pointer to
the StaticTask_t
structure in which the
Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer
=

/* Pass out the array
that will be used as the
Idle task's stack. */
*ppxIdleTaskStackBuffe
r = uxIdleTaskStack;

/* Pass out the size of
the array pointed to by
*ppxIdleTaskStackBuffe
r.
Note that, as the array
is necessarily of type
StackType_t,
configMINIMAL_STACK_
SIZE is specified in
words, not bytes. */
*pulIdleTaskStackSize
= configMINIMAL_STAC
K_SIZE;
}
/*------------------------------
-----------------------------*/

/* Support Static

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,878 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

Allocation and Use
Timers are both
Enabled, so the
application must
provide an
implementation of vAp
plicationGetTimerTask
Memory()
to provide the memory
that is used by the
Timer service task. */
void vApplicationGetTi
merTaskMemory(
StaticTask_t **ppxTime
rTaskTCBBuffer,

StackType_t **ppxTime
rTaskStackBuffer,

uint32_t
*pulTimerTaskStackSiz
e)
{
/* If the buffers to be
provided to the Timer
task are declared
inside this
function then they
must be declared static
- otherwise they will be
allocated on
the stack and so not
exists after this
function exits. */
static StaticTask_t
xTimerTaskTCB;
static StackType_t
uxTimerTaskStack[con
figTIMER_TASK_STACK_
DEPTH];

/* Pass out a pointer to
the StaticTask_t
structure in which the
Timer
task's state will be
stored. */
*ppxTimerTaskTCBBuff
er =

/* Pass out the array
that will be used as the
Timer task's stack. */
*ppxTimerTaskStackBu
ffer =
uxTimerTaskStack;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,879 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

/* Pass out the size of
the array pointed to by
*ppxTimerTaskStackBu
ffer.
Note that, as the array
is necessarily of type
StackType_t,
configTIMER_TASK_STA
CK_DEPTH is specified
in words, not bytes. */
*pulTimerTaskStackSiz
e = configTIMER_TASK_
STACK_DEPTH;
}

Examples of the
callback functions that
must be provided by
the application to
supply the RAM used
by the Idle and Timer
Service tasks if Support
Static Allocation
is Enabled.

See the Static Vs
Dynamic Memory
Allocation page for
more information.

Support Dynamic
Allocation

Enabled
Disabled

Disabled If Support Dynamic
Allocation is Enabled
then RTOS objects can
be created using RAM
that is automatically
allocated from the
FreeRTOS heap.
If Support Dynamic
Allocation is set to 0
then RTOS objects can
only be created using
RAM provided by the
application writer.

See the Static Vs
Dynamic Memory
Allocation page for
more information.

Total Heap Size Value must be positive
integer greater than or
equal to 0

1024 The total amount of
RAM available in the
FreeRTOS heap.
This value will only be
used if Support
Dynamic Allocation is
Enabled and the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,880 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

application makes use
of one of the sample
memory allocation
schemes provided in
the FreeRTOS source
code download. See
the memory
configuration section
for further details.

Application Allocated
Heap

Enabled
Disabled

Disabled By default the
FreeRTOS heap is
declared by FreeRTOS
and placed in memory
by the linker. Setting
Application Allocated
Heap to Enabled allows
the heap to instead be
declared by the
application writer,
which allows the
application writer to
place the heap
wherever they like in
memory.
If heap_1.c, heap_2.c or
heap_4.c is used, and
Application Allocated
Heap is Enabled, then
the application writer
must provide a uint8_t
array with the exact
name and dimension
as shown below. The
array will be used as
the FreeRTOS heap.
How the array is placed
at a specific memory
location is dependent
on the compiler being
used - refer to your
compiler's
documentation.

uint8_t ucHeap[
configTOTAL_HEAP_SIZ
E];

Timers

Use Timers Enabled
Disabled

Enabled Set to Enabled to
include software timer
functionality, or
Disabled to omit
software timer
functionality. See the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,881 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

FreeRTOS software
timers page for a full
description.

Timer Task Priority Value must be positive
integer greater than or
equal to 0

3 Sets the priority of the
software timer
service/daemon task.
See the FreeRTOS
software timers page
for a full description.

Timer Queue Length Value must be a non-
negative integer

10 Sets the length of the
software timer
command queue. See
the FreeRTOS software
timers page for a full
description.

Timer Task Stack
Depth

Value must be a non-
negative integer

128 Sets the stack depth
allocated to the
software timer
service/daemon task.
See the FreeRTOS
software timers page
for a full description.

Optional Functions

vTaskPrioritySet()
Function

Enabled
Disabled

Enabled Include
vTaskPrioritySet()
function in build

uxTaskPriorityGet()
Function

Enabled
Disabled

Enabled Include
uxTaskPriorityGet()
function in build

vTaskDelete() Function Enabled
Disabled

Enabled Include vTaskDelete()
function in build

vTaskSuspend()
Function

Enabled
Disabled

Enabled Include
vTaskSuspend()
function in build

xResumeFromISR()
Function

Enabled
Disabled

Enabled Include
xResumeFromISR()
function in build

vTaskDelayUntil()
Function

Enabled
Disabled

Enabled Include
vTaskDelayUntil()
function in build

vTaskDelay() Function Enabled
Disabled

Enabled Include vTaskDelay()
function in build

xTaskGetSchedulerStat
e() Function

Enabled
Disabled

Enabled Include xTaskGetSched
ulerState() function in
build

xTaskGetCurrentTaskH
andle() Function

Enabled
Disabled

Enabled Include xTaskGetCurre
ntTaskHandle()

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,882 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

function in build

uxTaskGetStackHighW
aterMark() Function

Enabled
Disabled

Disabled Include uxTaskGetStac
kHighWaterMark()
function in build

xTaskGetIdleTaskHandl
e() Function

Enabled
Disabled

Disabled Include xTaskGetIdleTa
skHandle() function in
build

eTaskGetState()
Function

Enabled
Disabled

Disabled Include
eTaskGetState()
function in build

xEventGroupSetBitFro
mISR() Function

Enabled
Disabled

Enabled Include xEventGroupSe
tBitFromISR() function
in build

xTimerPendFunctionCal
l() Function

Enabled
Disabled

Disabled Include xTimerPendFun
ctionCall() function in
build

xTaskAbortDelay()
Function

Enabled
Disabled

Disabled Include
xTaskAbortDelay()
function in build

xTaskGetHandle()
Function

Enabled
Disabled

Disabled Include
xTaskGetHandle()
function in build

xTaskResumeFromISR()
Function

Enabled
Disabled

Enabled Include
xTaskResumeFromISR()
function in build

RA

Hardware Stack
Monitor

Enabled
Disabled

Disabled Include RA stack
monitor

Logging

Print String Function Manual Entry vLoggingPrint(x)

Logging Include Time
and Task Name

Disabled
Enabled

Disabled

Debug Logging Name Manual Entry Log Name

Logging Level LOG_NONE
LOG_ERROR
LOG_WARN
LOG_INFO
LOG_DEBUG

LOG_NONE Set the logging level

Clock Configuration

The FreeRTOS port uses the SysTick timer as the system clock. The timer rate is configured in the
FreeRTOS component under General > Tick Rate Hz.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,883 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

This module does not use I/O pins.

Usage Notes
Hardware Stack Monitor (PSPLIM)

A UsageFault is generated if PSP goes out of the memory area for the stack allocated for the current
task. If UsageFault is not enabled, it is escalated to HardFault.

Hardware Stack Monitor (SPMON)

The hardware stack monitor generates an NMI if the PSP goes out of the memory area for the stack
allocated for the current task. A callback can be registered using R_BSP_GroupIrqWrite() to be called
whenever a stack overflow or underflow of the PSP for a particular thread is detected.

Stack Monitor Underflow Detection

By default the hardware stack monitor only checks for overflow of the process stack. To check for
underflow define configRECORD_STACK_HIGH_ADDRESS as 1 on the command line.

Low Power Modes

When FreeRTOS is configured to use tickless idle, the idle task executes WFI() when no task is ready
to run. If the MCU is configured to enter software standby mode or deep software standby mode
when the idle task executes WFI(), the RA FreeRTOS port changes the low power mode to sleep
mode so the idle task can wake from SysTick. The low power mode settings are restored when the
MCU wakes from sleep mode.

TrustZone Integration

When using an RTOS in a TrustZone project, Arm recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the task has allocated a secure context (using
portALLOCATE_SECURE_CONTEXT).

The secure context can be freed by deleting the thread or using the portCLEAN_UP_TCB(pxTCB)
macro.

Examples
Stack Monitor Example

This is an example of using the stack monitor in an application.

#if BSP_FEATURE_BSP_HAS_SP_MON

void stack_monitor_callback (bsp_grp_irq_t irq)

{

 FSP_PARAMETER_NOT_USED(irq);

 if (1U == R_MPU_SPMON->SP[0].CTL_b.ERROR)

 {

 /* Handle main stack monitor error here. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,884 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

 }

 if (1U == R_MPU_SPMON->SP[1].CTL_b.ERROR)

 {

 /* Handle process stack monitor error here. */

 }

}

void rm_freertos_port_stack_monitor_example (void)

{

 /* Register a callback to be called when the stack goes outside the allocated stack

area. */

 R_BSP_GroupIrqWrite(BSP_GRP_IRQ_MPU_STACK, stack_monitor_callback);

}

#else

/* Allocate stack space to return from UsageFault. */

uint32_t g_stack_overflow_exception_stack[8] BSP_ALIGN_VARIABLE(BSP_STACK_ALIGNMENT)

BSP_PLACE_IN_SECTION(

 BSP_SECTION_STACK);

/* MCUs that do not have an SPMON stack monitor use PSPLIM to detect stack overflows.

When a stack overflow error

 * occurs, the UsageFault_Handler fires if it has been enabled. */

void UsageFault_Handler (void)

{

 register uint32_t cfsr = SCB->CFSR;

 if (cfsr & SCB_CFSR_STKOF_Msk)

 {

 /* Update PSP and PSPLIM to point to an exception stack frame allocated for stack

overflows. */

 register uint32_t * p_exception_stack_frame = (uint32_t *)

(&g_stack_overflow_exception_stack);

 __set_PSP((uint32_t) p_exception_stack_frame);

 __set_PSPLIM((uint32_t) p_exception_stack_frame);

 /* Clear XPSR, only set T-bit. */

 p_exception_stack_frame[7] = 1U << 24;

 /* Set PC to stack overflow error while loop. When execution returns from the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,885 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

UsageFault, it will go to the

 * stack_overflow_error_occurred function. It cannot return to the location where

the fault occurred because

 * the MCU does not save the exception stack frame to the stack when a stack

overflow error occurs. */

 p_exception_stack_frame[6] = (uint32_t) stack_overflow_error_occurred;

 }

 /* Clear flags. */

 SCB->CFSR = cfsr;

}

/* This function is called from UsageFault_Handler after a stack overflow occurs. */

void stack_overflow_error_occurred (void)

{

 /* When recovering from a stack overflow, move the task to a while(1) loop. */

 while (1)

 {

 /* Do nothing. */

 }

}

void rm_freertos_port_stack_monitor_example (void)

{

 /* Enable usage fault. */

 SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;

}

#endif

TrustZone Example

This is an example of calling portALLOCATE_SECURE_CONTEXT before calling any non-secure callable
functions in a task.

void rm_freertos_port_trustzone_task_example (void)

{

 /* When FreeRTOS is used in a non-secure TrustZone application,

portALLOCATE_SECURE_CONTEXT must be called prior

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,886 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS > FreeRTOS Port (rm_freertos_port)

 * to calling any non-secure callable function in a task. The parameter is unused in

the FSP implementation. */

 portALLOCATE_SECURE_CONTEXT(0);

 rm_freertos_port_nsc_function();

}

5.2.15 Security
Modules

Detailed Description

Security Modules.

Modules

AWS Device Provisioning

 AWS Device Provisioning example software.

Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 Hardware acceleration for the Netx Crypto implementation of the
Microsoft Azure RTOS NetX Crypto API.

Mbed Crypto H/W Acceleration (rm_psa_crypto)

 Hardware acceleration for the mbedCrypto implementation of the
Arm PSA Crypto API.

Renesas Secure IP (r_rsip_protected)

 Driver for the Renesas Secure IP on RA MPUs. This module
implements the RSIP Interface.

SCE Protected Mode

 Driver for the Secure Crypto Engine (SCE9) on RA MCUs.

Secure Crypto Engine (r_sce_protected_cavp)

 Driver for the CAVP Certified Secure Crypto Engine (SCE) on RA
MCUs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,887 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security

Secure Key Injection (r_rsip_key_injection)

 Driver for the Secure Key Injection on RA MCUs.

Secure Key Injection (r_sce_key_injection)

 Driver for the Secure Key Injection on RA MCUs.

TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 AES128 Hardware acceleration for TinyCrypt on the RA2 family.

5.2.15.1 AWS Device Provisioning
Modules » Security

AWS Device Provisioning example software.

Overview
Terminology

The terminology defined below will be used in the following sections.

Term Description

Service Provider Entity that provides the cloud infrastructure and
associated services, for example, AWS/Azure.

Device Manufacturer Entity that provides the MCU, for example,
Renesas.

OEM Entity that uses the MCU to create a product.

Customer End user of OEM product.

Device ID

For systems that intend to use Public Key Certificate (PKC), the Device ID is in the form of a key pair
(RSA or ECC). A PKC comprises of a public key, metadata, and finally a signature over all that. This
signature is generated by the entity that issues the certificate and is known as a CA (Certificate
Authority). The most common format for a public certificate is the X.509 format which is typically
PEM (base 64) encoded such that the certificate is human-readable. It can also be DER encoded
which is binary encoding and thus not human readable. The public key portion of the Device ID is
used for the Device Certificate.

Provisioning

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,888 / 5,560

https://tools.ietf.org/html/rfc5280#section-4.1

Flexible Software Package

User’s Manual
API Reference > Modules > Security > AWS Device Provisioning

Device Provisioning refers to the process by which a service provider links a certificate to a Device ID
and thus a device. Depending on the provisioning model, an existing certificate from the device may
be used or a new one will be issued at this stage. Provisioning (also referred to as Registration)
occurs with respect to a particular service provider, for example, AWS or Azure. It is necessary that
the certificate is issued by the service provider or a CA known to those providers. When a device is
provisioned with AWS for example, the AWS IoT service associates the Device ID (and thus the
device) with a specific certificate. The certificate will be programmed into the device and for all
future transactions with AWS, the certificate will be used as the means of identifying the device. The
public and private key are also stored on the MCU.

Provisioning Models

Provisioning services vary between service providers. There are essentially three general
provisioning models.

1. Provisioning happens on the production line. This requires the provisioning Infrastructure to
be present on the production line. This is the most secure model, but is expensive.

2. Devices are programmed with a shared credential that is linked into the code at build time
and the provisioning occurs when a customer uses the device for the first time. The shared
credential and a unique device serial number are used to uniquely identify the device
during the provisioning process. So long as the product only has the shared credential, it
will only operate with limited (as defined by certificate policy) functionality .Once the
provisioning is done, then the device will be fully functional. This is the most common use
case for consumer products where no sensitive information is being transmitted. AWS
provides an example of this model.

3. Devices have no identity programmed in the factory; provisioning occurs through some
other device like a smartphone which is already trusted by the service provider.

In all these cases, the Device Identity

1. Is unique to the device
2. Must have restricted access within the device
3. Can be used to issue more than one certificate and the certificates themselves have to be

updatable in the field.

AWS uses the PKCS11 API to erase, store and retrieve certificates. These PKCS11 functions (Write,
Read and Erase) are separated out into a Physical Abstraction Layer (PAL) which the OEM/Device
Manufacturer is expected to implement for the type of memory that they intend to use. The internal
rm_aws_pkcs11_pal_littlefs module implements these requirements on RA MCU data flash.

AWS Provisioning Example
AWS provides an example implementation to support device provisioning. This implementation uses
the PKCS11 API to store device credentials into the PKCS11 defined memory. The implementation
(aws_dev_mode_key_provisioning.c) exposes:

1. vAlternateKeyProvisioning()

This function requires that the device credentials be provided in PEM format. Using this example
function as is in production is not recommended.

Note vDevModeKeyProvisioning() is no longer supported.

Credentials can be created as follows: *Create your own CA and use that to generate the device

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,889 / 5,560

https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
https://aws.amazon.com/blogs/iot/provisioning-with-a-bootstrap-certificate-in-aws-iot-core/
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html

Flexible Software Package

User’s Manual
API Reference > Modules > Security > AWS Device Provisioning

certificate. This CA will have to be registered with the service provider with which the product will be
used, for example Register your CA with AWS.

Use AWS to generate the device certificate.

Examples
Basic Example

This is a basic example of provisioning a device using the AWS demo implementation.

#define keyCLIENT_CERTIFICATE_PEM \

 "-----BEGIN CERTIFICATE-----\n" \

 "MIIDETCCAfkCFHwd2yn8zn5qB2ChYUT9Mvbi9Xp1MA0GCSqGSIb3DQEBCwUAMEUx\n" \

 "CzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRl\n" \

 "cm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTkwOTExMjEyMjU0WhcNMjAwOTEwMjEy\n" \

 "MjU0WjBFMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE\n" \

 "CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOC\n" \

 "AQ8AMIIBCgKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCdqq59ubdRY9EiV3bleKXeqG7+8HgBHdm0X9dgq10nD37p00YLyuZLE9NM\n" \

 "066G/VcflGrx/Nzw+/UuI7/UuBbBS/3ppHRnsZqBIl8nnr/ULrFQy8z3vKtL1q3C\n" \

 "DxabjPONlPO2keJeTTA71N/RCEMwJoa8i0XKXGdu/hQo6x4n+Gq73fEiGCl99xsc\n" \

 "4tIO4yPS4lv+uXBzEUzoEy0CLIkiDesnT5lLeCyPmUNoU89HU95IusZT7kygCHHd\n" \

 "72am1ic3X8PKc268KT3ilr3VMhK67C+iIIkfrM5AiU+oOIRrIHSC/p0RigJg3rXA\n" \

 "GBIRHvt+OYF9fDeG7U4QDJNCfGW+\n" \

 "-----END CERTIFICATE-----"

#define keyCLIENT_PRIVATE_KEY_PEM \

 "-----BEGIN RSA PRIVATE KEY-----\n" \

 "MIIEowIBAAKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,890 / 5,560

https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html

Flexible Software Package

User’s Manual
API Reference > Modules > Security > AWS Device Provisioning

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABAoIBAQCGR2hC/ZVJhqIM\n" \

 "c2uuJZKpElpIIBBPOObZwwS3IYR4UUjzVgMn7UbbmxflLXD8lzfZU4YVp0vTH5lC\n" \

 "07qvYuXpHqtnj+GEok837VYCtUY9AuHeDM/2paV3awNV15E1PFG1Jd3pqnH7tJw6\n" \

 "VBZBDiGNNt1agN/UnoSlMfvpU0r8VGPXCBNxe3JY5QyBJPI1wF4LcxRI+eYmr7Ja\n" \

 "/cjn97DZotgz4B7gUNu8XIEkUOTwPabZINY1zcLWiXTMA+8qTniPVk653h14Xqt4\n" \

 "4o4D4YCTpwJcmxSV1m21/6+uyuXr9SIKAE+Ys2cYLA46x+rwLaW5fUoQ5hHa0Ytb\n" \

 "RYJ4SrtBAoGBANWtwlE69N0hq5xDPckSbNGubIeG8P4mBhGkJxIqYoqugGLMDiGX\n" \

 "4bltrjr2TPWaxTo3pPavLJiBMIsENA5KU+c/r0jLkxgEp9MIVJrtNgkCiDQqogBG\n" \

 "j4IJL2iQwXoLCqk2tx/dh9Mww+7SETE7EPNrv4UrYaGN5AEvpf5W+NHPAoGBAMQ6\n" \

 "wVa0Mx1PlA4enY2rfE3WXP8bzjleSOwR75JXqG2WbPC0/cszwbyPWOEqRpBZfvD/\n" \

 "QFkKx06xp1C09XwiQanr2gDucYXHeEKg/9iuJV1UkMQp95ojlhtSXdRZV7/l4pmN\n" \

 "fpB2vcAptX/4gY4tDrWMO08JNnRjE7duC+rmmk1hAoGAS4L0QLCNB/h2JOq+Uuhn\n" \

 "/FGfmOVfFPFrA6D3DbxcxpWUWVWzSLvb0SOphryzxbfEKyau7V5KbDp7ZSU/IC20\n" \

 "KOygjSEkAkDi7fjrrTRW/Cgg6g6G4YIOBO4qCtHdDbwJMHNdk6096qw5EZS67qLp\n" \

 "Apz5OZ5zChySjri/+HnTxJECgYBysGSP6IJ3fytplTtAshnU5JU2BWpi3ViBoXoE\n" \

 "bndilajWhvJO8dEqBB5OfAcCF0y6TnWtlT8oH21LHnjcNKlsRw0Dvllbd1oylybx\n" \

 "3da41dRG0sCEtoflMB7nHdDLt/DZDnoKtVvyFG6gfP47utn+Ahgn+Zp6K+46J3eP\n" \

 "s3g8AQKBgE/PJiaF8pbBXaZOuwRRA9GOMSbDIF6+jBYTYp4L9wk4+LZArKtyI+4k\n" \

 "Md2DUvHwMC+ddOtKqjYnLm+V5cSbvu7aPvBZtwxghzTUDcf7EvnA3V/bQBh3R0z7\n" \

 "pVsxTyGRmBSeLdbUWACUbX9LXdpudarPAJ59daWmP3mBEVmWdzUw\n" \

 "-----END RSA PRIVATE KEY-----"

void device_provisioning_example (void)

{

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 ProvisioningParams_t params;

 /* Provision device with provided credentials. The provided credentials are written

to data flash.

 * In production, the credentials can be provided over a comms channel instead of

being linked into the image.

 * The same example provisioning function, vAlternateKeyProvisioning, can be used in

that case. */

 params.pucClientPrivateKey = (uint8_t *) keyCLIENT_PRIVATE_KEY_PEM;

 params.pucClientCertificate = (uint8_t *) keyCLIENT_CERTIFICATE_PEM;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,891 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > AWS Device Provisioning

 params.ulClientPrivateKeyLength = 1 + strlen((const char *)

params.pucClientPrivateKey);

 params.ulClientCertificateLength = 1 + strlen((const char *)

params.pucClientCertificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 vAlternateKeyProvisioning(¶ms);

}

Limitations
The provisioning code is an example provided by AWS. It must be modified to meet product
requirements.

5.2.15.2 Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)
Modules » Security

Detailed Description

Hardware acceleration for the Netx Crypto implementation of the Microsoft Azure RTOS NetX Crypto
API.

Overview
Please refer to the NetXDuo - NetX Crypto documentation for further details.

HW Overview

Crypto Peripheral version Devices

SCE9 RA6M4, RA4M3, RA4M2, RA6M5

SCE7 RA6M3, RA6M2, RA6M1, RA6T1

SCE5 RA4W1, RA4M1

SCE5B RA6T2

AES Engine RA2A1, RA2E1, RA2E2, RA2L1

RSIP7 RA8M1

Note
NetX Crypto hardware acceleration is unsupported on 'SCE5' and 'AES Engine' crypto peripherals listed above.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,892 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/netx/netx-crypto/chapter1

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

Features

This module provides SCE9 hardware support for the following NetX Crypto operations

SHA256 calculation
SHA224 calculation
MAC Operations

HMAC with SHA224
HMAC with SHA256

AES
Keybits - 128, 192, 256

Encryption and Decryption.
Chaining Modes: CBC, CTR, GCM mode

AES Chaining Mode HW Acceleration

CBC Fully accelerated

CTR Fully accelerated

GCM Encrypt - Fully accelerated;
Decrypt - Only GHASH and block
cipher unit is HW accelerated

CCM Only block cipher unit is HW
accelerated

Random number generation
ECC

ECDSA: Supported Curves - SECP384R1, SECP256R1.
ECDH: Supported Curves - SECP384R1, SECP256R1.

RSA
Signature Generation - RSA 2048 (Plain or Wrapped private) key. (This can be used
for decryption)
Signature Verification - RSA 2048, RSA 3072 and RSA 4096 keys. (This can be used
for encryption)
Supported encoding scheme: PKCS1V15

This module provides SCE7 hardware support for the following NetX Crypto operations

SHA256 calculation
SHA224 calculation
AES

Keybits - 128, 192, 256
Encryption and Decryption.
Chaining Modes: CBC, CTR, GCM mode

AES Chaining Mode HW Acceleration

CBC Fully accelerated

CTR Fully accelerated

GCM Only block cipher unit is HW
accelerated

CCM Only block cipher unit is HW
accelerated

- ECC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,893 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

ECDSA: Supported Curves - SECP384R1, SECP256R1.
ECDH: Supported Curves - SECP384R1, SECP256R1.

RSA
Signature Generation - RSA 2048 (Plain or Wrapped private) key. (This can be used
for decryption)
Signature Verification - RSA 2048. (This can be used for encryption)
Supported encoding scheme: PKCS1V15

Configuration
Build Time Configurations for rm_netx_secure_crypto_sw_port

The following build time configurations are defined in
fsp_cfg/middleware/rm_netx_secure_crypto_cfg.h:

Configuration Options Default Description

Standalone Usage Use Standalone
Crypto Only
Use with TLS

Use Standalone Crypto
Only

Defines NX_CRYPTO_ST
ANDALONE_ENABLE.

Maximum RSA Modulus
size (bits)

1024
2048
3072
4096

4096

Build Time Configurations for rm_netx_secure_crypto

The following build time configurations are defined in
fsp_cfg/middleware/rm_netx_secure_crypto_cfg.h:

Configuration Options Default Description

Hardware Acceleration

Hardware Acceleration > Hash

SHA256/224 MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_SHA256_ALT.

Hardware Acceleration > Cipher

AES MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_AES_ALT

Hardware Acceleration > Public Key Cryptography (PKC)

Hardware Acceleration > Public Key Cryptography (PKC) > ECC

ECC MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_ECC_ALT

ECDSA Scratch Buffer
Size (Bytes)

Value must be an
integer

3016 Sets value of NX_CRYP
TO_ECDSA_SCRATCH_B
UFFER_SIZE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,894 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

ECDH Scratch Buffer
Size (Bytes)

Value must be an
integer

2464 Sets value of NX_CRYP
TO_ECDH_SCRATCH_BU
FFER_SIZE

Hardware Acceleration > Public Key Cryptography (PKC) > RSA

RSA MCU Specific Options Enables/Disables RSA
HW support

RSA 2048 (HW) MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_RSA_2048_AL
T to allow HW support

RSA 3072
Verify/Encryption (HW)

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_RSA_3072_AL
T to allow HW support

RSA 4096
Verify/Encryption (HW)

MCU Specific Options Enables RSA NETX_SEC
URE_CRYPTO_NX_CRYP
TO_METHODS_RSA_409
6_ALT to allow HW
support

RSA Scratch Buffer Size
(Bytes)

MCU Specific Options Sets value of NX_CRYP
TO_RSA_SCRATCH_BUF
FER_SIZE

TRNG Enabled
Disabled

Enabled Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_TRNG_ALT.

Standalone Usage Use Standalone
Crypto Only
Use with TLS

Use Standalone Crypto
Only

Defines NX_CRYPTO_ST
ANDALONE_ENABLE.

Random Number Generator Configuration

To enable hardware acceleration for the TRNG, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_TRNG_ALT must be defined in the configuration file.
By default TRNG is enabled which can be disabled using the RA Configuration editor.

Once enabled 'rand' function will be mapped to HW TRNG; the 'srand' function is not supported, any
calls to this function will have no effect. Functionality to re-seed the HW TRNG is not supported by
the existing implementation.

If disabled, both 'rand' and 'srand' will be mapped to the C Standard Library. This would require
setting up the heap as 'rand' implementation calls 'malloc'.

SHA256 Configuration

To enable hardware acceleration for the SHA256/224 calculation, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_SHA256_ALT must be defined in the configuration
file. By default SHA256 is enabled which can be disabled using the RA Configuration editor.

AES Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,895 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

To enable hardware acceleration for the AES128/192/256 operation, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_AES_ALT must be defined in the configuration file. By
default AES is enabled which can be disabled using the RA Configuration editor.

ECC Configuration

To enable hardware acceleration for the ECDSA and ECDH for curves SECP384R1 and SECP256R1,
the macro NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_ECC_ALT must be defined in the
configuration file. By default ECC operations are enabled which can be disabled using the RA
Configuration editor.

RSA Configuration

To enable hardware acceleration for the RSA Encrypt/Decrypt (or Sign/Verify) operation(s), the
macro(s) below must be must be defined in the configuration file:

Configuration Macro Feature / Operation

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_2048_ALT

Signature Generation / Signature Verification
(Encryption / Decryption)

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_3072_ALT

Signature Verification (Encryption Only)

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_4096_ALT

Signature Verification (Encryption Only)

By default RSA 2048 is enabled which can be disabled using the RA Configuration editor.

RSA software implementation is completely disabled when any of the above macros are enabled.

Usage Notes
Memory Alignment

Use 32bit aligned buffer pointers as arguments to APIs for best performance.

Hardware Initialization

_nx_crypto_initialize() must be invoked before using the NetX Crypto APIs to ensure that the SCE
peripheral is initialized.

Memory Usage

Sufficient memory must be allocated to be used as 'crypto_metadata' for the chosen crypto
operation(s). Refer Azure RTOS NetX Crypto API description for recommended 'crypto_metadata_size'
based on selected crypto operations. Sufficient amount of memory must be allocated for the thread
stack to support low level crypto operations when using this module in the standalone mode or
through NetX Secure (TLS). A minimum stack of 0x1000 is required to use ECC and RSA. This is
either the main stack in a bare metal application or the specific thread stack for an RTOS based
application.

AES Usage

GCM mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,896 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/netx/netx-crypto/chapter4

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

The first byte of the IV must indicate the length of the subsequent IV. For example if the IV is {0x00,
0x00, 0x00}, then the IV pointer passed to the _nx_crypto_method_aes_operation must store the IV
as {0x03, 0x00, 0x00, 0x00}. Refer to the example code for actual usage.

CTR mode

For CTR mode the IV pointer must be as defined in Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Payload (ESP) under 'Figure 2. Counter Block
Format'. The IV must be 8 bytes in length. The Nonce field in the reference above must be 4 bytes
and should be passed to _nx_crypto_method_aes_operation through the key pointer stored after the
actual AES key. For Example, if the AES 128-bit Plain Key is {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00} and the Nonce is {0x01, 0x07, 0xBD, 0xFD}, the key passed to the
_nx_crypto_method_aes_operation during Encryption/Decryption should be set as {0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, 0xBD, 0xFD}. This format would also be valid for
Wrapped keys where the Nonce is appended at the end of the actual Wrapped key. Refer to the
example code for actual usage.

The 'Block Counter' field in the above reference is fixed to {0x00, 0x00, 0x00, 0x01} at the
beginning and increments internally after every subsequent AES block is processed. Test vectors
that have the initial Block Counter not set to {0x00, 0x00, 0x00, 0x01} cannnot be used in this
implementation.

ECC Usage

ECC operations include ECDH and ECDSA. As a part of ECDSA operation the input message can be
hashed before signing or verification, or the message digest can be provided directly. ECC Scratch
buffer size can be optionally reduced as supported ECC computations are now done by the HW. This
is controlled by NX_CRYPTO_ECDSA_SCRATCH_BUFFER_SIZE and
NX_CRYPTO_ECDH_SCRATCH_BUFFER_SIZE macros for ECDSA and ECDH respectively.

Operation Key Format

ECDSA Signature Plain private key; Wrapped private key

ECDSA Signature-Verify Uncompressed public key

Key Generation using ECDSA operation API Wrapped private key; Uncompressed public key

ECDH private key import Plain private key; Wrapped private key (Allows
for Uncompressed and Formatted public key)

ECDH public key export Uncompressed public key

ECDH setup Uncompressed public key

ECDH shared secret calculate Uncompressed public key

Key Generation using ECDH operation API Wrapped private key; Uncompressed public key

Note:

Uncompressed public key is of the form (0x04 || Qx || Qy). Refer Section 2.2. Subject Public
Key under RFC5480
Formatted public key is of the form (Key Info (4 bytes) || Qx || Qy || Key Info (16 bytes)).
This is the key which is used internally by SCE peripheral.

RSA Usage

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,897 / 5,560

https://tools.ietf.org/html/rfc3686
https://tools.ietf.org/html/rfc3686
https://tools.ietf.org/html/rfc5480

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

Wrapped Key Usage

To use the NetX Crypto stack with wrapped private keys (for signature generation/decryption), a
dummy pointer (non-NULL) should be passed to the 'key' parameter during
_nx_crypto_method_rsa_init API call. However, the 'key_size_in_bits' parameter should be equal to
the intended RSA modulus length in bits. The actual wrapped key must be passed as the 'key'
parameter to the _nx_crypto_method_rsa_operation API call with its length in bits passed through the
'key_size_in_bits' parameter.

For PKCS1V15 operation 'key' and 'key_size_in_bits' parameters of
_nx_crypto_method_pkcs1_v1_5_init are unused. These can be passed as NULL and 0 respectively.
The actual wrapped key must be passed as the 'key' parameter to the
_nx_crypto_method_pkcs1_v1_5_operation API call and the intended modulus length in bits must be
passed through the 'key_size_in_bits' parameter.

Software Implementation

The plaintext data passed in to the RSA encryption API must be 4-byte aligned. If it is not aligned
then when the resultant encrypted data is decrypted using the decryption API, the unaligned data
will be endian-swapped. For instance, if {0x01, 0x02,0x03, 0x04, 0x05} is passed as input data for
encryption, when decrypted, the result will be {0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x05}.
Note that this alignment of input data need not be taken care while using Hardware accelerated RSA.

Limitations

Only little endian mode is supported.
RSA CRT keys are not supported.
ECJPAKE related operations are unsupported for NIST 224, 256 and 384 bit curves when HW
ECC is eanbled.

Examples
Initialization Example

This example shows how to initialize the HW crypto engine. This step must be performed before any
crypto algorithm is used.

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

Hash Example

This is an example on calculating the SHA256 hash using the NetX Crypto API.

extern NX_CRYPTO_METHOD crypto_method_sha256;

const uint8_t NIST_SHA256ShortMsgLen200[] =

{

 0x2e, 0x7e, 0xa8, 0x4d, 0xa4, 0xbc, 0x4d, 0x7c, 0xfb, 0x46, 0x3e, 0x3f, 0x2c,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,898 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

0x86, 0x47, 0x05,

 0x7a, 0xff, 0xf3, 0xfb, 0xec, 0xec, 0xa1, 0xd2, 00

};

const uint8_t NIST_SHA256ShortMsgLen200_expected[] =

{

 0x76, 0xe3, 0xac, 0xbc, 0x71, 0x88, 0x36, 0xf2, 0xdf, 0x8a, 0xd2, 0xd0, 0xd2,

0xd7, 0x6f, 0x0c,

 0xfa, 0x5f, 0xea, 0x09, 0x86, 0xbe, 0x91, 0x8f, 0x10, 0xbc, 0xee, 0x73, 0x0d,

0xf4, 0x41, 0xb9

};

void netx_secure_crypto_sha256_example (void)

{

 size_t actual_hash_len = RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES;

 uint8_t actual_hash[RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES];

 uint8_t metadata[sizeof(NX_CRYPTO_SHA256)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_SHA256);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 init */

 err = _nx_crypto_method_sha256_init(&crypto_method_sha256, NX_CRYPTO_NULL, 0,

&handler, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_INITIALIZE */

 err = _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_INITIALIZE,

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,899 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_UPDATE,

 * call this multiple times if needed to hash multiple data batches */

 err =

 _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_UPDATE,

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) NIST_SHA256ShortMsgLen200,

 sizeof(NIST_SHA256ShortMsgLen200),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_CALCULATE */

 err = _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_CALCULATE,

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,900 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 (uint8_t *) actual_hash,

 actual_hash_len,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Ensure generated SHA256 hash matches the expected digest */

 err = (uint32_t) memcmp(&actual_hash[0], &NIST_SHA256ShortMsgLen200_expected[0],

actual_hash_len);

 assert(0 == err);

}

AES Example

This is an example on using the NetX Crypto API to encrypt and decrypt multi-block data.

AES CBC Example

extern NX_CRYPTO_METHOD crypto_method_aes_cbc_256;

/* fe8901fecd3ccd2ec5fdc7c7a0b50519c245b42d611a5ef9e90268d59f3edf33 */

const uint8_t NIST_AES256_CBC_key[] =

{

 0xfe, 0x89, 0x01, 0xfe, 0xcd, 0x3c, 0xcd, 0x2e, 0xc5, 0xfd, 0xc7, 0xc7, 0xa0,

0xb5, 0x05, 0x19,

 0xc2, 0x45, 0xb4, 0x2d, 0x61, 0x1a, 0x5e, 0xf9, 0xe9, 0x02, 0x68, 0xd5, 0x9f,

0x3e, 0xdf, 0x33

};

/* 851e8764776e6796aab722dbb644ace8 */

const uint8_t NIST_AES256_CBC_iv[] =

{

 0xbd, 0x41, 0x6c, 0xb3, 0xb9, 0x89, 0x22, 0x28, 0xd8, 0xf1, 0xdf, 0x57, 0x56,

0x92, 0xe4, 0xd0

};

/* 6282b8c05c5c1530b97d4816ca434762 */

const uint8_t NIST_AES256_CBC_plaintext[] =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,901 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

{

 0x8d, 0x3a, 0xa1, 0x96, 0xec, 0x3d, 0x7c, 0x9b, 0x5b, 0xb1, 0x22, 0xe7, 0xfe,

0x77, 0xfb, 0x12,

 0x95, 0xa6, 0xda, 0x75, 0xab, 0xe5, 0xd3, 0xa5, 0x10, 0x19, 0x4d, 0x3a, 0x8a,

0x41, 0x57, 0xd5,

 0xc8, 0x9d, 0x40, 0x61, 0x97, 0x16, 0x61, 0x98, 0x59, 0xda, 0x3e, 0xc9, 0xb2,

0x47, 0xce, 0xd9

};

/* 6acc04142e100a65f51b97adf5172c41 */

const uint8_t NIST_AES256_CBC_ciphertext[] =

{

 0x60, 0x8e, 0x82, 0xc7, 0xab, 0x04, 0x00, 0x7a, 0xdb, 0x22, 0xe3, 0x89, 0xa4,

0x47, 0x97, 0xfe,

 0xd7, 0xde, 0x09, 0x0c, 0x8c, 0x03, 0xca, 0x8a, 0x2c, 0x5a, 0xcd, 0x9e, 0x84,

0xdf, 0x37, 0xfb,

 0xc5, 0x8c, 0xe8, 0xed, 0xb2, 0x93, 0xe9, 0x8f, 0x02, 0xb6, 0x40, 0xd6, 0xd1,

0xd7, 0x24, 0x64

};

void netx_secure_crypto_aes256cbc_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_cbc_256, (uint8_t *)

NIST_AES256_CBC_key,

 sizeof(NIST_AES256_CBC_key) << 3U, &handler, metadata, metadata_size);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,902 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_cbc_256,

 NULL,

 0,

 (uint8_t *) NIST_AES256_CBC_plaintext,

 sizeof(NIST_AES256_CBC_plaintext),

 (uint8_t *) NIST_AES256_CBC_iv,

 generated_ciphertext,

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, NIST_AES256_CBC_ciphertext,

sizeof(generated_ciphertext));

 assert(0 == err);

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_cbc_256,

 NULL,

 0,

 (uint8_t *) NIST_AES256_CBC_ciphertext,

 sizeof(NIST_AES256_CBC_ciphertext),

 (uint8_t *) NIST_AES256_CBC_iv,

 generated_plaintext,

 sizeof(generated_plaintext),

 metadata,

 metadata_size,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,903 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, NIST_AES256_CBC_plaintext,

sizeof(generated_ciphertext));

 assert(0 == err);

}

AES GCM Example

extern NX_CRYPTO_METHOD crypto_method_aes_128_gcm_16;

/* 83F9D97D4AB759FDDCC3EF54A0E2A8EC */

static const uint8_t key_gcm_128[] =

{

 0x83, 0xF9, 0xD9, 0x7D, 0x4A, 0xB7, 0x59, 0xFD, 0xDC, 0xC3, 0xEF, 0x54, 0xA0,

0xE2, 0xA8, 0xEC

};

/* In case of IV the IV length must be the first byte followed by the actual IV.

 * In this example the IV length is 0x01 and the actual IV is 0xCF

 */

/* 01CF */

static const uint8_t iv_gcm_128[] =

{

 0x01, 0xCF

};

/* 77E6329CF9424F71C808DF9170BFD298 */

static const uint8_t plain_gcm_128[] =

{

 0x77, 0xE6, 0x32, 0x9C, 0xF9, 0x42, 0x4F, 0x71, 0xC8, 0x08, 0xDF, 0x91, 0x70,

0xBF, 0xD2, 0x98

};

/* 6DD49EAEB4103DAC8F97E3234946DD2D */

static const uint8_t aad_gcm_128[] =

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,904 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 0x6D, 0xD4, 0x9E, 0xAE, 0xB4, 0x10, 0x3D, 0xAC, 0x8F, 0x97, 0xE3, 0x23, 0x49,

0x46, 0xDD, 0x2D

};

/* 50DE86A7A92A8A5EA33DB5696B96CD77AA181E84BC8B4BF5A68927C409D422CB */

static const uint8_t secret_gcm_128[] =

{

 /* Ciphertext */

 0x50, 0xDE, 0x86, 0xA7, 0xA9, 0x2A, 0x8A, 0x5E, 0xA3, 0x3D, 0xB5, 0x69, 0x6B,

0x96, 0xCD, 0x77,

 /* Tag */

 0xAA, 0x18, 0x1E, 0x84, 0xBC, 0x8B, 0x4B, 0xF5, 0xA6, 0x89, 0x27, 0xC4, 0x09,

0xD4, 0x22, 0xCB

};

void netx_secure_crypto_aes128gcm_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_128_gcm_16,

 (uint8_t *) key_gcm_128,

 sizeof(key_gcm_128) << 3U,

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Setup Additional Authentication Data */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,905 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_SET_ADDITIONAL_DATA,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) aad_gcm_128,

 sizeof(aad_gcm_128),

 NULL,

 NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) plain_gcm_128,

 sizeof(plain_gcm_128),

 (uint8_t *) iv_gcm_128,

 generated_ciphertext,

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* The 16 byte tag is appended to the generated ciphertext */

 /* Verify generated tag matches the expected tag */

 err = (uint32_t) memcmp(&generated_ciphertext[sizeof(plain_gcm_128)],

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,906 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

&secret_gcm_128[sizeof(plain_gcm_128)], 16U);

 assert(0 == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, secret_gcm_128, sizeof

(secret_gcm_128));

 assert(0 == err);

 /* Setup Additional Authentication Data */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_SET_ADDITIONAL_DATA,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) aad_gcm_128,

 sizeof(aad_gcm_128),

 NULL,

 NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) generated_ciphertext,

 sizeof(secret_gcm_128), /* ciphertext size + tag size */

 (uint8_t *) iv_gcm_128,

 generated_plaintext,

 sizeof(generated_plaintext),

 metadata,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,907 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, plain_gcm_128, sizeof

(plain_gcm_128));

 assert(0 == err);

}

AES CTR Example

NX_CRYPTO_METHOD crypto_method_aes_ctr_256 =

{

 NX_CRYPTO_ENCRYPTION_AES_CTR, /* AES crypto

algorithm */

 NX_CRYPTO_AES_256_KEY_LEN_IN_BITS, /* Key size in bits

*/

 NX_CRYPTO_AES_IV_LEN_IN_BITS, /* IV size in

bits */

 0, /* ICV size in bits, not

used */

 (NX_CRYPTO_AES_BLOCK_SIZE_IN_BITS >> 3), /* Block size in bytes

*/

 sizeof(NX_CRYPTO_AES), /* Metadata size in bytes */

 _nx_crypto_method_aes_init, /* AES-CBC initialization

routine */

 _nx_crypto_method_aes_cleanup, /* AES-CBC cleanup routine

*/

 _nx_crypto_method_aes_ctr_operation /* AES-CBC

operation */

};

/*Note: For CTR, the key_ctr is the conjunction of key and nonce. */

/* D0E78C4D0B30D33F5BF4A132B2F94A4A38963511A3904B117E35A37B5AAC8A193BF0D158 */

const uint8_t key_ctr_256[] =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,908 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

{

 /* AES Key */

 0xD0, 0xE7, 0x8C, 0x4D, 0x0B, 0x30, 0xD3, 0x3F, 0x5B, 0xF4, 0xA1, 0x32, 0xB2,

0xF9, 0x4A, 0x4A,

 0x38, 0x96, 0x35, 0x11, 0xA3, 0x90, 0x4B, 0x11, 0x7E, 0x35, 0xA3, 0x7B, 0x5A,

0xAC, 0x8A, 0x19,

 /* Nonce */

 0x3B, 0xF0, 0xD1, 0x58,

};

/* A1A31704C8B7E16C */

const uint8_t iv_ctr_256[] =

{

 0xA1, 0xA3, 0x17, 0x04, 0xC8, 0xB7, 0xE1, 0x6C,

};

/* 981FA33222C5451017530155A4BF7F29 */

const uint8_t plain_ctr_256[] =

{

 0x98, 0x1F, 0xA3, 0x32, 0x22, 0xC5, 0x45, 0x10, 0x17, 0x53, 0x01, 0x55, 0xA4,

0xBF, 0x7F, 0x29,

};

/* 643B91B4E541B20AAAEAB77F2D328566 */

const uint8_t secret_ctr_256[] =

{

 0x64, 0x3B, 0x91, 0xB4, 0xE5, 0x41, 0xB2, 0x0A, 0xAA, 0xEA, 0xB7, 0x7F, 0x2D,

0x32, 0x85, 0x66,

};

void netx_secure_crypto_aes256ctr_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,909 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 (uint8_t *) plain_ctr_256,

 sizeof(plain_ctr_256),

 (uint8_t *) iv_ctr_256,

 generated_ciphertext,

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, secret_ctr_256, sizeof

(secret_ctr_256));

 assert(0 == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,910 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 (uint8_t *) secret_ctr_256,

 sizeof(secret_ctr_256),

 (uint8_t *) iv_ctr_256,

 generated_plaintext,

 sizeof(generated_plaintext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, plain_ctr_256, sizeof

(plain_ctr_256));

 assert(0 == err);

}

ECDSA Example

This is an example on using the NetX Crypto API to sign and verify input message data. Based on the
hash algorithm selected a digest is computed of the plain input message before sign/verify.

extern NX_CRYPTO_METHOD crypto_method_ecdsa;

extern NX_CRYPTO_METHOD crypto_method_ec_secp256;

extern NX_CRYPTO_METHOD crypto_method_sha256;

const uint8_t ECC_SECP256R1Keydata[] =

{

 0xf9, 0xa7, 0x68, 0x71, 0x24, 0x68, 0x9d, 0x32, 0x92, 0x6f, 0x1d, 0xfb, 0xbe,

0xf2, 0x61, 0x41, // NOLINT(readability-magic-numbers)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,911 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 0x07, 0x54, 0x0d, 0xb9, 0xa8, 0x8a, 0x8b, 0xc2, 0xd5, 0xe9, 0x38, 0x4b, 0xf9,

0xe5, 0x43, 0x5a // NOLINT(readability-magic-numbers)

};

const uint8_t ECC_SECP256R1PublicKeydata[] =

{

 0x04,

 /* ASN1 Constant */

 0x5b, 0xba, 0xd4, 0x2e, 0xb5, 0xc1, 0x07, 0xf2, 0x0e, 0x01, 0x95, 0x42, 0x6e,

0x90, 0xb8, 0x4e, // NOLINT(readability-magic-numbers)

 0xe9, 0x5a, 0xa1, 0xe8, 0x4c, 0x6c, 0xa5, 0x32, 0x3c, 0xf3, 0x09, 0xf5, 0xff,

0x8b, 0x3d, 0x26, // NOLINT(readability-magic-numbers)

 0xb6, 0x88, 0xc1, 0xdb, 0x02, 0xaf, 0x4d, 0xa5, 0x0e, 0x73, 0x61, 0x96, 0xb3,

0x59, 0x95, 0x6f, // NOLINT(readability-magic-numbers)

 0x5e, 0xc9, 0xa1, 0xf9, 0xb7, 0xb3, 0xb6, 0xdf, 0x54, 0x82, 0x79, 0xe3, 0xb6,

0x4e, 0xac, 0xb6 // NOLINT(readability-magic-numbers)

};

const uint8_t ECC_SECP256R1Message[] = "ASYMMETRIC_INPUT_FOR_SIGN......";

void netx_secure_crypto_ecdsa_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_ECDSA)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_ECDSA);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 ULONG sig_length;

 NX_CRYPTO_EXTENDED_OUTPUT extended_output;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdsa_init(&crypto_method_ecdsa, NX_CRYPTO_NULL, 0,

&handler, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set hash method. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,912 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_HASH_METHOD_SET,

 handler,

 &crypto_method_ecdsa,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_sha256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err =

 _nx_crypto_method_ecdsa_operation(NX_CRYPTO_EC_CURVE_SET,

 handler,

 &crypto_method_ecdsa,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 extended_output.nx_crypto_extended_output_data = output;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(output);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,913 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 /* Sign the hash data using ECDSA. */

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_SIGNATURE_GENERATE,

 handler,

 &crypto_method_ec_secp256,

 (uint8_t *) ECC_SECP256R1Keydata,

 sizeof(ECC_SECP256R1Keydata) << 3,

 (uint8_t *) ECC_SECP256R1Message,

 sizeof(ECC_SECP256R1Message),

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 sig_length = extended_output.nx_crypto_extended_output_actual_size;

 /* Verify the generated signature. */

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_SIGNATURE_VERIFY,

 handler,

 &crypto_method_ec_secp256,

 (uint8_t *) ECC_SECP256R1PublicKeydata,

 sizeof(ECC_SECP256R1PublicKeydata) << 3,

 (uint8_t *) ECC_SECP256R1Message,

 sizeof(ECC_SECP256R1Message),

 NX_CRYPTO_NULL,

 output,

 sig_length,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,914 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

ECDH Example

This is an example on using the NetX Crypto API to generate a shared secret using ECDH. A shared
secret is computed using known public key (from peer) and generated private key. Another shared
secret is computed using the generated public key and known private key (imported to mimic peer).
Both the shared secrets are checked to be the same.

extern NX_CRYPTO_METHOD crypto_method_ecdh;

/*Private key 59137e38152350b195c9718d39673d519838055ad908dd4757152fd8255c09bf */

const uint8_t ECC_SECP256R1Keydata_ecdh[] =

{

 0x59, 0x13, 0x7e, 0x38, 0x15, 0x23, 0x50, 0xb1, 0x95, 0xc9, 0x71, 0x8d, 0x39,

0x67, 0x3d, 0x51, // NOLINT(readability-magic-numbers)

 0x98, 0x38, 0x05, 0x5a, 0xd9, 0x08, 0xdd, 0x47, 0x57, 0x15, 0x2f, 0xd8, 0x25,

0x5c, 0x09, 0xbf, // NOLINT(readability-magic-numbers)

};

/*Public key 4, a8c5fdce8b62c5ada598f141adb3b26cf254c280b2857a63d2ad783a73115f6b,

806e1aafec4af80a0d786b3de45375b517a7e5b51ffb2c356537c9e6ef227d4a*/

const uint8_t ECC_SECP256R1PublicKeydata_ecdh[] =

{

 0x04,

 0xa8,0xc5, 0xfd, 0xce, 0x8b, 0x62, 0xc5, 0xad, 0xa5, 0x98, 0xf1, 0x41, 0xad,

0xb3, 0xb2, 0x6c, // NOLINT(readability-magic-numbers)

 0xf2,0x54, 0xc2, 0x80, 0xb2, 0x85, 0x7a, 0x63, 0xd2, 0xad, 0x78, 0x3a, 0x73,

0x11, 0x5f, 0x6b, // NOLINT(readability-magic-numbers)

 0x80,0x6e, 0x1a, 0xaf, 0xec, 0x4a, 0xf8, 0x0a, 0x0d, 0x78, 0x6b, 0x3d, 0xe4,

0x53, 0x75, 0xb5, // NOLINT(readability-magic-numbers)

 0x17,0xa7, 0xe5, 0xb5, 0x1f, 0xfb, 0x2c, 0x35, 0x65, 0x37, 0xc9, 0xe6, 0xef,

0x22, 0x7d, 0x4a, // NOLINT(readability-magic-numbers)

};

void netx_secure_crypto_ecdh_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_ECDH)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_ECDH);

 uint32_t err = NX_CRYPTO_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,915 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 uint8_t local_public_key[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 uint32_t local_public_key_len = 0;

 uint8_t shared_secret[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 uint32_t shared_secret_len = 0;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 NX_CRYPTO_EXTENDED_OUTPUT extended_output;

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdh_init(&crypto_method_ecdh, NX_CRYPTO_NULL, 0,

NX_CRYPTO_NULL, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_EC_CURVE_SET,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Generate local public key. This will generate a key pair.

 * The private wrapped key will be held by the ecdh context and the public key

(local_public_key)

 * will be returned for sharing with the peer.

 */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,916 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 extended_output.nx_crypto_extended_output_data = local_public_key;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof

(local_public_key);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_SETUP,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 local_public_key_len = extended_output.nx_crypto_extended_output_actual_size;

 /* Calculate shared secret using the test (peer's) public key. */

 extended_output.nx_crypto_extended_output_data = shared_secret;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(shared_secret);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_CALCULATE,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *)

ECC_SECP256R1PublicKeydata_ecdh,

 sizeof(ECC_SECP256R1PublicKeydata_ecdh),

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,917 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 shared_secret_len = extended_output.nx_crypto_extended_output_actual_size;

 err = _nx_crypto_method_ecdh_cleanup(metadata);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify. The below operations will be carried out by the peer. */

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdh_init(&crypto_method_ecdh, NX_CRYPTO_NULL, 0,

NX_CRYPTO_NULL, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_EC_CURVE_SET,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Import the test private key. The peer could generate its own key pair,

 * in this example a test private key is used for simplicity. */

 err =

 _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_KEY_PAIR_IMPORT,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,918 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 (uint8_t *) ECC_SECP256R1Keydata_ecdh,

 (NX_CRYPTO_KEY_SIZE)

(sizeof(ECC_SECP256R1Keydata_ecdh) << 3),

 (uint8_t *) ECC_SECP256R1PublicKeydata_ecdh,

 sizeof(ECC_SECP256R1PublicKeydata_ecdh),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Calculate the shared secret using the local public key generated above and shared

with the peer. */

 extended_output.nx_crypto_extended_output_data = output;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(output);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_CALCULATE,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 local_public_key,

 local_public_key_len,

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Validate the output. Both the parties must generate the same shared secret */

 err = (extended_output.nx_crypto_extended_output_actual_size !=

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,919 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

shared_secret_len);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, shared_secret,

extended_output.nx_crypto_extended_output_actual_size);

 assert(NX_CRYPTO_SUCCESS == err);

}

RSA Example

This is an example on using the NetX Crypto API to encrypt and decrypt input message data.

extern NX_CRYPTO_METHOD crypto_method_rsa;

/* 00010001 */

const uint8_t public_e[] =

{

 0x00, 0x01, 0x00, 0x01,

};

/* 13FF7429F8E851F1079CCFCE3B3CD8606ABA8607AD85CBB3057501EBD58811F3C04823171F192C048E

1E883AF8CF958810151D3874AEDC8EC4F88D2065C581569F1E200852DD40B6DFD1652659085A9DD1D3B86

9EA3617D904D209DE156A60BA5929D02F16430273D10720C2F28D2B95684DCAA6B9F6A508EA2CBBC11B9F

3F30D6201EA6CFFBBF1C44255CEC58EE70DBC872442BCCF115D8F743557B5DE5F42DDDA6CEAE7977793CC

9D90ADFE65E520F5520B615CF3B8C2DC82D7AC75EDB1297CF38AB23A37EED18D4DD45D9AD051B26401BE8

6E8C8E53F9585A702D02F1B5BD65F6739DFA6BFFE560CA130B6F1D4779C556C06D9CD29FB72D8851904F9

CDEE9 */

const uint8_t private_e_2048[] =

{

 0x13, 0xFF, 0x74, 0x29, 0xF8, 0xE8, 0x51, 0xF1, 0x07, 0x9C, 0xCF, 0xCE, 0x3B,

0x3C, 0xD8, 0x60,

 0x6A, 0xBA, 0x86, 0x07, 0xAD, 0x85, 0xCB, 0xB3, 0x05, 0x75, 0x01, 0xEB, 0xD5,

0x88, 0x11, 0xF3,

 0xC0, 0x48, 0x23, 0x17, 0x1F, 0x19, 0x2C, 0x04, 0x8E, 0x1E, 0x88, 0x3A, 0xF8,

0xCF, 0x95, 0x88,

 0x10, 0x15, 0x1D, 0x38, 0x74, 0xAE, 0xDC, 0x8E, 0xC4, 0xF8, 0x8D, 0x20, 0x65,

0xC5, 0x81, 0x56,

 0x9F, 0x1E, 0x20, 0x08, 0x52, 0xDD, 0x40, 0xB6, 0xDF, 0xD1, 0x65, 0x26, 0x59,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,920 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

0x08, 0x5A, 0x9D,

 0xD1, 0xD3, 0xB8, 0x69, 0xEA, 0x36, 0x17, 0xD9, 0x04, 0xD2, 0x09, 0xDE, 0x15,

0x6A, 0x60, 0xBA,

 0x59, 0x29, 0xD0, 0x2F, 0x16, 0x43, 0x02, 0x73, 0xD1, 0x07, 0x20, 0xC2, 0xF2,

0x8D, 0x2B, 0x95,

 0x68, 0x4D, 0xCA, 0xA6, 0xB9, 0xF6, 0xA5, 0x08, 0xEA, 0x2C, 0xBB, 0xC1, 0x1B,

0x9F, 0x3F, 0x30,

 0xD6, 0x20, 0x1E, 0xA6, 0xCF, 0xFB, 0xBF, 0x1C, 0x44, 0x25, 0x5C, 0xEC, 0x58,

0xEE, 0x70, 0xDB,

 0xC8, 0x72, 0x44, 0x2B, 0xCC, 0xF1, 0x15, 0xD8, 0xF7, 0x43, 0x55, 0x7B, 0x5D,

0xE5, 0xF4, 0x2D,

 0xDD, 0xA6, 0xCE, 0xAE, 0x79, 0x77, 0x79, 0x3C, 0xC9, 0xD9, 0x0A, 0xDF, 0xE6,

0x5E, 0x52, 0x0F,

 0x55, 0x20, 0xB6, 0x15, 0xCF, 0x3B, 0x8C, 0x2D, 0xC8, 0x2D, 0x7A, 0xC7, 0x5E,

0xDB, 0x12, 0x97,

 0xCF, 0x38, 0xAB, 0x23, 0xA3, 0x7E, 0xED, 0x18, 0xD4, 0xDD, 0x45, 0xD9, 0xAD,

0x05, 0x1B, 0x26,

 0x40, 0x1B, 0xE8, 0x6E, 0x8C, 0x8E, 0x53, 0xF9, 0x58, 0x5A, 0x70, 0x2D, 0x02,

0xF1, 0xB5, 0xBD,

 0x65, 0xF6, 0x73, 0x9D, 0xFA, 0x6B, 0xFF, 0xE5, 0x60, 0xCA, 0x13, 0x0B, 0x6F,

0x1D, 0x47, 0x79,

 0xC5, 0x56, 0xC0, 0x6D, 0x9C, 0xD2, 0x9F, 0xB7, 0x2D, 0x88, 0x51, 0x90, 0x4F,

0x9C, 0xDE, 0xE9,

};

/* E0F5059966A8AEC4BF7CDAC8AE2430BDF61C54D09CAB9963CBF9A52AC641E384B6431D3B6A9D181151

9A2904E1170A44446C80E7638A4AF2720A7654AB740D8A151FDD216F3D6933422FD9AC14AEDE9CCD021EA

79E46925F4B18FD1AF2C0073CFC3A69AC71A2B3673D08136CDB01C379892601C7C857D68018DAE924CB8C

D29377A14C752B92BAFF14C3A49725AE2FEFAAD4686D8A7D9F94EB11BF81E05BD5D2586526FB129E73539

F9223D496B2ACA23CCACC34D5B18533BD0F5815A76F94F4F55D965FE61599B44BD8FBAD35F42B612A4C4F

2765B2097A5C0090EA8166D9C6DA1E03B6119736B794600491C48433132D0F15D5DE3BB4270DF6BC9012B

74931 */

const uint8_t m_2048[] =

{

 0xE0, 0xF5, 0x05, 0x99, 0x66, 0xA8, 0xAE, 0xC4, 0xBF, 0x7C, 0xDA, 0xC8, 0xAE,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,921 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

0x24, 0x30, 0xBD,

 0xF6, 0x1C, 0x54, 0xD0, 0x9C, 0xAB, 0x99, 0x63, 0xCB, 0xF9, 0xA5, 0x2A, 0xC6,

0x41, 0xE3, 0x84,

 0xB6, 0x43, 0x1D, 0x3B, 0x6A, 0x9D, 0x18, 0x11, 0x51, 0x9A, 0x29, 0x04, 0xE1,

0x17, 0x0A, 0x44,

 0x44, 0x6C, 0x80, 0xE7, 0x63, 0x8A, 0x4A, 0xF2, 0x72, 0x0A, 0x76, 0x54, 0xAB,

0x74, 0x0D, 0x8A,

 0x15, 0x1F, 0xDD, 0x21, 0x6F, 0x3D, 0x69, 0x33, 0x42, 0x2F, 0xD9, 0xAC, 0x14,

0xAE, 0xDE, 0x9C,

 0xCD, 0x02, 0x1E, 0xA7, 0x9E, 0x46, 0x92, 0x5F, 0x4B, 0x18, 0xFD, 0x1A, 0xF2,

0xC0, 0x07, 0x3C,

 0xFC, 0x3A, 0x69, 0xAC, 0x71, 0xA2, 0xB3, 0x67, 0x3D, 0x08, 0x13, 0x6C, 0xDB,

0x01, 0xC3, 0x79,

 0x89, 0x26, 0x01, 0xC7, 0xC8, 0x57, 0xD6, 0x80, 0x18, 0xDA, 0xE9, 0x24, 0xCB,

0x8C, 0xD2, 0x93,

 0x77, 0xA1, 0x4C, 0x75, 0x2B, 0x92, 0xBA, 0xFF, 0x14, 0xC3, 0xA4, 0x97, 0x25,

0xAE, 0x2F, 0xEF,

 0xAA, 0xD4, 0x68, 0x6D, 0x8A, 0x7D, 0x9F, 0x94, 0xEB, 0x11, 0xBF, 0x81, 0xE0,

0x5B, 0xD5, 0xD2,

 0x58, 0x65, 0x26, 0xFB, 0x12, 0x9E, 0x73, 0x53, 0x9F, 0x92, 0x23, 0xD4, 0x96,

0xB2, 0xAC, 0xA2,

 0x3C, 0xCA, 0xCC, 0x34, 0xD5, 0xB1, 0x85, 0x33, 0xBD, 0x0F, 0x58, 0x15, 0xA7,

0x6F, 0x94, 0xF4,

 0xF5, 0x5D, 0x96, 0x5F, 0xE6, 0x15, 0x99, 0xB4, 0x4B, 0xD8, 0xFB, 0xAD, 0x35,

0xF4, 0x2B, 0x61,

 0x2A, 0x4C, 0x4F, 0x27, 0x65, 0xB2, 0x09, 0x7A, 0x5C, 0x00, 0x90, 0xEA, 0x81,

0x66, 0xD9, 0xC6,

 0xDA, 0x1E, 0x03, 0xB6, 0x11, 0x97, 0x36, 0xB7, 0x94, 0x60, 0x04, 0x91, 0xC4,

0x84, 0x33, 0x13,

 0x2D, 0x0F, 0x15, 0xD5, 0xDE, 0x3B, 0xB4, 0x27, 0x0D, 0xF6, 0xBC, 0x90, 0x12,

0xB7, 0x49, 0x31,

};

/* 551C2E268F7ED44D0E8B063F5B2B510CB809F53BD54E9956971E243B2363DA123C29AB4A009EDE1FCE

C54625971A4E3490F3EA398BF7386AAC34720E43FB0C795445B520AEE4D7694EE1474F60F77E1B5F09FE2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,922 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

ED004333658D212122F040322D1564512A1540400F27E18049A762A5EDC9F072CA4F49F408252D42B31BC

35523373740E90DDDA6A8CE7865EEB7C694A662C74412406AB190FE0435DA2551F0C24A48939DDA58A023

9706D40B4977473689DC36CE5A4DF4EF892816CBDE2780D9389B7384674C93B1DDAF728F292B5671679FC

7175AC0A3B2197B809E7CF410417010F3B1316D10D82466C62F3A01667B70A714E0499400E255D4C39EA7

DE55C */

const uint8_t plain_2048[] =

{

 0x55, 0x1C, 0x2E, 0x26, 0x8F, 0x7E, 0xD4, 0x4D, 0x0E, 0x8B, 0x06, 0x3F, 0x5B,

0x2B, 0x51, 0x0C,

 0xB8, 0x09, 0xF5, 0x3B, 0xD5, 0x4E, 0x99, 0x56, 0x97, 0x1E, 0x24, 0x3B, 0x23,

0x63, 0xDA, 0x12,

 0x3C, 0x29, 0xAB, 0x4A, 0x00, 0x9E, 0xDE, 0x1F, 0xCE, 0xC5, 0x46, 0x25, 0x97,

0x1A, 0x4E, 0x34,

 0x90, 0xF3, 0xEA, 0x39, 0x8B, 0xF7, 0x38, 0x6A, 0xAC, 0x34, 0x72, 0x0E, 0x43,

0xFB, 0x0C, 0x79,

 0x54, 0x45, 0xB5, 0x20, 0xAE, 0xE4, 0xD7, 0x69, 0x4E, 0xE1, 0x47, 0x4F, 0x60,

0xF7, 0x7E, 0x1B,

 0x5F, 0x09, 0xFE, 0x2E, 0xD0, 0x04, 0x33, 0x36, 0x58, 0xD2, 0x12, 0x12, 0x2F,

0x04, 0x03, 0x22,

 0xD1, 0x56, 0x45, 0x12, 0xA1, 0x54, 0x04, 0x00, 0xF2, 0x7E, 0x18, 0x04, 0x9A,

0x76, 0x2A, 0x5E,

 0xDC, 0x9F, 0x07, 0x2C, 0xA4, 0xF4, 0x9F, 0x40, 0x82, 0x52, 0xD4, 0x2B, 0x31,

0xBC, 0x35, 0x52,

 0x33, 0x73, 0x74, 0x0E, 0x90, 0xDD, 0xDA, 0x6A, 0x8C, 0xE7, 0x86, 0x5E, 0xEB,

0x7C, 0x69, 0x4A,

 0x66, 0x2C, 0x74, 0x41, 0x24, 0x06, 0xAB, 0x19, 0x0F, 0xE0, 0x43, 0x5D, 0xA2,

0x55, 0x1F, 0x0C,

 0x24, 0xA4, 0x89, 0x39, 0xDD, 0xA5, 0x8A, 0x02, 0x39, 0x70, 0x6D, 0x40, 0xB4,

0x97, 0x74, 0x73,

 0x68, 0x9D, 0xC3, 0x6C, 0xE5, 0xA4, 0xDF, 0x4E, 0xF8, 0x92, 0x81, 0x6C, 0xBD,

0xE2, 0x78, 0x0D,

 0x93, 0x89, 0xB7, 0x38, 0x46, 0x74, 0xC9, 0x3B, 0x1D, 0xDA, 0xF7, 0x28, 0xF2,

0x92, 0xB5, 0x67,

 0x16, 0x79, 0xFC, 0x71, 0x75, 0xAC, 0x0A, 0x3B, 0x21, 0x97, 0xB8, 0x09, 0xE7,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,923 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

0xCF, 0x41, 0x04,

 0x17, 0x01, 0x0F, 0x3B, 0x13, 0x16, 0xD1, 0x0D, 0x82, 0x46, 0x6C, 0x62, 0xF3,

0xA0, 0x16, 0x67,

 0xB7, 0x0A, 0x71, 0x4E, 0x04, 0x99, 0x40, 0x0E, 0x25, 0x5D, 0x4C, 0x39, 0xEA,

0x7D, 0xE5, 0x5C,

};

/* 10F904E071338569EC131401A7869F42F3BCAE252B5D3C8755FD24D47997A9CD4221D992B2871E0528

3B98841FC5C379C5D0E35B3938279B344299C3CF1566E0C994D0A9013AF64174F1379A4B5E4E9DE57491F

3078F6D10011EA55535D0763E538662C9996F4FCF8B64A768685AA417ADB6978743D3D1F513CF143DD6D3

83AD6357728A88928D39E27EA4D0B2AF92FC7F63875F9D6A70FAE7993C1FF04DF9A2F99216874BC123D4B

7DA7E7E8974CFC10ACF0C7BC8747526A8D16791F969082EA9B0C36D77B67C37B325682D74178E4234D52D

5635273301A6CC35E315AE74D659B1433576DAAE6780FA39E0550D971F2CB5817CAAFC24B5220E21C8CEE

E85DD */

const uint8_t secret_2048[] =

{

 0x10, 0xF9, 0x04, 0xE0, 0x71, 0x33, 0x85, 0x69, 0xEC, 0x13, 0x14, 0x01, 0xA7,

0x86, 0x9F, 0x42,

 0xF3, 0xBC, 0xAE, 0x25, 0x2B, 0x5D, 0x3C, 0x87, 0x55, 0xFD, 0x24, 0xD4, 0x79,

0x97, 0xA9, 0xCD,

 0x42, 0x21, 0xD9, 0x92, 0xB2, 0x87, 0x1E, 0x05, 0x28, 0x3B, 0x98, 0x84, 0x1F,

0xC5, 0xC3, 0x79,

 0xC5, 0xD0, 0xE3, 0x5B, 0x39, 0x38, 0x27, 0x9B, 0x34, 0x42, 0x99, 0xC3, 0xCF,

0x15, 0x66, 0xE0,

 0xC9, 0x94, 0xD0, 0xA9, 0x01, 0x3A, 0xF6, 0x41, 0x74, 0xF1, 0x37, 0x9A, 0x4B,

0x5E, 0x4E, 0x9D,

 0xE5, 0x74, 0x91, 0xF3, 0x07, 0x8F, 0x6D, 0x10, 0x01, 0x1E, 0xA5, 0x55, 0x35,

0xD0, 0x76, 0x3E,

 0x53, 0x86, 0x62, 0xC9, 0x99, 0x6F, 0x4F, 0xCF, 0x8B, 0x64, 0xA7, 0x68, 0x68,

0x5A, 0xA4, 0x17,

 0xAD, 0xB6, 0x97, 0x87, 0x43, 0xD3, 0xD1, 0xF5, 0x13, 0xCF, 0x14, 0x3D, 0xD6,

0xD3, 0x83, 0xAD,

 0x63, 0x57, 0x72, 0x8A, 0x88, 0x92, 0x8D, 0x39, 0xE2, 0x7E, 0xA4, 0xD0, 0xB2,

0xAF, 0x92, 0xFC,

 0x7F, 0x63, 0x87, 0x5F, 0x9D, 0x6A, 0x70, 0xFA, 0xE7, 0x99, 0x3C, 0x1F, 0xF0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,924 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

0x4D, 0xF9, 0xA2,

 0xF9, 0x92, 0x16, 0x87, 0x4B, 0xC1, 0x23, 0xD4, 0xB7, 0xDA, 0x7E, 0x7E, 0x89,

0x74, 0xCF, 0xC1,

 0x0A, 0xCF, 0x0C, 0x7B, 0xC8, 0x74, 0x75, 0x26, 0xA8, 0xD1, 0x67, 0x91, 0xF9,

0x69, 0x08, 0x2E,

 0xA9, 0xB0, 0xC3, 0x6D, 0x77, 0xB6, 0x7C, 0x37, 0xB3, 0x25, 0x68, 0x2D, 0x74,

0x17, 0x8E, 0x42,

 0x34, 0xD5, 0x2D, 0x56, 0x35, 0x27, 0x33, 0x01, 0xA6, 0xCC, 0x35, 0xE3, 0x15,

0xAE, 0x74, 0xD6,

 0x59, 0xB1, 0x43, 0x35, 0x76, 0xDA, 0xAE, 0x67, 0x80, 0xFA, 0x39, 0xE0, 0x55,

0x0D, 0x97, 0x1F,

 0x2C, 0xB5, 0x81, 0x7C, 0xAA, 0xFC, 0x24, 0xB5, 0x22, 0x0E, 0x21, 0xC8, 0xCE,

0xEE, 0x85, 0xDD,

};

void netx_secure_crypto_rsa_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_RSA)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_RSA);

 uint32_t err = NX_CRYPTO_SUCCESS;

 void * handler = NX_CRYPTO_NULL;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err =

 _nx_crypto_method_rsa_init(&crypto_method_rsa,

 (uint8_t *) m_2048,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(m_2048)),

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,925 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 err = _nx_crypto_method_rsa_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_rsa,

 (uint8_t *) public_e,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(public_e)),

 (uint8_t *) plain_2048,

 sizeof(m_2048),

 NX_CRYPTO_NULL,

 output,

 sizeof(m_2048),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, secret_2048, sizeof(m_2048));

 assert(0 == err);

 err = _nx_crypto_method_rsa_cleanup(metadata);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Decryption. */

 memset(output, 0, sizeof(output));

 err =

 _nx_crypto_method_rsa_init(&crypto_method_rsa,

 (uint8_t *) m_2048,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(m_2048)),

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 err = _nx_crypto_method_rsa_operation(NX_CRYPTO_DECRYPT,

 handler,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,926 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 &crypto_method_rsa,

 (uint8_t *) private_e_2048,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(private_e_2048)),

 (uint8_t *) secret_2048,

 sizeof(m_2048),

 NX_CRYPTO_NULL,

 output,

 sizeof(m_2048),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, plain_2048, sizeof(m_2048));

 assert(0 == err);

}

RSA PKCS1V1.5 Example

This is an example on using the NetX Crypto API to sign and verify input message data. The plain
input message is PKCS1V1.5 encoded before signature generation.

PKCS1V15 Example

HMAC SHA256 Example

This is an example on using the HMAC with SHA256 hash using the NetX Crypto API.

extern NX_CRYPTO_METHOD crypto_method_hmac_sha256;

/*

C4DA057B81EA740B697FFE1B6EB8591356BA6D5EA7F1B96E4F048030449ACD64E4BB271CB4DCF94937E6

*/

const uint8_t key_256[] =

{

 0xC4, 0xDA, 0x05, 0x7B, 0x81, 0xEA, 0x74, 0x0B, 0x69, 0x7F, 0xFE, 0x1B, 0x6E,

0xB8, 0x59, 0x13,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,927 / 5,560

https://github.com/azure-rtos/netxduo/blob/master/crypto_libraries/src/nx_crypto_method_self_test_pkcs1.c

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 0x56, 0xBA, 0x6D, 0x5E, 0xA7, 0xF1, 0xB9, 0x6E, 0x4F, 0x04, 0x80, 0x30, 0x44,

0x9A, 0xCD, 0x64,

 0xE4, 0xBB, 0x27, 0x1C, 0xB4, 0xDC, 0xF9, 0x49, 0x37, 0xE6,

};

/* BDACB6555D294D3AFFC245520116062D98F88D64276BDA593492AE71CFE16E46CABC287CB00DF21D96

066D5856C2224EEF609D4896302540078F3A0EE325F5337E */

const uint8_t plain_256[] =

{

 0xBD, 0xAC, 0xB6, 0x55, 0x5D, 0x29, 0x4D, 0x3A, 0xFF, 0xC2, 0x45, 0x52, 0x01,

0x16, 0x06, 0x2D,

 0x98, 0xF8, 0x8D, 0x64, 0x27, 0x6B, 0xDA, 0x59, 0x34, 0x92, 0xAE, 0x71, 0xCF,

0xE1, 0x6E, 0x46,

 0xCA, 0xBC, 0x28, 0x7C, 0xB0, 0x0D, 0xF2, 0x1D, 0x96, 0x06, 0x6D, 0x58, 0x56,

0xC2, 0x22, 0x4E,

 0xEF, 0x60, 0x9D, 0x48, 0x96, 0x30, 0x25, 0x40, 0x07, 0x8F, 0x3A, 0x0E, 0xE3,

0x25, 0xF5, 0x33,

 0x7E,

};

/* 940F986AC891C9000B72EF0CEC69AB66AF002E3A34EB8A3A5F94484E45C0396C */

const uint8_t secret_256[] =

{

 0x94, 0x0F, 0x98, 0x6A, 0xC8, 0x91, 0xC9, 0x00, 0x0B, 0x72, 0xEF, 0x0C, 0xEC,

0x69, 0xAB, 0x66,

 0xAF, 0x00, 0x2E, 0x3A, 0x34, 0xEB, 0x8A, 0x3A, 0x5F, 0x94, 0x48, 0x4E, 0x45,

0xC0, 0x39, 0x6C,

};

void netx_secure_crypto_hmac_sha256_example (void)

{

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES] = {0};

 uint8_t metadata[sizeof(NX_CRYPTO_SHA256_HMAC)] = {0};

 uint32_t metadata_size = sizeof(NX_CRYPTO_SHA256_HMAC);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* Setup the platform; initialize the SCE and the TRNG */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,928 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 err = nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 init */

 err = _nx_crypto_method_hmac_sha256_init(&crypto_method_hmac_sha256,

 (UCHAR *) key_256,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(key_256)),

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_INITIALIZE */

 err =

 _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_INITIALIZE,

 handler,

 &crypto_method_hmac_sha256,

 (UCHAR *) key_256,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(key_256)),

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_UPDATE */

 err = _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_UPDATE,

 handler,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,929 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)

 &crypto_method_hmac_sha256,

 NX_CRYPTO_NULL,

 0,

 (UCHAR *) plain_256,

 sizeof(plain_256),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_CALCULATE */

 err = _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_CALCULATE,

 handler,

 &crypto_method_hmac_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 (UCHAR *) output,

 sizeof(output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Ensure generated HMAC-SHA256 mac matches the expected mac */

 err = (uint32_t) memcmp(output, secret_256, sizeof(secret_256));

 assert(0 == err);

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,930 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

5.2.15.3 Mbed Crypto H/W Acceleration (rm_psa_crypto)
Modules » Security

Functions

int mbedtls_platform_setup (mbedtls_platform_context *ctx)

void mbedtls_platform_teardown (mbedtls_platform_context *ctx)

fsp_err_t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes, uint32_t *p_num_gen_bytes)

 Reads requested length of random data from the TRNG. Generate
nbytes of random bytes and store them in p_rngbuf buffer. More...

Detailed Description

Hardware acceleration for the mbedCrypto implementation of the Arm PSA Crypto API.

Overview
Note

The PSA Crypto module does not provide any interfaces to the user. This release uses the mbedTLS version 3.6.0
which conforms to the PSA Crypto API 1.0 specification. Consult the Arm documentation at
https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface for further information. FSP
3.0 onward adopts a change by Arm where mbedCrypto has been integrated back to MbedTLS and the term
mbedCrypto has been deprecated. The mbedCrypto term in FSP now refers to the crypto portion of the MbedTLS
module.

HW Overview

Crypto Peripheral version Devices

SCE9 RA6M4, RA4M3, RA4M2, RA6M5

SCE7 RA6M3, RA6M2, RA6M1, RA6T1

SCE5 RA4W1, RA4M1

SCE5B RA6T2

AES Engine RA2A1, RA2E1, RA2E2, RA2L1

TRNG RA4E1, RA4E2, RA4T1, RA6E1, RA6E2, RA6T3

RSIP-E51A RA8M1, RA8D1, RA8T1

Features

The PSA_Crypto module provides hardware support for the following PSA Crypto operations

SHA256 calculation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,931 / 5,560

https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

SHA224 calculation
SHA512 calculation (Available only on RSIP7)
SHA384 calculation (Available only on RSIP7)
MAC Operations
AES

Keybits - 128, 192, 256
Plain-Text Key Generation
Wrapped Key Generation
Encryption and Decryption with no padding and with PKCS7 padding.
CBC, CTR, CCM , XTS and GCM modes
MAC operations
Export and Import of Plaintext and Wrapped keys

ECC
Curves:

SECP256R1
SECP256K1
Brainpool256R1
SECP384R1
Brainpool384R1

Plain-Text Key Generation (Unavailable on SCE9 and RSIP7)
Wrapped Key Generation (Available only on RSIP7) (Available only on RSIP7)
Signing and Verification
Export and Import of Plaintext keys
Export and Import of Wrapped keys generated by PSA.
ECDH Support

RSA
Plain-Text Key Generation for RSA-2048. (Unavailable on SCE9 and RSIP7)
Wrapped Key Generation for RSA-2048. RSA-3072 and 4096 on RSIP7 only.
Signature Generation for RSA-2048. RSA-3072 and 4096 on RSIP7 only.
Verification for RSA-2048. RSA-3072 and 4096 on SCE9 and RSIP7 only.
Encryption and Decryption with PKCS1V15 and OAEP padding
Export and Import of Plaintext keys
Export and Import of Wrapped keys generated by PSA.

Random number generation
Persistent Key Storage

Configuration
Build Time Configurations for mbedCrypto

The following build time configurations are defined in arm/mbedtls/config.h:

Configuration Options Default Description

Hardware Acceleration

Hardware Acceleration > Key Format

AES MCU Specific Options Select AES key formats
used

ECC MCU Specific Options Select ECC key formats
used

RSA MCU Specific Options Select RSA key formats
used

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,932 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Hardware Acceleration > Hash

SHA256/224 MCU Specific Options Defines
MBEDTLS_SHA256_ALT
and MBEDTLS_SHA256_
PROCESS_ALT.

SHA512/384 MCU Specific Options Defines
MBEDTLS_SHA512_ALT
and MBEDTLS_SHA512_
PROCESS_ALT.

Hardware Acceleration > Cipher

AES MCU Specific Options Defines
MBEDTLS_AES_ALT, MB
EDTLS_AES_SETKEY_EN
C_ALT, MBEDTLS_AES_
SETKEY_DEC_ALT, MBE
DTLS_AES_ENCRYPT_AL
T and MBEDTLS_AES_D
ECRYPT_ALT

Hardware Acceleration > Public Key Cryptography (PKC)

Hardware Acceleration > Public Key Cryptography (PKC) > RSA 3072

RSA 3072 > Key
Generation

MCU Specific Options Enables RSA 3072 Key
Generation.

RSA 3072 > Signing MCU Specific Options Enables RSA 3072 Key
Signing.

RSA 3072 >
Verification

MCU Specific Options Enables RSA 3072
Verify.

Hardware Acceleration > Public Key Cryptography (PKC) > RSA 4096

RSA 4096 > Key
Generation

MCU Specific Options Enables RSA 4096 Key
Generation.

RSA 4096 > Signing MCU Specific Options Enables RSA 4096 Key
Signing.

RSA 4096 >
Verification

MCU Specific Options Enables RSA 4096
Verify.

ECC MCU Specific Options Defines
MBEDTLS_ECP_ALT

ECDSA MCU Specific Options Defines MBEDTLS_ECD
SA_SIGN_ALT and MBE
DTLS_ECDSA_VERIFY_A
LT

ECDH MCU Specific Options Defines
MBEDTLS_ECDH_ALT

RSA MCU Specific Options Defines
MBEDTLS_RSA_ALT.
RSA 2048 Key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,933 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Generation, Signing
and Verification are
also enabled.

TRNG Enabled Enabled Defines MBEDTLS_ENT
ROPY_HARDWARE_ALT.

Crypto Engine
Initialization

Enabled Enabled MBEDTLS_PLATFORM_S
ETUP_TEARDOWN_ALT

Platform

Platform > Alternate

MBEDTLS_PLATFORM_S
ETBUF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
ETBUF_ALT

MBEDTLS_PLATFORM_E
XIT_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_E
XIT_ALT

MBEDTLS_PLATFORM_T
IME_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_ALT

MBEDTLS_PLATFORM_F
PRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
PRINTF_ALT

MBEDTLS_PLATFORM_P
RINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_P
RINTF_ALT

MBEDTLS_PLATFORM_S
NPRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
NPRINTF_ALT

MBEDTLS_PLATFORM_V
SNPRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_V
SNPRINTF_ALT

MBEDTLS_PLATFORM_N
V_SEED_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_ALT

MBEDTLS_PLATFORM_
MS_TIME_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_
MS_TIME_ALT

MBEDTLS_PLATFORM_Z
EROIZE_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_Z
EROIZE_ALT

MBEDTLS_PLATFORM_G
MTIME_R_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_G
MTIME_R_ALT

MBEDTLS_HAVE_ASM Define
Undefine

Undefine MBEDTLS_HAVE_ASM

MBEDTLS_NO_UDBL_DI
VISION

Define
Undefine

Undefine MBEDTLS_NO_UDBL_DI
VISION

MBEDTLS_NO_64BIT_M
ULTIPLICATION

Define
Undefine

Undefine MBEDTLS_NO_64BIT_M
ULTIPLICATION

MBEDTLS_HAVE_SSE2 Define
Undefine

Undefine MBEDTLS_HAVE_SSE2

MBEDTLS_HAVE_TIME Define
Undefine

Undefine MBEDTLS_HAVE_TIME

MBEDTLS_HAVE_TIME_ Define Undefine MBEDTLS_HAVE_TIME_

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,934 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

DATE Undefine DATE

MBEDTLS_PLATFORM_
MEMORY

Define
Undefine

Define MBEDTLS_PLATFORM_
MEMORY

MBEDTLS_PLATFORM_N
O_STD_FUNCTIONS

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
O_STD_FUNCTIONS

MBEDTLS_TIMING_ALT Define
Undefine

Undefine MBEDTLS_TIMING_ALT

MBEDTLS_NO_PLATFOR
M_ENTROPY

Define
Undefine

Define MBEDTLS_NO_PLATFOR
M_ENTROPY

MBEDTLS_ENTROPY_C Define
Undefine

Define MBEDTLS_ENTROPY_C

MBEDTLS_PLATFORM_C Define
Undefine

Define MBEDTLS_PLATFORM_C

MBEDTLS_PLATFORM_S
TD_CALLOC

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_CALLOC

MBEDTLS_PLATFORM_S
TD_CALLOC value

Manual Entry calloc MBEDTLS_PLATFORM_S
TD_CALLOC value

MBEDTLS_PLATFORM_S
TD_FREE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_FREE

MBEDTLS_PLATFORM_S
TD_FREE value

Manual Entry free MBEDTLS_PLATFORM_S
TD_FREE value

MBEDTLS_PLATFORM_S
TD_SETBUF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_SETBUF

MBEDTLS_PLATFORM_S
TD_SETBUF value

Manual Entry setbuf MBEDTLS_PLATFORM_S
TD_SETBUF value

MBEDTLS_PLATFORM_S
TD_EXIT

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT

MBEDTLS_PLATFORM_S
TD_EXIT value

Manual Entry exit MBEDTLS_PLATFORM_S
TD_EXIT value

MBEDTLS_PLATFORM_S
TD_TIME

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_TIME

MBEDTLS_PLATFORM_S
TD_TIME value

Manual Entry time MBEDTLS_PLATFORM_S
TD_TIME value

MBEDTLS_PLATFORM_S
TD_FPRINTF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_FPRINTF

MBEDTLS_PLATFORM_S
TD_FPRINTF value

Manual Entry fprintf MBEDTLS_PLATFORM_S
TD_FPRINTF value

MBEDTLS_PLATFORM_S
TD_PRINTF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_PRINTF

MBEDTLS_PLATFORM_S
TD_PRINTF value

Manual Entry printf MBEDTLS_PLATFORM_S
TD_PRINTF value

MBEDTLS_PLATFORM_S Define Undefine MBEDTLS_PLATFORM_S

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,935 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

TD_SNPRINTF Undefine TD_SNPRINTF

MBEDTLS_PLATFORM_S
TD_SNPRINTF value

Manual Entry snprintf MBEDTLS_PLATFORM_S
TD_SNPRINTF value

MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS

MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS
value

Manual Entry 0 MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS
value

MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE

MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE value

Manual Entry 1 MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE value

MBEDTLS_PLATFORM_S
TD_NV_SEED_READ

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_READ

MBEDTLS_PLATFORM_S
TD_NV_SEED_READ
value

Manual Entry mbedtls_platform_std_
nv_seed_read

MBEDTLS_PLATFORM_S
TD_NV_SEED_READ
value

MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE

MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE
value

Manual Entry mbedtls_platform_std_
nv_seed_write

MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE
value

MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE

MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE
value

Manual Entry MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE
value

MBEDTLS_PLATFORM_C
ALLOC_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_C
ALLOC_MACRO

MBEDTLS_PLATFORM_C
ALLOC_MACRO value

Manual Entry calloc MBEDTLS_PLATFORM_C
ALLOC_MACRO value

MBEDTLS_PLATFORM_F
REE_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
REE_MACRO

MBEDTLS_PLATFORM_F
REE_MACRO value

Manual Entry free MBEDTLS_PLATFORM_F
REE_MACRO value

MBEDTLS_PLATFORM_E
XIT_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_E
XIT_MACRO

MBEDTLS_PLATFORM_E
XIT_MACRO value

Manual Entry exit MBEDTLS_PLATFORM_E
XIT_MACRO value

MBEDTLS_PLATFORM_S
ETBUF_MACRO

Define
Undefine

Define MBEDTLS_PLATFORM_S
ETBUF_MACRO

MBEDTLS_PLATFORM_S
ETBUF_MACRO value

Manual Entry dummy_setbuf MBEDTLS_PLATFORM_S
ETBUF_MACRO value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,936 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_PLATFORM_T
IME_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_MACRO

MBEDTLS_PLATFORM_T
IME_MACRO value

Manual Entry time MBEDTLS_PLATFORM_T
IME_MACRO value

MBEDTLS_PLATFORM_T
IME_TYPE_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_TYPE_MACRO

MBEDTLS_PLATFORM_T
IME_TYPE_MACRO
value

Manual Entry time_t MBEDTLS_PLATFORM_T
IME_TYPE_MACRO
value

MBEDTLS_PLATFORM_
MS_TIME_TYPE_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_
MS_TIME_TYPE_MACRO

MBEDTLS_PLATFORM_
MS_TIME_TYPE_MACRO
value

Manual Entry int64_t MBEDTLS_PLATFORM_
MS_TIME_TYPE_MACRO
value

MBEDTLS_PRINTF_MS_T
IME

Define
Undefine

Undefine MBEDTLS_PRINTF_MS_T
IME

MBEDTLS_PRINTF_MS_T
IME value

Manual Entry PRId64 MBEDTLS_PRINTF_MS_T
IME value

MBEDTLS_PLATFORM_F
PRINTF_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
PRINTF_MACRO

MBEDTLS_PLATFORM_F
PRINTF_MACRO value

Manual Entry fprintf MBEDTLS_PLATFORM_F
PRINTF_MACRO value

MBEDTLS_PLATFORM_P
RINTF_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_P
RINTF_MACRO

MBEDTLS_PLATFORM_P
RINTF_MACRO value

Manual Entry printf MBEDTLS_PLATFORM_P
RINTF_MACRO value

MBEDTLS_PLATFORM_S
NPRINTF_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
NPRINTF_MACRO

MBEDTLS_PLATFORM_S
NPRINTF_MACRO value

Manual Entry snprintf MBEDTLS_PLATFORM_S
NPRINTF_MACRO value

MBEDTLS_PLATFORM_V
SNPRINTF_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_V
SNPRINTF_MACRO

MBEDTLS_PLATFORM_V
SNPRINTF_MACRO
value

Manual Entry vsnprintf MBEDTLS_PLATFORM_V
SNPRINTF_MACRO
value

MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO

MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO
value

Manual Entry mbedtls_platform_std_
nv_seed_read

MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO
value

MBEDTLS_PLATFORM_N
V_SEED_WRITE_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_WRITE_MACRO

MBEDTLS_PLATFORM_N Manual Entry mbedtls_platform_std_ MBEDTLS_PLATFORM_N

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,937 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

V_SEED_WRITE_MACRO
value

nv_seed_write V_SEED_WRITE_MACRO
value

General

MBEDTLS_PSA_CRYPTO
_DRIVERS

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_DRIVERS

MBEDTLS_DEPRECATE
D_WARNING

Define
Undefine

Undefine MBEDTLS_DEPRECATE
D_WARNING

MBEDTLS_DEPRECATE
D_REMOVED

Define
Undefine

Define MBEDTLS_DEPRECATE
D_REMOVED

MBEDTLS_CHECK_RETU
RN_WARNING

Define
Undefine

Undefine MBEDTLS_CHECK_RETU
RN_WARNING

MBEDTLS_ERROR_STRE
RROR_DUMMY

Define
Undefine

Define MBEDTLS_ERROR_STRE
RROR_DUMMY

MBEDTLS_MEMORY_DE
BUG

Define
Undefine

Undefine MBEDTLS_MEMORY_DE
BUG

MBEDTLS_MEMORY_BA
CKTRACE

Define
Undefine

Undefine MBEDTLS_MEMORY_BA
CKTRACE

MBEDTLS_PSA_CRYPTO
_CLIENT

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_CLIENT

MBEDTLS_PSA_CRYPTO
_SPM

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_SPM

MBEDTLS_PSA_ASSUME
_EXCLUSIVE_BUFFERS

Define
Undefine

Undefine MBEDTLS_PSA_ASSUME
_EXCLUSIVE_BUFFERS

MBEDTLS_SELF_TEST Define
Undefine

Undefine MBEDTLS_SELF_TEST

MBEDTLS_THREADING_
ALT

Define
Undefine

Define MBEDTLS_THREADING_
ALT

MBEDTLS_THREADING_
PTHREAD

Define
Undefine

Undefine MBEDTLS_THREADING_
PTHREAD

MBEDTLS_USE_PSA_CR
YPTO

Undefine Undefine MBEDTLS_USE_PSA_CR
YPTO

MBEDTLS_VERSION_FE
ATURES

Define
Undefine

Define MBEDTLS_VERSION_FE
ATURES

MBEDTLS_ERROR_C Define
Undefine

Define MBEDTLS_ERROR_C

MBEDTLS_MEMORY_BU
FFER_ALLOC_C

Define
Undefine

Undefine MBEDTLS_MEMORY_BU
FFER_ALLOC_C

MBEDTLS_PSA_CRYPTO
_C

Define
Undefine

Define MBEDTLS_PSA_CRYPTO
_C

MBEDTLS_PSA_CRYPTO
_SE_C

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_SE_C

MBEDTLS_THREADING_ Define Define MBEDTLS_THREADING_

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,938 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

C Undefine C

MBEDTLS_TIMING_C Define
Undefine

Undefine MBEDTLS_TIMING_C

MBEDTLS_VERSION_C Define
Undefine

Define MBEDTLS_VERSION_C

MBEDTLS_MEMORY_ALI
GN_MULTIPLE

Define
Undefine

Undefine MBEDTLS_MEMORY_ALI
GN_MULTIPLE

MBEDTLS_MEMORY_ALI
GN_MULTIPLE value

Manual Entry 4 MBEDTLS_MEMORY_ALI
GN_MULTIPLE value

MBEDTLS_CHECK_RETU
RN

Define
Undefine

Define MBEDTLS_CHECK_RETU
RN

MBEDTLS_IGNORE_RET
URN

Define
Undefine

Undefine MBEDTLS_IGNORE_RET
URN

MBEDTLS_PSA_CRYPTO
_CONFIG

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_CONFIG

Cipher

Cipher > Alternate

MBEDTLS_ARIA_ALT Define
Undefine

Undefine MBEDTLS_ARIA_ALT

MBEDTLS_CAMELLIA_A
LT

Define
Undefine

Undefine MBEDTLS_CAMELLIA_A
LT

MBEDTLS_CCM_ALT MCU Specific Options MBEDTLS_CCM_ALT

MBEDTLS_CHACHA20_
ALT

Define
Undefine

Undefine MBEDTLS_CHACHA20_
ALT

MBEDTLS_CHACHAPOL
Y_ALT

Define
Undefine

Undefine MBEDTLS_CHACHAPOL
Y_ALT

MBEDTLS_CMAC_ALT MCU Specific Options MBEDTLS_CMAC_ALT

MBEDTLS_DES_ALT Define
Undefine

Undefine MBEDTLS_DES_ALT

MBEDTLS_GCM_ALT MCU Specific Options MBEDTLS_GCM_ALT

MBEDTLS_NIST_KW_AL
T

Define
Undefine

Undefine MBEDTLS_NIST_KW_AL
T

MBEDTLS_DES_SETKEY
_ALT

Define
Undefine

Undefine MBEDTLS_DES_SETKEY
_ALT

MBEDTLS_DES_CRYPT_
ECB_ALT

Define
Undefine

Undefine MBEDTLS_DES_CRYPT_
ECB_ALT

MBEDTLS_DES3_CRYPT
_ECB_ALT

Define
Undefine

Undefine MBEDTLS_DES3_CRYPT
_ECB_ALT

Cipher > AES

MBEDTLS_AES_ROM_TA Define Undefine MBEDTLS_AES_ROM_TA

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,939 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

BLES Undefine BLES

MBEDTLS_AES_FEWER_
TABLES

Define
Undefine

Undefine MBEDTLS_AES_FEWER_
TABLES

MBEDTLS_AES_ONLY_1
28_BIT_KEY_LENGTH

Define
Undefine

Undefine MBEDTLS_AES_ONLY_1
28_BIT_KEY_LENGTH

MBEDTLS_CAMELLIA_S
MALL_MEMORY

Define
Undefine

Undefine MBEDTLS_CAMELLIA_S
MALL_MEMORY

MBEDTLS_CIPHER_MOD
E_CBC

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CBC

MBEDTLS_CIPHER_MOD
E_CFB

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CFB

MBEDTLS_CIPHER_MOD
E_CTR

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CTR

MBEDTLS_CIPHER_MOD
E_OFB

Define
Undefine

Undefine MBEDTLS_CIPHER_MOD
E_OFB

MBEDTLS_CIPHER_MOD
E_XTS

Define
Undefine

Undefine MBEDTLS_CIPHER_MOD
E_XTS

MBEDTLS_CIPHER_NUL
L_CIPHER

Define
Undefine

Undefine MBEDTLS_CIPHER_NUL
L_CIPHER

MBEDTLS_CIPHER_PAD
DING_PKCS7

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_PKCS7

MBEDTLS_CIPHER_PAD
DING_ONE_AND_ZEROS

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ONE_AND_ZEROS

MBEDTLS_CIPHER_PAD
DING_ZEROS_AND_LEN

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ZEROS_AND_LEN

MBEDTLS_CIPHER_PAD
DING_ZEROS

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ZEROS

MBEDTLS_AES_C Define Define MBEDTLS_AES_C

MBEDTLS_BLOCK_CIPH
ER_NO_DECRYPT

Define
Undefine

Undefine MBEDTLS_BLOCK_CIPH
ER_NO_DECRYPT

MBEDTLS_CAMELLIA_C Define
Undefine

Undefine MBEDTLS_CAMELLIA_C

MBEDTLS_ARIA_C Define
Undefine

Undefine MBEDTLS_ARIA_C

MBEDTLS_CCM_C Define
Undefine

Define MBEDTLS_CCM_C

MBEDTLS_CHACHA20_
C

Define
Undefine

Undefine MBEDTLS_CHACHA20_
C

MBEDTLS_CHACHAPOL
Y_C

Define
Undefine

Undefine MBEDTLS_CHACHAPOL
Y_C

MBEDTLS_CIPHER_C Define
Undefine

Define MBEDTLS_CIPHER_C

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,940 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_DES_C Define
Undefine

Undefine MBEDTLS_DES_C

MBEDTLS_GCM_C Define
Undefine

Define MBEDTLS_GCM_C

MBEDTLS_GCM_LARGE_
TABLE

Define
Undefine

Undefine MBEDTLS_GCM_LARGE_
TABLE

MBEDTLS_NIST_KW_C Define
Undefine

Undefine MBEDTLS_NIST_KW_C

Public Key Cryptography (PKC)

Public Key Cryptography (PKC) > DHM

Public Key Cryptography (PKC) > DHM > Alternate

MBEDTLS_DHM_ALT Define
Undefine

Undefine MBEDTLS_DHM_ALT

MBEDTLS_DHM_C Define
Undefine

Undefine MBEDTLS_DHM_C

Public Key Cryptography (PKC) > ECC

Public Key Cryptography (PKC) > ECC > Alternate

MBEDTLS_ECJPAKE_ALT Define
Undefine

Undefine MBEDTLS_ECJPAKE_ALT

MBEDTLS_ECDSA_GEN
KEY_ALT

Define
Undefine

Undefine MBEDTLS_ECDSA_GEN
KEY_ALT

MBEDTLS_ECP_INTERN
AL_ALT

Define
Undefine

Undefine MBEDTLS_ECP_INTERN
AL_ALT

MBEDTLS_ECP_RANDO
MIZE_JAC_ALT

Define
Undefine

Undefine MBEDTLS_ECP_RANDO
MIZE_JAC_ALT

MBEDTLS_ECP_ADD_MI
XED_ALT

Define
Undefine

Undefine MBEDTLS_ECP_ADD_MI
XED_ALT

MBEDTLS_ECP_DOUBLE
_JAC_ALT

Define
Undefine

Undefine MBEDTLS_ECP_DOUBLE
_JAC_ALT

MBEDTLS_ECP_NORMA
LIZE_JAC_MANY_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_JAC_MANY_ALT

MBEDTLS_ECP_NORMA
LIZE_JAC_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_JAC_ALT

MBEDTLS_ECP_DOUBLE
_ADD_MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_DOUBLE
_ADD_MXZ_ALT

MBEDTLS_ECP_RANDO
MIZE_MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_RANDO
MIZE_MXZ_ALT

MBEDTLS_ECP_NORMA
LIZE_MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_MXZ_ALT

Public Key Cryptography (PKC) > ECC > Curves

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,941 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_ECP_DP_SEC
P192R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P192R1_ENABLED

MBEDTLS_ECP_DP_SEC
P224R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P224R1_ENABLED

MBEDTLS_ECP_DP_SEC
P256R1_ENABLED

Define
Undefine

Define MBEDTLS_ECP_DP_SEC
P256R1_ENABLED

MBEDTLS_ECP_DP_SEC
P384R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P384R1_ENABLED

MBEDTLS_ECP_DP_SEC
P521R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P521R1_ENABLED

MBEDTLS_ECP_DP_SEC
P192K1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P192K1_ENABLED

MBEDTLS_ECP_DP_SEC
P224K1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P224K1_ENABLED

MBEDTLS_ECP_DP_SEC
P256K1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P256K1_ENABLED

MBEDTLS_ECP_DP_BP2
56R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP2
56R1_ENABLED

MBEDTLS_ECP_DP_BP3
84R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP3
84R1_ENABLED

MBEDTLS_ECP_DP_BP5
12R1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP5
12R1_ENABLED

MBEDTLS_ECP_DP_CUR
VE25519_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_CUR
VE25519_ENABLED

MBEDTLS_ECP_DP_CUR
VE448_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_CUR
VE448_ENABLED

MBEDTLS_ECDH_GEN_P
UBLIC_ALT

Define
Undefine

Undefine MBEDTLS_ECDH_GEN_P
UBLIC_ALT

MBEDTLS_ECDH_COMP
UTE_SHARED_ALT

Define
Undefine

Undefine MBEDTLS_ECDH_COMP
UTE_SHARED_ALT

MBEDTLS_ECP_NO_FAL
LBACK

Define
Undefine

Undefine MBEDTLS_ECP_NO_FAL
LBACK

MBEDTLS_ECP_NIST_OP
TIM

Define
Undefine

Undefine MBEDTLS_ECP_NIST_OP
TIM

MBEDTLS_ECP_RESTAR
TABLE

Define
Undefine

Undefine MBEDTLS_ECP_RESTAR
TABLE

MBEDTLS_ECDSA_DETE
RMINISTIC

Define
Undefine

Undefine MBEDTLS_ECDSA_DETE
RMINISTIC

MBEDTLS_PK_PARSE_E
C_COMPRESSED

Define
Undefine

Undefine MBEDTLS_PK_PARSE_E
C_COMPRESSED

MBEDTLS_PK_PARSE_E
C_EXTENDED

Define
Undefine

Undefine MBEDTLS_PK_PARSE_E
C_EXTENDED

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,942 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_ECDH_C Define
Undefine

Undefine MBEDTLS_ECDH_C

MBEDTLS_ECDSA_C Define
Undefine

Define MBEDTLS_ECDSA_C

MBEDTLS_ECP_C Define
Undefine

Define MBEDTLS_ECP_C

MBEDTLS_ECJPAKE_C Define
Undefine

Undefine MBEDTLS_ECJPAKE_C

MBEDTLS_ECP_WINDO
W_SIZE

Define
Undefine

Undefine MBEDTLS_ECP_WINDO
W_SIZE

MBEDTLS_ECP_WINDO
W_SIZE value

Manual Entry 6 MBEDTLS_ECP_WINDO
W_SIZE value

MBEDTLS_ECP_FIXED_P
OINT_OPTIM

Define
Undefine

Undefine MBEDTLS_ECP_FIXED_P
OINT_OPTIM

MBEDTLS_ECP_FIXED_P
OINT_OPTIM value

Manual Entry 1 MBEDTLS_ECP_FIXED_P
OINT_OPTIM value

MBEDTLS_ECDH_VARIA
NT_EVEREST_ENABLED

Define
Undefine

Undefine MBEDTLS_ECDH_VARIA
NT_EVEREST_ENABLED

Public Key Cryptography (PKC) > RSA

MBEDTLS_PK_RSA_ALT_
SUPPORT

Define
Undefine

Undefine MBEDTLS_PK_RSA_ALT_
SUPPORT

MBEDTLS_RSA_NO_CRT Define
Undefine

Define MBEDTLS_RSA_NO_CRT

MBEDTLS_RSA_C Define
Undefine

Define MBEDTLS_RSA_C

MBEDTLS_RSA_GEN_KE
Y_MIN_BITS

Define
Undefine

Undefine MBEDTLS_RSA_GEN_KE
Y_MIN_BITS

MBEDTLS_RSA_GEN_KE
Y_MIN_BITS value

Manual Entry 1024 MBEDTLS_RSA_GEN_KE
Y_MIN_BITS value

MBEDTLS_GENPRIME Define
Undefine

Define MBEDTLS_GENPRIME

MBEDTLS_PKCS1_V15 Define
Undefine

Define MBEDTLS_PKCS1_V15

MBEDTLS_PKCS1_V21 Define
Undefine

Define MBEDTLS_PKCS1_V21

MBEDTLS_ASN1_PARSE
_C

Define
Undefine

Define MBEDTLS_ASN1_PARSE
_C

MBEDTLS_ASN1_WRITE
_C

Define
Undefine

Define MBEDTLS_ASN1_WRITE
_C

MBEDTLS_BASE64_C Define
Undefine

Define MBEDTLS_BASE64_C

MBEDTLS_BIGNUM_C Define Define MBEDTLS_BIGNUM_C

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,943 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Undefine

MBEDTLS_LMS_C Define
Undefine

Define MBEDTLS_LMS_C

MBEDTLS_LMS_PRIVAT
E

Define
Undefine

Undefine MBEDTLS_LMS_PRIVAT
E

MBEDTLS_OID_C Define
Undefine

Define MBEDTLS_OID_C

MBEDTLS_PEM_PARSE_
C

Define
Undefine

Define MBEDTLS_PEM_PARSE_
C

MBEDTLS_PEM_WRITE_
C

Define
Undefine

Define MBEDTLS_PEM_WRITE_
C

MBEDTLS_PK_C Define
Undefine

Define MBEDTLS_PK_C

MBEDTLS_PK_PARSE_C Define
Undefine

Define MBEDTLS_PK_PARSE_C

MBEDTLS_PK_WRITE_C Define
Undefine

Define MBEDTLS_PK_WRITE_C

MBEDTLS_PKCS5_C Define
Undefine

Define MBEDTLS_PKCS5_C

MBEDTLS_PKCS7_C Define
Undefine

Undefine MBEDTLS_PKCS7_C

MBEDTLS_PKCS12_C Define
Undefine

Define MBEDTLS_PKCS12_C

MBEDTLS_MPI_WINDO
W_SIZE

Define
Undefine

Undefine MBEDTLS_MPI_WINDO
W_SIZE

MBEDTLS_MPI_WINDO
W_SIZE value

Manual Entry 6 MBEDTLS_MPI_WINDO
W_SIZE value

MBEDTLS_MPI_MAX_SIZ
E

Define
Undefine

Undefine MBEDTLS_MPI_MAX_SIZ
E

MBEDTLS_MPI_MAX_SIZ
E value

Manual Entry 1024 MBEDTLS_MPI_MAX_SIZ
E value

Hash

Hash > Alternate

MBEDTLS_MD5_ALT Define
Undefine

Undefine MBEDTLS_MD5_ALT

MBEDTLS_RIPEMD160_
ALT

Define
Undefine

Undefine MBEDTLS_RIPEMD160_
ALT

MBEDTLS_SHA1_ALT Define
Undefine

Undefine MBEDTLS_SHA1_ALT

MBEDTLS_MD5_PROCE
SS_ALT

Define
Undefine

Undefine MBEDTLS_MD5_PROCE
SS_ALT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,944 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_RIPEMD160_
PROCESS_ALT

Define
Undefine

Undefine MBEDTLS_RIPEMD160_
PROCESS_ALT

MBEDTLS_SHA1_PROCE
SS_ALT

Define
Undefine

Undefine MBEDTLS_SHA1_PROCE
SS_ALT

MBEDTLS_SHA256_SMA
LLER

Define
Undefine

Undefine MBEDTLS_SHA256_SMA
LLER

MBEDTLS_SHA512_SMA
LLER

Define
Undefine

Undefine MBEDTLS_SHA512_SMA
LLER

MBEDTLS_MD_C Define
Undefine

Define MBEDTLS_MD_C

MBEDTLS_MD5_C Define
Undefine

Define MBEDTLS_MD5_C

MBEDTLS_RIPEMD160_
C

Define
Undefine

Undefine MBEDTLS_RIPEMD160_
C

MBEDTLS_SHA1_C Define
Undefine

Define MBEDTLS_SHA1_C

MBEDTLS_SHA3_C Define
Undefine

Undefine MBEDTLS_SHA3_C

MBEDTLS_SHA224_C Define
Undefine

Define MBEDTLS_SHA224_C

MBEDTLS_SHA256_C Define
Undefine

Define MBEDTLS_SHA256_C

MBEDTLS_SHA384_C Define
Undefine

Undefine MBEDTLS_SHA384_C

MBEDTLS_SHA512_C Define
Undefine

Undefine MBEDTLS_SHA512_C

Message Authentication Code (MAC)

Message Authentication Code (MAC) > Alternate

MBEDTLS_POLY1305_A
LT

Define
Undefine

Undefine MBEDTLS_POLY1305_A
LT

MBEDTLS_CMAC_C Define
Undefine

Undefine MBEDTLS_CMAC_C

MBEDTLS_HKDF_C Define
Undefine

Define MBEDTLS_HKDF_C

MBEDTLS_HMAC_DRBG
_C

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_C

MBEDTLS_POLY1305_C Define
Undefine

Undefine MBEDTLS_POLY1305_C

Storage

MBEDTLS_FS_IO Define
Undefine

Undefine MBEDTLS_FS_IO

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,945 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_PSA_CRYPTO
_STORAGE_C

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_STORAGE_C

MBEDTLS_PSA_ITS_FILE
_C

Define
Undefine

Undefine MBEDTLS_PSA_ITS_FILE
_C

RNG

MBEDTLS_NO_DEFAULT
_ENTROPY_SOURCES

Define
Undefine

Undefine MBEDTLS_NO_DEFAULT
_ENTROPY_SOURCES

MBEDTLS_ENTROPY_FO
RCE_SHA256

Define
Undefine

Undefine MBEDTLS_ENTROPY_FO
RCE_SHA256

MBEDTLS_ENTROPY_NV
_SEED

Define
Undefine

Undefine MBEDTLS_ENTROPY_NV
_SEED

MBEDTLS_PSA_CRYPTO
_EXTERNAL_RNG

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_EXTERNAL_RNG

MBEDTLS_PSA_INJECT_
ENTROPY

Define
Undefine

Undefine MBEDTLS_PSA_INJECT_
ENTROPY

MBEDTLS_CTR_DRBG_C Define
Undefine

Define MBEDTLS_CTR_DRBG_C

MBEDTLS_CTR_DRBG_C
_ALT

Define Define MBEDTLS_CTR_DRBG_C
_ALT

MBEDTLS_CTR_DRBG_E
NTROPY_LEN

Define
Undefine

Undefine RNG|MBEDTLS_CTR_DR
BG_ENTROPY_LEN

MBEDTLS_CTR_DRBG_E
NTROPY_LEN value

Manual Entry 48 RNG value|MBEDTLS_C
TR_DRBG_ENTROPY_LE
N

MBEDTLS_CTR_DRBG_R
ESEED_INTERVAL

Define
Undefine

Undefine RNG|MBEDTLS_CTR_DR
BG_RESEED_INTERVAL

MBEDTLS_CTR_DRBG_R
ESEED_INTERVAL value

Manual Entry 10000 RNG value|MBEDTLS_C
TR_DRBG_RESEED_INT
ERVAL

MBEDTLS_CTR_DRBG_
MAX_INPUT

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_INPUT

MBEDTLS_CTR_DRBG_
MAX_INPUT value

Manual Entry 256 MBEDTLS_CTR_DRBG_
MAX_INPUT value

MBEDTLS_CTR_DRBG_
MAX_REQUEST

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_REQUEST

MBEDTLS_CTR_DRBG_
MAX_REQUEST value

Manual Entry 1024 MBEDTLS_CTR_DRBG_
MAX_REQUEST value

MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT

MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT value

Manual Entry 384 MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT value

MBEDTLS_CTR_DRBG_U Define Undefine MBEDTLS_CTR_DRBG_U

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,946 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

SE_128_BIT_KEY Undefine SE_128_BIT_KEY

MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL

MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL
value

Manual Entry 10000 MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL
value

MBEDTLS_HMAC_DRBG
_MAX_INPUT

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_INPUT

MBEDTLS_HMAC_DRBG
_MAX_INPUT value

Manual Entry 256 MBEDTLS_HMAC_DRBG
_MAX_INPUT value

MBEDTLS_HMAC_DRBG
_MAX_REQUEST

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_REQUEST

MBEDTLS_HMAC_DRBG
_MAX_REQUEST value

Manual Entry 1024 MBEDTLS_HMAC_DRBG
_MAX_REQUEST value

MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT

MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT
value

Manual Entry 384 MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT
value

MBEDTLS_ENTROPY_M
AX_SOURCES

Define
Undefine

Undefine MBEDTLS_ENTROPY_M
AX_SOURCES

MBEDTLS_ENTROPY_M
AX_SOURCES value

Manual Entry 20 MBEDTLS_ENTROPY_M
AX_SOURCES value

MBEDTLS_ENTROPY_M
AX_GATHER

Define
Undefine

Undefine MBEDTLS_ENTROPY_M
AX_GATHER

MBEDTLS_ENTROPY_M
AX_GATHER value

Manual Entry 128 MBEDTLS_ENTROPY_M
AX_GATHER value

MBEDTLS_ENTROPY_MI
N_HARDWARE

Define
Undefine

Undefine MBEDTLS_ENTROPY_MI
N_HARDWARE

MBEDTLS_ENTROPY_MI
N_HARDWARE value

Manual Entry 32 MBEDTLS_ENTROPY_MI
N_HARDWARE value

Key Configuration

MBEDTLS_PSA_CRYPTO
_KEY_ID_ENCODES_OW
NER

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_KEY_ID_ENCODES_OW
NER

MBEDTLS_PSA_CRYPTO
_BUILTIN_KEYS

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_BUILTIN_KEYS

PSA_CRYPTO_DRIVER_T
FM_BUILTIN_KEY_LOAD
ER

Define
Undefine

Undefine PSA_CRYPTO_DRIVER_T
FM_BUILTIN_KEY_LOAD
ER

MBEDTLS_PSA_KEY_SL
OT_COUNT

Define
Undefine

Undefine MBEDTLS_PSA_KEY_SL
OT_COUNT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,947 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

MBEDTLS_PSA_KEY_SL
OT_COUNT value

Manual Entry 32 MBEDTLS_PSA_KEY_SL
OT_COUNT value

HMAC

MBEDTLS_PSA_HMAC_D
RBG_MD_TYPE

Define
Undefine

Define MBEDTLS_PSA_HMAC_D
RBG_MD_TYPE

SHA256 Configuration

To enable hardware acceleration for the SHA256/224 calculation, the macro MBEDTLS_SHA256_ALT
and MBEDTLS_SHA256_PROCESS_ALT must be defined in the configuration file. By default SHA256 is
enabled. SHA256 can be disabled, but SHA512 then needs to be enabled (software version) because
the PSA implementation uses it for the entropy accumulator. This can be done using the RA
Configuration editor.

AES Configuration

To enable hardware acceleration for the AES128/256 operation, the macro
MBEDTLS_AES_SETKEY_ENC_ALT, MBEDTLS_AES_SETKEY_DEC_ALT, MBEDTLS_AES_ENCRYPT_ALT and
MBEDTLS_AES_DECRYPT_ALT must be defined in the configuration file. By default AES is enabled.
AES cannot be disabled because the PSA implementation requires it for the CTR_DRBG random
number generator. This can be done using the RA Configuration editor.

Note
Only AES XTS 128 is currently supported. RA2 devices support acceleration for ECB part alone, while other
devices support full AES XTS hardware acceleration.

ECC Configuration

To enable hardware acceleration for the ECC Key Generation operation, the macro
MBEDTLS_ECP_ALT must be defined in the configuration file. For ECDSA, the macros
MBEDTLS_ECDSA_SIGN_ALT and MBEDTLS_ECDSA_VERIFY_ALT must be defined. By default ECC,
ECDSA and ECDHE are enabled. To disable ECC, undefine MBEDTLS_ECP_C, MBEDTLS_ECDSA_C and
MBEDTLS_ECDH_C. This can be done using the RA Configuration editor.

RSA Configuration

To enable hardware acceleration for the RSA2048 operation, the macro MBEDTLS_RSA_ALT must be
defined in the configuration file. By default RSA is enabled. To disable RSA, undefine
MBEDTLS_RSA_C, MBEDTLS_PK_C, MBEDTLS_PK_PARSE_C, MBEDTLS_PK_WRITE_C. This can be done
using the RA Configuration editor.

Wrapped Key Usage

To use the Secure Crypto Engine to generate and use wrapped keys, use
PSA_KEY_TYPE_AES_WRAPPED or PSA_KEY_TYPE_ECC_KEY_PAIR_WRAPPED(curve) or
PSA_KEY_TYPE_RSA_KEY_PAIR when setting the key type attribute. Setting the key's type attribute
using this value will cause the SCE to use wrapped key mode for all operations related to that key.
The user can use the export functionality to save the wrapped keys to user ROM and import it later
for usage. This mode requires that Wrapped Key functionality for the algorithm is enabled in the
project configuration.

Note
On the SCE9 devices, only the RSA public key can be exported. A file system must be used to store the internally
generated private key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,948 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Persistent Key Storage

Persistent key storage can be enabled by defining MBEDTLS_FS_IO,
MBEDTLS_PSA_CRYPTO_STORAGE_C, and MBEDTLS_PSA_ITS_FILE_C. The key lifetime must also be
specifed as PSA_KEY_LIFETIME_PERSISTENT. A lower level storage module must be added in the RA
Configuration editor and initialized in the code before generating persistent keys. Persistent storage
supports the use of plaintext and vendor keys. Refer to the lower level storage module
documentation for information on how it should be initialized. To generate a persistent key the key
must be assigned a unique id prior to calling generate using the psa_set_key_id api.

 if (PSA_KEY_LIFETIME_IS_PERSISTENT(lifetime))

 {

 /* Set the id to a positive integer. */

 psa_set_key_id(&attributes, (psa_key_id_t) 5);

 }

Platform Configuration

To run the mbedCrypto implementation of the PSA Crypto API on the MCU, the macro
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT must be defined in the configuration file. This enables
code that will initialize the SCE. Parameter checking (General|MBEDTLS_CHECK_PARAMS) is enabled
by default. To reduce code size, disable parameter checking.

Random Number Configuration

To run the mbedCrypto implementation of the PSA Crypto API on the MCU, the macro
MBEDTLS_ENTROPY_HARDWARE_ALT must be defined in the configuration file. This enables using
the TRNG as an entropy source. None of the other cryptographic operations (even in software only
mode) will work without this feature.

Usage Notes
Hardware Initialization

mbedtls_platform_setup() must be invoked before using the PSA Crypto API to ensure that the SCE
peripheral is initialized.

Memory Usage

In general, depending on the mbedCrypto features being used a heap size of 0x1000 to 0x5000
bytes is required. The total allocated heap should be the sum of the heap requirements of the
individual algorithms:

Algorithm Required Heap (bytes)

SHA256/224 None

AES 0x200

Hardware ECC 0x400

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,949 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Software ECC 0x1800

RSA 0x1500

A minimum stack of 0x1000 is required where the module is used. This is either the main stack in a
bare metal application or the task stack of the task used for crypto operations.

Limitations

Only little endian mode is supported.

Stdio Buffering

The MBEDTLS_PLATFORM_SETBUF_MACRO was introduced in mbedTLS 3.2.1 to prevent stdio
read/write functions from buffering stream data to reduce the likelihood of key leakage by setting
the buffer argument in setbuf() to NULL. FSP uses a dummy_setbuf() function in rm_psa_crypto.c to
prevent build errors; since FSP uses LittleFS by default (where the usage of a buffer is mandatory)
this function does not perform any action. Setting the cache size in LittleFS to the minimum
supported by the Data Flash (4) can minimize but not remove the likelihood of key data leakage. The
dummy function can be replaced with a user-defined function by defining a different value for
MBEDTLS_PLATFORM_SETBUF_MACRO_value in the FSP configurator.

SCE9 Usage

The SCE9 is used in Compatibility Mode for mbedCrypto acceleration. The crypto capabilities in this
mode on the SCE9 are different which results in the below usage limitations with mbedCrypto:

The module includes both wrapped and plaintext keys code irrespective of whether the
application requires it.
Plaintext key generation is not supported for RSA and ECC; only wrapped keys can be
generated.
If ECDH is used, only wrapped key will be generated on SCE9 and will not return an error
even if the user context is somehow set for plain key. This may be relevant only if the
psa_key_agreement() function with plaintext key on SCE9 is attempted.

Note
For a detailed description of the different SCE9 operating modes, refer to Application Note R11AN0498.

Using PSA Crypto with TrustZone

Unlike FSP drivers, PSA Crypto cannot be configured as Non-secure callable in the RA Configurator
for a secure project. The reason for this is that in order to achieve the security objective of
controlling access to protected keys, both the PSA Crypto code as well as the keys must be placed in
the secure region. Since the PSA Crypto API requires access to the keys directly during initialization
and later via a key handle, allowing non-secure code to use the API by making it Non-secure callable
will require the keys to be stored in non-secure memory.

This section will provide a short explanation of how to add PSA Crypto to a secure project and have it
usable by the non-secure project without exposing the keys. In this example the secure project will
contain an RSA private key and the non-secure project is expected to be able to perform sign and
verify operations using that key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,950 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

Figure 287: PSA Crypto Non-secure callable example

Secure project
During secure project boot-up, psa_crypto_init() is called.
The RSA private key is programmed into secure flash either at the factory or by
calling psa_generate_key() in persistent mode. Note that the data-flash area used
by the LittleFS will have to be in the secure region if the key is generated as a
persistent.
psa_import_key()/psa_open_key() are called with the resultant handle held in
secure RAM.
The Non-secure callable section contains the following user-defined functions
verify_with_my_rsa_key(input_signature, input_hash, verification_result)
The implementation of this function in secure region will call psa_verify_hash() and
return the result via verification_result.
sign_with_my_rsa_key(input_hash, output_signature)
The implementation of this function in secure region will call psa_sign_hash() and
return the signature via output_signature.

Non-secure project

Calls verify_with_my_rsa_key() to verify a signature. The implementation will use
the public key that is present in the secure project.
Calls sign_with_my_rsa_key() to generate a signature. The implementation will use
the private key that is present on the secure project.

For more details on how to add user-code to the Non-secure callable region refer to the
"Security Design with Arm TrustZone - IP Protection (R11AN0467EU0100)" Application Note.

Examples
Hash Example

This is an example on calculating the SHA256 hash using the PSA Crypto API.

const uint8_t NIST_SHA256ShortMsgLen200[] =

{

 0x2e, 0x7e, 0xa8, 0x4d, 0xa4, 0xbc, 0x4d, 0x7c, 0xfb, 0x46, 0x3e, 0x3f, 0x2c,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,951 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

0x86, 0x47, 0x05,

 0x7a, 0xff, 0xf3, 0xfb, 0xec, 0xec, 0xa1, 0xd2, 00

};

const uint8_t NIST_SHA256ShortMsgLen200_expected[] =

{

 0x76, 0xe3, 0xac, 0xbc, 0x71, 0x88, 0x36, 0xf2, 0xdf, 0x8a, 0xd2, 0xd0, 0xd2,

0xd7, 0x6f, 0x0c,

 0xfa, 0x5f, 0xea, 0x09, 0x86, 0xbe, 0x91, 0x8f, 0x10, 0xbc, 0xee, 0x73, 0x0d,

0xf4, 0x41, 0xb9

};

void psa_crypto_sha256_example (void)

{

 psa_algorithm_t alg = PSA_ALG_SHA_256;

 psa_hash_operation_t operation = {0};

 size_t expected_hash_len = PSA_HASH_LENGTH(alg);

 uint8_t actual_hash[PSA_HASH_MAX_SIZE];

 size_t actual_hash_len;

 mbedtls_platform_context ctx = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 /* Platform initialization failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_hash_setup(&operation, alg))

 {

 /* Hash setup failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_hash_update(&operation, NIST_SHA256ShortMsgLen200,

sizeof(NIST_SHA256ShortMsgLen200)))

 {

 /* Hash calculation failed */

 debugger_break();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,952 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

 else if (PSA_SUCCESS != psa_hash_finish(&operation, &actual_hash[0], sizeof

(actual_hash), &actual_hash_len))

 {

 /* Reading calculated hash failed */

 debugger_break();

 }

 else if (0 != memcmp(&actual_hash[0], &NIST_SHA256ShortMsgLen200_expected[0],

actual_hash_len))

 {

 /* Hash compare of calculated value with expected value failed */

 debugger_break();

 }

 else if (0 != memcmp(&expected_hash_len, &actual_hash_len, sizeof

(expected_hash_len)))

 {

 /* Hash size compare of calculated value with expected value failed */

 debugger_break();

 }

 else

 {

 /* SHA256 calculation succeeded */

 debugger_break();

 }

 /* De-initialize the platform. This is currently a placeholder function which does

not do anything. */

 mbedtls_platform_teardown(&ctx);

}

AES Example

This is an example on using the PSA Crypto API to generate an AES256 key, encrypting and
decrypting multi-block data and using PKCS7 padding.

static psa_status_t cipher_operation (psa_cipher_operation_t * operation,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,953 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 const uint8_t * input,

 size_t input_size,

 size_t part_size,

 uint8_t * output,

 size_t output_size,

 size_t * output_len)

{

 psa_status_t status;

 size_t bytes_to_write = 0;

 size_t bytes_written = 0;

 size_t len = 0;

 *output_len = 0;

 while (bytes_written != input_size)

 {

 bytes_to_write = (input_size - bytes_written > part_size ?

 part_size :

 input_size - bytes_written);

 status = psa_cipher_update(operation,

 input + bytes_written,

 bytes_to_write,

 output + *output_len,

 output_size - *output_len,

 &len);

 if (PSA_SUCCESS != status)

 {

 return status;

 }

 bytes_written += bytes_to_write;

 *output_len += len;

 }

 status = psa_cipher_finish(operation, output + *output_len, output_size -

*output_len, &len);

 if (PSA_SUCCESS != status)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,954 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 return status;

 }

 *output_len += len;

 return status;

}

void psa_crypto_aes256cbcmultipart_example (void)

{

 enum

 {

 block_size = PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES),

 key_bits = 256,

 input_size = 100,

 part_size = 10,

 };

 mbedtls_platform_context ctx = {0};

 const psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;

 psa_cipher_operation_t operation_1 = PSA_CIPHER_OPERATION_INIT;

 psa_cipher_operation_t operation_2 = PSA_CIPHER_OPERATION_INIT;

 size_t iv_len = 0;

 psa_key_handle_t key_handle = 0;

 size_t encrypted_length = 0;

 size_t decrypted_length = 0;

 uint8_t iv[block_size] = {0};

 uint8_t input[input_size] = {0};

 uint8_t encrypted_data[input_size + block_size] = {0};

 uint8_t decrypted_data[input_size + block_size] = {0};

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_lifetime_t lifetime;

 /* Setup the platform; initialize the SCE */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 /* Platform initialization failed */

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,955 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 if (PSA_SUCCESS != psa_crypto_init())

 {

 /* PSA Crypto Initialization failed */

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT |

PSA_KEY_USAGE_DECRYPT);

 psa_set_key_algorithm(&attributes, alg);

 /* To use wrapped keys instead of plaintext use PSA_KEY_TYPE_AES_WRAPPED. */

 psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);

 psa_set_key_bits(&attributes, key_bits);

 lifetime = PSA_KEY_LIFETIME_VOLATILE;

 /* To use persistent keys:

 *......Use a lifetime value of PSA_KEY_LIFETIME_PERSISTENT

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, lifetime);

 if (PSA_KEY_LIFETIME_IS_PERSISTENT(lifetime))

 {

 /* Set the id to a positive integer. */

 psa_set_key_id(&attributes, (psa_key_id_t) 5);

 }

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation for input data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Generating AES 256 key and allocating to key slot failed */

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,956 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 else if (PSA_SUCCESS != psa_cipher_encrypt_setup(&operation_1, key_handle, alg))

 {

 /* Initializing the encryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_generate_iv(&operation_1, iv, sizeof(iv),

&iv_len))

 {

 /* Generating the random IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_1, input, input_size, part_size,

encrypted_data, sizeof(encrypted_data),

 &encrypted_length))

 {

 /* Encryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_1))

 {

 /* Terminating the encryption operation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_decrypt_setup(&operation_2, key_handle, alg))

 {

 /* Initializing the decryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_set_iv(&operation_2, iv, sizeof(iv)))

 {

 /* Setting the IV failed */

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,957 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_2, encrypted_data, encrypted_length,

part_size, decrypted_data,

 sizeof(decrypted_data), &decrypted_length))

 {

 /* Decryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_2))

 {

 /* Terminating the decryption operation failed */

 debugger_break();

 }

 else if (0 != memcmp(input, decrypted_data, sizeof(input)))

 {

 /* Comparing the input data with decrypted data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 /* Destroying the key handle failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded */

 }

 /* Close the SCE */

 mbedtls_platform_teardown(&ctx);

}

void psa_crypto_aes128xtsmultipart_example (void)

{

 enum

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,958 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 block_size = PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES),

 key_bits = 256,

 input_size = 32,

 part_size = 16,

 };

 mbedtls_platform_context ctx = {0};

 const psa_algorithm_t alg = PSA_ALG_XTS;

 psa_cipher_operation_t operation_1 = PSA_CIPHER_OPERATION_INIT;

 psa_cipher_operation_t operation_2 = PSA_CIPHER_OPERATION_INIT;

 size_t iv_len = 0;

 psa_key_handle_t key_handle = 0;

 size_t encrypted_length = 0;

 size_t decrypted_length = 0;

 uint8_t iv[block_size] = {0};

 uint8_t input[input_size] = {0};

 uint8_t encrypted_data[input_size] = {0};

 uint8_t decrypted_data[input_size] = {0};

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_lifetime_t lifetime;

 /* Setup the platform; initialize the SCE */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 /* Platform initialization failed */

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 /* PSA Crypto Initialization failed */

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT |

PSA_KEY_USAGE_DECRYPT);

 psa_set_key_algorithm(&attributes, alg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,959 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 /* To use wrapped keys instead of plaintext use PSA_KEY_TYPE_AES_WRAPPED. */

 /* When using XTS mode, since there are two keys used, the key_bits value is twice

the AES key length.

 * For AES 128 XTS mode, the key_bits value is 256. MbedTLS only supports AES 128

currently. */

 psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);

 psa_set_key_bits(&attributes, key_bits);

 lifetime = PSA_KEY_LIFETIME_VOLATILE;

 /* To use persistent keys:

 *......Use a lifetime value of PSA_KEY_LIFETIME_PERSISTENT

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, lifetime);

 if (PSA_KEY_LIFETIME_IS_PERSISTENT(lifetime))

 {

 /* Set the id to a positive integer. */

 psa_set_key_id(&attributes, (psa_key_id_t) 5);

 }

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation for input data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Generating AES 256 key and allocating to key slot failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_encrypt_setup(&operation_1, key_handle, alg))

 {

 /* Initializing the encryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,960 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 else if (PSA_SUCCESS != psa_cipher_generate_iv(&operation_1, iv, sizeof(iv),

&iv_len))

 {

 /* Generating the random IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_1, input, sizeof(input), part_size,

encrypted_data, sizeof(encrypted_data),

 &encrypted_length))

 {

 /* Encryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_1))

 {

 /* Terminating the encryption operation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_decrypt_setup(&operation_2, key_handle, alg))

 {

 /* Initializing the decryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_set_iv(&operation_2, iv, sizeof(iv)))

 {

 /* Setting the IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_2, encrypted_data, encrypted_length,

part_size, decrypted_data,

 sizeof(decrypted_data), &decrypted_length))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,961 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 /* Decryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_2))

 {

 /* Terminating the decryption operation failed */

 debugger_break();

 }

 else if (0 != memcmp(input, decrypted_data, sizeof(input)))

 {

 /* Comparing the input data with decrypted data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 /* Destroying the key handle failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded */

 }

 /* Close the SCE */

 mbedtls_platform_teardown(&ctx);

}

AES-CCM Example

This is an example on using the PSA Crypto API to generate an AES256 key, encrypting and
decrypting multi-block data and using PKCS7 padding using AES-CCM.

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random plaintext input generation failed */

 debugger_break();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,962 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Key generation failed */

 debugger_break();

 }

 /* AES-CCM Encryption */

 else if (PSA_SUCCESS !=

 psa_aead_encrypt(key_handle, PSA_ALG_CCM, nonce, sizeof(nonce),

additional_data, sizeof(additional_data),

 input, sizeof(input), encrypt, sizeof(encrypt),

&output_len))

 {

 /* AES-CCM Encryption failed */

 debugger_break();

 }

 /* AES-CCM Decryption */

 else if (PSA_SUCCESS !=

 psa_aead_decrypt(key_handle, PSA_ALG_CCM, nonce, sizeof(nonce),

additional_data, sizeof(additional_data),

 encrypt, output_len, decrypt, sizeof(decrypt),

&output_len))

 {

 /* AES-CCM Decryption failed */

 debugger_break();

 }

 else if (0U != memcmp(input, decrypt, sizeof(input)))

 {

 /* The decrypted result did not match the plaintext input */

 debugger_break();

 }

 else

 {

 /* All operations were successful */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,963 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

AES-XTS Example

This is an example on using the PSA Crypto API to generate an AES128 XTS key, encrypting and
decrypting multi-block data.

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation for input data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Generating AES 256 key and allocating to key slot failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_encrypt_setup(&operation_1, key_handle, alg))

 {

 /* Initializing the encryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_generate_iv(&operation_1, iv, sizeof(iv),

&iv_len))

 {

 /* Generating the random IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_1, input, sizeof(input), part_size,

encrypted_data, sizeof(encrypted_data),

 &encrypted_length))

 {

 /* Encryption failed */

 debugger_break();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,964 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_1))

 {

 /* Terminating the encryption operation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_decrypt_setup(&operation_2, key_handle, alg))

 {

 /* Initializing the decryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_set_iv(&operation_2, iv, sizeof(iv)))

 {

 /* Setting the IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_2, encrypted_data, encrypted_length,

part_size, decrypted_data,

 sizeof(decrypted_data), &decrypted_length))

 {

 /* Decryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_2))

 {

 /* Terminating the decryption operation failed */

 debugger_break();

 }

 else if (0 != memcmp(input, decrypted_data, sizeof(input)))

 {

 /* Comparing the input data with decrypted data failed */

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,965 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 else if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 /* Destroying the key handle failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded */

 }

CMAC Example

This is an example on using the PSA Crypto API to generate an AES256 key, followed by generation
and verification of MAC for random data of known length.

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation failure */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Key generation failure */

 debugger_break();

 }

 /* Steps to generate the MAC */

 else if (PSA_SUCCESS != psa_mac_sign_setup(&operation, key_handle, alg))

 {

 /* MAC Sign setup failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_update(&operation, input, input_size))

 {

 /* MAC update failed */

 debugger_break();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,966 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

 else if (PSA_SUCCESS != psa_mac_sign_finish(&operation, AES_CMAC_mac, sizeof

(AES_CMAC_mac), &mac_ret))

 {

 /* MAC Sign operation failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded for MAC generation */

 }

 /* Steps to verify the generated MAC */

 if (PSA_SUCCESS != psa_mac_verify_setup(&verify_operation, key_handle, alg))

 {

 /* MAC verification setup failure */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_update(&verify_operation, input, input_size))

 {

 /* MAC update failure */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_verify_finish(&verify_operation, AES_CMAC_mac,

mac_ret))

 {

 /* MAC verification failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded for MAC verification */

 }

ECC Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,967 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

This is an example on using the PSA Crypto API to generate an ECC-P256R1 key, signing and
verifying data after hashing it first using SHA256.

Note
Unlike RSA, ECDSA does not have any padding schemes. Thus the hash argument for the ECC sign operation
MUST have a size larger than or equal to the curve size; i.e. for PSA_ECC_CURVE_SECP256R1 the payload size
must be at least 256/8 bytes. nist.fips.186-4: " A hash function that provides a lower security strength than the
security strength associated with the bit length of 'n' ordinarily should not be used, since this would reduce the
security strength of the digital signature process to a level no greater than that provided by the hash function."

#define ECC_256_BIT_LENGTH 256

#define ECC_256_EXPORTED_SIZE 500

uint8_t exportedECC_SECP256R1Key[ECC_256_EXPORTED_SIZE];

size_t exportedECC_SECP256R1Keylength = 0;

void psa_ecc256R1_example (void)

{

/* This example generates an ECC-P256R1 keypair, performs signing and verification

operations.

 * It then exports the generated key into ASN1 DER format to a RAM array which can

then be programmed to flash.

 * It then re-imports that key, and performs signing and verification operations. */

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN......";

 unsigned char signature1[PSA_SIGNATURE_MAX_SIZE] = {0};

 unsigned char signature2[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length1 = 0;

 size_t signature_length2 = 0;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t ecc_key_handle = {0};

 psa_hash_operation_t hash_operation = {0};

 uint8_t payload_hash[PSA_HASH_MAX_SIZE];

 size_t payload_hash_len;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,968 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 {

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH | PSA_KEY_USAGE_EXPORT);

 psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));

 /* To use wrapped keys instead of plaintext:

 * - Use PSA_KEY_TYPE_ECC_KEY_PAIR_WRAPPED(PSA_ECC_FAMILY_SECP_R1).*/

 psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1));

 psa_set_key_bits(&attributes, ECC_256_BIT_LENGTH);

 /* To use persistent keys instead of volatile:

 * - Use PSA_KEY_LIFETIME_PERSISTENT.

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_VOLATILE);

 /* Generate ECC P256R1 Key pair */

 if (PSA_SUCCESS != psa_generate_key(&attributes, &ecc_key_handle))

 {

 debugger_break();

 }

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(ecc_key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Calculate the hash of the message */

 if (PSA_SUCCESS != psa_hash_setup(&hash_operation, PSA_ALG_SHA_256))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_hash_update(&hash_operation, payload, sizeof(payload)))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,969 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 debugger_break();

 }

 if (PSA_SUCCESS !=

 psa_hash_finish(&hash_operation, &payload_hash[0], sizeof(payload_hash),

&payload_hash_len))

 {

 debugger_break();

 }

 /* Sign message using the private key

 * NOTE: The hash argument (payload_hash here) MUST have a size equal to the curve

size;

 * i.e. for SECP256R1 the payload size must be 256/8 bytes.

 * Similarly for SECP384R1 the payload size must be 384/8 bytes.

 * nist.fips.186-4: " A hash function that provides a lower security strength than

 * the security strength associated with the bit length of 'n' ordinarily should not

be used, since this

 * would reduce the security strength of the digital signature process to a level no

greater than that

 * provided by the hash function." */

 if (PSA_SUCCESS !=

 psa_sign_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature1,

 sizeof(signature1), &signature_length1))

 {

 debugger_break();

 }

 /* Verify the signature1 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature1,

 signature_length1))

 {

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,970 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 /* Export the key. The exported key can then be save to flash for later usage. */

 if (PSA_SUCCESS !=

 psa_export_key(ecc_key_handle, exportedECC_SECP256R1Key, sizeof

(exportedECC_SECP256R1Key),

 &exportedECC_SECP256R1Keylength))

 {

 debugger_break();

 }

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(ecc_key_handle))

 {

 debugger_break();

 }

 /* Import the previously exported key pair */

 if (PSA_SUCCESS !=

 psa_import_key(&attributes, exportedECC_SECP256R1Key,

exportedECC_SECP256R1Keylength, &ecc_key_handle))

 {

 debugger_break();

 }

 /* Sign message using the private key */

 if (PSA_SUCCESS !=

 psa_sign_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature2,

 sizeof(signature2), &signature_length2))

 {

 debugger_break();

 }

 /* Verify signature2 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature2,

 signature_length2))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,971 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 debugger_break();

 }

 /* Signatures cannot be compared since ECC signatures vary for the same data unless

Deterministic ECC is used which is not supported by the HW.

 * Only the verification operation can be used to validate signatures. */

}

RSA Example

This is an example on using the PSA Crypto API to generate an RSA2048 key, encrypting and
decrypting multi-block data and using PKCS7 padding.

#define RSA_2048_BIT_LENGTH 2048

#define RSA_2048_EXPORTED_SIZE 1210

/* The RSA 2048 key pair export in der format is roughly as follows

 * RSA private keys:

 * RSAPrivateKey ::= SEQUENCE { --------------------------------------- 1 + 3

 * version Version, --------------------------------------- 1 + 1 + 1

 * modulus INTEGER, ---------------- n ------------------- 1 + 3 + 256 + 1

 * publicExponent INTEGER, ---------------- e ------------------- 1 + 4

 * privateExponent INTEGER, ---------------- d ------------------- 1 + 3 + 256 (276

for Wrapped)

 * prime1 INTEGER, ---------------- p ------------------- 1 + 3 + (256 / 2)

 * prime2 INTEGER, ---------------- q ------------------- 1 + 3 + (256 / 2)

 * exponent1 INTEGER, ---------------- d mod (p-1) --------- 1 + 2 + (256 / 2) (4 for

Wrapped)

 * exponent2 INTEGER, ---------------- d mod (q-1) --------- 1 + 2 + (256 / 2) (4 for

Wrapped)

 * coefficient INTEGER, ---------------- (inverse of q) mod p - 1 + 2 + (256 / 2) (4

for Wrapped)

 * otherPrimeInfos OtherPrimeInfos OPTIONAL ------------------------ 0 (not

supported)

 * }

 */

uint8_t exportedRSA2048Key[RSA_2048_EXPORTED_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,972 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

size_t exportedRSA2048Keylength = 0;

void psa_rsa2048_example (void)

{

/* This example generates an RSA2048 keypair, performs signing and verification

operations.

 * It then exports the generated key into ASN1 DER format to a RAM array which can

then be programmed to flash.

 * It then re-imports that key, and performs signing and verification operations. */

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t key_handle = {0};

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN";

 unsigned char signature1[PSA_SIGNATURE_MAX_SIZE] = {0};

 unsigned char signature2[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length1 = 0;

 size_t signature_length2 = 0;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH | PSA_KEY_USAGE_EXPORT);

 psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW);

 /* To use wrapped keys instead of plaintext:

 * - Use PSA_KEY_TYPE_RSA_KEY_PAIR_WRAPPED. */

 psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);

 psa_set_key_bits(&attributes, RSA_2048_BIT_LENGTH);

 /* To use persistent keys instead of volatile:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,973 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 * - Use PSA_KEY_LIFETIME_PERSISTENT.

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_VOLATILE);

 /* Generate RSA 2048 Key pair */

 if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 debugger_break();

 }

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Sign message using the private key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature1,

 sizeof(signature1), &signature_length1))

 {

 debugger_break();

 }

 /* Verify the signature1 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), signature1,

 signature_length1))

 {

 debugger_break();

 }

 /* Export the key */

 if (PSA_SUCCESS !=

 psa_export_key(key_handle, exportedRSA2048Key, sizeof(exportedRSA2048Key),

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,974 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

&exportedRSA2048Keylength))

 {

 debugger_break();

 }

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 debugger_break();

 }

 /* Import the previously exported key pair */

 if (PSA_SUCCESS != psa_import_key(&attributes, exportedRSA2048Key,

exportedRSA2048Keylength, &key_handle))

 {

 debugger_break();

 }

 /* Sign message using the private key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature2,

 sizeof(signature2), &signature_length2))

 {

 debugger_break();

 }

 /* Verify signature2 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), signature2,

 signature_length2))

 {

 debugger_break();

 }

 /* Compare signatures to verify that the same signature was generated */

 if (0 != memcmp(signature2, signature1, signature_length2))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,975 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 debugger_break();

 }

 mbedtls_psa_crypto_free();

 mbedtls_platform_teardown(&ctx);

}

/* Generated using "openssl genrsa -out example_private_key.pem 2048" */

const uint8_t RSAKeydata[] = "-----BEGIN RSA PRIVATE KEY-----\n"

 "MIIEowIBAAKCAQEAplaPU68h4hW/eAlH2hbQl1WjoDT1znCk0O9cnE9lAnB26IUi"

 "78wUAxuTZSlrlKez9FGGIVbUMTy7dTw0ZBanogrKCaAMaRFz5LRv4I8RQzsDxxqe"

 "nud9Y6mVRWb9hyutL/yBwDd6jzAwcviAhcatTv0E5wpEJ6ezMDyaiSCbn84hfb0T"

 "ZPXQVGhmjii3f0FfFWW9ce70qkuwdkvO6HBrOGVi2++b11As+Uh/7pxyOb7wpE7K"

 "X64nohaCtXgNnV8Hr+LOPQRHEbGTCPOfx1davKEIYFvm8hVxqv20csMD5uc8AJCd"

 "0cdom13KcOpVXCnrFPNJt0lITOcH/fBzp4xoaQIDAQABAoIBAGc56qKVWeKzempk"

 "4AlRBUwVYoEGvNDLiQz8rq12fAoCf1iXXvIP5Q90qokqJlBPrtbdTO8dsnuH5BHC"

 "NgUzJf7i0TUd9PWzVgfFjnR+dMkTM6n5NB0LLf6OfEtguc+L5GOWQXNnOpDn5/lB"

 "jIj4ng8Z6FP1RAyT/xjdU03sRYfq5OPlDZ8+ck7WwQ8VxSBKsJcZVv+K4r64Vmr1"

 "MO1zfBYuwafi4oO9Z9x89Iil9GBcYuCvhLvDoWhnTUxlOTfz+Jt+qwlmVimEz6xs"

 "6ew1Ox7e6SInly3IAXe9E84yP9MDmiGkCrVr8s8GUybZ5t/yeZ3g5lPYSQ/FiuHY"

 "kvJCH4ECgYEA2IthRDkElOQGqJ9T/LjgcIVLQs0F6i7zZWg6UKv18EmG7uHd6tsZ"

 "byFfFiBat80rq6q4AUx2OOE7+LI5MxIvgRgLk14WV8H2OKK/lfxOFb6a4feGM7bH"

 "VdERQSMNeGq0bP9IOPxU1EvFp0Vfv7cfGsQhcAPgA8up61jWREhI+fECgYEAxKVT"

 "9pKinIwgjsHgmxalaNbnRf+bcqtdS98SB2MuICg8ubcBSrjm4wtGe3oCX/PbM1GV"

 "FvEDKl4TyeWFIH4MStsyDHYxwoV2C01bBHEtHTYBnjeIShMruIomsG9GeTrNmyzg"

 "dVdSg5/lxYOxuZSXvfcbyIMsW29ddgeICu9RHfkCgYBaljQibhfUkW+Xqs9fsZdy"

 "etB5KXuH9AwuJ+P9S3KfCqM/240SaoXBT5yPjQlmSpYyQkCnim0Kbm7AIw56pujo"

 "gD6Xb4y5OZLfLnYnMF0aC5qPXRTvHU9WPxeQwDEqZrkDv+der3BtPyV4TDU55klE"

 "0TeLvJNCAzkaExfPiM2+gQKBgQC5ceBYq7hGQa+CcTvLhfO/hsrbrE2AOjLllhx+"

 "cv3QvaFm0jqZqP20J7H0R/9tVZ7mKo2a8Pa3QbkPsS92kOguv7/XGK+cbhgAWJb4"

 "/XI6FfA4sM4KbUHR6hbKVGX1dYroR831WsAp+OTK+4LjLEpdj2fYFDwEjmVpJXka"

 "Ns4coQKBgGESrtpJF7OQG4xcXwR2ZiJESPvMKVmtvxRzDrc9gmoiIIIKx1fimwCv"

 "RtOz1bQcXMRw21+ZAZpen3ahWh63KC0KxMSNBJTXdczlf2uprVkSPtmAjV4qBgwv"

 "tqjmP0lnGc9wkJsVvGmMAAfQOWgxs9h/VH/b+6biEkzaaZLOyABV"

 "-----END RSA PRIVATE KEY-----\n";

/* Expected signature below is calculated using the mbedCrypto software version */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,976 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

const uint8_t RSAExpectedSignature[256] =

{

 0x25, 0xC0, 0x15, 0x64, 0xD3, 0xF7, 0xC1, 0xB7, 0xA8, 0x9B, 0x56, 0x1C, 0xB5,

0xA4, 0xA5, 0x0D, 0x61, 0x52, 0x32,

 0x0C, 0x4E, 0xE8, 0xCA, 0x4B, 0x9E, 0xA2, 0x4D, 0x35, 0x0E, 0xB1, 0xA1, 0x5B, //

NOLINT(readability-magic-numbers)

 0x5B, 0xD8, 0xC1, 0x93, 0x28, 0x60, 0x90, 0x18, 0x37, 0x88, 0x66, 0xD4, 0xED,

0x37, 0x6B, 0xEC, 0x48, 0xFF, 0x3D,

 0xFB, 0x99, 0xB7, 0xEF, 0x3C, 0x8D, 0x25, 0xE9, 0xF3, 0xCF, 0x02, 0x7C, 0x7D, //

NOLINT(readability-magic-numbers)

 0xB9, 0x4D, 0x2F, 0x2F, 0x1E, 0x30, 0x48, 0x54, 0x18, 0xE4, 0x51, 0xD5, 0xC1,

0xB7, 0x3B, 0x0D, 0xE4, 0xB4, 0x19,

 0x7B, 0x9B, 0xF4, 0x35, 0x82, 0xCC, 0x91, 0x4C, 0x10, 0xE9, 0xB6, 0xF1, 0x0A, //

NOLINT(readability-magic-numbers)

 0x23, 0xEB, 0x7D, 0x51, 0x47, 0x36, 0xFE, 0x13, 0xAF, 0x3C, 0x23, 0x9F, 0x7E,

0xFC, 0xCF, 0x7A, 0x7C, 0x2D, 0xDB,

 0xD9, 0xDA, 0xEB, 0xF7, 0xB5, 0x6B, 0x8D, 0xE0, 0x18, 0x9A, 0x5B, 0xB7, 0x0A, //

NOLINT(readability-magic-numbers)

 0xA3, 0x4E, 0xE1, 0xB7, 0xF7, 0xD1, 0x94, 0xD5, 0x7A, 0xD3, 0x27, 0xE2, 0x1F,

0x3A, 0xEB, 0xF0, 0x83, 0x10, 0x52,

 0x51, 0x5F, 0x58, 0xF8, 0x81, 0x42, 0x48, 0x83, 0x2D, 0xF0, 0xA9, 0x7D, 0x79, //

NOLINT(readability-magic-numbers)

 0x2B, 0xF1, 0x68, 0xC2, 0x22, 0xC0, 0x0C, 0x72, 0x63, 0x37, 0xBF, 0xEC, 0x72,

0x97, 0xD4, 0xA5, 0x91, 0x2E, 0x1F,

 0xA3, 0x78, 0x9A, 0xCE, 0xFE, 0x27, 0x7F, 0x2B, 0x85, 0x7D, 0x22, 0x2C, 0x0D, //

NOLINT(readability-magic-numbers)

 0x1E, 0x10, 0xB7, 0xFF, 0x9A, 0xA7, 0x99, 0xD2, 0xB9, 0x40, 0x53, 0xB3, 0xA9,

0x52, 0x5D, 0xBD, 0xC8, 0x12, 0x8D,

 0x39, 0xD7, 0x97, 0x03, 0xD2, 0x80, 0x21, 0xC3, 0xA7, 0x8B, 0xE3, 0x3D, 0xF0, //

NOLINT(readability-magic-numbers)

 0x4D, 0x4C, 0x4D, 0xC4, 0xC7, 0xE5, 0xE4, 0x35, 0x75, 0xAA, 0x45, 0x3B, 0x9C,

0x64, 0xC1, 0x94, 0x6E, 0x15, 0x0A,

 0xE8, 0x84, 0xCD, 0xFC, 0x7A, 0xBC, 0x5C, 0x8C, 0xA8, 0x95, 0x07, 0x79, 0x4E, //

NOLINT(readability-magic-numbers)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,977 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

};

void psa_rsa2048_pem_format_import_example (void)

{

/* This example imports an RSA2048 keypair of PEM format, performs signing and

verification operations. */

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t key_handle = {0};

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN";

 unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length = 0U;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH);

 psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW);

 psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);

 psa_set_key_bits(&attributes, RSA_2048_BIT_LENGTH);

 /* Import the private key (This includes both the private and public key) */

 mbedtls_pk_context ctx_rsa;

 mbedtls_pk_init(&ctx_rsa);

 /* For keys other than ASN format, mbedtls_pk_parse_key and

mbedtls_pk_import_into_psa APIs must be called instead of psa_import_key */

 if (PSA_SUCCESS !=

 mbedtls_pk_parse_key(&ctx_rsa, RSAKeydata, sizeof(RSAKeydata), NULL, 0,

mbedtls_psa_get_random,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,978 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 MBEDTLS_PSA_RANDOM_STATE))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != mbedtls_pk_import_into_psa(&ctx_rsa, &attributes, &key_handle))

 {

 debugger_break();

 }

 mbedtls_pk_free(&ctx_rsa);

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Sign message using the key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature, sizeof(signature),

 &signature_length))

 {

 debugger_break();

 }

 if (0 != memcmp(signature, &RSAExpectedSignature, sizeof(RSAExpectedSignature)))

 {

 debugger_break();

 }

 /* Verify the signature */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), RSAExpectedSignature,

 sizeof(RSAExpectedSignature)))

 {

 debugger_break();

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,979 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 debugger_break();

 }

 mbedtls_psa_crypto_free();

 mbedtls_platform_teardown(&ctx);

}

Migrating to MbedTLS 3.6.0

MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS macro is disabled by default to handle shared memory
in a secure manner. Note that this increases heap memory usage and code size. The macro can be
enabled if all buffers passed to any PSA function reside in memory that is accessible only to the PSA
function during its execution or if it possible otherwise for the user to conclude that the user buffers
passed into PSA are secure from modification. Refer to https://github.com/Mbed-TLS/mbedtls-
docs/blob/main/security-advisories/mbedtls-security-advisory-2024-03.md for more details.

psa_import_key() now only accepts RSA keys in the PSA standard formats. Applications that need
other formats like: PKCS#8, SubjectPublicKey, PEM can call mbedtls_pk_parse_{public,}key()
followed by mbedtls_pk_import_into_psa().

/* Generated using "openssl genrsa -out example_private_key.pem 2048" */

const uint8_t RSAKeydata[] = "-----BEGIN RSA PRIVATE KEY-----\n"

 "MIIEowIBAAKCAQEAplaPU68h4hW/eAlH2hbQl1WjoDT1znCk0O9cnE9lAnB26IUi"

 "78wUAxuTZSlrlKez9FGGIVbUMTy7dTw0ZBanogrKCaAMaRFz5LRv4I8RQzsDxxqe"

 "nud9Y6mVRWb9hyutL/yBwDd6jzAwcviAhcatTv0E5wpEJ6ezMDyaiSCbn84hfb0T"

 "ZPXQVGhmjii3f0FfFWW9ce70qkuwdkvO6HBrOGVi2++b11As+Uh/7pxyOb7wpE7K"

 "X64nohaCtXgNnV8Hr+LOPQRHEbGTCPOfx1davKEIYFvm8hVxqv20csMD5uc8AJCd"

 "0cdom13KcOpVXCnrFPNJt0lITOcH/fBzp4xoaQIDAQABAoIBAGc56qKVWeKzempk"

 "4AlRBUwVYoEGvNDLiQz8rq12fAoCf1iXXvIP5Q90qokqJlBPrtbdTO8dsnuH5BHC"

 "NgUzJf7i0TUd9PWzVgfFjnR+dMkTM6n5NB0LLf6OfEtguc+L5GOWQXNnOpDn5/lB"

 "jIj4ng8Z6FP1RAyT/xjdU03sRYfq5OPlDZ8+ck7WwQ8VxSBKsJcZVv+K4r64Vmr1"

 "MO1zfBYuwafi4oO9Z9x89Iil9GBcYuCvhLvDoWhnTUxlOTfz+Jt+qwlmVimEz6xs"

 "6ew1Ox7e6SInly3IAXe9E84yP9MDmiGkCrVr8s8GUybZ5t/yeZ3g5lPYSQ/FiuHY"

 "kvJCH4ECgYEA2IthRDkElOQGqJ9T/LjgcIVLQs0F6i7zZWg6UKv18EmG7uHd6tsZ"

 "byFfFiBat80rq6q4AUx2OOE7+LI5MxIvgRgLk14WV8H2OKK/lfxOFb6a4feGM7bH"

 "VdERQSMNeGq0bP9IOPxU1EvFp0Vfv7cfGsQhcAPgA8up61jWREhI+fECgYEAxKVT"

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,980 / 5,560

https://github.com/Mbed-TLS/mbedtls-docs/blob/main/security-advisories/mbedtls-security-advisory-2024-03.md
https://github.com/Mbed-TLS/mbedtls-docs/blob/main/security-advisories/mbedtls-security-advisory-2024-03.md

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 "9pKinIwgjsHgmxalaNbnRf+bcqtdS98SB2MuICg8ubcBSrjm4wtGe3oCX/PbM1GV"

 "FvEDKl4TyeWFIH4MStsyDHYxwoV2C01bBHEtHTYBnjeIShMruIomsG9GeTrNmyzg"

 "dVdSg5/lxYOxuZSXvfcbyIMsW29ddgeICu9RHfkCgYBaljQibhfUkW+Xqs9fsZdy"

 "etB5KXuH9AwuJ+P9S3KfCqM/240SaoXBT5yPjQlmSpYyQkCnim0Kbm7AIw56pujo"

 "gD6Xb4y5OZLfLnYnMF0aC5qPXRTvHU9WPxeQwDEqZrkDv+der3BtPyV4TDU55klE"

 "0TeLvJNCAzkaExfPiM2+gQKBgQC5ceBYq7hGQa+CcTvLhfO/hsrbrE2AOjLllhx+"

 "cv3QvaFm0jqZqP20J7H0R/9tVZ7mKo2a8Pa3QbkPsS92kOguv7/XGK+cbhgAWJb4"

 "/XI6FfA4sM4KbUHR6hbKVGX1dYroR831WsAp+OTK+4LjLEpdj2fYFDwEjmVpJXka"

 "Ns4coQKBgGESrtpJF7OQG4xcXwR2ZiJESPvMKVmtvxRzDrc9gmoiIIIKx1fimwCv"

 "RtOz1bQcXMRw21+ZAZpen3ahWh63KC0KxMSNBJTXdczlf2uprVkSPtmAjV4qBgwv"

 "tqjmP0lnGc9wkJsVvGmMAAfQOWgxs9h/VH/b+6biEkzaaZLOyABV"

 "-----END RSA PRIVATE KEY-----\n";

/* Expected signature below is calculated using the mbedCrypto software version */

const uint8_t RSAExpectedSignature[256] =

{

 0x25, 0xC0, 0x15, 0x64, 0xD3, 0xF7, 0xC1, 0xB7, 0xA8, 0x9B, 0x56, 0x1C, 0xB5,

0xA4, 0xA5, 0x0D, 0x61, 0x52, 0x32,

 0x0C, 0x4E, 0xE8, 0xCA, 0x4B, 0x9E, 0xA2, 0x4D, 0x35, 0x0E, 0xB1, 0xA1, 0x5B, //

NOLINT(readability-magic-numbers)

 0x5B, 0xD8, 0xC1, 0x93, 0x28, 0x60, 0x90, 0x18, 0x37, 0x88, 0x66, 0xD4, 0xED,

0x37, 0x6B, 0xEC, 0x48, 0xFF, 0x3D,

 0xFB, 0x99, 0xB7, 0xEF, 0x3C, 0x8D, 0x25, 0xE9, 0xF3, 0xCF, 0x02, 0x7C, 0x7D, //

NOLINT(readability-magic-numbers)

 0xB9, 0x4D, 0x2F, 0x2F, 0x1E, 0x30, 0x48, 0x54, 0x18, 0xE4, 0x51, 0xD5, 0xC1,

0xB7, 0x3B, 0x0D, 0xE4, 0xB4, 0x19,

 0x7B, 0x9B, 0xF4, 0x35, 0x82, 0xCC, 0x91, 0x4C, 0x10, 0xE9, 0xB6, 0xF1, 0x0A, //

NOLINT(readability-magic-numbers)

 0x23, 0xEB, 0x7D, 0x51, 0x47, 0x36, 0xFE, 0x13, 0xAF, 0x3C, 0x23, 0x9F, 0x7E,

0xFC, 0xCF, 0x7A, 0x7C, 0x2D, 0xDB,

 0xD9, 0xDA, 0xEB, 0xF7, 0xB5, 0x6B, 0x8D, 0xE0, 0x18, 0x9A, 0x5B, 0xB7, 0x0A, //

NOLINT(readability-magic-numbers)

 0xA3, 0x4E, 0xE1, 0xB7, 0xF7, 0xD1, 0x94, 0xD5, 0x7A, 0xD3, 0x27, 0xE2, 0x1F,

0x3A, 0xEB, 0xF0, 0x83, 0x10, 0x52,

 0x51, 0x5F, 0x58, 0xF8, 0x81, 0x42, 0x48, 0x83, 0x2D, 0xF0, 0xA9, 0x7D, 0x79, //

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,981 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

NOLINT(readability-magic-numbers)

 0x2B, 0xF1, 0x68, 0xC2, 0x22, 0xC0, 0x0C, 0x72, 0x63, 0x37, 0xBF, 0xEC, 0x72,

0x97, 0xD4, 0xA5, 0x91, 0x2E, 0x1F,

 0xA3, 0x78, 0x9A, 0xCE, 0xFE, 0x27, 0x7F, 0x2B, 0x85, 0x7D, 0x22, 0x2C, 0x0D, //

NOLINT(readability-magic-numbers)

 0x1E, 0x10, 0xB7, 0xFF, 0x9A, 0xA7, 0x99, 0xD2, 0xB9, 0x40, 0x53, 0xB3, 0xA9,

0x52, 0x5D, 0xBD, 0xC8, 0x12, 0x8D,

 0x39, 0xD7, 0x97, 0x03, 0xD2, 0x80, 0x21, 0xC3, 0xA7, 0x8B, 0xE3, 0x3D, 0xF0, //

NOLINT(readability-magic-numbers)

 0x4D, 0x4C, 0x4D, 0xC4, 0xC7, 0xE5, 0xE4, 0x35, 0x75, 0xAA, 0x45, 0x3B, 0x9C,

0x64, 0xC1, 0x94, 0x6E, 0x15, 0x0A,

 0xE8, 0x84, 0xCD, 0xFC, 0x7A, 0xBC, 0x5C, 0x8C, 0xA8, 0x95, 0x07, 0x79, 0x4E, //

NOLINT(readability-magic-numbers)

};

void psa_rsa2048_pem_format_import_example (void)

{

/* This example imports an RSA2048 keypair of PEM format, performs signing and

verification operations. */

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t key_handle = {0};

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN";

 unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length = 0U;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 debugger_break();

 }

 /* Set key attributes */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,982 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH);

 psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW);

 psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);

 psa_set_key_bits(&attributes, RSA_2048_BIT_LENGTH);

 /* Import the private key (This includes both the private and public key) */

 mbedtls_pk_context ctx_rsa;

 mbedtls_pk_init(&ctx_rsa);

 /* For keys other than ASN format, mbedtls_pk_parse_key and

mbedtls_pk_import_into_psa APIs must be called instead of psa_import_key */

 if (PSA_SUCCESS !=

 mbedtls_pk_parse_key(&ctx_rsa, RSAKeydata, sizeof(RSAKeydata), NULL, 0,

mbedtls_psa_get_random,

 MBEDTLS_PSA_RANDOM_STATE))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != mbedtls_pk_import_into_psa(&ctx_rsa, &attributes, &key_handle))

 {

 debugger_break();

 }

 mbedtls_pk_free(&ctx_rsa);

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Sign message using the key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature, sizeof(signature),

 &signature_length))

 {

 debugger_break();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,983 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

 }

 if (0 != memcmp(signature, &RSAExpectedSignature, sizeof(RSAExpectedSignature)))

 {

 debugger_break();

 }

 /* Verify the signature */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), RSAExpectedSignature,

 sizeof(RSAExpectedSignature)))

 {

 debugger_break();

 }

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 debugger_break();

 }

 mbedtls_psa_crypto_free();

 mbedtls_platform_teardown(&ctx);

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,984 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

◆ mbedtls_platform_setup()

int mbedtls_platform_setup (mbedtls_platform_context * ctx)

This function initializes the SCE and the TRNG. It must be invoked before the crypto library can be
used. This implementation is used if MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT is defined.

Example:

 mbedtls_platform_context ctx = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

Return values
0 Initialization was successful.

MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILE
D

SCE Initialization error.

◆ mbedtls_platform_teardown()

void mbedtls_platform_teardown (mbedtls_platform_context * ctx)

This implementation is used if MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT is defined. It is
intended to de-initialize any items that were initialized in the mbedtls_platform_setup() function,
but currently is only a placeholder function.

Example:

 /* De-initialize the platform. This is currently a placeholder function which does

not do anything. */

 mbedtls_platform_teardown(&ctx);

Return values
N/A

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,985 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Mbed Crypto H/W Acceleration (rm_psa_crypto)

◆ RM_PSA_CRYPTO_TRNG_Read()

fsp_err_t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t num_req_bytes,
uint32_t * p_num_gen_bytes)

Reads requested length of random data from the TRNG. Generate nbytes of random bytes and
store them in p_rngbuf buffer.

Return values
FSP_SUCCESS Random number generation successful

FSP_ERR_ASSERTION NULL input parameter(s).

FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

s_generate_16byte_random_data

5.2.15.4 Renesas Secure IP (r_rsip_protected)
Modules » Security

Functions

fsp_err_t R_RSIP_AES_Cipher_Init (rsip_ctrl_t *const p_ctrl,
rsip_aes_cipher_mode_t const mode, rsip_wrapped_key_t const
*const p_wrapped_key, uint8_t const *const p_initial_vector)

fsp_err_t R_RSIP_AES_Cipher_Update (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_input, uint8_t *const p_output, uint32_t const length)

fsp_err_t R_RSIP_AES_Cipher_Finish (rsip_ctrl_t *const p_ctrl)

fsp_err_t R_RSIP_AES_AEAD_Init (rsip_ctrl_t *const p_ctrl,
rsip_aes_aead_mode_t mode, rsip_wrapped_key_t const *const
p_wrapped_key, uint8_t const *const p_nonce, uint32_t const
nonce_length)

fsp_err_t R_RSIP_AES_AEAD_LengthsSet (rsip_ctrl_t *const p_ctrl, uint32_t
const total_aad_length, uint32_t const total_text_length, uint32_t
const tag_length)

fsp_err_t R_RSIP_AES_AEAD_AADUpdate (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_aad, uint32_t const aad_length)

fsp_err_t R_RSIP_AES_AEAD_Update (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_input, uint32_t const input_length, uint8_t *const p_output,
uint32_t *const p_output_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,986 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

fsp_err_t R_RSIP_AES_AEAD_Finish (rsip_ctrl_t *const p_ctrl, uint8_t *const
p_output, uint32_t *const p_output_length, uint8_t *const p_tag)

fsp_err_t R_RSIP_AES_AEAD_Verify (rsip_ctrl_t *const p_ctrl, uint8_t *const
p_output, uint32_t *const p_output_length, uint8_t const *const
p_tag, uint32_t const tag_length)

fsp_err_t R_RSIP_AES_MAC_Init (rsip_ctrl_t *const p_ctrl, rsip_aes_mac_mode_t
const mode, rsip_wrapped_key_t const *const p_wrapped_key)

fsp_err_t R_RSIP_AES_MAC_Update (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_message, uint32_t const message_length)

fsp_err_t R_RSIP_AES_MAC_SignFinish (rsip_ctrl_t *const p_ctrl, uint8_t *const
p_mac)

fsp_err_t R_RSIP_AES_MAC_VerifyFinish (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_mac, uint32_t const mac_length)

fsp_err_t R_RSIP_RSA_Encrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_public_key, uint8_t const *const p_plain,
uint8_t *const p_cipher)

fsp_err_t R_RSIP_RSA_Decrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_private_key, uint8_t const *const p_cipher,
uint8_t *const p_plain)

fsp_err_t R_RSIP_RSAES_PKCS1_V1_5_Encrypt (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_public_key, uint8_t
const *const p_plain, uint32_t const plain_length, uint8_t *const
p_cipher)

fsp_err_t R_RSIP_RSAES_PKCS1_V1_5_Decrypt (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_private_key, uint8_t
const *const p_cipher, uint8_t *const p_plain, uint32_t *const
p_plain_length, uint32_t const plain_buffer_length)

fsp_err_t R_RSIP_RSAES_OAEP_Encrypt (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_public_key,
rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t
const label_length, uint8_t const *const p_plain, uint32_t const
plain_length, uint8_t *const p_cipher)

fsp_err_t R_RSIP_RSAES_OAEP_Decrypt (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_private_key,
rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t
const label_length, uint8_t const *const p_cipher, uint8_t *const
p_plain, uint32_t *const p_plain_length, uint32_t const
plain_buffer_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,987 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

fsp_err_t R_RSIP_RSASSA_PKCS1_V1_5_Sign (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_private_key,
rsip_hash_type_t const hash_function, uint8_t const *const p_hash,
uint8_t *const p_signature)

fsp_err_t R_RSIP_RSASSA_PKCS1_V1_5_Verify (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_public_key,
rsip_hash_type_t const hash_function, uint8_t const *const p_hash,
uint8_t const *const p_signature)

fsp_err_t R_RSIP_RSASSA_PSS_Sign (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_private_key,
rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const
*const p_hash, uint8_t *const p_signature)

fsp_err_t R_RSIP_RSASSA_PSS_Verify (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_public_key,
rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const
*const p_hash, uint8_t const *const p_signature)

fsp_err_t R_RSIP_OTF_Init (rsip_ctrl_t *const p_ctrl, rsip_otf_channel_t const
channel, rsip_wrapped_key_t *const p_wrapped_key, uint8_t const
*const p_seed)

fsp_err_t R_RSIP_ECDSA_Sign (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_private_key, uint8_t const *const p_hash,
uint8_t *const p_signature)

fsp_err_t R_RSIP_ECDSA_Verify (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_public_key, uint8_t const *const p_hash,
uint8_t const *const p_signature)

fsp_err_t R_RSIP_Open (rsip_ctrl_t *const p_ctrl, rsip_cfg_t const *const p_cfg)

fsp_err_t R_RSIP_Close (rsip_ctrl_t *const p_ctrl)

fsp_err_t R_RSIP_RandomNumberGenerate (rsip_ctrl_t *const p_ctrl, uint8_t
*const p_random)

fsp_err_t R_RSIP_KeyGenerate (rsip_ctrl_t *const p_ctrl, rsip_key_type_t const
key_type, rsip_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_KeyPairGenerate (rsip_ctrl_t *const p_ctrl,
rsip_key_pair_type_t const key_pair_type, rsip_wrapped_key_t *const
p_wrapped_public_key, rsip_wrapped_key_t *const
p_wrapped_private_key)

fsp_err_t R_RSIP_EncryptedKeyWrap (rsip_ctrl_t *const p_ctrl,
rsip_key_update_key_t const *const p_key_update_key, uint8_t const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,988 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

*const p_initial_vector, rsip_key_type_t const key_type, uint8_t const
*const p_encrypted_key, rsip_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RFC3394_KeyWrap (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_kek,
rsip_wrapped_key_t const *const p_wrapped_target_key, uint8_t
*const p_rfc3394_wrapped_target_key)

fsp_err_t R_RSIP_RFC3394_KeyUnwrap (rsip_ctrl_t *const p_ctrl,
rsip_wrapped_key_t const *const p_wrapped_kek, rsip_key_type_t
const key_type, uint8_t const *const p_rfc3394_wrapped_target_key,
rsip_wrapped_key_t *const p_wrapped_target_key)

fsp_err_t R_RSIP_InjectedKeyImport (rsip_key_type_t const key_type, uint8_t
const *const p_injected_key, rsip_wrapped_key_t *const
p_wrapped_key, uint32_t const wrapped_key_buffer_length)

fsp_err_t R_RSIP_PublicKeyExport (rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t *const p_raw_public_key)

fsp_err_t R_RSIP_SHA_Compute (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t
const hash_type, uint8_t const *const p_message, uint32_t const
message_length, uint8_t *const p_digest)

fsp_err_t R_RSIP_SHA_Init (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const
hash_type)

fsp_err_t R_RSIP_SHA_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_message, uint32_t const message_length)

fsp_err_t R_RSIP_SHA_Finish (rsip_ctrl_t *const p_ctrl, uint8_t *const p_digest)

fsp_err_t R_RSIP_SHA_Suspend (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t
*const p_handle)

fsp_err_t R_RSIP_SHA_Resume (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t
const *const p_handle)

fsp_err_t R_RSIP_HMAC_Compute (rsip_ctrl_t *const p_ctrl, const
rsip_wrapped_key_t *p_wrapped_key, uint8_t const *const
p_message, uint32_t const message_length, uint8_t *const p_mac)

fsp_err_t R_RSIP_HMAC_Verify (rsip_ctrl_t *const p_ctrl, const
rsip_wrapped_key_t *p_wrapped_key, uint8_t const *const
p_message, uint32_t const message_length, uint8_t const *const
p_mac, uint32_t const mac_length)

fsp_err_t R_RSIP_HMAC_Init (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_key)

fsp_err_t R_RSIP_HMAC_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,989 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

p_message, uint32_t const message_length)

fsp_err_t R_RSIP_HMAC_SignFinish (rsip_ctrl_t *const p_ctrl, uint8_t *const
p_mac)

fsp_err_t R_RSIP_HMAC_VerifyFinish (rsip_ctrl_t *const p_ctrl, uint8_t const
*const p_mac, uint32_t const mac_length)

fsp_err_t R_RSIP_HMAC_Suspend (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t
*const p_handle)

fsp_err_t R_RSIP_HMAC_Resume (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t
const *const p_handle)

Detailed Description

Driver for the Renesas Secure IP on RA MPUs. This module implements the RSIP Interface.

Overview
This module provides RSIP functions in protected mode.

HW Overview

Crypto Peripheral version Devices

RSIP-E51A RA8M1, RA8D1, RA8T1

Features

The RSIP module supports for the following features.

Cryptography
Symmetric Encryption/Decryption

AES
ECB 128/256bit
CBC 128/256bit
CTR 128/256bit
GCM 128/256bit
CCM 128/256bit
XTS 128/256bit

Asymmetric Encryption/Decryption
RSA

RSAES-PKCS1-V1_5 2048/3072/4096bit
RSAES-OAEP 2048/3072/4096bit
RSASSA-PKCS1-V1_5 2048/3072/4096bit
RSASSA-PSS 2048/3072/4096bit

ECC
ECDSA secp256r1/secp384r1/secp521r1

Hash Functions
SHA-2

SHA-256/384/512

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,990 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

RFC3394 Key Wrap/Unwrap
Message Authentication Code

HMAC-SHA256/384/512bit
AES-CMAC 128/256bit

Key Manage
Key Support

AES 128/256bit
RSA 2048/3072/4096bit
ECC secp256r1/secp384r1/secp521r1
HMAC-SHA256/384/512bit

Random Number Generate

Supported algorithms

The following algorithms are available on each devices.

RSIP-E51A: RA8M1, RA8D1, RA8T1

Symmetric Key

Key type (rsip_key_type_t) RSIP-E51A

RSIP_KEY_TYPE_AES_128 Supported

RSIP_KEY_TYPE_AES_256 Supported

RSIP_KEY_TYPE_XTS_AES_128 Supported

RSIP_KEY_TYPE_XTS_AES_256 Supported

RSIP_KEY_TYPE_HMAC_SHA256 Supported

RSIP_KEY_TYPE_HMAC_SHA384 Supported

RSIP_KEY_TYPE_HMAC_SHA512 Supported

Asymmetric Key

Key pair type
(rsip_key_pair_type_t)

Public key type
(rsip_key_type_t)

Private key type
(rsip_key_type_t)

RSIP-E51A

RSIP_KEY_PAIR_TYPE_E
CC_SECP256R1

RSIP_KEY_TYPE_ECC_SE
CP256R1_PUBLIC

RSIP_KEY_TYPE_ECC_SE
CP256R1_PRIVATE

Supported

RSIP_KEY_PAIR_TYPE_E
CC_SECP384R1

RSIP_KEY_TYPE_ECC_SE
CP384R1_PUBLIC

RSIP_KEY_TYPE_ECC_SE
CP384R1_PRIVATE

Supported

RSIP_KEY_PAIR_TYPE_E
CC_SECP521R1

RSIP_KEY_TYPE_ECC_SE
CP521R1_PUBLIC

RSIP_KEY_TYPE_ECC_SE
CP521R1_PRIVATE

Supported

RSIP_KEY_PAIR_TYPE_R
SA_2048

RSIP_KEY_TYPE_RSA_20
48_PUBLIC

RSIP_KEY_TYPE_RSA_20
48_PRIVATE

Supported

RSIP_KEY_PAIR_TYPE_R
SA_3072

RSIP_KEY_TYPE_RSA_30
72_PUBLIC

RSIP_KEY_TYPE_RSA_30
72_PRIVATE

Supported

RSIP_KEY_PAIR_TYPE_R
SA_4096

RSIP_KEY_TYPE_RSA_40
96_PUBLIC

RSIP_KEY_TYPE_RSA_40
96_PRIVATE

Supported

AES Block Cipher Mode of Operation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,991 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

Cipher mode (rsip_aes_cipher_mode_t) RSIP-E51A

RSIP_AES_CIPHER_MODE_ECB_ENC Supported

RSIP_AES_CIPHER_MODE_ECB_DEC Supported

RSIP_AES_CIPHER_MODE_CBC_ENC Supported

RSIP_AES_CIPHER_MODE_CBC_DEC Supported

RSIP_AES_CIPHER_MODE_CTR Supported

RSIP_AES_CIPHER_MODE_XTS_ENC Supported

RSIP_AES_CIPHER_MODE_XTS_DEC Supported

AEAD mode (rsip_aes_aead_mode_t) RSIP-E51A

RSIP_AES_AEAD_MODE_GCM_ENC Supported

RSIP_AES_AEAD_MODE_GCM_DEC Supported

RSIP_AES_AEAD_MODE_CCM_ENC Supported

RSIP_AES_AEAD_MODE_CCM_DEC Supported

MAC mode (rsip_aes_mac_mode_t) RSIP-E51A

RSIP_AES_MAC_MODE_CMAC Supported

Hash Function

Hash Function (rsip_hash_type_t) RSIP-E51A

RSIP_HASH_TYPE_SHA256 Supported

RSIP_HASH_TYPE_SHA384 Supported

RSIP_HASH_TYPE_SHA512 Supported

Configuration
Build Time Configurations for r_rsip_e51a_protected

The following build time configurations are defined in fsp_cfg/r_rsip_cfg.h:

Configuration Options Default Description

Selection of algorithms to enable

AES-128 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,992 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

AES-256 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

AES-ECB CBC CTR Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

XTS-AES-128 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

XTS-AES-256 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

XTS-AES Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,993 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

provided only for the
functions for which it
works effectively.

AES-GCM Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

AES-CCM Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

AES-CMAC Enabled Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

ECC SECP256R1 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

ECC SECP384R1 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,994 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

ECC SECP521R1 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

RSA-2048 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

RSA-3072 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

RSA-4096 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-1 Disabled Disabled If the application uses
only some of the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,995 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-224 Disabled Disabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-256 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-384 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-512 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,996 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

works effectively.

SHA-512_224 Disabled Disabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

SHA-512_256 Disabled Disabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

HMAC_SHA1 Disabled Disabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

HMAC_SHA224 Disabled Disabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

HMAC_SHA256 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,997 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

configuration is
provided only for the
functions for which it
works effectively.

HMAC_SHA384 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

HMAC_SHA512 Enabled
Disabled

Enabled If the application uses
only some of the
algorithm in the
function, the code size
can be reduced by
disabling the unused
algorithms. This
configuration is
provided only for the
functions for which it
works effectively.

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Security > RSIP Protected Mode (r_rsip)

This module can be added to the Stacks tab via New Stack > Security > RSIP Protected Mode
(r_rsip).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_rsip Module name.

Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Getting Started: Creating a RSIP Protected Mode Project

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,998 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

Start by creating a new project in e² studio or RASC. On the Stacks tab, add New > Security > RSIP
Protected Mode (r_rsip).

State Transition

This driver has the following states.

State Name Details

STATE_INITIAL Driver is not open.

STATE_MAIN Ready to Compute.

STATE_AES Computing AES (unauthenticated cipher)

STATE_AES_AEAD Computing AES (AEAD).

STATE_AES_MAC Computing AES (MAC).

STATE_SHA Computing SHA.

STATE_HMAC Computing HMAC.

There are two types of APIs provided by the RSIP driver for accelerating cryptographic operations:
those that provide cryptographic operations in a single API and those that provide them in multiple
APIs. In this document, the former is referred to as single-part operations and the latter as multi-part
operations. Each corresponds to the following algorithms:

Single-part operations: DRBG, Key management, ECC, RSA, SHA, HMAC
Multi-part operations: AES, SHA, HMAC

Multi-part operations are APIs which split a single cryptographic operation into a sequence of
separate steps (e.g. Init-Update-Finish). This enables fine control over the configuration of the
cryptographic operation, and allows the message data to be processed in fragments instead of all at
once.

Due to the above characteristics, it is necessary to manage the operational states in the multi-part
operations.

Examples
AES cipher Example

This is an example of AES-CBC encryption/decryption.

void r_rsip_example_aes ()

{

 fsp_err_t err;

 static const uint8_t plain[RSIP_PRV_BYTE_SIZE_AES_BLOCK * 2] BSP_ALIGN_VARIABLE(4) =

 {

 0x52, 0x65, 0x6e, 0x65, 0x73, 0x61, 0x73, 0x20, 0x45, 0x6c, 0x65, 0x63, 0x74,

0x72, 0x6f, 0x6e,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 2,999 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 0x69, 0x63, 0x73, 0x20, 0x43, 0x6f, 0x72, 0x70, 0x6f, 0x72, 0x61, 0x74, 0x69,

0x6f, 0x6e, 0x00

 };

 uint8_t iv[RSIP_PRV_BYTE_SIZE_AES_BLOCK] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t cipher_calculated[RSIP_PRV_BYTE_SIZE_AES_BLOCK * 2] BSP_ALIGN_VARIABLE(4)

= {0};

 uint8_t plain_calculated[RSIP_PRV_BYTE_SIZE_AES_BLOCK * 2] BSP_ALIGN_VARIABLE(4)

= {0};

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a aes 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_AES_256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Generate a nonce */

 err = R_RSIP_RandomNumberGenerate(&g_rsip_ctrl, iv);

 assert(FSP_SUCCESS == err);

 /* Encrypt a plaintext */

 err = R_RSIP_AES_Cipher_Init(&g_rsip_ctrl, RSIP_AES_CIPHER_MODE_CBC_ENC,

p_wrapped_key, iv);

 assert(FSP_SUCCESS == err);

 err = R_RSIP_AES_Cipher_Update(&g_rsip_ctrl, plain, cipher_calculated,

RSIP_PRV_BYTE_SIZE_AES_BLOCK * 2);

 assert(FSP_SUCCESS == err);

 err = R_RSIP_AES_Cipher_Finish(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

 /* Decrypt a ciphertext using the same key */

 err = R_RSIP_AES_Cipher_Init(&g_rsip_ctrl, RSIP_AES_CIPHER_MODE_CBC_DEC,

p_wrapped_key, iv);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,000 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 err = R_RSIP_AES_Cipher_Update(&g_rsip_ctrl, cipher_calculated, plain_calculated,

RSIP_PRV_BYTE_SIZE_AES_BLOCK);

 assert(FSP_SUCCESS == err);

 err = R_RSIP_AES_Cipher_Update(&g_rsip_ctrl,

 cipher_calculated + RSIP_PRV_BYTE_SIZE_AES_BLOCK,

 plain_calculated + RSIP_PRV_BYTE_SIZE_AES_BLOCK,

 RSIP_PRV_BYTE_SIZE_AES_BLOCK);

 assert(FSP_SUCCESS == err);

 err = R_RSIP_AES_Cipher_Finish(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

 /* Compare plain and plain_calculated */

 assert(0 == memcmp(plain, plain_calculated, RSIP_PRV_BYTE_SIZE_AES_BLOCK * 2));

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

AES-GCM Example

This is an example of AES-GCM encryption/decryption.

#define GCM_BLOCK_LEN (16)

#define GCM_TEXT_LEN (31)

#define GCM_NONCE_LEN (12)

#define GCM_AAD_LEN (8)

#define GCM_TAG_LEN (8)

void r_rsip_example_gcm ()

{

 fsp_err_t err;

 static const uint8_t plain[GCM_TEXT_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x52, 0x65, 0x6e, 0x65, 0x73, 0x61, 0x73, 0x20, 0x45, 0x6c, 0x65, 0x63, 0x74,

0x72, 0x6f, 0x6e,

 0x69, 0x63, 0x73, 0x20, 0x43, 0x6f, 0x72, 0x70, 0x6f, 0x72, 0x61, 0x74, 0x69,

0x6f, 0x6e,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,001 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 };

 static const uint8_t aad[GCM_AAD_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

 };

 uint8_t nonce[GCM_BLOCK_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t tag[GCM_BLOCK_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t cipher_calculated[GCM_BLOCK_LEN * 2] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t plain_calculated[GCM_BLOCK_LEN * 2] BSP_ALIGN_VARIABLE(4) = {0};

 uint32_t input_length = 0;

 uint32_t output_length = 0;

 uint32_t input_length_tmp = 0;

 uint32_t output_length_tmp = 0;

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a aes 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_AES_256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Generate a nonce */

 err = R_RSIP_RandomNumberGenerate(&g_rsip_ctrl, nonce);

 assert(FSP_SUCCESS == err);

 /* Encrypt a plaintext */

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_GCM_ENC,

p_wrapped_key, nonce, GCM_NONCE_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, aad, GCM_AAD_LEN);

 assert(FSP_SUCCESS == err);

 /* Input plaintext (one-shot) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,002 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl, plain, GCM_TEXT_LEN,

cipher_calculated, &output_length_tmp);

 output_length += output_length_tmp;

 assert(FSP_SUCCESS == err);

 /* Output remaining text and generate a tag */

 err = R_RSIP_AES_AEAD_Finish(&g_rsip_ctrl, cipher_calculated + output_length,

&output_length_tmp, tag);

 assert(FSP_SUCCESS == err);

 /* Decrypt a ciphertext using the same key */

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_GCM_DEC,

p_wrapped_key, nonce, GCM_NONCE_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, aad, GCM_AAD_LEN);

 assert(FSP_SUCCESS == err);

 input_length = 0;

 output_length = 0;

 /* Input ciphertext (multi-shot) */

 input_length_tmp = 10;

 err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl,

 cipher_calculated + input_length,

 input_length_tmp,

 plain_calculated + output_length,

 &output_length_tmp);

 input_length += input_length_tmp;

 output_length += output_length_tmp;

 assert(FSP_SUCCESS == err);

 input_length_tmp = GCM_TEXT_LEN - input_length;

 err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl,

 cipher_calculated + input_length,

 input_length_tmp,

 plain_calculated + output_length,

 &output_length_tmp);

 input_length += input_length_tmp;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,003 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 output_length += output_length_tmp;

 assert(FSP_SUCCESS == err);

 /*

 * Output remaining text and verify the tag

 * Attention: Do not use the output plaintext by R_RSIP_AES_Cipher_DecryptUpdate()

 * before R_RSIP_AES_Cipher_DecryptFinal() returns FSP_SUCCESS.

 * The integrity is checked in this function.

 */

 err = R_RSIP_AES_AEAD_Verify(&g_rsip_ctrl, plain_calculated + output_length,

&output_length_tmp, tag, GCM_TAG_LEN);

 assert(FSP_SUCCESS == err);

 /* Compare plain and plain_calculated */

 assert(0 == memcmp(plain, plain_calculated, GCM_TEXT_LEN));

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

AES-GMAC Example

This is an example of AES-GMAC signature/verification.

#define GMAC_NONCE_LEN (12)

#define GMAC_AAD_LEN (8)

#define GMAC_TAG_LEN (16)

void r_rsip_example_gmac ()

{

 fsp_err_t err;

 static const uint8_t aad[GMAC_AAD_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07

 };

 uint8_t nonce[GMAC_NONCE_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t tag[GMAC_TAG_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t output_dummy_buf[1] = {0};

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,004 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 uint32_t output_length = 0;

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a aes 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_AES_256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Generate a nonce */

 err = R_RSIP_RandomNumberGenerate(&g_rsip_ctrl, nonce);

 assert(FSP_SUCCESS == err);

 /* Initialize GMAC signature */

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_GCM_ENC,

p_wrapped_key, nonce, GMAC_NONCE_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, aad, GMAC_AAD_LEN);

 assert(FSP_SUCCESS == err);

 /* Finalize GMAC generation */

 err = R_RSIP_AES_AEAD_Finish(&g_rsip_ctrl, output_dummy_buf, &output_length,

tag);

 assert(FSP_SUCCESS == err);

 /*Initialize GMAC verification*/

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_GCM_DEC,

p_wrapped_key, nonce, GMAC_NONCE_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, aad, GMAC_AAD_LEN);

 assert(FSP_SUCCESS == err);

 /* Finalize GMAC verification*/

 err = R_RSIP_AES_AEAD_Verify(&g_rsip_ctrl, output_dummy_buf, &output_length, tag,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,005 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

GMAC_TAG_LEN);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

AES-CCM Example

This is an example of AES-CCM encryption/decryption.

#define CCM_NONCE_LEN (12)

#define CCM_ADATA_LEN (20)

#define CCM_INPUT_DATA_LEN (24)

#define CCM_MAC_LEN (8)

void r_rsip_example_ccm ()

{

 fsp_err_t err;

 static const uint8_t nonce[CCM_NONCE_LEN] BSP_ALIGN_VARIABLE(4) =

 {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B};

 static const uint8_t adata[CCM_ADATA_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13

 };

 static const uint8_t plain[CCM_INPUT_DATA_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,

 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33,

 0x34, 0x35, 0x36, 0x37

 };

 uint8_t cipher_calculated[CCM_INPUT_DATA_LEN * 2] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t plain_calculated[CCM_INPUT_DATA_LEN * 2] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t mac[CCM_MAC_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint32_t output_length_tmp = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,006 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 uint8_t * p_output = NULL;

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a aes 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_AES_256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Encrypt a plaintext */

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_CCM_ENC,

p_wrapped_key, nonce, CCM_NONCE_LEN);

 assert(FSP_SUCCESS == err);

 /* Set text and tag length. */

 err = R_RSIP_AES_AEAD_LengthsSet(&g_rsip_ctrl, CCM_ADATA_LEN, CCM_INPUT_DATA_LEN,

CCM_MAC_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, adata, CCM_ADATA_LEN);

 assert(FSP_SUCCESS == err);

 /* Input plaintext */

 err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl, plain, CCM_INPUT_DATA_LEN,

cipher_calculated, &output_length_tmp);

 assert(FSP_SUCCESS == err);

 p_output = &(cipher_calculated[output_length_tmp]);

 /* Output remaining text and generate a tag */

 err = R_RSIP_AES_AEAD_Finish(&g_rsip_ctrl, p_output, &output_length_tmp, mac);

 assert(FSP_SUCCESS == err);

 /* Decrypt a ciphertext using the same key */

 err = R_RSIP_AES_AEAD_Init(&g_rsip_ctrl, RSIP_AES_AEAD_MODE_CCM_DEC,

p_wrapped_key, nonce, CCM_NONCE_LEN);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,007 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 /* Set text and tag length. */

 err = R_RSIP_AES_AEAD_LengthsSet(&g_rsip_ctrl, CCM_ADATA_LEN, CCM_INPUT_DATA_LEN,

CCM_MAC_LEN);

 assert(FSP_SUCCESS == err);

 /* Input AAD */

 err = R_RSIP_AES_AEAD_AADUpdate(&g_rsip_ctrl, adata, CCM_ADATA_LEN);

 assert(FSP_SUCCESS == err);

 /* Input plaintext */

 // err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl, plain, CCM_INPUT_DATA_LEN,

plain_calculated, &output_length_tmp);

 err = R_RSIP_AES_AEAD_Update(&g_rsip_ctrl,

 cipher_calculated,

 CCM_INPUT_DATA_LEN,

 plain_calculated,

 &output_length_tmp);

 assert(FSP_SUCCESS == err);

 p_output = &(plain_calculated[output_length_tmp]);

 /* Output remaining text and verify the tag */

 err = R_RSIP_AES_AEAD_Verify(&g_rsip_ctrl, p_output, &output_length_tmp, mac,

CCM_MAC_LEN);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

AES-CMAC Example

This is an example of AES-CMAC signature/verification.

#define CMAC_MESSAGE_LEN (10)

#define CMAC_MAC_LEN (16)

void r_rsip_example_cmac ()

{

 fsp_err_t err;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,008 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 static const uint8_t message[CMAC_MESSAGE_LEN] BSP_ALIGN_VARIABLE(4) = {0xf0, 0x8f,

0x89, 0x08, 0x75, 0xe1, 0x39, 0x48, 0x04, 0x89};

 uint8_t mac[CMAC_MAC_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a aes 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_AES_256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* CMAC initialize for encrypt */

 err = R_RSIP_AES_MAC_Init(&g_rsip_ctrl, RSIP_AES_MAC_MODE_CMAC, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Input message */

 err = R_RSIP_AES_MAC_Update(&g_rsip_ctrl, message, CMAC_MESSAGE_LEN);

 assert(FSP_SUCCESS == err);

 /* Output remaining text and generate a tag */

 err = R_RSIP_AES_MAC_SignFinish(&g_rsip_ctrl, mac);

 assert(FSP_SUCCESS == err);

 /* CMAC initialize for decrypt */

 err = R_RSIP_AES_MAC_Init(&g_rsip_ctrl, RSIP_AES_MAC_MODE_CMAC, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Input message */

 err = R_RSIP_AES_MAC_Update(&g_rsip_ctrl, message, CMAC_MESSAGE_LEN);

 assert(FSP_SUCCESS == err);

 /* Verify the tag */

 err = R_RSIP_AES_MAC_VerifyFinish(&g_rsip_ctrl, mac, CMAC_MAC_LEN);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,009 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

}

ECC Example

This is an example of ECDSA signature generation/verification.

#define SECP256R1_KEY_SIZE (32)

void r_rsip_example_ecc ()

{

 fsp_err_t err;

 static const uint8_t message[] BSP_ALIGN_VARIABLE(4) = "sample";

 uint8_t hash[SECP256R1_KEY_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t signature[SECP256R1_KEY_SIZE * 2] BSP_ALIGN_VARIABLE(4) = {0};

 /* Prepare wrapped key data area */

 uint8_t

wrapped_public_key[RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256R1_PUBLIC]

BSP_ALIGN_VARIABLE(4);

 uint8_t

wrapped_private_key[RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256R1_PRIVATE]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_public_key = (rsip_wrapped_key_t *)

wrapped_public_key;

 rsip_wrapped_key_t * p_wrapped_private_key = (rsip_wrapped_key_t *)

wrapped_private_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a key pair of secp256r1 */

 err = R_RSIP_KeyPairGenerate(&g_rsip_ctrl,

 RSIP_KEY_PAIR_TYPE_ECC_SECP256R1,

 p_wrapped_public_key,

 p_wrapped_private_key);

 assert(FSP_SUCCESS == err);

 /* Generate the message hash */

 err = R_RSIP_SHA_Compute(&g_rsip_ctrl, RSIP_HASH_TYPE_SHA256, message,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,010 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

sizeof(message), hash);

 assert(FSP_SUCCESS == err);

 /* Generate the signature */

 err = R_RSIP_ECDSA_Sign(&g_rsip_ctrl, p_wrapped_private_key, hash, signature);

 assert(FSP_SUCCESS == err);

 /* Verify the signature*/

 err = R_RSIP_ECDSA_Verify(&g_rsip_ctrl, p_wrapped_public_key, hash, signature);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

RSA Example

This is an example of RSA encryption/decryption (RSAES-OAEP) and RSA signature
generation/verification (RSASSA-PSS).

#define SHA256_HASH_SIZE (32)

#define RSA_2048_KEY_SIZE (256)

void r_rsip_example_rsa ()

{

 fsp_err_t err;

 static const uint8_t message[] BSP_ALIGN_VARIABLE(4) = "sample";

 static const uint8_t label[] BSP_ALIGN_VARIABLE(4) = "label";

 uint8_t cipher_calculated[RSA_2048_KEY_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t plain_calculated[RSA_2048_KEY_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 uint32_t plain_calculated_length = 0;

 uint8_t hash[SHA256_HASH_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t signature[RSA_2048_KEY_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 /* Prepare wrapped key data area */

 uint8_t

wrapped_public_key[RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_2048_PUBLIC] BSP_ALIGN_VARIABLE(4);

 uint8_t

wrapped_private_key[RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_2048_PRIVATE]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,011 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_public_key = (rsip_wrapped_key_t *)

wrapped_public_key;

 rsip_wrapped_key_t * p_wrapped_private_key = (rsip_wrapped_key_t *)

wrapped_private_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a key pair of RSA-2048 */

 err =

 R_RSIP_KeyPairGenerate(&g_rsip_ctrl, RSIP_KEY_PAIR_TYPE_RSA_2048,

p_wrapped_public_key, p_wrapped_private_key);

 assert(FSP_SUCCESS == err);

 /*

 * RSAES-OAEP

 */

 /* Encrypt a plaintext */

 err = R_RSIP_RSAES_OAEP_Encrypt(&g_rsip_ctrl,

 p_wrapped_public_key,

 RSIP_HASH_TYPE_SHA256,

 RSIP_MGF_TYPE_MGF1_SHA256,

 label,

 sizeof(label),

 message,

 sizeof(message),

 cipher_calculated);

 assert(FSP_SUCCESS == err);

 /* Decrypt a ciphertext using the same key */

 err = R_RSIP_RSAES_OAEP_Decrypt(&g_rsip_ctrl,

 p_wrapped_private_key,

 RSIP_HASH_TYPE_SHA256,

 RSIP_MGF_TYPE_MGF1_SHA256,

 label,

 sizeof(label),

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,012 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 cipher_calculated,

 plain_calculated,

 &plain_calculated_length,

 sizeof(plain_calculated));

 assert(FSP_SUCCESS == err);

 /* Verify calculated plaintext */

 assert(sizeof(message) == plain_calculated_length);

 assert(0 == memcmp(message, plain_calculated, plain_calculated_length));

 /*

 * RSASSA-PSS

 */

 /* Generate the message hash */

 err = R_RSIP_SHA_Compute(&g_rsip_ctrl, RSIP_HASH_TYPE_SHA256, message,

sizeof(message), hash);

 assert(FSP_SUCCESS == err);

 /* Generate the signature */

 err = R_RSIP_RSASSA_PSS_Sign(&g_rsip_ctrl,

 p_wrapped_private_key,

 RSIP_HASH_TYPE_SHA256,

 RSIP_MGF_TYPE_MGF1_SHA256,

 RSIP_RSA_SALT_LENGTH_AUTO,

 hash,

 signature);

 assert(FSP_SUCCESS == err);

 /* Verify the signature*/

 err = R_RSIP_RSASSA_PSS_Verify(&g_rsip_ctrl,

 p_wrapped_public_key,

 RSIP_HASH_TYPE_SHA256,

 RSIP_MGF_TYPE_MGF1_SHA256,

 RSIP_RSA_SALT_LENGTH_AUTO,

 hash,

 signature);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,013 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

HASH Example

This is an example of calculating the SHA-256 message digest.

#define SHA256_HASH_SIZE (32)

void r_rsip_example_hash ()

{

 fsp_err_t err;

 static const uint8_t message[] BSP_ALIGN_VARIABLE(4) =

 {

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f,

 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,

0x1d, 0x1e, 0x1f,

 };

 static const uint8_t hash[] BSP_ALIGN_VARIABLE(4) =

 {

 0x63, 0x0d, 0xcd, 0x29, 0x66, 0xc4, 0x33, 0x66, 0x91, 0x12, 0x54, 0x48, 0xbb,

0xb2, 0x5b, 0x4f,

 0xf4, 0x12, 0xa4, 0x9c, 0x73, 0x2d, 0xb2, 0xc8, 0xab, 0xc1, 0xb8, 0x58, 0x1b,

0xd7, 0x10, 0xdd

 };

 uint8_t digest_single[SHA256_HASH_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t digest_multi[SHA256_HASH_SIZE] BSP_ALIGN_VARIABLE(4) = {0};

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* (1) Calculate SHA-256 digests with single-part API */

 err = R_RSIP_SHA_Compute(&g_rsip_ctrl, RSIP_HASH_TYPE_SHA256, message,

sizeof(message), digest_single);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,014 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 /* Compare digest and hash */

 assert(0 == memcmp(digest_single, hash, SHA256_HASH_SIZE));

 /* (2) Calculate SHA-256 digests with multi-part API */

 err = R_RSIP_SHA_Init(&g_rsip_ctrl, RSIP_HASH_TYPE_SHA256);

 assert(FSP_SUCCESS == err);

 err = R_RSIP_SHA_Update(&g_rsip_ctrl, message, sizeof(message));

 assert(FSP_SUCCESS == err);

 err = R_RSIP_SHA_Finish(&g_rsip_ctrl, digest_multi);

 assert(FSP_SUCCESS == err);

 /* Compare digest and hash */

 assert(0 == memcmp(digest_multi, hash, SHA256_HASH_SIZE));

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

}

HMAC Example

This is an example of HMAC signature/verification.

#define HMAC_MESSAGE_LEN (34)

#define HMAC_HASH_LEN (32)

void r_rsip_example_hmac ()

{

 fsp_err_t err;

 static const uint8_t message[HMAC_MESSAGE_LEN] BSP_ALIGN_VARIABLE(4) =

 {

 0x53, 0x61, 0x6D, 0x70, 0x6C, 0x65, 0x20, 0x6D,

 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x20, 0x66,

 0x6F, 0x72, 0x20, 0x6B, 0x65, 0x79, 0x6C, 0x65,

 0x6E, 0x3C, 0x62, 0x6C, 0x6F, 0x63, 0x6B, 0x6C,

 0x65, 0x6E

 };

 uint8_t hash_1[HMAC_HASH_LEN] BSP_ALIGN_VARIABLE(4) = {0};

 uint8_t hash_2[HMAC_HASH_LEN] BSP_ALIGN_VARIABLE(4) = {0};

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,015 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 /* Prepare wrapped key data area */

 uint8_t wrapped_key[RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA256]

BSP_ALIGN_VARIABLE(4);

 rsip_wrapped_key_t * p_wrapped_key = (rsip_wrapped_key_t *) wrapped_key;

 /* Initialize the driver */

 err = R_RSIP_Open(&g_rsip_ctrl, &g_rsip_cfg);

 assert(FSP_SUCCESS == err);

 /* Generate a HMAC-SHA 256-bit key */

 err = R_RSIP_KeyGenerate(&g_rsip_ctrl, RSIP_KEY_TYPE_HMAC_SHA256, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* (1) Calculate HMAC-SHA-256 hash with single-part API */

 /* HMAC initialize to finish */

 err = R_RSIP_HMAC_Compute(&g_rsip_ctrl, p_wrapped_key, message, HMAC_MESSAGE_LEN,

hash_1);

 assert(FSP_SUCCESS == err);

 /* (2) Verify HMAC-SHA-256 hash with single-part API */

 /* HMAC initialize to verify */

 err = R_RSIP_HMAC_Verify(&g_rsip_ctrl, p_wrapped_key, message, HMAC_MESSAGE_LEN,

hash_1, HMAC_HASH_LEN);

 assert(FSP_SUCCESS == err);

 /* (3) Calculate HMAC-SHA-256 hash with multi-part API */

 /* HMAC initialize */

 err = R_RSIP_HMAC_Init(&g_rsip_ctrl, p_wrapped_key);

 assert(FSP_SUCCESS == err);

 /* Inputs message */

 err = R_RSIP_HMAC_Update(&g_rsip_ctrl, message, HMAC_MESSAGE_LEN);

 assert(FSP_SUCCESS == err);

 /* Finalizes a HMAC generation */

 err = R_RSIP_HMAC_SignFinish(&g_rsip_ctrl, hash_2);

 assert(FSP_SUCCESS == err);

 /* (4) Verify HMAC-SHA-256 hash with multi-part API */

 /* HMAC initialize */

 err = R_RSIP_HMAC_Init(&g_rsip_ctrl, p_wrapped_key);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,016 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

 /* Inputs message */

 err = R_RSIP_HMAC_Update(&g_rsip_ctrl, message, HMAC_MESSAGE_LEN);

 assert(FSP_SUCCESS == err);

 /* Finalizes a HMAC verification */

 err = R_RSIP_HMAC_VerifyFinish(&g_rsip_ctrl, hash_2, HMAC_HASH_LEN);

 assert(FSP_SUCCESS == err);

 /* Close the driver */

 err = R_RSIP_Close(&g_rsip_ctrl);

 assert(FSP_SUCCESS == err);

 /* Compare hash_1 and hash_2 */

 err = memcmp(hash_1, hash_2, HMAC_HASH_LEN);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rsip_instance_ctrl_t

Data Structure Documentation

◆ rsip_instance_ctrl_t

struct rsip_instance_ctrl_t

RSIP private control block. DO NOT MODIFY. Initialization occurs when R_RSIP_Open() is called.

Function Documentation

◆ R_RSIP_AES_Cipher_Init()

fsp_err_t R_RSIP_AES_Cipher_Init (rsip_ctrl_t *const p_ctrl, rsip_aes_cipher_mode_t const mode,
rsip_wrapped_key_t const *const p_wrapped_key, uint8_t const *const p_initial_vector)

Starts AES cipher operation in confidentiality mode (ECB/CBC/CTR) or XTS mode.

Implements rsip_api_t::aesCipherInit.

Conditions

Key type of p_wrapped_key must be one of the following:

RSIP_KEY_TYPE_AES_128, RSIP_KEY_TYPE_AES_256
RSIP_KEY_TYPE_XTS_AES_128, RSIP_KEY_TYPE_XTS_AES_256Argument mode must be the following:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,017 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

AES key
RSIP_AES_CIPHER_MODE_ECB_ENC, RSIP_AES_CIPHER_MODE_ECB_DEC
RSIP_AES_CIPHER_MODE_CBC_ENC, RSIP_AES_CIPHER_MODE_CBC_DEC
RSIP_AES_CIPHER_MODE_CTR

XTS-AES key
RSIP_AES_CIPHER_MODE_XTS_ENC, RSIP_AES_CIPHER_MODE_XTS_DEC

Argument p_initial_vector must be the following:

[ECB] Not used
[CBC] Raw initial vector
[CTR] Raw nonce
[XTS] Raw initial vector

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_AES

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_INVALID_ARGUMENT Input key type or mode is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,018 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_Cipher_Update()

fsp_err_t R_RSIP_AES_Cipher_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_input,
uint8_t *const p_output, uint32_t const length)

Encrypts plaintext or decrypts ciphertext.

Implements rsip_api_t::aesCipherUpdate.

Conditions
Argument length must be the following:

[ECB][CBC][CTR] 0 or a multiple of 16.
[XTS] 0 or greater than or equal to 16.

Output length
Output length to p_output is length.

State transition

This API can only be executed in STATE_AES, and does not cause any state transitions.

In XTS mode, if once an integer other than 0 or a multiple of 16 is input, this API can no
longer be called.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE Input length is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,019 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_Cipher_Finish()

fsp_err_t R_RSIP_AES_Cipher_Finish (rsip_ctrl_t *const p_ctrl)

Finishes AES operation.

Implements rsip_api_t::aesCipherFinish.

State transition

This API can only be executed in STATE_AES, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

◆ R_RSIP_AES_AEAD_Init()

fsp_err_t R_RSIP_AES_AEAD_Init (rsip_ctrl_t *const p_ctrl, rsip_aes_aead_mode_t mode,
rsip_wrapped_key_t const *const p_wrapped_key, uint8_t const *const p_nonce, uint32_t const
nonce_length)

Starts AES AEAD function.

Implements rsip_api_t::aesAeadInit.

Conditions

Key type of p_wrapped_key must be one of the following:

RSIP_KEY_TYPE_AES_128
RSIP_KEY_TYPE_AES_256

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,020 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

Argument mode accepts any member of enumeration rsip_aes_aead_mode_t.

Argument nonce_length must be the following:

[GCM] Any length is accepted, but 12 bytes is generally recommended.
[CCM] 7 to 13 bytes.

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_AES_AEAD

Others No change

The next callable API functions in STATE_AES_AEAD are as below.

[GCM] R_RSIP_AES_AEAD_AADUpdate(), R_RSIP_AES_AEAD_Update(),
R_RSIP_AES_AEAD_Finish() (encryption), R_RSIP_AES_AEAD_Verify() (decryption)
[CCM] R_RSIP_AES_AEAD_LengthsSet()

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE nonce_length is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_INVALID_ARGUMENT Input key type is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,021 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_AEAD_LengthsSet()

fsp_err_t R_RSIP_AES_AEAD_LengthsSet (rsip_ctrl_t *const p_ctrl, uint32_t const total_aad_length,
uint32_t const total_text_length, uint32_t const tag_length)

Sets text and tag lengths for CCM mode.

Implements rsip_api_t::aesAeadLengthsSet.

Conditions

Argument total_aad_length must be equal to the length of AAD and must be 110 or less.

Argument total_test_length must be equal to the length of the plaintext or ciphertext.

Argument tag_length must be 4, 6, 8, 10, 12, 14, or 16.

State transition

This API can only be executed in STATE_AES_AEAD, and does not cause any state
transitions.

The next callable API functions in STATE_AES_AEAD are as below.

[CCM] R_RSIP_AES_AEAD_AADUpdate()
Return values

FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE Input length is illegal.

FSP_ERR_INVALID_STATE Internal state is illegal.

Note
In GCM mode, this API must NOT be called. If called, FSP_ERR_INVALID_STATE will be returned. AAD length
and text length are indeterminate and output tag length is fixed to 16 bytes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,022 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_AEAD_AADUpdate()

fsp_err_t R_RSIP_AES_AEAD_AADUpdate (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_aad,
uint32_t const aad_length)

Inputs Additional Authentication Data (AAD).

Implements rsip_api_t::aesAeadAadUpdate.

State transition

This API can only be executed in STATE_AES_AEAD, and does not cause any state
transitions.

[GCM] R_RSIP_AES_AEAD_AADUpdate(), R_RSIP_AES_AEAD_Update(),
R_RSIP_AES_AEAD_Finish() (encryption), R_RSIP_AES_AEAD_Verify() (decryption)
[CCM] R_RSIP_AES_AEAD_AADUpdate() (AAD input is not completed),
R_RSIP_AES_AEAD_Update() (AAD input is completed)

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE aad_length is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,023 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_AEAD_Update()

fsp_err_t R_RSIP_AES_AEAD_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_input,
uint32_t const input_length, uint8_t *const p_output, uint32_t *const p_output_length)

Encrypts plaintext or decrypts ciphertext.

Implements rsip_api_t::aesAeadUpdate.

Output length
Output length to p_output (p_output_length) is calculated text that has not yet been output
in multiple of 16 bytes.

State transition

This API can only be executed in STATE_AES_AEAD, and does not cause any state
transitions.

[GCM] R_RSIP_AES_AEAD_Update(), R_RSIP_AES_AEAD_Finish() (encryption),
R_RSIP_AES_AEAD_Verify() (decryption)
[CCM] R_RSIP_AES_AEAD_Update() (text input is not completed),
R_RSIP_AES_AEAD_Finish() (text input is completed, encryption),
R_RSIP_AES_AEAD_Verify() (text input is completed, decryption)

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE Input length is illegal.

FSP_ERR_INVALID_STATE Internal state is illegal.

Note
In GCM mode, if this API is skipped, GMAC will be calculated. For detailed usage, refer to example code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,024 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_AEAD_Finish()

fsp_err_t R_RSIP_AES_AEAD_Finish (rsip_ctrl_t *const p_ctrl, uint8_t *const p_output, uint32_t
*const p_output_length, uint8_t *const p_tag)

Finalizes an AES AEAD encryption.

Implements rsip_api_t::aesAeadFinish.

Output length

Output length to p_output (p_output_length) is the remaining calculated text length.

Output length to p_tag as below.

[GCM] 16 bytes.
[CCM] Input value as tag_length in R_RSIP_AES_AEAD_LengthsSet().

State transition

This API can only be executed in STATE_AES_AEAD, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,025 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_AEAD_Verify()

fsp_err_t R_RSIP_AES_AEAD_Verify (rsip_ctrl_t *const p_ctrl, uint8_t *const p_output, uint32_t
*const p_output_length, uint8_t const *const p_tag, uint32_t const tag_length)

Finalizes an AES AEAD decryption.

If there is 16-byte fractional data indicated by the total data length of the value of p_cipher that
was input by R_RSIP_AES_GCM_DecryptUpdate(), this API will output the result of decrypting that
fractional data to p_cipher. Here, the portion that does not reach 16 bytes will be padded with
zeros.

Implements rsip_api_t::aesAeadVerify.

Conditions
Argument tag_length must be as below.

[GCM] 1 to 16 bytes.
[CCM] Input value as tag_length in R_RSIP_AES_AEAD_LengthsSet().

Output length
Output length to p_output (p_output_length) is the remaining calculated text length.

State transition

This API can only be executed in STATE_AES_AEAD, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE tag_length is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_AUTHENTICATION Authentication is failed.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,026 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_MAC_Init()

fsp_err_t R_RSIP_AES_MAC_Init (rsip_ctrl_t *const p_ctrl, rsip_aes_mac_mode_t const mode,
rsip_wrapped_key_t const *const p_wrapped_key)

Starts an AES MAC operation.

Implements rsip_api_t::aesMacInit.

Conditions

Key type of p_wrapped_key must be one of the following:

RSIP_KEY_TYPE_AES_128
RSIP_KEY_TYPE_AES_256

Argument mode accepts any member of enumeration rsip_aes_aead_mode_t.

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_AES_MAC

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Note
To calculate AES-GMAC, please use not R_RSIP_MAC_*() but R_RSIP_AEAD_*(). For detailed usage, refer to
example code.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,027 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_MAC_Update()

fsp_err_t R_RSIP_AES_MAC_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message,
uint32_t const message_length)

Inputs message.

Implements rsip_api_t::aesMacUpdate.

Inside this function, the data that is input by the user is buffered until the input value of p_message
exceeds 16 bytes. If the input value, p_message, is not a multiple of 16 bytes, it will be padded
within the function.

State transition
This API can only be executed in STATE_AES_MAC, and does not cause any state
transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,028 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_MAC_SignFinish()

fsp_err_t R_RSIP_AES_MAC_SignFinish (rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Outputs AES MAC.

Implements rsip_api_t::aesMacSignFinish.

Output length
Output length to p_mac is 16 bytes.

State transition

This API can only be executed in STATE_AES_MAC, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,029 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_AES_MAC_VerifyFinish()

fsp_err_t R_RSIP_AES_MAC_VerifyFinish (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_mac,
uint32_t const mac_length)

Verifies AES MAC.

Implements rsip_api_t::aesMacVerifyFinish.

Conditions
Argument mac_length must be as below.

[CMAC] 2 to 16 bytes.
State transition

This API can only be executed in STATE_AES_MAC, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE mac_length is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Internal error.

FSP_ERR_CRYPTO_RSIP_AUTHENTICATION Authentication is failed.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,030 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSA_Encrypt()

fsp_err_t R_RSIP_RSA_Encrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t const *const p_plain, uint8_t *const p_cipher)

Encrypts plaintext with raw RSA.

Implements rsip_api_t::rsaEncrypt.

Conditions
Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PUBLIC
RSIP_KEY_TYPE_RSA_3072_PUBLIC
RSIP_KEY_TYPE_RSA_4096_PUBLIC

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Note
This API provides RSA low-level primitives (RSAEP/RSAVP1). It should be used in conjunction with any padding
scheme.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,031 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSA_Decrypt()

fsp_err_t R_RSIP_RSA_Decrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, uint8_t const *const p_cipher, uint8_t *const p_plain)

Decrypts ciphertext with raw RSA.

Implements rsip_api_t::rsaDecrypt.

Conditions
Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PRIVATE
RSIP_KEY_TYPE_RSA_3072_PRIVATE
RSIP_KEY_TYPE_RSA_4096_PRIVATE

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Note
This API provides RSA low-level primitives (RSADP/RSASP1). It should be used in conjunction with any padding
scheme.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,032 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSAES_PKCS1_V1_5_Encrypt()

fsp_err_t R_RSIP_RSAES_PKCS1_V1_5_Encrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, uint8_t const *const p_plain, uint32_t const plain_length, uint8_t
*const p_cipher)

Encrypts plaintext with RSAES-PKCS1-v1_5.

Implements rsip_api_t::rsaesPkcs1V15Encrypt.

Conditions

Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PUBLIC
RSIP_KEY_TYPE_RSA_3072_PUBLIC
RSIP_KEY_TYPE_RSA_4096_PUBLIC

mLen (plain_length) and k (modulus length) must meet the following condition.

mLen <= k - 11
State transition

This API can only be executed in STATE_MAIN, and does not cause any state transitions.
Return values

FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,033 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSAES_PKCS1_V1_5_Decrypt()

fsp_err_t R_RSIP_RSAES_PKCS1_V1_5_Decrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, uint8_t const *const p_cipher, uint8_t *const p_plain, uint32_t
*const p_plain_length, uint32_t const plain_buffer_length)

Decrypts with RSAES-PKCS1-v1_5.

Implements rsip_api_t::rsaesPkcs1V15Decrypt.

Conditions

Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PRIVATE
RSIP_KEY_TYPE_RSA_3072_PRIVATE
RSIP_KEY_TYPE_RSA_4096_PRIVATE

plain_buffer_length must be greater than or equal to mLen(plaintext length).

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Note
This API skips the ciphertext length checking at RFC8017 (PKCS#1 v2.2) Section 7.2.2 Step 1.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,034 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSAES_OAEP_Encrypt()

fsp_err_t R_RSIP_RSAES_OAEP_Encrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t const label_length, uint8_t const
*const p_plain, uint32_t const plain_length, uint8_t *const p_cipher)

Encrypts plaintext with RSAES-OAEP.

Implements rsip_api_t::rsaesOaepEncrypt.

Conditions

Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PUBLIC
RSIP_KEY_TYPE_RSA_3072_PUBLIC
RSIP_KEY_TYPE_RSA_4096_PUBLICmLen (plain_length), hLen (hash length of hash_function), and k (modulus length) must

meet the following condition.

mLen <= k - 2 hLen - 2Argument hash_function accepts any member of enumeration rsip_hash_type_t.

Argument mask_generation_function accepts any member of enumeration rsip_mgf_type_t.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

◆ R_RSIP_RSAES_OAEP_Decrypt()

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,035 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

fsp_err_t R_RSIP_RSAES_OAEP_Decrypt (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t const label_length, uint8_t const
*const p_cipher, uint8_t *const p_plain, uint32_t *const p_plain_length, uint32_t const
plain_buffer_length)

Decrypts ciphertext with RSAES-OAEP.

Implements rsip_api_t::rsaesOaepDecrypt.

Conditions

Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PRIVATE
RSIP_KEY_TYPE_RSA_3072_PRIVATE
RSIP_KEY_TYPE_RSA_4096_PRIVATEhLen (hash length of hash_function) and k (modulus length) must meet the following

condition.

k >= 2 hLen + 2plain_buffer_length must be greater than or equal to mLen(plaintext length).

Argument hash_function accepts any member of enumeration rsip_hash_type_t.

Argument mask_generation_function accepts any member of enumeration rsip_mgf_type_t.

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Note
This API skips the ciphertext length checking at RFC8017 (PKCS#1 v2.2) Section 7.1.2 Step 1.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,036 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSASSA_PKCS1_V1_5_Sign()

fsp_err_t R_RSIP_RSASSA_PKCS1_V1_5_Sign (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, rsip_hash_type_t const hash_function, uint8_t const *const
p_hash, uint8_t *const p_signature)

Signs message with RSASSA-PKCS1-v1_5.

Implements rsip_api_t::rsassaPkcs1V15Sign.

Conditions

Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PRIVATE
RSIP_KEY_TYPE_RSA_3072_PRIVATE
RSIP_KEY_TYPE_RSA_4096_PRIVATEArgument hash_function accepts any member of enumeration rsip_hash_type_t.

Message hash p_hash should be computed in advance with hash_function.

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,037 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSASSA_PKCS1_V1_5_Verify()

fsp_err_t R_RSIP_RSASSA_PKCS1_V1_5_Verify (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, rsip_hash_type_t const hash_function, uint8_t const *const p_hash,
uint8_t const *const p_signature)

Verifies signature with RSASSA-PKCS1-v1_5.

Implements rsip_api_t::rsassaPkcs1V15Verify.

Conditions

Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PUBLIC
RSIP_KEY_TYPE_RSA_3072_PUBLIC
RSIP_KEY_TYPE_RSA_4096_PUBLICArgument hash_function accepts any member of enumeration rsip_hash_type_t.

Message hash p_hash should be computed in advance with hash_function.

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

◆ R_RSIP_RSASSA_PSS_Sign()

fsp_err_t R_RSIP_RSASSA_PSS_Sign (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const *const p_hash, uint8_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,038 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

p_signature)

Signs message with RSASSA-PSS.

Implements rsip_api_t::rsassaPssSign.

Conditions

Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PRIVATE
RSIP_KEY_TYPE_RSA_3072_PRIVATE
RSIP_KEY_TYPE_RSA_4096_PRIVATEArgument hash_function accepts any member of enumeration rsip_hash_type_t.

Argument mask_generation_function accepts any member of enumeration
rsip_mgf_type_t.

Message hash p_hash should be computed in advance with hash_function.

Salt length salt_length must be one of the following:

Any member of enumeration rsip_rsa_salt_length_t
RSIP_RSA_SALT_LENGTH_AUTO
RSIP_RSA_SALT_LENGTH_HASH
RSIP_RSA_SALT_LENGTH_MAX

Integers that satisfies the formula: sLen <= emLen - hLen - 2
sLen is salt_length
emLen is the same as modulus length
hLen is the hash length

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,039 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_RSASSA_PSS_Verify()

fsp_err_t R_RSIP_RSASSA_PSS_Verify (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const *const p_hash, uint8_t const
*const p_signature)

Verifies signature with RSASSA-PSS. Implements rsip_api_t::rsassaPssVerify.

Conditions

Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_RSA_2048_PUBLIC
RSIP_KEY_TYPE_RSA_3072_PUBLIC
RSIP_KEY_TYPE_RSA_4096_PUBLICArgument hash_function accepts any member of enumeration rsip_hash_type_t.

Argument mask_generation_function accepts any member of enumeration
rsip_mgf_type_t.

Message hash p_hash should be computed in advance with hash_function.

Salt length salt_length must be one of the following:

Any member of enumeration rsip_rsa_salt_length_t
RSIP_RSA_SALT_LENGTH_AUTO
RSIP_RSA_SALT_LENGTH_HASH
RSIP_RSA_SALT_LENGTH_MAX

Integers that satisfies the formula: sLen <= emLen - hLen - 2
sLen is salt_length
emLen is the same as modulus length
hLen is the hash length

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_INVALID_SIZE Any length is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,040 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,041 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_OTF_Init()

fsp_err_t R_RSIP_OTF_Init (rsip_ctrl_t *const p_ctrl, rsip_otf_channel_t const channel,
rsip_wrapped_key_t *const p_wrapped_key, uint8_t const *const p_seed)

Initialize on-the-fly decryption on RSIP. Implements rsip_api_t::otfInit.

<Usage Precautions>

Argument "channel" represents channel number to be used, and supports the features
listed below. Channel Corresponding Parameter

CH-0 RSIP_OTF_CHANNEL_0

CH-1 (*) RSIP_OTF_CHANNEL_1
(*) These features are not supported.

<Operational State>
This API can only be executed in the STATE_MAIN, and there are no state transitions.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] channel Channel number.

[in] p_wrapped_key Pointer to wrapped AES key.

[in] p_seed Pointer to seed.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled or selected
channel is invalid.

FSP_ERR_INVALID_ARGUMENT Input key type is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

Attention
This function is only part of on-the-fly decryption activation process and intended to be
called from a higher level FSP module. Even if a user calls this function directly, the feature
will not be enabled. The number of channels for the channel parameter is dependent on the
hardware. RA8x1 supports only one channel, and channel parameter must always be set to
RSIP_OTF_CHANNEL_0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,042 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_ECDSA_Sign()

fsp_err_t R_RSIP_ECDSA_Sign (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, uint8_t const *const p_hash, uint8_t *const p_signature)

Generates an ECDSA signature.

Implements rsip_api_t::ecdsaSign.

Conditions

Key type of p_wrapped_private_key must be one of the following:

RSIP_KEY_TYPE_ECC_SECP256R1_PRIVATE
RSIP_KEY_TYPE_ECC_SECP384R1_PRIVATE
RSIP_KEY_TYPE_ECC_SECP521R1_PRIVATEMessage hash p_hash should be computed in advance. In the case of hash length is less

than the key length, padding is required to make it the same as the key length.

For secp521r1 operation, the length of p_hash must be set to 64 bytes.

For secp521r1 operation, the length of the argument p_signature must be set as 132 byte.
Since 521 bit is not a 8-bit multiple, zero padding is required and the data format is as
follows:

Data Format for secp521r1 (132 byte)

zero padding (7 bit) signature r (521 bit) zero padding (7 bit) signature s (521 bit)

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is illegal.
Signature generation is failed.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,043 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_ECDSA_Verify()

fsp_err_t R_RSIP_ECDSA_Verify (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t const *const p_hash, uint8_t const *const p_signature)

Verifies an ECDSA signature.

Implements rsip_api_t::ecdsaVerify.

Conditions

Key type of p_wrapped_public_key must be one of the following:

RSIP_KEY_TYPE_ECC_SECP256R1_PUBLIC
RSIP_KEY_TYPE_ECC_SECP384R1_PUBLIC
RSIP_KEY_TYPE_ECC_SECP521R1_PUBLICMessage hash p_hash should be computed in advance. In the case of hash length is less

than the key length, padding is required to make it the same as the key length.

For secp521r1 operation, the length of p_hash must be set to 64 bytes.

For secp521r1 operation, the length of the argument p_signature must be set as 132 byte.
Since 521 bit is not a 8-bit multiple, zero padding is required and the data format is as
follows:

Data Format for secp521r1 (132 byte)

zero padding (7 bit) signature r (521 bit) zero padding (7 bit) signature s (521 bit)

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is illegal.
Signature verification is failed.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,044 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_Open()

fsp_err_t R_RSIP_Open (rsip_ctrl_t *const p_ctrl, rsip_cfg_t const *const p_cfg)

Enables use of Renesas Secure IP functionality.

Implements rsip_api_t::open.

State transition

This API can only be executed in STATE_INITIAL, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Internal key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Hardware initialization is failed.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption or hardware fault is
detected.

Note
This version does not have an optional feature to disable TRNG initialization.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,045 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_Close()

fsp_err_t R_RSIP_Close (rsip_ctrl_t *const p_ctrl)

Disables use of Renesas Secure IP functionality.

Implements rsip_api_t::close.

State transition

This API can be executed in except STATE_INITIAL, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_INITIAL

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

◆ R_RSIP_RandomNumberGenerate()

fsp_err_t R_RSIP_RandomNumberGenerate (rsip_ctrl_t *const p_ctrl, uint8_t *const p_random)

Generates a 128-bit random number.

Implements rsip_api_t::randomNumberGenerate.

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,046 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_KeyGenerate()

fsp_err_t R_RSIP_KeyGenerate (rsip_ctrl_t *const p_ctrl, rsip_key_type_t const key_type,
rsip_wrapped_key_t *const p_wrapped_key)

Generates a wrapped symmetric key from a random number. In this API, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Implements rsip_api_t::keyGenerate.

Conditions
Argument key_type must be one of the following:

RSIP_KEY_TYPE_AES_128, RSIP_KEY_TYPE_AES_256
RSIP_KEY_TYPE_XTS_AES_128, RSIP_KEY_TYPE_XTS_AES_256
RSIP_KEY_TYPE_HMAC_SHA256, RSIP_KEY_TYPE_HMAC_SHA384,
RSIP_KEY_TYPE_HMAC_SHA512

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,047 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_KeyPairGenerate()

fsp_err_t R_RSIP_KeyPairGenerate (rsip_ctrl_t *const p_ctrl, rsip_key_pair_type_t const
key_pair_type, rsip_wrapped_key_t *const p_wrapped_public_key, rsip_wrapped_key_t *const
p_wrapped_private_key)

Generates a wrapped asymmetric key pair from a random number. In this API, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Implements rsip_api_t::keyPairGenerate.

Conditions
Argument key_pair_type must be one of the following:

RSIP_KEY_PAIR_TYPE_ECC_SECP256R1, RSIP_KEY_PAIR_TYPE_ECC_SECP384R1,
RSIP_KEY_PAIR_TYPE_ECC_SECP521R1,
RSIP_KEY_PAIR_TYPE_RSA_2048, RSIP_KEY_PAIR_TYPE_RSA_3072,
RSIP_KEY_PAIR_TYPE_RSA_4096

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,048 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_EncryptedKeyWrap()

fsp_err_t R_RSIP_EncryptedKeyWrap (rsip_ctrl_t *const p_ctrl, rsip_key_update_key_t const *const
p_key_update_key, uint8_t const *const p_initial_vector, rsip_key_type_t const key_type, uint8_t
const *const p_encrypted_key, rsip_wrapped_key_t *const p_wrapped_key)

Decrypts an encrypted user key with Key Update Key (KUK) and wrap it with the Hardware Unique
Key (HUK).

Implements rsip_api_t::encryptedKeyWrap.

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms

◆ R_RSIP_RFC3394_KeyWrap()

fsp_err_t R_RSIP_RFC3394_KeyWrap (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_kek, rsip_wrapped_key_t const *const p_wrapped_target_key, uint8_t *const
p_rfc3394_wrapped_target_key)

This function provides Key Wrap algorithm compliant with RFC3394. Using p_wrapped_kek to wrap
p_wrapped_target_key, and output the result to p_rfc3394_wrapped_target_key.
Implements rsip_api_t::rfc3394_KeyWrap.

<Usage Precautions>

Argument "p_wrapped_kek" only supports the following key type. Key Type
of p_wrapp

ed_kek

Correspon
ding

Parameter

AES-128 RSIP_KEY_
TYPE_AES_
128

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,049 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

AES-256 RSIP_KEY_
TYPE_AES_
256

Argument "p_wrapped_target_key" only supports the following key type. Key
Type of
p_wrap
ped_tar
get_ke

y

Corres
pondin
g Para
meter

AES-12
8

RSIP_K
EY_TYP
E_AES_
128

AES-25
6

RSIP_K
EY_TYP
E_AES_
256

<Operational State>
This API can only be executed in the STATE_MAIN, and there are no state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_INVALID_ARGUMENT Input key type or mode is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

◆ R_RSIP_RFC3394_KeyUnwrap()

fsp_err_t R_RSIP_RFC3394_KeyUnwrap (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_kek, rsip_key_type_t const key_type, uint8_t const *const
p_rfc3394_wrapped_target_key, rsip_wrapped_key_t *const p_wrapped_target_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,050 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

This function provides Key Unwrap algorithm compliant with RFC3394. Using p_wrapped_kek to
unwrap p_rfc3394_wrapped_target_key, and output the result to p_wrapped_target_key.
Implements rsip_api_t::rfc3394_KeyUnwrap.

<Usage Precautions>

Argument "p_wrapped_kek" only supports the following key type. Key Type
of p_wrapp

ed_kek

Correspon
ding

Parameter

AES-128 RSIP_KEY_
TYPE_AES_
128

AES-256 RSIP_KEY_
TYPE_AES_
256

Argument "key_type" represents the key type of p_rfc3394_wrapped_target_key, and only
supports the following key type. Key Type of p_rfc3394_wra

pped_target_key
Corresponding Parameter

AES-128 RSIP_KEY_TYPE_AES_128

AES-256 RSIP_KEY_TYPE_AES_256

<Operational State>
This API can only be executed in the STATE_MAIN, and there are no state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_INVALID_ARGUMENT Input key type or mode is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL Input parameter is invalid.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,051 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_InjectedKeyImport()

fsp_err_t R_RSIP_InjectedKeyImport (rsip_key_type_t const key_type, uint8_t const *const
p_injected_key, rsip_wrapped_key_t *const p_wrapped_key, uint32_t const
wrapped_key_buffer_length)

Generates structure data "rsip_wrapped_key_t" from injected key value. Refer "Key Size Table" for
supported key types.

Implements rsip_api_t::injectedKeyImport.

State transition
This API can be executed in any state including STATE_INITIAL, and does not cause any
state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_UNSUPPORTED Selected key type is not supported.

FSP_ERR_INVALID_SIZE Buffer length is too short.

See also
Section Supported Algorithms

Note
Injected key value is not validated in this API.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,052 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_PublicKeyExport()

fsp_err_t R_RSIP_PublicKeyExport (rsip_wrapped_key_t const *const p_wrapped_public_key, uint8_t
*const p_raw_public_key)

Exports public key parameters from a wrapped key.

Implements rsip_api_t::publicKeyExport.

Relative position of each elements in p_raw_public_key is shown in below:

ECC (RSIP_KEY_TYPE_ECC_*) : Qx placed first and Qy placed after that.
bit length Qx Qy

256 0 32

384 0 48

521 0 66

RSA (RSIP_KEY_TYPE_RSA_*) : n placed first and e placed after that.
modulus n e

1024 0 128

2048 0 256

3072 0 384

4096 0 512

State transition
This API can be executed in any state including STATE_INITIAL, and does not
cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,053 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Compute()

fsp_err_t R_RSIP_SHA_Compute (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const hash_type,
uint8_t const *const p_message, uint32_t const message_length, uint8_t *const p_digest)

Generates SHA message digest.

Implements rsip_api_t::shaCompute.

Conditions
See R_RSIP_SHA_Init().

Output length
See R_RSIP_SHA_Finish().

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,054 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Init()

fsp_err_t R_RSIP_SHA_Init (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const hash_type)

Starts SHA operation.

Implements rsip_api_t::shaInit.

Conditions
Argument hash_function accepts any member of enumeration rsip_hash_type_t.

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_SHA

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,055 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Update()

fsp_err_t R_RSIP_SHA_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message, uint32_t
const message_length)

Inputs SHA message.

Implements rsip_api_t::shaUpdate.

State transition
This API can only be executed in STATE_SHA, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,056 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Finish()

fsp_err_t R_RSIP_SHA_Finish (rsip_ctrl_t *const p_ctrl, uint8_t *const p_digest)

Outputs SHA message digest.

Implements rsip_api_t::shaFinish.

Output length
Output length to p_digest depends on hash_function.

32 (RSIP_HASH_TYPE_SHA256)
48 (RSIP_HASH_TYPE_SHA384)
64 (RSIP_HASH_TYPE_SHA512)

State transition

This API can only be executed in STATE_SHA, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,057 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Suspend()

fsp_err_t R_RSIP_SHA_Suspend (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t *const p_handle)

Suspends SHA operation.

This API releases RSIP resource and outputs intermediate results. Therefore, it can be used in the
following cases:

Execute another cryptographic operations during inputting successive chunks of the
message.
Reuse intermediate results.

Implements rsip_api_t::shaSuspend.

State transition

This API can only be executed in STATE_SHA, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,058 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_SHA_Resume()

fsp_err_t R_RSIP_SHA_Resume (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t const *const p_handle
)

Resumes SHA operation suspended by R_RSIP_SHA_Suspend().

Implements rsip_api_t::shaResume.

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_SHA

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,059 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Compute()

fsp_err_t R_RSIP_HMAC_Compute (rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t *
p_wrapped_key, uint8_t const *const p_message, uint32_t const message_length, uint8_t *const
p_mac)

Generates HMAC.

Implements rsip_api_t::hmacCompute.

Conditions
See R_RSIP_HMAC_Init().

Output length
See R_RSIP_HMAC_SignFinish().

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,060 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Verify()

fsp_err_t R_RSIP_HMAC_Verify (rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t *
p_wrapped_key, uint8_t const *const p_message, uint32_t const message_length, uint8_t const
*const p_mac, uint32_t const mac_length)

Verifies HMAC.

Implements rsip_api_t::hmacVerify.

Conditions
See R_RSIP_HMAC_Init() and R_RSIP_HMAC_VerifyFinish().

State transition
This API can only be executed in STATE_MAIN, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE mac_length is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key value is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL MAC verification is failed.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,061 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Init()

fsp_err_t R_RSIP_HMAC_Init (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_key)

Starts HMAC operation.

Implements rsip_api_t::hmacInit.

Conditions
Key type of p_wrapped_key must be one of the following:

RSIP_KEY_TYPE_HMAC_SHA256, RSIP_KEY_TYPE_HMAC_SHA384,
RSIP_KEY_TYPE_HMAC_SHA512

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_HMAC

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_NOT_ENABLED Input key type is disabled in this function by
configuration.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

See also
Section Supported Algorithms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,062 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Update()

fsp_err_t R_RSIP_HMAC_Update (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message, uint32_t
const message_length)

Inputs HMAC message.

Implements rsip_api_t::hmacUpdate.

State transition
This API can only be executed in STATE_SHA, and does not cause any state transitions.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,063 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_SignFinish()

fsp_err_t R_RSIP_HMAC_SignFinish (rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Outputs HMAC.

Implements rsip_api_t::hmacSignFinish.

Output length
Output length to p_mac depends on key type of p_wrapped_key.

32 (RSIP_KEY_TYPE_HMAC_SHA256)
48 (RSIP_KEY_TYPE_HMAC_SHA384)
64 (RSIP_KEY_TYPE_HMAC_SHA512)

State transition

This API can only be executed in STATE_HMAC, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,064 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_VerifyFinish()

fsp_err_t R_RSIP_HMAC_VerifyFinish (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_mac, uint32_t
const mac_length)

Verifies HMAC.

Implements rsip_api_t::hmacVerifyFinish.

Conditions
Argument mac_length depends on key type of p_wrapped_key. Usually the longest length is
recommended.

4 to 32 (RSIP_KEY_TYPE_HMAC_SHA256)
4 to 48 (RSIP_KEY_TYPE_HMAC_SHA384)
4 to 64 (RSIP_KEY_TYPE_HMAC_SHA512)

State transition

This API can only be executed in STATE_HMAC, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

FSP_ERR_ASSERTION No change

FSP_ERR_NOT_OPEN No change

FSP_ERR_INVALID_STATE No change

FSP_ERR_INVALID_SIZE No change

Others STATE_MAIN

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_INVALID_SIZE mac_length is illegal.

FSP_ERR_CRYPTO_RSIP_KEY_SET_FAIL Input key is illegal.

FSP_ERR_CRYPTO_RSIP_FAIL MAC verification is failed.

FSP_ERR_CRYPTO_RSIP_RESOURCE_CONFLI
CT

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,065 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Suspend()

fsp_err_t R_RSIP_HMAC_Suspend (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t *const p_handle)

Suspends HMAC operation.

This API releases RSIP resource and outputs intermediate results. Therefore, it can be used in the
following cases:

Execute another cryptographic operations during inputting successive chunks of the
message.
Reuse intermediate results.

Implements rsip_api_t::hmacSuspend.

State transition

This API can only be executed in STATE_HMAC, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_MAIN

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

FSP_ERR_CRYPTO_RSIP_FATAL Software corruption is detected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,066 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Renesas Secure IP (r_rsip_protected)

◆ R_RSIP_HMAC_Resume()

fsp_err_t R_RSIP_HMAC_Resume (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t const *const
p_handle)

Resumes HMAC operation suspended by R_RSIP_HMAC_Suspend().

Implements rsip_api_t::hmacResume.

State transition

This API can only be executed in STATE_MAIN, and causes state transition.

Return value Next state

FSP_SUCCESS STATE_HMAC

Others No change

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_ASSERTION A required parameter is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_STATE Internal state is illegal.

5.2.15.5 SCE Protected Mode
Modules » Security

Functions

fsp_err_t R_SCE_TLS_RootCertificateVerify (uint32_t public_key_type, uint8_t
*certificate, uint32_t certificate_length, uint32_t
public_key_n_start_position, uint32_t public_key_n_end_position,
uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint8_t *signature, uint32_t
*encrypted_root_public_key)

fsp_err_t R_SCE_TLS_CertificateVerify (uint32_t public_key_type, uint32_t
*encrypted_input_public_key, uint8_t *certificate, uint32_t
certificate_length, uint8_t *signature, uint32_t
public_key_n_start_position, uint32_t public_key_n_end_position,
uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint32_t *encrypted_output_public_key)

fsp_err_t R_SCE_TLS_PreMasterSecretGenerateForRSA2048 (uint32_t
*sce_pre_master_secret)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,067 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_TLS_MasterSecretGenerate (uint32_t select_cipher_suite,
uint32_t *sce_pre_master_secret, uint8_t *client_random, uint8_t
*server_random, uint32_t *sce_master_secret)

fsp_err_t R_SCE_TLS_PreMasterSecretEncryptWithRSA2048 (uint32_t
*encrypted_public_key, uint32_t *sce_pre_master_secret, uint8_t
*encrypted_pre_master_secret)

fsp_err_t R_SCE_TLS_SessionKeyGenerate (uint32_t select_cipher_suite,
uint32_t *sce_master_secret, uint8_t *client_random, uint8_t
*server_random, uint8_t *nonce_explicit,
sce_hmac_sha_wrapped_key_t *client_mac_wrapped_key,
sce_hmac_sha_wrapped_key_t *server_mac_wrapped_key,
sce_aes_wrapped_key_t *client_crypto_wrapped_key,
sce_aes_wrapped_key_t *server_crypto_wrapped_key, uint8_t
*client_initial_vector, uint8_t *server_initial_vector)

fsp_err_t R_SCE_TLS_VerifyDataGenerate (uint32_t select_verify_data, uint32_t
*sce_master_secret, uint8_t *hand_shake_hash, uint8_t *verify_data)

fsp_err_t R_SCE_TLS_ServerKeyExchangeVerify (uint32_t public_key_type,
uint8_t *client_random, uint8_t *server_random, uint8_t
*server_ephemeral_ecdh_public_key, uint8_t
*server_key_exchange_signature, uint32_t *encrypted_public_key,
uint32_t *encrypted_ephemeral_ecdh_public_key)

fsp_err_t R_SCE_TLS_PreMasterSecretGenerateForECC_secp256r1 (uint32_t
*encrypted_public_key, sce_tls_p256_ecc_wrapped_key_t
*tls_p256_ecc_wrapped_key, uint32_t *sce_pre_master_secret)

fsp_err_t R_SCE_SHA256_Init (sce_sha_md5_handle_t *handle)

fsp_err_t R_SCE_SHA256_Update (sce_sha_md5_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t R_SCE_SHA256_Final (sce_sha_md5_handle_t *handle, uint8_t
*digest, uint32_t *digest_length)

fsp_err_t R_SCE_SHA256HMAC_GenerateInit (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_SHA256HMAC_GenerateUpdate (sce_hmac_sha_handle_t
*handle, uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_SHA256HMAC_GenerateFinal (sce_hmac_sha_handle_t
*handle, uint8_t *mac)

fsp_err_t R_SCE_SHA256HMAC_VerifyInit (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,068 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_SHA256HMAC_VerifyUpdate (sce_hmac_sha_handle_t
*handle, uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_SHA256HMAC_VerifyFinal (sce_hmac_sha_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_Open (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

fsp_err_t R_SCE_Close (sce_ctrl_t *const p_ctrl)

fsp_err_t R_SCE_SoftwareReset (void)

fsp_err_t R_SCE_RandomNumberGenerate (uint32_t *random)

fsp_err_t R_SCE_AES128_WrappedKeyGenerate (sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_AES256_WrappedKeyGenerate (sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128_RFC3394KeyWrap (sce_aes_wrapped_key_t
*master_key, uint32_t target_key_type, sce_aes_wrapped_key_t
*target_key, uint32_t *rfc3394_wrapped_key)

fsp_err_t R_SCE_AES256_RFC3394KeyWrap (sce_aes_wrapped_key_t
*master_key, uint32_t target_key_type, sce_aes_wrapped_key_t
*target_key, uint32_t *rfc3394_wrapped_key)

fsp_err_t R_SCE_AES128_RFC3394KeyUnwrap (sce_aes_wrapped_key_t
*master_key, uint32_t target_key_type, uint32_t
*rfc3394_wrapped_key, sce_aes_wrapped_key_t *target_key)

fsp_err_t R_SCE_AES256_RFC3394KeyUnwrap (sce_aes_wrapped_key_t
*master_key, uint32_t target_key_type, uint32_t
*rfc3394_wrapped_key, sce_aes_wrapped_key_t *target_key)

fsp_err_t R_SCE_SHA256HMAC_EncryptedKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA1024_WrappedKeyPairGenerate
(sce_rsa1024_wrapped_pair_key_t *wrapped_pair_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,069 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_RSA2048_WrappedKeyPairGenerate
(sce_rsa2048_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_RSA1024_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA1024_EncryptedPrivateKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA3072_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa3072_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA4096_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa4096_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp192r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp224r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp256r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp384r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,070 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_TLS_RootCertificateRSA2048PublicKeyInstall (uint8_t
*encrypted_provisioning_key, uint8_t *initial_vector, uint8_t
*encrypted_key, sce_tls_ca_certification_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate
(sce_tls_p256_ecc_wrapped_key_t *tls_p256_ecc_wrapped_key,
uint8_t *ephemeral_ecdh_public_key)

fsp_err_t R_SCE_AES128ECB_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128ECB_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128ECB_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES128ECB_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128ECB_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128ECB_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES256ECB_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256ECB_EncryptUpdate (sce_aes_handle_t *handle,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,071 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES256ECB_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES256ECB_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256ECB_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256ECB_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES128CBC_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES128CBC_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128CBC_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES128CBC_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES128CBC_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128CBC_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES256CBC_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES256CBC_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES256CBC_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES256CBC_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES256CBC_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256CBC_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,072 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_AES128GCM_EncryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES128GCM_EncryptUpdate (sce_gcm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES128GCM_EncryptFinal (sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t R_SCE_AES128GCM_DecryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES128GCM_DecryptUpdate (sce_gcm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES128GCM_DecryptFinal (sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t R_SCE_AES256GCM_EncryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES256GCM_EncryptUpdate (sce_gcm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES256GCM_EncryptFinal (sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t R_SCE_AES256GCM_DecryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES256GCM_DecryptUpdate (sce_gcm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES256GCM_DecryptFinal (sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t R_SCE_AES128CCM_EncryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,073 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_AES128CCM_EncryptUpdate (sce_ccm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128CCM_EncryptFinal (sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES128CCM_DecryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES128CCM_DecryptUpdate (sce_ccm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128CCM_DecryptFinal (sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_EncryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_EncryptUpdate (sce_ccm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES256CCM_EncryptFinal (sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_DecryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_DecryptUpdate (sce_ccm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256CCM_DecryptFinal (sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES128CMAC_GenerateInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128CMAC_GenerateUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES128CMAC_GenerateFinal (sce_cmac_handle_t *handle,
uint8_t *mac)

fsp_err_t R_SCE_AES128CMAC_VerifyInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,074 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_AES128CMAC_VerifyUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES128CMAC_VerifyFinal (sce_cmac_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CMAC_GenerateInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256CMAC_GenerateUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES256CMAC_GenerateFinal (sce_cmac_handle_t *handle,
uint8_t *mac)

fsp_err_t R_SCE_AES256CMAC_VerifyInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256CMAC_VerifyUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES256CMAC_VerifyFinal (sce_cmac_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureGenerate (sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSAES_PKCS1024_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS1024_Decrypt (sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureGenerate (sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,075 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

fsp_err_t R_SCE_RSASSA_PKCS3072_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS4096_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSAES_PKCS2048_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS2048_Decrypt (sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS3072_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS4096_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureVerify (sce_ecdsa_byte_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,076 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_Init (sce_ecdh_handle_t *handle, uint32_t
key_type, uint32_t use_key_id)

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeySign (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key, uint8_t
*public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyVerify (sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
uint8_t *public_key_data, sce_ecdsa_byte_data_t *signature,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyReadWithoutSignature
(sce_ecdh_handle_t *handle, uint8_t *public_key_data,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_SharedSecretCalculate (sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_KeyDerivation (sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t
key_type, uint32_t kdf_type, uint8_t *other_info, uint32_t
other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

Detailed Description

Driver for the Secure Crypto Engine (SCE9) on RA MCUs.

Overview
This module provides SCE functions in protected mode.

Note
For a detailed description of the different SCE9 operating modes, refer to Application Note R11AN0498.

HW Overview

Crypto Peripheral version Devices

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,077 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

SCE9 (Protected mode) RA4M2, RA4M3, RA6M4, RA6M5

Features

The SCE module supports for the following features.

Cryptography
Symmetric Encryption/Decryption

AES
ECB 128/256bit
CBC 128/256bit
GCM 128/256bit
CCM 128/256bit

Asymmetric Encryption/Decryption
RSA

RSAES-PKCS1-V1_5 1024/2048bit
RSAES-PKCS1-V1_5 3072/4096bit (Encryption only)
RSASSA-PKCS1-V1_5 1024/2048bit
RSASSA-PKCS1-V1_5 3072/4096bit (Verification only)

ECC
ECDSA secp192r1/secp224r1/secp256r1/secp384r1
ECDH secp256r1

Hash Functions
SHA-2

SHA-256
Message Authentication Code

HMAC-SHA256bit
AES-CMAC 128/256bit

Key Support
AES 128/256bit
AES Key Wrap/Key Unwrap 128/256bit
RSA 1024/2048bit
RSA 3072/4096bit (public key only)
ECC secp192r1/secp224r1/secp256r1/secp384r1
HMAC-SHA256bit

TRNG
TLS

SSL / TLS support function (TLS1.2 compliant)

Configuration
Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Getting Started: Creating a SCE Protected Mode Project

Start by creating a new project in e² studio or RASC. On the Stacks tab, add New > Security > SCE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,078 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

Protected Mode. For information on how to install and update secure keys, refer to the Application
Note R11AN0496.

Reducing intialization time

The SCE intialization sequence can be modified to support a smaller subset of features and allow for
a shorter intialization period. This is particularly useful in cases where startup time is important and
the cryptographic features that are required are known in advance. The current fast boot
configuration option supports the cryptographic primitives requried by MCUBoot including:

RSA 3K/4K signature verification
ECC P256 signature verification
SHA224/256 and GHASH calcuation

Limitations

Usage of R_SCE_ECDSA_secp384r1_SignatureGenerate/Verify

The SCE does not support SHA-384 in hardware, so the APIs listed below require the user to create a
SHA-384 function for signature generation and verification. To use the APIs listed below, enable
SCE_USER_SHA_384_ENABLED on RA Smart Configurator and prepare a function called
SCE_USER_SHA_384_FUNCTION. The interface of SCE_USER_SHA_384_FUNCTION, which is called by
the following APIs, is described below.

R_SCE_ECDSA_secp384r1_SignatureGenerate()
R_SCE_ECDSA_secp384r1_SignatureVerify()

SCE_USER_SHA_384_FUNCTION()

uint32_t SCE_USER_SHA_384_FUNCTION(uint8_t *message, uint8_t* digest, uint32_t

message_length)

 SHA-384 hash calculation is performed for an area extending the number of bytes specified by the
argument message_length from the address specified by the argument message. The calculation
result should be stored at the address specified by the argument digest.

Parameters
message [in] Start address of message

digest [in,out] address for storing hash calculation
result (48 bytes)

message_length [in] Effective byte count of message

Return values
0 Hash value stored successfully.

others Storing of hash value failed.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,079 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

AES Example

This is an example of AES-256 encryption and decryption.

static uint8_t plain[BLOCK * 2] =

{

 0x52, 0x65, 0x6e, 0x65, 0x73, 0x61, 0x73, 0x20, 0x45, 0x6c, 0x65, 0x63, 0x74,

0x72, 0x6f, 0x6e,

 0x69, 0x63, 0x73, 0x20, 0x43, 0x6f, 0x72, 0x70, 0x6f, 0x72, 0x61, 0x74, 0x69,

0x6f, 0x6e, 0x00

};

void r_sce_example_aes ()

{

 sce_aes_handle_t handle;

 sce_aes_wrapped_key_t wrapped_key;

 uint8_t cipher_calculated[32] = {0};

 uint8_t plain_calculated[32] = {0};

 uint32_t dummy;

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Generate a random key */

 R_SCE_AES256_WrappedKeyGenerate(&wrapped_key);

 /* Encrypt a plain text */

 R_SCE_AES256ECB_EncryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_EncryptUpdate(&handle, plain, cipher_calculated, BLOCK * 2);

 R_SCE_AES256ECB_EncryptFinal(&handle, cipher_calculated, &dummy);

 /* Decrypt a cipher text using same key as Encryption */

 R_SCE_AES256ECB_DecryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_DecryptUpdate(&handle, cipher_calculated, plain_calculated, BLOCK *

2);

 R_SCE_AES256ECB_DecryptFinal(&handle, plain_calculated, &dummy);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

 /* Compare plain and plain_calculated */

 if (memcmp(plain, plain_calculated, BLOCK * 2))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,080 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

 while (1)

 {

 /* plain and plain_calculated are different (incorrect) */

 }

 }

 else

 {

 while (1)

 {

 /* plain and plain_calculated are the same (correct) */

 }

 }

}

ECC Example

This is an example of ECC secp-256 signature generate and verify.

uint8_t ecc256_data_msg[] =

{

 's', 'a', 'm', 'p', 'l', 'e'

};

void r_sce_example_ecc ()

{

 sce_ecc_wrapped_pair_key_t wrapped_pair_key;

 sce_ecdsa_byte_data_t message_hash =

 {

 0

 };

 sce_ecdsa_byte_data_t signature;

 uint8_t out_data[HW_SCE_ECDSA_DATA_BYTE_SIZE];

 fsp_err_t return_code;

 message_hash.data_length = sizeof(ecc256_data_msg);

 message_hash.pdata = (uint8_t *) ecc256_data_msg;

 signature.pdata = out_data;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,081 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Generate a random pair key */

 R_SCE_ECC_secp256r1_WrappedKeyPairGenerate(&wrapped_pair_key);

 /* Generate a Signature */

 R_SCE_ECDSA_secp256r1_SignatureGenerate(&message_hash, &signature,

&wrapped_pair_key.priv_key);

 /* Verify Signature and Public wrapped key */

 return_code = R_SCE_ECDSA_secp256r1_SignatureVerify(&signature, &message_hash,

&wrapped_pair_key.pub_key);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

 if (FSP_SUCCESS != return_code)

 {

 while (1)

 {

 /* Verify Fail */

 }

 }

 else

 {

 while (1)

 {

 /* Verify Success */

 }

 }

}

RSA Example

This is an example of RSA-2048 encryption and decryption.

uint8_t rsa_msg[256] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,082 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

0x0d, 0x0e, 0x0f,

 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,

0x1d, 0x1e, 0x1f,

 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c,

0x2d, 0x2e, 0x2f,

 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c,

0x3d, 0x3e, 0x3f,

 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c,

0x4d, 0x4e, 0x4f,

 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c,

0x5d, 0x5e, 0x5f,

 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,

0x6d, 0x6e, 0x6f,

 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c,

0x7d, 0x7e, 0x7f,

 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c,

0x8d, 0x8e, 0x8f,

 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c,

0x9d, 0x9e, 0x9f,

 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac,

0xad, 0xae, 0xaf,

 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc,

0xbd, 0xbe, 0xbf,

 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc,

0xcd, 0xce, 0xcf,

 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc,

0xdd, 0xde, 0xdf,

 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec,

0xed, 0xee, 0xef,

 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc,

0xfd, 0xfe, 0xff

};

void r_sce_example_rsa () {

 sce_rsa2048_wrapped_pair_key_t wrapped_pair_key;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,083 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

 sce_rsa_byte_data_t plain;

 sce_rsa_byte_data_t plain_dec;

 sce_rsa_byte_data_t cipher;

 uint8_t enc_cipher[HW_SCE_RSA_2048_DATA_BYTE_SIZE];

 uint8_t dec_plain[HW_SCE_RSA_2048_DATA_BYTE_SIZE];

 plain.data_length = sizeof(rsa_msg) - PADDING_MINIMUM_BYTE_SIZE;

 plain.pdata = (uint8_t *) rsa_msg;

 plain_dec.data_length = sizeof(dec_plain);

 plain_dec.pdata = dec_plain;

 cipher.data_length = sizeof(enc_cipher);

 cipher.pdata = enc_cipher;

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Generate a random key */

 R_SCE_RSA2048_WrappedKeyPairGenerate(&wrapped_pair_key);

 /* Encrypt a plain data */

 R_SCE_RSAES_PKCS2048_Encrypt(&plain, &cipher, &wrapped_pair_key.pub_key);

 /* Decrypt a plain data */

 R_SCE_RSAES_PKCS2048_Decrypt(&cipher, &plain_dec, &wrapped_pair_key.priv_key);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

 /* Compare plain_dec and plain */

 if (0 != memcmp(plain_dec.pdata, plain.pdata, plain_dec.data_length))

 {

 while (1)

 {

 /* plain_dec and plain are different (incorrect) */

 }

 }

 else

 {

 while (1)

 {

 /* plain_dec and plain are the same (correct) */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,084 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

 }

 }

}

HASH Example

This is an example of calculating the SHA256 hash.

uint8_t message[] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f,

 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,

0x1d, 0x1e, 0x1f,

};

uint8_t hash[] =

{

 0x63, 0x0d, 0xcd, 0x29, 0x66, 0xc4, 0x33, 0x66, 0x91, 0x12, 0x54, 0x48, 0xbb,

0xb2, 0x5b, 0x4f,

 0xf4, 0x12, 0xa4, 0x9c, 0x73, 0x2d, 0xb2, 0xc8, 0xab, 0xc1, 0xb8, 0x58, 0x1b,

0xd7, 0x10, 0xdd

};

void r_sce_example_hash ()

{

 sce_sha_md5_handle_t handle;

 uint8_t digest[HW_SCE_SHA256_HASH_LENGTH_BYTE_SIZE] = {0};

 uint32_t digest_length = 0;

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Encrypt a message text */

 R_SCE_SHA256_Init(&handle);

 R_SCE_SHA256_Update(&handle, &message, HW_SCE_SHA256_HASH_LENGTH_BYTE_SIZE);

 R_SCE_SHA256_Final(&handle, &digest, &digest_length);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,085 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

 /* Compare digest and hash */

 if (0 != memcmp(digest, hash, digest_length))

 {

 while (1)

 {

 /* digest and hash are different (incorrect) */

 }

 }

 else

 {

 while (1)

 {

 /* digest and hash are the same (correct) */

 }

 }

}

Data Structures

struct sce_instance_ctrl_t

Data Structure Documentation

◆ sce_instance_ctrl_t

struct sce_instance_ctrl_t

SCE private control block. DO NOT MODIFY. Initialization occurs when R_SCE_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,086 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_RootCertificateVerify()

fsp_err_t R_SCE_TLS_RootCertificateVerify (uint32_t public_key_type, uint8_t * certificate,
uint32_t certificate_length, uint32_t public_key_n_start_position, uint32_t
public_key_n_end_position, uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint8_t * signature, uint32_t * encrypted_root_public_key)

Verify root CA certificate.

Parameters
[in] public_key_type key type

[in] certificate certificates.

[in] certificate_length byte size of certificates.

[in] public_key_n_start_position start position of public key n.

[in] public_key_n_end_position end position of public key n.

[in] public_key_e_start_position start position of public key e.

[in] public_key_e_end_position end position of public key e.

[in] signature signature for certificates.

[out] encrypted_root_public_key public key for RSA 2048bit.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,087 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_CertificateVerify()

fsp_err_t R_SCE_TLS_CertificateVerify (uint32_t public_key_type, uint32_t *
encrypted_input_public_key, uint8_t * certificate, uint32_t certificate_length, uint8_t * signature,
uint32_t public_key_n_start_position, uint32_t public_key_n_end_position, uint32_t
public_key_e_start_position, uint32_t public_key_e_end_position, uint32_t *
encrypted_output_public_key)

Verify server certificate and intermediate certificate.

Parameters
[in] public_key_type key type

[in] encrypted_input_public_key public key.

[in] certificate certificates.

[in] certificate_length byte size of certificates.

[in] signature signature for certificates.

[in] public_key_n_start_position start position of public key n.

[in] public_key_n_end_position end position of public key n.

[in] public_key_e_start_position start position of public key e.

[in] public_key_e_end_position end position of public key e.

[out] encrypted_output_public_key public key for RSA 2048bit.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,088 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_PreMasterSecretGenerateForRSA2048()

fsp_err_t R_SCE_TLS_PreMasterSecretGenerateForRSA2048 (uint32_t * sce_pre_master_secret)

Generate encrypted pre-master secret.

Parameters
[out] sce_pre_master_secret pre-master secret value for

SCE.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_TLS_MasterSecretGenerate()

fsp_err_t R_SCE_TLS_MasterSecretGenerate (uint32_t select_cipher_suite, uint32_t *
sce_pre_master_secret, uint8_t * client_random, uint8_t * server_random, uint32_t *
sce_master_secret)

Generate encrypted master secret.

Parameters
[in] select_cipher_suite cipher suite type

[in] sce_pre_master_secret pre-master secret value for
SCE.

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[out] sce_master_secret master secret value with
SCE-specific conversion.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,089 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

Generate encrypted master secret.

Parameters
[in] select_cipher_suite cipher suite type

[in] sce_pre_master_secret pre-master secret value for
SCE.

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[out] sce_master_secret master secret value for SCE.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,090 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_PreMasterSecretEncryptWithRSA2048()

fsp_err_t R_SCE_TLS_PreMasterSecretEncryptWithRSA2048 (uint32_t * encrypted_public_key,
uint32_t * sce_pre_master_secret, uint8_t * encrypted_pre_master_secret)

Output the result encrypted pre-master secret with RSA 2048bit

Parameters
[in] encrypted_public_key public key data.

[in] sce_pre_master_secret pre-master secret value.

[out] encrypted_pre_master_secre
t

the value encrypted pre-
master secret.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_TLS_SessionKeyGenerate()

fsp_err_t R_SCE_TLS_SessionKeyGenerate (uint32_t select_cipher_suite, uint32_t *
sce_master_secret, uint8_t * client_random, uint8_t * server_random, uint8_t * nonce_explicit,
sce_hmac_sha_wrapped_key_t * client_mac_wrapped_key, sce_hmac_sha_wrapped_key_t *
server_mac_wrapped_key, sce_aes_wrapped_key_t * client_crypto_wrapped_key,
sce_aes_wrapped_key_t * server_crypto_wrapped_key, uint8_t * client_initial_vector, uint8_t *
server_initial_vector)

Output various key information.

Parameters
[in] select_cipher_suite Key suite information

number.

[in] sce_master_secret master secret value.

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[in] nonce_explicit nonce value

[out] client_mac_wrapped_key the mac key during

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,091 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

communication from client
to server.

[out] server_mac_wrapped_key the mac key during
communication from server
to client.

[out] client_crypto_wrapped_key the crypto key during
communication from client
to server.

[out] server_crypto_wrapped_key the crypto key during
communication from server
to client.

[in] client_initial_vector not use.

[in] server_initial_vector not use.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,092 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_VerifyDataGenerate()

fsp_err_t R_SCE_TLS_VerifyDataGenerate (uint32_t select_verify_data, uint32_t *
sce_master_secret, uint8_t * hand_shake_hash, uint8_t * verify_data)

Generate verify data.

Parameters
[in] select_verify_data Select Client/Server data.

[in] sce_master_secret master secret data.

[in] hand_shake_hash TLS hand shake message
SHA256 HASH value.

[out] verify_data verify data.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,093 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_ServerKeyExchangeVerify()

fsp_err_t R_SCE_TLS_ServerKeyExchangeVerify (uint32_t public_key_type, uint8_t *
client_random, uint8_t * server_random, uint8_t * server_ephemeral_ecdh_public_key, uint8_t *
server_key_exchange_signature, uint32_t * encrypted_public_key, uint32_t *
encrypted_ephemeral_ecdh_public_key)

Retrives ECDH public key.

Parameters
[in] public_key_type key type

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[in] server_ephemeral_ecdh_publ
ic_key

Ephemeral ECDH public key
from Server.

[in] server_key_exchange_signat
ure

Server Key Exchange
sigunature.

[in] encrypted_public_key encrypted public key.

[out] encrypted_ephemeral_ecdh_
public_key

encrypted Ephemeral ECDH
public key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,094 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_PreMasterSecretGenerateForECC_secp256r1()

fsp_err_t R_SCE_TLS_PreMasterSecretGenerateForECC_secp256r1 (uint32_t *
encrypted_public_key, sce_tls_p256_ecc_wrapped_key_t * tls_p256_ecc_wrapped_key, uint32_t *
sce_pre_master_secret)

Generate encrypted pre-master secret.

Parameters
[in] encrypted_public_key encrypted public key

[in] tls_p256_ecc_wrapped_key P-256 ECC key index.

[out] sce_pre_master_secret encrypted pre-master secret
value for SCE.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_SHA256_Init()

fsp_err_t R_SCE_SHA256_Init (sce_sha_md5_handle_t * handle)

The R_SCE_SHA256_Init() function performs preparations for the execution of an SHA-256 hash
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_SHA256_Update() function and R_SCE_SHA256_Final() function.

Parameters
[in,out] handle SHA handler (work area)

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,095 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256_Update()

fsp_err_t R_SCE_SHA256_Update (sce_sha_md5_handle_t * handle, uint8_t * message, uint32_t
message_length)

The R_SCE_SHA256_Update() function calculates a hash value based on the second argument,
message, and the third argument, message_length, and writes the ongoing status to the first
argument, handle. After message input is completed, call R_SCE_SHA256_Final().

Parameters
[in,out] handle SHA handler (work area)

[in] message message data area

[in] message_length message data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,096 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256_Final()

fsp_err_t R_SCE_SHA256_Final (sce_sha_md5_handle_t * handle, uint8_t * digest, uint32_t *
digest_length)

Using the handle specified in the first argument, handle, the R_SCE_SHA256_Final() function writes
the calculation result to the second argument, digest, and writes the length of the calculation result
to the third argument, digest_length.

Parameters
[in,out] handle SHA handler (work area)

[in,out] digest hasha data area

[in,out] digest_length hash data length (32bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,097 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_GenerateInit()

fsp_err_t R_SCE_SHA256HMAC_GenerateInit (sce_hmac_sha_handle_t * handle,
sce_hmac_sha_wrapped_key_t * wrapped_key)

The R_SCE_SHA256HMAC_GenerateInit() function uses the second argument wrapped_key to
prepare for execution of SHA256-HMAC calculation, then writes the result to the first argument
handle. The argument handle is used by the subsequent R_SCE_SHA256HMAC_GenerateUpdate()
function or R_SCE_SHA256HMAC_GenerateFinal() function.

Parameters
[in,out] handle SHA-HMAC handler (work

area)

[in] wrapped_key MAC wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL An invalid MAC wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,098 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_GenerateUpdate()

fsp_err_t R_SCE_SHA256HMAC_GenerateUpdate (sce_hmac_sha_handle_t * handle, uint8_t *
message, uint32_t message_length)

The R_SCE_SHA256HMAC_GenerateUpdate() function uses the handle specified by the first
argument handle, calculates a hash value from the second argument message and third argument
message_length, then writes the intermediate result to the first argument handle. After message
input finishes, call the R_SCE_SHA256HMAC_GenerateFinal() function.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] message Message area

[in] message_length Message length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_SHA256HMAC_GenerateFinal()

fsp_err_t R_SCE_SHA256HMAC_GenerateFinal (sce_hmac_sha_handle_t * handle, uint8_t * mac)

The R_SCE_SHA256HMAC_GenerateFinal() function uses the handle specified by the first argument
handle and writes the calculation result to the second argument mac.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in,out] mac HMAC area (32 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,099 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_VerifyInit()

fsp_err_t R_SCE_SHA256HMAC_VerifyInit (sce_hmac_sha_handle_t * handle,
sce_hmac_sha_wrapped_key_t * wrapped_key)

The R_SCE_SHA256HMAC_VerifyInit() function uses the second argument wrapped_key to prepare
for execution of SHA256-HMAC calculation, then writes the result to the first argument handle. The
argument handle is used by the subsequent R_SCE_SHA256HMAC_VerifyUpdate() function or
R_SCE_SHA256HMAC_VerifyFinal() function.

Parameters
[in,out] handle SHA-HMAC handler (work

area)

[in] wrapped_key MAC wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL An invalid MAC wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,100 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_VerifyUpdate()

fsp_err_t R_SCE_SHA256HMAC_VerifyUpdate (sce_hmac_sha_handle_t * handle, uint8_t *
message, uint32_t message_length)

The R_SCE_SHA256HMAC_VerifyUpdate() function uses the handle specified by the first argument
handle, calculates a hash value from the second argument message and third argument
message_length, then writes the intermediate result to the first argument handle. After message
input finishes, call the R_SCE_SHA256HMAC_VerifyFinal() function.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] message Message area

[in] message_length Message length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,101 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_VerifyFinal()

fsp_err_t R_SCE_SHA256HMAC_VerifyFinal (sce_hmac_sha_handle_t * handle, uint8_t * mac,
uint32_t mac_length)

The R_SCE_SHA256HMAC_VerifyFinal() function uses the handle specified by the first argument
handle and verifies the mac value from the second argument mac and third argument mac_length.
Input a value in bytes from 4 to 32 as mac_length.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] mac HMAC area

[in] mac_length HMAC length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,102 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_Open()

fsp_err_t R_SCE_Open (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

Enables use of SCE functionality.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL The error-detection self-test failed to
terminate normally.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_RETRY Indicates that an entropy evaluation failure
occurred. Run the function again.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

Note
The valid pre-run state is SCE disabled. The pre-run state is SCE Disabled State. After the function runs the state
transitions to SCE Enabled State.

◆ R_SCE_Close()

fsp_err_t R_SCE_Close (sce_ctrl_t *const p_ctrl)

Stops supply of power to the SCE.

Parameters
[in] p_ctrl Pointer to control structure.

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is any state. After the function runs the state transitions to SCE Disabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,103 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SoftwareReset()

fsp_err_t R_SCE_SoftwareReset (void)

Software reset to SCE.

Reverts the state to the SCE initial state.

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is any state. After the function runs the state transitions to SCE Disabled State.

◆ R_SCE_RandomNumberGenerate()

fsp_err_t R_SCE_RandomNumberGenerate (uint32_t * random)

This API can generate 4 words random number.

Parameters
[in,out] random Stores 4words (16 bytes)

random data.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,104 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128_WrappedKeyGenerate()

fsp_err_t R_SCE_AES128_WrappedKeyGenerate (sce_aes_wrapped_key_t * wrapped_key)

This API outputs 128-bit AES wrapped key from a random number.

This API generates a wrapped key from a random number in the SCE. Accordingly, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Disabled State.

◆ R_SCE_AES256_WrappedKeyGenerate()

fsp_err_t R_SCE_AES256_WrappedKeyGenerate (sce_aes_wrapped_key_t * wrapped_key)

This API outputs 256-bit AES wrapped key from a random number.

This API generates a wrapped key from a random number in the SCE. Accordingly, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Disabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,105 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128_EncryptedKeyWrap()

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t * encrypted_key,
sce_key_update_key_t * key_update_key, sce_aes_wrapped_key_t * wrapped_key)

This API wraps 128-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,106 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256_EncryptedKeyWrap()

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t * encrypted_key,
sce_key_update_key_t * key_update_key, sce_aes_wrapped_key_t * wrapped_key)

This API wraps 256-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,107 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128_RFC3394KeyWrap()

fsp_err_t R_SCE_AES128_RFC3394KeyWrap (sce_aes_wrapped_key_t * master_key, uint32_t
target_key_type, sce_aes_wrapped_key_t * target_key, uint32_t * rfc3394_wrapped_key)

This API wraps 128-bit AES key within the user routine.

Parameters
[in] master_key AES-128 key used for

wrapping.

[in] target_key_type Selects key to be wrapped.

[in] target_key Key to be wrapped.

[out] rfc3394_wrapped_key Wrapped key.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal user Key Generation
Information.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,108 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256_RFC3394KeyWrap()

fsp_err_t R_SCE_AES256_RFC3394KeyWrap (sce_aes_wrapped_key_t * master_key, uint32_t
target_key_type, sce_aes_wrapped_key_t * target_key, uint32_t * rfc3394_wrapped_key)

This API wraps 256-bit AES key within the user routine.

Parameters
[in] master_key AES-256 key used for

wrapping.

[in] target_key_type Selects key to be wrapped.

[in] target_key Key to be wrapped.

[out] rfc3394_wrapped_key Wrapped key.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal user Key Generation
Information.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,109 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128_RFC3394KeyUnwrap()

fsp_err_t R_SCE_AES128_RFC3394KeyUnwrap (sce_aes_wrapped_key_t * master_key, uint32_t
target_key_type, uint32_t * rfc3394_wrapped_key, sce_aes_wrapped_key_t * target_key)

This API unwraps 128-bit AES key within the user routine.

Parameters
[in] master_key AES-128 key used for

unwrapping.

[in] target_key_type Selects key to be
unwrapped.

[in] rfc3394_wrapped_key Wrapped key.

[out] target_key Key to be unwrapped.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal user Key Generation
Information.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,110 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256_RFC3394KeyUnwrap()

fsp_err_t R_SCE_AES256_RFC3394KeyUnwrap (sce_aes_wrapped_key_t * master_key, uint32_t
target_key_type, uint32_t * rfc3394_wrapped_key, sce_aes_wrapped_key_t * target_key)

This API unwraps 256-bit AES key within the user routine.

Parameters
[in] master_key AES-256 key used for

unwrapping.

[in] target_key_type Selects key to be
unwrapped.

[in] rfc3394_wrapped_key Wrapped key.

[out] target_key Key to be unwrapped.

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal user Key Generation
Information.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,111 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_SHA256HMAC_EncryptedKeyWrap()

fsp_err_t R_SCE_SHA256HMAC_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_hmac_sha_wrapped_key_t *
wrapped_key)

This API wraps HMAC-SHA256 key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key HMAC-SHA256 wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,112 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA1024_WrappedKeyPairGenerate()

fsp_err_t R_SCE_RSA1024_WrappedKeyPairGenerate (sce_rsa1024_wrapped_pair_key_t *
wrapped_pair_key)

This API outputs a wrapped key pair for a 1024-bit RSA public key and private key pair. These keys
are generated from a random value produced internally by the SCE. Consequently, there is no need
to input a user key. Dead copying of data can be prevented by encrypting the data using the
wrapped key output by this API. A public wrapped key is generated by
wrapped_pair_key->pub_key, and a private wrapped key is generated by
wrapped_pair_key->priv_key. As the public key exponent, only 0x00010001 is generated.

Parameters
[in,out] wrapped_pair_key User key index for RSA

1024-bit public key and
private key pair

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred. Key generation
failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,113 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA2048_WrappedKeyPairGenerate()

fsp_err_t R_SCE_RSA2048_WrappedKeyPairGenerate (sce_rsa2048_wrapped_pair_key_t *
wrapped_pair_key)

This API outputs a wrapped key pair for a 2048-bit RSA public key and private key pair. These keys
are generated from a random value produced internally by the SCE. Consequently, there is no need
to input a user key. Dead copying of data can be prevented by encrypting the data using the
wrapped key output by this API. A public wrapped key is generated by
wrapped_pair_key->pub_key, and a private wrapped key is generated by
wrapped_pair_key->priv_key. As the public key exponent, only 0x00010001 is generated.

Parameters
[in,out] wrapped_pair_key User key index for RSA

2048-bit public key and
private key pair

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred. Key generation
failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,114 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA1024_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA1024_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa1024_public_wrapped_key_t *
wrapped_key)

This API wraps 1024-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,115 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA1024_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_RSA1024_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa1024_private_wrapped_key_t *
wrapped_key)

This API wraps 1024-bit RSA private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA private
wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,116 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA2048_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa2048_public_wrapped_key_t *
wrapped_key)

This API wraps 2048-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,117 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA2048_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa2048_private_wrapped_key_t *
wrapped_key)

This API wraps 2048-bit RSA private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA private
wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,118 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA3072_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA3072_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa3072_public_wrapped_key_t *
wrapped_key)

This API wraps 3072-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 3072-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,119 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSA4096_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA4096_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa4096_public_wrapped_key_t *
wrapped_key)

This API wraps 4096-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,120 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp192r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp192r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp192r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->pub_key, and the private key index is generated in
wrapped_pair_key->priv_key.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp192r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,121 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp224r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp224r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp224r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->pub_key, and the private key index is generated in
wrapped_pair_key->priv_key.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp224r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,122 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp256r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp256r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp256r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->pub_key, and the private key index is generated in
wrapped_pair_key->priv_key.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp256r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,123 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp384r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp384r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp384r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->pub_key, and the private key index is generated in
wrapped_pair_key->priv_key.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp384r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,124 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp192r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,125 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp224r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,126 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp256r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,127 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp384r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,128 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp192r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,129 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp224r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,130 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp256r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,131 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp384r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,132 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_RootCertificateRSA2048PublicKeyInstall()

fsp_err_t R_SCE_TLS_RootCertificateRSA2048PublicKeyInstall (uint8_t *
encrypted_provisioning_key, uint8_t * initial_vector, uint8_t * encrypted_key,
sce_tls_ca_certification_public_wrapped_key_t * wrapped_key)

Generate TLS RSA Public key index data

Parameters
[in] encrypted_provisioning_key the provisioning key includes

encrypted CBC/CBC-MAC key
for user key

[in] initial_vector the initial_vector for user key
CBC encrypt

[in] encrypted_key the user key encrypted with
AES128-ECB mode

[out] wrapped_key the user Key Generation
Information (141 words) of
RSA2048 bit

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,133 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate()

fsp_err_t R_SCE_TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate (
sce_tls_p256_ecc_wrapped_key_t * tls_p256_ecc_wrapped_key, uint8_t *
ephemeral_ecdh_public_key)

Generate TLS ECC key pair

Parameters
[in] tls_p256_ecc_wrapped_key P256 ECC key index for TLS

[in] ephemeral_ecdh_public_key ephemeral ECDH public key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,134 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_EncryptInit()

fsp_err_t R_SCE_AES128ECB_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_EncryptUpdate() function and
R_SCE_AES128ECB_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,135 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_EncryptUpdate()

fsp_err_t R_SCE_AES128ECB_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES128ECB_EncryptUpdate() function encrypts the second argument, plain, utilizing the
key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES128ECB_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,136 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_EncryptFinal()

fsp_err_t R_SCE_AES128ECB_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128ECB_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,137 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_DecryptInit()

fsp_err_t R_SCE_AES128ECB_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_DecryptUpdate() function and
R_SCE_AES128ECB_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,138 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_DecryptUpdate()

fsp_err_t R_SCE_AES128ECB_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES128ECB_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES128ECB_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,139 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128ECB_DecryptFinal()

fsp_err_t R_SCE_AES128ECB_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128ECB_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,140 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_EncryptInit()

fsp_err_t R_SCE_AES256ECB_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES256ECB_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256ECB_EncryptUpdate() function and
R_SCE_AES256ECB_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,141 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_EncryptUpdate()

fsp_err_t R_SCE_AES256ECB_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES256ECB_EncryptUpdate() function encrypts the second argument, plain, utilizing the
key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES256ECB_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,142 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_EncryptFinal()

fsp_err_t R_SCE_AES256ECB_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256ECB_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,143 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_DecryptInit()

fsp_err_t R_SCE_AES256ECB_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_DecryptUpdate() function and
R_SCE_AES128ECB_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,144 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_DecryptUpdate()

fsp_err_t R_SCE_AES256ECB_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES256ECB_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES256ECB_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,145 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256ECB_DecryptFinal()

fsp_err_t R_SCE_AES256ECB_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256ECB_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,146 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_EncryptInit()

fsp_err_t R_SCE_AES128CBC_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES128CBC_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128CBC_EncryptUpdate() function and
R_SCE_AES128CBC_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,147 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_EncryptUpdate()

fsp_err_t R_SCE_AES128CBC_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES128CBC_EncryptUpdate() function encrypts the second argument, plain, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES128CBC_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,148 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_EncryptFinal()

fsp_err_t R_SCE_AES128CBC_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128CBC_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,149 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_DecryptInit()

fsp_err_t R_SCE_AES128CBC_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES128CBC_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128CBC_DecryptUpdate() function and
R_SCE_AES128CBC_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,150 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_DecryptUpdate()

fsp_err_t R_SCE_AES128CBC_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES128CBC_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES128CBC_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,151 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CBC_DecryptFinal()

fsp_err_t R_SCE_AES128CBC_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128CBC_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,152 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_EncryptInit()

fsp_err_t R_SCE_AES256CBC_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES256CBC_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256CBC_EncryptUpdate() function and
R_SCE_AES256CBC_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,153 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_EncryptUpdate()

fsp_err_t R_SCE_AES256CBC_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES256CBC_EncryptUpdate() function encrypts the second argument, plain, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES256CBC_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,154 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_EncryptFinal()

fsp_err_t R_SCE_AES256CBC_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256CBC_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,155 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_DecryptInit()

fsp_err_t R_SCE_AES256CBC_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES256CBC_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256CBC_DecryptUpdate() function and
R_SCE_AES256CBC_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,156 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_DecryptUpdate()

fsp_err_t R_SCE_AES256CBC_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES256CBC_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES256CBC_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,157 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CBC_DecryptFinal()

fsp_err_t R_SCE_AES256CBC_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256CBC_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,158 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_EncryptInit()

fsp_err_t R_SCE_AES128GCM_EncryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES128GCM_EncryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128GCM_EncryptUpdate() function and
R_SCE_AES128GCM_EncryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,159 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_EncryptUpdate()

fsp_err_t R_SCE_AES128GCM_EncryptUpdate (sce_gcm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES128GCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES128GCM_EncryptInit(), along with the additional authentication data specified in the fifth
argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from plain reaches 16 bytes or more,
the encryption result is output to the ciphertext data area specified in the third argument, cipher.
The lengths of the plain and aad data to input are respectively specified in the fourth argument,
plain_data_length, and the sixth argument, aad_length. For these, specify not the total byte count
for the aad and plain input data, but rather the data length to input when the user calls this
function. If the input values plain and aad are not divisible by 16 bytes, they will be padded inside
the function. First process the data that is input from aad, and then process the data that is input
from plain. If aad data is input after starting to input plain data, an error will occur. If aad data and
plain data are input to this function at the same time, the aad data will be processed, and then the
function will transition to the plain data input state.

Specify areas for plain and cipher that do not overlap. For plain, cipher, initial_vector, and aad,
specify RAM addresses that are multiples of 4

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,160 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_EncryptFinal()

fsp_err_t R_SCE_AES128GCM_EncryptFinal (sce_gcm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_data_length, uint8_t * atag)

If there is 16-byte fractional data indicated by the total data length of the value of plain that was
input by R_SCE_AES128GCM_EncryptUpdate (), the R_SCE_AES128GCM_EncryptFinal() function will
output the result of encrypting that fractional data to the ciphertext data area specified in the
second argument, cipher. Here, the portion that does not reach 16 bytes will be padded with zeros.
The authentication tag is output to the fourth argument, atag. For cipher and atag, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,161 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_DecryptInit()

fsp_err_t R_SCE_AES128GCM_DecryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES128GCM_DecryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128GCM_DecryptUpdate() function and
R_SCE_AES128GCM_DecryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,162 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_DecryptUpdate()

fsp_err_t R_SCE_AES128GCM_DecryptUpdate (sce_gcm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES128GCM_DecryptUpdate() function decrypts the ciphertext specified in the second
argument, cipher, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES128GCM_DecryptInit(), along with the additional authentication data specified in the
fifth argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from cipher reaches 16 bytes or
more, the decryption result is output to the plaintext data area specified in the third argument,
plain. The lengths of the cipher and aad data to input are respectively specified in the fourth
argument, cipher_data_length, and the sixth argument, aad_length. For these, specify not the total
byte count for the aad and cipher input data, but rather the data length to input when the user
calls this function. If the input values cipher and aad are not divisible by 16 bytes, they will be
padded inside the function. First process the data that is input from aad, and then process the data
that is input from cipher. If aad data is input after starting to input cipher data, an error will occur.
If aad data and cipher data are input to this function at the same time, the aad data will be
processed, and then the function will transition to the cipher data input state. Specify areas for
plain and cipher that do not overlap. For plain, cipher, stage, initial_vector, and aad, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,163 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128GCM_DecryptFinal()

fsp_err_t R_SCE_AES128GCM_DecryptFinal (sce_gcm_handle_t * handle, uint8_t * plain, uint32_t
* plain_data_length, uint8_t * atag, uint32_t atag_length)

The R_SCE_AES128GCM_DecryptFinal() function decrypts, in GCM mode, the fractional ciphertext
specified by R_SCE_AES128GCM_DecryptUpdate() that does not reach 16 bytes, and ends GCM
decryption. The encryption data and authentication tag are respectively output to the plaintext
data area specified in the second argument, plain, and the authentication tag area specified in the
fourth argument, atag. The decoded data length is output to the third argument, plain_data_length.
If authentication fails, the return value will be TSIP_ERR_AUTHENTICATION. For the fourth
argument, atag, input 16 bytes or less. If it is less than 16 bytes, it will be padded with zeros inside
the function. For plain and atag, specify RAM addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,164 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_EncryptInit()

fsp_err_t R_SCE_AES256GCM_EncryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES256GCM_EncryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256GCM_EncryptUpdate() function and
R_SCE_AES256GCM_EncryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,165 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_EncryptUpdate()

fsp_err_t R_SCE_AES256GCM_EncryptUpdate (sce_gcm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES256GCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES256GCM_EncryptInit(), along with the additional authentication data specified in the fifth
argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from plain reaches 16 bytes or more,
the encryption result is output to the ciphertext data area specified in the third argument, cipher.
The lengths of the plain and aad data to input are respectively specified in the fourth argument,
plain_data_length, and the sixth argument, aad_length. For these, specify not the total byte count
for the aad and plain input data, but rather the data length to input when the user calls this
function. If the input values plain and aad are not divisible by 16 bytes, they will be padded inside
the function. First process the data that is input from aad, and then process the data that is input
from plain. If aad data is input after starting to input plain data, an error will occur. If aad data and
plain data are input to this function at the same time, the aad data will be processed, and then the
function will transition to the plain data input state.

Specify areas for plain and cipher that do not overlap. For plain, cipher, initial_vector, and aad,
specify RAM addresses that are multiples of 4

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,166 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_EncryptFinal()

fsp_err_t R_SCE_AES256GCM_EncryptFinal (sce_gcm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_data_length, uint8_t * atag)

If there is 16-byte fractional data indicated by the total data length of the value of plain that was
input by R_SCE_AES256GCM_EncryptUpdate (), the R_SCE_AES256GCM_EncryptFinal() function will
output the result of encrypting that fractional data to the ciphertext data area specified in the
second argument, cipher. Here, the portion that does not reach 16 bytes will be padded with zeros.
The authentication tag is output to the fourth argument, atag. For cipher and atag, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,167 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_DecryptInit()

fsp_err_t R_SCE_AES256GCM_DecryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES256GCM_DecryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256GCM_DecryptUpdate() function and
R_SCE_AES256GCM_DecryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,168 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_DecryptUpdate()

fsp_err_t R_SCE_AES256GCM_DecryptUpdate (sce_gcm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES256GCM_DecryptUpdate() function decrypts the ciphertext specified in the second
argument, cipher, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES256GCM_DecryptInit(), along with the additional authentication data specified in the
fifth argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from cipher reaches 16 bytes or
more, the decryption result is output to the plaintext data area specified in the third argument,
plain. The lengths of the cipher and aad data to input are respectively specified in the fourth
argument, cipher_data_length, and the sixth argument, aad_length. For these, specify not the total
byte count for the aad and cipher input data, but rather the data length to input when the user
calls this function. If the input values cipher and aad are not divisible by 16 bytes, they will be
padded inside the function. First process the data that is input from aad, and then process the data
that is input from cipher. If aad data is input after starting to input cipher data, an error will occur.
If aad data and cipher data are input to this function at the same time, the aad data will be
processed, and then the function will transition to the cipher data input state. Specify areas for
plain and cipher that do not overlap. For plain, cipher, stage, initial_vector, and aad, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,169 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256GCM_DecryptFinal()

fsp_err_t R_SCE_AES256GCM_DecryptFinal (sce_gcm_handle_t * handle, uint8_t * plain, uint32_t
* plain_data_length, uint8_t * atag, uint32_t atag_length)

The R_SCE_AES256GCM_DecryptFinal() function decrypts, in GCM mode, the fractional ciphertext
specified by R_SCE_AES256GCM_DecryptUpdate() that does not reach 16 bytes, and ends GCM
decryption. The encryption data and authentication tag are respectively output to the plaintext
data area specified in the second argument, plain, and the authentication tag area specified in the
fourth argument, atag. The decoded data length is output to the third argument, plain_data_length.
If authentication fails, the return value will be TSIP_ERR_AUTHENTICATION. For the fourth
argument, atag, input 16 bytes or less. If it is less than 16 bytes, it will be padded with zeros inside
the function. For plain and atag, specify RAM addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,170 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_EncryptInit()

fsp_err_t R_SCE_AES128CCM_EncryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES128CCM_EncryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES128CCM_EncryptUpdate() and R_SCE_AES128CCM_EncryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,171 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_EncryptUpdate()

fsp_err_t R_SCE_AES128CCM_EncryptUpdate (sce_ccm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_length)

The R_SCE_AES128CCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in CCM mode using the values specified by wrapped_key, nonce, and adata in
R_SCE_AES128CCM_EncryptInit(). This function buffers internally the data input by the user until
the input value of plain exceeds 16 bytes. Once the amount of plain input data is 16 bytes or
greater, the encrypted result is output to cipher, which is specified in the third argument. Use
payload_length in R_SCE_AES128CCM_EncryptInit() to specify the total data length of plain that will
be input. Use plain_length in this function to specify the data length to be input when the user calls
this function. If the input value of plain is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to plain and cipher do not overlap. Also, specify RAM addresses
that are multiples of 4 for plain and cipher.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,172 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_EncryptFinal()

fsp_err_t R_SCE_AES128CCM_EncryptFinal (sce_ccm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_length, uint8_t * mac, uint32_t mac_length)

If the data length of plain input in R_SCE_AES128CCM_EncryptUpdate() results in leftover data after
16 bytes, the R_SCE_AES128CCM_EncryptFinal() function outputs the leftover encrypted data to
cipher, which is specified in the second argument. The MAC value is output to the fourth argument,
mac. Set the fifth argument, mac_length to the same value as that specified for the argument
mac_length in Aes128CcmEncryptInit(). Also, specify RAM addresses that are multiples of 4 for
cipher and mac.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,173 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_DecryptInit()

fsp_err_t R_SCE_AES128CCM_DecryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES128CCM_DecryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES128CCM_DecryptUpdate() and R_SCE_AES128CCM_DecryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,174 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_DecryptUpdate()

fsp_err_t R_SCE_AES128CCM_DecryptUpdate (sce_ccm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_length)

The R_SCE_AES128CCM_DecryptUpdate() function decrypts the ciphertext specified by the second
argument, cipher, in CCM mode using the values specified by wrapped_key, nonce, and adata in in
R_SCE_AES128CCM_DecryptInit(). This function buffers internally the data input by the user until
the input value of cipher exceeds 16 bytes. Once the amount of cipher input data is 16 bytes or
greater, the decrypted result is output to plain, which is specified in the third argument. Use
payload_length in R_SCE_AES128CCM_DecryptInit() to specify the total data length of cipher that
will be input. Use cipher_length in this function to specify the data length to be input when the user
calls this function. If the input value of cipher is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to cipher and plain do not overlap. Also, specify RAM addresses
that are multiples of 4 for cipher and plain.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,175 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CCM_DecryptFinal()

fsp_err_t R_SCE_AES128CCM_DecryptFinal (sce_ccm_handle_t * handle, uint8_t * plain, uint32_t *
plain_length, uint8_t * mac, uint32_t mac_length)

If the data length of cipher input in R_SCE_AES128GCM_DecryptUpdate() results in leftover data
after 16 bytes, the R_SCE_AES128GCM_DecryptFinal() function outputs the leftover decrypted data
to cipher, which is specified in the second argument. In addition, the function verifies the fourth
argument, mac. Set the fifth argument, mac_length, to the same value as that specified for the
argument mac_length in Aes128CcmDecryptInit().

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL Internal error, or authentication failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,176 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_EncryptInit()

fsp_err_t R_SCE_AES256CCM_EncryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES256CCM_EncryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES256CCM_EncryptUpdate() and R_SCE_AES256CCM_EncryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,177 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_EncryptUpdate()

fsp_err_t R_SCE_AES256CCM_EncryptUpdate (sce_ccm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_length)

The R_SCE_AES256CCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in CCM mode using the values specified by wrapped_key, nonce, and adata in
R_SCE_AES256CCM_EncryptInit(). This function buffers internally the data input by the user until
the input value of plain exceeds 16 bytes. Once the amount of plain input data is 16 bytes or
greater, the encrypted result is output to cipher, which is specified in the third argument. Use
payload_length in R_SCE_AES256CCM_EncryptInit() to specify the total data length of plain that will
be input. Use plain_length in this function to specify the data length to be input when the user calls
this function. If the input value of plain is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to plain and cipher do not overlap. Also, specify RAM addresses
that are multiples of 4 for plain and cipher.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,178 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_EncryptFinal()

fsp_err_t R_SCE_AES256CCM_EncryptFinal (sce_ccm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_length, uint8_t * mac, uint32_t mac_length)

If the data length of plain input in R_SCE_AES256CCM_EncryptUpdate() results in leftover data after
16 bytes, the R_SCE_AES256CCM_EncryptFinal() function outputs the leftover encrypted data to
cipher, which is specified in the second argument. The MAC value is output to the fourth argument,
mac. Set the fifth argument, mac_length to the same value as that specified for the argument
mac_length in Aes256CcmEncryptInit(). Also, specify RAM addresses that are multiples of 4 for
cipher and mac.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,179 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_DecryptInit()

fsp_err_t R_SCE_AES256CCM_DecryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES256CCM_DecryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES256CCM_DecryptUpdate() and R_SCE_AES256CCM_DecryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,180 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_DecryptUpdate()

fsp_err_t R_SCE_AES256CCM_DecryptUpdate (sce_ccm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_length)

The R_SCE_AES256CCM_DecryptUpdate() function decrypts the ciphertext specified by the second
argument, cipher, in CCM mode using the values specified by wrapped_key, nonce, and adata in in
R_SCE_AES256CCM_DecryptInit(). This function buffers internally the data input by the user until
the input value of cipher exceeds 16 bytes. Once the amount of cipher input data is 16 bytes or
greater, the decrypted result is output to plain, which is specified in the third argument. Use
payload_length in R_SCE_AES256CCM_DecryptInit() to specify the total data length of cipher that
will be input. Use cipher_length in this function to specify the data length to be input when the user
calls this function. If the input value of cipher is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to cipher and plain do not overlap. Also, specify RAM addresses
that are multiples of 4 for cipher and plain.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,181 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CCM_DecryptFinal()

fsp_err_t R_SCE_AES256CCM_DecryptFinal (sce_ccm_handle_t * handle, uint8_t * plain, uint32_t *
plain_length, uint8_t * mac, uint32_t mac_length)

If the data length of cipher input in R_SCE_AES256GCM_DecryptUpdate() results in leftover data
after 16 bytes, the R_SCE_AES256GCM_DecryptFinal() function outputs the leftover decrypted data
to cipher, which is specified in the second argument. In addition, the function verifies the fourth
argument, mac. Set the fifth argument, mac_length, to the same value as that specified for the
argument mac_length in Aes256CcmDecryptInit().

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL Internal error, or authentication failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,182 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_GenerateInit()

fsp_err_t R_SCE_AES128CMAC_GenerateInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t
* wrapped_key)

The R_SCE_AES128CMAC_GenerateInit() function performs preparations for the execution of an
CMAC calculation, and writes the result to the first argument, handle. The value of handle is used
as an argument in the subsequent R_SCE_AES128CMAC_GenerateUpdate() function and
R_SCE_AES128CMAC_GenerateFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,183 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_GenerateUpdate()

fsp_err_t R_SCE_AES128CMAC_GenerateUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES128CMAC_GenerateUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES128CMAC_GenerateInit(). Inside this function, the data that is input by the user is
buffered until the input value of message exceeds 16 bytes. The length of the message data to
input is specified in the third argument, message_len. For these, input not the total byte count for
message input data, but rather the message data length to input when the user calls this function.
If the input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,184 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_GenerateFinal()

fsp_err_t R_SCE_AES128CMAC_GenerateFinal (sce_cmac_handle_t * handle, uint8_t * mac)

The R_SCE_AES128CMAC_GenerateFinal() function outputs the MAC value to the MAC data area
specified in the second argument, mac, and ends CMAC mode.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Not used.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,185 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_VerifyInit()

fsp_err_t R_SCE_AES128CMAC_VerifyInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128CMAC_VerifyInit() function performs preparations for the execution of a CMAC
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argumentin the subsequent R_SCE_AES128CMAC_VerifyUpdate() function and
R_SCE_AES128CMAC_VerifyFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,186 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_VerifyUpdate()

fsp_err_t R_SCE_AES128CMAC_VerifyUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES128CMAC_VerifyUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES128CMAC_VerifyInit(). Inside this function, the data that is input by the user is buffered
until the input value of message exceeds 16 bytes. The length of the message data to input is
specified in the third argument, message_len. For these, input not the total byte count for message
input data, but rather the message data length to input when the user calls this function. If the
input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,187 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES128CMAC_VerifyFinal()

fsp_err_t R_SCE_AES128CMAC_VerifyFinal (sce_cmac_handle_t * handle, uint8_t * mac, uint32_t
mac_length)

The R_SCE_AES128CMAC_VerifyFinal() function inputs the MAC value in the MAC data area
specified in the second argument, mac, and verifies the MAC value. If authentication fails, the
return value will be TSIP_ERR_AUTHENTICATION. If the MAC value is less than 16 bytes, it will be
padded with zeros inside the function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,188 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_GenerateInit()

fsp_err_t R_SCE_AES256CMAC_GenerateInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t
* wrapped_key)

The R_SCE_AES256CMAC_GenerateInit() function performs preparations for the execution of an
CMAC calculation, and writes the result to the first argument, handle. The value of handle is used
as an argument in the subsequent R_SCE_AES256CMAC_GenerateUpdate() function and
R_SCE_AES256CMAC_GenerateFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,189 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_GenerateUpdate()

fsp_err_t R_SCE_AES256CMAC_GenerateUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES256CMAC_GenerateUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES256CMAC_GenerateInit(). Inside this function, the data that is input by the user is
buffered until the input value of message exceeds 16 bytes. The length of the message data to
input is specified in the third argument, message_len. For these, input not the total byte count for
message input data, but rather the message data length to input when the user calls this function.
If the input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,190 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_GenerateFinal()

fsp_err_t R_SCE_AES256CMAC_GenerateFinal (sce_cmac_handle_t * handle, uint8_t * mac)

The R_SCE_AES256CMAC_GenerateFinal() function outputs the MAC value to the MAC data area
specified in the second argument, mac, and ends CMAC mode.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Not used.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,191 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_VerifyInit()

fsp_err_t R_SCE_AES256CMAC_VerifyInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES256CMAC_VerifyInit() function performs preparations for the execution of a CMAC
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argumentin the subsequent R_SCE_AES256CMAC_VerifyUpdate() function and
R_SCE_AES256CMAC_VerifyFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,192 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_VerifyUpdate()

fsp_err_t R_SCE_AES256CMAC_VerifyUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES256CMAC_VerifyUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES256CMAC_VerifyInit(). Inside this function, the data that is input by the user is buffered
until the input value of message exceeds 16 bytes. The length of the message data to input is
specified in the third argument, message_len. For these, input not the total byte count for message
input data, but rather the message data length to input when the user calls this function. If the
input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,193 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_AES256CMAC_VerifyFinal()

fsp_err_t R_SCE_AES256CMAC_VerifyFinal (sce_cmac_handle_t * handle, uint8_t * mac, uint32_t
mac_length)

The R_SCE_AES256CMAC_VerifyFinal() function inputs the MAC value in the MAC data area
specified in the second argument, mac, and verifies the MAC value. If authentication fails, the
return value will be TSIP_ERR_AUTHENTICATION. If the MAC value is less than 16 bytes, it will be
padded with zeros inside the function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS1024_SignatureGenerate()

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureGenerate (sce_rsa_byte_data_t * message_hash,
sce_rsa_byte_data_t * signature, sce_rsa1024_private_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS1024_SignatureGenerate() function generates, in accordance with
RSASSA-PKCS1-V1_5, a signature from the message text or hash value that is input in the first
argument, message_hash, using the private wrapped key input to the third argument,
wrapped_key, and writes the signature text to the second argument, signature. When a message is
specified in the first argument, message_hash->data_type, a hash value is calculated for the
message as specified by the fourth argument, hash_type. When specifying a hash value in the first
argument, message_hash->data_type, a hash value calculated with a hash algorithm as specified
by the fourth argument, hash_type, must be input to message_hash->pdata.

Parameters
[in] message_hash Message or hash value to

which to attach signature

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,194 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : data length

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,195 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSASSA_PKCS1024_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa1024_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS1024_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,196 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,197 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS1024_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS1024_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa1024_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS1024_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,198 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS1024_Decrypt()

fsp_err_t R_SCE_RSAES_PKCS1024_Decrypt (sce_rsa_byte_data_t * cipher, sce_rsa_byte_data_t *
plain, sce_rsa1024_private_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS1024_Decrypt() function RSA-decrypts the ciphertext input to the first
argument, cipher, according to RSAES-PKCS1-V1_5. It writes the decryption result to the second
argument, plain.

Parameters
[in] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in,out] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Inputs plaintext
buffer size. The
following size is
required. Plaintext
buffer size >= public
key n size -11.
Outputs valid data
length after
decryption (public
key n size).

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,199 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS2048_SignatureGenerate()

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureGenerate (sce_rsa_byte_data_t * message_hash,
sce_rsa_byte_data_t * signature, sce_rsa2048_private_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS2048_SignatureGenerate() function generates, in accordance with
RSASSA-PKCS1-V1_5, a signature from the message text or hash value that is input in the first
argument, message_hash, using the private wrapped key input to the third argument,
wrapped_key, and writes the signature text to the second argument, signature. When a message is
specified in the first argument, message_hash->data_type, a hash value is calculated for the
message as specified by the fourth argument, hash_type. When specifying a hash value in the first
argument, message_hash->data_type, a hash value calculated with a hash algorithm as specified
by the fourth argument, hash_type, must be input to message_hash->pdata.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : data length

[in] wrapped_key Inputs the 2048-bit RSA

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,200 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS2048_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa2048_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS2048_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,201 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,202 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSASSA_PKCS3072_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS3072_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa3072_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS3072_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

[in] hash_type Only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,203 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS4096_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS4096_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa4096_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS4096_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,204 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,205 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS2048_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS2048_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa2048_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS2048_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,206 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS2048_Decrypt()

fsp_err_t R_SCE_RSAES_PKCS2048_Decrypt (sce_rsa_byte_data_t * cipher, sce_rsa_byte_data_t *
plain, sce_rsa2048_private_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS2048_Decrypt() function RSA-decrypts the ciphertext input to the first
argument, cipher, according to RSAES-PKCS1-V1_5. It writes the decryption result to the second
argument, plain.

Parameters
[in] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in,out] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Inputs plaintext
buffer size. The
following size is
required. Plaintext
buffer size >= public
key n size -11.
Outputs valid data
length after
decryption (public
key n size).

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,207 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,208 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS3072_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS3072_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa3072_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS3072_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,209 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_RSAES_PKCS4096_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS4096_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa4096_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS4096_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,210 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDSA_secp192r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp192r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 24 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp192r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (64 bits)
|| signature r (192
bits) || 0 padding (64
bits) || signature s
(192 bits)".
signature->data_leng
th : Data length (byte
units)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,211 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

[in] wrapped_key Input wrapped key of
secp192r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp224r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp224r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 28 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp224r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,212 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (32 bits)
|| signature r (224
bits) || 0 padding (32
bits) || signature s
(224 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp224r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,213 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDSA_secp256r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp256r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 32 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp256r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (256
bits) || signature s
(256 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp256r1 private key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,214 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp384r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-384 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp384r1 using
the private wrapped key input as the third argument, wrapped_key.

To use message input, prepare a user-defined function for SHA384.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 48 bytes of the SHA-384 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp384r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,215 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (384
bits) || signature s
(384 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp384r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,216 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDSA_secp192r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp192r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 24 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp192r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (64 bits)
|| signature r (192
bits) || 0 padding (64
bits) || signature s
(192 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,217 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

[in] wrapped_key Input wrapped key of
secp192r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp224r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp224r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 28 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp224r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (32 bits)
|| signature r (224
bits) || 0 padding (32
bits) || signature s
(224 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,218 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of
secp224r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,219 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDSA_secp256r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp256r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 32 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp256r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (256
bits) || signature s
(256 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,220 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

secp256r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp384r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp384r1
using the public wrapped key input as the third argument, wrapped_key.

To use message input, prepare a user-defined function for SHA384.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 48 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp384r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (384
bits) || signature s
(384 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,221 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of
secp384r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,222 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_Init()

fsp_err_t R_SCE_ECDH_secp256r1_Init (sce_ecdh_handle_t * handle, uint32_t key_type, uint32_t
use_key_id)

The R_SCE_ECDH_secp256r1_Init() function prepares to perform ECDH key exchange computation
and writes the result to the first argument, handle. The succeeding functions
R_SCE_ECDH_secp256r1_PublicKeySign(), R_SCE_ECDH_secp256r1_PublicKeyVerify(),
R_SCE_ECDH_secp256r1_SharedSecretCalculate(), and R_SCE_ECDH_secp256r1_KeyDerivation()
use handle as an argument.

Use the second argument, key_type, to select the type of ECDH key exchange. When ECDHE is
selected, the R_SCE_ECDH_secp256r1_PublicKeySign() function uses the SCE's random number
generation functionality to generate an secp256r1 key pair. When ECDH is selected, keys installed
beforehand are used for key exchange.

Input 1 as the third argument, use_key_id, to use key_id when key exchange is performed. key_id is
for applications conforming to the DLMS/COSEM standard for smart meters.

Parameters
[in,out] handle ECDH handler (work area)

[in] key_type Key exchange type (0:
ECDHE, 1: ECDH,
2:ECDH(AES-GCM-128 with
IV))

[in] use_key_id 0: key_id not used, 1: key_id
used

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,223 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_PublicKeySign()

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeySign (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t *
ecc_private_wrapped_key, uint8_t * public_key, sce_ecdsa_byte_data_t * signature,
sce_ecc_private_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_PublicKeySign() function calculates a signature for a public key user
wrapped key used for ECDH key exchange.

If ECDHE is specified by the key_type argument of the R_SCE_ECDH_secp256r1_Init() function, the
SCE's random number generation functionality is used to generate an secp256r1 key pair. The
public key is output to public_key and the private key is output to wrapped_key.

If ECDH is specified by the key_type argument of the R_SCE_ECDH_secp256r1_Init() function, the
public key input as ecc_public_wrapped_key is output to public_key and nothing is output to
wrapped_key.

The succeeding function R_SCE_ECDH_secp256r1_SharedSecretCalculate() uses the first argument,
handle, as an argument. R_SCE_ECDH_secp256r1_SharedSecretCalculate() function uses
wrapped_key as input to calculate Z.

Parameters
[in,out] handle ECDH handler (work area)

When using key_id, input
handle->key_id after
running
R_SCE_ECDH_secp256r1_Init
().

[in] ecc_public_wrapped_key For ECDHE, input a null
pointer. For ECDH, input the
wrapped key of a secp256r1
public key.

[in] ecc_private_wrapped_key secp256r1 private key for
signature generation

[in,out] public_key User secp256r1 public key
(512-bit) for key exchange.
When using key_id, key_id
(8-bit) || public key (512-bit)
|| 0 padding (24-bit)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text. The
signature format is
"signature r (256
bits) || signature s
(256 bits)"
signature->data_leng

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,224 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

th : Data length (in
byte units)

[in,out] wrapped_key For ECDHE, a private
wrapped key generated from
a random number. Not
output for ECDH.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,225 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_PublicKeyVerify()

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyVerify (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, uint8_t * public_key_data,
sce_ecdsa_byte_data_t * signature, sce_ecc_public_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_PublicKeyVerify() function verifies the signature of the secp256r1
public key of the other ECDH key exchange party. If the signature is correct, it outputs the public
wrapped key to the fifth argument. The first argument, handle, is used as an argument in the
subsequent function R_SCE_ECDH_secp256r1_SharedSecretCalculate().
R_SCE_ECDH_secp256r1_SharedSecretCalculate() uses wrapped_key as input to calculate Z.

Parameters
[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key area for
signature verification

[in] public_key_data secp256r1 public key
(512-bit). When key_id is
used: key_id (8-bit) || public
key (512-bit)

[in] signature ECDSA secp256r1 signature
of ecc_public_wrapped_key

[in,out] wrapped_key wrapped key of
ecc_public_wrapped_key

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,226 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_PublicKeyReadWithoutSignature()

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyReadWithoutSignature (sce_ecdh_handle_t * handle,
uint8_t * public_key_data, sce_ecc_public_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_PublicKeyReadWithoutSignature() function reads the secp256r1
public key of the other ECDH key exchange party and outputs the public wrapped key to the third
argument. The first argument, handle, is used as an argument in the subsequent function
R_SCE_ECDH_secp256r1_SharedSecretCalculate().
R_SCE_ECDH_secp256r1_SharedSecretCalculate() uses wrapped_key as input to calculate Z. This
API does not verify signature of public_key_data, please protect this data by upper layer software.

Parameters
[in,out] handle ECDH handler (work area)

[in] public_key_data secp256r1 public key
(512-bit). When key_id is
used: key_id (8-bit) || public
key (512-bit)

[in,out] wrapped_key wrapped key of
public_key_data

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.
Please note that this is slightly contrary to the protected mode policy as it omits signature verification.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,227 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_SharedSecretCalculate()

fsp_err_t R_SCE_ECDH_secp256r1_SharedSecretCalculate (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t *
ecc_private_wrapped_key, sce_ecdh_wrapped_key_t * shared_secret_wrapped_key)

The R_SCE_ECDH_secp256r1_SharedSecretCalculate() function uses the ECDH key exchange
algorithm to output the wrapped key of the shared secret Z derived from the public key of the
other key exchange party and your own private key. Input as the second argument,
ecc_public_wrapped_key, the public wrapped key whose signature was verified by
R_SCE_ECDH_secp256r1_PublicKeyVerify(). When key_type of R_SCE_ECDH_secp256r1_Init() is 0,
input as the third argument, ecc_private_wrapped_key, the private wrapped key generated from a
random number by R_SCE_ECDH_secp256r1_PublicKeySign(), and when key_type is other than 0,
input the private wrapped key that forms a pair with the second argument of
R_SCE_ECDH_secp256r1_PublicKeySign(). The subsequent R_SCE_ECDH_secp256r1_KeyDerivation()
function uses shared_secret_wrapped_key as key material for outputting the wrapped key.

Parameters
[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key whose
signature was verified by
R_SCE_ECDH_secp256r1_Pub
licKeyVerify()

[in] ecc_private_wrapped_key Private wrapped key

[in,out] shared_secret_wrapped_key Wrapped key of shared
secret Z calculated by ECDH
key exchange

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,228 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

◆ R_SCE_ECDH_secp256r1_KeyDerivation()

fsp_err_t R_SCE_ECDH_secp256r1_KeyDerivation (sce_ecdh_handle_t * handle,
sce_ecdh_wrapped_key_t * shared_secret_wrapped_key, uint32_t key_type, uint32_t kdf_type,
uint8_t * other_info, uint32_t other_info_length, sce_hmac_sha_wrapped_key_t *
salt_wrapped_key, sce_aes_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_KeyDerivation() function uses the shared secret "Z
(shared_secret_index)" calculated by the R_SCE_ECDH_secp256r1_SharedSecretCalculate()
function as the key material to derive the wrapped key specified by the third argument, key_type.
The key derivation algorithm is one-step key derivation as defined in NIST SP800-56C. Either
SHA-256 or SHA-256 HMAC is specified by the fourth argument, kdf_type. When SHA-256 HMAC is
specified, the wrapped key output by the R_SCE_SHA256HMAC_EncryptedKeyWrap() function is
specified as the seventh argument, salt_wrapped_key. Enter a fixed value for deriving a key shared
with the key exchange partner in the fifth argument, other_info. A wrapped key corresponding to
key_type is output as the eighth argument, wrapped_key. The correspondences between the types
of derived wrapped_key and the functions with which they can be used as listed below.

AES-128: All AES-128 Init functions
AES-256: All AES-256 Init functions
SHA256-HMAC: R_SCE_SHA256HMAC_GenerateInit() function and
R_SCE_SHA256HMAC_VerifyInit() function

Parameters
[in,out] handle ECDH handler (work area)

[in] shared_secret_wrapped_key Z wrapped key calculated by
R_SCE_ECDH_secp256r1_Sha
redSecretCalculate

[in] key_type Derived key type (0:
AES-128, 1: AES-256,
2:SHA256-HMAC, 3: AES-
GCM-128 with IV)

[in] kdf_type Algorithm used for key
derivation calculation (0:
SHA-256, 1:SHA256-HMAC)

[in] other_info Additional data used for key
derivation calculation:
AlgorithmID || PartyUInfo ||
PartyVInfo

[in] other_info_length Data length of other_info (up
to 147 byte units)

[in] salt_wrapped_key Salt wrapped key (Input
NULL when kdf_type is 0.)

[in,out] wrapped_key Wrapped key corresponding
to key_type. When the value
of key_type is 2, an
SHA256-HMAC wrapped key
is output. wrapped_key can
be specified by casting the
start address of the area

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,229 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > SCE Protected Mode

reserved beforehand by the
sce_hmac_sha_wrapped_key
_t type with the
(sce_aes_wrapped_key_t*)
type.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

5.2.15.6 Secure Crypto Engine (r_sce_protected_cavp)
Modules » Security

Driver for the CAVP Certified Secure Crypto Engine (SCE) on RA MCUs.

Version
v1.0.0

The version that appears on the Components tab of the FSP Configuration editor is
v1.0.0+fsp.<fsp_version>. The <fsp_version> metadata reflects tooling support files only and does
not indicate any changes to the CAVP certified code. See Module Versioning for more information
about component versioning in FSP.

Functions
The user documentation for the functions in this module.

SCE Protected Mode

Overview
This module provides SCE CAVP Certified functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,230 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Crypto Engine (r_sce_protected_cavp)

HW Overview

Obtained device certification with RA6M4.

Crypto Peripheral version Devices

SCE9 (Protected mode) RA4M2, RA4M3, RA6M4, RA6M5

Features

The SCE module supports for the following features.

Cryptography
Symmetric Encryption/Decryption

AES
ECB 128/256bit
CBC 128/256bit
GCM 128/256bit
CCM 128/256bit

Asymmetric Encryption/Decryption
RSA

RSAES-PKCS1-V1_5 1024/2048bit
RSAES-PKCS1-V1_5 3072/4096bit (Encryption only)
RSASSA-PKCS1-V1_5 1024/2048bit
RSASSA-PKCS1-V1_5 3072/4096bit (Verification only)

ECC
ECDSA secp192r1/secp224r1/secp256r1/secp384r1
ECDH secp256r1

Hash Functions
SHA-2

SHA-256
Message Authentication Code

HMAC-SHA256bit
AES-CMAC 128/256bit

Key Support
AES 128/256bit
RSA 1024/2048bit
RSA 3072/4096bit (public key only)
ECC secp192r1/secp224r1/secp256r1/secp384r1
HMAC-SHA256bit

TRNG
TLS

SSL / TLS support function (TLS1.2 compliant)

Configuration
Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,231 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Crypto Engine (r_sce_protected_cavp)

Usage Notes
Getting Started: Creating a SCE Protected Mode Project

Start by creating a new project in e² studio or RASC. On the Stacks tab, add New > Security > SCE
Protected Mode(CAVP Certified). For information on how to install and update secure keys, refer to
the Application Note R11AN0496.

Limitations

Usage of R_SCE_ECDSA_secp384r1_SignatureGenerate/Verify

The SCE does not support SHA-384 in hardware, so the APIs listed below require the user to create a
SHA-384 function for signature generation and verification. To use the APIs listed below, enable
SCE_USER_SHA_384_ENABLED on RA Smart Configurator and prepare a function called
SCE_USER_SHA_384_FUNCTION. The interface of SCE_USER_SHA_384_FUNCTION, which is called by
the following APIs, is described below.

R_SCE_ECDSA_secp384r1_SignatureGenerate()
R_SCE_ECDSA_secp384r1_SignatureVerify()

SCE_USER_SHA_384_FUNCTION()

uint32_t SCE_USER_SHA_384_FUNCTION(uint8_t * message, uint8_t * digest, uint32_t

message_length)

 SHA-384 hash calculation is performed for an area extending the number of bytes specified by the
argument message_length from the address specified by the argument message. The calculation
result should be stored at the address specified by the argument digest.

Parameters
message [in] Start address of message

digest [in,out] address for storing hash calculation
result (48 bytes)

message_length [in] Effective byte count of message

Return values
0 Hash value stored successfully.

others Storing of hash value failed.

Examples
AES Example

This is an example of AES-256 encryption and decryption.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,232 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Crypto Engine (r_sce_protected_cavp)

#include <string.h>

#include "r_sce.h"

#define BLOCK 16

void r_sce_example_aes();

sce_instance_ctrl_t sce_ctrl;

sce_cfg_t sce_cfg =

{

 .lifecycle = SCE_SSD

};

static uint8_t plain[BLOCK * 2] =

{

 0x52, 0x65, 0x6e, 0x65, 0x73, 0x61, 0x73, 0x20, 0x45, 0x6c, 0x65, 0x63, 0x74,

0x72, 0x6f, 0x6e,

 0x69, 0x63, 0x73, 0x20, 0x43, 0x6f, 0x72, 0x70, 0x6f, 0x72, 0x61, 0x74, 0x69,

0x6f, 0x6e, 0x00

};

void r_sce_example_aes ()

{

 sce_aes_handle_t handle;

 sce_aes_wrapped_key_t wrapped_key;

 uint8_t cipher_calculated[32] = {0};

 uint8_t plain_calculated[32] = {0};

 uint32_t dummy;

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Generate a random key */

 R_SCE_AES256_WrappedKeyGenerate(&wrapped_key);

 /* Encrypt a plain text */

 R_SCE_AES256ECB_EncryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_EncryptUpdate(&handle, plain, cipher_calculated, BLOCK * 2);

 R_SCE_AES256ECB_EncryptFinal(&handle, cipher_calculated, &dummy);

 /* Decrypt a cipher text using same key as Encryption */

 R_SCE_AES256ECB_DecryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_DecryptUpdate(&handle, cipher_calculated, plain_calculated, BLOCK *

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,233 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Crypto Engine (r_sce_protected_cavp)

2);

 R_SCE_AES256ECB_DecryptFinal(&handle, plain_calculated, &dummy);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

 /* Compare plain and plain_calculated */

 if (memcmp(plain, plain_calculated, BLOCK * 2))

 {

 while (1)

 {

 /* plain and plain_calculated are different (incorrect) */

 }

 }

 else

 {

 while (1)

 {

 /* plain and plain_calculated are the same (correct) */

 }

 }

}

5.2.15.7 Secure Key Injection (r_rsip_key_injection)
Modules » Security

Functions

fsp_err_t R_RSIP_AES128_InitialKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_aes_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_AES192_InitialKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_aes_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_AES256_InitialKeyWrap (rsip_key_injection_type_t const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,234 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_aes_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA2048_InitialPublicKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa2048_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA2048_InitialPrivateKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa2048_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA3072_InitialPublicKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa3072_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA3072_InitialPrivateKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa3072_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA4096_InitialPublicKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa4096_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_RSA4096_InitialPrivateKeyWrap (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa4096_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_secp256r1_InitialPublicKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_secp256r1_InitialPrivateKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,235 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

fsp_err_t R_RSIP_ECC_secp384r1_InitialPublicKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_secp384r1_InitialPrivateKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_secp256k1_InitialPublicKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_secp256k1_InitialPrivateKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_brainpoolP256r1_InitialPublicKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_brainpoolP256r1_InitialPrivateKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_brainpoolP384r1_InitialPublicKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t R_RSIP_ECC_brainpoolP384r1_InitialPrivateKeyWrap
(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

Detailed Description

Driver for the Secure Key Injection on RA MCUs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,236 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

Overview
This module provides RSIP functions in PSA Crypto.

HW Overview

Crypto Peripheral version Devices

RSIP-E51A RA8M1

Features

The RSIP Key Injection Module has two types of APIs, InitialKeyWrap and EncryptedKeyWrap. The
available APIs differ depending on used RSIP. Please refer to the following for details.

Key Support
AES Key Injection
RSA Key Injection
ECC Key Injection

Configuration
Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Module activation

RSIP Key Umport for PSA Crypto Module is off by default. To use it, please On the Stacks tab, add
New > Security > MbedTLS or MbedTLS (Crypto Only), Add Requires RSIP Driver > New > (*1), Add
Key Injection for RSA Crypto (Optional) > New > Key Injectin for RSA Crypto for PSA Crypto Module
after adding MbedTLS. For information on how to injection and update secure keys, refer to the
Application Note R11AN0496.

Hardware Initialization

Please refer to Hardware Initialization in Mbed Crypto H/W Acceleration (rm_psa_crypto).

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,237 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_AES128_InitialKeyWrap()

fsp_err_t R_RSIP_AES128_InitialKeyWrap (rsip_key_injection_type_t const key_injection_type,
uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key, rsip_aes_wrapped_key_t *const p_wrapped_key)

This API generates 128-bit AES key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,238 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_AES192_InitialKeyWrap()

fsp_err_t R_RSIP_AES192_InitialKeyWrap (rsip_key_injection_type_t const key_injection_type,
uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key, rsip_aes_wrapped_key_t *const p_wrapped_key)

This API generates 192-bit AES key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 192-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,239 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_AES256_InitialKeyWrap()

fsp_err_t R_RSIP_AES256_InitialKeyWrap (rsip_key_injection_type_t const key_injection_type,
uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key, rsip_aes_wrapped_key_t *const p_wrapped_key)

This API generates 256-bit AES key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,240 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA2048_InitialPublicKeyWrap()

fsp_err_t R_RSIP_RSA2048_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa2048_public_wrapped_key_t
*const p_wrapped_key)

This API generates 2048-bit RSA public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 2048-bit RSA wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,241 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA2048_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_RSA2048_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa2048_private_wrapped_key_t
*const p_wrapped_key)

This API generates 2048-bit RSA private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 2048-bit RSA wrapped
private key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,242 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA3072_InitialPublicKeyWrap()

fsp_err_t R_RSIP_RSA3072_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa3072_public_wrapped_key_t
*const p_wrapped_key)

This API generates 3072-bit RSA public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 3072-bit RSA wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,243 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA3072_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_RSA3072_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa3072_private_wrapped_key_t
*const p_wrapped_key)

This API generates 3072-bit RSA private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 3072-bit RSA wrapped
private key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,244 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA4096_InitialPublicKeyWrap()

fsp_err_t R_RSIP_RSA4096_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa4096_public_wrapped_key_t
*const p_wrapped_key)

This API generates 4096-bit RSA public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 4096-bit RSA wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,245 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_RSA4096_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_RSA4096_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa4096_private_wrapped_key_t
*const p_wrapped_key)

This API generates 4096-bit RSA private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 4096-bit RSA wrapped
private key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,246 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp256r1_InitialPublicKeyWrap()

fsp_err_t R_RSIP_ECC_secp256r1_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_public_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit ECC public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,247 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp256r1_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_ECC_secp256r1_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_private_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit ECC private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped private
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,248 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp384r1_InitialPublicKeyWrap()

fsp_err_t R_RSIP_ECC_secp384r1_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_public_wrapped_key_t *const
p_wrapped_key)

This API generates 384-bit ECC public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 384-bit ECC wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,249 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp384r1_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_ECC_secp384r1_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_private_wrapped_key_t *const
p_wrapped_key)

This API generates 384-bit ECC private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 384-bit ECC wrapped private
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,250 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp256k1_InitialPublicKeyWrap()

fsp_err_t R_RSIP_ECC_secp256k1_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_public_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit ECC public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,251 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_secp256k1_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_ECC_secp256k1_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_private_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit ECC private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped private
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,252 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_brainpoolP256r1_InitialPublicKeyWrap()

fsp_err_t R_RSIP_ECC_brainpoolP256r1_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_public_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit brainpool ECC public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,253 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_brainpoolP256r1_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_ECC_brainpoolP256r1_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_private_wrapped_key_t *const
p_wrapped_key)

This API generates 256-bit brainpool ECC private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 256-bit ECC wrapped private
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,254 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_brainpoolP384r1_InitialPublicKeyWrap()

fsp_err_t R_RSIP_ECC_brainpoolP384r1_InitialPublicKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_public_wrapped_key_t *const
p_wrapped_key)

This API generates 384-bit brainpool ECC public key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 384-bit ECC wrapped public
key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,255 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_rsip_key_injection)

◆ R_RSIP_ECC_brainpoolP384r1_InitialPrivateKeyWrap()

fsp_err_t R_RSIP_ECC_brainpoolP384r1_InitialPrivateKeyWrap (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_ecc_private_wrapped_key_t *const
p_wrapped_key)

This API generates 384-bit brainpool ECC private key within the user routine.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it is
encrypted and MAC
appended

[out] p_wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_ASSERTION A required parameter is NULL.
FSP_ERR_CRYPTO_SCE_FAIL MAC anomaly detection.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Resource conflict.
FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.
FSP_ERR_INVALID_STATE Internal state is illegal.

Note
The pre-run state is RSIP Enabled State. After the function runs the state transitions to RSIP Enabled State.

5.2.15.8 Secure Key Injection (r_sce_key_injection)
Modules » Security

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,256 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

Functions

fsp_err_t R_SCE_AES128_InitialKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_AES192_InitialKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_AES256_InitialKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_KeyUpdateKeyWrap (const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_key_update_key_t *const key_update_key)

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_AES192_EncryptedKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_RSA2048_InitialPublicKeyWrap (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa2048_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_RSA3072_InitialPublicKeyWrap (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa3072_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_RSA4096_InitialPublicKeyWrap (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa4096_public_wrapped_key_t *const wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,257 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

fsp_err_t R_SCE_RSA2048_InitialPrivateKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_rsa2048_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_rsa2048_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_rsa2048_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_InitialPublicKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256k1_InitialPublicKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_InitialPublicKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_InitialPrivateKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256k1_InitialPrivateKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_InitialPrivateKeyWrap (const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,258 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256k1_EncryptedPublicKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp256k1_EncryptedPrivateKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP256r1_InitialPublicKeyWrap (const uint8_t
*const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP256r1_InitialPrivateKeyWrap (const uint8_t
*const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP384r1_InitialPublicKeyWrap (const uint8_t
*const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP384r1_InitialPrivateKeyWrap (const uint8_t
*const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,259 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

fsp_err_t R_SCE_ECC_brainpoolP256r1_EncryptedPublicKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP256r1_EncryptedPrivateKeyWrap (const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
const sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP384r1_EncryptedPublicKeyWrap (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t R_SCE_ECC_brainpoolP384r1_EncryptedPrivateKeyWrap (const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
const sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

Detailed Description

Driver for the Secure Key Injection on RA MCUs.

Overview
This module provides SCE functions in PSA Crypto.

HW Overview

Crypto Peripheral version Devices

SCE9 RA6M5, RA6M4, RA4M3, RA4M2

SCE7 RA6M3, RA6M2, RA6M1, RA6T1

SCE5 RA4W1, RA4M1

SCE5B RA6T2

Features

The SCE Key Injection Module has two types of APIs, InitialKeyWrap and EncryptedKeyWrap. The
available APIs differ depending on used SCE. Please refer to the following for details.

Key Support
AES 128/256bit

Crypto Peripheral
version

128 bit 192 bit 256 bit

SCE9 InitialKeyWrap
Only

InitialKeyWrap
Only

InitialKeyWrap
Only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,260 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

SCE7 Support Support Support

SCE5 Support No support Support

SCE5B InitialKeyWrap
Only

No support InitialKeyWrap
Only

RSA 2048/3072/4096bit
Crypto Peripheral

version
2048 bit 3072 bit (public) 4096 bit (public)

SCE9 InitialKeyWrap
Only

InitialKeyWrap
Only

InitialKeyWrap
Only

SCE7 Support No support No support

SCE5 No support No support No support

SCE5B No support No support No support

ECC secp256r1/secp256k1/secp384r1
Crypto

Peripheral
version

secp256r1 secp256k1 secp384r1 secp256r1
Brainpool

secp384r1
Brainpool

SCE9 InitialKeyWr
ap Only

InitialKeyWr
ap Only

InitialKeyWr
ap Only

InitialKeyWr
ap Only

InitialKeyWr
ap Only

SCE7 Support Support Support Support Support

SCE5 No support No support No support No support No support

SCE5B No support No support No support No support No support

Configuration
Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Module activation

SCE Key Injection for PSA Crypto Module is off by default. To use it, please On the Stacks tab, add
New > Security > MbedTLS or MbedTLS (Crypto Only), Add Requires SCE Driver > New > (*1), Add
Key Injection for RSA Crypto (Optional) > New > Key Injection for RSA Crypto for PSA Crypto Module
after adding MbedTLS. For information on how to import and update secure keys, refer to the
Application Note R11AN0496.
(*1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,261 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

Crypto Peripheral version String displayed in the Stacks tab

SCE9 SCE Compatibility Mode

SCE7 SCE7

SCE5 SCE5

SCE5B SCE5B

Hardware Initialization

Please refer to Hardware Initialization in Mbed Crypto H/W Acceleration (rm_psa_crypto).

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,262 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES128_InitialKeyWrap()

fsp_err_t R_SCE_AES128_InitialKeyWrap (const uint8_t *const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t *const
encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API generates 128-bit AES key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,263 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES192_InitialKeyWrap()

fsp_err_t R_SCE_AES192_InitialKeyWrap (const uint8_t *const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t *const
encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API generates 192-bit AES key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 192-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,264 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES256_InitialKeyWrap()

fsp_err_t R_SCE_AES256_InitialKeyWrap (const uint8_t *const key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t *const
encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API generates 256-bit AES key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,265 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_KeyUpdateKeyWrap()

fsp_err_t R_SCE_KeyUpdateKeyWrap (const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t *const
encrypted_key, sce_key_update_key_t *const key_update_key)

This API generates a key update key which is used for functions of the key updating.

Parameters
[in] wrapped_user_factory_progr

amming_key
Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] key_update_key Key update key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,266 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES128_EncryptedKeyWrap()

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API wraps 128-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,267 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES192_EncryptedKeyWrap()

fsp_err_t R_SCE_AES192_EncryptedKeyWrap (const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API wraps 192-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 192-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,268 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_AES256_EncryptedKeyWrap()

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API wraps 256-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,269 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA2048_InitialPublicKeyWrap()

fsp_err_t R_SCE_RSA2048_InitialPublicKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_rsa2048_public_wrapped_key_t *const wrapped_key)

This API generates 2048-bit RSA key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 2048-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,270 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA3072_InitialPublicKeyWrap()

fsp_err_t R_SCE_RSA3072_InitialPublicKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_rsa3072_public_wrapped_key_t *const wrapped_key)

This API generates 3072-bit RSA key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 3072-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,271 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA4096_InitialPublicKeyWrap()

fsp_err_t R_SCE_RSA4096_InitialPublicKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_rsa4096_public_wrapped_key_t *const wrapped_key)

This API generates 4096-bit RSA key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 4096-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,272 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA2048_InitialPrivateKeyWrap()

fsp_err_t R_SCE_RSA2048_InitialPrivateKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_rsa2048_private_wrapped_key_t *const wrapped_key)

This API generates 2048-bit RSA key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 2048-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,273 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA2048_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_rsa2048_public_wrapped_key_t *const wrapped_key)

This API wraps 2048-bit RSA key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,274 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_RSA2048_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_rsa2048_private_wrapped_key_t *const wrapped_key)

This API wraps 2048-bit RSA key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,275 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256r1_InitialPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_InitialPublicKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API generates 256-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,276 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256k1_InitialPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256k1_InitialPublicKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API generates 256-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,277 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp384r1_InitialPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_InitialPublicKeyWrap (const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t
*const encrypted_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API generates 384-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 364-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,278 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256r1_InitialPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_InitialPrivateKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API generates 256-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,279 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256k1_InitialPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256k1_InitialPrivateKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API generates 256-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,280 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp384r1_InitialPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_InitialPrivateKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API generates 384-bit ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,281 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

This API wraps 256-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,282 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256k1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256k1_EncryptedPublicKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

This API wraps 256-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,283 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

This API wraps 384-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,284 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

This API wraps 256-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,285 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp256k1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256k1_EncryptedPrivateKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

This API wraps 256-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,286 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

This API wraps 384-bit ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,287 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP256r1_InitialPublicKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP256r1_InitialPublicKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API generates 256-bit Brainpool ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,288 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP256r1_InitialPrivateKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP256r1_InitialPrivateKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API generates 256-bit Brainpool ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,289 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP384r1_InitialPublicKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP384r1_InitialPublicKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API generates 384-bit Brainpool ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 364-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,290 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP384r1_InitialPrivateKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP384r1_InitialPrivateKeyWrap (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API generates 384-bit Brainpool ECC key within the user routine.

Parameters
[in] key_type Selection key type when

generating wrapped key (0:
for encrypted key, 1: for
plain key)

[in] wrapped_user_factory_progr
amming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector when
generating encrypted_key.
When key_type is 1 as plain
key, this is not required and
any value can be specified.

[in] encrypted_key Encrypted user key and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,291 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP256r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP256r1_EncryptedPublicKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API wraps 256-bit Brainpool ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,292 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP256r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP256r1_EncryptedPrivateKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API wraps 256-bit Brainpool ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,293 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP384r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP384r1_EncryptedPublicKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API wraps 384-bit Brainpool ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,294 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > Secure Key Injection (r_sce_key_injection)

◆ R_SCE_ECC_brainpoolP384r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_brainpoolP384r1_EncryptedPrivateKeyWrap (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API wraps 384-bit Brainpool ECC key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

Return values
FSP_SUCCESS Normal termination.

FSP_ERR_UNSUPPORTED API not supported.

Returns
If an error occurs, the return value will be as follows.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.
FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT A resource conflict occurred because
a hardware resource needed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

5.2.15.9 TinyCrypt H/W Acceleration (rm_tinycrypt_port)
Modules » Security

Functions

fsp_err_t RM_TINCYRYPT_PORT_Init ()

fsp_err_t RM_TINCYRYPT_PORT_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes)

 Reads requested length of random data from the TRNG. Generate
num_req_bytes of random bytes and store them in p_rngbuf buffer.
More...

int default_CSPRNG (uint8_t *dest, unsigned int size)

 Implements the Cryptographically Secure Pseudo-Random Number
Generator function required byt TinyCrypt. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,295 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

Detailed Description

AES128 Hardware acceleration for TinyCrypt on the RA2 family.

Overview
Note

The TinyCrypt port module does not provide any interfaces to the user. Consult the documentation at
https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst for further information.

TinyCrypt is designed as a small footprint software crypto implementation to be used on resource
constrained devices. The software only module is available in FSP on all RA devices. Hardware
acceleration for AES-128 is provided only for the RA2 family. This release uses TinyCrypt v0.2.8.

Hardware Overview

Crypto Peripheral version Devices

AES Engine RA2A1, RA2E1, RA2L1

Features

For features supported by the software-only version, refer to the TinyCrypt documentation.

The TinyCrypt port module provides hardware support for the following operations

AES
Keybits - 128, 192, 256
ECB, CBC, CTR, CCM, GCM and CMAC modes -TRNG

Configuration
Build Time Configurations for TinyCrypt_Acceleration

The following build time configurations are defined in fsp_cfg/rm_tinycrypt_port_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

AES Configuration

To enable hardware acceleration for the AES128 operation, choose TinyCrypt (H/W Accelerated) from
the stack options . This feature is only supported on the RA2 family.

Usage Notes
Hardware Initialization

Invoke RM_TINCYRYPT_PORT_Init () to initialize the hardware before using Tinycrypt if either

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,296 / 5,560

https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

hardware acceleration or the TRNG is to be used.

Random Number Generation

There are two Pseudo-random Number Generators (PRNG) provided in TinyCrypt

CTR-PRNG which uses AES128 internally in its implementation. Enabling AES128 hardware
acceleration will improve the performance of this module.
HMAC-PRNG which uses SHA256 internally in its implementation.

 Both these implementations will only be able to provide a random pseudo-random
number sequence if they are seeded with truly random data. The TRNG module that is
present in hardware and available in rm_tinycrypt_port must be used to seed these
modules. When using CTR-PRNG or HMAC-PRNG, use the RM_TINCYRYPT_PORT_TRNG_Read()
function to obtain random data from the TRNG hardware and use that to seed the PRNG modules
before invoking the pseudo-random number generation. If purely random data is sufficient for the
application, then RM_TINCYRYPT_PORT_TRNG_Read() can be used directly instead. The hardware
TRNG implements the CTR_DRBG spec.

Default CSPRNG

The TinyCrypt ECC implementation requires a platform specific implementation of the
default_CSPRNG() function. This function has been implemented using the hardware TRNG in the
port to support software ECC usage. When using TinyCrypt in S/W mode, it is necessary to
implement default_CSPRNG() if using ECC signature generation (ECDSA) or key derivation (ECDH).

AES-128 Usage

The AES ECB mode implementation is provided in aes_encrypt.decrypt.c. All the other modes of AES
operation including CBC, CCN, CMAC and CTR use the ECB mode for the block operation. On the RA2,
the ECB mode has been hardware accelerated which improves performance of the other modes as
well. Additionally the CBC and CTR modes are also accelerated.

To use the different AES modes, first initialize the hardware (on the RA2) and then use the functions
defined in the header file of each AES mode. Note that TinyCrypt does not provide any type of
padding or buffering so the data provided to these modes should be multiples of AES block size.

Usage with RA2A2

On the RA2A2, the TinyCrypt API has been expanded to support GCM mode operation. Key lengths of
128, 192 and 256 are supported. GCM mode operation is not supported on other MCUs in hardware
or software in the TinyCrypt API.

Memory Usage

TinyCrypt does not use dynamic allocation so there is no heap requirement.

Limitations

Usage with RA4 and RA6 devices

TinyCrypt (S/W Only) can be used on RA4 and RA6 devices. However, since ECC signature generation
(ECDSA) and key derivation (ECDH) requires a random number source, that operation is currently not
supported on these devices when using TinyCrypt (S/W Only). In order to support those operations
the function default_CSPRNG() must be implemented in the user code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,297 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

TinyCrypt

No padding is supported; the user is expected to provide adequately padded data
depending on the algorithm used.
AES Key generation is not supported.
Key encoding/decoding is not supported.

Using TinyCrypt with TrustZone

Unlike FSP drivers, TinyCrypt cannot be configured as Non-secure callable in the RA Configurator for
a secure project. The reason for this is that in order to achieve the security objective of controlling
access to protected keys, both the crypto code as well as the keys must be placed in the secure
region. Since the tinyCrypt API requires access to the keys directly during initialization and later via a
key handle, allowing non-secure code to use the API by making it Non-secure callable will require the
keys to be stored in non-secure memory.

This limitation is identical to that for PSA Crypto. Refer to the documentation of that module on how
to create a crypto Non-Secure Callable layer to be used in such situations.

Examples
AES-CBC Example

This is an example on using TinyCrypt to encrypt and decrypt data using an AES-128 key in CBC
mode.

#define TC_INPUT_PLAINTEXT_SIZE 64U

#define TF_AES_IV_SIZE TC_AES_BLOCK_SIZE

#define TC_OUTPUT_CIPHERTEXT_SIZE (TC_INPUT_PLAINTEXT_SIZE + TF_AES_IV_SIZE)

/*

 * NIST test vectors from SP 800-38a:

 *

 * Block #1

 * Plaintext 6bc1bee22e409f96e93d7e117393172a

 * Input Block 6bc0bce12a459991e134741a7f9e1925

 * Output Block 7649abac8119b246cee98e9b12e9197d

 * Ciphertext 7649abac8119b246cee98e9b12e9197d

 * Block #2

 * Plaintext ae2d8a571e03ac9c9eb76fac45af8e51

 * Input Block d86421fb9f1a1eda505ee1375746972c

 * Output Block 5086cb9b507219ee95db113a917678b2

 * Ciphertext 5086cb9b507219ee95db113a917678b2

 * Block #3

 * Plaintext 30c81c46a35ce411e5fbc1191a0a52ef

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,298 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 * Input Block 604ed7ddf32efdff7020d0238b7c2a5d

 * Output Block 73bed6b8e3c1743b7116e69e22229516

 * Ciphertext 73bed6b8e3c1743b7116e69e22229516

 * Block #4

 * Plaintext f69f2445df4f9b17ad2b417be66c3710

 * Input Block 8521f2fd3c8eef2cdc3da7e5c44ea206

 * Output Block 3ff1caa1681fac09120eca307586e1a7

 * Ciphertext 3ff1caa1681fac09120eca307586e1a7

 */

const uint8_t cbc_key[TC_AES_KEY_SIZE] =

{

 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09,

0xcf, 0x4f, 0x3c

};

uint8_t cbc_iv[TC_AES_BLOCK_SIZE] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f

};

const uint8_t cbc_plaintext[TC_INPUT_PLAINTEXT_SIZE] =

{

 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73,

0x93, 0x17, 0x2a,

 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45,

0xaf, 0x8e, 0x51,

 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a,

0x0a, 0x52, 0xef,

 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6,

0x6c, 0x37, 0x10

};

uint8_t cbc_expected_ciphertext[TC_OUTPUT_CIPHERTEXT_SIZE] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f, // NOLINT(readability-magic-numbers)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,299 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12,

0xe9, 0x19, 0x7d, // NOLINT(readability-magic-numbers)

 0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91,

0x76, 0x78, 0xb2, // NOLINT(readability-magic-numbers)

 0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22,

0x22, 0x95, 0x16, // NOLINT(readability-magic-numbers)

 0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75,

0x86, 0xe1, 0xa7 // NOLINT(readability-magic-numbers)

};

void tinycrypt_aes128cbc_example (void)

{

 struct tc_aes_key_sched_struct aes_keyschedule;

 uint8_t cbc_encrypted[TC_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 uint8_t cbc_decrypted[TC_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 if (TC_CRYPTO_SUCCESS != tc_aes128_set_encrypt_key(&aes_keyschedule, cbc_key))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_cbc_mode_encrypt(cbc_encrypted, sizeof(cbc_plaintext) +

TC_AES_BLOCK_SIZE, cbc_plaintext,

 sizeof(cbc_plaintext), cbc_iv, &aes_keyschedule))

 {

 debugger_break();

 }

 else if (0 != memcmp(&cbc_encrypted[0], &cbc_expected_ciphertext[0], sizeof

(cbc_encrypted)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_cbc_mode_decrypt(cbc_decrypted, sizeof(cbc_encrypted),

&cbc_encrypted[TC_AES_BLOCK_SIZE],

 sizeof(cbc_encrypted), cbc_encrypted, &aes_keyschedule))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,300 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 {

 debugger_break();

 }

 else if (0 != memcmp(&cbc_plaintext[0], &cbc_decrypted[0], sizeof(cbc_plaintext)))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

AES-CTR Example

This is an example on using TinyCrypt to encrypt and decrypt data using an AES-128 key in CTR
mode.

#define TC_CTR_INPUT_PLAINTEXT_SIZE 64U

#define TF_AES_IV_SIZE TC_AES_BLOCK_SIZE

#define TC_CTR_OUTPUT_CIPHERTEXT_SIZE (TC_CTR_INPUT_PLAINTEXT_SIZE + TF_AES_IV_SIZE)

/*

 * NIST SP 800-38a CTR Test for encryption and decryption.

 */

const uint8_t ctr_key[TC_AES_KEY_SIZE] =

{

 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09,

0xcf, 0x4f, 0x3c

};

uint8_t ctr_iv[TC_AES_KEY_SIZE] =

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,301 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc,

0xfd, 0xfe, 0xff // NOLINT(readability-magic-numbers)

};

const uint8_t ctr_plaintext[64] =

{

 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73,

0x93, 0x17, 0x2a,

 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45,

0xaf, 0x8e, 0x51,

 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a,

0x0a, 0x52, 0xef,

 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6,

0x6c, 0x37, 0x10

};

const uint8_t ctr_expected_ciphertext[TC_CTR_OUTPUT_CIPHERTEXT_SIZE] =

{

 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc,

0xfd, 0xfe, 0xff,

 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99,

0x0d, 0xb6, 0xce,

 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9,

0xff, 0xfd, 0xff,

 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d,

0xb0, 0x3e, 0xab,

 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3,

0x00, 0x9c, 0xee

};

void tinycrypt_aes128ctr_example (void)

{

 struct tc_aes_key_sched_struct aes_keyschedule;

 uint8_t ctr_encrypted[TC_CTR_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 uint8_t ctr_decrypted[TC_CTR_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 if (0 != memcpy(ctr_encrypted, ctr_iv, sizeof(ctr_iv)))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,302 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_aes128_set_encrypt_key(&aes_keyschedule, ctr_key))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_mode(&ctr_encrypted[TC_AES_BLOCK_SIZE], sizeof(ctr_plaintext),

ctr_plaintext, sizeof(ctr_plaintext),

 ctr_iv, &aes_keyschedule))

 {

 debugger_break();

 }

 else if (0 != memcmp(&ctr_encrypted[0], &ctr_expected_ciphertext[0], sizeof

(ctr_encrypted)))

 {

 debugger_break();

 }

 else if (0 != memcpy(ctr_iv, ctr_encrypted, sizeof(ctr_iv)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_mode(ctr_decrypted, sizeof(ctr_decrypted),

&ctr_encrypted[TC_AES_BLOCK_SIZE], sizeof(ctr_decrypted),

 ctr_iv, &aes_keyschedule))

 {

 debugger_break();

 }

 else if (0 != memcmp(&ctr_plaintext[0], &ctr_decrypted[0], sizeof(ctr_plaintext)))

 {

 debugger_break();

 }

 else

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,303 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

CTR-PRNG Example

This is an example on using the CTR_PRNG module in TinyCrypt to obtain random data.

#define TC_ENTROPY_SIZE 64U

#define TC_CTRPRNG_OUTPUT_SIZE 32U

void tinycrypt_ctr_prng_example (void)

{

 TCCtrPrng_t cprng_ctx;

 uint8_t seed[TC_ENTROPY_SIZE];

 uint8_t ctr_prng_output_1[TC_CTRPRNG_OUTPUT_SIZE] = {0};

 uint8_t ctr_prng_output_2[TC_CTRPRNG_OUTPUT_SIZE] = {0};

 /* Setup the platform; initialize the crypto engine. */

 if (0 != RM_TINCYRYPT_PORT_Init())

 {

 debugger_break();

 }

 /* Read random data from the TRNG to use as seed for the CTR_PRNG. */

 else if (FSP_SUCCESS != RM_TINCYRYPT_PORT_TRNG_Read(seed, sizeof(seed)))

 {

 debugger_break();

 }

 /* Initialize and seed the CTR_PRNG with the random data from the TRNG. */

 else if (TC_CRYPTO_SUCCESS != tc_ctr_prng_init(&cprng_ctx, seed, sizeof(seed), 0,

0))

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,304 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 debugger_break();

 }

 /* Read random data from the CTR_PRNG. */

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_prng_generate(&cprng_ctx, 0, 0, ctr_prng_output_1, sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 /* Check that the generated value is not 0. */

 else if (0 == memcmp(&ctr_prng_output_1[0], &ctr_prng_output_2[0], sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 /* Read random data again from the TRNG. */

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_prng_generate(&cprng_ctx, 0, 0, ctr_prng_output_2, sizeof

(ctr_prng_output_2)))

 {

 debugger_break();

 }

 /* Check that the generated value is different than the previous call. */

 else if (0 == memcmp(&ctr_prng_output_1[0], &ctr_prng_output_2[0], sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,305 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 }

 }

}

AES-CMAC Example

This is an example on using AES Circuit (Hardware support) to encrypt data using an AES-128 key in
CMAC mode. This is also an example on use tc_cmac_setup and tc_cmac_setup_extended.

#define MLEN4 64

#define BUF_LEN 16

const uint8_t cmac_key_128[TC_AES_KEY_SIZE] =

{

 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,

 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c

};

const uint8_t msg[MLEN4] =

{

 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,

 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,

 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,

 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,

 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,

};

const uint8_t tag[BUF_LEN] =

{

 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92,

 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe,

};

void tinycrypt_aes128cmac_example (void)

{

 struct tc_cmac_struct state;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,306 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 struct tc_aes_key_sched_struct sched;

 uint8_t Tag[BUF_LEN];

 if (TC_CRYPTO_SUCCESS != tc_cmac_setup(&state, cmac_key_128, &sched))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_init(&state))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_update(&state, msg, sizeof(msg)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_final(Tag, &state))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != memcmp(Tag, tag, BUF_LEN))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

/* Below is a example of using tc_cmac_setup_extended instead of tc_cmac_setup*/

void tinycrypt_aes128cmac_example_setup_extended (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,307 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

 struct tc_cmac_struct state;

 struct tc_aes_key_sched_struct sched;

 uint8_t Tag[BUF_LEN];

 if (TC_CRYPTO_SUCCESS != tc_cmac_setup_extended(&state, cmac_key_128, &sched,

sizeof(cmac_key_128)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_init(&state))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_update(&state, msg, sizeof(msg)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != tc_cmac_final(Tag, &state))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS != memcmp(Tag, tag, BUF_LEN))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,308 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Security > TinyCrypt H/W Acceleration (rm_tinycrypt_port)

Function Documentation

◆ RM_TINCYRYPT_PORT_Init()

fsp_err_t RM_TINCYRYPT_PORT_Init ()

Initialize the SCE.

◆ RM_TINCYRYPT_PORT_TRNG_Read()

fsp_err_t RM_TINCYRYPT_PORT_TRNG_Read (uint8_t *const p_rngbuf, uint32_t num_req_bytes)

Reads requested length of random data from the TRNG. Generate num_req_bytes of random bytes
and store them in p_rngbuf buffer.

Return values
FSP_SUCCESS Random number generation successful

FSP_ERR_ASSERTION NULL input parameter(s).

FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ default_CSPRNG()

int default_CSPRNG (uint8_t * dest, unsigned int size)

Implements the Cryptographically Secure Pseudo-Random Number Generator function required byt
TinyCrypt.

Return values
TC_CRYPTO_SUCCESS Random number generation successful

TC_CRYPTO_FAIL Random number generation failed.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

RM_TINCYRYPT_PORT_TRNG_Read

5.2.16 Sensor
Modules

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,309 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor

Sensor Modules.

Modules

FS1015 Flow Sensor (rm_fs1015)

 Middleware to implement the FS1015 sensor interface. This module
implements the FSXXXX Middleware Interface.

FS2012 Flow Sensor (rm_fs2012) [Deprecated]

 Middleware to implement the FS2012 sensor interface. This module
implements the FSXXXX Middleware Interface.

FS3000 Flow Sensor (rm_fs3000)

 Middleware to implement the FS3000 sensor interface. This module
implements the FSXXXX Middleware Interface.

HS300X Temperature/Humidity Sensor (rm_hs300x)

 Middleware to implement the HS300X sensor interface. This module
implements the HS300X Middleware Interface.

HS400X Temperature/Humidity Sensor (rm_hs400x)

 Middleware to implement the HS400X sensor interface. This module
implements the HS400X Middleware Interface.

OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 Middleware to implement the OB1203 sensor interface. This module
implements the OB1203 Middleware Interface.

RRH46410 Gas Sensor Module (rm_rrh46410)

 Middleware to implement the RRH46410 sensor module interface.
This module implements the ZMOD4XXX Middleware Interface.

ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 Middleware to implement the ZMOD4XXX sensor interface. This
module implements the ZMOD4XXX Middleware Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,310 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

5.2.16.1 FS1015 Flow Sensor (rm_fs1015)
Modules » Sensor

Functions

fsp_err_t RM_FS1015_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_cfg_t const *const p_cfg)

 Opens and configures the FS1015 Middle module. Implements
rm_fsxxxx_api_t::open. More...

fsp_err_t RM_FS1015_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

 Disables specified FS1015 control block. Implements
rm_fsxxxx_api_t::close. More...

fsp_err_t RM_FS1015_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data)

 Reads ADC data from FS1015. Implements rm_fsxxxx_api_t::read.
More...

fsp_err_t RM_FS1015_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data, rm_fsxxxx_data_t *const
p_fs1015_data)

 Calculates flow [m/sec] from ADC data. Implements
rm_fsxxxx_api_t::dataCalculate. More...

Detailed Description

Middleware to implement the FS1015 sensor interface. This module implements the FSXXXX
Middleware Interface.

Overview
Features

The FS1015 sensor interface implementation has the following key features:

Getting ADC data from the sensor
Calculating flow value from ADC data

Limitations

I2C Master (r_sau_i2c) is not supported. FS1015 needs clock stretching, but is not supported
by SAU I2C.

Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,311 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

Build Time Configurations for rm_fs1015

The following build time configurations are defined in fsp_cfg/rm_fs1015_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Device Type FS1015-1005 FS1015-1005 Select FS1015 device
used.

Configurations for Sensor > FS1015 Flow Sensor (rm_fs1015)

This module can be added to the Stacks tab via New Stack > Sensor > FS1015 Flow Sensor
(rm_fs1015).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fs1015_sensor0 Module name.

Callback Name must be a valid
C symbol

fs1015_callback A user callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
FS1015 datasheet is here.
If ADC data is invalid, it is needed to read ADC data from FS1015 again. The module only supports
FS1015-1005.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Bus Initialization

The FS1015 interface expects a bus instance to be opened before opening any FS1015 device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

Examples
Basic Example

This is a basic example of minimal use of FS1015 sensor implementation in an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,312 / 5,560

https://www.renesas.com/us/en/document/dst/fs1015-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

void rm_fs1015_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_fsxxxx_raw_data_t fs1015_raw_data;

 rm_fsxxxx_data_t fs1015_data;

 uint8_t calculated_flag = 0;

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_fs1015_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,313 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_FS1015_Open(&g_fs1015_ctrl, &g_fs1015_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 do

 {

 g_flag = 0;

 /* Read ADC Data from FS1015 */

 RM_FS1015_Read(&g_fs1015_ctrl, &fs1015_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Calculate Flow value from ADC data */

 err = RM_FS1015_DataCalculate(&g_fs1015_ctrl, &fs1015_raw_data,

&fs1015_data);

 if (FSP_SUCCESS == err)

 {

 calculated_flag = 1;

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err) /* Checksum error */

 {

 calculated_flag = 0;

 }

 else

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,314 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

 {

 handle_error(err);

 }

 } while (0 == calculated_flag);

 /* Wait 125 milliseconds. See table 4 on the page 3 of the datasheet. */

 R_BSP_SoftwareDelay(FS1015_DELAY_125, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

Data Structures

struct rm_fs1015_instance_ctrl_t

Data Structure Documentation

◆ rm_fs1015_instance_ctrl_t

struct rm_fs1015_instance_ctrl_t

FS1015 Control Block

Data Fields

uint32_t open

 Open flag.

rm_fsxxxx_cfg_t const * p_cfg

 Pointer to FS1015 Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,315 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

◆ RM_FS1015_Open()

fsp_err_t RM_FS1015_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Opens and configures the FS1015 Middle module. Implements rm_fsxxxx_api_t::open.

Example:

 err = RM_FS1015_Open(&g_fs1015_ctrl, &g_fs1015_cfg);

Return values
FSP_SUCCESS FS1015 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ RM_FS1015_Close()

fsp_err_t RM_FS1015_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

Disables specified FS1015 control block. Implements rm_fsxxxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_FS1015_Read()

fsp_err_t RM_FS1015_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Reads ADC data from FS1015. Implements rm_fsxxxx_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,316 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS1015 Flow Sensor (rm_fs1015)

◆ RM_FS1015_DataCalculate()

fsp_err_t RM_FS1015_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fs1015_data)

Calculates flow [m/sec] from ADC data. Implements rm_fsxxxx_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

5.2.16.2 FS2012 Flow Sensor (rm_fs2012) [Deprecated]
Modules » Sensor

Functions

fsp_err_t RM_FS2012_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_cfg_t const *const p_cfg)

 Opens and configures the FS2012 Middle module. Implements
rm_fsxxxx_api_t::open. More...

fsp_err_t RM_FS2012_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

 Disables specified FS2012 control block. Implements
rm_fsxxxx_api_t::close. More...

fsp_err_t RM_FS2012_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data)

 Reads ADC data from FS2012. Implements rm_fsxxxx_api_t::read.
More...

fsp_err_t RM_FS2012_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data, rm_fsxxxx_data_t *const
p_fs2012_data)

 Calculates flow from ADC data. Unit of Gas flow is SLPM (Standard
liter per minute) Unit of Liquid flow is SCCM (Standard cubic
centimeter per minute) Implements rm_fsxxxx_api_t::dataCalculate.
More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,317 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

Detailed Description

Middleware to implement the FS2012 sensor interface. This module implements the FSXXXX
Middleware Interface.

Overview
FS2012 is EOL.

Features

The FS2012 sensor interface implementation has the following key features:

Getting ADC data from the sensor
Calculating flow value from ADC data

Configuration
Build Time Configurations for rm_fs2012

The following build time configurations are defined in fsp_cfg/rm_fs2012_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Device Type FS2012-1020-N
G
FS2012-1100-N
G

FS2012-1100-NG Select FS2012 device
type.

Configurations for Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

This module can be added to the Stacks tab via New Stack > Sensor > FS2012 Flow Sensor
(rm_fs2012) [Deprecated].

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fs2012_sensor0 Module name.

Callback Name must be a valid
C symbol

fs2012_callback A user callback
function can be
provided.

Pin Configuration

This module uses SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,318 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

FS2012 datasheet is here. The module only supports FS2012-1020-NG and FS2012-1100-NG.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Bus Initialization

The FS2012 interface expects a bus instance to be opened before opening any FS2012 device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

Examples
Basic Example

This is a basic example of minimal use of FS2012 sensor implementation in an application.

void rm_fs2012_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_fsxxxx_raw_data_t fs2012_raw_data;

 rm_fsxxxx_data_t fs2012_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_fs2012_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,319 / 5,560

https://www.renesas.com/us/en/document/dst/fs2012-datasheet?language=en&r=344051

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_FS2012_Open(&g_fs2012_ctrl, &g_fs2012_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 g_flag = 0;

 /* Read ADC Data from FS2012 */

 RM_FS2012_Read(&g_fs2012_ctrl,

 &fs2012_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,320 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

 /* Calculate Flow value from ADC data */

 RM_FS2012_DataCalculate(&g_fs2012_ctrl, &fs2012_raw_data, &fs2012_data);

 /* FS2012 sample rate. See table 4 on the page 5 of the datasheet. */

 /* Gas : 409.6ms, Liquid : 716.8ms */

 R_BSP_SoftwareDelay(FS2012_GAS_SAMPLE_RATE, BSP_DELAY_UNITS_MICROSECONDS);

 }

}

Data Structures

struct rm_fs2012_instance_ctrl_t

Data Structure Documentation

◆ rm_fs2012_instance_ctrl_t

struct rm_fs2012_instance_ctrl_t

FS2012 Control Block

Data Fields

uint32_t open

 Open flag.

rm_fsxxxx_cfg_t const * p_cfg

 Pointer to FS2012 Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,321 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

◆ RM_FS2012_Open()

fsp_err_t RM_FS2012_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Opens and configures the FS2012 Middle module. Implements rm_fsxxxx_api_t::open.

Example:

 err = RM_FS2012_Open(&g_fs2012_ctrl, &g_fs2012_cfg);

Return values
FSP_SUCCESS FS2012 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ RM_FS2012_Close()

fsp_err_t RM_FS2012_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

Disables specified FS2012 control block. Implements rm_fsxxxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_FS2012_Read()

fsp_err_t RM_FS2012_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Reads ADC data from FS2012. Implements rm_fsxxxx_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,322 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS2012 Flow Sensor (rm_fs2012) [Deprecated]

◆ RM_FS2012_DataCalculate()

fsp_err_t RM_FS2012_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fs2012_data)

Calculates flow from ADC data. Unit of Gas flow is SLPM (Standard liter per minute) Unit of Liquid
flow is SCCM (Standard cubic centimeter per minute) Implements rm_fsxxxx_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

5.2.16.3 FS3000 Flow Sensor (rm_fs3000)
Modules » Sensor

Functions

fsp_err_t RM_FS3000_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_cfg_t const *const p_cfg)

 Opens and configures the FS3000 Middle module. Implements
rm_fsxxxx_api_t::open. More...

fsp_err_t RM_FS3000_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

 Disables specified FS3000 control block. Implements
rm_fsxxxx_api_t::close. More...

fsp_err_t RM_FS3000_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data)

 Reads ADC data from FS3000. Implements rm_fsxxxx_api_t::read.
More...

fsp_err_t RM_FS3000_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data, rm_fsxxxx_data_t *const
p_fs3000_data)

 Calculates flow [m/sec] from ADC data. Implements
rm_fsxxxx_api_t::dataCalculate. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,323 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

Detailed Description

Middleware to implement the FS3000 sensor interface. This module implements the FSXXXX
Middleware Interface.

Overview
Features

The FS3000 sensor interface implementation has the following key features:

Getting ADC data from the sensor
Calculating flow value from ADC data

Limitations

I2C Master (r_sau_i2c) is not supported. FS3000 needs clock stretching, but is not supported
by SAU I2C.

Configuration
Build Time Configurations for rm_fs3000

The following build time configurations are defined in fsp_cfg/rm_fs3000_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Device Type FS3000-1005 FS3000-1005 Select FS3000 device
used.

Configurations for Sensor > FS3000 Flow Sensor (rm_fs3000)

This module can be added to the Stacks tab via New Stack > Sensor > FS3000 Flow Sensor
(rm_fs3000).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fs3000_sensor0 Module name.

Callback Name must be a valid
C symbol

fs3000_callback A user callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,324 / 5,560

https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

FS3000 datasheet is here.
If ADC data is invalid, it is needed to read ADC data from FS3000 again. The module only supports
FS3000-1005.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Bus Initialization

The FS3000 interface expects a bus instance to be opened before opening any FS3000 device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

Examples
Basic Example

This is a basic example of minimal use of FS3000 sensor implementation in an application.

void rm_fs3000_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_fsxxxx_raw_data_t fs3000_raw_data;

 rm_fsxxxx_data_t fs3000_data;

 uint8_t calculated_flag = 0;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_fs3000_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,325 / 5,560

https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet
https://www.renesas.com/us/en/document/dst/fs3000-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_FS3000_Open(&g_fs3000_ctrl, &g_fs3000_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 do

 {

 g_flag = 0;

 /* Read ADC Data from FS3000 */

 RM_FS3000_Read(&g_fs3000_ctrl, &fs3000_raw_data);

 while (0 == g_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,326 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

 {

 /* Wait callback */

 }

 /* Calculate Flow value from ADC data */

 err = RM_FS3000_DataCalculate(&g_fs3000_ctrl, &fs3000_raw_data,

&fs3000_data);

 if (FSP_SUCCESS == err)

 {

 calculated_flag = 1;

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err) /* Checksum error */

 {

 calculated_flag = 0;

 }

 else

 {

 handle_error(err);

 }

 } while (0 == calculated_flag);

 /* Wait 125 milliseconds. See table 4 on the page 7 of the datasheet. */

 R_BSP_SoftwareDelay(FS3000_DELAY_125, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

Data Structures

struct rm_fs3000_instance_ctrl_t

Data Structure Documentation

◆ rm_fs3000_instance_ctrl_t

struct rm_fs3000_instance_ctrl_t

FS3000 Control Block

Data Fields

uint32_t open

 Open flag.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,327 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

rm_fsxxxx_cfg_t const * p_cfg

 Pointer to FS3000 Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

◆ RM_FS3000_Open()

fsp_err_t RM_FS3000_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Opens and configures the FS3000 Middle module. Implements rm_fsxxxx_api_t::open.

Example:

 err = RM_FS3000_Open(&g_fs3000_ctrl, &g_fs3000_cfg);

Return values
FSP_SUCCESS FS3000 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,328 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > FS3000 Flow Sensor (rm_fs3000)

◆ RM_FS3000_Close()

fsp_err_t RM_FS3000_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

Disables specified FS3000 control block. Implements rm_fsxxxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_FS3000_Read()

fsp_err_t RM_FS3000_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Reads ADC data from FS3000. Implements rm_fsxxxx_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_FS3000_DataCalculate()

fsp_err_t RM_FS3000_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fs3000_data)

Calculates flow [m/sec] from ADC data. Implements rm_fsxxxx_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,329 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

5.2.16.4 HS300X Temperature/Humidity Sensor (rm_hs300x)
Modules » Sensor

Functions

fsp_err_t RM_HS300X_Open (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_cfg_t const *const p_cfg)

 Opens and configures the HS300X Middle module. Implements
rm_hs300x_api_t::open. More...

fsp_err_t RM_HS300X_Close (rm_hs300x_ctrl_t *const p_api_ctrl)

 Disables specified HS300X control block. Implements
rm_hs300x_api_t::close. More...

fsp_err_t RM_HS300X_MeasurementStart (rm_hs300x_ctrl_t *const p_api_ctrl)

 This function should be called when start a measurement and when
measurement data is stale data. Sends the slave address to the
hs300x and start a measurement. Implements
rm_hs300x_api_t::measurementStart. More...

fsp_err_t RM_HS300X_Read (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_raw_data_t *const p_raw_data)

 Reads ADC data from HS300X. Implements rm_hs300x_api_t::read.
More...

fsp_err_t RM_HS300X_DataCalculate (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_raw_data_t *const p_raw_data, rm_hs300x_data_t *const
p_hs300x_data)

 Calculates humidity [RH] and temperature [Celsius] from ADC data.
Implements rm_hs300x_api_t::dataCalculate. More...

fsp_err_t RM_HS300X_ProgrammingModeEnter (rm_hs300x_ctrl_t *const
p_api_ctrl)

 This function must be called within 10ms after applying power to the
sensor. Sends the commands to enter the programming mode. After
calling this function, please wait 120us. Implements
rm_hs300x_api_t::programmingModeEnter. More...

fsp_err_t RM_HS300X_ResolutionChange (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t
const resolution)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. Changes the sensor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,330 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

resolution. This function blocks for 120 us software delay plus 9
bytes on the I2C bus. After calling this function, 14ms must be
waited. Failure to comply with these times may result in data
corruption and introduce errors in sensor measurements.
Implements rm_hs300x_api_t::resolutionChange. More...

fsp_err_t RM_HS300X_SensorIdGet (rm_hs300x_ctrl_t *const p_api_ctrl,
uint32_t *const p_sensor_id)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. Gets the sensor ID.
This function blocks for 240 us software delay plus 12 bytes on the
I2C bus. Implements rm_hs300x_api_t::sensorIdGet. More...

fsp_err_t RM_HS300X_ProgrammingModeExit (rm_hs300x_ctrl_t *const
p_api_ctrl)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. This function must be
called to return to normal sensor operation and perform
measurements. Sends the commands to exit the programming
mode. Implements rm_hs300x_api_t::programmingModeExit. More...

Detailed Description

Middleware to implement the HS300X sensor interface. This module implements the HS300X
Middleware Interface.

Overview
Features

The HS300X sensor interface implementation has the following key features:

Starting a measurement at any time
Getting ADC data from the sensor
Calculating humidity and temperature value from getting ADC data
Changing the sensor resolution
Getting the sensor ID

Configuration
Build Time Configurations for rm_hs300x

The following build time configurations are defined in fsp_cfg/rm_hs300x_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,331 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

Disabled included in the build.

Data type Both humidity
and
temperature
Humidity only

Both humidity and
temperature

Select Getting humidity
only and both humidity
and temperature.

Programming Mode ON
OFF

OFF If selected the
programming mode
can be entered.

Configurations for Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

This module can be added to the Stacks tab via New Stack > Sensor > HS300X
Temperature/Humidity Sensor (rm_hs300x).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_hs300x_sensor0 Module name.

Callback Name must be a valid
C symbol

hs300x_callback A user callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
HS300x datasheet is here.
If ADC data is valid and calculating humidity and temperature is finished, it is needed to start a
measurement again. If ADC data is invalid, it is needed to read ADC data from HS300x again.

If changing the sensor resolution and getting the sensor ID, RM_HS300X_ProgrammingModeEnter
function must be called within 10ms after applying power to the sensor. Entering the programming
mode takes 120us. Thresore, after calling RM_HS300X_ProgrammingModeEnter function, please wait
120us. After calling RM_HS300X_ResolutionChange function, 14ms must be waited because failure to
comply with these times may result in data corruption and introduce errors in sensor measurements.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Bus Initialization

The HS300X interface expects a bus instance to be opened before opening any HS300X device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,332 / 5,560

https://www.renesas.com/document/dst/hs3xxx-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

Basic Example

This is a basic example of minimal use of HS300X sensor implementation in an application.

void rm_hs300x_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_hs300x_raw_data_t hs300x_raw_data;

 rm_hs300x_data_t hs300x_data;

 uint8_t calculated_flag = 0;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_hs300x_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,333 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_HS300X_Open(&g_hs300x_ctrl, &g_hs300x_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if RM_HS300X_CFG_PROGRAMMING_MODE

 uint32_t sensor_id;

 g_flag = 0;

 /* Enter the programming mode. This must be called within 10ms after applying power.

*/

 RM_HS300X_ProgrammingModeEnter(&g_hs300x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Delay 120us. Entering the programming mode takes 120us. */

 R_BSP_SoftwareDelay(120, BSP_DELAY_UNITS_MICROSECONDS);

 /* Get the sensor ID */

 RM_HS300X_SensorIdGet(&g_hs300x_ctrl, &sensor_id);

 g_flag = 0;

 /* Change the humidity resolution */

 RM_HS300X_ResolutionChange(&g_hs300x_ctrl, RM_HS300X_HUMIDITY_DATA,

RM_HS300X_RESOLUTION_8BIT);

 while (0 == g_flag)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,334 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

 /* Wait callback */

 }

 /* Delay 14ms. Failure to comply with these times may result in data corruption and

introduce errors in sensor measurements. */

 R_BSP_SoftwareDelay(14, BSP_DELAY_UNITS_MILLISECONDS);

 g_flag = 0;

 /* Change the temperature resolution */

 RM_HS300X_ResolutionChange(&g_hs300x_ctrl, RM_HS300X_TEMPERATURE_DATA,

RM_HS300X_RESOLUTION_8BIT);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Delay 14ms. Failure to comply with these times may result in data corruption and

introduce errors in sensor measurements. */

 R_BSP_SoftwareDelay(14, BSP_DELAY_UNITS_MILLISECONDS);

 g_flag = 0;

 /* Exit the programming mode */

 RM_HS300X_ProgrammingModeExit(&g_hs300x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

#endif

 while (true)

 {

 g_flag = 0;

 /* Start Measurement */

 RM_HS300X_MeasurementStart(&g_hs300x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 do

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,335 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

 {

 g_flag = 0;

 /* Read ADC Data from HS300X */

 RM_HS300X_Read(&g_hs300x_ctrl, &hs300x_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Calculate Humidity and Temperatuere values from ADC data */

 err = RM_HS300X_DataCalculate(&g_hs300x_ctrl, &hs300x_raw_data,

&hs300x_data);

 if (FSP_SUCCESS == err)

 {

 calculated_flag = 1;

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Stale data */

 calculated_flag = 0;

 }

 else

 {

 handle_error(err);

 }

 } while (0 == calculated_flag);

 /* Wait 4 seconds. See table 4 on the page 6 of the datasheet. */

 R_BSP_SoftwareDelay(4, BSP_DELAY_UNITS_SECONDS);

 }

}

Data Structures

struct rm_hs300x_programmnig_mode_params_t

struct rm_hs300x_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,336 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

Data Structure Documentation

◆ rm_hs300x_programmnig_mode_params_t

struct rm_hs300x_programmnig_mode_params_t

HS300X programming mode process block

Data Fields

volatile bool enter Enter flag.

volatile bool blocking Blocking flag.

volatile bool communication_finished Communication flag for
blocking.

volatile rm_hs300x_event_t event Callback event.

◆ rm_hs300x_instance_ctrl_t

struct rm_hs300x_instance_ctrl_t

HS300x Control Block

Data Fields

uint32_t open

 Open flag.

rm_hs300x_cfg_t const * p_cfg

 Pointer to HS300X Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

rm_hs300x_programmnig_m
ode_params_t

programming_mode

 Programming mode flag.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,337 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

uint8_t buf [3]

 Buffer for I2C communications.

Function Documentation

◆ RM_HS300X_Open()

fsp_err_t RM_HS300X_Open (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

Opens and configures the HS300X Middle module. Implements rm_hs300x_api_t::open.

Example:

 err = RM_HS300X_Open(&g_hs300x_ctrl, &g_hs300x_cfg);

Return values
FSP_SUCCESS HS300X successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ RM_HS300X_Close()

fsp_err_t RM_HS300X_Close (rm_hs300x_ctrl_t *const p_api_ctrl)

Disables specified HS300X control block. Implements rm_hs300x_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,338 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

◆ RM_HS300X_MeasurementStart()

fsp_err_t RM_HS300X_MeasurementStart (rm_hs300x_ctrl_t *const p_api_ctrl)

This function should be called when start a measurement and when measurement data is stale
data. Sends the slave address to the hs300x and start a measurement. Implements
rm_hs300x_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_HS300X_Read()

fsp_err_t RM_HS300X_Read (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

Reads ADC data from HS300X. Implements rm_hs300x_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_HS300X_DataCalculate()

fsp_err_t RM_HS300X_DataCalculate (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_raw_data_t
*const p_raw_data, rm_hs300x_data_t *const p_hs300x_data)

Calculates humidity [RH] and temperature [Celsius] from ADC data. Implements
rm_hs300x_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,339 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

◆ RM_HS300X_ProgrammingModeEnter()

fsp_err_t RM_HS300X_ProgrammingModeEnter (rm_hs300x_ctrl_t *const p_api_ctrl)

This function must be called within 10ms after applying power to the sensor. Sends the commands
to enter the programming mode. After calling this function, please wait 120us. Implements
rm_hs300x_api_t::programmingModeEnter.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

◆ RM_HS300X_ResolutionChange()

fsp_err_t RM_HS300X_ResolutionChange (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t const resolution)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function.
Changes the sensor resolution. This function blocks for 120 us software delay plus 9 bytes on the
I2C bus. After calling this function, 14ms must be waited. Failure to comply with these times may
result in data corruption and introduce errors in sensor measurements. Implements
rm_hs300x_api_t::resolutionChange.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,340 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS300X Temperature/Humidity Sensor (rm_hs300x)

◆ RM_HS300X_SensorIdGet()

fsp_err_t RM_HS300X_SensorIdGet (rm_hs300x_ctrl_t *const p_api_ctrl, uint32_t *const
p_sensor_id)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function. Gets
the sensor ID. This function blocks for 240 us software delay plus 12 bytes on the I2C bus.
Implements rm_hs300x_api_t::sensorIdGet.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

◆ RM_HS300X_ProgrammingModeExit()

fsp_err_t RM_HS300X_ProgrammingModeExit (rm_hs300x_ctrl_t *const p_api_ctrl)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function. This
function must be called to return to normal sensor operation and perform measurements. Sends
the commands to exit the programming mode. Implements
rm_hs300x_api_t::programmingModeExit.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

5.2.16.5 HS400X Temperature/Humidity Sensor (rm_hs400x)
Modules » Sensor

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,341 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

Functions

fsp_err_t RM_HS400X_Open (rm_hs400x_ctrl_t *const p_api_ctrl,
rm_hs400x_cfg_t const *const p_cfg)

 Opens and configures the HS400X middleware module. Implements
rm_hs400x_api_t::open. More...

fsp_err_t RM_HS400X_Close (rm_hs400x_ctrl_t *const p_api_ctrl)

 Disables specified HS400X control block. Implements
rm_hs400x_api_t::close. More...

fsp_err_t RM_HS400X_MeasurementStart (rm_hs400x_ctrl_t *const p_api_ctrl)

 This function should be called when start one shot measurement.
Sends the command of measurement to HS400X and start a
measurement. This function supports No-Hold measurement and
Periodic measurement only. If Hold measurement is enabled, please
call RM_HS400X_Read() without calling this function. In Periodic
measurement, if the periodic measurement has already run,
RM_HS400X_EVENT_ERROR is received in callback because HS400x
device replies with NACK. Implements
rm_hs400x_api_t::measurementStart. More...

fsp_err_t RM_HS400X_MeasurementStop (rm_hs400x_ctrl_t *const p_api_ctrl)

 Stop a periodic measurement. Sends the command of stopping
periodic measurement to HS400X. This function supports periodic
measurement only. If a periodic measurement is not running,
RM_HS400X_EVENT_ERROR is received in callback because HS400x
device replies with NACK. Implements
rm_hs400x_api_t::measurementStop. More...

fsp_err_t RM_HS400X_Read (rm_hs400x_ctrl_t *const p_api_ctrl,
rm_hs400x_raw_data_t *const p_raw_data)

 Reads ADC data from HS400X. If Hold measurement is enabled,
HS400X holds the SCL line low during the measurement and releases
the SCL line when the measurement is complete. If No-Hold
measurement is enabled and the measurement result is not ready,
RM_HS400X_EVENT_MEASUREMENT_NOT_COMPLETE is received in
callback. Implements rm_hs400x_api_t::read. More...

fsp_err_t RM_HS400X_DataCalculate (rm_hs400x_ctrl_t *const p_api_ctrl,
rm_hs400x_raw_data_t *const p_raw_data, rm_hs400x_data_t *const
p_hs400x_data)

 Calculates temperature [Celsius] and humidity [RH] from ADC data.
Implements rm_hs400x_api_t::dataCalculate. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,342 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

Detailed Description

Middleware to implement the HS400X sensor interface. This module implements the HS400X
Middleware Interface.

Overview
Features

The HS400X sensor interface implementation has the following key features:

Starting a measurement at any time
Selecting one shot or a periodic measurement
Getting ADC data from the sensor
Calculating humidity and temperature value from getting ADC data

Limitations

Alert feature is not supported. It will be supported in the future.
I2C Master (r_sau_i2c) is not supported in Hold measurement. Hold measurement needs
clock stretching, but is not supported by SAU I2C.

Notifications

The minimum frequency for the SCL clock in Hold measurement is 200kHz. Please configure
I2C_MASTER_RATE_FAST or I2C_MASTER_RATE_FASTPLUS to "Rate" in I2C Master (r_iic_master) or
I2C Master (r_sci_i2c).

Configuration
Build Time Configurations for rm_hs400x

The following build time configurations are defined in fsp_cfg/rm_hs400x_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Measurement Type Hold
Measurement
No-Hold
Measurement
Periodic
Measurement

No-Hold Measurement Select measurement
type.

Data type Both humidity
and
temperature
Temperature
only

Both humidity and
temperature

Select getting
temperature only or
both humidity and
temperature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,343 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

Configurations for Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

This module can be added to the Stacks tab via New Stack > Sensor > HS400X
Temperature/Humidity Sensor (rm_hs400x).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_hs400x_sensor0 Module name.

Temperature
Resolution

8-bit
10-bit
12-bit
14-bit

14-bit Set resolution of
temperature.

Humidity Resolution 8-bit
10-bit
12-bit
14-bit

14-bit Set resolution of
humidity.

Frequency for Periodic
Measurement

0.4Hz
1Hz
2Hz

1Hz Set frequency for
periodic measurement.

Comms I2C Callback Name must be a valid
C symbol

hs400x_comms_i2c_cal
lback

A user COMMS I2C
callback function can
be provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
HS400x datasheet is here.
This module supports three measurement type :

Hold measurement
No-Hold measurement
Periodic measurement

Hold and no-hold measurements also support measuring temperature data only. However, a periodic
measurement only supports measuring both humidity and temperature data.

Hold Measurement

A hold measurement sequence consists of the following steps.

1. Wake up the HS400x series sensor from sleep mode by sending its I2C address with a write
bit, and initiate a measurement by sending the desired hold measurement command.

2. Change the direction of communication by sending a start bit, the HS400x I2C address, and
a read bit. The SCL line is held low by the sensor during the measurement process, which
prevents the master from initiating any communications with other slaves on the bus.

3. Once the requested measurement is completed by the HS400x series sensor, the SCL line is
released and the chip waits for the SCL clock signal to send the results. The sensor will then

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,344 / 5,560

https://www.renesas.com/document/dst/hs40xx-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

transmit the requested measurement data on the bus for the master to capture.

No-Hold Measurement

A no-hold measurement sequence consists of the following steps.

1. Wake up the HS400x series sensor from sleep mode by sending its I2C address with a write
bit, and initiate a measurement by sending the desired no-hold measurement command.

2. To read the result from the HS400x series sensor, the master has to send the chip its I2C
address and a read bit. If the measurement is completed and the result is ready, the chip
will send an ACK bit and starts to send the result over the bus. If the measurement is still in
progress, the chip will send a NACK bit and the master will need to try to read the result
again.

Periodic Measurement

The HS400x sensors can also be configured to measure at regular intervals without user
intervention. In this mode, the user can read the latest relative humidity / temperature data by
issuing a data fetch sequence, which consists of sending the HS400x I2C address with a read bit. The
sensor will then send the latest measurement result over the I2C bus.
When the periodic measurement mode is active, the only commands the chip will respond to are the
data fetch command, and a command to stop the periodic measurements. The command to stop
periodic measurements is issued by sending the I2C address with a write bit, followed by the
command 0x30. Sequence to Stop Periodic Measurements. Once the periodic measurements have
been stopped, the chip returns to sleep and is ready to accept all valid I2C commands.

Bus Initialization

The HS400X interface expects a I2C bus instance to be opened before opening any I2C device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Initialization

Initialize with RM_HS400X_Open().

From measurement start to data acquisition

After normal completion, start the each measurement.

Hold Measurement

In hold measurement, the HS400x series sensor holds the SCL line low during the measurement and
releases the SCL line when the measurement is complete.

1. Call RM_HS400X_Read(). This function will start a measurement and read the ADC data.
2. Wait until RM_HS400X_EVENT_SUCCESS is received.
3. Call RM_HS400X_DataCalculate(). This function will calculate temperature and humidity

data from the ADC data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,345 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

No-Hold Measurement

In no-hold measurement, the HS400x series sensor does not hold the SCL line low, and the master is
free to initiate communication with other slaves while the chip is performing the measurement.

1. Call RM_HS400X_MeasurementStart(). This function will start a measurement.
2. Wait until RM_HS400X_EVENT_SUCCESS is received.
3. Call RM_HS400X_Read(). This function will read the ADC data.
4. If the measurement result is not ready,

RM_HS400X_EVENT_MEASUREMENT_NOT_COMPLETE is received in callback. User should
call RM_HS400X_Read() again. If the measurement is completed,
RM_HS400X_EVENT_SUCCESS is received in callback.

5. Wait until RM_HS400X_EVENT_SUCCESS is received.
6. Call RM_HS400X_DataCalculate(). This function will calculate temperature and humidity

data from the ADC data.

Periodic Measurement

In periodic measurement, the HS400x sensors measure at regular intervals without user
intervention. If a periodic measurement is running, the resolution and the frequency cannot be
changed. please stop the periodic measurement with RM_HS400X_MeasurementStop().

1. Call RM_HS400X_MeasurementStart(). This function will start a measurement. If the function
is called once, a second call is not required.

2. Wait until RM_HS400X_EVENT_SUCCESS is received.
3. Wait for frequency for periodic measurement.
4. Call RM_HS400X_Read(). This function will read the ADC data.
5. Wait until RM_HS400X_EVENT_SUCCESS is received.
6. Call RM_HS400X_DataCalculate(). This function will calculate temperature and humidity

data from the ADC data.

Examples
Basic Example

This is a basic examples of minimal use of HS400X sensor implementation in an application.

void rm_hs400x_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_hs400x_raw_data_t hs400x_raw_data;

 rm_hs400x_data_t hs400x_data;

 bool measurement_complete = false;

 bool calculated = false;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_hs400x_cfg.p_comms_instance->p_cfg->p_extend;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,346 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,347 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

 err = RM_HS400X_Open(&g_hs400x_ctrl, &g_hs400x_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if 3 == RM_HS400X_CFG_MEASUREMENT_TYPE // Periodic Measurement

 g_flag = 0;

 /* Start a periodic measurement */

 RM_HS400X_MeasurementStart(&g_hs400x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

#endif

 while (true)

 {

#if 2 == RM_HS400X_CFG_MEASUREMENT_TYPE // No-Hold Measurement

 g_flag = 0;

 /* Start one shot measurement */

 RM_HS400X_MeasurementStart(&g_hs400x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

#elif 3 == RM_HS400X_CFG_MEASUREMENT_TYPE // Periodic Measurement

 /* Wait Periodic measurement period. See table 12 on the page 20 of the datasheet.

*/

 switch (g_hs400x_cfg.frequency)

 {

 case RM_HS400X_PERIODIC_MEASUREMENT_FREQUENCY_2HZ:

 R_BSP_SoftwareDelay(500, BSP_DELAY_UNITS_MILLISECONDS);

 break;

 case RM_HS400X_PERIODIC_MEASUREMENT_FREQUENCY_1HZ:

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 break;

 case RM_HS400X_PERIODIC_MEASUREMENT_FREQUENCY_0P4HZ:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,348 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

 R_BSP_SoftwareDelay(2500, BSP_DELAY_UNITS_MILLISECONDS);

 break;

 default:

 assert(false);

 break;

 }

#else

#endif

 do

 {

 do

 {

 g_flag = 0;

 /* Read ADC Data from HS400X */

 RM_HS400X_Read(&g_hs400x_ctrl, &hs400x_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

#if 2 == RM_HS400X_CFG_MEASUREMENT_TYPE // No-Hold Measurement

 if (RM_HS400X_EVENT_MEASUREMENT_NOT_COMPLETE == g_hs400x_event)

 {

 /* RM_HS400X_EVENT_MEASUREMENT_NOT_COMPLETE is received */

 measurement_complete = false;

 }

 else

 {

 /* RM_HS400X_EVENT_SUCCESS is received. */

 measurement_complete = true;

 }

#else

 measurement_complete = true;

#endif

 } while (false == measurement_complete);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,349 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

 /* Calculate Humidity and Temperature values from ADC data */

 err = RM_HS400X_DataCalculate(&g_hs400x_ctrl, &hs400x_raw_data,

&hs400x_data);

 if (FSP_SUCCESS == err)

 {

 calculated = true;

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* CRC error */

 calculated = false;

 }

 else

 {

 handle_error(err);

 }

 } while (false == calculated);

 }

}

Data Structures

struct rm_hs400x_init_process_params_t

struct rm_hs400x_instance_ctrl_t

Data Structure Documentation

◆ rm_hs400x_init_process_params_t

struct rm_hs400x_init_process_params_t

HS400X initialization process block

Data Fields

volatile bool communication_finished Communication flag for
blocking.

volatile rm_hs400x_event_t event Callback event.

◆ rm_hs400x_instance_ctrl_t

struct rm_hs400x_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,350 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

HS400x Control Block

Data Fields

uint32_t open

 Open flag.

rm_hs400x_cfg_t const * p_cfg

 Pointer to HS400X Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

rm_hs400x_init_process_par
ams_t

init_process_params

 For the initialization process.

uint8_t resolution_register

 Register for temperature and humidity measurement resolution
settings.

uint8_t periodic_measurement_register [2]

 Register for periodic measurement settings.

volatile bool periodic_measurement_stop

 Flag for stop of periodic measurement.

volatile bool no_hold_measurement_read

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,351 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

 Flag for data read of No-Hold measurement.

uint8_t write_buf [18]

 Buffer for data write.

void(* p_comms_callback)(rm_hs400x_callback_args_t *p_args)

 I2C Communications callback.

Function Documentation

◆ RM_HS400X_Open()

fsp_err_t RM_HS400X_Open (rm_hs400x_ctrl_t *const p_api_ctrl, rm_hs400x_cfg_t const *const
p_cfg)

Opens and configures the HS400X middleware module. Implements rm_hs400x_api_t::open.

Example:

 err = RM_HS400X_Open(&g_hs400x_ctrl, &g_hs400x_cfg);

Return values
FSP_SUCCESS HS400X successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,352 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

◆ RM_HS400X_Close()

fsp_err_t RM_HS400X_Close (rm_hs400x_ctrl_t *const p_api_ctrl)

Disables specified HS400X control block. Implements rm_hs400x_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_HS400X_MeasurementStart()

fsp_err_t RM_HS400X_MeasurementStart (rm_hs400x_ctrl_t *const p_api_ctrl)

This function should be called when start one shot measurement. Sends the command of
measurement to HS400X and start a measurement. This function supports No-Hold measurement
and Periodic measurement only. If Hold measurement is enabled, please call RM_HS400X_Read()
without calling this function. In Periodic measurement, if the periodic measurement has already
run, RM_HS400X_EVENT_ERROR is received in callback because HS400x device replies with NACK.
Implements rm_hs400x_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

FSP_ERR_UNSUPPORTED Hold measurement is unsupported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,353 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

◆ RM_HS400X_MeasurementStop()

fsp_err_t RM_HS400X_MeasurementStop (rm_hs400x_ctrl_t *const p_api_ctrl)

Stop a periodic measurement. Sends the command of stopping periodic measurement to HS400X.
This function supports periodic measurement only. If a periodic measurement is not running,
RM_HS400X_EVENT_ERROR is received in callback because HS400x device replies with NACK.
Implements rm_hs400x_api_t::measurementStop.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

FSP_ERR_UNSUPPORTED Hold and No-Hold measurement are
unsupported.

◆ RM_HS400X_Read()

fsp_err_t RM_HS400X_Read (rm_hs400x_ctrl_t *const p_api_ctrl, rm_hs400x_raw_data_t *const
p_raw_data)

Reads ADC data from HS400X. If Hold measurement is enabled, HS400X holds the SCL line low
during the measurement and releases the SCL line when the measurement is complete. If No-Hold
measurement is enabled and the measurement result is not ready,
RM_HS400X_EVENT_MEASUREMENT_NOT_COMPLETE is received in callback. Implements
rm_hs400x_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,354 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > HS400X Temperature/Humidity Sensor (rm_hs400x)

◆ RM_HS400X_DataCalculate()

fsp_err_t RM_HS400X_DataCalculate (rm_hs400x_ctrl_t *const p_api_ctrl, rm_hs400x_raw_data_t
*const p_raw_data, rm_hs400x_data_t *const p_hs400x_data)

Calculates temperature [Celsius] and humidity [RH] from ADC data. Implements
rm_hs400x_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

5.2.16.6 OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]
Modules » Sensor

Functions

fsp_err_t RM_OB1203_Open (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_cfg_t const *const p_cfg)

 Opens and configures the OB1203 Middle module. Implements
rm_ob1203_api_t::open. More...

fsp_err_t RM_OB1203_Close (rm_ob1203_ctrl_t *const p_api_ctrl)

 Disables specified OB1203 control block. Implements
rm_ob1203_api_t::close. More...

fsp_err_t RM_OB1203_MeasurementStart (rm_ob1203_ctrl_t *const p_api_ctrl)

 Start measurement. Implements
rm_ob1203_api_t::measurementStart. More...

fsp_err_t RM_OB1203_MeasurementStop (rm_ob1203_ctrl_t *const p_api_ctrl)

 Stop measurement. If device interrupt is enabled, interrupt bits are
cleared after measurement stop. If PPG mode, FIFO information is
also reset after measurement stop. In RTOS and
Light/Proximity/Light Proximity mode, if device interrupt is enabled,
blocks 2 bytes on the I2C bus. In RTOS and PPG mode, if device
interrupt is enabled, blocks 6 bytes on the I2C bus. If device interrupt

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,355 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

is disabled, blocks 4 bytes on the I2C bus. Implements
rm_ob1203_api_t::measurementStop. More...

fsp_err_t RM_OB1203_LightRead (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data,
rm_ob1203_light_data_type_t type)

 Reads Light ADC data from OB1203 device. If device interrupt is
enabled, interrupt bits are cleared after data read. In RTOS and Light
mode, if device interrupt is enabled, blocks 2 bytes on the I2C bus.
Implements rm_ob1203_api_t::lightRead. More...

fsp_err_t RM_OB1203_LightDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_light_data_t
*const p_ob1203_data)

 Calculate light data from raw data. Implements
rm_ob1203_api_t::lightDataCalculate. More...

fsp_err_t RM_OB1203_ProxRead (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data)

 Reads Proximity ADC data from OB1203 device. If device interrupt is
enabled, interrupt bits are cleared after data read. In RTOS and
Proximity mode, if device interrupt is enabled, blocks 2 bytes on the
I2C bus. Implements rm_ob1203_api_t::proxRead. More...

fsp_err_t RM_OB1203_ProxDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_prox_data_t
*const p_ob1203_data)

 Calculate proximity data from raw data. Implements
rm_ob1203_api_t::proxDataCalculate. More...

fsp_err_t RM_OB1203_PpgRead (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, uint8_t const
number_of_samples)

 Reads PPG ADC data from OB1203 device. One sample requires
three bytes. 0 cannot set to the number of samples. Implements
rm_ob1203_api_t::ppgRead. More...

fsp_err_t RM_OB1203_PpgDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_ppg_data_t
*const p_ob1203_data)

 Calculate PPG data from raw data. Implements
rm_ob1203_api_t::ppgDataCalculate. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,356 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

fsp_err_t RM_OB1203_GainSet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_gain_t const gain)

 Set gain. This function should be called after calling
RM_OB1203_MeasurementStop(). In RTOS and Light Proximity mode,
blocks 2 bytes on the I2C bus. Implements rm_ob1203_api_t::gainSet
. More...

fsp_err_t RM_OB1203_LedCurrentSet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_led_current_t const led_current)

 Set currents. This function should be called after calling
RM_OB1203_MeasurementStop(). Implements
rm_ob1203_api_t::ledCurrentSet. More...

fsp_err_t RM_OB1203_DeviceInterruptCfgSet (rm_ob1203_ctrl_t *const
p_api_ctrl, rm_ob1203_device_interrupt_cfg_t const interrupt_cfg)

 Set device interrupt configurations. This function should be called
after calling RM_OB1203_MeasurementStop(). Implements
rm_ob1203_api_t::deviceInterruptCfgSet. More...

fsp_err_t RM_OB1203_FifoInfoGet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_fifo_info_t *const p_fifo_info)

 Get FIFO information from OB1203 device. Implements
rm_ob1203_api_t::fifoInfoGet. More...

fsp_err_t RM_OB1203_DeviceStatusGet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_device_status_t *const p_status)

 Get device status from OB1203 device. Clear all interrupt bits.
Implements rm_ob1203_api_t::deviceStatusGet. More...

Detailed Description

Middleware to implement the OB1203 sensor interface. This module implements the OB1203
Middleware Interface.

Overview
OB1203 is EOL.

This module provides APIs for configuring and controlling the OB1203 sensor operation modes.
Supported OB1203 sensor operation modes are below.

Light mode
Proximity mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,357 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Light Proximity mode
PPG mode

Features

The OB1203 sensor interface implementation has the following key features:

Initialize the sensor for measurement
Start and stop a measurement at any time
Get the ADC data from the sensor
Calculate the Light/Proximity/PPG values.
Software reset

Configuration
Build Time Configurations for rm_ob1203

The following build time configurations are defined in fsp_cfg/rm_ob1203_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203)
[Deprecated]

This module can be added to the Stacks tab via New Stack > Sensor > OB1203 Light/Proximity/PPG
Sensor (rm_ob1203) [Deprecated].

Configuration Options Default Description

Name Name must be a valid
C symbol

g_ob1203_sensor0 Module name.

Semaphore Timeout
(RTOS only)

Value must be a non-
negative integer

0xFFFFFFFF Set timeout for
blocking in using RTOS.

Comms I2C Callback Name must be a valid
C symbol

ob1203_comms_i2c_cal
lback

A user COMMS I2C
callback function can
be provided.

IRQ Callback Name must be a valid
C symbol

ob1203_irq_callback A user IRQ callback
function can be
provided.

Configurations for Sensor > OB1203 Light mode (rm_ob1203)

Configuration Options Default Description

Operation Mode LS mode
CS mode

LS mode Set operation mode.

Interrupt Type Threshold
Variation

Threshold Set interrupt type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,358 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Interrupt Source Clear channel
Green channel
Red channel
(CS mode only)
Blue channel
(CS mode only)

Clear channel Set interrupt source.

The Number of Similar
Consecutive Interrupt
Events

Value must be a non-
negative integer

0x02 The number of similar
consecutive Light
mode interrupt events
that must occur before
the interrupt is
asserted (4bits). Min =
0x0 and Max = 0xF

Sleep after Interrupt Enabled
Disabled

Disabled Set sleep after
interrupt.

Gain 1
3
6

3 Set gain for detection
range.

Resolution and
Measurement Period

Refer to the RA
Configuration tool for
available options.

Resolution:18bit.
Measurement
Period:100ms

Set resolution and
measurement period.

Upper Threshold Value must be a non-
negative integer

0x00CCC Set upper threshold
value (20bits). Min =
0x00000 and Max =
0xFFFFF.

Lower Threshold Value must be a non-
negative integer

0x00000 Set lower threshold
value (20bits). Min =
0x00000 and Max =
0xFFFFF.

Variance Threshold +/- 8 counts
+/- 16 counts
+/- 32 counts
+/- 64 counts
+/- 128 counts
+/- 256 counts
+/- 512 counts
+/- 1024 counts

+/- 128 counts Set variance threshold.
New data varies by
selected counts
compared to previous
result.

Configurations for Sensor > OB1203 Proximity mode (rm_ob1203)

Configuration Options Default Description

Interrupt Type Normal
Logic

Normal Set interrupt type.

The Number of Similar
Consecutive Interrupt
Events

Value must be a non-
negative integer

0x02 The number of similar
consecutive Proximity
mode interrupt events
that must occur before
the interrupt is
asserted (4bits). Min =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,359 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

0x0 and Max = 0xF

Sleep after Interrupt Enabled
Disabled

Disabled Set sleep after
interrupt.

Gain 1
1.5
2
4

1 Set gain of ADC output
and noise.

LED Current Value must be a non-
negative integer

0x100 Set Current for LED
(10bits). Min = 0x000
and Max = 0x3FF

LED Order IR LED first, Red
LED second
Red LED first, IR
LED second

IR LED first, Red LED
second

Set LED order.

LED Analog
Cancellation

Enabled (50%
offset of the full-
scale value)
Disabled

Disabled Set analog cancellation
level.

LED Digital
Cancellation

Value must be a non-
negative integer

0x100 Set digital cancellation
level (16bits). Min =
0x0000 and Max =
0xFFFF

Number of LED pulses 1 pulse
2 pulses
4 pulses
8 pulses
16 pulses
32 pulses

8 pulses Set number of LED
pulses.

Pulse Width and
Measurement Period

Refer to the RA
Configuration tool for
available options.

Pulse width:42us.
Measurement
Period:100ms

Set pulse width and
measurement period.

Moving Average Enabled
Disabled

Disabled Set moving average.

Hysteresis Value must be a non-
negative integer

0x00 Set hysteresis level
(7bits). Min = 0x00 and
Max = 0x7F.

Upper Threshold Value must be a non-
negative integer

0x0600 Set upper threshold
value (16bits). Min =
0x0000 and Max =
0xFFFF.

Lower Threshold Value must be a non-
negative integer

0x0000 Set lower threshold
value (16bits). Min =
0x0000 and Max =
0xFFFF.

Configurations for Sensor > OB1203 PPG mode (rm_ob1203)

Configuration Options Default Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,360 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Operation Mode PPG1 mode
PPG2 mode

PPG2 mode Set operation mode.

Interrupt Type Data
FIFO Almost Full

Data Set interrupt type.

Gain 1
1.5
2
4

1 Set gain of ADC output
and noise.

IR LED Current Value must be a non-
negative integer

0x366 Set Current for IR LED
(10bits). Min = 0x000
and Max = 0x3FF

Red LED Current Value must be a non-
negative integer

0x1B3 Set Current for Red
LED (9bits). Min =
0x000 and Max =
0x1FF

Power Save Mode Enabled
Disabled

Disabled Set power save mode.

LED Order IR LED first, Red
LED second
Red LED first, IR
LED second

IR LED first, Red LED
second

Set LED order.

IR LED Analog
Cancellation

Enabled (50%
offset of the full-
scale value)
Disabled

Disabled Set analog cancellation
level.

Red LED Analog
Cancellation

Enabled (50%
offset of the full-
scale value)
Disabled

Disabled Set analog cancellation
level.

Number of Averaged
PPG Samples

1 (No
averaging)
2 consecutives
samples are
averaged
4 consecutives
samples are
averaged
8 consecutives
samples are
averaged
16 consecutives
samples are
averaged
32 consecutives
samples are
averaged

8 consecutives samples
are averaged

Set number of
averaged for PPG
samples.

Pulse Width and
Measurement Period

Refer to the RA
Configuration tool for

Pulse width:130us.
Measurement

Set pulse width and
measurement period.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,361 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

available options. Period:1.25ms

FIFO Rollover Enabled
Disabled

Enabled Set FIFO rollover.

FIFO Almost Full Value Value must be a non-
negative integer

0x0C Set the number of
empty FIFO words
when the FIFO almost
full interrupt is issued
(4bits). Min = 0x0 and
Max = 0xF. In PPG2
Mode, only even values
must be used.

Configurations for Sensor > OB1203 Light Proximity mode (rm_ob1203)

Configuration Options Default Description

General

Device Interrupt Light mode
Proximity mode

Light mode Select an operation
mode using device
interrupt.

Light mode

Operation Mode LS mode
CS mode

LS mode Set operation mode.

Interrupt Type Threshold
Variation

Threshold Set interrupt type.

Interrupt Source Clear channel
Green channel
Red channel
(CS mode only)
Blue channel
(CS mode only)

Clear channel Set interrupt source.

The Number of Similar
Consecutive Interrupt
Events

Value must be a non-
negative integer

0x02 The number of similar
consecutive Light
mode interrupt events
that must occur before
the interrupt is
asserted (4bits). Min =
0x0 and Max = 0xF

Sleep after Interrupt Enabled
Disabled

Disabled Set sleep after
interrupt.

Gain 1
3
6

3 Set gain for detection
range.

Resolution and
Measurement Period

Refer to the RA
Configuration tool for
available options.

Resolution:18bit.
Measurement
Period:100ms

Set resolution and
measurement period.

Upper Threshold Value must be a non-
negative integer

0x00CCC Set upper threshold
value (20bits). Min =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,362 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

0x00000 and Max =
0xFFFFF.

Lower Threshold Value must be a non-
negative integer

0x00000 Set lower threshold
value (20bits). Min =
0x00000 and Max =
0xFFFFF.

Variance Threshold +/- 8 counts
+/- 16 counts
+/- 32 counts
+/- 64 counts
+/- 128 counts
+/- 256 counts
+/- 512 counts
+/- 1024 counts

+/- 128 counts Set variance threshold.
New data varies by
selected counts
compared to previous
result.

Proximity mode

Interrupt Type Normal
Logic

Normal Set interrupt type.

The Number of Similar
Consecutive Interrupt
Events

Value must be a non-
negative integer

0x02 The number of similar
consecutive Proximity
mode interrupt events
that must occur before
the interrupt is
asserted (4bits). Min =
0x0 and Max = 0xF

Sleep after Interrupt Enabled
Disabled

Disabled Set sleep after
interrupt.

Gain 1
1.5
2
4

1 Set gain of ADC output
and noise.

LED Current Value must be a non-
negative integer

0x100 Set Current for LED
(10bits). Min = 0x000
and Max = 0x3FF

LED Order IR LED first, Red
LED second
Red LED first, IR
LED second

IR LED first, Red LED
second

Set LED order.

LED Analog
Cancellation

Enabled (50%
offset of the full-
scale value)
Disabled

Disabled Set analog cancellation
level.

LED Digital
Cancellation

Value must be a non-
negative integer

0x100 Set digital cancellation
level (16bits). Min =
0x0000 and Max =
0xFFFF

Number of LED pulses 1 pulse
2 pulses

8 pulses Set number of LED
pulses.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,363 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

4 pulses
8 pulses
16 pulses
32 pulses

Pulse Width and
Measurement Period

Refer to the RA
Configuration tool for
available options.

Pulse width:42us.
Measurement
Period:100ms

Set pulse width and
measurement period.

Moving Average Enabled
Disabled

Disabled Set moving average.

Hysteresis Value must be a non-
negative integer

0x00 Set hysteresis level
(7bits). Min = 0x00 and
Max = 0x7F.

Upper Threshold Value must be a non-
negative integer

0x0600 Set upper threshold
value (16bits). Min =
0x0000 and Max =
0xFFFF.

Lower Threshold Value must be a non-
negative integer

0x0000 Set lower threshold
value (16bits). Min =
0x0000 and Max =
0xFFFF.

Pin Configuration

This module uses I2C Master, SCI I2C and IRQ drivers. Therefore, this module uses SDA and SCL pins
of I2C Master and SCI I2C and an IRQ pin.

Usage Notes
OB1203 datasheet is here.
The OB1203 has four operation modes.

Light mode

Light mode has two operation modes.

Operation
mode

Red Green Blue Clear Comp *1

LS mode ✓ ✓ ✓

CS mode ✓ ✓ ✓ ✓ ✓

*1 : Temperature compensation data

Light mode features are below.

High lux accuracy over different light sources
Absolute sensitivity: 0.06 lux to > 150000 lux
Output resolution: 13 to 20 bits

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,364 / 5,560

https://www.renesas.com/jp/ja/document/dst/ob1203-datasheet?language=en&r=460026

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Three LS/CS gain modes: x1 to x6
Highly linear output, 50Hz/60Hz light and fluorescent light flicker immunity
Four parallel channels (red, green, blue, clear)
Accurate Correlated Color Temperature (CCT)
Accurate CIE 1931 XYZ (RGB) color measurement
Very stable spectral response over angle of light incidence

Proximity mode

Proximity mode features are below.

Integrated and trimmed LED source, driver, and photodetector
Programmable pulsed LED up to 250mA output current
High resolution (12 to 16 bits)
Object movement detection (in/out)
Ambient light suppression > 100klx sun light
Crosstalk cancelation (analog and digital)

PPG mode

PPG mode has two operation modes.

Operation mode Discription

PPG1 mode Only one LED is used. This mode allows
determination of parameters related to heart
rate with an appropriate algorithm

PPG2 mode Two LED are used. Second LED is used as a
transmitter. This mode supports further analysis,
such as SpO2 and respiration rate
determination.

PPG mode features are below.

SpO2 measurement behind visibly dark, IR transmissive ink
Industry's smallest optical biosensor module
Fully integrated and trimmed module, including two LEDs, 250mA maximum drive current,
and photodetectors
Output resolution PPG: 16 to 18 bits
Data stored in 18-bit wide, 32-sample FIFO memory
Integrated averaging function for higher signal-to-noise ratio(SNR) and data rate reduction
Programmable measurement rate: up to 3200 samples per second
High SNR

Light Proximity mode

Light mode and Proximity mode can be used in parallel.

Bus Initialization

The OB1203 interface expects a bus instance to be opened before opening any OB1203 device. The
interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,365 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

If an RTOS is used, blocking and bus lock for I2C bus are available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Initialization

Initialize with RM_OB1203_Open().

From measurement start to data acquisition

After normal completion, start the measurement with RM_OB1203_MeasurementStart().

Light mode

If IRQ is enabled

1. Wait until RM_OB1203_EVENT_THRESHOLD_CROSSED is received via IRQ callback.
2. Call RM_OB1203_LightRead(). This function will read the ADC data and clear the interrupt

bits.
3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_LightDataCalculate(). This function will calculate light data from the ADC

data.

If IRQ is disabled

1. Wait for measurement period configured.
2. Call RM_OB1203_LightRead(). This function will read the ADC data.
3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_LightDataCalculate(). This function will calculate light data from the ADC

data.

Proximity mode

If IRQ is enabled

1. Wait until RM_OB1203_EVENT_THRESHOLD_CROSSED or RM_OB1203_EVENT_OBJECT_NEAR
is received via IRQ callback.

2. Call RM_OB1203_ProxRead(). This function will read the ADC data and clear the interrupt
bits.

3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_ProxDataCalculate(). This function will calculate proximity data from the

ADC data.

If IRQ is disabled

1. Wait for measurement period configured.
2. Call RM_OB1203_ProxRead(). This function will read the ADC data.
3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_ProxDataCalculate(). This function will calculate proximity data from the

ADC data.

PPG mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,366 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

If IRQ is enabled

1. Wait until RM_OB1203_EVENT_MEASUREMENT_COMPLETE is received via IRQ callback.
2. Call RM_OB1203_PpgRead(). This function will read the ADC data and clear the interrupt

bits. In PPG2 mode, the number of read FIFO samples must be even value because two
samples is one pair.

3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_PpgDataCalculate(). This function will calculate PPG data from the ADC

data.

If IRQ is disabled

1. Wait for measurement period configured.
2. Call RM_OB1203_PpgRead(). This function will read the ADC data. In PPG2 mode, the

number of read FIFO samples must be even value because two samples is one pair.
3. Wait until RM_OB1203_EVENT_SUCCESS is received.
4. Call RM_OB1203_PpgDataCalculate(). This function will calculate PPG data from the ADC

data.

Light Proximity mode

Combination of the above Light mode and Proximity mode.

Getting device status

Call RM_OB1203_DeviceStatusGet(). This function will get device status over I2C.

If power_on_reset_occur is true, the part has had a power-up event, either because the part
was turned on or because there was a power-supply voltage disturbance.
If light_interrupt_occur is true, Light mode interrupt condition has occurred.
If light_measurement_complete is true, Light mode measurement is complete.
If ts_measurement_complete is true, TS measurement is complete.
If fifo_afull_interrupt_occur is true, FIFO almost full interrupt condition has occurred.
If ppg_measurement_complete is true, PPG mode measurement is complete.
If object_near is true, an object is near.
If prox_interrupt_occur is true, Proximity mode interrupt condition has occurred.
If prox_measurement_complete is true, Proximity mode measurement is complete.

Clearing interrupt bits

If interrupt bits are needed to clear without calling RM_OB1203_LightRead(), RM_OB1203_ProxRead()
, RM_OB1203_PpgRead() and RM_OB1203_MeasurementStop(), please call
RM_OB1203_DeviceStatusGet(). Interrupt bits are reset by STATUS_0 and STATUS_1 registers read.

Sleep after interrupt

Sleep after interrupt is valid in Light mode and Proximity mode. If a sleep after interrupt bit are set, a
measurement will be stopped after an interrupt occurs. After STATUS_0 and STATUS_1 registers are
read, a measurement will be started. please call RM_OB1203_DeviceStatusGet().

PPG FIFO

PPG FIFO data is stored in 18-bit wide, 32-sample FIFO memory.
The FIFO almost full interrupt is triggered when a certain number of free FIFO registers are
remaining.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,367 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

If FIFO informations (write index, read index, overflow counter, unread_samples) are got, Call
RM_OB1203_FifoInfoGet().

write_index is the FIFO index where the next sample of PPG data will be written in the FIFO.
read_index is the index of the next sample to be read from the FIFO_DATA register.
overflow_counter is the number of old samples (up to 15) which are overwritten by new
data. If the FIFO Rollover is enabled, the FIFO overflow counter counts.
unread_samples is the number of unread FIFO samples, which can be calculated by write
index and read index.

Reconfiguration

The interface supports the following APIs for reconfiguration.

API Discription

RM_OB1203_GainSet() Set gain

RM_OB1203_LedCurrentSet() Set LED currents.
Proximity mode and Light Proximity mode: LED
Current is 10bits. Min = 0x000 and Max = 0x3FF
PPG mode: IR/Red LED currents are 10bits/9bits.
Min = 0x000/0x000 and Max = 0x3FF/0x1FF

RM_OB1203_DeviceInterruptCfgSet() Set interrupt configurations.

Relationship between APIs and registers

The relationship between APIs and registers accessed by the API is below.

API Registers

RM_OB1203_MeasurementStart() MAIN_CTRL_0 and MAIN_CTRL_1

RM_OB1203_MeasurementStop() MAIN_CTRL_0, MAIN_CTRL_1 , STATUS_0,
STATUS_1, FIFO_WR_PTR, FIFO_RD_PTR and
FIFO_OVF_CNT

RM_OB1203_LightRead() LS_CLEAR_DATA, LS_GREEN_DATA,
LS_BULE_DATA, LS_RED_DATA, COMP_DATA,
STATUS_0 and STATUS_1

RM_OB1203_ProxRead() PS_DATA, STATUS_0 and STATUS_1

RM_OB1203_PpgRead() FIFO_DATA

RM_OB1203_DeviceStatusGet() STATUS_0 and STATUS_1

RM_OB1203_GainSet() LS_GAIN and PPG_PS_GAIN

RM_OB1203_LedCurrentSet() PS_LED_CURR, PPG_IRLED_CURR and
PPG_RLED_CURR

RM_OB1203_DeviceInterruptCfgSet() INT_CFG_0, INT_CFG_1 and INT_PST

RM_OB1203_FifoInfoGet() FIFO_WR_PTR, FIFO_RD_PTR and FIFO_OVF_CNT

Notifications

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,368 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

The application note [R01AN6311] using this module has an algorithm for biometric data calculation.
The algorithm has the constraint of sampling rate (default: 100 samples per second). Please refer to
the application note [R36AN0001EU] and OB1203 sensor page
(https://www.renesas.com/jp/en/products/sensor-products/biosensors/ob1203-heart-rate-blood-
oxygen-concentration-pulse-oximetry-proximity-light-and-color-sensor)
R01AN6311 : https://www.renesas.com/document/apn/ob1203-sample-application-sample-code
R36AN0001EU : https://www.renesas.com/document/apn/ob1203-pulse-oximeter-algorithm-
spo2-heart-rate-and-respiration-rate

If multiple operation modes is used with a single OB1203 sensor device, rm_ob1203 modules need to
be used while switching between operation modes because modules cannot work in parallel.
Threfore, a current rm_ob1203 module must be closed with RM_OB1203_Close() before another
rm_ob1203 module is opened with RM_OB1203_Open().

Examples
Basic Example

These are basic examples of minimal use of OB1203 sensor implementation in an application.

Light mode

void rm_ob1203_light_mode_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_ob1203_raw_data_t raw_data;

 rm_ob1203_light_data_t ob1203_data;

#if 0 == RM_OB1203_EXAMPLE_IRQ_ENABLE

 rm_ob1203_device_status_t device_status;

#endif

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_ob1203_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,369 / 5,560

https://www.renesas.com/jp/en/products/sensor-products/biosensors/ob1203-heart-rate-blood-oxygen-concentration-pulse-oximetry-proximity-light-and-color-sensor
https://www.renesas.com/jp/en/products/sensor-products/biosensors/ob1203-heart-rate-blood-oxygen-concentration-pulse-oximetry-proximity-light-and-color-sensor
https://www.renesas.com/document/apn/ob1203-sample-application-sample-code
https://www.renesas.com/document/apn/ob1203-pulse-oximeter-algorithm-spo2-heart-rate-and-respiration-rate
https://www.renesas.com/document/apn/ob1203-pulse-oximeter-algorithm-spo2-heart-rate-and-respiration-rate

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_OB1203_Open(&g_ob1203_ctrl, &g_ob1203_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 g_i2c_flag = 0;

 /* Start measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,370 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 /* Wait callback */

 }

 while (true)

 {

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Wait IRQ callback */

 while (0 == g_irq_flag)

 {

 /* Wait callback */

 }

 g_irq_flag = 0;

#else

 do

 {

 g_i2c_flag = 0;

 /* Get device status */

 RM_OB1203_DeviceStatusGet(&g_ob1203_ctrl, &device_status);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 } while (false == device_status.light_measurement_complete);

#endif

 g_i2c_flag = 0;

 /* Read ADC data */

 RM_OB1203_LightRead(&g_ob1203_ctrl, &raw_data, RM_OB1203_LIGHT_DATA_TYPE_ALL);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /* Calculate light data */

 RM_OB1203_LightDataCalculate(&g_ob1203_ctrl, &raw_data, &ob1203_data);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,371 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Proximity mode

void rm_ob1203_prox_mode_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_ob1203_raw_data_t raw_data;

 rm_ob1203_prox_data_t ob1203_data;

#if 0 == RM_OB1203_EXAMPLE_IRQ_ENABLE

 rm_ob1203_device_status_t device_status;

#endif

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_ob1203_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,372 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_OB1203_Open(&g_ob1203_ctrl, &g_ob1203_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 g_i2c_flag = 0;

 /* Start measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 while (true)

 {

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Wait IRQ callback */

 while (0 == g_irq_flag)

 {

 /* Wait callback */

 }

 g_irq_flag = 0;

#else

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,373 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 do

 {

 g_i2c_flag = 0;

 /* Get device status */

 RM_OB1203_DeviceStatusGet(&g_ob1203_ctrl, &device_status);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 } while (false == device_status.prox_measurement_complete);

#endif

 g_i2c_flag = 0;

 /* Read ADC data */

 RM_OB1203_ProxRead(&g_ob1203_ctrl, &raw_data);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /* Calculate proximity data */

 RM_OB1203_ProxDataCalculate(&g_ob1203_ctrl, &raw_data, &ob1203_data);

 }

}

Light Proximity mode

void rm_ob1203_light_prox_mode_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_ob1203_raw_data_t raw_data;

 rm_ob1203_light_data_t ob1203_light_data;

 rm_ob1203_prox_data_t ob1203_prox_data;

#if 0 == RM_OB1203_EXAMPLE_IRQ_ENABLE

 rm_ob1203_device_status_t device_status;

#endif

 /* Open the I2C bus if it is not already open. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,374 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_ob1203_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,375 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 #endif

 }

#endif

 err = RM_OB1203_Open(&g_ob1203_ctrl, &g_ob1203_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 g_i2c_flag = 0;

 /* Start measurement in both Light and Proximity modes */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /*

 * Example :

 * Device interrupt : Proximity mode

 * Measurement peroid(Light mode) : 50ms

 * Measurement peroid(Proximity mode) : 100ms

 */

 while (true)

 {

 /* Delay 50ms for Light mode */

 R_BSP_SoftwareDelay(RM_OB1203_EXAMPLE_DELAY_50MS, BSP_DELAY_UNITS_MILLISECONDS);

 g_i2c_flag = 0;

 /* Read Light ADC data */

 RM_OB1203_LightRead(&g_ob1203_ctrl, &raw_data, RM_OB1203_LIGHT_DATA_TYPE_ALL);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /* Calculate Light data */

 RM_OB1203_LightDataCalculate(&g_ob1203_ctrl, &raw_data, &ob1203_light_data);

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Wait IRQ callback */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,376 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 while (0 == g_irq_flag)

 {

 /* Wait callback */

 }

 g_irq_flag = 0;

#else

 do

 {

 g_i2c_flag = 0;

 /* Get device status */

 RM_OB1203_DeviceStatusGet(&g_ob1203_ctrl, &device_status);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 } while (false == device_status.prox_measurement_complete);

#endif

 g_i2c_flag = 0;

 /* Read Proximity ADC data */

 RM_OB1203_ProxRead(&g_ob1203_ctrl, &raw_data);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /* Calculate proximity data */

 RM_OB1203_ProxDataCalculate(&g_ob1203_ctrl, &raw_data, &ob1203_prox_data);

 }

}

PPG mode

void rm_ob1203_ppg_mode_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_ob1203_raw_data_t raw_data;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,377 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 rm_ob1203_ppg_data_t ob1203_data;

#if 0 == RM_OB1203_EXAMPLE_IRQ_ENABLE

 rm_ob1203_device_status_t device_status;

#endif

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_ob1203_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,378 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 err = RM_OB1203_Open(&g_ob1203_ctrl, &g_ob1203_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 g_i2c_flag = 0;

 /* Start measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 while (true)

 {

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Wait IRQ callback */

 while (0 == g_irq_flag)

 {

 /* Wait callback */

 }

 g_irq_flag = 0;

#else

 do

 {

 g_i2c_flag = 0;

 /* Get device status */

 RM_OB1203_DeviceStatusGet(&g_ob1203_ctrl, &device_status);

 while (0 == g_i2c_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,379 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 {

 /* Wait callback */

 }

 } while (false == device_status.ppg_measurement_complete);

#endif

 g_i2c_flag = 0;

 /* Read ADC data */

 RM_OB1203_PpgRead(&g_ob1203_ctrl, &raw_data, 2);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 /* Calculate ppg data */

 RM_OB1203_PpgDataCalculate(&g_ob1203_ctrl, &raw_data, &ob1203_data);

 }

}

Light mode reconfiguration at runtime

void rm_ob1203_light_reconfiguration_basic_example (void)

{

 g_i2c_flag = 0;

 /* Stop a measurement */

 RM_OB1203_MeasurementStop(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set Light mode gain.

 * Example : Gain mode is 1.

 */

 rm_ob1203_gain_t gain =

 {

 .light = RM_OB1203_LIGHT_GAIN_1,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,380 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 };

 RM_OB1203_GainSet(&g_ob1203_ctrl, gain);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Set interrupt configurations for Light mode.

 * Example :

 * Source : Green channel

 * Type : threshold interrupt

 * Persist : 0x02

 */

 rm_ob1203_device_interrupt_cfg_t interrupt_cfg =

 {

 .light_source = RM_OB1203_LIGHT_INTERRUPT_SOURCE_GREEN_CHANNEL,

 .light_type = RM_OB1203_LIGHT_INTERRUPT_TYPE_THRESHOLD,

 .persist = 0x02,

 };

 RM_OB1203_DeviceInterruptCfgSet(&g_ob1203_ctrl, interrupt_cfg);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#endif

 /* Restart a measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,381 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Proximity mode reconfiguration at runtime

void rm_ob1203_prox_reconfiguration_basic_example (void)

{

 g_i2c_flag = 0;

 /* Stop a measurement */

 RM_OB1203_MeasurementStop(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set Proximity mode gain.

 * Example : Gain mode is 2.

 */

 rm_ob1203_gain_t gain =

 {

 .ppg_prox = RM_OB1203_PPG_PROX_GAIN_2,

 };

 RM_OB1203_GainSet(&g_ob1203_ctrl, gain);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set LED current.

 * Example :

 * LED : IR LED

 * Current : 0x366 (10bits).

 */

 rm_ob1203_led_current_t led_current =

 {

 .ir_led = RM_OB1203_EXAMPLE_IR_CURRENT_0X366,

 };

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,382 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 RM_OB1203_LedCurrentSet(&g_ob1203_ctrl, led_current);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Set interrupt configurations for Proximity mode.

 * Example :

 * Type : normal interrupt

 * Persist : 0x02

 */

 rm_ob1203_device_interrupt_cfg_t interrupt_cfg =

 {

 .prox_type = RM_OB1203_PROX_INTERRUPT_TYPE_NORMAL,

 .persist = 0x02,

 };

 RM_OB1203_DeviceInterruptCfgSet(&g_ob1203_ctrl, interrupt_cfg);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#endif

 /* Restart a measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

}

Light Proximity mode reconfiguration at runtime

void rm_ob1203_light_prox_reconfiguration_basic_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,383 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

{

 g_i2c_flag = 0;

 /* Stop a measurement */

 RM_OB1203_MeasurementStop(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set Proximity mode gain.

 * Example :

 * Light mode : 1

 * Proximity mode : 2

 */

 rm_ob1203_gain_t gain =

 {

 .light = RM_OB1203_LIGHT_GAIN_1,

 .ppg_prox = RM_OB1203_PPG_PROX_GAIN_2,

 };

 RM_OB1203_GainSet(&g_ob1203_ctrl, gain);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set LED current.

 * Example :

 * LED : IR LED

 * Current : 0x366 (10bits).

 */

 rm_ob1203_led_current_t led_current =

 {

 .ir_led = RM_OB1203_EXAMPLE_IR_CURRENT_0X366,

 };

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,384 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 RM_OB1203_LedCurrentSet(&g_ob1203_ctrl, led_current);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Set interrupt configurations for Light Proximity mode.

 * Example :

 * device interrupt : Proximity mode

 * Type : normal interrupt

 * Persist : 0x02

 */

 rm_ob1203_device_interrupt_cfg_t interrupt_cfg =

 {

 .light_prox_mode = RM_OB1203_OPERATION_MODE_PROXIMITY,

 .prox_type = RM_OB1203_PROX_INTERRUPT_TYPE_NORMAL,

 .persist = 0x02,

 };

 RM_OB1203_DeviceInterruptCfgSet(&g_ob1203_ctrl, interrupt_cfg);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#endif

 /* Restart a measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,385 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

PPG mode reconfiguration at runtime

void rm_ob1203_ppg_reconfiguration_basic_example (void)

{

 g_i2c_flag = 0;

 /* Stop a measurement */

 RM_OB1203_MeasurementStop(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set PPG mode gain.

 * Example : Gain mode is 2.

 */

 rm_ob1203_gain_t gain =

 {

 .ppg_prox = RM_OB1203_PPG_PROX_GAIN_2,

 };

 RM_OB1203_GainSet(&g_ob1203_ctrl, gain);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

 /* Set LED current.

 * Example :

 * IR LED : 0x366 (10bits).

 * Red LED : 0x1B3 (9bits).

 */

 rm_ob1203_led_current_t led_current =

 {

 .ir_led = RM_OB1203_EXAMPLE_IR_CURRENT_0X366,

 .red_led = RM_OB1203_EXAMPLE_RED_CURRENT_0X1B3,

 };

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,386 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

 RM_OB1203_LedCurrentSet(&g_ob1203_ctrl, led_current);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#if RM_OB1203_EXAMPLE_IRQ_ENABLE

 /* Set interrupt configurations for PPG mode.

 * Example :

 * Type : data interrupt

 */

 rm_ob1203_device_interrupt_cfg_t interrupt_cfg =

 {

 .ppg_type = RM_OB1203_PPG_INTERRUPT_TYPE_DATA,

 };

 RM_OB1203_DeviceInterruptCfgSet(&g_ob1203_ctrl, interrupt_cfg);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

 g_i2c_flag = 0;

#endif

 /* Restart a measurement */

 RM_OB1203_MeasurementStart(&g_ob1203_ctrl);

 while (0 == g_i2c_flag)

 {

 /* Wait callback */

 }

}

Data Structures

struct rm_ob1203_init_process_params_t

struct rm_ob1203_mode_extended_cfg_t

struct rm_ob1203_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,387 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Data Structure Documentation

◆ rm_ob1203_init_process_params_t

struct rm_ob1203_init_process_params_t

OB1203 initialization process block

Data Fields

volatile bool communication_finished Communication flag for
blocking.

volatile rm_ob1203_event_t event Callback event.

◆ rm_ob1203_mode_extended_cfg_t

struct rm_ob1203_mode_extended_cfg_t

OB1203 mode extended configuration

Data Fields

rm_ob1203_api_t const * p_api Pointer to APIs.

rm_ob1203_operation_mode_t mode_irq Operation mode using IRQ.

rm_ob1203_ppg_prox_gain_t ppg_prox_gain Proximity gain range.

rm_ob1203_led_order_t led_order LED order.

rm_ob1203_light_sensor_mode_
t

light_sensor_mode LS or CS sensor mode.

rm_ob1203_light_interrupt_type
_t

light_interrupt_type Light mode interrupt type.

rm_ob1203_light_interrupt_sour
ce_t

light_interrupt_source Light mode interrupt source.

uint8_t light_interrupt_persist The number of similar
consecutive Light mode
interrupt events that must
occur before the interrupt is
asserted (4bits).

rm_ob1203_sleep_after_interru
pt_t

light_sleep Sleep after an interrupt.

rm_ob1203_light_gain_t light_gain Light gain range.

uint32_t light_upper_threshold Upper threshold for interrupt.

uint32_t light_lower_threshold Lower threshold for interrupt.

rm_ob1203_variance_threshold
_t

light_variance_threshold variance threshold for interrupt.

rm_ob1203_light_resolution_me
as_period_t

light_resolution_period Resolution and measurement
period.

rm_ob1203_light_data_type_t light_data_type Light data type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,388 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

rm_ob1203_sleep_after_interru
pt_t

prox_sleep Sleep after an interrupt.

rm_ob1203_prox_interrupt_type
_t

prox_interrupt_type Proximity mode interrupt type.

uint8_t prox_interrupt_persist The number of similar
consecutive Proximity mode
interrupt events that must
occur before the interrupt is
asserted (4bits).

uint16_t prox_led_current Proximity LED current.

rm_ob1203_analog_cancellation
_t

prox_ana_can Analog cancellation.

uint16_t prox_dig_can Digital cancellation.

rm_ob1203_number_led_pulses
_t

prox_num_led_pulses Number of LED pulses.

uint16_t prox_upper_threshold Upper threshold for interrupt.

uint16_t prox_lower_threshold Lower threshold for interrupt.

rm_ob1203_prox_pulse_width_
meas_period_t

prox_width_period Proximity pulse width and
measurement period.

rm_ob1203_moving_average_t prox_moving_average Moving average.

uint8_t prox_hysteresis Proximity hysteresis threshold
(7bits).

rm_ob1203_ppg_sensor_mode_t ppg_sensor_mode PPG1 or PPG2 sensor mode.

rm_ob1203_ppg_interrupt_type
_t

ppg_interrupt_type PPG mode interrupt type.

uint16_t ppg_ir_led_current PPG IR LED current.

uint16_t ppg_red_led_current PPG Red LED current.

rm_ob1203_power_save_mode_
t

ppg_power_save_mode PPG power save mode.

rm_ob1203_analog_cancellation
_t

ppg_ir_led_ana_can IR LED analog cancellations.

rm_ob1203_analog_cancellation
_t

ppg_red_led_ana_can Red LED analog cancellations.

rm_ob1203_number_averaged_
samples_t

ppg_num_averaged_samples Number of averaged PPG
samples.

rm_ob1203_ppg_pulse_width_m
eas_period_t

ppg_width_period PPG pulse width and
measurement period.

rm_ob1203_fifo_rollover_t ppg_fifo_rollover FIFO rollover enable.

uint8_t ppg_fifo_empty_num the number of empty FIFO
words when the FIFO almost full
interrupt is issued. In PPG2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,389 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

Mode only even values should
be used. (4 bits)

uint8_t ppg_number_of_samples Number of PPG samples.

◆ rm_ob1203_instance_ctrl_t

struct rm_ob1203_instance_ctrl_t

OB1203 Control Block

Data Fields

rm_ob1203_semaphore_t
const *

p_semaphore

 The semaphore to wait for callback. This is used for another data
read/write after a communication.

uint32_t open

 Open flag.

rm_ob1203_cfg_t const * p_cfg

 Pointer to OB1203 Configuration.

uint8_t buf [8]

 Buffer for I2C communications.

rm_ob1203_init_process_par
ams_t

init_process_params

 For the initialization process.

uint8_t register_address

 Register address to access.

volatile
rm_ob1203_device_status_t

*

p_device_status

 Pointer to device status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,390 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

volatile
rm_ob1203_fifo_info_t *

p_fifo_info

 Pointer to FIFO information structure.

volatile bool fifo_reset

 Flag for FIFO reset for PPG mode.

volatile bool prox_gain_update

 Flag for gain update for Proximity mode.

volatile bool interrupt_bits_clear

 Flag for clearing interrupt bits.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

rm_ob1203_mode_extended
_cfg_t *

p_mode

 Pointer of OB1203 operation mode extended configuration.

void const * p_irq_instance

 Pointer to IRQ instance.

void const * p_context

 Pointer to the user-provided context.

void(* p_comms_callback)(rm_ob1203_callback_args_t *p_args)

 I2C Communications callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,391 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

void(* p_irq_callback)(rm_ob1203_callback_args_t *p_args)

 IRQ callback.

Function Documentation

◆ RM_OB1203_Open()

fsp_err_t RM_OB1203_Open (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_cfg_t const *const
p_cfg)

Opens and configures the OB1203 Middle module. Implements rm_ob1203_api_t::open.

Example:

 err = RM_OB1203_Open(&g_ob1203_ctrl, &g_ob1203_cfg);

Return values
FSP_SUCCESS OB1203 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

◆ RM_OB1203_Close()

fsp_err_t RM_OB1203_Close (rm_ob1203_ctrl_t *const p_api_ctrl)

Disables specified OB1203 control block. Implements rm_ob1203_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,392 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

◆ RM_OB1203_MeasurementStart()

fsp_err_t RM_OB1203_MeasurementStart (rm_ob1203_ctrl_t *const p_api_ctrl)

Start measurement. Implements rm_ob1203_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_MeasurementStop()

fsp_err_t RM_OB1203_MeasurementStop (rm_ob1203_ctrl_t *const p_api_ctrl)

Stop measurement. If device interrupt is enabled, interrupt bits are cleared after measurement
stop. If PPG mode, FIFO information is also reset after measurement stop. In RTOS and
Light/Proximity/Light Proximity mode, if device interrupt is enabled, blocks 2 bytes on the I2C bus.
In RTOS and PPG mode, if device interrupt is enabled, blocks 6 bytes on the I2C bus. If device
interrupt is disabled, blocks 4 bytes on the I2C bus. Implements
rm_ob1203_api_t::measurementStop.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_LightRead()

fsp_err_t RM_OB1203_LightRead (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, rm_ob1203_light_data_type_t type)

Reads Light ADC data from OB1203 device. If device interrupt is enabled, interrupt bits are cleared
after data read. In RTOS and Light mode, if device interrupt is enabled, blocks 2 bytes on the I2C
bus. Implements rm_ob1203_api_t::lightRead.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,393 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

◆ RM_OB1203_LightDataCalculate()

fsp_err_t RM_OB1203_LightDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_light_data_t *const p_ob1203_data)

Calculate light data from raw data. Implements rm_ob1203_api_t::lightDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_ProxRead()

fsp_err_t RM_OB1203_ProxRead (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_raw_data_t
*const p_raw_data)

Reads Proximity ADC data from OB1203 device. If device interrupt is enabled, interrupt bits are
cleared after data read. In RTOS and Proximity mode, if device interrupt is enabled, blocks 2 bytes
on the I2C bus. Implements rm_ob1203_api_t::proxRead.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_ProxDataCalculate()

fsp_err_t RM_OB1203_ProxDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_prox_data_t *const p_ob1203_data)

Calculate proximity data from raw data. Implements rm_ob1203_api_t::proxDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,394 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

◆ RM_OB1203_PpgRead()

fsp_err_t RM_OB1203_PpgRead (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, uint8_t const number_of_samples)

Reads PPG ADC data from OB1203 device. One sample requires three bytes. 0 cannot set to the
number of samples. Implements rm_ob1203_api_t::ppgRead.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_PpgDataCalculate()

fsp_err_t RM_OB1203_PpgDataCalculate (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_ppg_data_t *const p_ob1203_data)

Calculate PPG data from raw data. Implements rm_ob1203_api_t::ppgDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_GainSet()

fsp_err_t RM_OB1203_GainSet (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_gain_t const gain
)

Set gain. This function should be called after calling RM_OB1203_MeasurementStop(). In RTOS and
Light Proximity mode, blocks 2 bytes on the I2C bus. Implements rm_ob1203_api_t::gainSet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,395 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

◆ RM_OB1203_LedCurrentSet()

fsp_err_t RM_OB1203_LedCurrentSet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_led_current_t const led_current)

Set currents. This function should be called after calling RM_OB1203_MeasurementStop().
Implements rm_ob1203_api_t::ledCurrentSet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_DeviceInterruptCfgSet()

fsp_err_t RM_OB1203_DeviceInterruptCfgSet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_device_interrupt_cfg_t const interrupt_cfg)

Set device interrupt configurations. This function should be called after calling
RM_OB1203_MeasurementStop(). Implements rm_ob1203_api_t::deviceInterruptCfgSet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_OB1203_FifoInfoGet()

fsp_err_t RM_OB1203_FifoInfoGet (rm_ob1203_ctrl_t *const p_api_ctrl, rm_ob1203_fifo_info_t
*const p_fifo_info)

Get FIFO information from OB1203 device. Implements rm_ob1203_api_t::fifoInfoGet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,396 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]

◆ RM_OB1203_DeviceStatusGet()

fsp_err_t RM_OB1203_DeviceStatusGet (rm_ob1203_ctrl_t *const p_api_ctrl,
rm_ob1203_device_status_t *const p_status)

Get device status from OB1203 device. Clear all interrupt bits. Implements
rm_ob1203_api_t::deviceStatusGet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

5.2.16.7 RRH46410 Gas Sensor Module (rm_rrh46410)
Modules » Sensor

Functions

fsp_err_t RM_RRH46410_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_cfg_t const *const p_cfg)

 Opens and configures the RRH46410 sensor module. Implements
rm_zmod4xxx_api_t::open. More...

fsp_err_t RM_RRH46410_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

 This function should be called when close the sensor module.
Implements rm_zmod4xxx_api_t::close. More...

fsp_err_t RM_RRH46410_MeasurementStart (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function should be called when start a measurement.
Implements rm_zmod4xxx_api_t::measurementStart. More...

fsp_err_t RM_RRH46410_MeasurementStop (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function should be called when stop a measurement.
Implements rm_zmod4xxx_api_t::measurementStop. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,397 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

fsp_err_t RM_RRH46410_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data)

 This function should be called to get measurement results after
measurement finishes. To check measurement status either polling
or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::read. More...

fsp_err_t RM_RRH46410_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_2nd_data_t *const p_rrh46410_data)

 This function should be called when calculating gas data from
measurement results. Implements
rm_zmod4xxx_api_t::iaq2ndGenDataCalculate. More...

fsp_err_t RM_RRH46410_PbaqDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_pbaq_data_t *const p_rrh46410_data)

 This function should be called when calculating gas data from
measurement results. Implements
rm_zmod4xxx_api_t::pbaqDataCalculate. More...

fsp_err_t RM_RRH46410_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, float temperature, float humidity)

 This function should be called before Read. Humidity measurements
are needed for ambient compensation. temperature is not
supported. Implements
rm_zmod4xxx_api_t::temperatureAndHumiditySet. More...

Detailed Description

Middleware to implement the RRH46410 sensor module interface. This module implements the
ZMOD4XXX Middleware Interface.

Overview
This module provides an API for configuring and controlling the RRH46410 sensor module
(ZMOD4410 + MCU).

I2C communication with the RRH46410 sensor module is realized by connecting with the
rm_comms_i2c module.

Features

The RRH46410 sensor interface implementation has the following key features:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,398 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

Initialize the sensor for measurement
Start a measurement at any time
Input current humidity for best performance.
Receive status for wait until the measurement is done. This will also be signaled by an
interrupt
Get the measruement results from the sensor module
Different from ZMOD sensors, no libraries are needed.

Configuration
Build Time Configurations for rm_rrh46410

The following build time configurations are defined in fsp_cfg/rm_rrh46410_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Operation Mode IAQ 2nd Gen
and Rel IAQ
IAQ 2nd Gen
ULP and Rel IAQ
ULP
Public Building
AQ Standard
(PBAQ)

IAQ 2nd Gen and Rel
IAQ

Select operation mode.

Configurations for Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

This module can be added to the Stacks tab via New Stack > Sensor > RRH46410 Gas Sensor
Module (rm_rrh46410).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rrh46410_sensor0 Module name.

Comms I2C Callback Name must be a valid
C symbol

rrh46410_comms_i2c_c
allback

A user COMMS I2C
callback function can
be provided.

IRQ Callback Name must be a valid
C symbol

rrh46410_irq_callback A user IRQ callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master, SCI I2C and IICA Master.

Usage Notes
RRH46410 datasheet is here.
The RRH46410 has three modes of operation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,399 / 5,560

https://www.renesas.com/document/dst/rrh46410-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

The RRH46410 will respond to TVOC immediately upon start-up; however, a conditioning period of 48
hours followed by a sensor module restart in an ambient environment is recommended to improve
stability and obtain maximum performance.
Best results are achieved with continuous operation because the module algorithm can learn about
the environment over time.

Operation mode Description Data

IAQ 2nd Generation and
Relative IAQ

Using AI for improved ppm
TVOC, IAQ and eCO2
functionality (recommended for
new designs). Lightweight
algorithm reacts to air quality
changes and outputs a relative
IAQ

IAQ, TVOC[mg/m^3],
EtOH[ppm], eCO2[ppm], Rel
IAQ

IAQ 2nd Generation Ultra Low
Power and Relative IAQ Ultra
Low Power

Using AI for improved ppm
TVOC, IAQ and eCO2
functionality. Lightweight
algorithm reacts to air quality
changes and outputs a relative
IAQ. This operation mode offers
a much lower power
consumption.

IAQ, TVOC[mg/m^3],
EtOH[ppm], eCO2[ppm], Rel
IAQ

Public Building AQ Standard
(PBAQ)

For highly accurate and
consistent sensor readings to
fulfill public building standards.

TVOC[mg/m^3], EtOH[ppm]

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Limitations

I2C Master (r_sau_i2c) is not supported. RRH46410 needs clock stretching, but is not
supported by SAU I2C.
The following commands are currently not supported.

Get Product ID
Get Tracking Number
Set Operation Mode -> Sensor cleaning
Config GPIO
Get GPIO
Set GPIO
Clear GPIO
Read Flash Shadow
Write Flash Shadow
Write Flash
Reset

Notifications

The RRH46410 sensor module needs a reset before operation; please input a reset signal to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,400 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

the RES_N pin (active low).
The RRH46410 sensor module needs some time (e.g. 1s) for self initialization after power-
on and reset.

Bus Initialization

The RRH46410 interface expects a bus instance to be opened before opening any RRH46410 device.
The interface will handle switching between devices on the bus but will not open or close the bus
instance. The user should open the bus with the appropriate I2C Master Interface open call.

Initialization

Initialize with RM_RRH46410_Open().

From measurement start to data acquisition

After normal completion, start the measurement with RM_RRH46410_MeasurementStart(). An
endless loop continuously checks the status of the RRH46410 sensor module and reads its data. The
measurement results are subsequently processed, and the air quality values are calculated.

If IRQ is enabled

1. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received via IRQ callback.
2. Call RM_RRH46410_Read(). This function will read the measurement results.
3. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received.
4. Call the DataCalculate API according to the mode.

If IRQ is disabled

1. Call RM_RRH46410_Read(). This function will read the measurement results.
2. If RM_ZMOD4XXX_EVENT_MEASUREMENT_NOT_COMPLETE is received in callback, user

should wait some time and then call RM_RRH46410_Read() again.
3. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received.
4. Call the DataCalculate API according to the mode.

Examples
Basic Example

These are basic examples of minimal use of RRH46410 sensor implementation in an application.

IAQ 2nd Gen.

void rm_rrh46410_iaq_2nd_gen_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_2nd_data_t rrh46410_data;

 float humidity = RRH46410_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,401 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_rrh46410_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,402 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 #endif

 }

#endif

 /* Reset sensor module (active low). Please change to the IO port connected to the

RES_N pin of the RRH46410 sensor module on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 /* Delay 1s after power-on and reset */

 R_BSP_SoftwareDelay(RRH46410_WAIT_1000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_RRH46410_Open(&g_rrh46410_ctrl, &g_rrh46410_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if RRH46410_IRQ_ENABLE

 g_rrh46410_irq_callback_flag = 0;

#endif

 g_rrh46410_i2c_callback_flag = 0;

 err = RM_RRH46410_MeasurementStart(&g_rrh46410_ctrl);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

 while (1)

 {

 /* Set the current humidity */

 err = RM_RRH46410_TemperatureAndHumiditySet(&g_rrh46410_ctrl, 0.0F, humidity);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,403 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 g_rrh46410_i2c_callback_flag = 0;

#if RRH46410_IRQ_ENABLE

 while (0U == g_rrh46410_irq_callback_flag)

 {

 }

 g_rrh46410_irq_callback_flag = 0;

#else

 /* Delay required time. See Table 3 in the RRH46410 Programming Manual. */

 R_BSP_SoftwareDelay(RRH46410_WAIT_3000_MS, BSP_DELAY_UNITS_MILLISECONDS);

#endif

 do

 {

 err = RM_RRH46410_Read(&g_rrh46410_ctrl, &raw_data);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

 err = RM_RRH46410_Iaq2ndGenDataCalculate(&g_rrh46410_ctrl, &raw_data,

&rrh46410_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 /* Measurement is not complete */

 R_BSP_SoftwareDelay(RRH46410_WAIT_10_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to rrh46410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,404 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 else

 {

 handle_error(err);

 }

 }

}

IAQ 2nd Gen. ULP

void rm_rrh46410_iaq_2nd_gen_ulp_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_2nd_data_t rrh46410_data;

 float humidity = RRH46410_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_rrh46410_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,405 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset sensor module (active low). Please change to the IO port connected to the

RES_N pin of the RRH46410 sensor module on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 /* Delay 1s after power-on and reset */

 R_BSP_SoftwareDelay(RRH46410_WAIT_1000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_RRH46410_Open(&g_rrh46410_ctrl, &g_rrh46410_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if RRH46410_IRQ_ENABLE

 g_rrh46410_irq_callback_flag = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,406 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

#endif

 g_rrh46410_i2c_callback_flag = 0;

 err = RM_RRH46410_MeasurementStart(&g_rrh46410_ctrl);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

 while (1)

 {

 /* Set the current humidity */

 err = RM_RRH46410_TemperatureAndHumiditySet(&g_rrh46410_ctrl, 0.0F, humidity);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

#if RRH46410_IRQ_ENABLE

 while (0U == g_rrh46410_irq_callback_flag)

 {

 }

 g_rrh46410_irq_callback_flag = 0;

#else

 /* Delay required time. See Table 3 in the RRH46410 Programming Manual. */

 R_BSP_SoftwareDelay(RRH46410_WAIT_90000_MS, BSP_DELAY_UNITS_MILLISECONDS);

#endif

 do

 {

 err = RM_RRH46410_Read(&g_rrh46410_ctrl, &raw_data);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,407 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 err = RM_RRH46410_Iaq2ndGenDataCalculate(&g_rrh46410_ctrl, &raw_data,

&rrh46410_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 /* Measurement is not complete */

 R_BSP_SoftwareDelay(RRH46410_WAIT_10_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to rrh46410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

PBAQ

void rm_rrh46410_pbaq_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_pbaq_data_t rrh46410_data;

 float humidity = RRH46410_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,408 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

g_rrh46410_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,409 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

#endif

 /* Reset sensor module (active low). Please change to the IO port connected to the

RES_N pin of the RRH46410 sensor module on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 /* Delay 1s after power-on and reset */

 R_BSP_SoftwareDelay(RRH46410_WAIT_1000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_RRH46410_Open(&g_rrh46410_ctrl, &g_rrh46410_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if RRH46410_IRQ_ENABLE

 g_rrh46410_irq_callback_flag = 0;

#endif

 g_rrh46410_i2c_callback_flag = 0;

 err = RM_RRH46410_MeasurementStart(&g_rrh46410_ctrl);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

 while (1)

 {

 /* Set the current humidity */

 err = RM_RRH46410_TemperatureAndHumiditySet(&g_rrh46410_ctrl, 0.0F, humidity);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

#if RRH46410_IRQ_ENABLE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,410 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 while (0U == g_rrh46410_irq_callback_flag)

 {

 }

 g_rrh46410_irq_callback_flag = 0;

#else

 /* Delay required time. See Table 3 in the RRH46410 Programming Manual. */

 R_BSP_SoftwareDelay(RRH46410_WAIT_5000_MS, BSP_DELAY_UNITS_MILLISECONDS);

#endif

 do

 {

 err = RM_RRH46410_Read(&g_rrh46410_ctrl, &raw_data);

 handle_error(err);

 while (0U == g_rrh46410_i2c_callback_flag)

 {

 }

 g_rrh46410_i2c_callback_flag = 0;

 err = RM_RRH46410_PbaqDataCalculate(&g_rrh46410_ctrl, &raw_data,

&rrh46410_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 /* Measurement is not complete */

 R_BSP_SoftwareDelay(RRH46410_WAIT_10_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to rrh46410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,411 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

 handle_error(err);

 }

 }

}

Data Structures

struct rm_rrh46410_init_process_params_t

struct rm_rrh46410_instance_ctrl_t

Data Structure Documentation

◆ rm_rrh46410_init_process_params_t

struct rm_rrh46410_init_process_params_t

RRH46410 initialization process block

Data Fields

volatile bool communication_finished Communication flag for
blocking.

volatile rm_zmod4xxx_event_t event Callback event.

◆ rm_rrh46410_instance_ctrl_t

struct rm_rrh46410_instance_ctrl_t

RRH46410 control block

Data Fields

uint32_t open

 Open flag.

uint8_t write_buf [RM_RRH46410_MAX_I2C_BUF_SIZE]

 Write buffer for I2C communications.

uint8_t read_buf [RM_RRH46410_MAX_I2C_BUF_SIZE]

 Read buffer for I2C communications.

uint8_t * p_read_data

 Pointer to read data. This is used for checking error code and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,412 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

checksum in callback.

uint8_t read_bytes

 Read bytes. This is used for checking error code and checksum in
callback.

volatile uint8_t prev_sample_id

 Previous sample ID. This is used for checking if sensor is in
stabilization.

volatile int16_t warmup_counts

 Counts for warning up. This is used for checking if sensor is in
stabilization.

volatile
rm_zmod4xxx_event_t

event

 Callback event.

rm_rrh46410_init_process_p
arams_t

init_process_params

 For the initialization process.

rm_zmod4xxx_cfg_t const * p_cfg

 Pointer of configuration block.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_irq_instance

 Pointer to IRQ instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,413 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

void const * p_context

 Pointer to the user-provided context.

void(* p_comms_callback)(rm_zmod4xxx_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_zmod4xxx_callback_args_t *p_args)

 IRQ callback.

Function Documentation

◆ RM_RRH46410_Open()

fsp_err_t RM_RRH46410_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_cfg_t const
*const p_cfg)

Opens and configures the RRH46410 sensor module. Implements rm_zmod4xxx_api_t::open.

Return values
FSP_SUCCESS RRH46410 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,414 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

◆ RM_RRH46410_Close()

fsp_err_t RM_RRH46410_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when close the sensor module. Implements
rm_zmod4xxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_RRH46410_MeasurementStart()

fsp_err_t RM_RRH46410_MeasurementStart (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when start a measurement. Implements
rm_zmod4xxx_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

◆ RM_RRH46410_MeasurementStop()

fsp_err_t RM_RRH46410_MeasurementStop (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when stop a measurement. Implements
rm_zmod4xxx_api_t::measurementStop.

Return values
FSP_SUCCESS Successfully stopped.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,415 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

◆ RM_RRH46410_Read()

fsp_err_t RM_RRH46410_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_raw_data_t
*const p_raw_data)

This function should be called to get measurement results after measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::read.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

◆ RM_RRH46410_Iaq2ndGenDataCalculate()

fsp_err_t RM_RRH46410_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_2nd_data_t *const
p_rrh46410_data)

This function should be called when calculating gas data from measurement results. Implements
rm_zmod4xxx_api_t::iaq2ndGenDataCalculate.

Return values
FSP_SUCCESS Successfully gas data is calculated.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_UNSUPPORTED Unsupported operation mode.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINI
SHED

Measurement is not finished.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,416 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > RRH46410 Gas Sensor Module (rm_rrh46410)

◆ RM_RRH46410_PbaqDataCalculate()

fsp_err_t RM_RRH46410_PbaqDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_pbaq_data_t *const
p_rrh46410_data)

This function should be called when calculating gas data from measurement results. Implements
rm_zmod4xxx_api_t::pbaqDataCalculate.

Return values
FSP_SUCCESS Successfully gas data is calculated.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_UNSUPPORTED Unsupported operation mode.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINI
SHED

Measurement is not finished.

◆ RM_RRH46410_TemperatureAndHumiditySet()

fsp_err_t RM_RRH46410_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
float temperature, float humidity)

This function should be called before Read. Humidity measurements are needed for ambient
compensation. temperature is not supported. Implements
rm_zmod4xxx_api_t::temperatureAndHumiditySet.

Return values
FSP_SUCCESS Successfully humidity is set.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

5.2.16.8 ZMOD4XXX Gas Sensor (rm_zmod4xxx)
Modules » Sensor

Functions

fsp_err_t RM_ZMOD4XXX_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_cfg_t const *const p_cfg)

 This function should be called when start a measurement and when
measurement data is stale data. Sends the slave address to the
zmod4xxx and start a measurement. Implements

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,417 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

rm_zmod4xxx_api_t::open. More...

fsp_err_t RM_ZMOD4XXX_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

 This function should be called when close the sensor. Implements
rm_zmod4xxx_api_t::close. More...

fsp_err_t RM_ZMOD4XXX_MeasurementStart (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function should be called when start a measurement.
Implements rm_zmod4xxx_api_t::measurementStart. More...

fsp_err_t RM_ZMOD4XXX_MeasurementStop (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function should be called when stop a measurement.
Implements rm_zmod4xxx_api_t::measurementStop. More...

fsp_err_t RM_ZMOD4XXX_StatusCheck (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

 This function should be called when polling is used. It reads the
status of sensor. Implements rm_zmod4xxx_api_t::statusCheck.
More...

fsp_err_t RM_ZMOD4XXX_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::read. More...

fsp_err_t RM_ZMOD4XXX_Iaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_1st_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::iaq1stGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_2nd_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::iaq2ndGenDataCalculate. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,418 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

fsp_err_t RM_ZMOD4XXX_OdorDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::odorDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_SulfurOdorDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_sulfur_odor_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::sulfurOdorDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Oaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_1st_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::oaq1stGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Oaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_2nd_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::oaq2ndGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_RaqDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_raq_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::raqDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_RelIaqDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_rel_iaq_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::relIaqDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_PbaqDataCalculate (rm_zmod4xxx_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,419 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_pbaq_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::pbaqDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_No2O3DataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_no2_o3_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::no2O3DataCalculate. More...

fsp_err_t RM_ZMOD4XXX_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, float temperature, float humidity)

 This function is valid only for OAQ_2nd_Gen and IAQ_2nd_Gen_ULP.
This function should be called before DataCalculate. Humidity and
temperature measurements are needed for ambient compensation.
Implements rm_zmod4xxx_api_t::temperatureAndHumiditySet.
More...

fsp_err_t RM_ZMOD4XXX_DeviceErrorCheck (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function is valid only for IAQ_2nd_Gen and IAQ_2nd_Gen_ULP.
This function should be called before Read and DataCalculate. Check
for unexpected reset occurs or getting unvalid ADC data. Implements
rm_zmod4xxx_api_t::deviceErrorCheck. More...

Detailed Description

Middleware to implement the ZMOD4XXX sensor interface. This module implements the ZMOD4XXX
Middleware Interface.

Overview
The following measurement modes are EOL.

ZMOD4410 Odor
ZMOD4510 OAQ 1st Generation

This module provides an API for configuring and controlling the ZMOD4XXX sensor. Supported
ZMOD4XXX sensors are below.

ZMOD4410
ZMOD4450
ZMOD4510

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,420 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

I2C communication with the ZMOD4XXX sensor is realized by connecting with the rm_comms_i2c
module.

Features

The ZMOD4XXX sensor interface implementation has the following key features:

Initialize the sensor for measurement
Start a measurement at any time
Read status register for wait until the measurement is done. This will also be signaled by an
interrupt
Get the ADC data from the sensor
Input the ADC data and acquire the air quality values by calculation in the library.

Configuration
Build Time Configurations for rm_zmod4xxx

The following build time configurations are defined in fsp_cfg/rm_zmod4xxx_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

This module can be added to the Stacks tab via New Stack > Sensor > ZMOD4XXX Gas Sensor
(rm_zmod4xxx).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_zmod4xxx_sensor0 Module name.

Comms I2C Callback Name must be a valid
C symbol

zmod4xxx_comms_i2c_
callback

A user COMMS I2C
callback function can
be provided.

IRQ Callback Name must be a valid
C symbol

zmod4xxx_irq_callback A user IRQ callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
ZMOD4410 datasheet is here.
The ZMOD4410 has five modes of operation.
The ZMOD4410 will respond to TVOC immediately upon start-up; however, a conditioning period of
48 hours followed by a sensor module restart in an ambient environment is recommended to
improve stability and obtain maximum performance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,421 / 5,560

https://www.renesas.com/document/dst/zmod4410-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

Best results are achieved with continuous operation because the module algorithm can learn about
the environment over time.

Method Description

IAQ 1st Generation Continuous Measurement of UBA levels for IAQ and eCO2,
provides continuous data

IAQ 1st Generation Low Power Measurement of UBA levels for IAQ and eCO2,
fixed sampling interval of 6 seconds

IAQ 2nd Generation Using AI for improved ppm TVOC, IAQ and eCO2
functionality (recommended for new designs)

IAQ 2nd Generation Ultra Low Power Using AI for improved ppm TVOC, IAQ and eCO2
functionality. This method offers a much lower
power consumption

Relative IAQ Lightweight algorithm reacts to air quality
changes and outputs a relative IAQ

Relative IAQ Ultra Low Power Lightweight algorithm reacts to air quality
changes and outputs a relative IAQ. This method
offers a much lower power consumption

Public Building AQ Standard (PBAQ) For highly accurate and consistent sensor
readings to fulfill public building standards.

Odor Control signal based on Air Quality Changes

Sulfur-based Odor Discrimination The odors in "sulfur" (sulfur based) and
"acceptable" (organic based) and shows an
intensity level of the smell

ZMOD4450 datasheet is here.
The ZMOD4450 has one modes of operation.
The response time for a gas stimulation is always within a few seconds, depending on the gas and its
concentration. An active or direct airflow onto the sensor module is not necessary since diffusion of
ambient gas does not limit the sensor module response time. The ZMOD4450 will respond to typical
refrigeration gases immediate upon start-up; however, a conditioning period of 48 hours in a
refrigeration environment is recommended to improve stability and get maximum performance, as
the module algorithm is able to learn about the refrigeration environment over time.

Method Description

RAQ Control signal based on Refrigerator Air Quality
Changes

ZMOD4510 datasheet is here.
The ZMOD4510 has two modes of operation.
The ZMOD4510 in OAQ 1st Gen operation will respond to typical outdoor gases after a warm-up time
of 60 min, consisting of 20 min for stabilization and 40 min for baseline finding.
For OAQ 2nd Gen operation a response to ozone will be seen after a warmup time of 30 min.
For NO2 O3 operation a response to nitrogen_dioxide and ozone will be seen after a warmup time of
5 min.
In all operation modes a conditioning period of 48 hours followed by a sensor module restart in an
ambient environment is recommended to improve stability and obtain maximum performance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,422 / 5,560

https://www.renesas.com/document/dst/zmod4450-datasheet
https://www.renesas.com/document/dst/zmod4510-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

Method Description

OAQ 1st Generation Measurement of Air Quality

OAQ 2nd Generation Selective Ozone featuring Ultra-Low Power

NO2 O3 Selective nitrogen dioxide and ozone firmware

A library corresponding to each of these modes is required. By setting in RA Configuration, the
library will be generated in the ra/fsp/lib/rm_zmod4xxx folder of your project.

If an RTOS is used, blocking and bus lock is available.

If blocking of an I2C bus is required, it is necessary to create a semaphore for blocking.
If bus lock is required, it is necessary to create a mutex for bus lock. Bus lock is only
available when a semaphore for blocking is used.

Notifications

The ZMOD4xxx sensor needs a reset before operation; please input a reset signal to the RES_N pin
(active low).

Program flow for OAQ 2nd gen is changed in FSP v4.0.0. Please refer to the programming manual
[R36US0004EU] and the application note[R01AN5899].
R01AN5899 : https://www.renesas.com/document/apn/zmod4xxx-sample-application
R36US0004EU : https://www.renesas.com/document/mat/zmod4510-programming-manual-read-me

Bus Initialization

The ZMOD4XXX interface expects a bus instance to be opened before opening any ZMOD4XXX
device. The interface will handle switching between devices on the bus but will not open or close the
bus instance. The user should open the bus with the appropriate I2C Master Interface open call.

Initialization

Initialize with RM_ZMOD4XXX_Open(). One channel of timer is required to measure the waiting time
at initialization.

From measurement start to data acquisition

After normal completion, start the measurement with RM_ZMOD4XXX_MeasurementStart(). An
endless loop continuously checks the status of the ZMOD4XXX sensor and reads its data. The raw
data is subsequently processed, and the air quality values are calculated.

If IRQ is enabled

1. Call RM_ZMOD4XXX_MeasurementStart().
2. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received via IRQ callback.
3. Call RM_ZMOD4XXX_Read(). This function will read the ADC data.
4. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
5. Call the DataCalculate API according to the mode.

If IRQ is disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,423 / 5,560

https://www.renesas.com/document/apn/zmod4xxx-sample-application
https://www.renesas.com/document/mat/zmod4510-programming-manual-read-me

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

1. Call RM_ZMOD4XXX_MeasurementStart().
2. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
3. Call RM_ZMOD4XXX_StatusCheck(). This function will execute a status check over I2C.
4. If RM_ZMOD4XXX_EVENT_MEASUREMENT_NOT_COMPLETE is received in callback, user

should wait some time and then call RM_ZMOD4XXX_StatusCheck() again.
5. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received.
6. Call RM_ZMOD4XXX_Read() and read the ADC data.
7. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
8. Call the DataCalculate API according to the mode.

Checking device error for IAQ 2nd Gen.

1. Call RM_ZMOD4XXX_DeviceErrorCheck(). This function will execute a device error check
over I2C.

2. If any device error occurs, RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET or
RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT are received in callback. If no device
error, RM_ZMOD4XXX_EVENT_SUCCESS is received in callback.

Examples
Basic Example

These are basic examples of minimal use of ZMOD4XXX sensor implementation in an application.

IAQ 1st Gen. Continuous mode

void rm_zmod4xxx_iaq_1st_gen_continuous_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_1st_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,424 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,425 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 while (1)

 {

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,426 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_Iaq1stGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

IAQ 1st Gen. Low Power mode

void rm_zmod4xxx_iaq_1st_gen_low_power_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_1st_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,427 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,428 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,429 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_Iaq1stGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 /* Delay required time. See Table 3 in the ZMOD4410 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_5475_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,430 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

IAQ 2nd Gen.

void rm_zmod4xxx_iaq_2nd_gen_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_2nd_data_t zmod4410_data;

 float temperature = ZMOD4XXX_DEFAULT_TEMPERATURE_20F;

 float humidity = ZMOD4XXX_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,431 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,432 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 g_zmod4xxx_i2c_callback_flag = 0;

 /* Delay required time. See Table 3 in the ZMOD4410 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_3000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status. Please reset device. */

 while (1)

 {

 ;

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,433 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Check validness of ADC results:

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET : Unvalid ADC results due to an

unexpected reset.

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT: Unvalid ADC results due a still

running measurement while results readout.

 // Please reset device. */

 while (1)

 {

 ;

 }

 }

 /* Set the current temperature and humidity */

 err = RM_ZMOD4XXX_TemperatureAndHumiditySet(&g_zmod4xxx_ctrl, temperature,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,434 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

humidity);

 handle_error(err);

 err = RM_ZMOD4XXX_Iaq2ndGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

IAQ 2nd Gen. ULP

void rm_zmod4xxx_iaq_2nd_gen_ulp_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_iaq_2nd_data_t zmod4410_data;

 float temperature = ZMOD4XXX_DEFAULT_TEMPERATURE_20F;

 float humidity = ZMOD4XXX_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,435 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,436 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 /* First delay. See Table 4 in the ZMOD4410 Programming Manual. It should be longer

than 1010 ms. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_1010_MS, BSP_DELAY_UNITS_MILLISECONDS);

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,437 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status or Measurement not completed due to unexpected

reset. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,438 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Check validness of ADC results:

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET : Unvalid ADC results due to an

unexpected reset.

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT: Unvalid ADC results due a still

running measurement while results readout.

 // Please reset device. */

 while (1)

 {

 ;

 }

 }

 /* Set the current temperature and humidity */

 err = RM_ZMOD4XXX_TemperatureAndHumiditySet(&g_zmod4xxx_ctrl, temperature,

humidity);

 handle_error(err);

 err = RM_ZMOD4XXX_Iaq2ndGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,439 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 /* Second delay. See Table 4 in the ZMOD4410 Programming Manual. The sum of the

first and second delay should amount 90 seconds. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_90000_MS - ZMOD4XXX_WAIT_1010_MS,

BSP_DELAY_UNITS_MILLISECONDS);

 }

}

Relative IAQ

void rm_zmod4xxx_rel_iaq_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_rel_iaq_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,440 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,441 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 /* Delay required time. See Table 6 in the ZMOD4410 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_3000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,442 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,443 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_RelIaqDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

Relative IAQ ULP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,444 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

void rm_zmod4xxx_rel_iaq_ulp_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_rel_iaq_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 /* First delay. See Table 7 in the ZMOD4410 Programming Manual. It should be longer

than 1010 ms. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_1500_MS, BSP_DELAY_UNITS_MILLISECONDS);

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status or Measurement not completed due to unexpected

reset. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Check validness of ADC results:

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET : Unvalid ADC results due to an

unexpected reset.

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT: Unvalid ADC results due a still

running measurement while results readout.

 // Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_RelIaqDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 /* Second delay. See Table 7 in the ZMOD4410 Programming Manual. The sum of the

first and second delay should amount 90 seconds. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_90000_MS - ZMOD4XXX_WAIT_1010_MS,

BSP_DELAY_UNITS_MILLISECONDS);

 }

}

PBAQ

void rm_zmod4xxx_pbaq_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_pbaq_data_t zmod4410_data;

 float temperature = ZMOD4XXX_DEFAULT_TEMPERATURE_20F;

 float humidity = ZMOD4XXX_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 /* Delay required time. See Table 5 in the ZMOD4410 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_5000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status. Please reset device. */

 while (1)

 {

 ;

 }

 }

 /* Set the current temperature and humidity */

 err = RM_ZMOD4XXX_TemperatureAndHumiditySet(&g_zmod4xxx_ctrl, temperature,

humidity);

 handle_error(err);

 err = RM_ZMOD4XXX_PbaqDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 else

 {

 handle_error(err);

 }

 }

}

Odor

void rm_zmod4xxx_odor_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_odor_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 while (1)

 {

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_OdorDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

Sulfur Odor

void rm_zmod4xxx_sulfur_odor_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_sulfur_odor_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_SulfurOdorDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 /* Delay required time. See Table 6 in the ZMOD4410 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_1990_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

OAQ 1st Gen.

void rm_zmod4xxx_oaq_1st_gen_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_oaq_1st_data_t zmod4510_data;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_Oaq1stGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4510_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4510_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

}

OAQ 2nd Gen.

void rm_zmod4xxx_oaq_2nd_gen_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_oaq_2nd_data_t zmod4510_data;

 float temperature = ZMOD4XXX_DEFAULT_TEMPERATURE_20F;

 float humidity = ZMOD4XXX_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 /* Delay required time. See Table 4 in the ZMOD4510 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_2000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 g_zmod4xxx_i2c_callback_flag = 0;

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status or Measurement not completed due to unexpected

reset. Please reset device. */

 while (1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Check validness of ADC results:

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET : Unvalid ADC results due to an

unexpected reset.

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT: Unvalid ADC results due a still

running measurement while results readout.

 // Please reset device. */

 while (1)

 {

 ;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 }

 }

 /* Set the current temperature and humidity */

 err = RM_ZMOD4XXX_TemperatureAndHumiditySet(&g_zmod4xxx_ctrl, temperature,

humidity);

 handle_error(err);

 err = RM_ZMOD4XXX_Oaq2ndGenDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4510_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4510_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

NO2 O3

void rm_zmod4xxx_no2_o3_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_no2_o3_data_t zmod4510_data;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 float temperature = ZMOD4XXX_DEFAULT_TEMPERATURE_20F;

 float humidity = ZMOD4XXX_DEFAULT_HUMIDITY_50F;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (1)

 {

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 /* Delay required time. See Table 3 in the ZMOD4510 Programming Manual. */

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_6000_MS, BSP_DELAY_UNITS_MILLISECONDS);

 g_zmod4xxx_i2c_callback_flag = 0;

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Error during read of sensor status or Measurement not completed due to unexpected

reset. Please reset device. */

 while (1)

 {

 ;

 }

 }

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_DeviceErrorCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 if ((RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET == g_zmod4xxx_i2c_callback_event) ||

 (RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT ==

g_zmod4xxx_i2c_callback_event))

 {

 /* Check validness of ADC results:

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_RESET : Unvalid ADC results due to an

unexpected reset.

 * - RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONFLICT: Unvalid ADC results due a still

running measurement while results readout.

 // Please reset device. */

 while (1)

 {

 ;

 }

 }

 /* Set the current temperature and humidity */

 err = RM_ZMOD4XXX_TemperatureAndHumiditySet(&g_zmod4xxx_ctrl, temperature,

humidity);

 handle_error(err);

 err = RM_ZMOD4XXX_No2O3DataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4510_data);

 if (FSP_SUCCESS == err)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 {

 /* Describe the process by referring to zmod4510_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

RAQ

void rm_zmod4xxx_raq_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t raw_data;

 rm_zmod4xxx_raq_data_t zmod4410_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

#if BSP_CFG_RTOS

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 /* Create a semaphore for blocking if a semaphore is not NULL */

 if (NULL != p_extend->p_blocking_semaphore)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_semaphore_create(p_extend->p_blocking_semaphore->p_semaphore_handle,

 p_extend->p_blocking_semaphore->p_semaphore_name,

 (ULONG) 0);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_blocking_semaphore->p_semaphore_handle) =

 xSemaphoreCreateCountingStatic((UBaseType_t) 1,

 (UBaseType_t) 0,

p_extend->p_blocking_semaphore->p_semaphore_memory);

 #endif

 }

 /* Create a recursive mutex for bus lock if a recursive mutex is not NULL */

 if (NULL != p_extend->p_bus_recursive_mutex)

 {

 #if BSP_CFG_RTOS == 1 // AzureOS

 tx_mutex_create(p_extend->p_bus_recursive_mutex->p_mutex_handle,

 p_extend->p_bus_recursive_mutex->p_mutex_name,

 TX_INHERIT);

 #elif BSP_CFG_RTOS == 2 // FreeRTOS

 *(p_extend->p_bus_recursive_mutex->p_mutex_handle) =

 xSemaphoreCreateRecursiveMutexStatic(p_extend->p_bus_recursive_mutex->p_m

utex_memory);

 #endif

 }

#endif

 /* Reset ZMOD sensor (active low). Please change to the IO port connected to the

RES_N pin of the ZMOD sensor on the customer board. */

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_LOW);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_04_PIN_12, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if ZMOD4XXX_IRQ_ENABLE

 g_zmod4xxx_irq_callback_flag = 0;

#endif

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 while (1)

 {

 do

 {

#if ZMOD4XXX_IRQ_ENABLE

 while (0U == g_zmod4xxx_irq_callback_flag)

 {

 }

 g_zmod4xxx_irq_callback_flag = 0;

#else

 err = RM_ZMOD4XXX_StatusCheck(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

#endif

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &raw_data);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED);

 handle_error(err);

 while (0U == g_zmod4xxx_i2c_callback_flag)

 {

 }

 g_zmod4xxx_i2c_callback_flag = 0;

 err = RM_ZMOD4XXX_RaqDataCalculate(&g_zmod4xxx_ctrl, &raw_data,

&zmod4410_data);

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to zmod4410_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Gas data is invalid. */

 }

 else

 {

 handle_error(err);

 }

 }

}

Data Structures

struct rm_zmod4xxx_init_process_params_t

struct rm_zmod4xxx_instance_ctrl_t

Enumerations

enum rm_zmod4xxx_lib_type_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ rm_zmod4xxx_init_process_params_t

struct rm_zmod4xxx_init_process_params_t

ZMOD4XXX initialization process block

Data Fields

volatile uint32_t delay_ms Delay milliseconds.

volatile bool communication_finished Communication flag for
blocking.

volatile bool measurement_finished IRQ flag.

volatile rm_zmod4xxx_event_t event Callback event.

◆ rm_zmod4xxx_instance_ctrl_t

struct rm_zmod4xxx_instance_ctrl_t

ZMOD4XXX control block

Data Fields

uint32_t open

 Open flag.

uint8_t buf [RM_ZMOD4XXX_MAX_I2C_BUF_SIZE]

 Buffer for I2C communications.

uint8_t register_address

 Register address to access.

rm_zmod4xxx_status_param
s_t

status

 Status parameter.

volatile bool dev_err_check

 Flag for checking device error.

volatile
rm_zmod4xxx_event_t

event

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

 Callback event.

rm_zmod4xxx_init_process_
params_t

init_process_params

 For the initialization process.

rm_zmod4xxx_cfg_t const * p_cfg

 Pointer of configuration block.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

rm_zmod4xxx_lib_extended_
cfg_t *

p_zmod4xxx_lib

 Pointer of ZMOD4XXX Lib extended configuration.

void const * p_irq_instance

 Pointer to IRQ instance.

void const * p_context

 Pointer to the user-provided context.

void(* p_comms_callback)(rm_zmod4xxx_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_zmod4xxx_callback_args_t *p_args)

 IRQ callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

Enumeration Type Documentation

◆ rm_zmod4xxx_lib_type_t

enum rm_zmod4xxx_lib_type_t

ZMOD4XXX Library type

Function Documentation

◆ RM_ZMOD4XXX_Open()

fsp_err_t RM_ZMOD4XXX_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_cfg_t const
*const p_cfg)

This function should be called when start a measurement and when measurement data is stale
data. Sends the slave address to the zmod4xxx and start a measurement. Implements
rm_zmod4xxx_api_t::open.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_UNSUPPORTED Unsupport product ID.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

◆ RM_ZMOD4XXX_Close()

fsp_err_t RM_ZMOD4XXX_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when close the sensor. Implements rm_zmod4xxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_MeasurementStart()

fsp_err_t RM_ZMOD4XXX_MeasurementStart (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when start a measurement. Implements
rm_zmod4xxx_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

◆ RM_ZMOD4XXX_MeasurementStop()

fsp_err_t RM_ZMOD4XXX_MeasurementStop (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when stop a measurement. Implements
rm_zmod4xxx_api_t::measurementStop.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_StatusCheck()

fsp_err_t RM_ZMOD4XXX_StatusCheck (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when polling is used. It reads the status of sensor. Implements
rm_zmod4xxx_api_t::statusCheck.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

◆ RM_ZMOD4XXX_Read()

fsp_err_t RM_ZMOD4XXX_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_raw_data_t
*const p_raw_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::read.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINI
SHED

Measurement is not finished.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Iaq1stGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Iaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_1st_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::iaq1stGenDataCalculate
.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_ZMOD4XXX_Iaq2ndGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_2nd_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::iaq2ndGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_OdorDataCalculate()

fsp_err_t RM_ZMOD4XXX_OdorDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_odor_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::odorDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_ZMOD4XXX_SulfurOdorDataCalculate()

fsp_err_t RM_ZMOD4XXX_SulfurOdorDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_sulfur_odor_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::sulfurOdorDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Oaq1stGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Oaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_1st_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::oaq1stGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_ZMOD4XXX_Oaq2ndGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Oaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_2nd_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::oaq2ndGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_RaqDataCalculate()

fsp_err_t RM_ZMOD4XXX_RaqDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_raq_data_t *const p_zmod4xxx_data
)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::raqDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_ZMOD4XXX_RelIaqDataCalculate()

fsp_err_t RM_ZMOD4XXX_RelIaqDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_rel_iaq_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::relIaqDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

◆ RM_ZMOD4XXX_PbaqDataCalculate()

fsp_err_t RM_ZMOD4XXX_PbaqDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_pbaq_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::pbaqDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_No2O3DataCalculate()

fsp_err_t RM_ZMOD4XXX_No2O3DataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_no2_o3_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::no2O3DataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter or
library internal error occured.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_SENSOR_INVALID_DATA Sensor probably damaged. Algorithm results
may be incorrect.

◆ RM_ZMOD4XXX_TemperatureAndHumiditySet()

fsp_err_t RM_ZMOD4XXX_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
float temperature, float humidity)

This function is valid only for OAQ_2nd_Gen and IAQ_2nd_Gen_ULP. This function should be called
before DataCalculate. Humidity and temperature measurements are needed for ambient
compensation. Implements rm_zmod4xxx_api_t::temperatureAndHumiditySet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Sensor > ZMOD4XXX Gas Sensor (rm_zmod4xxx)

◆ RM_ZMOD4XXX_DeviceErrorCheck()

fsp_err_t RM_ZMOD4XXX_DeviceErrorCheck (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function is valid only for IAQ_2nd_Gen and IAQ_2nd_Gen_ULP. This function should be called
before Read and DataCalculate. Check for unexpected reset occurs or getting unvalid ADC data.
Implements rm_zmod4xxx_api_t::deviceErrorCheck.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

5.2.17 Storage
Modules

Detailed Description

Storage Modules.

Modules

Block Media Custom Implementation (rm_block_media_user)

 Middleware that implements a block media interface on the media of
your choice. This module implements the Block Media Interface.

Block Media RAM (rm_block_media_ram)

 Middleware that implements a block media interface on RAM. This
module implements the Block Media Interface.

Block Media SD/MMC (rm_block_media_sdmmc)

 Middleware to implement the block media interface on SD cards.
This module implements the Block Media Interface.

Block Media SPI Flash (rm_block_media_spi)

 Middleware to implement the block media interface on SPI flash

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage

memory. This module implements the Block Media Interface.

Block Media USB (rm_block_media_usb)

 Middleware to implement the block media interface on USB mass
storage devices. This module implements the Block Media Interface.

FileX I/O (rm_filex_block_media)

 Middleware for the Azure RTOS FileX File System control using Block
Media on RA MCUs.

FileX I/O (rm_filex_levelx_nor)

 Middleware for the Azure RTOS FileX File System control using
LevelX NOR on RA MCUs.

Flash (r_flash_hp)

 Driver for the flash memory on RA high-performance MCUs. This
module implements the Flash Interface.

Flash (r_flash_lp)

 Driver for the flash memory on RA low-power MCUs. This module
implements the Flash Interface.

FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 Middleware for the FAT File System control on RA MCUs.

LevelX NOR Port (rm_levelx_nor_spi)

 Middleware for using Azure RTOS LevelX on NOR SPI memory.

LittleFS on Flash (rm_littlefs_flash)

 Middleware for the LittleFS File System control on RA MCUs.

LittleFS on SPI Flash (rm_littlefs_spi_flash)

 Middleware for the LittleFS File System control on RA MCUs using
external SPI Flash.

OSPI Flash (r_ospi)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage

 Driver for the OSPI peripheral on RA MCUs. This module implements
the SPI Flash Interface.

OSPI Flash (r_ospi_b)

 Driver for the OSPI_B peripheral on RA MCUs. This module
implements the SPI Flash Interface.

QSPI (r_qspi)

 Driver for the QSPI peripheral on RA MCUs. This module implements
the SPI Flash Interface.

SD/MMC (r_sdhi)

 Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs.
This module implements the SD/MMC Interface.

Virtual EEPROM on Flash (rm_vee_flash)

 Virtual EEPROM on RA MCUs. This module implements the Virtual
EEPROM Interface.

5.2.17.1 Block Media Custom Implementation (rm_block_media_user)
Modules » Storage

Middleware that implements a block media interface on the media of your choice. This module
implements the Block Media Interface.

Overview
Features

This module is for using Block media with user-selected media.

Configuration
Block Media User has no output config settings.
The user is required to create the config settings etc. in the application.
The figure below is an example of the config definition when the user media in USB PMSC is RAM.

const rm_block_media_api_t g_rm_block_media_on_user_media =

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media Custom Implementation (rm_block_media_user)

 .open = RM_BLOCK_MEDIA_RAM_Open,

 .mediaInit = RM_BLOCK_MEDIA_RAM_MediaInit,

 .read = RM_BLOCK_MEDIA_RAM_Read,

 .write = RM_BLOCK_MEDIA_RAM_Write,

 .erase = RM_BLOCK_MEDIA_RAM_Erase,

 .infoGet = RM_BLOCK_MEDIA_RAM_InfoGet,

 .statusGet = RM_BLOCK_MEDIA_RAM_StatusGet,

 .close = RM_BLOCK_MEDIA_RAM_Close,

};

extern void r_usb_pmsc_block_media_event_callback(rm_block_media_callback_args_t *

p_args);

const rm_block_media_cfg_t g_rm_block_media0_cfg =

{.p_extend = NULL, .p_callback = r_usb_pmsc_block_media_event_callback, .p_context =

NULL, };

rm_block_media_instance_t g_rm_block_media0 =

{.p_api = &g_rm_block_media_on_user_media, .p_ctrl = NULL, .p_cfg =

&g_rm_block_media0_cfg, };

Note
If you use block_media_user, you need to create a function that matches the media you are using.
In the above example, this is the function with RM_BLOCK_MEDIA_.
Register the created function in rm_block_media_api_t.
The registered rm_block_media_api_t is registered in p_api, which is a member of rm_block_media_instance_t.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

Please refer to USB PMSC (r_usb_pmsc) for the PMSC application given as an example.

5.2.17.2 Block Media RAM (rm_block_media_ram)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

Modules » Storage

Functions

fsp_err_t RM_BLOCK_MEDIA_RAM_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_RAM_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_RAM_Read (rm_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_RAM_Write (rm_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_RAM_Erase (rm_block_media_ctrl_t *const p_ctrl,
uint32_t const block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_RAM_StatusGet (rm_block_media_ctrl_t *const
p_api_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_RAM_InfoGet (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_RAM_Close (rm_block_media_ctrl_t *const p_ctrl)

Detailed Description

Middleware that implements a block media interface on RAM. This module implements the Block
Media Interface.

Overview
Features

This module is for using RAM as a media area.
Supports using any read/write section of the address space as the media area.

Note
When using an external RAM as the media area (like SDRAM or OctaRAM), it must be initialized before calling
RM_BLOCK_MEDIA_RAM_Open().
When using PMSC driver in combination with this module, the API of this module is called from the PMSC driver.

Configuration
Build Time Configurations for rm_block_media_ram

The following build time configurations are defined in fsp_cfg/rm_block_media_ram_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

RAM Media Size Please enter the RAM
media size.

65536 Enter a RAM media size
of 20K bytes or more.

Memory Storage
Section

Manual Entry .bss This is the section of
memory that will be
used for the backing
storage. Must be a
valid Linker section.
('.bss', '.sdram',
'.OSPI_DEVICE_0_RAM',
etc)

Configurations for Storage > Block Media RAM Implementation (rm_block_media_ram)

This module can be added to the Stacks tab via New Stack > Storage > Block Media RAM
Implementation (rm_block_media_ram).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_block_media0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called when a card is
inserted or removed.

Note
Specify RAM media size of 20 Kbytes or more. This module cannot be used with an MCU that cannot allocate at
least 20 Kbytes of RAM as media area.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

◆ RM_BLOCK_MEDIA_RAM_Open()

fsp_err_t RM_BLOCK_MEDIA_RAM_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Opens the module.

Implements rm_block_media_api_t::open().

Return values
FSP_SUCCESS Module is available and is now open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_ALREADY_OPEN Module has already been opened with this
instance of the control structure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_RAM_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_RAM_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the RAM media area.

Implements rm_block_media_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

◆ RM_BLOCK_MEDIA_RAM_Read()

fsp_err_t RM_BLOCK_MEDIA_RAM_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads data from RAM media.

Implements rm_block_media_api_t::read().

This function blocks until the data is read into the destination buffer.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_RAM_Write()

fsp_err_t RM_BLOCK_MEDIA_RAM_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes data to RAM media.

Implements rm_block_media_api_t::write().

This function blocks until the write operation completes.

Return values
FSP_SUCCESS Write finished successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

◆ RM_BLOCK_MEDIA_RAM_Erase()

fsp_err_t RM_BLOCK_MEDIA_RAM_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases sectors of RAM media.

Implements rm_block_media_api_t::erase().

This function blocks until erase is complete.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_RAM_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_RAM_StatusGet (rm_block_media_ctrl_t *const p_api_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status.

Implements rm_block_media_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media RAM (rm_block_media_ram)

◆ RM_BLOCK_MEDIA_RAM_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_RAM_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information.

Implements rm_block_media_api_t::infoGet().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLOCK_MEDIA_RAM_Close()

fsp_err_t RM_BLOCK_MEDIA_RAM_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes the module.

Implements rm_block_media_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

5.2.17.3 Block Media SD/MMC (rm_block_media_sdmmc)
Modules » Storage

Functions

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Open (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Read (rm_block_media_ctrl_t *const
p_ctrl, uint8_t *const p_dest_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Write (rm_block_media_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

p_ctrl, uint8_t const *const p_src_address, uint32_t const
block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Erase (rm_block_media_ctrl_t *const
p_ctrl, uint32_t const block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_CallbackSet (rm_block_media_ctrl_t
*const p_ctrl, void(*p_callback)(rm_block_media_callback_args_t *),
void const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_StatusGet (rm_block_media_ctrl_t *const
p_api_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_InfoGet (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Close (rm_block_media_ctrl_t *const
p_ctrl)

Detailed Description

Middleware to implement the block media interface on SD cards. This module implements the Block
Media Interface.

Overview
Features

The SD/MMC implementation of the block media interface has the following key features:

Reading, writing, and erasing data from an SD card
Callback called when card insertion or removal is detected
Provides media information such as sector size and total number of sectors.

Configuration
Build Time Configurations for rm_block_media_sdmmc

The following build time configurations are defined in driver/rm_block_media_sdmmc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Storage > Block Media SD/MMC (rm_block_media_sdmmc)

This module can be added to the Stacks tab via New Stack > Storage > Block Media SD/MMC
(rm_block_media_sdmmc). Non-secure callable guard functions can be generated for this module by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_block_media0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called when a card is
inserted or removed.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the SD/MMC block media implementation in an application.

#define RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE (512)

uint8_t g_dest[RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint32_t g_transfer_complete = 0;

void rm_block_media_sdmmc_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SDMMC driver. */

 fsp_err_t err = RM_BLOCK_MEDIA_SDMMC_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = RM_BLOCK_MEDIA_SDMMC_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to sector 3 of an SD card. */

 err = RM_BLOCK_MEDIA_SDMMC_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from sector 3 of an SD card. */

 err = RM_BLOCK_MEDIA_SDMMC_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Function Documentation

◆ RM_BLOCK_MEDIA_SDMMC_Open()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Opens the module.

Implements rm_block_media_api_t::open().

Return values
FSP_SUCCESS Module is available and is now open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_ALREADY_OPEN Module has already been opened with this
instance of the control structure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::open

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the SD or eMMC device. This procedure requires several sequential commands. This
function blocks until all identification and configuration commands are complete.

Implements rm_block_media_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::mediaInit

◆ RM_BLOCK_MEDIA_SDMMC_Read()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads data from an SD or eMMC device. Up to 0x10000 sectors can be read at a time. Implements
rm_block_media_api_t::read().

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::read

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_Write()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const
*const p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes data to an SD or eMMC device. Up to 0x10000 sectors can be written at a time. Implements
rm_block_media_api_t::write().

Return values
FSP_SUCCESS Write finished successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::write

◆ RM_BLOCK_MEDIA_SDMMC_Erase()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases sectors of an SD card or eMMC device. Implements rm_block_media_api_t::erase().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::erase
sdmmc_api_t::statusGet

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,501 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_CallbackSet (rm_block_media_ctrl_t *const p_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements rm_block_media_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ RM_BLOCK_MEDIA_SDMMC_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_StatusGet (rm_block_media_ctrl_t *const p_api_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status. Implements rm_block_media_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLOCK_MEDIA_SDMMC_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information. Implements rm_block_media_api_t::infoGet().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SD/MMC (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_Close()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes an open SD/MMC device. Implements rm_block_media_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

5.2.17.4 Block Media SPI Flash (rm_block_media_spi)
Modules » Storage

Functions

fsp_err_t RM_BLOCK_MEDIA_SPI_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_SPI_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_SPI_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SPI_Read (rm_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest, uint32_t const start_block, uint32_t const
num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SPI_StatusGet (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_SPI_Write (rm_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src, uint32_t const start_block, uint32_t const
num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SPI_CallbackSet (rm_block_media_ctrl_t *const
p_ctrl, void(*p_callback)(rm_block_media_callback_args_t *), void
const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_SPI_Close (rm_block_media_ctrl_t *const p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SPI_Erase (rm_block_media_ctrl_t *const p_ctrl,
uint32_t const start_block, uint32_t const num_blocks)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

Detailed Description

Middleware to implement the block media interface on SPI flash memory. This module implements
the Block Media Interface.

Overview
Features

The SPI implementation of the block media interface has the following key features:

Reading, writing, and erasing data from SPI flash memory
Provides media information such as sector size and total number of sectors.
Note

By default, Block Media SPI Read, Write, and Erase are blocking operations. Non-blocking operation
may be achieved by yielding control within the optional callback function.

Configuration
Build Time Configurations for rm_block_media_spi

The following build time configurations are defined in driver/rm_block_media_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected, code for
parameter checking is
included in the build

Configurations for Storage > Block Media SPI Flash (rm_block_media_spi)

This module can be added to the Stacks tab via New Stack > Storage > Block Media SPI Flash
(rm_block_media_spi).

Configuration Options Default Description

Module Instance Name Name must be a valid
C symbol

g_rm_block_media0 Module name

Block size (bytes) Manual Entry 4096 Specify the size of a
block in bytes.

Block count Minimum block count is
1, maximum is defined
by hardware and
software design.

8192 Number of blocks
available for use by
this driver instance.

Base Address Manual Entry 0 Base address offset
(bytes) for instance
memory region.

Callback Function Name must be a valid
C symbol

NULL A user callback
function can be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,504 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

provided. If this
callback is provided, it
will be called after the
completion of Read,
Write, and Erase
operations, or anytime
these functions are
waiting on hardware.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Limitations

Developers should be aware of the following limitations when using RM_BLOCK_MEDIA_SPI:

Getting and setting Block Protection or Advanced Sector Protection modes is not supported.
Addressing QSPI memory address ranges greater than 64 MB (one bank) is not supported.

Examples
Basic Example

This is a basic example of minimal use of the SPI block media implementation in an application.

#define RM_BLOCK_MEDIA_SPI_BLOCK_SIZE (256U)

uint8_t g_dest[RM_BLOCK_MEDIA_SPI_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_SPI_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

void rm_block_media_spi_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SPI_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SPI driver. */

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

 /* Initialize the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to block 3 of the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from block 3 of the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Non-Blocking Example

This is a basic example of using the optional SPI callback to impliment non-blocking operation.

#define RM_BLOCK_MEDIA_EXAMPLE_DEVICE_BLOCK_COUNT 0x1000

void rm_block_media_spi_non_blocking_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SPI_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SPI driver. This enables the card detection interrupt. */

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the Block Media SPI driver. */

 err = RM_BLOCK_MEDIA_SPI_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Erase a large quantity of data from SPI Flash Memory */

 err = RM_BLOCK_MEDIA_SPI_Erase(&g_rm_block_media0_ctrl, 0,

RM_BLOCK_MEDIA_EXAMPLE_DEVICE_BLOCK_COUNT);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

}

/* The optional callback is invoked for Read, Write, and Erase operations, whenever

the operation completes or has

 * been blocked by the lower level SPI driver busy indication.

 */

void rm_block_media_spi_example_callback (rm_block_media_callback_args_t * p_args)

{

 if (RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE == p_args->event)

 {

 /* Process operation complete. */

 }

 else if (RM_BLOCK_MEDIA_EVENT_POLL_STATUS == p_args->event)

 {

 rm_block_media_status_t status;

 rm_block_media_ctrl_t * p_ctrl = (rm_block_media_ctrl_t *) p_args->p_context;

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_StatusGet(p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 if (true == status.busy)

 {

 /* Run waiting tasks */

 vTaskSuspend(xTaskGetCurrentTaskHandle());

 }

 }

 else

 {

 assert(RM_BLOCK_MEDIA_EVENT_ERROR == p_args->event);

 /* Process Read, Write, or Erase error. */

 }

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_Open()

fsp_err_t RM_BLOCK_MEDIA_SPI_Open (rm_block_media_ctrl_t *const p_ctrl, rm_block_media_cfg_t
const *const p_cfg)

Parameter checking and Acquires mutex, then handles driver initialization at the HAL SPI layer and
marking the open flag in control block.

Implements rm_block_media_api_t::open.

Return values
FSP_SUCCESS Block media for SPI framework is

successfully opened.

FSP_ERR_ASSERTION One of the input parameters or their data
references may be null.

FSP_ERR_ALREADY_OPEN The channel specified has already been
opened. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::open

◆ RM_BLOCK_MEDIA_SPI_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_SPI_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information.

Implements rm_block_media_api_t::infoGet.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_SPI_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the Block Media SPI Flash device.

Implements rm_block_media_api_t::mediaInit.

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLOCK_MEDIA_SPI_Read()

fsp_err_t RM_BLOCK_MEDIA_SPI_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const start_block, uint32_t const num_blocks)

Reads a number of blocks from spi flash memory. By default, this is a function is blocking. Non-
blocking operation may be achieved by yielding control within the optional callback function.

Implements rm_block_media_api_t::read.

Return values
FSP_SUCCESS SPI data read successfully

FSP_ERR_ASSERTION p_ctrl or p_dest is NULL, or num_blocks is
zero

FSP_ERR_NOT_OPEN Block Media SPI module is not yet open

FSP_ERR_INVALID_ADDRESS Invalid address range for read operation

FSP_ERR_NOT_INITIALIZED Block Media SPI module is not yet initialized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_SPI_StatusGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status.

Implements rm_block_media_api_t::statusGet.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::statusGet

◆ RM_BLOCK_MEDIA_SPI_Write()

fsp_err_t RM_BLOCK_MEDIA_SPI_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src, uint32_t const start_block, uint32_t const num_blocks)

Writes provided data to a number of blocks of spi flash memory. By default, this is a function is
blocking. Non-blocking operation may be achieved by yielding control within the optional callback
function.

Implements rm_block_media_api_t::write.

Return values
FSP_SUCCESS Flash write finished successfully.

FSP_ERR_ASSERTION p_ctrl or p_src is NULL. Or num_blocks is
zero.

FSP_ERR_NOT_OPEN Block media SPI Framework module is not
yet initialized.

FSP_ERR_INVALID_ADDRESS Invalid address range

FSP_ERR_NOT_INITIALIZED Block Media SPI module is not yet initialized

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::write

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_SPI_CallbackSet (rm_block_media_ctrl_t *const p_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
API not supported.

Implements rm_block_media_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED API not supported by RM_BLOCK_MEDIA_SPI.

◆ RM_BLOCK_MEDIA_SPI_Close()

fsp_err_t RM_BLOCK_MEDIA_SPI_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes the Block Media SPI device. Implements rm_block_media_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION One of the following parameters may be
null: p_ctrl.

FSP_ERR_NOT_OPEN Block media SPI Framework module is not
yet initialized.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media SPI Flash (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_Erase()

fsp_err_t RM_BLOCK_MEDIA_SPI_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
start_block, uint32_t const num_blocks)

This function erases blocks of the SPI device. By default, this is a function is blocking. Non-blocking
operation may be achieved by yielding control within the optional callback function.

Implements rm_block_media_api_t::erase.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_INVALID_ADDRESS Invalid address range

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

spi_flash_api_t::erase
spi_flash_api_t::statusGet

5.2.17.5 Block Media USB (rm_block_media_usb)
Modules » Storage

Functions

fsp_err_t RM_BLOCK_MEDIA_USB_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_USB_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_USB_Read (rm_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_Write (rm_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_Erase (rm_block_media_ctrl_t *const p_ctrl,
uint32_t const block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_CallbackSet (rm_block_media_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

p_api_ctrl, void(*p_callback)(rm_block_media_callback_args_t *), void
const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_USB_StatusGet (rm_block_media_ctrl_t *const
p_api_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_USB_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_USB_Close (rm_block_media_ctrl_t *const p_ctrl)

Detailed Description

Middleware to implement the block media interface on USB mass storage devices. This module
implements the Block Media Interface.

Overview
Features

The USB implementation of the block media interface has the following key features:

Reading, writing, and erasing data from a USB mass storage device
Callback called when device insertion or removal is detected
Provides media information such as sector size and total number of sectors.

Configuration
Build Time Configurations for rm_block_media_usb

The following build time configurations are defined in driver/rm_block_media_usb_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Storage > Block Media USB (rm_block_media_usb)

This module can be added to the Stacks tab via New Stack > Storage > Block Media USB
(rm_block_media_usb). Non-secure callable guard functions can be generated for this module by
right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_block_media0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

provided. If this
callback function is
provided, it will be
called when a device is
attached or removed.

Pointer to user context Name must be a valid
C symbol

NULL A user context can be
provided. If this context
is provided, it will be
passed to callback
function when a device
is attached or
removed.

Note
RM_BLOCK_MEDIA_USB_MediaInit function must be called after receiving the insert event notification.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the USB mass storage block media implementation in an
application.

#define RM_BLOCK_MEDIA_USB_BLOCK_SIZE (512)

volatile bool g_usb_inserted = false;

uint8_t g_dest[RM_BLOCK_MEDIA_USB_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_USB_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

void rm_block_media_usb_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_USB_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_USB driver. */

 fsp_err_t err = RM_BLOCK_MEDIA_USB_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!g_usb_inserted)

 {

 /* Wait for a card insertion interrupt. */

 }

 /* Initialize the mass storage device. This should not be done until the device is

plugged in and initialized. */

 err = RM_BLOCK_MEDIA_USB_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to sector 3 of an USB mass storage device. */

 err = RM_BLOCK_MEDIA_USB_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from sector 3 of an USB mass storage device. */

 err = RM_BLOCK_MEDIA_USB_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Device Insertion

This is an example of using a callback to determine when a mass storage device is plugged in and
enumerated.

/* The callback is called when a media insertion event occurs. */

void rm_block_media_usb_media_insertion_example_callback

(rm_block_media_callback_args_t * p_args)

{

 if (RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED == p_args->event)

 {

 g_usb_inserted = true;

 }

 if (RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED == p_args->event)

 {

 g_usb_inserted = false;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

}

Function Documentation

◆ RM_BLOCK_MEDIA_USB_Open()

fsp_err_t RM_BLOCK_MEDIA_USB_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Opens the module.

Implements rm_block_media_api_t::open().

Return values
FSP_SUCCESS Module is available and is now open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_ALREADY_OPEN Module has already been opened with this
instance of the control structure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_USB_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the USB device.

Implements rm_block_media_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_Read()

fsp_err_t RM_BLOCK_MEDIA_USB_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads data from an USB device. Implements rm_block_media_api_t::read().

This function blocks until the data is read into the destination buffer.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_USB_FAILED The message could not received completed
successfully.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_Write()

fsp_err_t RM_BLOCK_MEDIA_USB_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes data to an USB device. Implements rm_block_media_api_t::write().

This function blocks until the write operation completes.

Return values
FSP_SUCCESS Write finished successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_USB_FAILED The message could not received completed
successfully.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_Erase()

fsp_err_t RM_BLOCK_MEDIA_USB_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases sectors of an USB device. Implements rm_block_media_api_t::erase().

This function blocks until erase is complete.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_USB_CallbackSet (rm_block_media_ctrl_t *const p_api_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements rm_block_media_api_t::callbackSet.

Note
This function is currently unsupported for Block Media over USB.

Return values
FSP_ERR_UNSUPPORTED CallbackSet is not currently supported for

Block Media over USB.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Block Media USB (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_USB_StatusGet (rm_block_media_ctrl_t *const p_api_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status. Implements rm_block_media_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_USB_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information. Implements rm_block_media_api_t::infoGet().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

◆ RM_BLOCK_MEDIA_USB_Close()

fsp_err_t RM_BLOCK_MEDIA_USB_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes an open USB device. Implements rm_block_media_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

5.2.17.6 FileX I/O (rm_filex_block_media)
Modules » Storage

Functions

fsp_err_t RM_FILEX_BLOCK_MEDIA_Open (rm_filex_block_media_ctrl_t *const
p_ctrl, rm_filex_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_FILEX_BLOCK_MEDIA_Close (rm_filex_block_media_ctrl_t *const
p_ctrl)

void RM_FILEX_BLOCK_MEDIA_BlockDriver (FX_MEDIA *p_fx_media)

 Access Block Media device functions open, close, read, write and
control. More...

Detailed Description

Middleware for the Azure RTOS FileX File System control using Block Media on RA MCUs.

Overview
This module provides the hardware port layer for FileX file system. After initializing this module, refer
to the FileX API reference to use the file system: https://docs.microsoft.com/en-us/azure/rtos/filex/

Features

The FileX Block Media module supports the following features:

Callbacks for insertion and removal for removable devices.
ThreadX is typically required for FileX. To use FileX without ThreadX
FX_STANDALONE_ENABLE must be defined.
Unless FX_SINGLE_THREAD or FX_STANDALONE_ENABLE are defined, all FileX operations
are thread safe.

Configuration
Build Time Configurations for rm_filex_block_media

The following build time configurations are defined in
fsp_cfg/middleware/rm_filex_block_media_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,520 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

Configurations for Storage > FileX I/O (rm_filex_block_media)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_filex_block_media
_0

Module name.

Callback Name must be a valid
C symbol

g_rm_filex_block_media
_0_callback

A user callback
function can be
provided. If this
callback function is
provided, it will be
called when media is
inserted or removed. It
will also be called
during operations by
the lower level block
media as a way for the
user to provide their
desired waiting
functionality.

Partition Number 0
1
2
3

0 The partition to use for
partitioned media. This
partition will only be
used if a Master Boot
Record with partition
table exists at block 0
of the media, otherwise
the FileX FAT boot
record should exist or
be formatted to block
0.

Build Time Configurations for fx

The following build time configurations are defined in fsp_cfg/azure/fx/fx_user.h:

Configuration Options Default Description

Common

Max Long Name Len Value must be an
integer greater than or
equal to 13 and less
than or equal to 256, or
empty

Specifies the maximum
file name size for FileX.
If left blank the default
value is 256. Legal
values range between
13 and 256.

Max Last Name Len Value must be an
integer greater than or
equal to 13 and less
than or equal to 256, or
empty

This value defines the
maximum file name
length, which includes
full path name. If left
blank the default value
is 256. Legal values
range between 13 and
256.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

Max Sector Cache Value must be an
integer greater than 0
and power of 2 or
empty

Specifies the maximum
number of logical
sectors that can be
cached by FileX. The
actual number of
sectors that can be
cached is lesser of this
constant and how
many sectors can fit in
the amount of memory
supplied at
fx_media_open. The
default value if left
blank is 256. All values
must be a power of 2.

Fat Map Size Value must be an
integer greater than 0
or empty

Specifies the number of
sectors that can be
represented in the FAT
update map. The
default value if left
blank is 256. Larger
values help reduce
unneeded updates of
secondary FAT sectors.

Max Fat Cache Value must be an
integer greater than 0
and power of 2 or
empty

Specifies the number of
entries in the internal
FAT cache. The default
value if left blank is 16.
All values must be a
power of 2.

Threading

Update Rate (Seconds) Value must be an
integer greater than 0
or empty

Specifies rate at which
system time in FileX is
adjusted. Default value
if left blank is 10,
specifying that the
FileX system time is
updated every 10
seconds.

No Timer Enabled
Disabled
(default)

Disabled (default) Eliminates the ThreadX
timer setup to update
the FileX system time
and date. Doing so
causes default time
and date to be placed
on all file operations.

Single Thread Enabled
Disabled
(default)

Disabled (default) Eliminates ThreadX
protection logic from
the FileX source. It
should be used if FileX
is being used only from

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

one thread.

Standalone Enabled
Disabled
(default)

Disabled (default) Enables FileX to be
used in standalone
mode (without Azure
RTOS).

Extra Features

Don't Update Open
Files

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
does not update
already opened files.

Media Search Cache Enabled
(default)
Disabled

Enabled (default) When disabled, the file
search cache
optimization is
disabled.

Direct Data Read
Cache Fill

Enabled
(default)
Disabled

Enabled (default) When disabled, the
direct read sector
update of cache is
disabled.

Media Statistics Enabled
(default)
Disabled

Enabled (default) When disabled,
gathering of media
statistics is disabled.

Single Open Legacy Enabled
Disabled
(default)

Disabled (default) When enabled, legacy
single open logic for
the same file is
enabled.

Rename Path Inherit Enabled
Disabled
(default)

Disabled (default) When enabled,
renaming inherits path
information.

No Local Path Enabled
Disabled
(default)

Disabled (default) When enabled,
removes local path
logic from FileX,
resulting in smaller
code size.

64-bit LBA Enabled
Disabled
(default)

Disabled (default) When enabled, 64-bits
sector addresses are
used in I/O driver.

Cache Enabled
(default)
Disabled

Enabled (default) Enables or disables the
cache, default is
enabled.

File Close Enabled
(default)
Disabled

Enabled (default) Enables or disables file
close, default is
enabled.

Fast Close Enabled
(default)
Disabled

Enabled (default) Enables or disables fast
open, default is
enabled.

Force Memory
Operation

Enabled
(default)

Enabled (default) Enables or disables
force memory

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

Disabled operation, default is
enabled.

Build Options Enabled
(default)
Disabled

Enabled (default) Enables or disables
build options, default is
enabled.

One Line Function Enabled
(default)
Disabled

Enabled (default) Enables or disables one
line function, default is
enabled.

FAT Entry Refresh Enabled
(default)
Disabled

Enabled (default) Enables or disables FAT
entry refresh, default is
enabled.

Consecutive Detect Enabled
(default)
Disabled

Enabled (default) Enables or disables
consecutive detect,
default is enabled.

Enable exFAT Enabled
Disabled
(default)

Disabled (default) Enables exFAT support
in FileX.

Fault Tolerant

Fault Tolerant Service Enabled
Disabled
(default)

Disabled (default) When enabled, enables
the FileX Fault Tolerant
Module. Enabling Fault
Tolerant automatically
defines the symbol
FX_FAULT_TOLERANT
and FX_FAULT_TOLERA
NT_DATA.

Fault Tolerant Data Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes all
file data write requests
to the media's driver.
This potentially
decreases
performance, but helps
limit lost file data. Note
that enabling this
feature does not
automatically enable
FileX Fault Tolerant
Module, which should
be enabled separately.

Fault Tolerant Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes
write requests of all
system sectors (boot,
FAT, and directory
sectors) to the media's
driver. This potentially
decreases
performance, but helps

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

limit corruption to lost
clusters. Note that
enabling this feature
does not automatically
enable FileX Fault
Tolerant Module, which
should be enabled
separately.

Fault Tolerant Boot
Index

Value must be an
integer greater than or
equal to 116 and less
than or equal to 119

Defines byte offset in
the boot sector where
the cluster for the fault
tolerant log is. By
default if left blank this
value is 116. This field
takes 4 bytes. Bytes
116 through 119 are
chosen because they
are marked as
reserved by FAT
12/16/32/exFAT
specification.

Error Checking Enabled
(default)
Disabled

Enabled (default)

Configurations for Storage > Azure RTOS FileX on Block Media

This module can be added to the Stacks tab via New Stack > Storage > Azure RTOS FileX on Block
Media.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fx_media0 Symbol used for
media_ptr parameter in
FileX APIs

Volume Name Name must be a
maximum of 11
characters

Volume 1 Volume name string,
which is a maximum of
11 characters.

Number of FATs Number of FATs must
be an integer greater
than 0

1 Number of FATs in the
media. The minimal
value is 1 for the
primary FAT. Values
greater than 1 result in
additional FAT copies
being maintained at
run-time.

Directory Entries Number of Directory
Entries must be an
integer greater than 0

256 Number of directory
entries in the root
directory.

Hidden Sectors Number of Hidden
Sectors must be an

0 Number of sectors
hidden before this

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

integer media's boot sector. If
using media formatted
with multiple partitions
this number should
correspond to the
starting block number
for the desired
partition.

Total Sectors Total Sectors must be
an integer greater than
0

65536 Total number of sectors
in the media. When
using a Renesas
provided block media
implementation, total
sectors can be fetched
by the infoGet from the
block media API. Any
removable media must
be inserted and
initialized first to
retrieve this info.

Bytes per Sector Bytes per Sector must
be multiple of 32

512 Number of bytes per
sector, which is
typically 512. FileX
requires this to be a
multiple of 32. When
using a Renesas
provided block media
implementation, bytes
per sector can be
fetched by the infoGet
from the block media
API. Any removable
media must be inserted
and initialized first to
retrieve this info.

Sectors per Cluster Sectors per Cluster
must be an integer
greater than 0

1 Number of sectors in
each cluster. The
cluster is the minimum
allocation unit in a FAT
file system.

Volume Serial Number
(exFAT only)

Volume Serial Number
must be an integer
greater than 0

12345 Serial number to be
used for this volume.
exFAT only.

Boundary Unit (exFAT
only)

Boundary unit must be
an integer greater than
0

128 Physical data area
alignment size, in
number of sectors.
exFAT only.

Working media
memory size

Memory size must be
an integer greater than
or equal to the size of
one sector

512 Memory allocated for
file system. Memory
size must be an integer
greater than or equal

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

to the size of one
sector.

Usage Notes
Pending during Read/Write

The FileX Block Media driver provides a number of events in the user callback to handle waiting or
pending while it is doing blocking operations. The events received in the callback will differ
depending on the lower level block media driver in use.

If the lower level block media driver is rm_block_media_spi (SPI blocks on read/write operations):

The user will receive RM_BLOCK_MEDIA_EVENT_POLL_STATUS in the user callback while the
lower level driver is polling for the read/write operation to be complete. The user can
choose to do a thread sleep or software delay upon receiving this event in the callback.
Once the operation is complete no other callbacks will be received.

If the lower level block media driver is rm_block_media_sdmmc (SDMMC is interrupt based, the FileX
Block Media driver will still block while waiting for interrupts from SDMMC):

The user will receive RM_BLOCK_MEDIA_EVENT_WAIT in the user callback when the FileX
Block Media driver begins waiting for an interrupt event from SDMMC. This is sent from a
thread context. The user can choose to pend on a semaphore, sleep the thread, or do a
software delay upon receiving this event in the callback. The FileX Block Media driver
thread will block until an interrupt is received.
Once an SDMMC interrupt is received the user will receive
RM_BLOCK_MEDIA_EVENT_WAIT_END in the user callback. This is sent from an interrupt
context. The user can choose to give a semaphore on this event or do nothing.
If SDMMC is busy on a long erase after receiving the interrupt the FileX Block Media driver
will send RM_BLOCK_MEDIA_EVENT_POLL_STATUS to the user callback and proceed to do a
blocking poll on SDMMC status. The user can choose to do a thread sleep or software delay
upon receiving this event in the callback. This event will not be received by the user on
typical operations by FileX.

Partitioned Media

When using fx_format to format a partition the number of hidden sectors should match the starting
block number of the partition and the total number of sectors should be equal to the number of
sectors in the partition.

Unused User Callback Events

Certain events are defined in rm_block_media_event_t but not returned by the FileX Block Media user
callback:

RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE: This event is handled internally and
operation success is indicated by FileX API calls returning FX_SUCCESS.
RM_BLOCK_MEDIA_EVENT_ERROR: This event is handled internally and operation failure will
be indicated by an error return code from FileX API calls.

Erasing Flash Memory Prior to Usage

The area of the flash memory being used for the FileX instance should be erased using the lower

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

level flash API prior to usage. Otherwise, FileX open operation may fail when fx_media_open() is
called.

Examples
Basic Example

This is a basic example of FileX Block Media in an application.

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_PARTITION_NUMBER (0)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_BLOCK_SIZE (512)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES (128)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS (0)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS (1073741824)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE (512)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK (1)

extern rm_filex_block_media_instance_t g_filex_block_media0;

extern rm_filex_block_media_instance_ctrl_t g_filex_block_media0_ctrl;

extern rm_filex_block_media_cfg_t g_filex_block_media0_cfg;

extern FX_MEDIA g_fx_media0;

extern uint8_t g_fx_media0_memory[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BLOCK_SIZE];

extern uint8_t g_file_data[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_filex_block_media_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize FileX */

 fx_system_initialize();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

 /* Open the media. If the media is removable, it must be inserted before calling

 * fx_media_open. This assumes the disk is already partitioned and formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_BLOCK_MEDIA_BlockDriver,

 &g_filex_block_media0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

 /* Create a file */

 fx_err = fx_file_create(&g_fx_media0, RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME);

 handle_fx_error(fx_err);

 /* Open source file for writing. */

 FX_FILE sourceFile;

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME, FX_OPEN_FOR_WRITE);

 handle_fx_error(fx_err);

 /* Write file data. */

 fx_err = fx_file_write(&sourceFile, g_file_data, sizeof(g_file_data));

 handle_fx_error(fx_err);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Open the source file in read mode. */

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME, FX_OPEN_FOR_READ);

 handle_fx_error(fx_err);

 /* Read file data. */

 ULONG actual_size_read;

 fx_err = fx_file_read(&sourceFile, g_read_buffer, sizeof(g_file_data),

&actual_size_read);

 handle_fx_error(fx_err);

 assert(sizeof(g_file_data) == actual_size_read);

 /* Close the file. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

 /* Close the Media */

 fx_err = fx_media_close(&g_fx_media0);

 handle_fx_error(fx_err);

}

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

void rm_filex_block_media_format_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err =

fx_media_format(&g_fx_media0, // Pointer to

FileX media control block.

 RM_FILEX_BLOCK_MEDIA_BlockDriver, // Driver entry

 &g_filex_block_media0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

// Hidden sectors

RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Callback Pend Example

This shows how to use the I/O driver callback with ThreadX in order to wait/pend for operations to
complete.

TX_SEMAPHORE g_operation_wait_semaphore;

/* Callback called by FileX block media I/O driver needs to pend on operation. */

void rm_filex_block_media_test_callback_pend (rm_filex_block_media_callback_args_t *

p_args)

{

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_WAIT)

 {

 /* Interrupt has not happened for operation, get semaphore to wait for it. This will

be called from the FileX I/O driver thread. */

 tx_semaphore_get(&g_operation_wait_semaphore, TX_WAIT_FOREVER);

 }

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_WAIT_END)

 {

 /* Interrupt has occurred for operation, post semaphore so that wait will end. This

will be called from an interrupt context. */

 tx_semaphore_put(&g_operation_wait_semaphore);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

 }

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_POLL_STATUS)

 {

 /* Interrupt has been received from block media device but operation is still

ongoing. The FileX I/O driver will wait on the driver busy status.

 * This event can be used to put the thread to sleep while waiting. This will be

called from the FileX I/O driver thread. */

 tx_thread_sleep(1);

 }

}

void rm_filex_block_media_callback_pend_example (void)

{

 /* Create semaphore for driver use */

 tx_semaphore_create(&g_operation_wait_semaphore, "operation_wait_semaphore", 0);

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err =

fx_media_format(&g_fx_media0, // Pointer to

FileX media control block.

 RM_FILEX_BLOCK_MEDIA_BlockDriver, // Driver entry

 &g_filex_block_media0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

// Hidden sectors

RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Media Insertion Example

This shows how to use the callback to wait for media insertion.

volatile uint32_t g_rm_filex_block_media_insertion_events = 0;

volatile uint32_t g_rm_filex_block_media_removal_events = 0;

/* Callback called by media driver when a removable device is inserted or removed. */

void rm_filex_block_media_test_callback (rm_filex_block_media_callback_args_t *

p_args)

{

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED)

 {

 g_rm_filex_block_media_insertion_events++;

 }

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED)

 {

 g_rm_filex_block_media_removal_events++;

 }

}

void rm_filex_block_media_media_insertion_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for media insertion. */

 while (0U == g_rm_filex_block_media_insertion_events)

 {

 /* Wait for media insertion. */

 }

 /* Open the media. If the media is removable, it must be inserted before calling

 * fx_media_open. This assumes the disk is already partitioned and formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_BLOCK_MEDIA_BlockDriver,

 &g_filex_block_media0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

}

Using FileX with Custom Block Media Implementations

When using a Custom Block Media implementation with rm_filex_block_media the custom
implementation must call rm_filex_block_media_memory_callback upon the completion of a
read/write operation. This callback should be called with an event of
RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE and p_context of
rm_filex_block_media_instance_ctrl_t *. The following example shows how this should be done in the
context of a demo RAM block media read function.

#define EXAMPLE_BLOCK_MEDIA_RAM_START_ADDR (0x20004AFE)

#define EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES (512)

/* Example implementation of rm_block_media_api_t::read(), user should define custom

block media RAM implementation. */

fsp_err_t RM_BLOCK_MEDIA_CUSTOM_RAM_Read (rm_block_media_ctrl_t * const p_ctrl,

 uint8_t * const

 p_dest_address,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

 uint32_t const

block_address,

 uint32_t const num_blocks)

{

 FSP_PARAMETER_NOT_USED(p_ctrl);

 memcpy(p_dest_address,

 (void *) (EXAMPLE_BLOCK_MEDIA_RAM_START_ADDR + (block_address *

EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES)),

 (EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES * num_blocks));

 /* Notify FileX port of operation complete through calling the callback, this is

required for custom block media/FileX port integration */

 rm_block_media_callback_args_t args;

 args.event = RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE;

 args.p_context = (void *) &g_filex_block_media0_ctrl;

 rm_filex_block_media_memory_callback(&args);

 return FSP_SUCCESS;

}

Data Structures

struct rm_filex_block_media_instance_ctrl_t

Data Structure Documentation

◆ rm_filex_block_media_instance_ctrl_t

struct rm_filex_block_media_instance_ctrl_t

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file. FileX block media private control block. DO NOT MODIFY. Initialization occurs when
RM_FILEX_BLOCK_MEDIA_Open is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

◆ RM_FILEX_BLOCK_MEDIA_Open()

fsp_err_t RM_FILEX_BLOCK_MEDIA_Open (rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

The file system relies on the media to be formatted prior to creating directories and files The sector
size and sector count will change depending on the media type and size.

The File Allocation Table (FAT) starts after the reserved sectors in the media. The FAT area is
basically an array of 12-bit, 16-bit, or 32-bit entries that determine if that cluster is allocated or
part of a chain of clusters comprising a subdirectory or a file. The size of each FAT entry is
determined by the number of clusters that need to be represented. If the number of clusters
(derived from the total sectors divided by the sectors per cluster) is less than 4,086, 12-bit FAT
entries are used. If the total number of clusters is greater than 4,086 and less than or equal to
65,525, 16-bit FAT entries are used. Otherwise, if the total number of clusters is greater than
65,525, 32-bit FAT entries are used. Initializes callback and configuration for FileX Block Media
interface. Call this before calling any FileX functions.

Implements rm_filex_block_media_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_FILEX_BLOCK_MEDIA_Close()

fsp_err_t RM_FILEX_BLOCK_MEDIA_Close (rm_filex_block_media_ctrl_t *const p_ctrl)

Closes media device.

Implements rm_filex_block_media_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_block_media)

◆ RM_FILEX_BLOCK_MEDIA_BlockDriver()

void RM_FILEX_BLOCK_MEDIA_BlockDriver (FX_MEDIA * p_fx_media)

Access Block Media device functions open, close, read, write and control.

The RM_FILEX_BLOCK_MEDIA_BlockDriver function is called from the FileX file system driver and
issues requests to a Block Media device through the FSP Block Media Interface. Uses block media
driver for accesses.

Parameters
[in,out] p_fx_media FileX media control block. All

information about each open
media device are maintained
in the FX_MEDIA data type.
The I/O driver communicates
the success or failure of the
request through the
fx_media_driver_status
member of FX_MEDIA (p_fx_
media->fx_media_driver_sta
tus). Possible values are
documented in the FileX
User Guide.

Return values
None

Returns
Nothing, but updates FileX media control block.

5.2.17.7 FileX I/O (rm_filex_levelx_nor)
Modules » Storage

Functions

void RM_FILEX_LEVELX_NOR_DeviceDriver (FX_MEDIA *p_fx_media)

 Access LevelX NOR device functions open, close, read, write and
control. More...

Detailed Description

Middleware for the Azure RTOS FileX File System control using LevelX NOR on RA MCUs.

Overview

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

This module provides the hardware port layer for FileX file system. After initializing this module, refer
to the FileX API reference to use the file system: https://docs.microsoft.com/en-us/azure/rtos/filex/

Features

The FileX LevelX NOR module supports the following features:

ThreadX is typically required for FileX. To use FileX without ThreadX
FX_STANDALONE_ENABLE must be defined.
Unless FX_SINGLE_THREAD or FX_STANDALONE_ENABLE are defined, all FileX operations
are thread safe.

Configuration
Build Time Configurations for rm_filex_levelx_nor

The following build time configurations are defined in fsp_cfg/middleware/rm_filex_levelx_nor_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

Configurations for Storage > FileX I/O (rm_filex_levelx_nor)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_filex_levelx_nor0 Module name.

Callback Name must be a valid
C symbol

g_rm_filex_levelx_nor_0
_callback

A user callback
function can be
provided. If this
callback function is
provided, it will be
called during
operations by the lower
level block media as a
way for the user to
provide their desired
waiting functionality.

LevelX NOR Name
(String)

Manual Entry g_rm_filex_levelx_nor_0 String name to be input
into LevelX API.

Build Time Configurations for fx

The following build time configurations are defined in fsp_cfg/azure/fx/fx_user.h:

Configuration Options Default Description

Common

Max Long Name Len Value must be an Specifies the maximum

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,538 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

integer greater than or
equal to 13 and less
than or equal to 256, or
empty

file name size for FileX.
If left blank the default
value is 256. Legal
values range between
13 and 256.

Max Last Name Len Value must be an
integer greater than or
equal to 13 and less
than or equal to 256, or
empty

This value defines the
maximum file name
length, which includes
full path name. If left
blank the default value
is 256. Legal values
range between 13 and
256.

Max Sector Cache Value must be an
integer greater than 0
and power of 2 or
empty

Specifies the maximum
number of logical
sectors that can be
cached by FileX. The
actual number of
sectors that can be
cached is lesser of this
constant and how
many sectors can fit in
the amount of memory
supplied at
fx_media_open. The
default value if left
blank is 256. All values
must be a power of 2.

Fat Map Size Value must be an
integer greater than 0
or empty

Specifies the number of
sectors that can be
represented in the FAT
update map. The
default value if left
blank is 256. Larger
values help reduce
unneeded updates of
secondary FAT sectors.

Max Fat Cache Value must be an
integer greater than 0
and power of 2 or
empty

Specifies the number of
entries in the internal
FAT cache. The default
value if left blank is 16.
All values must be a
power of 2.

Threading

Update Rate (Seconds) Value must be an
integer greater than 0
or empty

Specifies rate at which
system time in FileX is
adjusted. Default value
if left blank is 10,
specifying that the
FileX system time is
updated every 10

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

seconds.

No Timer Enabled
Disabled
(default)

Disabled (default) Eliminates the ThreadX
timer setup to update
the FileX system time
and date. Doing so
causes default time
and date to be placed
on all file operations.

Single Thread Enabled
Disabled
(default)

Disabled (default) Eliminates ThreadX
protection logic from
the FileX source. It
should be used if FileX
is being used only from
one thread.

Standalone Enabled
Disabled
(default)

Disabled (default) Enables FileX to be
used in standalone
mode (without Azure
RTOS).

Extra Features

Don't Update Open
Files

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
does not update
already opened files.

Media Search Cache Enabled
(default)
Disabled

Enabled (default) When disabled, the file
search cache
optimization is
disabled.

Direct Data Read
Cache Fill

Enabled
(default)
Disabled

Enabled (default) When disabled, the
direct read sector
update of cache is
disabled.

Media Statistics Enabled
(default)
Disabled

Enabled (default) When disabled,
gathering of media
statistics is disabled.

Single Open Legacy Enabled
Disabled
(default)

Disabled (default) When enabled, legacy
single open logic for
the same file is
enabled.

Rename Path Inherit Enabled
Disabled
(default)

Disabled (default) When enabled,
renaming inherits path
information.

No Local Path Enabled
Disabled
(default)

Disabled (default) When enabled,
removes local path
logic from FileX,
resulting in smaller
code size.

64-bit LBA Enabled
Disabled

Disabled (default) When enabled, 64-bits
sector addresses are

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

(default) used in I/O driver.

Cache Enabled
(default)
Disabled

Enabled (default) Enables or disables the
cache, default is
enabled.

File Close Enabled
(default)
Disabled

Enabled (default) Enables or disables file
close, default is
enabled.

Fast Close Enabled
(default)
Disabled

Enabled (default) Enables or disables fast
open, default is
enabled.

Force Memory
Operation

Enabled
(default)
Disabled

Enabled (default) Enables or disables
force memory
operation, default is
enabled.

Build Options Enabled
(default)
Disabled

Enabled (default) Enables or disables
build options, default is
enabled.

One Line Function Enabled
(default)
Disabled

Enabled (default) Enables or disables one
line function, default is
enabled.

FAT Entry Refresh Enabled
(default)
Disabled

Enabled (default) Enables or disables FAT
entry refresh, default is
enabled.

Consecutive Detect Enabled
(default)
Disabled

Enabled (default) Enables or disables
consecutive detect,
default is enabled.

Enable exFAT Enabled
Disabled
(default)

Disabled (default) Enables exFAT support
in FileX.

Fault Tolerant

Fault Tolerant Service Enabled
Disabled
(default)

Disabled (default) When enabled, enables
the FileX Fault Tolerant
Module. Enabling Fault
Tolerant automatically
defines the symbol
FX_FAULT_TOLERANT
and FX_FAULT_TOLERA
NT_DATA.

Fault Tolerant Data Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes all
file data write requests
to the media's driver.
This potentially
decreases
performance, but helps
limit lost file data. Note
that enabling this

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

feature does not
automatically enable
FileX Fault Tolerant
Module, which should
be enabled separately.

Fault Tolerant Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes
write requests of all
system sectors (boot,
FAT, and directory
sectors) to the media's
driver. This potentially
decreases
performance, but helps
limit corruption to lost
clusters. Note that
enabling this feature
does not automatically
enable FileX Fault
Tolerant Module, which
should be enabled
separately.

Fault Tolerant Boot
Index

Value must be an
integer greater than or
equal to 116 and less
than or equal to 119

Defines byte offset in
the boot sector where
the cluster for the fault
tolerant log is. By
default if left blank this
value is 116. This field
takes 4 bytes. Bytes
116 through 119 are
chosen because they
are marked as
reserved by FAT
12/16/32/exFAT
specification.

Error Checking Enabled
(default)
Disabled

Enabled (default)

Configurations for Storage > Azure RTOS FileX on LevelX NOR

This module can be added to the Stacks tab via New Stack > Storage > Azure RTOS FileX on LevelX
NOR.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fx_media0 Symbol used for
media_ptr parameter in
FileX APIs

Volume Name Name must be a
maximum of 11
characters

Volume 1 Volume name string,
which is a maximum of
11 characters.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

Number of FATs Number of FATs must
be an integer greater
than 0

1 Number of FATs in the
media. The minimal
value is 1 for the
primary FAT. Values
greater than 1 result in
additional FAT copies
being maintained at
run-time.

Directory Entries Number of Directory
Entries must be an
integer greater than 0

256 Number of directory
entries in the root
directory.

Hidden Sectors Number of Hidden
Sectors must be an
integer

0 Number of sectors
hidden before this
media's boot sector. If
using media formatted
with multiple partitions
this number should
correspond to the
starting block number
for the desired
partition.

Total Sectors Total Sectors must be
an integer greater than
0

57337 Total number of sectors
in the media. When
using a Renesas
provided block media
implementation, total
sectors can be fetched
by the infoGet from the
block media API. Any
removable media must
be inserted and
initialized first to
retrieve this info.

Sectors per Cluster Sectors per Cluster
must be an integer
greater than 0

1 Number of sectors in
each cluster. The
cluster is the minimum
allocation unit in a FAT
file system.

Volume Serial Number
(exFAT only)

Volume Serial Number
must be an integer
greater than 0

12345 Serial number to be
used for this volume.
exFAT only.

Boundary Unit (exFAT
only)

Boundary unit must be
an integer greater than
0

128 Physical data area
alignment size, in
number of sectors.
exFAT only.

Working media
memory size

Memory size must be
an integer greater than
or equal to the size of
one sector

512 Memory allocated for
file system. Memory
size must be an integer
greater than or equal
to the size of one
sector.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

Usage Notes
Pending during Write/Erase

If the underlying LevelX NOR driver performs a blocking operation that requires waiting to complete
(such as a long write/erase on NOR SPI), a callback can be provided to provide a way to wait with an
OS-specific thread wait. This callback will also pass up block erase events.

Partitioned Media

Partitioned media is not supported directly by the FileX LevelX NOR port.

Examples
Basic Example

This is a basic example of FileX Block Media in an application.

#define RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_PARTITION_NUMBER (0)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_BLOCK_SIZE (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES (128)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS (0)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK (1)

extern rm_filex_levelx_nor_instance_t g_filex_levelx_nor0;

extern rm_filex_levelx_nor_instance_ctrl_t g_filex_levelx_nor0_ctrl;

extern rm_filex_levelx_nor_cfg_t g_filex_levelx_nor0_cfg;

extern FX_MEDIA g_fx_media0;

extern uint8_t g_fx_media0_memory[RM_FILEX_LEVELX_NOR_EXAMPLE_BLOCK_SIZE];

extern uint8_t g_file_data[RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_filex_levelx_nor_example (void)

{

 /* Initialize FileX */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

 fx_system_initialize();

 /* Initialize LevelX */

 lx_nor_flash_initialize();

 /* Open the media. This assumes the flash is already formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_LEVELX_NOR_DeviceDriver,

 &g_filex_levelx_nor0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

 /* Create a file */

 fx_err = fx_file_create(&g_fx_media0, RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME);

 handle_fx_error(fx_err);

 /* Open source file for writing. */

 FX_FILE sourceFile;

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME, FX_OPEN_FOR_WRITE);

 handle_fx_error(fx_err);

 /* Write file data. */

 fx_err = fx_file_write(&sourceFile, g_file_data, sizeof(g_file_data));

 handle_fx_error(fx_err);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Open the source file in read mode. */

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME, FX_OPEN_FOR_READ);

 handle_fx_error(fx_err);

 /* Read file data. */

 ULONG actual_size_read;

 fx_err = fx_file_read(&sourceFile, g_read_buffer, sizeof(g_file_data),

&actual_size_read);

 handle_fx_error(fx_err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

 assert(sizeof(g_file_data) == actual_size_read);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

 /* Close the Media */

 fx_err = fx_media_close(&g_fx_media0);

 handle_fx_error(fx_err);

}

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

extern rm_levelx_nor_spi_cfg_t g_levelx_nor_spi0_cfg;

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE (4096)

void rm_filex_levelx_nor_format_example (void)

{

 spi_flash_instance_t * p_spi_flash_instance = (spi_flash_instance_t *)

g_levelx_nor_spi0_cfg.p_lower_lvl;

 spi_flash_status_t status;

 /* Erase flash prior to usage */

 fsp_err_t err = p_spi_flash_instance->p_api->open(p_spi_flash_instance->p_ctrl,

p_spi_flash_instance->p_cfg);

 assert(FSP_SUCCESS == err);

 for (uint32_t i = g_levelx_nor_spi0_cfg.address_offset;

 i < g_levelx_nor_spi0_cfg.size;

 i += RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE)

 {

 err = p_spi_flash_instance->p_api->erase(p_spi_flash_instance->p_ctrl,

 (uint8_t *)

g_levelx_nor_spi0_cfg.base_address + i,

RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

 assert(FSP_SUCCESS == err);

 status.write_in_progress = true;

 while (status.write_in_progress)

 {

 err =

p_spi_flash_instance->p_api->statusGet(p_spi_flash_instance->p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 }

 err = p_spi_flash_instance->p_api->close(p_spi_flash_instance->p_ctrl);

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err = fx_media_format(&g_fx_media0,

// Pointer to FileX media control block.

 RM_FILEX_LEVELX_NOR_DeviceDriver, // Driver entry

 &g_filex_levelx_nor0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS,

// Heads

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Callback Wait Example

This shows how to use the I/O driver callback with ThreadX in order to wait for operations to
complete.

/* Callback called by FileX block media I/O driver needs to wait on operation. */

void rm_filex_levelx_nor_test_callback_wait (rm_filex_levelx_nor_callback_args_t *

p_args)

{

 if (p_args->event & RM_FILEX_LEVELX_NOR_EVENT_BUSY)

 {

 /* Put the thread to sleep while waiting for operation to complete. */

 tx_thread_sleep(1);

 }

}

void rm_filex_levelx_nor_callback_wait_example (void)

{

 /* Format the media */

 UINT fx_err = fx_media_format(&g_fx_media0,

// Pointer to FileX media control block.

 RM_FILEX_LEVELX_NOR_DeviceDriver, // Driver entry

 &g_filex_levelx_nor0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

 RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Data Structures

struct rm_filex_levelx_nor_callback_args_t

struct rm_filex_levelx_nor_cfg_t

struct rm_filex_levelx_nor_instance_ctrl_t

struct rm_filex_levelx_nor_instance_t

Macros

#define VOID

Enumerations

enum rm_filex_levelx_nor_event_t

Data Structure Documentation

◆ rm_filex_levelx_nor_callback_args_t

struct rm_filex_levelx_nor_callback_args_t

Callback function parameter data

Data Fields

rm_filex_levelx_nor_event_t event The event can be used to
identify what caused the
callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

void const * p_context Placeholder for user data.

◆ rm_filex_levelx_nor_cfg_t

struct rm_filex_levelx_nor_cfg_t

FileX LevelX configuration

Data Fields

UINT(* nor_driver_initialize)(LX_NOR_FLASH *)

 Pointer to the initialization function.

LX_NOR_FLASH * p_nor_flash

 NOR Flash instance.

CHAR * p_nor_flash_name

 NOR Flash instance name.

fsp_err_t(* close)()

 Pointer to underlying driver close.

void(* p_callback)(rm_filex_levelx_nor_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 Placeholder for user data.

◆ rm_filex_levelx_nor_instance_ctrl_t

struct rm_filex_levelx_nor_instance_ctrl_t

FileX block media private control block. DO NOT MODIFY. Initialization occurs when
RM_FILEX_LEVELX_NOR_Open is called.

Data Fields

rm_filex_levelx_nor_cfg_t const
*

p_cfg Pointer to instance
configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

◆ rm_filex_levelx_nor_instance_t

struct rm_filex_levelx_nor_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_filex_levelx_nor_instance_ct
rl_t *

p_ctrl Pointer to the control structure
for this instance.

rm_filex_levelx_nor_cfg_t const
*

p_cfg Pointer to the configuration
structure for this instance.

Macro Definition Documentation

◆ VOID

#define VOID

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file.

Enumeration Type Documentation

◆ rm_filex_levelx_nor_event_t

enum rm_filex_levelx_nor_event_t

Options for the callback events.

Enumerator

RM_FILEX_LEVELX_NOR_EVENT_BUSY Pending operation, user can define their own
wait functionality.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FileX I/O (rm_filex_levelx_nor)

◆ RM_FILEX_LEVELX_NOR_DeviceDriver()

void RM_FILEX_LEVELX_NOR_DeviceDriver (FX_MEDIA * p_fx_media)

Access LevelX NOR device functions open, close, read, write and control.

The RM_FILEX_LEVELX_NOR_DeviceDriver function is called from the FileX file system driver and
issues requests to a LevelX NOR device through the LevelX API.

Parameters
[in,out] p_fx_media FileX media control block. All

information about each open
media device are maintained
in the FX_MEDIA data type.
The I/O driver communicates
the success or failure of the
request through the
fx_media_driver_status
member of FX_MEDIA (p_fx_
media->fx_media_driver_sta
tus). Possible values are
documented in the FileX
User Guide.

Return values
None

Returns
Nothing, but updates FileX media control block.

5.2.17.8 Flash (r_flash_hp)
Modules » Storage

Functions

fsp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*p_blank_check_result)

fsp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

*const p_status)

fsp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_HP_BankSwap (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t
*const p_info)

fsp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_CallbackSet (flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the flash memory on RA high-performance MCUs. This module implements the Flash
Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
ROM flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The R_FLASH_HP module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank-checking of code flash.
Callback functions for completion of non-blocking data flash operations.
Access window (write protection) for ROM Flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

Configuration
Build Time Configurations for r_flash_hp

The following build time configurations are defined in fsp_cfg/r_flash_hp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Code Flash
Programming Enable

Enabled
Disabled

Disabled Controls whether or not
code-flash
programming is
enabled. Disabling
reduces the amount of
ROM and RAM used by
the API.

Data Flash
Programming Enable

Enabled
Disabled

Enabled Controls whether or not
data-flash
programming is
enabled. Disabling
reduces the amount of
ROM used by the API.

Configurations for Storage > Flash (r_flash_hp)

This module can be added to the Stacks tab via New Stack > Storage > Flash (r_flash_hp). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_flash0 Module name.

Data Flash Background
Operation

Enabled
Disabled

Enabled Enabling allows Flash
API calls that reference
data-flash to return
immediately, with the
operation continuing in
the background.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified. Callback
function called when a
Data Flash Background
Operation completes or
errors.

Flash Ready Interrupt
Priority

MCU Specific Options Select the flash ready
interrupt priority.

Flash Error Interrupt MCU Specific Options Select the flash error

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

Priority interrupt priority.

Clock Configuration

Flash uses FCLK as the clock source depending on the MCU. When writing and erasing the clock
source must be at least 4 MHz.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Warning

It is highly recommended that the developer reviews sections 5 and 6 of the Flash Memory
section of the target MCUs Hardware User's Manual prior to using the r_flash_hp module. In
particular, understanding ID Code and Access Window functionality can help avoid
unrecoverable flash scenarios.

Data Flash Background Operation (BGO) Precautions

When using the data flash BGO (Background Operation) mode, you can still access the user ROM,
RAM and external memory. You must ensure that the data flash is not accessed during a data flash
operation. This includes interrupts that may access the data flash.

Code Flash Precautions

Code flash cannot be accessed while writing, erasing or blank checking code flash. Code flash cannot
be accessed while modifying the access window, selecting the startup area or setting the ID code. In
order to support modifying code flash all supporting code must reside in RAM. This is only done when
code flash programming is enabled. BGO mode is not supported for code flash, so a code flash
operation will not return before the operation has completed. By default, the vector table resides in
the code flash. If an interrupt occurs during the code flash operation, then code flash will be
accessed to fetch the interrupt's starting address and an error will occur. The simplest work-around
is to disable interrupts during code flash operations. Another option is to copy the vector table to
RAM, update the VTOR (Vector Table Offset Register) accordingly and ensure that any interrupt
service routines execute out of RAM. Similarly, you must insure that if in a multi-threaded
environment, threads running from code flash cannot become active while a code flash operation is
in progress.

Flash Clock (FCLK)

The flash clock source is the clock used by the Flash peripheral in performing all Flash operations. As
part of the flash_api_t::open function the Flash clock source is checked will return FSP_ERR_FCLK if it
is invalid. Once the Flash API has been opened, if the flash clock source frequency is changed, the
flash_api_t::updateFlashClockFreq API function must be called to inform the API of the change.
Failure to do so could result in flash operation failures and possibly damage the part.

Interrupts

Enable the flash ready interrupt only if you plan to use the data flash BGO. In this mode, the
application can initiate a data flash operation and then be asynchronously notified of its completion,
or an error, using a user supplied-callback function. The callback function is passed a structure
containing event information that indicates the source of the callback event (for example,
flash_api_t::FLASH_EVENT_ERASE_COMPLETE) When the FLASH FRDYI interrupt is enabled, the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

corresponding ISR will be defined in the flash driver. The ISR will call a user-callback function if one
was registered with the flash_api_t::open API.

Note
The Flash HP supports an additional flash-error interrupt and if the BGO mode is enabled for the FLASH HP then
both the Flash Ready Interrupt and Flash Error Interrupts must be enabled (assigned a priority).

Viewing flash contents in e2 studio

By default, the contents of data flash and code flash are cached by e2 studio. This means that during
a debug session, modifications to these memory regions will not be observed by e2 studio. When
debugging applications using e2 studio, disable the "Allow caching of flash contents" option in the
debug configuration in order to view modified flash contents (Debug Configuration > Debugger >
Debug Tool Settings > Allow caching of flash contents).

Figure 288: Debug Configuration

Limitations

Write operations must be aligned on page boundaries and must be a multiple of the page
boundary size.
Erase operations will erase the entire block the provided address resides in.
Data flash is better suited for storing data as it can be erased and written to while code is
still executing from code flash. Data flash is also guaranteed for a larger number of
reprogramming/erasure cycles than code flash.
Read values of erased data flash blocks are not guaranteed to be 0xFF. Blank check should
be used to determine if memory has been erased but not yet programmed.

Examples
High-Performance Flash Basic Example

This is a basic example of erasing and writing to data flash and code flash.

#define FLASH_DF_BLOCK_0 0x40100000U /* 64 B: 0x40100000 - 0x4010003F */

#define FLASH_CF_BLOCK_8 0x00010000 /* 32 KB: 0x00010000 - 0x00017FFF */

#define FLASH_DATA_BLOCK_SIZE (1024)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,556 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

#define FLASH_HP_EXAMPLE_WRITE_SIZE 32

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

flash_result_t blank_check_result;

void r_flash_hp_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

 assert(FSP_SUCCESS == err);

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 /* Check if block 0 is erased. */

 err = R_FLASH_HP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

 /* Verify the previously erased area is blank */

 assert(FLASH_RESULT_BLANK == blank_check_result);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE));

 /* Disable interrupts to prevent vector table access while code flash is in P/E

mode. */

 __disable_irq();

 /* Erase 1 block of code flash starting at block 10. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_CF_BLOCK_8, 1);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,557 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

 assert(FSP_SUCCESS == err);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_CF_BLOCK_8,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 /* Enable interrupts after code flash operations are complete. */

 __enable_irq();

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_CF_BLOCK_8,

FLASH_HP_EXAMPLE_WRITE_SIZE));

}

High-Performance Flash Advanced Example

This example demonstrates using BGO to do non-blocking operations on the data flash.

bool interrupt_called;

flash_event_t flash_event;

static flash_cfg_t g_flash_bgo_example_cfg =

{

 .p_callback = flash_callback,

 .p_context = 0,

 .p_extend = NULL,

 .data_flash_bgo = true,

 .ipl = 5,

 .irq = BSP_VECTOR_FLASH_HP_FRDYI_ISR,

};

void r_flash_hp_bgo_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_bgo_example_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,558 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 interrupt_called = false;

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 while (!interrupt_called)

 {

 ;

 }

 assert(FLASH_EVENT_ERASE_COMPLETE == flash_event);

 interrupt_called = false;

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_HP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

 /* If the interrupt wasn't called process the error. */

 assert(interrupt_called);

 /* If the event wasn't a write complete process the error. */

 assert(FLASH_EVENT_WRITE_COMPLETE == flash_event);

 /* Verify the data was written correctly. */

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE));

}

void flash_callback (flash_callback_args_t * p_args)

{

 interrupt_called = true;

 flash_event = p_args->event;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,559 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

}

High-Performance Flash Bank Swap Example

This example demonstrates swapping which flash bank is located at address 0. This feature is only
on select MCUs.

void r_flash_hp_bankswap_example (void)

{

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Write the new application starting at 0x00200000. */

 /* Swap the block at address 0 with the one at 0x00200000 after the next restart.

 * The application at 0x00200000 must be written there by application code. */

 err = R_FLASH_HP_BankSwap(&g_flash_ctrl);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Handle any pre-reset operations here */

 /* Reset the MCU to swap to the other bank */

 __NVIC_SystemReset();

}

Data Structures

struct flash_hp_instance_ctrl_t

Enumerations

enum flash_bgo_operation_t

Data Structure Documentation

◆ flash_hp_instance_ctrl_t

struct flash_hp_instance_ctrl_t

Flash HP instance control block. DO NOT INITIALIZE.

Data Fields

uint32_t opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,560 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

 To check whether api has been opened or not.

flash_bgo_operation_t current_operation

 Operation in progress, for example, FLASH_OPERATION_CF_ERASE.

Enumeration Type Documentation

◆ flash_bgo_operation_t

enum flash_bgo_operation_t

Possible Flash operation states

Function Documentation

◆ R_FLASH_HP_Open()

fsp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initializes the high performance flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash.

Example:

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ALREADY_OPEN The flash control block is already open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

FSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

FSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,561 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_Write()

fsp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Writes to the specified Code or Data Flash memory area. Implements flash_api_t::write.

Example:

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

Return values
FSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

FSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Write an area that is
protected by an Access Window.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

FSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

FSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

FSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,562 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_Erase()

fsp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erases the specified Code or Data Flash blocks. Implements flash_api_t::erase by the
block_erase_address.

Note
Code flash may contain blocks of different sizes. When erasing code flash it is important to take this into
consideration to prevent erasing a larger address space than desired.

Example:

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

Return values
FSP_SUCCESS Successful open.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

FSP_ERR_INVALID_ADDRESS Invalid address specified. If the address is in
code flash then code flash programming
must be enabled.

FSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_ERASE_FAILED Status is indicating a Erase error.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,563 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_BlankCheck()

fsp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t
num_bytes, flash_result_t * p_blank_check_result)

Performs a blank check on the specified address area. Implements flash_api_t::blankCheck.

Example:

 /* Check if block 0 is erased. */

 err = R_FLASH_HP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Blank check operation completed with result

in p_blank_check_result, or blank check
started and in-progess (BGO mode).

FSP_ERR_INVALID_ADDRESS Invalid data flash address was input.

FSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

FSP_ERR_IN_USE Other flash operation in progress or API not
initialized.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

FSP_ERR_BLANK_CHECK_FAILED Blank check operation failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,564 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_StatusGet()

fsp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t *const p_status)

Query the FLASH peripheral for its status. Implements flash_api_t::statusGet.

Example:

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_HP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

Return values
FSP_SUCCESS FLASH peripheral is ready to use.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The Flash API is not Open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,565 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_IdCodeSet()

fsp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Implements flash_api_t::idCodeSet.

Return values
FSP_SUCCESS ID Code successfully configured.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,566 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_AccessWindowSet()

fsp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory using the provided start and end address.
An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block –> last
block inclusive. Anything outside this range of Code Flash is then write protected.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_HP_AccessWindowClear().

Implements flash_api_t::accessWindowSet.

Return values
FSP_SUCCESS Access window successfully configured.

FSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,567 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_AccessWindowClear()

fsp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is currently configured in the Code Flash. Subsequent to this call
all Code Flash is writable. Implements flash_api_t::accessWindowClear.

Return values
FSP_SUCCESS Access window successfully removed.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

◆ R_FLASH_HP_Reset()

fsp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

Reset the FLASH peripheral. Implements flash_api_t::reset.

No attempt is made to check if the flash is busy before executing the reset since the assumption is
that a reset will terminate any existing operation.

Return values
FSP_SUCCESS Flash circuit successfully reset.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,568 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_StartUpAreaSelect()

fsp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Selects which block, Default (Block 0) or Alternate (Block 1), is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window. Implements
flash_api_t::startupAreaSelect.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,569 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_BankSwap()

fsp_err_t R_FLASH_HP_BankSwap (flash_ctrl_t *const p_api_ctrl)

Swaps the flash bank located at address 0x00000000 and address 0x00200000. This can only be
done when in dual bank mode. Dual bank mode can be enabled in the FSP Configuration Tool under
BSP Properties. After a bank swap is done the MCU will need to be reset for the changes to take
place. flash_api_t::bankSwap.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_INVALID_MODE Cannot switch banks while flash is in Linear
mode.

FSP_ERR_WRITE_FAILED Flash write operation failed.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,570 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_UpdateFlashClockFreq()

fsp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API that the FCLK has changed. Implements
flash_api_t::updateFlashClockFreq.

This could be the case if the application has changed the system clock, and therefore the FCLK.
Failure to call this function subsequent to changing the FCLK could result in damage to the flash
macro.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_FCLK FCLK is not within the acceptable range.

◆ R_FLASH_HP_InfoGet()

fsp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
FSP_SUCCESS Successful retrieved the request

information.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

◆ R_FLASH_HP_Close()

fsp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

Releases any resources that were allocated by the Open() or any subsequent Flash operations.
Implements flash_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,571 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_hp)

◆ R_FLASH_HP_CallbackSet()

fsp_err_t R_FLASH_HP_CallbackSet (flash_ctrl_t *const p_api_ctrl, void(*)(flash_callback_args_t *)
p_callback, void const *const p_context, flash_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements flash_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

5.2.17.9 Flash (r_flash_lp)
Modules » Storage

Functions

fsp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*p_blank_check_result)

fsp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,572 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

fsp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_LP_BankSwap (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const
p_info)

fsp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_CallbackSet (flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the flash memory on RA low-power MCUs. This module implements the Flash Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
code flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The Low-Power Flash HAL module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank checking of code flash.
Callback functions for completion of non-blocking data flash operations.
Access window (write protection) for code flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

Configuration
Build Time Configurations for r_flash_lp

The following build time configurations are defined in fsp_cfg/r_flash_lp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,573 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

Disabled included in the build.

Code Flash
Programming

Enabled
Disabled

Disabled Controls whether or not
code-flash
programming is
enabled. Disabling
reduces the amount of
ROM and RAM used by
the API.

Data Flash
Programming

Enabled
Disabled

Enabled Controls whether or not
data-flash
programming is
enabled. Disabling
reduces the amount of
ROM used by the API.

Data Flash Background
Operation Support

Enabled
Disabled

Enabled Controls whether or not
Data Flash Background
Operation support is
included in the build.
Disabling reduces the
amount of ROM used
by the API.

Configurations for Storage > Flash (r_flash_lp)

This module can be added to the Stacks tab via New Stack > Storage > Flash (r_flash_lp).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_flash0 Module name.

Data Flash Background
Operation

Enabled
Disabled

Enabled Enabling allows Flash
API calls that reference
data-flash to return
immediately, with the
operation continuing in
the background.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified. Callback
function called when a
Data Flash Background
Operation completes or
errors.

Flash Ready Interrupt
Priority

MCU Specific Options Select the flash ready
interrupt priority.

Clock Configuration

Flash either uses FCLK or ICLK as the clock source depending on the MCU. When writing and erasing
the clock source must be at least 4 MHz.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,574 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

Pin Configuration

This module does not use I/O pins.

Usage Notes
Warning

It is highly recommended that the developer reviews sections 5 and 6 of the Flash Memory
section of the target MCUs Hardware User's Manual prior to using the r_flash_lp module. In
particular, understanding ID Code and Access Window functionality can help avoid
unrecoverable flash scenarios.

Data Flash Background Operation (BGO) Precautions

When using the data flash BGO, the code flash, RAM and external memory can still be accessed. You
must ensure that the data flash is not accessed during a data flash operation. This includes
interrupts that may access the data flash.

Code Flash Precautions

Code flash cannot be accessed while writing, erasing or blank checking code flash. Code flash cannot
be accessed while modifying the access window, selecting the startup area or setting the ID code. In
order to support modifying code flash all supporting code must reside in RAM. This is only done when
code flash programming is enabled. BGO mode is not supported for code flash, so a code flash
operation will not return before the operation has completed. By default, the vector table resides in
the code flash. If an interrupt occurs during the code flash operation, then code flash will be
accessed to fetch the interrupt's starting address and an error will occur. The simplest work-around
is to disable interrupts during code flash operations. Another option is to copy the vector table to
RAM, update the VTOR (Vector Table Offset Register) accordingly and ensure that any interrupt
service routines execute out of RAM. Similarly, you must insure that if in a multi-threaded
environment, threads running from code flash cannot become active while a code flash operation is
in progress.

Flash Clock Source

The flash clock source is the clock used by the Flash peripheral in performing all Flash operations. As
part of the flash_api_t::open function the Flash clock source is checked will return FSP_ERR_FCLK if it
is invalid. Once the Flash API has been opened, if the flash clock source frequency is changed, the
flash_api_t::updateFlashClockFreq API function must be called to inform the API of the change.
Failure to do so could result in flash operation failures and possibly damage the part.

Interrupts

Enable the flash ready interrupt only if you plan to use the data flash BGO. In this mode, the
application can initiate a data flash operation and then be asynchronously notified of its completion,
or an error, using a user supplied-callback function. The callback function is passed a structure
containing event information that indicates the source of the callback event (for example,
flash_api_t::FLASH_EVENT_ERASE_COMPLETE) When the FLASH FRDYI interrupt is enabled, the
corresponding ISR will be defined in the flash driver. The ISR will call a user-callback function if one
was registered with the flash_api_t::open API.

Note
The Flash HP supports an additional flash-error interrupt and if the BGO mode is enabled for the FLASH HP then
both the Flash Ready Interrupt and Flash Error Interrupts must be enabled (assigned a priority).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,575 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

Viewing flash contents in e2 studio

By default, the contents of data flash and code flash are cached by e2 studio. This means that during
a debug session, modifications to these memory regions will not be observed by e2 studio. When
debugging applications using e2 studio, disable the "Allow caching of flash contents" option in the
debug configuration in order to view modified flash contents (Debug Configuration > Debugger >
Debug Tool Settings > Allow caching of flash contents).

Figure 289: Debug Configuration

Limitations

Write operations must be aligned on page boundaries and must be a multiple of the page
boundary size.
Erase operations will erase the entire block the provided address resides in.
Data flash is better suited for storing data as it can be erased and written to while code is
still executing from code flash. Data flash is also guaranteed for a larger number of
reprogramming/erasure cycles than code flash.
Read values of erased blocks are not guaranteed to be 0xFF. Blank check should be used to
determine if memory has been erased but not yet programmed.

Examples
Low-Power Flash Basic Example

This is a basic example of erasing and writing to data flash and code flash.

#define FLASH_DF_BLOCK_0 0x40100000U /* 1 KB: 0x40100000 - 0x401003FF */

#define FLASH_CF_BLOCK_10 0x00005000 /* 2 KB: 0x00005000 - 0x000057FF */

#define FLASH_DATA_BLOCK_SIZE (1024)

#define FLASH_LP_EXAMPLE_WRITE_SIZE 32

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

flash_result_t blank_check_result;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,576 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

void R_FLASH_LP_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_cfg);

 assert(FSP_SUCCESS == err);

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 /* Check if block 0 is erased. */

 err = R_FLASH_LP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

 /* Verify the previously erased area is blank */

 assert(FLASH_RESULT_BLANK == blank_check_result);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE));

 /* Disable interrupts to prevent vector table access while code flash is in P/E

mode. */

 __disable_irq();

 /* Erase 1 block of code flash starting at block 10. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_CF_BLOCK_10, 1);

 assert(FSP_SUCCESS == err);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_CF_BLOCK_10,

FLASH_LP_EXAMPLE_WRITE_SIZE);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,577 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

 assert(FSP_SUCCESS == err);

 /* Enable interrupts after code flash operations are complete. */

 __enable_irq();

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_CF_BLOCK_10,

FLASH_LP_EXAMPLE_WRITE_SIZE));

}

Low-Power Flash Advanced Example

This example demonstrates using BGO to do non-blocking operations on the data flash.

bool interrupt_called;

flash_event_t flash_event;

static flash_cfg_t g_flash_bgo_example_cfg =

{

 .p_callback = flash_callback,

 .p_context = 0,

 .p_extend = NULL,

 .data_flash_bgo = true,

 .ipl = 5,

 .irq = BSP_VECTOR_FLASH_LP_FRDYI_ISR,

};

void R_FLASH_LP_bgo_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_bgo_example_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 interrupt_called = false;

 /* Erase 1 block of data flash starting at block 0. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,578 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 while (!interrupt_called)

 {

 ;

 }

 assert(FLASH_EVENT_ERASE_COMPLETE == flash_event);

 interrupt_called = false;

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_LP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

 /* If the interrupt wasn't called process the error. */

 assert(interrupt_called);

 /* If the event wasn't a write complete process the error. */

 assert(FLASH_EVENT_WRITE_COMPLETE == flash_event);

 /* Verify the data was written correctly. */

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE));

}

void flash_callback (flash_callback_args_t * p_args)

{

 interrupt_called = true;

 flash_event = p_args->event;

}

Low-Power Flash Bank Swap Example

This example demonstrates swapping which flash bank is located at address 0. This feature is only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,579 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

on select MCUs.

void R_FLASH_LP_bankswap_example (void)

{

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_cfg);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Write the new application starting at 0x0004_0000. */

 /* Swap the block at address 0 with the one at 0x0004_0000 after the next restart.

 * The application at 0x0004_0000 must be written there by application code. */

 err = R_FLASH_LP_BankSwap(&g_flash_ctrl);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Handle any pre-reset operations here */

 /* Reset the MCU to swap to the other bank */

 __NVIC_SystemReset();

}

Data Structures

struct flash_lp_instance_ctrl_t

Data Structure Documentation

◆ flash_lp_instance_ctrl_t

struct flash_lp_instance_ctrl_t

Flash instance control block. DO NOT INITIALIZE. Initialization occurs when R_FLASH_LP_Open() is
called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,580 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_Open()

fsp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initialize the Low Power flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash.

This function must be called once prior to calling any other FLASH API functions. If a user supplied
callback function is supplied, then the Flash Ready interrupt will be configured to call the users
callback routine with an Event type describing the source of the interrupt for Data Flash operations.

Example:

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_cfg);

Note
Providing a callback function in the supplied p_cfg->callback field automatically configures the Flash for Data
Flash to operate in non-blocking background operation (BGO) mode.

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION NULL provided for p_ctrl, p_cfg or p_callback
if BGO is enabled.

FSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

FSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

FSP_ERR_ALREADY_OPEN Flash Open() has already been called.

FSP_ERR_TIMEOUT Failed to exit P/E mode after configuring
flash.

FSP_ERR_INVALID_STATE The system is not running from the required
clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,581 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_Write()

fsp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Write to the specified Code or Data Flash memory area. Implements flash_api_t::write.

Example:

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

Return values
FSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

FSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

FSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

FSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

FSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,582 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_Erase()

fsp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase the specified Code or Data Flash blocks. Implements flash_api_t::erase.

Example:

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

Return values
FSP_SUCCESS Successful open.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

FSP_ERR_INVALID_ADDRESS Invalid address specified

FSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_TIMEOUT Timed out waiting for FCU to be ready.

FSP_ERR_ERASE_FAILED Status is indicating a Erase error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,583 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_BlankCheck()

fsp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t
num_bytes, flash_result_t * p_blank_check_result)

Perform a blank check on the specified address area. Implements flash_api_t::blankCheck.

Example:

 /* Check if block 0 is erased. */

 err = R_FLASH_LP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Blankcheck operation completed with result

in p_blank_check_result, or blankcheck
started and in-progess (BGO mode).

FSP_ERR_INVALID_ADDRESS Invalid data flash address was input

FSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_BLANK_CHECK_FAILED An error occurred during blank checking.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,584 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_StatusGet()

fsp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t *const p_status)

Query the FLASH for its status. Implements flash_api_t::statusGet.

Example:

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_LP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

Return values
FSP_SUCCESS Flash is ready and available to accept

commands.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,585 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_AccessWindowSet()

fsp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory. Implements flash_api_t::accessWindowSet
.

An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block (inclusive)
–> last block (exclusive). Anything outside this range of Code Flash is then write protected. As an
example, if you wanted to place an accesswindow on Code Flash Blocks 0 and 1, such that only
those two blocks were writable, you would need to specify (address in block 0, address in block 2)
as the respective start and end address.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_LP_AccessWindowClear().

The invalid address and programming boundaries supported and enforced by this function are
dependent on the MCU in use as well as the part package size. Please see the User manual and/or
requirements document for additional information.

Parameters
p_api_ctrl The p api control

[in] start_addr The start address

[in] end_addr The end address

Return values
FSP_SUCCESS Access window successfully configured.

FSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,586 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_AccessWindowClear()

fsp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is configured in the Code Flash. Implements
flash_api_t::accessWindowClear. On successful return from this call all Code Flash is writable.

Return values
FSP_SUCCESS Access window successfully removed.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

◆ R_FLASH_LP_IdCodeSet()

fsp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Write the ID code provided to the id code registers. Implements flash_api_t::idCodeSet.

Return values
FSP_SUCCESS ID code successfully configured.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for completion of extra
command.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,587 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_Reset()

fsp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

Reset the FLASH peripheral. Implements flash_api_t::reset.

No attempt is made to check if the flash is busy before executing the reset since the assumption is
that a reset will terminate any existing operation.

Return values
FSP_SUCCESS Flash circuit successfully reset.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

◆ R_FLASH_LP_StartUpAreaSelect()

fsp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block is used as the startup area block. Implements flash_api_t::startupAreaSelect.

Selects which block - Default (Block 0) or Alternate (Block 1) is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.
Cannot set FLASH_STARTUP_AREA_BTFLG
when the temporary flag is false.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,588 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_BankSwap()

fsp_err_t R_FLASH_LP_BankSwap (flash_ctrl_t *const p_api_ctrl)

Swap the Code Flash bank to update new program. Implement flash_api_t::bankSwap.

Swap the flash bank located at address 0x00000000 and address 0x00040000. After a bank swap
is done the MCU will need to be reset for the changes to take place.

To use this API, Code Flash Programming in the FSP Configuration Tool under Stack Properties must
be enabled.

Note
This function only available on MCUs which support bank swap feature.
When active bank is bank 1, startup program protection function is invalid.

Parameters
[in] p_api_ctrl The api control instance.

Return values
FSP_SUCCESS Banks were swapped.

FSP_ERR_UNSUPPORTED Module does not support Bank Swap.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_IN_USE Extra area is being used by other command.

◆ R_FLASH_LP_UpdateFlashClockFreq()

fsp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API that the FCLK has changed. Implements
flash_api_t::updateFlashClockFreq.

This could be the case if the application has changed the system clock, and therefore the FCLK.
Failure to call this function subsequent to changing the FCLK could result in damage to the flash
macro.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_FCLK Invalid flash clock source frequency.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,589 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Flash (r_flash_lp)

◆ R_FLASH_LP_InfoGet()

fsp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
FSP_SUCCESS Successful retrieved the request

information.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

FSP_ERR_NOT_OPEN The flash is not open.

◆ R_FLASH_LP_Close()

fsp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

Release any resources that were allocated by the Flash API. Implements flash_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_IN_USE The flash is currently in P/E mode.

◆ R_FLASH_LP_CallbackSet()

fsp_err_t R_FLASH_LP_CallbackSet (flash_ctrl_t *const p_api_ctrl, void(*)(flash_callback_args_t *)
p_callback, void const *const p_context, flash_callback_args_t *const p_callback_memory)

Stub function Implements flash_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED Function has not been implemented.

5.2.17.10 FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)
Modules » Storage

Functions

fsp_err_t RM_FREERTOS_PLUS_FAT_Open (rm_freertos_plus_fat_ctrl_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,590 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

p_ctrl, rm_freertos_plus_fat_cfg_t const *const p_cfg)

fsp_err_t RM_FREERTOS_PLUS_FAT_MediaInit (rm_freertos_plus_fat_ctrl_t
*const p_ctrl, rm_freertos_plus_fat_device_t *const p_device)

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskInit (rm_freertos_plus_fat_ctrl_t *const
p_ctrl, rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg,
FF_Disk_t *const p_disk)

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskDeinit (rm_freertos_plus_fat_ctrl_t
*const p_ctrl, FF_Disk_t *const p_disk)

fsp_err_t RM_FREERTOS_PLUS_FAT_InfoGet (rm_freertos_plus_fat_ctrl_t *const
p_ctrl, FF_Disk_t *const p_disk, rm_freertos_plus_fat_info_t *const
p_info)

fsp_err_t RM_FREERTOS_PLUS_FAT_Close (rm_freertos_plus_fat_ctrl_t *const
p_ctrl)

Detailed Description

Middleware for the FAT File System control on RA MCUs.

Overview
This module provides the hardware port layer for FreeRTOS+FAT file system. After initializing this
module, refer to the FreeRTOS+FAT API reference to use the file system:
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Features

The FreeRTOS+FAT port module supports the following features:

Callbacks for insertion and removal for removable devices.
Helper function to initialize FF_Disk_t
Blocking read and write port functions that use FreeRTOS task notification to pend if
FreeRTOS is used
FreeRTOS is optional

Configuration
Build Time Configurations for rm_freertos_plus_fat

The following build time configurations are defined in fsp_cfg/middleware/rm_freertos_plus_fat_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,591 / 5,560

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

Configurations for Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_freertos_plus_fat
0

Module name.

Total Number of
Sectors

Must be a non-negative
integer

31293440 Enter the total number
of sectors on the
device. If this is not
known, update rm_free
rtos_plus_fat_disk_cfg_t
::num_blocks after
calling
RM_FREERTOS_PLUS_F
AT_MediaInit().

Sector Size (bytes) Must be a power of 2
multiple of 512

512 Select the sector size.
Must match the
underlying media
sector size and at least
512. If this is not
known, update rm_free
rtos_plus_fat_disk_cfg_t
::num_blocks after
calling
RM_FREERTOS_PLUS_F
AT_MediaInit().

Cache Size (bytes) Must be a power of 2
multiple of 512

1024 Select the cache size.
Must be a multiple of
the sector size and at
least 2 times the sector
size.

Partition Number Must be a non-negative
integer

0 Select the partition
number for this disk.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called when a card is
inserted or removed.

Usage Notes
Pending during Read/Write

If the underlying driver supports non-blocking operations, the FreeRTOS+FAT port pends the active
FreeRTOS task during read and write operations so other tasks can run in the background.

If FreeRTOS is not used, the FreeRTOS+FAT port spins in a while loop waiting for read and write
operations to complete.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,592 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

FreeRTOS+FAT without FreeRTOS

To use FreeRTOS+FAT without FreeRTOS, copy FreeRTOSConfigMinimal.h to one of your project's
include paths and rename it FreeRTOSConfig.h.

Also, update the Malloc function to malloc and the Free function to free in the Common
configurations.

Examples
Basic Example

This is a basic example of FreeRTOS+FAT in an application.

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER (0)

extern rm_freertos_plus_fat_instance_ctrl_t g_freertos_plus_fat0_ctrl;

extern const rm_freertos_plus_fat_cfg_t g_freertos_plus_fat0_cfg;

extern rm_freertos_plus_fat_disk_cfg_t g_rm_freertos_plus_fat_disk_cfg;

extern uint8_t g_file_data[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_freertos_plus_fat_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,593 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 assert(FSP_SUCCESS == err);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 FF_FILE * pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 assert(NULL != pxSourceFile);

 /* Write file data. */

 size_t size_return = ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 int close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Open the source file in read mode. */

 pxSourceFile = ff_fopen((const char *) RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME,

"r");

 assert(NULL != pxSourceFile);

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

}

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,594 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

void rm_freertos_plus_fat_format_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

 /* Try to mount the disk. If the disk is not formatted, mount will fail. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 if (FF_isERR((uint32_t) ff_err))

 {

 /* The disk is likely not formatted. Partition and format the disk, then mount

again. */

 FF_PartitionParameters_t partition_params;

 partition_params.ulSectorCount =

g_rm_freertos_plus_fat_disk_cfg.device.sector_count;

 partition_params.ulHiddenSectors = 1;

 partition_params.ulInterSpace = 0;

 memset(partition_params.xSizes, 0, sizeof(partition_params.xSizes));

 partition_params.xSizes[RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER] =

 (BaseType_t) partition_params.ulSectorCount - 1;

 partition_params.xPrimaryCount = 1;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,595 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 partition_params.eSizeType = eSizeIsSectors;

 ff_err = FF_Partition(&disk, &partition_params);

 handle_ff_error(ff_err);

 ff_err = FF_Format(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER,

pdFALSE, pdFALSE);

 handle_ff_error(ff_err);

 ff_err = FF_Mount(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 }

}

Media Insertion Example

This shows how to use the callback to wait for media insertion.

#if 2 == BSP_CFG_RTOS

static EventGroupHandle_t xUSBEventGroupHandle = NULL;

#else

volatile uint32_t g_rm_freertos_plus_fat_insertion_events = 0;

volatile uint32_t g_rm_freertos_plus_fat_removal_events = 0;

#endif

/* Callback called by media driver when a removable device is inserted or removed. */

void rm_freertos_plus_fat_test_callback (rm_freertos_plus_fat_callback_args_t *

p_args)

{

#if 2 == BSP_CFG_RTOS

 /* Post an event if FreeRTOS is available. */

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 xEventGroupSetBitsFromISR(xUSBEventGroupHandle, p_args->event,

&xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

#else

 /* If FreeRTOS is not used, set a global flag. */

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,596 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 g_rm_freertos_plus_fat_insertion_events++;

 }

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_REMOVED)

 {

 g_rm_freertos_plus_fat_removal_events++;

 }

#endif

}

void rm_freertos_plus_fat_media_insertion_example (void)

{

#if 2 == BSP_CFG_RTOS

 /* Create event flags if FreeRTOS is used. */

 xUSBEventGroupHandle = xEventGroupCreate();

 TEST_ASSERT_NOT_EQUAL(NULL, xUSBEventGroupHandle);

#endif

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for media insertion. */

#if 2 == BSP_CFG_RTOS

 EventBits_t xEventGroupValue = xEventGroupWaitBits(xUSBEventGroupHandle,

 RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED,

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 assert(RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED ==

 (RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED & xEventGroupValue));

#else

 while (0U == g_rm_freertos_plus_fat_insertion_events)

 {

 /* Wait for media insertion. */

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,597 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

#endif

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

}

Media Insertion Example for USB

This shows how to use the callback to read and write to USB media.

void rm_freertos_plus_fat_usb_example (void)

{

#if 2 == BSP_CFG_RTOS

 /* Create event flags if FreeRTOS is used. */

 xUSBEventGroupHandle = xEventGroupCreate();

#endif

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for the USB media to be attached. */

#if 2 == BSP_CFG_RTOS

 EventBits_t xEventGroupValue = xEventGroupWaitBits(xUSBEventGroupHandle,

 RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED,

 pdTRUE,

 pdFALSE,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,598 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 portMAX_DELAY);

 assert(RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED ==

 (RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED & xEventGroupValue));

#else

 while (0U == g_rm_freertos_plus_fat_insertion_events)

 {

 /* Wait for the USB media to be attached. */

 }

#endif

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 FF_FILE * pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 assert(NULL != pxSourceFile);

 /* Write file data. */

 size_t size_return = ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,599 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

 int close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Open the source file in read mode. */

 pxSourceFile = ff_fopen((const char *) RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME,

"r");

 assert(NULL != pxSourceFile);

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

}

Data Structures

struct rm_freertos_plus_fat_instance_ctrl_t

Data Structure Documentation

◆ rm_freertos_plus_fat_instance_ctrl_t

struct rm_freertos_plus_fat_instance_ctrl_t

FreeRTOS plus FAT private control block. DO NOT MODIFY. Initialization occurs when
RM_FREERTOS_PLUS_FAT_Open is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,600 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_Open()

fsp_err_t RM_FREERTOS_PLUS_FAT_Open (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

Initializes lower layer media device.

Implements rm_freertos_plus_fat_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_OUT_OF_MEMORY Not enough memory to create semaphore.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::open

◆ RM_FREERTOS_PLUS_FAT_MediaInit()

fsp_err_t RM_FREERTOS_PLUS_FAT_MediaInit (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

Initializes the media device. This function blocks until all identification and configuration commands
are complete.

Implements rm_freertos_plus_fat_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::mediaInit
rm_block_media_api_t::infoGet

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,601 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_DiskInit()

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskInit (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t *const p_disk)

Initializes a FreeRTOS+FAT disk structure. This function calls FF_CreateIOManger.

Implements rm_freertos_plus_fat_api_t::diskInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

FSP_ERR_INTERNAL Call to FF_CreateIOManger failed.

◆ RM_FREERTOS_PLUS_FAT_DiskDeinit()

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskDeinit (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk)

Deinitializes a FreeRTOS+FAT disk structure. This function calls FF_DeleteIOManger.

Implements rm_freertos_plus_fat_api_t::diskDeinit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,602 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_InfoGet()

fsp_err_t RM_FREERTOS_PLUS_FAT_InfoGet (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk, rm_freertos_plus_fat_info_t *const p_info)

Get partition information. This function can only be called after rm_freertos_plus_fat_api_t::diskInit()
.

Implements rm_freertos_plus_fat_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

FSP_ERR_NOT_FOUND The value of p_iomanager is NULL.

◆ RM_FREERTOS_PLUS_FAT_Close()

fsp_err_t RM_FREERTOS_PLUS_FAT_Close (rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Closes media device.

Implements rm_freertos_plus_fat_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::close

5.2.17.11 LevelX NOR Port (rm_levelx_nor_spi)
Modules » Storage

Functions

fsp_err_t RM_LEVELX_NOR_SPI_Open (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, rm_levelx_nor_spi_cfg_t const *const p_cfg)

 Initializes LevelX NOR SPI port read/write and control. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,603 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

fsp_err_t RM_LEVELX_NOR_SPI_Read (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, ULONG *const p_flash_addr, ULONG *const p_dest, ULONG
word_count)

 LevelX NOR driver "read sector" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_Write (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, ULONG *const p_flash_addr, ULONG *const p_src, ULONG
word_count)

 LevelX NOR driver "write sector" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_BlockErase (rm_levelx_nor_spi_instance_ctrl_t
*const p_ctrl, ULONG block, ULONG erase_count)

 LevelX NOR driver "block erase" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_BlockErasedVerify
(rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG block)

 LevelX NOR driver "block erased verify" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_Close (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl)

 LevelX NOR driver close service. More...

Detailed Description

Middleware for using Azure RTOS LevelX on NOR SPI memory.

Overview
This module provides the hardware port layer for LevelX on NOR SPI flash memory. Setup for this
module is done solely through calling LevelX APIs. Please refer to the LevelX API reference:
https://docs.microsoft.com/en-us/azure/rtos/levelx/

Configuration
Build Time Configurations for rm_levelx_nor_spi

The following build time configurations are defined in fsp_cfg/middleware/rm_levelx_nor_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,604 / 5,560

https://docs.microsoft.com/en-us/azure/rtos/levelx/

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

build.

Page Buffer Size
(bytes)

Size should be greater
than zero

256 When direct read is
enabled in LevelX a
situation can occur
where the driver has to
write to SPI memory
with the source
locaiton also being
within the SPI memory
address range. In this
situation the driver
needs a buffer that is
at least the same size
as a page in order to
temporarily store data
to write out.

Configurations for Storage > LevelX NOR Port (rm_levelx_nor_spi)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_levelx_nor_spi0 Module name.

Memory Start Adress
Offset (bytes)

Offset should be
greater than or equal
to zero

0 Enter the starting
offset to use in the SPI
memory. The starting
address for LevelX
memory will be the SPI
memory base address
plus this offset.

Memory Size (bytes) Size should be greater
than zero

33554432 Enter the size that the
LevelX Memory should
be. This can be smaller
than the SPI memory
size in order to use a
subset of SPI memory.

Poll Status Count Poll Status Count
should be greater than
or equal to zero

0xFFFFFFFF Number of times to poll
for operation complete
status for blocking
memory operations.

Build Time Configurations for lx

The following build time configurations are defined in fsp_cfg/azure/lx/lx_user.h:

Configuration Options Default Description

NOR

Direct Read Enabled
(default)
Disabled

Enabled (default) When enabled, this
option bypasses the
NOR flash driver read
routine in favor or

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,605 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

reading the NOR
memory directly,
resulting in a
significant performance
increase.

Free Sector Data Verify Enabled
Disabled
(default)

Disabled (default) When enabled, this
causes the LevelX NOR
instance open logic to
verify free NOR sectors
are all ones.

Extended Cache Enabled
(default)
Disabled

Enabled (default) Enables the extended
NOR cache.

Extended Cache Size Manual Entry If not set this value
defaults to 8, which
represents a maximum
of 8 sectors that can be
cached in a NOR
instance.

Sector Mapping Cache
Size

Value must be greater
than or equal to 8 and
a power of 2, or empty

If not set this value
defaults to 16 and
defines the logical
sector mapping cache
size. Large values
improve performance,
but cost memory. The
minimum size is 8 and
all values must be a
power of 2.

NAND

Sector Mapping Cache
Size

Value must be greater
than or equal to 8 and
a power of 2, or empty

If not set this value
defaults to 128 and
defines the logical
sector mapping cache
size. Large values
improve performance,
but cost memory. The
minimum size is 8 and
all values must be a
power of 2.

Flash Direct Mapping
Cache

Enabled
Disabled
(default)

Disabled (default) When enabled, this
creates a direct
mapping cache, such
that there are no cache
misses. It also required
that LX_NAND_SECTOR
_MAPPING_CACHE_SIZE
represents the exact
number of total pages
in your flash device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,606 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

Thread Safe Enabled
Disabled
(default)

Disabled (default) When enabled, this
makes LevelX thread-
safe by using a
ThreadX mutex object
throughout the API.

Standalone Mode Enabled
Disabled
(default)

Disabled (default) When enabled, allows
LevelX to be used in
standalone mode
(without Azure RTOS).

Usage Notes
Pending during Erase/Write

The LevelX NOR SPI driver is blocking on all SPI operations and will poll device status for operation
completion on Writes and Erases. A callback can be provided by the user to wait with an OS-specific
thread wait in these instances.

Closing the driver

When lx_nor_flash_close is called to close the LevelX instance it does not call any services within the
LevelX NOR SPI driver to close out the driver instance. The user should call the generated close
function (i.e. g_rm_levelx_nor_spi0_close) in order to close out the driver instance.

Erasing Flash Memory Prior to Usage

The area of the flash memory being used for the LevelX instance should be erased using the lower
level flash API prior to usage. Otherwise, LevelX API may fail on lx_nor_flash_open due to any areas
in flash memory that have been written/set.

Examples
Basic Example

This is a basic example of using the LevelX NOR SPI driver with the LevelX API in an application.

#define RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE (512)

#define RM_LEVELX_NOR_SPI_EXAMPLE_BUFFER_FILL_VALUE (0xA5)

#define RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE (4096)

extern rm_levelx_nor_spi_instance_ctrl_t g_levelx_nor_spi0_ctrl;

extern rm_levelx_nor_spi_cfg_t g_levelx_nor_spi0_cfg;

extern LX_NOR_FLASH g_lx_nor_flash0;

void rm_levelx_nor_spi_example (void)

{

 uint8_t read_buffer[RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE];

 uint8_t write_buffer[RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE];

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,607 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

 spi_flash_instance_t * p_spi_flash_instance = (spi_flash_instance_t *)

g_levelx_nor_spi0_cfg.p_lower_lvl;

 spi_flash_status_t status;

 memset(write_buffer, RM_LEVELX_NOR_SPI_EXAMPLE_BUFFER_FILL_VALUE, sizeof

(write_buffer));

 /* Erase flash prior to usage */

 fsp_err_t err = p_spi_flash_instance->p_api->open(p_spi_flash_instance->p_ctrl,

p_spi_flash_instance->p_cfg);

 assert(FSP_SUCCESS == err);

 for (uint32_t i = g_levelx_nor_spi0_cfg.address_offset;

 i < g_levelx_nor_spi0_cfg.size;

 i += RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE)

 {

 err = p_spi_flash_instance->p_api->erase(p_spi_flash_instance->p_ctrl,

 (uint8_t *)

g_levelx_nor_spi0_cfg.base_address + i,

RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE);

 assert(FSP_SUCCESS == err);

 status.write_in_progress = true;

 while (status.write_in_progress)

 {

 err =

p_spi_flash_instance->p_api->statusGet(p_spi_flash_instance->p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 }

 err = p_spi_flash_instance->p_api->close(p_spi_flash_instance->p_ctrl);

 assert(FSP_SUCCESS == err);

 /* Initialize LevelX */

 lx_nor_flash_initialize();

 UINT lx_err = lx_nor_flash_open(&g_lx_nor_flash0, "LX_NOR_SPI_EXAMPLE",

g_levelx_nor_spi0_initialize);

 handle_lx_error(lx_err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,608 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

 /* Write test value to sector 0 then read back to verify */

 lx_err = lx_nor_flash_sector_write(&g_lx_nor_flash0, 0, write_buffer);

 handle_lx_error(lx_err);

 lx_err = lx_nor_flash_sector_read(&g_lx_nor_flash0, 0, read_buffer);

 handle_lx_error(lx_err);

 assert(0 == memcmp(read_buffer, write_buffer, sizeof(read_buffer)));

}

Callback Wait Example

This shows how to use the LevelX NOR SPI driver callback with ThreadX in order to wait for
operations to complete.

/* Callback called by LevelX NOR SPI driver needs to wait on operation. */

void rm_levelx_nor_spi_callback_wait_example (rm_levelx_nor_spi_callback_args_t *

p_args)

{

 if (p_args->event & RM_LEVELX_NOR_SPI_EVENT_BUSY)

 {

 /* Put the thread to sleep while waiting for operation to complete. */

 tx_thread_sleep(1);

 }

}

Data Structures

struct rm_levelx_nor_spi_callback_args_t

struct rm_levelx_nor_spi_cfg_t

struct rm_levelx_nor_spi_instance_ctrl_t

Enumerations

enum rm_levelx_nor_spi_event_t

Data Structure Documentation

◆ rm_levelx_nor_spi_callback_args_t

struct rm_levelx_nor_spi_callback_args_t

RM_LEVELX_NOR_SPI callback arguments definitions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,609 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

Data Fields

rm_levelx_nor_spi_event_t event LevelX NOR driver callback
event.

void const * p_context Placeholder for user data.

◆ rm_levelx_nor_spi_cfg_t

struct rm_levelx_nor_spi_cfg_t

SF_EL_LX_NOR Config Block Type

Data Fields

spi_flash_instance_t const * p_lower_lvl

 Lower level memory pointer.

LX_NOR_FLASH * p_lx_nor_flash

 Pointer to the LevelX nor flash instance.

uint32_t base_address

 Base address of memory mapped region.

uint32_t address_offset

 Offset to use subset of available flash size if desired.

uint32_t size

 Size of the partitioned region.

uint32_t poll_status_count

 Number of times to poll for operation complete status before
returning an error.

void const * p_context

 Placeholder for user data. Passed to the user callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,610 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

void(* p_callback)(rm_levelx_nor_spi_callback_args_t *p_args)

 Callback function.

◆ rm_levelx_nor_spi_instance_ctrl_t

struct rm_levelx_nor_spi_instance_ctrl_t

SF_EL_LX_NOR Control Block Type

Data Fields

rm_levelx_nor_spi_cfg_t const * p_cfg Pointer to instance
configuration.

uint32_t start_address Start address of partition to use
within memory mapped region.

uint32_t minimum_erase_size Minimum erase size of SPI
memory.

uint8_t page_buffer[RM_LEVELX_NOR_S
PI_CFG_BUFFER_SIZE]

Page buffer for situations when
writing to SPI memory from a
source within SPI memory.

uint32_t open Used to determine if module is
initialized.

Enumeration Type Documentation

◆ rm_levelx_nor_spi_event_t

enum rm_levelx_nor_spi_event_t

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file. Options for the callback events.

Enumerator

RM_LEVELX_NOR_SPI_EVENT_BUSY Pending operation, user can define their own
wait functionality.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,611 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_Open()

fsp_err_t RM_LEVELX_NOR_SPI_Open (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
rm_levelx_nor_spi_cfg_t const *const p_cfg)

Initializes LevelX NOR SPI port read/write and control.

Calls lower level SPI memory functions.

Parameters
[in,out] p_ctrl Control block for the LevelX

NOR SPI instance.

[in,out] p_cfg Configuration for LevelX
NOR SPI port.

Return values
FSP_SUCCESS LevelX NOR driver is successfully opened.

FSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Driver is already in OPEN state.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:open

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,612 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_Read()

fsp_err_t RM_LEVELX_NOR_SPI_Read (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG
*const p_flash_addr, ULONG *const p_dest, ULONG word_count)

LevelX NOR driver "read sector" service.

This is responsible for reading a specific sector in a specific block of the NOR flash. All error
checking and correcting logic is the responsibility of this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] p_flash_addr Specifies the address of a
logical sector within a NOR
flash block of memory.

[in,out] p_dest Specifies where to place the
sector contents.

[in] word_count Specifies how many 32-bit
words to read.

Return values
FSP_SUCCESS LevelX NOR flash sector read successful.

FSP_ERR_ASSERTION p_ctrl, p_flash_addr or p_dest is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for reading.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,613 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_Write()

fsp_err_t RM_LEVELX_NOR_SPI_Write (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG
*const p_flash_addr, ULONG *const p_src, ULONG word_count)

LevelX NOR driver "write sector" service.

This is responsible for writing a specific sector into a block of the NOR flash. All error checking is
the responsibility of the this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in,out] p_flash_addr Specifies the address of a
logical sector within a NOR
flash block of memory.

[in] p_src Specifies the source of the
write.

[in] word_count Specifies how many 32-bit
words to write.

Return values
FSP_SUCCESS LevelX NOR flash sector write successful.

FSP_ERR_ASSERTION p_ctrl, p_flash_addr or p_src is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for writing.

FSP_ERR_TIMEOUT Timeout occurred while waiting for
operation to complete.

FSP_ERR_WRITE_FAILED Verification of Write operation failed.

FSP_ERR_INVALID_ADDRESS Write address or size falls outside of flash
memory range.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:write

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,614 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_BlockErase()

fsp_err_t RM_LEVELX_NOR_SPI_BlockErase (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
ULONG block, ULONG erase_count)

LevelX NOR driver "block erase" service.

This is responsible for erasing the specified block of the NOR flash.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] block Specifies which NOR block to
erase.

[in] erase_count Provided for diagnostic
purposes(currently unused).

Return values
FSP_SUCCESS LevelX NOR flash block erase successful.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for erasing.

FSP_ERR_TIMEOUT Timeout occurred while waiting for
operation to complete.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:erase

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,615 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_BlockErasedVerify()

fsp_err_t RM_LEVELX_NOR_SPI_BlockErasedVerify (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
ULONG block)

LevelX NOR driver "block erased verify" service.

This is responsible for verifying the specified block of the NOR flash is erased.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] block Specifies which block to
verify that it is erased.

Return values
FSP_SUCCESS LevelX flash block erase verification

successful.

FSP_ERR_ASSERTION p_ctrl or lower level driver is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for verifying.

FSP_ERR_NOT_ERASED The block is not erased properly.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes.

◆ RM_LEVELX_NOR_SPI_Close()

fsp_err_t RM_LEVELX_NOR_SPI_Close (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl)

LevelX NOR driver close service.

This is responsible for closing the driver properly.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

Return values
FSP_SUCCESS LevelX flash is available and is now open for

read, write, and control access.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for closing.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,616 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LevelX NOR Port (rm_levelx_nor_spi)

5.2.17.12 LittleFS on Flash (rm_littlefs_flash)
Modules » Storage

Functions

fsp_err_t RM_LITTLEFS_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl,
rm_littlefs_cfg_t const *const p_cfg)

fsp_err_t RM_LITTLEFS_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Detailed Description

Middleware for the LittleFS File System control on RA MCUs.

Overview
This module provides the hardware port layer for the LittleFS file system. After initializing this
module, refer to the LittleFS documentation to use the file system:
https://github.com/ARMmbed/littlefs

Configuration
Build Time Configurations for rm_littlefs_flash

The following build time configurations are defined in fsp_cfg/rm_littlefs_flash_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Storage > LittleFS on Flash (rm_littlefs_flash)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_littlefs0 Module name.

Read Size Must be a non-negative
integer

1 Minimum size of a
block read. All read
operations will be a
multiple of this value.

Program Size Must be a non-negative
integer

4 Minimum size of a
block program. All
program operations will
be a multiple of this
value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,617 / 5,560

https://github.com/ARMmbed/littlefs

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

Block Size (bytes) Must be a multiple of
64

128 Size of an erasable
block. This does not
impact RAM
consumption and may
be larger than the
physical erase size.
However, non-inlined
files take up at
minimum one block.
Must be a multiple of
the read and program
sizes.

Block Count Manual Entry (BSP_DATA_FLASH_SIZ
E_BYTES/128)

Number of erasable
blocks on the device.

Block Cycles Must be an integer 1024 Number of erase cycles
before LittleFS evicts
metadata logs and
moves the metadata to
another block.
Suggested values are
in the range 100-1000,
with large values
having better
performance at the
cost of less consistent
wear distribution. Set
to -1 to disable block-
level wear-leveling.

Cache Size Must be a non-negative
integer

64 Size of block caches.
Each cache buffers a
portion of a block in
RAM. The LittleFS
needs a read cache, a
program cache, and
one additional cache
per file. Larger caches
can improve
performance by storing
more data and
reducing the number of
disk accesses. Must be
a multiple of the read
and program sizes, and
a factor of the block
size.

Lookahead Size Must be a non-negative
multiple of 8

16 Size of the lookahead
buffer in bytes. A larger
lookahead buffer
increases the number
of blocks found during
an allocation pass. The
lookahead buffer is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,618 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

stored as a compact
bitmap, so each byte of
RAM can track 8
blocks. Must be a
multiple of 8.

Common LittleFS Configuration

Build Time Configurations for LittleFS

The following build time configurations are defined in arm/littlefs/lfs_util.h:

Configuration Options Default Description

Custom lfs_util.h Manual Entry Add a path to your
custom lfs_util.h file. It
can be used to override
some or all of the
configurations defined
here, and to define
additional
configurations.

Thread Safe Enabled
Disabled

Disabled Enables thread safety
in LittleFS.

Read Only Enabled
Disabled

Disabled Enables Read Only
mode in LittleFS.

Use Malloc Enabled
Disabled

Enabled Configures the use of
malloc by LittleFS.

Use Assert Enabled
Disabled

Enabled Configures the use of
assert by LittleFS.

Debug Messages Enabled
Disabled

Disabled Configures debug
messages.

Warning Messages Enabled
Disabled

Disabled Configures warning
messages.

Error Messages Enabled
Disabled

Disabled Configures error
messages.

Trace Messages Enabled
Disabled

Disabled Configures trace
messages.

Intrinsics Enabled
Disabled

Enabled Configures intrinsic
functions such as
__builtin_clz.

Instance Name for
STDIO wrapper

Name must be a valid
C symbol

g_rm_littlefs0 The rm_littlefs instance
name to use with the
STDIO wrapper.

Usage Notes
Blocking Read/Write/Erase

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,619 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

The LittleFS port blocks on Read/Write/Erase calls until the operation has completed.

Memory Constraints

The block size defined in the LittleFS configuration must be a multiple of the data flash erase size of
the MCU. It must be greater than 104 bytes which is the minimum block size of a LittleFS block. For
information about data flash erase sizes refer to the "Specifications of the code flash memory and
data flash memory" table of the "Flash Memory" chapter's "Overview" section.

Examples
Basic Example

This is a basic example of LittleFS on Flash in an application.

extern const rm_littlefs_cfg_t g_rm_littlefs_flash0_cfg;

#ifdef LFS_NO_MALLOC

static uint8_t g_file_buffer[LFS_CACHE_SIZE];

static struct lfs_file_config g_file_cfg =

{

 .buffer = g_file_buffer

};

#endif

void rm_littlefs_example (void)

{

 uint8_t buffer[30];

 lfs_file_t file;

 /* Open LittleFS Flash port.*/

 fsp_err_t err = RM_LITTLEFS_FLASH_Open(&g_rm_littlefs_flash0_ctrl,

&g_rm_littlefs_flash0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the filesystem. */

 int lfs_err = lfs_format(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Mount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Create a breakfast directory. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,620 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

 lfs_err = lfs_mkdir(&g_rm_littlefs_flash0_lfs, "breakfast");

 handle_lfs_error(lfs_err);

 /* Create a file toast in the breakfast directory. */

 const char * path = "breakfast/toast";

#ifdef LFS_NO_MALLOC

 /***

 * By default LittleFS uses malloc to allocate buffers. This can be disabled in the

RA Configuration editor.

 * Buffers will be generated from the configuration for the read, program and

lookahead buffers.

 * When opening a file a unique buffer must be passed in for use as a file buffer.

 * The buffer size must be equal to the cache size.

***********************************/

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_flash0_lfs,

 &file,

 path,

 LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND,

 &g_file_cfg);

 handle_lfs_error(lfs_err);

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_WRONLY |

LFS_O_CREAT | LFS_O_APPEND);

 handle_lfs_error(lfs_err);

#endif

 const char * contents = "butter";

 lfs_size_t len = strlen(contents);

 /* Apply butter to toast 10 times. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_write(&g_rm_littlefs_flash0_lfs, &file, contents, len);

 if (lfs_err < 0)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,621 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

 handle_lfs_error(lfs_err);

 }

 }

 /* Close the file. */

 lfs_err = lfs_file_close(&g_rm_littlefs_flash0_lfs, &file);

 handle_lfs_error(lfs_err);

 /* Unmount the filesystem. */

 lfs_err = lfs_unmount(&g_rm_littlefs_flash0_lfs);

 handle_lfs_error(lfs_err);

 /* Remount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Open breakfast/toast. */

#ifdef LFS_NO_MALLOC

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_RDONLY,

&g_file_cfg);

 handle_lfs_error(lfs_err);

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_RDONLY);

 handle_lfs_error(lfs_err);

#endif

 handle_lfs_error(lfs_err);

 /* Verify the toast is buttered the correct amount. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_read(&g_rm_littlefs_flash0_lfs, &file, buffer, len);

 if (lfs_err < 0)

 {

 handle_lfs_error(lfs_err);

 }

 assert(0 == memcmp(buffer, contents, len));

 }

 /* Close the file. */

 lfs_err = lfs_file_close(&g_rm_littlefs_flash0_lfs, &file);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,622 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on Flash (rm_littlefs_flash)

 handle_lfs_error(lfs_err);

}

Function Documentation

◆ RM_LITTLEFS_FLASH_Open()

fsp_err_t RM_LITTLEFS_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

Opens the driver and initializes lower layer driver.

Implements rm_littlefs_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_SIZE The provided block size is invalid.

FSP_ERR_INVALID_ARGUMENT Flash BGO mode must be disabled.

FSP_ERR_INTERNAL Failed to create the semaphore.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

flash_api_t::open

◆ RM_LITTLEFS_FLASH_Close()

fsp_err_t RM_LITTLEFS_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Closes the lower level driver.

Implements rm_littlefs_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

flash_api_t::close

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,623 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

5.2.17.13 LittleFS on SPI Flash (rm_littlefs_spi_flash)
Modules » Storage

Functions

fsp_err_t RM_LITTLEFS_SPI_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl,
rm_littlefs_cfg_t const *const p_cfg)

fsp_err_t RM_LITTLEFS_SPI_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Detailed Description

Middleware for the LittleFS File System control on RA MCUs using external SPI Flash.

Overview
This module provides the hardware port layer for the LittleFS file system. After initializing this
module, refer to the LittleFS documentation to use the file system:
https://github.com/ARMmbed/littlefs

Configuration
Build Time Configurations for rm_littlefs_spi_flash

The following build time configurations are defined in fsp_cfg/rm_littlefs_spi_flash_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_littlefs0 Module name.

Delay Callback Manual Entry g_rm_littlefs_spi_flash0
_callback

Optional delay callback
for custom delay while
waiting for the flash
erase/write operation
to complete.

Read Size Must be a non-negative
integer

1 Minimum size of a
block read. All read
operations will be a
multiple of this value.

Program Size Must be a non-negative
integer

4 Minimum size of a
block program. All

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,624 / 5,560

https://github.com/ARMmbed/littlefs

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

program operations will
be a multiple of this
value.

Block Size (bytes) Must be a multiple of
64

4096 Size of an erasable
block. This does not
impact RAM
consumption and may
be larger than the
physical erase size.
However, non-inlined
files take up at
minimum one block.
Must be a multiple of
the read and program
sizes.

Block Cycles Must be an integer 1024 Number of erase cycles
before LittleFS evicts
metadata logs and
moves the metadata to
another block.
Suggested values are
in the range 100-1000,
with large values
having better
performance at the
cost of less consistent
wear distribution. Set
to -1 to disable block-
level wear-leveling.

Cache Size Must be a non-negative
integer

64 Size of block caches.
Each cache buffers a
portion of a block in
RAM. The LittleFS
needs a read cache, a
program cache, and
one additional cache
per file. Larger caches
can improve
performance by storing
more data and
reducing the number of
disk accesses. Must be
a multiple of the read
and program sizes, and
a factor of the block
size.

Lookahead Size Must be a non-negative
multiple of 8

16 Size of the lookahead
buffer in bytes. A larger
lookahead buffer
increases the number
of blocks found during
an allocation pass. The

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,625 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

lookahead buffer is
stored as a compact
bitmap, so each byte of
RAM can track 8
blocks. Must be a
multiple of 8.

Memory Start Adress
Offset (bytes)

Offset should be
greater than or equal
to zero

0 Enter the starting
offset to use in the SPI
memory. The starting
address for LittleFS
memory will be the SPI
memory base address
plus this offset.

Memory Size (bytes) Size should be greater
than zero

33554432 Enter the size that the
LittleFS Memory should
be. This can be smaller
than the SPI memory
size in order to use a
subset of SPI memory.

Poll Status Count Poll Status Count
should be greater than
or equal to zero

0xFFFFFFFF Number of times to poll
for operation complete
status for blocking
memory operations.

Common LittleFS Configuration

Build Time Configurations for LittleFS

The following build time configurations are defined in arm/littlefs/lfs_util.h:

Configuration Options Default Description

Custom lfs_util.h Manual Entry Add a path to your
custom lfs_util.h file. It
can be used to override
some or all of the
configurations defined
here, and to define
additional
configurations.

Thread Safe Enabled
Disabled

Disabled Enables thread safety
in LittleFS.

Read Only Enabled
Disabled

Disabled Enables Read Only
mode in LittleFS.

Use Malloc Enabled
Disabled

Enabled Configures the use of
malloc by LittleFS.

Use Assert Enabled
Disabled

Enabled Configures the use of
assert by LittleFS.

Debug Messages Enabled
Disabled

Disabled Configures debug
messages.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,626 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

Warning Messages Enabled
Disabled

Disabled Configures warning
messages.

Error Messages Enabled
Disabled

Disabled Configures error
messages.

Trace Messages Enabled
Disabled

Disabled Configures trace
messages.

Intrinsics Enabled
Disabled

Enabled Configures intrinsic
functions such as
__builtin_clz.

Instance Name for
STDIO wrapper

Name must be a valid
C symbol

g_rm_littlefs0 The rm_littlefs instance
name to use with the
STDIO wrapper.

Usage Notes
Blocking Read/Write/Erase

The LittleFS port blocks on Read/Write/Erase calls until the operation has completed.

Memory Constraints

The block size defined in the LittleFS configuration must be a multiple of the sector erase size of the
SPI Flash. It must be greater than 104 bytes which is the minimum block size of a LittleFS block.

Examples
Basic Example

This is a basic example of LittleFS on Flash in an application.

extern const rm_littlefs_cfg_t g_rm_littlefs_spi_flash0_cfg;

#ifdef LFS_NO_MALLOC

static uint8_t g_file_buffer[LFS_CACHE_SIZE];

static struct lfs_file_config g_file_cfg =

{

 .buffer = g_file_buffer

};

#endif

void rm_littlefs_example (void)

{

 uint8_t buffer[30];

 lfs_file_t file;

 /* Open LittleFS Flash port.*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,627 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

 fsp_err_t err = RM_LITTLEFS_SPI_FLASH_Open(&g_rm_littlefs_spi_flash0_ctrl,

&g_rm_littlefs_spi_flash0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the filesystem. */

 int lfs_err = lfs_format(&g_rm_littlefs_spi_flash0_lfs,

&g_rm_littlefs_spi_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Mount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_spi_flash0_lfs,

&g_rm_littlefs_spi_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Create a breakfast directory. */

 lfs_err = lfs_mkdir(&g_rm_littlefs_spi_flash0_lfs, "breakfast");

 handle_lfs_error(lfs_err);

 /* Create a file toast in the breakfast directory. */

 const char * path = "breakfast/toast";

#ifdef LFS_NO_MALLOC

 /***

 * By default LittleFS uses malloc to allocate buffers. This can be disabled in the

RA Configuration editor.

 * Buffers will be generated from the configuration for the read, program and

lookahead buffers.

 * When opening a file a unique buffer must be passed in for use as a file buffer.

 * The buffer size must be equal to the cache size.

***********************************/

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_spi_flash0_lfs,

 &file,

 path,

 LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND,

 &g_file_cfg);

 handle_lfs_error(lfs_err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,628 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_spi_flash0_lfs, &file, path, LFS_O_WRONLY

| LFS_O_CREAT | LFS_O_APPEND);

 handle_lfs_error(lfs_err);

#endif

 const char * contents = "butter";

 lfs_size_t len = strlen(contents);

 /* Apply butter to toast 10 times. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_write(&g_rm_littlefs_spi_flash0_lfs, &file, contents, len);

 if (lfs_err < 0)

 {

 handle_lfs_error(lfs_err);

 }

 }

 /* Close the file. */

 lfs_err = lfs_file_close(&g_rm_littlefs_spi_flash0_lfs, &file);

 handle_lfs_error(lfs_err);

 /* Unmount the filesystem. */

 lfs_err = lfs_unmount(&g_rm_littlefs_spi_flash0_lfs);

 handle_lfs_error(lfs_err);

 /* Remount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_spi_flash0_lfs,

&g_rm_littlefs_spi_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Open breakfast/toast. */

#ifdef LFS_NO_MALLOC

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_spi_flash0_lfs, &file, path,

LFS_O_RDONLY, &g_file_cfg);

 handle_lfs_error(lfs_err);

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_spi_flash0_lfs, &file, path,

LFS_O_RDONLY);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,629 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

 handle_lfs_error(lfs_err);

#endif

 handle_lfs_error(lfs_err);

 /* Verify the toast is buttered the correct amount. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_read(&g_rm_littlefs_spi_flash0_lfs, &file, buffer, len);

 if (lfs_err < 0)

 {

 handle_lfs_error(lfs_err);

 }

 assert(0 == memcmp(buffer, contents, len));

 }

 /* Close the file. */

 lfs_err = lfs_file_close(&g_rm_littlefs_spi_flash0_lfs, &file);

 handle_lfs_error(lfs_err);

}

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,630 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > LittleFS on SPI Flash (rm_littlefs_spi_flash)

◆ RM_LITTLEFS_SPI_FLASH_Open()

fsp_err_t RM_LITTLEFS_SPI_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const
*const p_cfg)

Opens the driver and initializes lower layer driver.

Implements rm_littlefs_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_SIZE The provided block size is invalid.

FSP_ERR_INVALID_ARGUMENT Flash BGO mode must be disabled.

FSP_ERR_INTERNAL Failed to create the semaphore.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

spi_flash_api_t::open

◆ RM_LITTLEFS_SPI_FLASH_Close()

fsp_err_t RM_LITTLEFS_SPI_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Closes the lower level driver.

Implements rm_littlefs_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

spi_flash_api_t::close

5.2.17.14 OSPI Flash (r_ospi)
Modules » Storage

Functions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,631 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

fsp_err_t R_OSPI_Open (spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const
*const p_cfg)

fsp_err_t R_OSPI_DirectWrite (spi_flash_ctrl_t *const p_ctrl, uint8_t const
*const p_src, uint32_t const bytes, bool const read_after_write)

fsp_err_t R_OSPI_DirectRead (spi_flash_ctrl_t *const p_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_OSPI_DirectTransfer (spi_flash_ctrl_t *const p_ctrl,
spi_flash_direct_transfer_t *const p_transfer,
spi_flash_direct_transfer_dir_t direction)

fsp_err_t R_OSPI_XipEnter (spi_flash_ctrl_t *const p_ctrl)

fsp_err_t R_OSPI_XipExit (spi_flash_ctrl_t *const p_ctrl)

fsp_err_t R_OSPI_Write (spi_flash_ctrl_t *const p_ctrl, uint8_t const *const
p_src, uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t R_OSPI_Erase (spi_flash_ctrl_t *const p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t R_OSPI_StatusGet (spi_flash_ctrl_t *const p_ctrl, spi_flash_status_t
*const p_status)

fsp_err_t R_OSPI_BankSet (spi_flash_ctrl_t *const p_ctrl, uint32_t bank)

fsp_err_t R_OSPI_SpiProtocolSet (spi_flash_ctrl_t *const p_ctrl,
spi_flash_protocol_t spi_protocol)

fsp_err_t R_OSPI_AutoCalibrate (spi_flash_ctrl_t *const p_ctrl)

fsp_err_t R_OSPI_Close (spi_flash_ctrl_t *const p_ctrl)

Detailed Description

Driver for the OSPI peripheral on RA MCUs. This module implements the SPI Flash Interface.

Overview
The OSPI peripheral interfaces with an external OctaFlash and/or OctaRAM chip(s) to perform data
I/O Operations. When both OctaFlash and OctaRAM devices are interfaced, they must be connected
to their own chip-select lines. The devices cannot share a single chip-select line.

Features

The OSPI driver has the following key features to support the OctaFlash device:

Perform data I/O Operation in both SPI and OPI modes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,632 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Can be configured with OctaFlash device on either of the 2 channels
Memory mapped read access to the OctaFlash
Programming the OctaFlash device using single continuous write
Erasing the OctaFlash device
Sending device specific commands and reading back responses
Entering and exiting XIP (Single Continuous Read) mode
3 byte addressing for SPI
4 byte addressing for SPI and OPI
Auto-calibration for OPI mode (SOPI and DOPI)

The OSPI driver has the following key features to support the OctaRAM device:

Perform data I/O Operation in DOPI mode
Can be configured with OctaRAM device on either of the 2 channels
Memory mapped read amd write access to the OctaRAM using single continuous mode
Sending device specific commands and reading back responses
Auto-calibration for DOPI mode
Uninitialized global variables or buffers can be allocated in the OSPI RAM address space.

Additional build-time features:

Optional (build-time) DMAC support for data transmission when used with OctaFlash.

Note
For OctaFlash, use of DMAC for data transmission is strongly recommended. Without the use of DMAC, due to the
high-speed hardware design of the OSPI peripheral, data transmission can be sensitive to timing variance, which
could cause software-based memory-mapped operations to fail unexpectedly.

Configuration
OSPI Flash:

Build Time Configurations for r_ospi

The following build time configurations are defined in driver/r_ospi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DMAC Support Enable
Disable

Disable Enable DMAC support
for the OSPI module.

Configurations for Storage > OSPI Flash (r_ospi)

This module can be added to the Stacks tab via New Stack > Storage > OSPI Flash (r_ospi).

Configuration Options Default Description

General

General > Single Continuous Mode

Read Idle Time Must be an integer 100 Specify the read idle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,633 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

greater than 0 with
maximum configurable
value of 127

time.

Write Idle Time Must be an integer
greater than 0 with
maximum configurable
value of 127

100 Specify the write idle
time.

Name Name must be a valid
C symbol

g_ospi0 Module name.

Channel Channel should be 0 or
1

0 Specify the OSPI chip
select line to use.

Flash Size Must be an integer
greater than 0 with
maximum configurable
value of 0x3FFFFFFF

0x04000000 Specify the OctaFlash
size in bytes.

SPI Protocol SPI
Single data rate
OPI
Dual data rate
OPI

SPI Select the initial SPI
protocol. SPI protocol
can be changed on the
OctaFlash using
R_OSPI_DirectTransfer(
).

Address Bytes 3
4

4 Select the number of
address bytes.

OPI Mode

OPI Mode > Auto-Calibration

Data latching delay Must be a valid non-
negative integer with
maximum configurable
value of 0xFF

0x80 Set this to 0 to enable
auto-calibration. 0x80
is the default value
calculated at 3.3V and
25°C

Auto-Calibration
Address

Must be a valid non-
negative integer with
maximum configurable
value of 0xFFFFFFFF

0x00 Set the address of the
read/write destination
to be performed for
auto-calibration.

OPI Mode > Command Definitions

Page Program
Command

Must be a 16-bit OSPI
Page Program
Command under OPI
Mode|Command
Definitions

0x12ED The command to
program a page in OPI
mode.

Read Command Must be a 16-bit OSPI
Read Command under
OPI Mode|Command
Definitions

0xEC13 The command to read
in SOPI mode (8READ).

Dual Read Command Must be a 16-bit OSPI
Dual Read Command

0xEE11 The command to read
in DOPI mode (8DTRD).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,634 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

under OPI
Mode|Command
Definitions

Write Enable Command Must be a 16-bit OSPI
Write Enable Command
under OPI
Mode|Command
Definitions

0x06F9 The command to
enable write in OPI
mode.

Status Command Must be a 16-bit OSPI
Status Command under
OPI Mode|Command
Definitions

0x05FA The command to query
the status of a write or
erase command in OPI
mode.

OPI Mode > OM_DQS Enable Counter

SOPI Must be an integer
between 0 and 255

9 OM_DQS enable
counter for memory
access. Setting for SOPI
mode.

DOPI Must be an integer
between 0 and 255

6 OM_DQS enable
counter for memory
access. Setting for
DOPI mode.

Command Length
Bytes

Must be an integer
between 1 and 2

2 Command length in
bytes

Memory Read Dummy
Cycles

Must be an integer
between 6 and 10

10 Memory read dummy
cycles

Status Read Dummy
Cycles

Must be an integer
between 0 and 255

4 Status read dummy
cycles

DOPI Byte Order Byte0, Byte1,
Byte2, Byte3
Byte1, Byte0,
Byte3, Byte2

Byte0, Byte1, Byte2,
Byte3

Byte order on the
external bus

SPI Mode

SPI Mode > Command Definitions

Page Program
Command

Must be a 8-bit OSPI
Page Program
Command under SPI
Mode|Command
Definitions

0x12 The command to
program a page in SPI
mode.

Read Command Must be a 8-bit OSPI
Read Command under
SPI Mode|Command
Definitions

0x13 The command to read
in SPI mode.

Write Enable Command Must be a 16-bit OSPI
Write Enable Command
under SPI
Mode|Command

0x06 The command to
enable write in SPI
mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,635 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Definitions

Status Command Must be a 16-bit OSPI
Status Command under
SPI Mode|Command
Definitions

0x05 The command to query
the status of a write or
erase command in SPI
mode.

Common Command Definitions

Sector Erase Command Must be a value
greater than or equal
to 0

0x21DE The command to erase
a sector. Set Sector
Erase Size to 0 if
unused.

Block Erase Command Must be a value
greater than or equal
to 0

0xDC23 The command to erase
a block. Set Block
Erase Size to 0 if
unused.

Chip Erase Command Must be a value
greater than or equal
to 0

0xC738 The command to erase
the entire chip. Set
Chip Erase Command
to 0 if unused.

Write Status Bit Must be an integer
between 0 and 7

0 Which bit contains the
write in progress status
returned from the
Write Status
Command.

Write Enable Bit Must be an integer
between 0 and 7

1 Which bit contains the
write enable status
returned from the
Write Enable
Command.

Sector Erase Size Must be an integer
greater than or equal
to 0

4096 The sector erase size.
Set Sector Erase Size
to 0 if Sector Erase is
not supported.

Block Erase Size Must be an integer
greater than or equal
to 0

65536 The block erase size.
Set Block Erase Size to
0 if Block Erase is not
supported.

Chip Select Timing Setting

Memory Mapped Read
Command Interval

2
5
7
9
11
13
15
17

2 Memory mapped read
command execution
interval setting in
OCTACLK units

Memory Mapped Write
Command Interval

2
5

2 Memory mapped write
command execution

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,636 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

7
9
11
13
15
17

interval setting in
OCTACLK units

Command Interval 2
5
7
9
11
13
15
17

2 Command execution
interval setting in
OCTACLK units

Memory Mapped Read
Pull-up Timing

5 SPI/SOPI
6 SPI/SOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5
DOPI

5 SPI/SOPI Memory mapped read
signal pull-up timing
setting in OCTACLK
units

Memory Mapped Write
Pull-up Timing

2 SPI/SOPI, 1.5
DOPI
3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI
6 SPI/SOPI, 5.5
DOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5
DOPI

2 SPI/SOPI, 1.5 DOPI Memory mapped write
signal pull-up timing
setting in OCTACLK
units

Pull-up Timing 5 SPI/SOPI
6 SPI/SOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5
DOPI

5 SPI/SOPI Signal pull-up timing
setting in OCTACLK
units

Memory Mapped Read
Pull-down Timing

3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Memory mapped read
signal pull-down timing
setting in OCTACLK
units

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,637 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Memory Mapped Write
Pull-down Timing

3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Memory mapped write
signal pull-down timing
setting in OCTACLK
units

Pull-down Timing 3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Signal pull-down timing
setting in OCTACLK
units

Note
The user is expected to modify the command definitions based on the OctaFlash chip and SPI communication
mode. The default mode is SPI mode and default erase commands are set for OPI mode based on Macronix
OctaFlash MX25LM51245G.

OSPI RAM:

Build Time Configurations for r_ospi

The following build time configurations are defined in driver/r_ospi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DMAC Support Enable
Disable

Disable Enable DMAC support
for the OSPI module.

Configurations for Storage > OSPI RAM (r_ospi)

This module can be added to the Stacks tab via New Stack > Storage > OSPI RAM (r_ospi).

Configuration Options Default Description

General

General > Single Continuous Mode

Read Idle Time Must be an integer
greater than 0 with
maximum configurable
value of 127

127 Specify the read idle
time.

Write Idle Time Must be an integer
greater than 0 with
maximum configurable
value of 127

127 Specify the write idle
time.

Name Name must be a valid
C symbol

g_ospi_ram0 Module name.

Channel Channel should be 0 or 0 Specify the OSPI chip

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,638 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

1 [Channel 0
recommended]

select line to use.

RAM Size Must be an integer
greater than 0 with
maximum configurable
value of 0x00800000

0x00800000 Specify the OctaRam
size in bytes.

SPI Protocol Dual data rate OPI Dual data rate OPI Select the initial SPI
protocol. OctaRAM only
supports DOPI mode.

Address Bytes 4 4 Select the number of
address bytes.
OctaRAM only supports
4 byte addresses in
DOPI mode.

Auto-Calibration

Data latching delay Must be a valid non-
negative integer with
maximum configurable
value of 0xFF

0x80 Set this to 0 to enable
auto-calibration. 0x80
is the default value
calculated at 3.3V and
25°C

Auto-Calibration
Address

Must be a valid non-
negative integer with
maximum configurable
value of 0xFFFFFFFF

0x00 Set the address of the
read/write destination
to be performed for
auto-calibration.

Command Definitions

Memory Read
Command

Must be a 16-bit OSPI
Dual Read Command
under Command
Definitions

0xA000 The command to read
in DOPI mode.

Memory Write
Command

Must be a 16-bit OSPI
Write Command under
Command Definitions

0x2000 The command to write
in DOPI mode.

OM_DQS Enable Counter

DOPI Must be an integer
between 0 and 255

3 OM_DQS enable
counter for memory
access. Setting for
DOPI mode.

Chip Select Timing Setting

Memory Mapped Read
Command Interval

2
5
7
9
11
13
15
17

2 Memory mapped read
command execution
interval setting in
OCTACLK units

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,639 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Memory Mapped Write
Command Interval

2
5
7
9
11
13
15
17

2 Memory mapped write
command execution
interval setting in
OCTACLK units

Command Interval 2
5
7
9
11
13
15
17

2 Command execution
interval setting in
OCTACLK units

Memory Mapped Read
Pull-up Timing

6.5 DOPI
7.5 DOPI
8.5 DOPI

6.5 DOPI Memory mapped read
signal pull-up timing
setting in OCTACLK
units

Memory Mapped Write
Pull-up Timing

1.5 DOPI
2.5 DOPI
3.5 DOPI
4.5 DOPI
5.5 DOPI
6.5 DOPI
7.5 DOPI
8.5 DOPI

1.5 DOPI Memory mapped write
signal pull-up timing
setting in OCTACLK
units

Pull-up Timing 6.5 DOPI
7.5 DOPI
8.5 DOPI

6.5 DOPI Signal pull-up timing
setting in OCTACLK
units

Memory Mapped Read
Pull-down Timing

2.5 DOPI
3.5 DOPI
4.5 DOPI

2.5 DOPI Memory mapped read
signal pull-down timing
setting in OCTACLK
units

Memory Mapped Write
Pull-down Timing

2.5 DOPI
3.5 DOPI
4.5 DOPI

2.5 DOPI Memory mapped write
signal pull-down timing
setting in OCTACLK
units

Pull-down Timing 2.5 DOPI
3.5 DOPI
4.5 DOPI

2.5 DOPI Signal pull-down timing
setting in OCTACLK
units

Command Length
Bytes

Must be an integer
between 1 and 2

2 Command length in
bytes

Memory Read Dummy
Cycles

Must be an integer
between 3 and 8

4 Memory read dummy
cycles

Memory Write Dummy
Cycles

Must be an integer
between 3 and 8

4 Memory write dummy
cycles

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,640 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

DOPI Byte Order Byte0, Byte1,
Byte2, Byte3
Byte1, Byte0,
Byte3, Byte2

Byte1, Byte0, Byte3,
Byte2

Byte order on the
external bus

Chip Select Maximum
Low Time (us)

Must be an integer
between 0 to 511

4 Chip Select Maximum
Low Time (tCSM).

Clock Configuration

PCLKA is the Octal-SPI bus interface, and PCLKB is used to set OSPI registers.

The signals to the OSPI device are derived from OCTASPICLK. The OMSCLK signal is OCTASPICLK / 2.
Data can be output at the OCTASPICLK rate if SPI Protocol is set to Dual Data Rate OPI.

The PCLKB, PCLKA, and OCTASPICLK frequencies can be set on the Clocks tab of the RA
Configuration editor.

Pin Configuration

The following pins are available to connect to an external OSPI device:

OMSCLK: OSPI clock output (OCTASPICLK / 2)
OMDQS: OSPI data strobe signal
OMCS0: OSPI device 0 select
OMCS1: OSPI device 1 select
OMSIO0: Data 0 I/O
OMSIO1: Data 1 I/O
OMSIO2: Data 2 I/O
OMSIO3: Data 3 I/O
OMSIO4: Data 4 I/O
OMSIO5: Data 5 I/O
OMSIO6: Data 6 I/O
OMSIO7: Data 7 I/O

Note
Data pins must be configured with IOPORT_CFG_DRIVE_HS_HIGH.
Chip Select pins should be configured with at least IOPORT_CFG_DRIVE_MEDIUM.

Usage Notes
Usage Notes for OctaFlash support

Enabling DMAC

DMAC data transmission support is configurable for OSPI Flash and is disabled from the build by
default. Use of a high-priority (low channel number) DMAC for data transmission is strongly
recommended.

For further details on DMAC please refer Transfer (r_dmac).

OSPI Memory Mapped Access

After R_OSPI_Open() completes successfully, the OctaFlash device contents are mapped to address
0x68000000 (channel 0) or 0x70000000 (channel 1) based on the channel configured and can be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,641 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

read like on-chip flash. Channel 0 supports 128 MB while Channel 1 supports 256 MB of address
space.

Auto-calibration

Auto-calibration procedure is triggered automatically when the 'Data latching delay' field in the
configurator properties is set to 0. The user application is responsible for setting the appropriate
preamble pattern before calling R_OSPI_Open() with SOPI/DOPI mode or changing the SPI protocol to
SOPI/DOPI using R_OSPI_SpiProtocolSet() API. The appropriate preamble pattern can be written to the
desired address using the R_OSPI_Write() API while in the SPI mode (recommended). Ensure that the
same address is passed through the configurator. If the OctaFlash chip is already in SOPI/DOPI mode,
the preamble pattern must be programmed using the debugger before calling R_OSPI_Open().

Chip Select Latencies

Chip select latencies can be set through the configurator. The default settings support SOPI and SPI
at minimum latency. In case the driver is opened in SPI mode and will be switched to DOPI mode
later using R_OSPI_SpiProtocolSet(), please select latencies required for DOPI before calling
R_OSPI_Open().

OctaFlash Commands

Set the erase commands based on intended mode of operation (SPI or OPI). These
commands cannot be changed during run-time.
Read, Write and Status commands for both SPI and OPI are configured allowing switching
between the modes at run-time.

Usage Notes for OctaRAM support

OSPI Memory Mapped Access

After R_OSPI_Open() completes successfully, the OctaRAM device contents are mapped to address
0x68000000 (channel 0) or 0x70000000 (channel 1) based on the channel configured and can be
written to or read from like on-chip RAM. Channel 0 and 1 support 8 MB of address space.

Auto-calibration

Since the OctaRAM only supports DOPI mode, the driver allows the user to call R_OSPI_Open()
without performing the auto-calibration procedure automatically when 'Data latching delay' field is
set to 0 in the configurator properties. This is done so that the user can write the appropriate
preamble pattern to the desired address using memory mapped writes while in DOPI mode. Ensure
that the same address is passed through the configurator. R_OSPI_AutoCalibrate() should be then
called to perform auto-calibration.

Chip Select Latencies

Chip select latencies can be set through the configurator. The default settings support DOPI at
minimum latency.

Limitations

Developers should be aware of the following limitations when using the OSPI driver:

OctaFlash

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,642 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Single continuous read in SPI mode is not supported by the peripheral. The maximum
amount of data that can be read using a single read command is 4-bytes (When doing a
32-bit access).
Fast Reads would be slower than regular reads as the SPI mode cannot be operated with an
OMSCLK greater than 50MHz.

Examples
OSPI Flash:

Basic Example

This is a basic example of minimal use of the OSPI in an application with OctaFlash.

#define OSPI_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[OSPI_EXAMPLE_DATA_LENGTH];

/* Place data in the .ospi_flash section to flash it during programming. */

const uint8_t g_src[OSPI_EXAMPLE_DATA_LENGTH] BSP_PLACE_IN_SECTION(".ospi_flash") =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* Place code in the .code_in_ospi section to flash it during programming. */

void r_ospi_example_function(void) BSP_PLACE_IN_SECTION(".code_in_ospi")

__attribute__((noinline));

void r_ospi_example_function (void)

{

 /* Add code here. */

}

void r_ospi_basic_example (void)

{

 /* Open the OSPI instancee */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* (Optional) Change SPI to DOPI mode */

 r_ospi_example_spi_to_dopi();

 /* After R_OSPI_Open() and any required device specific intiialization, data can be

read directly from the OSPI flash. */

 memcpy(&g_dest[0], &g_src[0], OSPI_EXAMPLE_DATA_LENGTH);

 /* After R_OSPI_Open() and any required device specific intiialization, functions in

the OSPI flash can be called. */

 r_ospi_example_function();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,643 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

}

Reading Status Register Example (R_OSPI_DirectTransfer)

This is an example of using R_OSPI_DirectWrite followed by R_OSPI_DirectRead to send the read
status register command and read back the status register from the device.

#define OSPI_COMMAND_READ_STATUS_REGISTER (0x05U)

void r_ospi_direct_example (void)

{

 spi_flash_direct_transfer_t ospi_test_direct_transfer =

 {

 .command = OSPI_TEST_READ_STATUS_COMMAND_SPI_MODE,

 .address = 0U,

 .data = 0U,

 .command_length = 1U,

 .address_length = 0U,

 .data_length = 0U,

 .dummy_cycles = 0U

 };

 /* Open the OSPI instance. */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* Write Enable */

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

 /* Read Status Register */

 ospi_test_direct_transfer.command = OSPI_TEST_READ_STATUS_COMMAND_SPI_MODE;

 ospi_test_direct_transfer.data_length = 1U;

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 /* Check if Write Enable is set */

 if (OSPI_WEN_BIT_MASK != (ospi_test_direct_transfer.data & OSPI_WEN_BIT_MASK))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,644 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

 {

 __BKPT(0);

 }

}

Auto-calibration Example (R_OSPI_DirectTransfer, R_OSPI_Write, R_OSPI_SpiProtocolSet)

This is an example of using R_OSPI_SpiProtocolSet to change the operating mode from SPI to SOPI
and allow the driver to initiate auto-calibration.

#define OSPI_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES (16U)

#define OSPI_EXAMPLE_PREAMBLE_ADDRESS (0x68000000U) /* Device connected to CS0 */

const uint8_t g_preamble_bytes[OSPI_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES] =

{

 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x08, 0x00, 0x00, 0xF7, 0xFF, 0x00, 0x08,

0xF7, 0x00, 0xF7

};

void ospi_example_wait_until_wip (void)

{

 fsp_err_t err = FSP_SUCCESS;

 spi_flash_status_t status;

 status.write_in_progress = true;

 uint32_t timeout = UINT32_MAX;

 while ((status.write_in_progress) && (--timeout))

 {

 err = R_OSPI_StatusGet(&g_ospi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 if (0 == timeout)

 {

 assert(FSP_SUCCESS == err);

 }

}

void r_ospi_auto_calibrate_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,645 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

 /* Open the OSPI instance. */

 /* Set data_latch_delay_clocks to 0x0 to enable auto-calibration */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 uint8_t * preamble_pattern_addr = (uint8_t *) OSPI_EXAMPLE_PREAMBLE_ADDRESS;

 err = R_OSPI_Write(&g_ospi0_ctrl, g_preamble_bytes, preamble_pattern_addr,

OSPI_EXAMPLE_PREAMBLE_ADDRESS);

 assert(FSP_SUCCESS == err);

 /* Wait until write has been completed */

 ospi_example_wait_until_wip();

 /* Change from SPI to DOPI mode */

 r_ospi_example_spi_to_dopi();

}

Octaclk Update Example (R_OSPI_SpiProtocolSet)

This is an example of using R_BSP_OctaclkUpdate to change the Octal-SPI clock frequency during run
time. The OCTACLK frequency must be updated before calling the R_OSPI_SpiProtocolSet with
appropriate clock source and divider settings required to be set for the new SPI protocol mode.
Ensure that the clock source selected is started.

static void ospi_example_change_omclk (void)

{

 /* Ensure clock source (PLL2 in this example) is running before changing the OCTACLK

frequency */

 bsp_octaclk_settings_t octaclk_settings;

 octaclk_settings.source_clock = BSP_CLOCKS_CLOCK_PLL2;

 octaclk_settings.divider = BSP_CLOCKS_OCTACLK_DIV_2;

 R_BSP_OctaclkUpdate(&octaclk_settings);

}

OSPI Data and IAR

When using the IAR compiler, OSPI data must be const qualified to be downloaded by the debugger.

OSPI RAM:

Basic Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,646 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

This is a basic example of minimal use of the OSPI in an application with OctaRAM.

#define OSPI_RAM_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[OSPI_RAM_EXAMPLE_DATA_LENGTH];

/* Place uninitialized data buffers in the ospi_device_0_no_load section.

 * Use ospi_device_1_no_load section if the OctaRAM is configured on channel 1.

 */

uint8_t g_src_1[OSPI_RAM_EXAMPLE_DATA_LENGTH]

BSP_PLACE_IN_SECTION(".ospi_device_0_no_load");

uint8_t g_src_2[OSPI_RAM_EXAMPLE_DATA_LENGTH]

BSP_PLACE_IN_SECTION(".ospi_device_0_no_load");

void r_ospi_ram_basic_example (void)

{

 /* Open the OSPI instancee.

 * Ensure valid setting of the 'Data latching delay' field in the configurator.

 * To successfully perform OSPI RAM reads this value must not be 0.

 */

 fsp_err_t err = R_OSPI_Open(&g_ospi_ram0_ctrl, &g_ospi_ram0_cfg);

 assert(FSP_SUCCESS == err);

 /* After R_OSPI_Open() and any required device specific intiialization, data can be

read from or written to directly from the OSPI RAM. */

 memcpy(&g_dest[0], &g_src_1[0], OSPI_RAM_EXAMPLE_DATA_LENGTH);

 memcpy(&g_src_2[0], &g_src_1[0], OSPI_RAM_EXAMPLE_DATA_LENGTH);

}

Auto-calibration Example (R_OSPI_DirectTransfer, R_OSPI_AutoCalibrate)

This is an example of using R_OSPI_AutoCalibrate to calibrate OSPI peripheral to read data from the
OctaRAM device.

#define OSPI_RAM_EXAMPLE_PREAMBLE_ADDRESS (0x68000000U) /* Device connected to CS0 */

#define OSPI_RAM_EXAMPLE_OCTARAM_CR_LATENCY_COUNTER_MASK (0x00F0U)

#define OSPI_RAM_EXAMPLE_OCTARAM_CR_LATENCY_COUNTER_POS (4U)

#define OSPI_RAM_EXAMPLE_OCTARAM_100MHZ_4CLOCKS_CR_SETTING (1U)

void r_ospi_ram_auto_calibrate_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,647 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

 /* Open the OSPI instancee */

 fsp_err_t err = R_OSPI_Open(&g_ospi_ram0_ctrl, &g_ospi_ram0_cfg);

 assert(FSP_SUCCESS == err);

 /* OctaRAM Configuration Register (cr) read and write command definition */

 spi_flash_direct_transfer_t read_cr =

 {

 .command = 0xC000U, // NOLINT(readability-magic-numbers)

 .address = 0x00040000U, // NOLINT(readability-magic-numbers)

 .data = 0U,

 .command_length = 2U,

 .address_length = 4U,

 .data_length = 2U,

 /* Dummy Cycles set to the default value specified in the OctaRAM device

Configuration Register */

 .dummy_cycles = 5U

 };

 spi_flash_direct_transfer_t write_cr =

 {

 .command = 0x4000U, // NOLINT(readability-magic-numbers)

 .address = 0x00040000U, // NOLINT(readability-magic-numbers)

 .data = 0U,

 .command_length = 2U,

 .address_length = 4U,

 .data_length = 2U,

 .dummy_cycles = 0U

 };

 /* Read OctaRAM device Configuration Register */

 err = R_OSPI_DirectTransfer(&g_ospi_ram0_ctrl, &read_cr,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 uint16_t config_reg = (uint16_t) (((uint16_t) (read_cr.data) &

~OSPI_RAM_EXAMPLE_OCTARAM_CR_LATENCY_COUNTER_MASK) |

 ((uint16_t)

(OSPI_RAM_EXAMPLE_OCTARAM_100MHZ_4CLOCKS_CR_SETTING <<

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,648 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

 OSPI_RAM_EXAMPLE_OCTARAM_CR_LATENC

Y_COUNTER_POS) &

 OSPI_RAM_EXAMPLE_OCTARAM_CR_LATENCY_COUNTER_MA

SK));

 /* Write Configuration Register */

 write_cr.data = (uint32_t) config_reg;

 err = R_OSPI_DirectTransfer(&g_ospi_ram0_ctrl, &write_cr,

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

 read_cr.data = 0;

 /* Set Dummy Clocks to value configured above (4 Clocks) */

 read_cr.dummy_cycles = 4U;

 /* Read Configuration Register */

 err = R_OSPI_DirectTransfer(&g_ospi_ram0_ctrl, &read_cr,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 /* Confirm the intended Configuration Register value */

 assert(config_reg == (uint16_t) (read_cr.data & UINT16_MAX));

 volatile uint32_t * ram_addr = (uint32_t *) OSPI_RAM_EXAMPLE_PREAMBLE_ADDRESS;

 /* Write the auto-calibration preamble pattern for DOPI mode as specified by the

Hardware Manual */

 ram_addr[0] = 0xFFFF0000; // NOLINT(readability-magic-numbers)

 ram_addr[1] = 0x0800FF00; // NOLINT(readability-magic-numbers)

 ram_addr[2] = 0xFF0000F7; // NOLINT(readability-magic-numbers)

 ram_addr[3] = 0x00F708F7; // NOLINT(readability-magic-numbers)

 err = R_OSPI_AutoCalibrate(&g_ospi_ram0_ctrl);

 assert(FSP_SUCCESS == err);

 /* After Auto-calibration data can be read from or written to directly from the OSPI

RAM. */

 memcpy(&g_dest[0], &g_src_1[0], OSPI_RAM_EXAMPLE_DATA_LENGTH);

 memcpy(&g_src_2[0], &g_src_1[0], OSPI_RAM_EXAMPLE_DATA_LENGTH);

}

Data Structures

struct ospi_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,649 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

Enumerations

enum ospi_device_number_t

enum ospi_device_type_t

enum ospi_command_cs_pullup_clocks_t

enum ospi_command_cs_pulldown_clocks_t

enum ospi_dopi_byte_order_t

Data Structure Documentation

◆ ospi_instance_ctrl_t

struct ospi_instance_ctrl_t

Instance control block. DO NOT INITIALIZE. Initialization occurs when spi_flash_api_t::open is called

Enumeration Type Documentation

◆ ospi_device_number_t

enum ospi_device_number_t

Enumerator

OSPI_DEVICE_NUMBER_0 Device connected to Chip-Select 0.

OSPI_DEVICE_NUMBER_1 Device connected to Chip-Select 1.

◆ ospi_device_type_t

enum ospi_device_type_t

Enumerator

OSPI_DEVICE_FLASH Device Memory type OctaFlash.

OSPI_DEVICE_RAM Device Memory type OctaRAM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,650 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ ospi_command_cs_pullup_clocks_t

enum ospi_command_cs_pullup_clocks_t

Enumerator

OSPI_COMMAND_CS_PULLUP_CLOCKS_2 1.5 clocks DOPI mode; 2 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_3 2.5 clocks DOPI mode; 3 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_4 3.5 clocks DOPI mode; 4 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_5 4.5 clocks DOPI mode; 5 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_6 5.5 clocks DOPI mode; 6 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_7 6.5 clocks DOPI mode; 7 Clocks all other
modes

OSPI_COMMAND_CS_PULLUP_CLOCKS_8 7.5 clocks DOPI mode; 8 Clocks all other
modes

OSPI_COMMAND_CS_PULLUP_CLOCKS_9 8.5 clocks DOPI mode; 9 Clocks all other
modes

◆ ospi_command_cs_pulldown_clocks_t

enum ospi_command_cs_pulldown_clocks_t

Enumerator

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_3 2.5 clocks DOPI mode; 3 Clocks all other
modes

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_4 3.5 clocks DOPI mode; 4 Clocks all other
modes

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_5 4.5 clocks DOPI mode; 5 Clocks all other
modes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,651 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ ospi_dopi_byte_order_t

enum ospi_dopi_byte_order_t

Enumerator

OSPI_DOPI_BYTE_ORDER_0123 DOPI byte order byte 0, byte 1, byte 2, byte 3.

OSPI_DOPI_BYTE_ORDER_1032 DOPI byte order byte 1, byte 0, byte 3, byte 2.

Function Documentation

◆ R_OSPI_Open()

fsp_err_t R_OSPI_Open (spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the OSPI driver module. After the driver is open, the OSPI can be accessed like internal flash
memory.

Implements spi_flash_api_t::open.

Example:

 /* Open the OSPI instancee */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Driver has already been opened with the
same p_ctrl.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

FSP_ERR_INVALID_ARGUMENT Attempting to open the driver with an
invalid SPI protocol for OctaRAM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,652 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_DirectWrite()

fsp_err_t R_OSPI_DirectWrite (spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t
const bytes, bool const read_after_write)

Writes raw data directly to the OctaFlash. API not supported. Use R_OSPI_DirectTransfer

Implements spi_flash_api_t::directWrite.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

◆ R_OSPI_DirectRead()

fsp_err_t R_OSPI_DirectRead (spi_flash_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Reads raw data directly from the OctaFlash. API not supported. Use R_OSPI_DirectTransfer.

Implements spi_flash_api_t::directRead.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

◆ R_OSPI_DirectTransfer()

fsp_err_t R_OSPI_DirectTransfer (spi_flash_ctrl_t *const p_ctrl, spi_flash_direct_transfer_t *const
p_transfer, spi_flash_direct_transfer_dir_t direction)

Read/Write raw data directly with the OctaFlash/OctaRAM device.

Implements spi_flash_api_t::directTransfer.

Example:

 /* Write Enable */

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,653 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_XipEnter()

fsp_err_t R_OSPI_XipEnter (spi_flash_ctrl_t *const p_ctrl)

Enters Single Continuous Read/Write mode.

Implements spi_flash_api_t::xipEnter.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaRAM.

◆ R_OSPI_XipExit()

fsp_err_t R_OSPI_XipExit (spi_flash_ctrl_t *const p_ctrl)

Exits XIP (execute in place) mode.

Implements spi_flash_api_t::xipExit.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaRAM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,654 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_Write()

fsp_err_t R_OSPI_Write (spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint8_t *const
p_dest, uint32_t byte_count)

Program a page of data to the flash.

Implements spi_flash_api_t::write.

Example:

 err = R_OSPI_Write(&g_ospi0_ctrl, g_preamble_bytes, preamble_pattern_addr,

OSPI_EXAMPLE_PREAMBLE_ADDRESS);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION p_instance_ctrl, p_dest or p_src is NULL, or
byte_count crosses a page boundary.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_DEVICE_BUSY Another Write/Erase transaction is in
progress.

FSP_ERR_INVALID_SIZE Write operation crosses page-boundary.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaRAM.

FSP_ERR_WRITE_FAILED The write enable bit was not set.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,655 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_Erase()

fsp_err_t R_OSPI_Erase (spi_flash_ctrl_t *const p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a block or sector of flash. The byte_count must exactly match one of the erase sizes defined
in spi_flash_cfg_t. For chip erase, byte_count must be SPI_FLASH_ERASE_SIZE_CHIP_ERASE.

Implements spi_flash_api_t::erase.

Return values
FSP_SUCCESS The command to erase the flash was

executed successfully.

FSP_ERR_ASSERTION p_instance_ctrl or p_device_address is NULL,
byte_count doesn't match an erase size
defined in spi_flash_cfg_t, or byte_count is
set to 0.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_DEVICE_BUSY The device is busy.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaRAM.

FSP_ERR_WRITE_FAILED The write enable bit was not set.

◆ R_OSPI_StatusGet()

fsp_err_t R_OSPI_StatusGet (spi_flash_ctrl_t *const p_ctrl, spi_flash_status_t *const p_status)

Gets the write or erase status of the flash.

Implements spi_flash_api_t::statusGet.

Example:

 err = R_OSPI_StatusGet(&g_ospi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The write status is in p_status.

FSP_ERR_ASSERTION p_instance_ctrl or p_status is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaRAM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,656 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_BankSet()

fsp_err_t R_OSPI_BankSet (spi_flash_ctrl_t *const p_ctrl, uint32_t bank)

Selects the bank to access.

Implements spi_flash_api_t::bankSet.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

◆ R_OSPI_SpiProtocolSet()

fsp_err_t R_OSPI_SpiProtocolSet (spi_flash_ctrl_t *const p_ctrl, spi_flash_protocol_t spi_protocol)

Sets the SPI protocol.

Implements spi_flash_api_t::spiProtocolSet.

Return values
FSP_SUCCESS SPI protocol updated on MCU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

FSP_ERR_INVALID_ARGUMENT Attempting to set an invalid SPI protocol for
OctaRAM.

◆ R_OSPI_AutoCalibrate()

fsp_err_t R_OSPI_AutoCalibrate (spi_flash_ctrl_t *const p_ctrl)

Auto-calibrate the OctaRAM device using the preamble pattern.

Note
The preamble pattern must be written to the configured address before calling this API. Implements
spi_flash_api_t::autoCalibrate.

Return values
FSP_SUCCESS SPI protocol updated on MCU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

FSP_ERR_UNSUPPORTED API not supported by OSPI - OctaFlash.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,657 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi)

◆ R_OSPI_Close()

fsp_err_t R_OSPI_Close (spi_flash_ctrl_t *const p_ctrl)

Close the OSPI driver module.

Implements spi_flash_api_t::close.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

5.2.17.15 OSPI Flash (r_ospi_b)
Modules » Storage

Functions

fsp_err_t R_OSPI_B_Open (spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const
*const p_cfg)

fsp_err_t R_OSPI_B_DirectWrite (spi_flash_ctrl_t *p_ctrl, uint8_t const *const
p_src, uint32_t const bytes, bool const read_after_write)

fsp_err_t R_OSPI_B_DirectRead (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

fsp_err_t R_OSPI_B_DirectTransfer (spi_flash_ctrl_t *p_ctrl,
spi_flash_direct_transfer_t *const p_transfer,
spi_flash_direct_transfer_dir_t direction)

fsp_err_t R_OSPI_B_XipEnter (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_B_XipExit (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_B_Write (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t R_OSPI_B_Erase (spi_flash_ctrl_t *p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t R_OSPI_B_StatusGet (spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const
p_status)

fsp_err_t R_OSPI_B_BankSet (spi_flash_ctrl_t *p_ctrl, uint32_t bank)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,658 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

fsp_err_t R_OSPI_B_SpiProtocolSet (spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t
spi_protocol)

fsp_err_t R_OSPI_B_Close (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_B_AutoCalibrate (spi_flash_ctrl_t *const p_ctrl)

Detailed Description

Driver for the OSPI_B peripheral on RA MCUs. This module implements the SPI Flash Interface.

Overview
The OSPI_B peripheral supports xSPI (or OSPI) compatible external memory devices, and it interfaces
with these devices to perform data I/O Operations. The OSPI_B peripheral does not support
addressable devices, so all connected memory devices must be connected to an individual chip-
select pin. Please note that this document will reference the xSPI protocol to which OSPI is a subset.
The OSPI_B peripheral is compatible with a variety of xSPI protocol operating modes.

Features

The OSPI_B driver has the following key features to support the xSPI device:

Perform data I/O Operation
Direct memory-mapped access to the xSPI device memory up to 256 MB.
Can be configured with xSPI devices on either of the 2 channels
Programming the xSPI device using combination write (up to 64 bytes)
Erasing the xSPI device
Sending device specific commands and reading back responses of up to 8 bytes
3 byte addressing
4 byte addressing
Auto-calibration
Decryption-on-the-fly

Additional build-time features:

Optional (build-time) DMAC support for data transmission when used with OSPI_B.
Optional (build-time) XiP support for entering/exiting XiP mode of the target device.
Optional (build-time) Data-strobe (DS) auto-calibration support for target devices using the
DS signal.
Optional (build-time) Decryption on the fly (DOTF)

Note
For OSPI_B, use of DMAC for data transmission is strongly recommended. Without the use of DMAC, due to the
high-speed hardware design of the OSPI peripheral, data transmission can be sensitive to timing variance, which
could cause software-based memory-mapped operations to fail unexpectedly.

Configuration
OSPI_B Flash:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,659 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Build Time Configurations for r_ospi_b

The following build time configurations are defined in fsp_cfg/r_ospi_b_cfg.h:

Configuration Options Default Description

Memory-mapping Support

Prefetch Function Enable
Disable

Enable Enable prefetch
function on memory-
mapped reads.

Combination Function Refer to the RA
Configuration tool for
available options.

64 Byte Enable combination
function on memory-
mapped writes.

XiP Support Enable
Disable

Disable Enable the use of XiP
enter and exit codes.

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DMAC Support Enable
Disable

Disable Enable DMAC support
for the OSPI module.

Autocalibration Support Enable
Disable

Disable Enable DS
autocalibration for dual-
data-rate modes.

DOTF Support Enable
(Protected
Mode)
Enable
(Compatibility
Mode)
Disable

Disable Enable DOTF support
for the OSPI module.

Configurations for Storage > OSPI Flash (r_ospi_b)

This module can be added to the Stacks tab via New Stack > Storage > OSPI Flash (r_ospi_b).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_ospi0 Module name.

Channel Channel should be 0 or
1

0 Specify the OSPI chip
select line to use.

Initial Protocol Mode SPI (1S-1S-1S)
DSPI (1S-2S-2S)
DSPI (2S-2S-2S)
QSPI (1S-4S-4S)
QSPI (4S-4S-4S)
QSPI
(4S-4D-4D)

SPI (1S-1S-1S) Select the initial
protocol mode of the
xSPI target device.
Please see the
documentation for
examples of changing
the protocol mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,660 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Dual data rate
OPI (8D-8D-8D)

Initial Address Bytes 3
4

4 Select the number of
address bytes.

Write Status Bit Must be an integer
between 0 and 7

0 Which bit contains the
write in progress status
returned from the
Write Status
Command.

Write Enable Bit Must be an integer
between 0 and 7

1 Which bit contains the
write enable status
returned from the
Write Enable
Command.

Sector Erase Size Must be an integer
greater than or equal
to 0

4096 The sector erase size.
Set Sector Erase Size
to 0 if Sector Erase is
not supported.

Block Erase Size Must be an integer
greater than or equal
to 0

262144 The block erase size.
Set Block Erase Size to
0 if Block Erase is not
supported.

Command Set Table Must be a vaild C
symbol

Specify the custom
command set table
(
ospi_b_xspi_command_
set_t[]) to use. If
provided, all properties
for High-speed Mode
will be ignored.

Command Set Table
Length

Length must be an
integer greater than or
equal to zero.

0 Length of the custom
command set table.

Defaults

Defaults > Command Definitions

Page Program
Command

Must be a 8-bit OSPI
Page Program
Command under SPI
Mode|Command
Definitions

0x12 Default command to
program a page.

Read Command Must be a 8-bit OSPI
Read Command under
SPI Mode|Command
Definitions

0x13 Default command to
read.

Write Enable Command Must be a 16-bit OSPI
Write Enable Command
under SPI

0x06 Default command to
enable write.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,661 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Mode|Command
Definitions

Status Command Must be a 16-bit OSPI
Status Command under
SPI Mode|Command
Definitions

0x05 Default command to
query the status of a
write or erase
command.

Defaults > Erase Command Definitions

Sector Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0x2121 Default command to
erase a sector. The
lowwer byte will be
used for 1-byte
commands. Set to 0 if
unused.

Block Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0xDCDC Default command to
erase a block. The
lowwer byte will be
used for 1-byte
commands. Set to 0 if
unused.

Chip Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0x6060 Default command to
erase the entire chip.
The lowwer byte will be
used for 1-byte
commands. Set to 0 if
unused.

Defaults > Dummy Cycles

Memory Read Dummy
Cycles

Must be an integer
between 0 and 31

0 Default memory read
dummy cycles

Status Read Dummy
Cycles

Must be an integer
between 0 and 31

0 Default status read
dummy cycles

High-speed Mode

High-speed Mode > Auto-Calibration

Data latching delay Must be a valid non-
negative integer with
maximum configurable
value of 0x1F

0x08 If auto-calibration
support is enabled, set
this to 0 to trigger auto-
calibration when
appropriate.

Auto-Calibration
Address

Must be a valid non-
negative integer with
maximum configurable
value of 0xFFFFFFFF

0x00 Set the address of the
read/write destination
to be performed for
auto-calibration.

High-speed Mode > Command Definitions

Page Program
Command

Must be a 16-bit OSPI
Page Program
Command under High-
speed Mode|Command

0x1212 The command to
program a page in OPI
mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,662 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Definitions

Dual Read Command Must be a 16-bit OSPI
Dual Read Command
under High-speed
Mode|Command
Definitions

0xEEEE The command to read
in High-speed mode
(8DTRD).

Write Enable Command Must be a 16-bit OSPI
Write Enable Command
under High-speed
Mode|Command
Definitions

0x0606 The command to
enable write in OPI
mode. Set to 0 to
ignore.

Status Command Must be a 16-bit OSPI
Status Command under
High-speed
Mode|Command
Definitions

0x0505 The command to query
the status of a write or
erase command in OPI
mode. Set to 0 to
ignore.

Sector Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0 The command to erase
a sector for high-speed
mode. Set to 0 if
unused.

Block Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0 The command to erase
a block for high-speed
mode. Set to 0 if
unused.

Chip Erase Command Must be an integer
between 0x01 and
0xFFFF, inclusive.

0 The command to erase
the entire chip for high-
speed mode. Set to 0 if
unused.

Protocol SPI (1S-1S-1S)
DSPI (1S-2S-2S)
DSPI (2S-2S-2S)
QSPI (1S-4S-4S)
QSPI (4S-4S-4S)
QSPI
(4S-4D-4D)
Dual data rate
OPI (8D-8D-8D)

Dual data rate OPI
(8D-8D-8D)

Select the High-Speed
xSPI protocol.

Command Length
Bytes

1
2

2 Command length in
bytes

Memory Read Dummy
Cycles

Must be an integer
between 0 and 31

20 Memory read dummy
cycles

Status Read Dummy
Cycles

Must be an integer
between 0 and 31

3 Status read dummy
cycles

Chip Select Timing Setting

Command Interval Refer to the RA
Configuration tool for
available options.

2 Command execution
interval setting in
OCTACLK units

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,663 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Pull-up Timing No Extension
1 Cycle

No Extension Signal pull-up timing
(CS asserting
extention) setting in
OCTACLK units

Pull-down Timing No Extension
1 Cycle

No Extension Signal pull-down timing
(CS negating extention)
setting in OCTACLK
units

XiP Mode

XiP Enter Code Must be an integer
between 0 and 255

0 XiP enter code.

XiP Exit Code Must be an integer
between 0 and 255

0 XiP exit code.

DOTF

Name Name must be a valid
C symbol

g_ospi_dotf DOTF Configuration
name.

AES Key Name must be a valid
C symbol

g_ospi_dotf_key Name of Key variable.

AES IV Name must be a valid
C symbol

g_ospi_dotf_iv Name of IV variable

AES Key Length MCU Specific Options Select AES key length

Key Format MCU Specific Options Select key format

Decryption start
address

Value must be an
integer between
0x80000000 and
0x9FFFFFFF

0x90000000 OSPI decryption start
address

Decryption end
address

Value must be an
integer between
0x80000000 and
0x9FFFFFFF

0x90001FFF OSPI decryption end
address

Note
The user is expected to modify the command definitions based on the xSPI chip and SPI communication mode. The
default mode is SPI mode and default erase commands are set for DOPI mode based on Infineon S28HS256.

Clock Configuration

PCLKA is the Octal-SPI bus interface, and PCLKB is used to set OSPI registers.

The signals to the xSPI target device are derived from OCTASPICLK. The OMSCLK signal is
OCTASPICLK / 2. Data can be output at the OCTASPICLK rate if protocol mode is set to a Dual Data
Rate mode (8D-8D-8D or 4S-4D-4D).

The PCLKB, PCLKA, and OCTASPICLK frequencies can be set on the Clocks tab of the RA
Configuration editor.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,664 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

The following pins are available to connect to an external OSPI device:

OMSCLK: OSPI clock output (OCTASPICLK / 2)
OMDQS: OSPI data strobe signal
OMCS0: OSPI device 0 select
OMCS1: OSPI device 1 select
OMSIO0: Data 0 I/O
OMSIO1: Data 1 I/O
OMSIO2: Data 2 I/O
OMSIO3: Data 3 I/O
OMSIO4: Data 4 I/O
OMSIO5: Data 5 I/O
OMSIO6: Data 6 I/O
OMSIO7: Data 7 I/O

Note
Data pins must be configured with IOPORT_CFG_DRIVE_HS_HIGH.
Chip Select pins should be configured with at least IOPORT_CFG_DRIVE_MEDIUM.

Usage Notes
Usage Notes for xSPI support

After R_OSPI_B_Open() completes successfully, the xSPI device contents are mapped to address
0x80000000 (bank CS0) or 0x90000000 (bank CS1) and can be read like on-chip flash. Bank CS0 is
only accessible from OSPI_B channel/slave 0 and likewise, bank CS1 is only accessible from OSPI_B
channel/slave 1. Bank CS0 and CS1 support up to 256 MB of address space each.

Auto-calibration

If support is enabled, auto-calibration procedures are triggered automatically when the 'Data
latching delay' field in the configurator properties is set to 0. The user application is responsible for
setting the appropriate preamble pattern before calling R_OSPI_B_Open() when using a data strobe
(DS) mode or changing the SPI protocol to a DS mode using the R_OSPI_B_SpiProtocolSet() API. The
appropriate preamble pattern can be written to the desired address using the R_OSPI_B_Write() API
while in simple SPI mode (recommended), or a non-DS mode. Ensure that the same address is
passed through the configurator. If the xSPI device is already in a DS mode, the preamble pattern
must be programmed using the debugger before calling R_OSPI_B_Open().

The preamble pattern is expected to be { 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x08, 0x00, 0x00,
0xF7, 0xFF, 0x00, 0x08, 0xF7, 0x00, 0xF7 }.

Chip Select Latencies

Chip select latencies can be set through the configurator. The default settings support SPI at
minimum latency. In case the driver is opened in SPI mode and will be switched to DOPI mode later
using R_OSPI_B_SpiProtocolSet(), please select latencies required for DOPI before calling
R_OSPI_B_Open().

XiP Support

OSPI_B supports eXecute in Place (XiP) modes of operation. This can be used for read-only memory-
mapped accesses to reduce overall read latency by skipping the command sequence in the xSPI
transaction. Separate XiP enter and exit codes may be specified for either attached target device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,665 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Upon calling R_OSPI_B_XipEnter(), the associated memory region for the target device is switched to
read-only mode and the enter code sent to the device. Calling R_OSPI_B_XipExit() will transmit the
exit code and transition the memory region back to read-write access.

Only one flash device should be used after entering XiP mode. Once entered, XiP codes will be
transmitted to all attached devices.

xSPI Commands

Command sets and erase commands may be specified individually for each supported protocol
mode. By default, the configurator only supports an alternative command set for DOPI (8D-8D-8D)
mode. The command sets cannot be changed during run-time. The appropriate command set will be
selected when changing protocol modes. If a command set is not found, it defaults to the SPI
command set.

If custom DOPI erase commands are not specified, ensure the erase commands are the appropriate
2-byte DOPI commands. The lower byte will be used for 1-byte command protocols.

DOTF Support

Decryption-On-The-Fly is configurable for OSPI Flash and is disabled from the build by default.

Supported Key Formats

When the Compatibility Mode stack is added for the crypto engine, the user can provide
either a wrapped or plaintext AES key to the DOTF module.
When the Protected Mode stack is used, only wrapped keys are supported.

When configuring the DOTF options, make sure that the key format is specified.

Note
For a detailed description of the Crypto Engine operating modes, refer to Application Note R11AN0498.

Using the DOTF feature requires first creating the encrypted blob on the PC and then configuring the
DOTF module with the appropriate parameters to allow decryption of the blob once it is programmed
into OSPI. Use the Security Key Management Tool
(https://www.renesas.com/us/en/software-tool/security-key-management-tool) to create the
encrypted blob. Example: To encrypt a 4096 byte area in a input srec file from 0x90000000 to
0x90000FFF using a 128 AES encryption key "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" and iv
"00000000000000000000000000000000" use SKMT with the following arguments: skmt.exe
/encdotf /keytype "AES-128" /enckey "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" /nonce
"00000000000000000000000000000000" /startaddr "90000000" /endaddr "90000FFF" /prg
"input.srec" /incplain /output "encrypted_output.srec"

The values for key, iv and decryption area start and end addresses that were used to create the blob
using SKMT must be set in the DOTF configuration in FSP.

Make sure that the Key and IV passed into DOTF configuration are 4 byte aligned. This can be done
using a compiler alignment attribute as shown below: uint8_t aes_key[] attribute((aligned(4))) = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };

Limitations

Developers should be aware of the following limitations when using the OSPI_B driver:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,666 / 5,560

https://www.renesas.com/us/en/software-tool/security-key-management-tool

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

OSPI_B

Problems may occur with using CS0/bank0. OSPI_B channel 1 with CS1/bank1 has been
tested and confirmed working.
Prefetch and combination support for memory-mapped access is applied globally to all
slave devices.
Combination writes are limited to a maximum of 64 bytes. The user should verify the write
has completed before attempting to write more bytes.
Writing to the memory-mapped regions with the CPU is restricted to 64-bit accesses with
8-byte destination alignments. This restriction is not applicable to other bus masters (e.g.
DTC or DMAC).
When using Arm LLVM ensure any read-only (const) data used with R_OSPI_B_Write() is
word (4-byte) aligned if the DMAC is not being used. If parameter checking is enabled, the
source pointer alignment will be verified for calls to R_OSPI_B_Write().
Take care to restrict concurrent accesses of the OSPI memory area. Collisions on the bus
can occur if other bus masters attempt to write to the OSPI memory area while another
master is reading the OSPI memory area.
When using 8D-8D-8D mode, care should be taken to access on even-aligned addresses.
Problems may occur if odd address alignment is used. This restriction applies to all bus
masters using OSPI_B.
DOTF: AES-192 is not supported when the Protected Mode stack is used.

Examples
OSPI Flash:

Basic Example

This is a basic example of minimal use of the OSPI in an application with OctaFlash.

#define OSPI_B_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[OSPI_B_EXAMPLE_DATA_LENGTH];

/* Place data in the .ospi_flash section to flash it during programming. */

const uint8_t g_src[OSPI_B_EXAMPLE_DATA_LENGTH] BSP_PLACE_IN_SECTION(".ospi_flash") =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* Place code in the .code_in_ospi section to flash it during programming. */

void r_ospi_b_example_function(void) BSP_PLACE_IN_SECTION(".code_in_ospi")

__attribute__((noinline));

void r_ospi_b_example_function (void)

{

 /* Add code here. */

}

void r_ospi_b_basic_example (void)

{

 /* Open the OSPI instancee */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,667 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 fsp_err_t err = R_OSPI_B_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* (Optional) Change SPI to DOPI mode */

 r_ospi_b_example_spi_to_dopi();

 /* After R_OSPI_B_Open() and any required device specific initialization, data can

be read directly from the OSPI flash. */

 memcpy(&g_dest[0], &g_src[0], OSPI_B_EXAMPLE_DATA_LENGTH);

 /* After R_OSPI_B_Open() and any required device specific initialization, functions

in the OSPI flash can be called. */

 r_ospi_b_example_function();

}

Reading Status Register Example (R_OSPI_B_DirectTransfer)

This is an example of using R_OSPI_B_DirectWrite followed by R_OSPI_B_DirectRead to send the read
status register command and read back the status register from the device.

#define OSPI_B_COMMAND_READ_STATUS_REGISTER (0x05U)

void r_ospi_b_direct_example (void)

{

 spi_flash_direct_transfer_t ospi_b_test_direct_transfer =

 {

 .command = OSPI_B_TEST_READ_STATUS_COMMAND_SPI_MODE,

 .address = 0U,

 .data = 0U,

 .command_length = 1U,

 .address_length = 0U,

 .data_length = 0U,

 .dummy_cycles = 0U

 };

 /* Open the OSPI instance. */

 fsp_err_t err = R_OSPI_B_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* Write Enable */

 err = R_OSPI_B_DirectTransfer(&g_ospi0_ctrl, &ospi_b_test_direct_transfer,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,668 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

 /* Read Status Register */

 ospi_b_test_direct_transfer.command =

OSPI_B_TEST_READ_STATUS_COMMAND_SPI_MODE;

 ospi_b_test_direct_transfer.data_length = 1U;

 err = R_OSPI_B_DirectTransfer(&g_ospi0_ctrl, &ospi_b_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 /* Check if Write Enable is set */

 if (OSPI_B_WEN_BIT_MASK != (ospi_b_test_direct_transfer.data & OSPI_B_WEN_BIT_MASK))

 {

 __BKPT(0);

 }

}

Auto-calibration Example (R_OSPI_B_DirectTransfer, R_OSPI_B_Write,
R_OSPI_B_SpiProtocolSet)

This is an example of using R_OSPI_B_SpiProtocolSet to change the operating mode from SPI to DOPI
and allow the driver to initiate auto-calibration.

#define OSPI_B_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES (16U)

#define OSPI_B_EXAMPLE_PREAMBLE_ADDRESS (0x90000000U) /* Device connected to CS1 */

const uint8_t g_preamble_bytes[OSPI_B_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES] =

{

 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x08, 0x00, 0x00, 0xF7, 0xFF, 0x00, 0x08,

0xF7, 0x00, 0xF7

};

void ospi_b_example_wait_until_wip (void)

{

 fsp_err_t err = FSP_SUCCESS;

 spi_flash_status_t status;

 status.write_in_progress = true;

 uint32_t timeout = UINT32_MAX;

 while ((status.write_in_progress) && (--timeout))

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,669 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 {

 err = R_OSPI_B_StatusGet(&g_ospi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 if (0 == timeout)

 {

 assert(FSP_SUCCESS == err);

 }

}

void r_ospi_b_auto_calibrate_example (void)

{

 /* Open the OSPI instance. */

 /* Set data_latch_delay_clocks to 0x0 to enable auto-calibration */

 fsp_err_t err = R_OSPI_B_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 uint8_t * preamble_pattern_addr = (uint8_t *) OSPI_B_EXAMPLE_PREAMBLE_ADDRESS;

 err = R_OSPI_B_Write(&g_ospi0_ctrl, g_preamble_bytes, preamble_pattern_addr,

OSPI_B_EXAMPLE_PREAMBLE_ADDRESS);

 assert(FSP_SUCCESS == err);

 /* Wait until write has been completed */

 ospi_b_example_wait_until_wip();

 /* Change from SPI to DOPI mode */

 r_ospi_b_example_spi_to_dopi();

}

Octaclk Update Example (R_OSPI_B_SpiProtocolSet)

This is an example of using R_BSP_OctaclkUpdate to change the Octal-SPI clock frequency during run
time. The OCTACLK frequency must be updated before calling the R_OSPI_B_SpiProtocolSet with
appropriate clock source and divider settings required to be set for the new SPI protocol mode.
Ensure that the clock source selected is started.

static void ospi_b_example_change_omclk (void)

{

 /* Ensure clock source (PLL2 in this example) is running before changing the OCTACLK

frequency */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,670 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 bsp_octaclk_settings_t octaclk_settings;

 octaclk_settings.source_clock = BSP_CLOCKS_CLOCK_PLL2;

 octaclk_settings.divider = BSP_CLOCKS_OCTACLK_DIV_2;

 R_BSP_OctaclkUpdate(&octaclk_settings);

}

Change Protocol Mode Example (R_OSPI_B_DirectTransfer, R_OSPI_B_SpiProtocolSet)

This is an example of using R_OSPI_B_DirectTransfer to change the attached flash device to a new
protocol mode during run time.

static void r_ospi_b_example_spi_to_dopi (void)

{

 r_ospi_b_write_enable_and_verify();

 spi_flash_direct_transfer_t ospi_b_test_direct_transfer =

 {

 .command = OSPI_B_COMMAND_WRITE_REGISTER_SPI_MODE,

 .address = OSPI_B_CFR5V_ADDRESS,

 .data = OSPI_B_DOPI_REGISTER_SETTING,

 .command_length = 1U,

 .address_length = 3U,

 .data_length = 1U,

 .dummy_cycles = 0U

 };

 /* The OctaFlash chip is in SPI mode. Change DOPI mode */

 fsp_err_t err = R_OSPI_B_DirectTransfer(&g_ospi0_ctrl,

 &ospi_b_test_direct_transfer,

 SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

 /* Change OMCLK appropriately. */

 ospi_b_example_change_omclk();

 /* Transition the OSPI peripheral to DOPI mode. This will initiate auto calibration

as MDTR is 0 */

 err = R_OSPI_B_SpiProtocolSet(&g_ospi0_ctrl, SPI_FLASH_PROTOCOL_DOPI);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,671 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 /* Verify that the chip is in requested OPI mode */

 ospi_b_test_direct_transfer.command = OSPI_B_COMMAND_READ_REGISTER_SPI_MODE;

 ospi_b_test_direct_transfer.dummy_cycles = 3U;

 err = R_OSPI_B_DirectTransfer(&g_ospi0_ctrl, &ospi_b_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 if (OSPI_B_DOPI_REGISTER_SETTING != ospi_b_test_direct_transfer.data)

 {

 __BKPT(0);

 }

}

Using a Custom xSPI Command Set Example

This is an example of using custom command sets for 8D-8D-8D and 4S-4S-4S protocol modes.

spi_flash_cfg_t g_ospi0_cfg_w_table;

ospi_b_extended_cfg_t g_ospi0_ext_w_table;

/* Custom two-byte erase commands. */

spi_flash_erase_command_t g_2B_erase_commands[] =

{

 {.command = OSPI_B_TEST_BLOCK_ERASE_COMMAND_DOPI_MODE, .size =

OSPI_B_TEST_BLOCK_ERASE_SIZE },

 {.command = OSPI_B_TEST_SECTOR_ERASE_COMMAND_DOPI_MODE, .size =

OSPI_B_TEST_SECTOR_ERASE_SIZE },

 {.command = OSPI_B_TEST_CHIP_ERASE_COMMAND_DOPI_MODE, .size =

SPI_FLASH_ERASE_SIZE_CHIP_ERASE},

};

/* Custom command sets. */

ospi_b_xspi_command_set_t g_command_sets[] =

{

 /* 8D-8D-8D example with inverted lower command byte. */

 {

 .protocol = SPI_FLASH_PROTOCOL_8D_8D_8D,

 .command_bytes = OSPI_B_COMMAND_BYTES_2,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,672 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 .read_command = OSPI_B_TEST_READ_COMMAND_DOPI_MODE,

 .page_program_command = OSPI_B_TEST_PROGRAM_COMMAND_DOPI_MODE,

 .write_enable_command = OSPI_B_TEST_WRITE_ENABLE_COMMAND_DOPI_MODE,

 .status_command = OSPI_B_TEST_STATUS_COMMAND_DOPI_MODE,

 .read_dummy_cycles = 20U,

 .program_dummy_cycles = 0U,

 .status_dummy_cycles = 3U,

 .erase_command_list_length = sizeof(g_2B_erase_commands) / sizeof

(g_2B_erase_commands[0]),

 .p_erase_command_list = g_2B_erase_commands,

 },

 /* 4S-4S-4S example with different .read_command and dummy cycles. */

 {

 .protocol = SPI_FLASH_PROTOCOL_4S_4S_4S,

 .command_bytes = OSPI_B_COMMAND_BYTES_1,

 .read_command = OSPI_B_TEST_READ_COMMAND_QSPI_MODE,

 .page_program_command = OSPI_B_TEST_PROGRAM_COMMAND_QSPI_MODE,

 .write_enable_command = OSPI_B_TEST_WRITE_ENABLE_COMMAND_QSPI_MODE,

 .status_command = OSPI_B_TEST_STATUS_COMMAND_QSPI_MODE,

 .read_dummy_cycles = 10U,

 .program_dummy_cycles = 0U,

 .status_dummy_cycles = 1U,

 .erase_command_list_length = 0U,

 .p_erase_command_list = NULL, // Use the common erase definitions.

 },

};

void r_ospi_command_table_example (void)

{

 /* Open the OSPI instance.

 * Specify `g_command_sets` using the configurator. */

 fsp_err_t err = R_OSPI_B_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* Change SPI to DOPI mode */

 r_ospi_b_example_spi_to_dopi();

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,673 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

 /* After R_OSPI_B_Open() and any required device specific initialization, data can

be read directly from the OSPI flash. */

 memcpy(&g_dest[0], &g_src[0], OSPI_B_EXAMPLE_DATA_LENGTH);

 /* After R_OSPI_B_Open() and any required device specific initialization, functions

in the OSPI flash can be called. */

 r_ospi_b_example_function();

 /* Change SPI to QSPI mode */

 r_ospi_b_example_spi_to_qspi();

 /* Read data from an external device, this time in QSPI mode. */

 memcpy(&g_dest[0], &g_src[0], OSPI_B_EXAMPLE_DATA_LENGTH);

 /* Run the example function again in QSPI mode. */

 r_ospi_b_example_function();

}

OSPI Data and IAR

When using the IAR compiler, OSPI data must be const qualified to be downloaded by the debugger.

Data Structures

struct ospi_b_timing_setting_t

struct ospi_b_xspi_command_set_t

struct ospi_b_extended_cfg_t

struct ospi_b_instance_ctrl_t

Enumerations

enum ospi_b_device_number_t

enum ospi_b_command_bytes_t

enum ospi_b_command_interval_clocks_t

enum ospi_b_command_cs_pullup_clocks_t

enum ospi_b_command_cs_pulldown_clocks_t

enum ospi_b_prefetch_function_t

enum ospi_b_combination_function_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,674 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

Data Structure Documentation

◆ ospi_b_timing_setting_t

struct ospi_b_timing_setting_t

Memory mapped timing

Data Fields

ospi_b_command_interval_clock
s_t

command_to_command_interva
l

Interval between 2 consecutive
commands.

ospi_b_command_cs_pullup_clo
cks_t

cs_pullup_lag Duration to de-assert CS line
after the last command.

ospi_b_command_cs_pulldown_
clocks_t

cs_pulldown_lead Duration to assert CS line
before the first command.

◆ ospi_b_xspi_command_set_t

struct ospi_b_xspi_command_set_t

Command set used for a protocol mode other than normal (1S-1S-1S) SPI.

Data Fields

spi_flash_protocol_t protocol Protocol mode associated with
this command set.

ospi_b_command_bytes_t command_bytes Number of command bytes for
each command code.

uint16_t read_command Read command.

uint16_t page_program_command Page program/write command.

uint16_t write_enable_command Command to enable write or
erase, set to 0x00 to ignore.

uint16_t status_command Command to read the write
status, set to 0x00 to ignore.

uint8_t read_dummy_cycles Dummy cycles to be inserted
for read commands.

uint8_t program_dummy_cycles Dummy cycles to be inserted
for page program commands.

uint8_t status_dummy_cycles Dummy cycles to be inserted
for status read commands.

uint8_t erase_command_list_length Length of erase command list.

spi_flash_erase_command_t
const *

p_erase_command_list List of all erase commands and
associated sizes.

◆ ospi_b_extended_cfg_t

struct ospi_b_extended_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,675 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

OSPI_B Extended configuration.

Data Fields

ospi_b_device_number_t channel Device number to be used for
memory device.

ospi_b_timing_setting_t const * p_timing_settings Memory-mapped timing
settings.

ospi_b_xspi_command_set_t
const *

p_xspi_command_set_list Additional protocol command
sets; if additional protocol
commands set are not used set
this to NULL.

uint8_t xspi_command_set_list_length Number of additional protocol
command set defined.

uint8_t * p_autocalibration_preamble_pat
tern_addr

OctaFlash memory address
holding the preamble pattern.

uint8_t data_latch_delay_clocks Specify delay between OM_DQS
and OM_DQS Strobe. Set to 0 to
auto-calibrate. Typical value is
0x80.

transfer_instance_t const * p_lower_lvl_transfer DMA Transfer instance used for
data transmission.

uint8_t read_dummy_cycles Dummy cycles to be inserted
for read commands.

uint8_t program_dummy_cycles Dummy cycles to be inserted
for page program commands.

uint8_t status_dummy_cycles Dummy cycles to be inserted
for status read commands.

◆ ospi_b_instance_ctrl_t

struct ospi_b_instance_ctrl_t

Instance control block. DO NOT INITIALIZE. Initialization occurs when spi_flash_api_t::open is called

Enumeration Type Documentation

◆ ospi_b_device_number_t

enum ospi_b_device_number_t

OSPI Flash chip select

Enumerator

OSPI_B_DEVICE_NUMBER_0 Device connected to Chip-Select 0.

OSPI_B_DEVICE_NUMBER_1 Device connected to Chip-Select 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,676 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ ospi_b_command_bytes_t

enum ospi_b_command_bytes_t

OSPI flash number of command code bytes.

Enumerator

OSPI_B_COMMAND_BYTES_1 Command codes are 1 byte long.

OSPI_B_COMMAND_BYTES_2 Command codes are 2 bytes long.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,677 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ ospi_b_command_interval_clocks_t

enum ospi_b_command_interval_clocks_t

OSPI frame to frame interval

Enumerator

OSPI_B_COMMAND_INTERVAL_CLOCKS_1 1 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_2 2 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_3 3 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_4 4 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_5 5 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_6 6 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_7 7 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_8 8 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_9 9 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_10 10 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_11 11 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_12 12 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_13 13 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_14 14 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_15 15 interval clocks

OSPI_B_COMMAND_INTERVAL_CLOCKS_16 16 interval clocks

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,678 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ ospi_b_command_cs_pullup_clocks_t

enum ospi_b_command_cs_pullup_clocks_t

OSPI chip select de-assertion duration

Enumerator

OSPI_B_COMMAND_CS_PULLUP_CLOCKS_NO_EXT
ENSION

CS asserting No extension.

OSPI_B_COMMAND_CS_PULLUP_CLOCKS_1 CS asserting Extend 1 cycle.

◆ ospi_b_command_cs_pulldown_clocks_t

enum ospi_b_command_cs_pulldown_clocks_t

OSPI chip select assertion duration

Enumerator

OSPI_B_COMMAND_CS_PULLDOWN_CLOCKS_NO_
EXTENSION

CS negating No extension.

OSPI_B_COMMAND_CS_PULLDOWN_CLOCKS_1 CS negating Extend 1 cycle.

◆ ospi_b_prefetch_function_t

enum ospi_b_prefetch_function_t

Prefetch function settings

Enumerator

OSPI_B_PREFETCH_FUNCTION_DISABLE Prefetch function disable.

OSPI_B_PREFETCH_FUNCTION_ENABLE Prefetch function enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,679 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ ospi_b_combination_function_t

enum ospi_b_combination_function_t

Combination function settings

Enumerator

OSPI_B_COMBINATION_FUNCTION_DISABLE Combination function disable.

OSPI_B_COMBINATION_FUNCTION_4BYTE Combine up to 4 bytes.

OSPI_B_COMBINATION_FUNCTION_8BYTE Combine up to 8 bytes.

OSPI_B_COMBINATION_FUNCTION_12BYTE Combine up to 12 bytes.

OSPI_B_COMBINATION_FUNCTION_16BYTE Combine up to 16 bytes.

OSPI_B_COMBINATION_FUNCTION_20BYTE Combine up to 20 bytes.

OSPI_B_COMBINATION_FUNCTION_24BYTE Combine up to 24 bytes.

OSPI_B_COMBINATION_FUNCTION_28BYTE Combine up to 28 bytes.

OSPI_B_COMBINATION_FUNCTION_32BYTE Combine up to 32 bytes.

OSPI_B_COMBINATION_FUNCTION_36BYTE Combine up to 36 bytes.

OSPI_B_COMBINATION_FUNCTION_40BYTE Combine up to 40 bytes.

OSPI_B_COMBINATION_FUNCTION_44BYTE Combine up to 44 bytes.

OSPI_B_COMBINATION_FUNCTION_48BYTE Combine up to 48 bytes.

OSPI_B_COMBINATION_FUNCTION_52BYTE Combine up to 52 bytes.

OSPI_B_COMBINATION_FUNCTION_56BYTE Combine up to 56 bytes.

OSPI_B_COMBINATION_FUNCTION_60BYTE Combine up to 60 bytes.

OSPI_B_COMBINATION_FUNCTION_64BYTE Combine up to 64 bytes.

OSPI_B_COMBINATION_FUNCTION_2BYTE Combine up to 2 bytes.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,680 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ R_OSPI_B_Open()

fsp_err_t R_OSPI_B_Open (spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the xSPI device. After the driver is open, the xSPI device can be accessed like internal flash
memory.

Implements spi_flash_api_t::open.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Driver has already been opened with the
same p_ctrl.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

◆ R_OSPI_B_DirectWrite()

fsp_err_t R_OSPI_B_DirectWrite (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint32_t const
bytes, bool const read_after_write)

Writes raw data directly to the OctaFlash. API not supported. Use R_OSPI_B_DirectTransfer

Implements spi_flash_api_t::directWrite.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

◆ R_OSPI_B_DirectRead()

fsp_err_t R_OSPI_B_DirectRead (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Reads raw data directly from the OctaFlash. API not supported. Use R_OSPI_B_DirectTransfer.

Implements spi_flash_api_t::directRead.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,681 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ R_OSPI_B_DirectTransfer()

fsp_err_t R_OSPI_B_DirectTransfer (spi_flash_ctrl_t * p_ctrl, spi_flash_direct_transfer_t *const
p_transfer, spi_flash_direct_transfer_dir_t direction)

Read/Write raw data directly with the OctaFlash.

Implements spi_flash_api_t::directTransfer.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_B_XipEnter()

fsp_err_t R_OSPI_B_XipEnter (spi_flash_ctrl_t * p_ctrl)

Enters XIP (execute in place) mode.

Implements spi_flash_api_t::xipEnter.

Return values
FSP_SUCCESS XiP mode was entered successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED XiP support is not enabled.

◆ R_OSPI_B_XipExit()

fsp_err_t R_OSPI_B_XipExit (spi_flash_ctrl_t * p_ctrl)

Exits XIP (execute in place) mode.

Implements spi_flash_api_t::xipExit.

Return values
FSP_SUCCESS XiP mode was entered successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED XiP support is not enabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,682 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ R_OSPI_B_Write()

fsp_err_t R_OSPI_B_Write (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint8_t *const
p_dest, uint32_t byte_count)

Program a page of data to the flash.

Implements spi_flash_api_t::write.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION p_instance_ctrl, p_dest or p_src is NULL, or
byte_count crosses a page boundary.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_SIZE Insufficient space remaining in page or write
length is not a multiple of CPU access size
when not using the DMAC.

FSP_ERR_DEVICE_BUSY Another Write/Erase transaction is in
progress.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_INVALID_ADDRESS Destination or source is not aligned to CPU
access alignment when not using the DMAC.

◆ R_OSPI_B_Erase()

fsp_err_t R_OSPI_B_Erase (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a block or sector of flash. The byte_count must exactly match one of the erase sizes defined
in spi_flash_cfg_t. For chip erase, byte_count must be SPI_FLASH_ERASE_SIZE_CHIP_ERASE.

Implements spi_flash_api_t::erase.

Return values
FSP_SUCCESS The command to erase the flash was

executed successfully.

FSP_ERR_ASSERTION p_instance_ctrl or p_device_address is NULL,
byte_count doesn't match an erase size
defined in spi_flash_cfg_t, or byte_count is
set to 0.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_DEVICE_BUSY The device is busy.

FSP_ERR_WRITE_FAILED Write operation failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,683 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ R_OSPI_B_StatusGet()

fsp_err_t R_OSPI_B_StatusGet (spi_flash_ctrl_t * p_ctrl, spi_flash_status_t *const p_status)

Gets the write or erase status of the flash.

Implements spi_flash_api_t::statusGet.

Return values
FSP_SUCCESS The write status is in p_status.

FSP_ERR_ASSERTION p_instance_ctrl or p_status is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_B_BankSet()

fsp_err_t R_OSPI_B_BankSet (spi_flash_ctrl_t * p_ctrl, uint32_t bank)

Selects the bank to access. Use ospi_b_bank_select_t as the bank value.

Implements spi_flash_api_t::bankSet.

Return values
FSP_ERR_UNSUPPORTED This function is unsupported.

◆ R_OSPI_B_SpiProtocolSet()

fsp_err_t R_OSPI_B_SpiProtocolSet (spi_flash_ctrl_t * p_ctrl, spi_flash_protocol_t spi_protocol)

Sets the SPI protocol.

Implements spi_flash_api_t::spiProtocolSet.

Return values
FSP_SUCCESS SPI protocol updated on MPU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,684 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > OSPI Flash (r_ospi_b)

◆ R_OSPI_B_Close()

fsp_err_t R_OSPI_B_Close (spi_flash_ctrl_t * p_ctrl)

Close the OSPI driver module.

Implements spi_flash_api_t::close.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_B_AutoCalibrate()

fsp_err_t R_OSPI_B_AutoCalibrate (spi_flash_ctrl_t *const p_ctrl)

AutoCalibrate the OSPI_B DS signal.

Implements spi_flash_api_t::autoCalibrate.

Return values
FSP_SUCCESS Autocalibration completed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_UNSUPPORTED Autocalibration support is not enabled.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

5.2.17.16 QSPI (r_qspi)
Modules » Storage

Functions

fsp_err_t R_QSPI_Open (spi_flash_ctrl_t *p_ctrl, spi_flash_cfg_t const *const
p_cfg)

fsp_err_t R_QSPI_DirectWrite (spi_flash_ctrl_t *p_ctrl, uint8_t const *const
p_src, uint32_t const bytes, bool const read_after_write)

fsp_err_t R_QSPI_DirectRead (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,685 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

fsp_err_t R_QSPI_DirectTransfer (spi_flash_ctrl_t *p_ctrl,
spi_flash_direct_transfer_t *const p_transfer,
spi_flash_direct_transfer_dir_t direction)

fsp_err_t R_QSPI_XipEnter (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_XipExit (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_Write (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t R_QSPI_Erase (spi_flash_ctrl_t *p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t R_QSPI_StatusGet (spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const
p_status)

fsp_err_t R_QSPI_BankSet (spi_flash_ctrl_t *p_ctrl, uint32_t bank)

fsp_err_t R_QSPI_SpiProtocolSet (spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t
spi_protocol)

fsp_err_t R_QSPI_AutoCalibrate (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_Close (spi_flash_ctrl_t *p_ctrl)

Detailed Description

Driver for the QSPI peripheral on RA MCUs. This module implements the SPI Flash Interface.

Overview
Features

The QSPI driver has the following key features:

Memory mapped read access to the QSPI flash
Programming the QSPI flash device
Erasing the QSPI flash device
Sending device specific commands and reading back responses
Entering and exiting QPI mode
Entering and exiting XIP mode
3 or 4 byte addressing

Configuration
Build Time Configurations for r_qspi

The following build time configurations are defined in driver/r_qspi_cfg.h:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,686 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support Multiple Line
Program in Extended
SPI Mode

Enabled
Disabled

Disabled If selected code for
programming on
multiple lines in
extended SPI mode is
included in the build.

Configurations for Storage > QSPI (r_qspi)

This module can be added to the Stacks tab via New Stack > Storage > QSPI (r_qspi).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_qspi0 Module name.

SPI Protocol Extended SPI
QPI

Extended SPI Select the initial SPI
protocol. SPI protocol
can be changed in
R_QSPI_Direct().

Address Bytes 3
4
4 with 4-byte
read code

3 Select the number of
address bytes.
Selecting '4 with 4-byte
read code' converts the
default read code
determined in Read
Mode to the 4-byte
version. If 4-byte mode
is selected without
using 4-byte
commands, the
application must issue
the EN4B command
using R_QSPI_Direct().

Read Mode Standard Read
Fast Read
Fast Read Dual
Output
Fast Read Dual
I/O
Fast Read Quad
Output
Fast Read Quad
I/O

Fast Read Quad I/O Select the read mode
for memory mapped
access.

Dummy Clocks for Fast
Read

Refer to the RA
Configuration tool for
available options.

Default Select the number of
dummy clocks for fast
read operations.
Default is 6 clocks for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,687 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

Fast Read Quad I/O, 4
clocks for Fast Read
Dual I/O, and 8 clocks
for other fast read
instructions including
Fast Read Quad
Output, Fast Read Dual
Output, and Fast Read

Page Size Bytes Must be an integer
greater than 0

256 The maximum number
of bytes allowed for a
single write.

Command Definitions

Page Program
Command

Must be an 8-bit QSPI
Page Program
Command under
Command Definitions

0x02 The command to
program a page. If
'Support Multiple Line
Program in Extended
SPI Mode' is Enabled,
this command must
use the same number
of data lines as the
selected read mode.

Page Program Address
Lines

1
2
4

1 Select the number of
lines to use for the
address bytes during
write operations. This
can be determined by
referencing the
datasheet for the
external QSPI. It should
either be 1 or match
the number of data
lines used for memory
mapped fast read
operations.

Write Enable Command Must be an 8-bit QSPI
Write Enable Command
under Command
Definitions

0x06 The command to
enable write.

Status Command Must be an 8-bit QSPI
Status Command under
Command Definitions

0x05 The command to query
the status of a write or
erase command.

Write Status Bit Must be an integer
between 0 and 7

0 Which bit contains the
write in progress status
returned from the
Write Status
Command.

Sector Erase Command Must be an 8-bit QSPI
Sector Erase Command
under Command
Definitions

0x20 The command to erase
a sector. Set Sector
Erase Size to 0 if
unused.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,688 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

Sector Erase Size Must be an integer
greater than or equal
to 0

4096 The sector erase size.
Set Sector Erase Size
to 0 if Sector Erase is
not supported.

Block Erase Command Must be an 8-bit QSPI
Block Erase Command
under Command
Definitions

0xD8 The command to erase
a block. Set Block
Erase Size to 0 if
unused.

Block Erase Size Must be an integer
greater than or equal
to 0

65536 The block erase size.
Set Block Erase Size to
0 if Block Erase is not
supported.

Block Erase 32KB
Command

Must be an 8-bit QSPI
Block Erase 32KB
Command under
Command Definitions

0x52 The command to erase
a 32KB block. Set Block
Erase Size to 0 if
unused.

Block Erase 32KB Size Must be an integer
greater than or equal
to 0

32768 The block erase 32KB
size. Set Block Erase
32KB Size to 0 if Block
Erase 32KB is not
supported.

Chip Erase Command Must be an 8-bit QSPI
Chip Erase Command
under Command
Definitions

0xC7 The command to erase
the entire chip. Set
Chip Erase Command
to 0 if unused.

XIP Enter M7-M0 Must be an 8-bit QSPI
XIP Enter M7-M0
command under
Command Definitions

0x20 How to set M7-M0 to
enter XIP mode.

XIP Exit M7-M0 Must be an 8-bit QSPI
XIP Exit M7-M0
command under
Command Definitions

0xFF How to set M7-M0 exit
XIP mode.

Bus Timing

QSPKCLK Divisor Refer to the RA
Configuration tool for
available options.

2 Select the divisor to
apply to PCLK to get
QSPCLK.

Minimum QSSL
Deselect Cycles

Refer to the RA
Configuration tool for
available options.

4 QSPCLK Define the minimum
number of QSPCLK
cycles for QSSL to
remain high beween
operations.

Clock Configuration

The QSPI clock is derived from PCLKA.

Pin Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,689 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

The following pins are available to connect to an external QSPI device:

QSPCLK: QSPI clock output
QSSL: QSPI slave select
QIO0: Data 0 I/O
QIO1: Data 1 I/O
QIO2: Data 2 I/O
QIO3: Data 3 I/O

Note
It is recommended to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
QSPI Memory Mapped Access

After R_QSPI_Open() completes successfully, the QSPI flash device contents are mapped to address
0x60000000 and can be read like on-chip flash.

Limitations

Developers should be aware of the following limitations when using the QSPI driver:

Only P305-P310 are currently supported by the J-Link driver to flash the QSPI.
The default J-Link downloader requires the device to be in extended SPI mode (not QPI
mode).

Examples
Basic Example

This is a basic example of minimal use of the QSPI in an application.

#define QSPI_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[QSPI_EXAMPLE_DATA_LENGTH];

/* Place data in the .qspi_flash section to flash it during programming. */

const uint8_t g_src[QSPI_EXAMPLE_DATA_LENGTH] BSP_PLACE_IN_SECTION(".qspi_flash") =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* Place code in the .code_in_qspi section to flash it during programming. */

void r_qspi_example_function(void) BSP_PLACE_IN_SECTION(".code_in_qspi")

__attribute__((noinline));

void r_qspi_example_function (void)

{

 /* Add code here. */

}

void r_qspi_basic_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,690 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

{

 /* Open the QSPI instance. */

 fsp_err_t err = R_QSPI_Open(&g_qspi0_ctrl, &g_qspi0_cfg);

 assert(FSP_SUCCESS == err);

 /* (Optional) Send device specific initialization commands. */

 r_qspi_example_init();

 /* After R_QSPI_Open() and any required device specific intiialization, data can be

read directly from the QSPI flash. */

 memcpy(&g_dest[0], &g_src[0], QSPI_EXAMPLE_DATA_LENGTH);

 /* After R_QSPI_Open() and any required device specific intiialization, functions in

the QSPI flash can be called. */

 r_qspi_example_function();

}

Initialization Command Structure Example

This is an example of the types of commands that can be used to initialize the QSPI.

#define QSPI_COMMAND_WRITE_ENABLE (0x06U)

#define QSPI_COMMAND_WRITE_STATUS_REGISTER (0x01U)

#define QSPI_COMMAND_ENTER_QPI_MODE (0x38U)

#define QSPI_EXAMPLE_STATUS_REGISTER_1 (0x40)

#define QSPI_EXAMPLE_STATUS_REGISTER_2 (0x00)

static void r_qspi_example_init (void)

{

 /* Write status registers */

 /* Write one byte to enable writing to the status register, then deassert QSSL. */

 uint8_t data[4];

 fsp_err_t err;

 data[0] = QSPI_COMMAND_WRITE_ENABLE;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, false);

 assert(FSP_SUCCESS == err);

 /* Write 3 bytes, including the write status register command followed by values for

both status registers. In the

 * status registers, set QE to 1 and other bits to their default setting. After all

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,691 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

data is written, deassert the

 * QSSL line. */

 data[0] = QSPI_COMMAND_WRITE_STATUS_REGISTER;

 data[1] = QSPI_EXAMPLE_STATUS_REGISTER_1;

 data[2] = QSPI_EXAMPLE_STATUS_REGISTER_2;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 3, false);

 assert(FSP_SUCCESS == err);

 /* Wait for status register to update. */

 spi_flash_status_t status;

 do

 {

 (void) R_QSPI_StatusGet(&g_qspi0_ctrl, &status);

 } while (true == status.write_in_progress);

 /* Write one byte to enter QSPI mode, then deassert QSSL. After entering QPI mode on

the device, change the SPI

 * protocol to QPI mode on the MCU peripheral. */

 data[0] = QSPI_COMMAND_ENTER_QPI_MODE;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, false);

 assert(FSP_SUCCESS == err);

 (void) R_QSPI_SpiProtocolSet(&g_qspi0_ctrl, SPI_FLASH_PROTOCOL_QPI);

}

Reading Status Register Example (R_QSPI_DirectWrite, R_QSPI_DirectRead)

This is an example of using R_QSPI_DirectWrite followed by R_QSPI_DirectRead to send the read
status register command and read back the status register from the device.

#define QSPI_COMMAND_READ_STATUS_REGISTER (0x05U)

void r_qspi_direct_example (void)

{

 /* Read a status register. */

 /* Write one byte to read the status register. Do not deassert QSSL. */

 uint8_t data;

 fsp_err_t err;

 data = QSPI_COMMAND_READ_STATUS_REGISTER;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,692 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data, 1, true);

 assert(FSP_SUCCESS == err);

 /* Read one byte. After all data is read, deassert the QSSL line. */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &data, 1);

 assert(FSP_SUCCESS == err);

 /* Status register contents are available in variable 'data'. */

}

Querying Device Size Example (R_QSPI_DirectWrite, R_QSPI_DirectRead)

This is an example of using R_QSPI_DirectWrite followed by R_QSPI_DirectRead to query the device
size.

#define QSPI_EXAMPLE_COMMAND_READ_ID (0x9F)

#define QSPI_EXAMPLE_COMMAND_READ_SFDP (0x5A)

void r_qspi_size_example (void)

{

 /* Many QSPI devices support more than one way to query the device size. Consult the

datasheet for your

 * QSPI device to determine which of these methods are supported (if any). */

 uint32_t device_size_bytes;

 fsp_err_t err;

#ifdef QSPI_EXAMPLE_COMMAND_READ_ID

 /* This example shows how to get the device size by reading the manufacturer ID. */

 uint8_t data[4];

 data[0] = QSPI_EXAMPLE_COMMAND_READ_ID;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, true);

 assert(FSP_SUCCESS == err);

 /* Read 3 bytes. The third byte often represents the size of the QSPI, where the

size of the QSPI = 2 ^ N. */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &data[0], 3);

 assert(FSP_SUCCESS == err);

 device_size_bytes = 1U << data[2];

 FSP_PARAMETER_NOT_USED(device_size_bytes);

#endif

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,693 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

#ifdef QSPI_EXAMPLE_COMMAND_READ_SFDP

 /* Read the JEDEC SFDP header to locate the JEDEC flash parameters table. Reference

JESD216 "Serial Flash

 * Discoverable Parameters (SFDP)". */

 /* Send the standard 0x5A command followed by 3 address bytes (SFDP header is at

address 0). */

 uint8_t buffer[16];

 memset(&buffer[0], 0, sizeof(buffer));

 buffer[0] = QSPI_EXAMPLE_COMMAND_READ_SFDP;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &buffer[0], 4, true);

 assert(FSP_SUCCESS == err);

 /* Read out 16 bytes (1 dummy byte followed by 15 data bytes). */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &buffer[0], 16);

 assert(FSP_SUCCESS == err);

 /* Read the JEDEC flash parameters to locate the memory size. */

 /* Send the standard 0x5A command followed by 3 address bytes (located in big endian

order at offset 0xC-0xE).

 * These bytes are accessed at 0xD-0xF because the first byte read is a dummy byte.

*/

 buffer[0] = QSPI_EXAMPLE_COMMAND_READ_SFDP;

 buffer[1] = buffer[0xF];

 buffer[2] = buffer[0xE];

 buffer[3] = buffer[0xD];

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &buffer[0], 4, true);

 assert(FSP_SUCCESS == err);

 /* Read out 9 bytes (1 dummy byte followed by 8 data bytes). */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &buffer[0], 9);

 assert(FSP_SUCCESS == err);

 /* Read the memory density (located in big endian order at offset 0x4-0x7). These

bytes are accessed at 0x5-0x8

 * because the first byte read is a dummy byte. */

 uint32_t memory_density = (uint32_t) ((buffer[8] << 24) | (buffer[7] << 16) |

(buffer[6] << 8) | buffer[5]);

 if ((1U << 31) & memory_density)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,694 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

 {

 /* For densities 4 gigabits and above, bit-31 is set to 1b. The field 30:0 defines

'N' where the density is

 * computed as 2^N bits (N must be >= 32). This code subtracts 3 from N to divide by

8 to get the size in

 * bytes instead of bits. */

 device_size_bytes = 1U << ((memory_density & ~(1U << 31)) - 3U);

 }

 else

 {

 /* For densities 2 gigabits or less, bit-31 is set to 0b. The field 30:0 defines the

size in bits. This

 * code divides the memory density by 8 to get the size in bytes instead of bits. */

 device_size_bytes = (memory_density / 8) + 1;

 }

 FSP_PARAMETER_NOT_USED(device_size_bytes);

#endif

}

Data Structures

struct qspi_instance_ctrl_t

Enumerations

enum qspi_qssl_min_high_level_t

enum qspi_qspclk_div_t

Data Structure Documentation

◆ qspi_instance_ctrl_t

struct qspi_instance_ctrl_t

Instance control block. DO NOT INITIALIZE. Initialization occurs when spi_flash_api_t::open is called

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,695 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ qspi_qssl_min_high_level_t

enum qspi_qssl_min_high_level_t

Enumerator

QSPI_QSSL_MIN_HIGH_LEVEL_1_QSPCLK QSSL deselected for at least 1 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_2_QSPCLK QSSL deselected for at least 2 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_3_QSPCLK QSSL deselected for at least 3 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_4_QSPCLK QSSL deselected for at least 4 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_5_QSPCLK QSSL deselected for at least 5 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_6_QSPCLK QSSL deselected for at least 6 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_7_QSPCLK QSSL deselected for at least 7 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_8_QSPCLK QSSL deselected for at least 8 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_9_QSPCLK QSSL deselected for at least 9 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_10_QSPCLK QSSL deselected for at least 10 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_11_QSPCLK QSSL deselected for at least 11 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_12_QSPCLK QSSL deselected for at least 12 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_13_QSPCLK QSSL deselected for at least 13 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_14_QSPCLK QSSL deselected for at least 14 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_15_QSPCLK QSSL deselected for at least 15 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_16_QSPCLK QSSL deselected for at least 16 QSPCLK.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,696 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ qspi_qspclk_div_t

enum qspi_qspclk_div_t

Enumerator

QSPI_QSPCLK_DIV_2 QSPCLK = PCLK / 2.

QSPI_QSPCLK_DIV_3 QSPCLK = PCLK / 3.

QSPI_QSPCLK_DIV_4 QSPCLK = PCLK / 4.

QSPI_QSPCLK_DIV_5 QSPCLK = PCLK / 5.

QSPI_QSPCLK_DIV_6 QSPCLK = PCLK / 6.

QSPI_QSPCLK_DIV_7 QSPCLK = PCLK / 7.

QSPI_QSPCLK_DIV_8 QSPCLK = PCLK / 8.

QSPI_QSPCLK_DIV_9 QSPCLK = PCLK / 9.

QSPI_QSPCLK_DIV_10 QSPCLK = PCLK / 10.

QSPI_QSPCLK_DIV_11 QSPCLK = PCLK / 11.

QSPI_QSPCLK_DIV_12 QSPCLK = PCLK / 12.

QSPI_QSPCLK_DIV_13 QSPCLK = PCLK / 13.

QSPI_QSPCLK_DIV_14 QSPCLK = PCLK / 14.

QSPI_QSPCLK_DIV_15 QSPCLK = PCLK / 15.

QSPI_QSPCLK_DIV_16 QSPCLK = PCLK / 16.

QSPI_QSPCLK_DIV_17 QSPCLK = PCLK / 17.

QSPI_QSPCLK_DIV_18 QSPCLK = PCLK / 18.

QSPI_QSPCLK_DIV_20 QSPCLK = PCLK / 20.

QSPI_QSPCLK_DIV_22 QSPCLK = PCLK / 22.

QSPI_QSPCLK_DIV_24 QSPCLK = PCLK / 24.

QSPI_QSPCLK_DIV_26 QSPCLK = PCLK / 26.

QSPI_QSPCLK_DIV_28

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,697 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

QSPCLK = PCLK / 28.

QSPI_QSPCLK_DIV_30 QSPCLK = PCLK / 30.

QSPI_QSPCLK_DIV_32 QSPCLK = PCLK / 32.

QSPI_QSPCLK_DIV_34 QSPCLK = PCLK / 34.

QSPI_QSPCLK_DIV_36 QSPCLK = PCLK / 36.

QSPI_QSPCLK_DIV_38 QSPCLK = PCLK / 38.

QSPI_QSPCLK_DIV_40 QSPCLK = PCLK / 40.

QSPI_QSPCLK_DIV_42 QSPCLK = PCLK / 42.

QSPI_QSPCLK_DIV_44 QSPCLK = PCLK / 44.

QSPI_QSPCLK_DIV_46 QSPCLK = PCLK / 46.

QSPI_QSPCLK_DIV_48 QSPCLK = PCLK / 48.

Function Documentation

◆ R_QSPI_Open()

fsp_err_t R_QSPI_Open (spi_flash_ctrl_t * p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the QSPI driver module. After the driver is open, the QSPI can be accessed like internal flash
memory starting at address 0x60000000.

Implements spi_flash_api_t::open.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION The parameter p_instance_ctrl or p_cfg is
NULL.

FSP_ERR_ALREADY_OPEN Driver has already been opened with the
same p_instance_ctrl.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,698 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ R_QSPI_DirectWrite()

fsp_err_t R_QSPI_DirectWrite (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint32_t const
bytes, bool const read_after_write)

Writes raw data directly to the QSPI.

Implements spi_flash_api_t::directWrite.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

◆ R_QSPI_DirectRead()

fsp_err_t R_QSPI_DirectRead (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_dest, uint32_t const bytes
)

Reads raw data directly from the QSPI. This API can only be called after R_QSPI_DirectWrite with
read_after_write set to true.

Implements spi_flash_api_t::directRead.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function must be called after
R_QSPI_DirectWrite with read_after_write
set to true.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,699 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ R_QSPI_DirectTransfer()

fsp_err_t R_QSPI_DirectTransfer (spi_flash_ctrl_t * p_ctrl, spi_flash_direct_transfer_t *const
p_transfer, spi_flash_direct_transfer_dir_t direction)

Read/Write raw data directly with the OctaFlash/OctaRAM device. Unsupported by QSPI.

Implements spi_flash_api_t::directTransfer.

Return values
FSP_ERR_UNSUPPORTED API not supported by QSPI.

◆ R_QSPI_XipEnter()

fsp_err_t R_QSPI_XipEnter (spi_flash_ctrl_t * p_ctrl)

Enters XIP (execute in place) mode.

Implements spi_flash_api_t::xipEnter.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_QSPI_XipExit()

fsp_err_t R_QSPI_XipExit (spi_flash_ctrl_t * p_ctrl)

Exits XIP (execute in place) mode.

Implements spi_flash_api_t::xipExit.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,700 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ R_QSPI_Write()

fsp_err_t R_QSPI_Write (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint8_t *const p_dest,
uint32_t byte_count)

Program a page of data to the flash.

Implements spi_flash_api_t::write.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION p_instance_ctrl, p_dest or p_src is NULL, or
byte_count crosses a page boundary.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

◆ R_QSPI_Erase()

fsp_err_t R_QSPI_Erase (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a block or sector of flash. The byte_count must exactly match one of the erase sizes defined
in spi_flash_cfg_t. For chip erase, byte_count must be SPI_FLASH_ERASE_SIZE_CHIP_ERASE.

Implements spi_flash_api_t::erase.

Return values
FSP_SUCCESS The command to erase the flash was

executed successfully.

FSP_ERR_ASSERTION p_instance_ctrl or p_device_address is NULL,
or byte_count doesn't match an erase size
defined in spi_flash_cfg_t, or device is in XIP
mode.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,701 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ R_QSPI_StatusGet()

fsp_err_t R_QSPI_StatusGet (spi_flash_ctrl_t * p_ctrl, spi_flash_status_t *const p_status)

Gets the write or erase status of the flash.

Implements spi_flash_api_t::statusGet.

Return values
FSP_SUCCESS The write status is in p_status.

FSP_ERR_ASSERTION p_instance_ctrl or p_status is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

◆ R_QSPI_BankSet()

fsp_err_t R_QSPI_BankSet (spi_flash_ctrl_t * p_ctrl, uint32_t bank)

Selects the bank to access. A bank is a 64MB sliding access window into the QSPI device flash
memory space. To access chip address 0x4000000, select bank 1, then read from internal flash
address 0x60000000. To access chip address 0x8001000, select bank 2, then read from internal
flash address 0x60001000.

This function is not required for memory devices less than or equal to 512 Mb (64MB).

Implements spi_flash_api_t::bankSet.

Return values
FSP_SUCCESS Bank successfully selected.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,702 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > QSPI (r_qspi)

◆ R_QSPI_SpiProtocolSet()

fsp_err_t R_QSPI_SpiProtocolSet (spi_flash_ctrl_t * p_ctrl, spi_flash_protocol_t spi_protocol)

Sets the SPI protocol.

Implements spi_flash_api_t::spiProtocolSet.

Return values
FSP_SUCCESS SPI protocol updated on MCU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_ARGUMENT Invalid SPI protocol requested.

◆ R_QSPI_AutoCalibrate()

fsp_err_t R_QSPI_AutoCalibrate (spi_flash_ctrl_t * p_ctrl)

Auto-calibrate the OctaRAM device using the preamble pattern. Unsupported by QSPI. Implements
spi_flash_api_t::autoCalibrate.

Return values
FSP_ERR_UNSUPPORTED API not supported by QSPI

◆ R_QSPI_Close()

fsp_err_t R_QSPI_Close (spi_flash_ctrl_t * p_ctrl)

Close the QSPI driver module.

Implements spi_flash_api_t::close.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

5.2.17.17 SD/MMC (r_sdhi)
Modules » Storage

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,703 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

Functions

fsp_err_t R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const
*const p_cfg)

fsp_err_t R_SDHI_MediaInit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device_t
*const p_device)

fsp_err_t R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const
p_source, uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address)

fsp_err_t R_SDHI_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address,
sdmmc_io_write_mode_t const read_after_write)

fsp_err_t R_SDHI_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const function, uint32_t const address, uint32_t
*const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const
*const p_source, uint32_t const function, uint32_t const address,
uint32_t const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

fsp_err_t R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status_t
*const p_status)

fsp_err_t R_SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const
start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_CallbackSet (sdmmc_ctrl_t *const p_api_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const
p_context, sdmmc_callback_args_t *const p_callback_memory)

fsp_err_t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs. This module implements the
SD/MMC Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,704 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

Overview
Features

Supports the following memory devices: SDSC (SD Standard Capacity), SDHC (SD High
Capacity), SDXC (SD Extended Capacity) and eMMC (embedded Multi Media Card)

Supports reading, writing and erasing SD memory devices
Supports 1, 4 or 8-bit data bus (8-bit bus is supported for eMMC only)
Supports detection of device write protection (SD cards only)
Supports high speed mode

Automatically configures the clock to the maximum clock rate supported by both host
(MCU) and device
Supports hardware acceleration using DMAC or DTC
Supports callback notification when an operation completes or an error occurs

Configuration
Build Time Configurations for r_sdhi

The following build time configurations are defined in fsp_cfg/r_sdhi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Unaligned Access
Support

Disabled
Enabled

Enabled If enabled, code for
supporting buffers that
are not aligned on a
4-byte boundary is
included in the build.
Only disable this if all
buffers passed to the
driver are 4-byte
aligned.

SD Support Disabled
Enabled

Enabled If selected code for SD
card support is
included in the build.

eMMC Support Disabled
Enabled

Disabled If selected code for
eMMC device support is
included in the build.

Configurations for Storage > SD/MMC (r_sdhi)

This module can be added to the Stacks tab via New Stack > Storage > SD/MMC (r_sdhi). Non-secure
callable guard functions can be generated for this module by right clicking the module in the RA
Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_sdmmc0 Module name.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,705 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

Channel Value must be a non-
negative integer

0 Select the channel.

Bus Width MCU Specific Options Select the bus width.

Block Size Value must be an
integer between 1 and
512

512 Select the media block
size. Must be 512 for
SD cards or eMMC
devices. Must be 1-512
for SDIO.

Card Detection Not Used
CD Pin

CD Pin Select the card
detection method.

Write Protection Not Used
WP Pin

WP Pin Select whether or not
to use the write protect
pin. Select Not Used if
the MCU or device does
not have a write
protect pin.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Access Interrupt
Priority

MCU Specific Options Select the access
interrupt priority.

Card Interrupt Priority MCU Specific Options Select the card
interrupt priority.

DTC Interrupt Priority MCU Specific Options Select the DTC
interrupt priority.

Interrupt Configurations:

The following interrupts are required to use the r_sdhi module:

Using SD/MMC with DTC:

Access Interrupt
DTC Interrupt

Using SD/MMC with DMAC:

Access Interrupt
DMAC Interrupt (in DMAC instance)

The Card interrupt is optional and only available on MCU packages that have the SDnCD pin (n =
channel number).

Clock Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,706 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

The SDMMC MCU peripheral (SDHI) uses the PCLKA for its clock source. The SDMMC driver selects
the optimal built-in divider based on the PCLKA frequency and the maximum clock rate allowed by
the device obtained at media initialization.

Pin Configuration

The SDMMC driver supports the following pins (n = channel number):

SDnCLK
SDnCMD
SDnDAT0
SDnDAT1
SDnDAT2
SDnDAT3
SDnDAT4 (not available on all MCUs)
SDnDAT5 (not available on all MCUs)
SDnDAT6 (not available on all MCUs)
SDnDAT7 (not available on all MCUs)
SDnCD (not available on all MCUs)
SDnWP

The drive capacity for each pin should be set to "Medium" or "High" for most hardware designs. This
can be configured in the Pins tab of the RA Configuration editor by selecting the pin under Pin
Selection -> Ports.

Usage Notes
Card Detection

When Card Detection is configured to "CD Pin" in the RA Configuration editor, interrupt flags are
cleared and card detection is enabled during R_SDHI_Open().

R_SDHI_StatusGet() can be called to retrieve the current status of the card (including whether a card
is present). If the Card Interrupt Priority is enabled, a callback is called when a card is inserted or
removed.

If a card is removed and reinserted, R_SDHI_MediaInit() must be called before reading from the card
or writing to the card.

Note
R_SDHI_StatusGet() should be used to initially determine the card state after opening the interface.

DMA Request Interrupt Priority

When data transfers are not 4-byte aligned or not a multiple of 4 bytes, a software copy of the block
size (up to 512 bytes) is done in the DMA Request interrupt. This blocks all other interrupts that are a
lower or equal priority to the access interrupt until the software copy is complete.

Timing Notes for R_SDHI_MediaInit

The R_SDHI_MediaInit() API completes the entire device identification and configuration process. This
involves several command-response cycles at a bus width of 1 bit and a bus speed of 400 kHz or
less.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,707 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

Limitations

Developers should be aware of the following limitations when using the SDHI:

Blocking Calls

The following functions block execution until the response is received for at least one command:

R_SDHI_MediaInit
R_SDHI_Erase

Once the function returns the status of the operation can be determined via R_SDHI_StatusGet or
through receipt of a callback.

Note
Due to the variability in clocking configurations it is recommended to determine blocking delays experimentally on
the target system.

Data Alignment and Size

Data transfers should be 4-byte aligned and a multiple of 4 bytes in size whenever possible. This
recommendation applies to the read(), write(), readIoExt(), and writeIoExt() APIs. When data
transfers are 4-byte aligned and a multiple of 4-bytes, the r_sdhi driver is zero copy and takes full
advantage of hardware acceleration by the DMAC or DTC. When data transfers are not 4-byte
aligned or not a multiple of 4 bytes an extra CPU interrupt is required for each block transferred and
a software copy is used to move data to the destination buffer.

Examples
Basic Example

This is a basic example of minimal use of the r_sdhi in an application.

uint8_t g_dest[SDHI_MAX_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[SDHI_MAX_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint32_t g_transfer_complete = 0;

void r_sdhi_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < SDHI_MAX_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the SDHI driver. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,708 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

 assert(FSP_SUCCESS == err);

 err = R_SDHI_Write(&g_sdmmc0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer. */

 }

 err = R_SDHI_Read(&g_sdmmc0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer. */

 }

}

/* The callback is called when a transfer completes. */

void r_sdhi_example_callback (sdmmc_callback_args_t * p_args)

{

 if (SDMMC_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = 1;

 }

}

Card Detection Example

This is an example of using SDHI when the card may not be plugged in. The card detection interrupt
must be enabled to use this example.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,709 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

bool g_card_inserted = false;

void r_sdhi_card_detect_example (void)

{

 /* Open the SDHI driver. This enables the card detection interrupt. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Check if card is inserted. */

 sdmmc_status_t status;

 err = R_SDHI_StatusGet(&g_sdmmc0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 if (!status.card_inserted)

 {

 while (!g_card_inserted)

 {

 /* Wait for a card insertion interrupt. */

 }

 }

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card after card insertion is detected. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

 assert(FSP_SUCCESS == err);

}

/* The callback is called when a card detection event occurs if the card detection

interrupt is enabled. */

void r_sdhi_card_detect_example_callback (sdmmc_callback_args_t * p_args)

{

 if (SDMMC_EVENT_CARD_INSERTED == p_args->event)

 {

 g_card_inserted = true;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,710 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

 }

 if (SDMMC_EVENT_CARD_REMOVED == p_args->event)

 {

 g_card_inserted = false;

 }

}

Function Documentation

◆ R_SDHI_Open()

fsp_err_t R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const *const p_cfg)

Opens the driver. Resets SDHI, and enables card detection interrupts if card detection is enabled.
R_SDHI_MediaInit must be called after this function before any other functions can be used.

Implements sdmmc_api_t::open().

Example:

 /* Open the SDHI driver. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

Return values
FSP_SUCCESS Module is now open.

FSP_ERR_ASSERTION Null Pointer or block size is not in the valid
range of 1-512. Block size must be 512
bytes for SD cards and eMMC devices. It is
configurable for SDIO only.

FSP_ERR_ALREADY_OPEN Driver has already been opened with this
instance of the control structure.

FSP_ERR_IRQ_BSP_DISABLED Access interrupt is not enabled.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this
MCU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,711 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_MediaInit()

fsp_err_t R_SDHI_MediaInit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device_t *const p_device)

Initializes the SDHI hardware and completes identification and configuration for the SD or eMMC
device. This procedure requires several sequential commands. This function blocks until all
identification and configuration commands are complete.

Implements sdmmc_api_t::mediaInit().

Example:

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

Return values
FSP_SUCCESS Module is now ready for read/write access.

FSP_ERR_ASSERTION Null Pointer or block size is not in the valid
range of 1-512. Block size must be 512
bytes for SD cards and eMMC devices. It is
configurable for SDIO only.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_INIT_FAILED Device was not identified as an SD card,
eMMC device, or SDIO card.

FSP_ERR_RESPONSE Device responded with an error.

FSP_ERR_TIMEOUT Device did not respond.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,712 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_Read()

fsp_err_t R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Reads data from an SD or eMMC device. Up to 0x10000 sectors can be read at a time. Implements
sdmmc_api_t::read().

A callback with the event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is
available.

Example:

 err = R_SDHI_Read(&g_sdmmc0_ctrl, g_dest, 3, 1);

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

◆ R_SDHI_Write()

fsp_err_t R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Writes data to an SD or eMMC device. Up to 0x10000 sectors can be written at a time. Implements
sdmmc_api_t::write().

A callback with the event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has
been written and the device is no longer holding DAT0 low to indicate it is busy.

Example:

 err = R_SDHI_Write(&g_sdmmc0_ctrl, g_src, 3, 1);

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION Handle or Source address is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_CARD_WRITE_PROTECTED SD card is Write Protected.

FSP_ERR_WRITE_FAILED Write operation failed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,713 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_ReadIo()

fsp_err_t R_SDHI_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

The Read function reads a one byte register from an SDIO card. Implements sdmmc_api_t::readIo().

This function blocks until the command is sent and the response is received. p_data contains the
register value read when this function returns.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

FSP_ERR_RESPONSE Device responded with an error.

FSP_ERR_TIMEOUT Device did not respond.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,714 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_WriteIo()

fsp_err_t R_SDHI_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Writes a one byte register to an SDIO card. Implements sdmmc_api_t::writeIo().

This function blocks until the command is sent and the response is received. The register has been
written when this function returns. If read_after_write is true, p_data contains the register value
read when this function returns.

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION Handle or Source address is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

FSP_ERR_RESPONSE Device responded with an error.

FSP_ERR_TIMEOUT Device did not respond.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,715 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_ReadIoExt()

fsp_err_t R_SDHI_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Reads data from an SDIO card function. Implements sdmmc_api_t::readIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is available.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,716 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_WriteIoExt()

fsp_err_t R_SDHI_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Writes data to an SDIO card function. Implements sdmmc_api_t::writeIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has been written.

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

◆ R_SDHI_IoIntEnable()

fsp_err_t R_SDHI_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

Enables or disables the SDIO Interrupt. Implements sdmmc_api_t::ioIntEnable().

Return values
FSP_SUCCESS Card enabled or disabled SDIO interrupts

successfully.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,717 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_StatusGet()

fsp_err_t R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status_t *const p_status)

Provides driver status. Implements sdmmc_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

◆ R_SDHI_Erase()

fsp_err_t R_SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erases sectors of an SD card or eMMC device. Implements sdmmc_api_t::erase().

This function blocks until the erase command is sent. Poll the status to determine when erase is
complete.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION A required pointer is NULL or an argument is
invalid.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_CARD_WRITE_PROTECTED SD card is Write Protected.

FSP_ERR_RESPONSE Device responded with an error.

FSP_ERR_TIMEOUT Device did not respond.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,718 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > SD/MMC (r_sdhi)

◆ R_SDHI_CallbackSet()

fsp_err_t R_SDHI_CallbackSet (sdmmc_ctrl_t *const p_api_ctrl, void(*)(sdmmc_callback_args_t *)
p_callback, void const *const p_context, sdmmc_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements sdmmc_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SDHI_Close()

fsp_err_t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

Closes an open SD/MMC device. Implements sdmmc_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

5.2.17.18 Virtual EEPROM on Flash (rm_vee_flash)
Modules » Storage

Functions

fsp_err_t RM_VEE_FLASH_Open (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_cfg_t
const *const p_cfg)

fsp_err_t RM_VEE_FLASH_RecordWrite (rm_vee_ctrl_t *const p_api_ctrl,
uint32_t const rec_id, uint8_t const *const p_rec_data, uint32_t const
num_bytes)

fsp_err_t RM_VEE_FLASH_RefDataWrite (rm_vee_ctrl_t *const p_api_ctrl,
uint8_t const *const p_ref_data)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,719 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

fsp_err_t RM_VEE_FLASH_RecordPtrGet (rm_vee_ctrl_t *const p_api_ctrl,
uint32_t const rec_id, uint8_t **const pp_rec_data, uint32_t *const
p_num_bytes)

fsp_err_t RM_VEE_FLASH_RefDataPtrGet (rm_vee_ctrl_t *const p_api_ctrl,
uint8_t **const pp_ref_data)

fsp_err_t RM_VEE_FLASH_Refresh (rm_vee_ctrl_t *const p_api_ctrl)

fsp_err_t RM_VEE_FLASH_Format (rm_vee_ctrl_t *const p_api_ctrl, uint8_t
const *const p_ref_data)

fsp_err_t RM_VEE_FLASH_CallbackSet (rm_vee_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const
p_context, rm_vee_callback_args_t *const p_callback_memory)

fsp_err_t RM_VEE_FLASH_StatusGet (rm_vee_ctrl_t *const p_api_ctrl,
rm_vee_status_t *const p_status)

fsp_err_t RM_VEE_FLASH_Close (rm_vee_ctrl_t *const p_api_ctrl)

Detailed Description

Virtual EEPROM on RA MCUs. This module implements the Virtual EEPROM Interface.

Overview
This VEE module emulates basic EEPROM capabilities. Support is provided for reading and writing
both common records and reference data (originally programmed during product assembly or test).
A count of the number of segments erased throughout the lifetime of the application is maintained
and can be accessed at any time. Wear leveling is handled automatically by the driver.

Features

Writing and reading user defined records of any length to data flash.
Wear leveling is handled automatically.
Reference data such as calibration data programmed at assembly or test time is preserved.
Reference data can be updated at run time.
Fault resilient design.

Data Flash Segmentation

Wear leveling is handled by changing the location in the data flash where a record is stored every
time that it is updated. This change in physical location of the record is transparent to the user. Any
time an update for a specific record ID is written, it is written to the next unused location in data
flash and its location is stored in RAM for quick look-up later. When required, only the most recent
version of these records is automatically copied to the next blank segment in data flash. The data
flash area is divided into a number of equal-size segments. There is only one segment active at a
time. A segment contains two areas- the record area (which is the vast majority of the segment) and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,720 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

the reference data area which contains optional data typically programmed during assembly or final
test. Records and updated reference data are written to this segment until one of the two areas
becomes full. The record area must be able to hold at least one of every record ID possible and still
have space left over for record updates.

Figure 290: Segment Data Format

 When a segment does not have sufficient space for additional records or updated reference data, a
Refresh occurs. This process copies the most recent record for each ID as well as the latest version
of reference data (if any) to the next segment. The very first time VEE runs on an MCU, it marks the
last segment as active whether there is reference data configured or not. The end of VEE data flash
area is used to provide an easily identified physical flash address that can be used while
programming reference data without requiring Virtual EEPROM middleware.

Figure 291: Refresh Operation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,721 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

Record Format

Each record begins with a header that contains the record size, followed by the data, and the trailer.
The trailer contains a validation code which is used for internal purposes only and is not a 16-bit CRC
or ECC value. If that level of error checking is desired, the user should include that in the record data
passed to the driver. Padding is added between the end of user data and the trailer to ensure the
trailer is aligned properly.

Figure 292: Record Format

Reference Data Area

VEE can be configured for the presence of reference data. The original programmed reference data
must be located at the end of the VEE data flash area. An area of equal size is reserved below this in
case updated reference data becomes available later. Below that is a header which indicates
whether the update area has been written to.

Figure 293: Reference Data Area Format

 Just as with records, the validation code is used for internal purposes only and is not a 16-bit CRC or
ECC value. If that level of error checking is desired, the user should include that in the updated
reference data passed to the driver.

Fault Tolerance

The Virtual EEPROM has a fault tolerant design. If for any reason an operation fails before it is
completed the next time the module is opened a refresh will occur. Any corrupted data will be
discarded.

Configuration
Build Time Configurations for rm_vee_flash

The following build time configurations are defined in fsp_cfg/rm_vee_flash_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Reference Data
Support

Enabled
Disabled

Disabled Support writing
reference data to the
end of the segment.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,722 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

Refresh Buffer Size Value must be an
integer greater than 0
and a multiple of 4
bytes.

32 The size of the internal
buffer used to copying
data from one flash
segment to another
during a refresh
operation. This is
required because data
flash to data flash
transfers are not
supported by the
hardware.

Configurations for Storage > Virtual EEPROM on Flash (rm_vee_flash)

This module can be added to the Stacks tab via New Stack > Storage > Virtual EEPROM on Flash
(rm_vee_flash). Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_vee0 Module name.

Record Max ID Value must be an
integer.

16 Set this value to the
highest record ID in
use.

Number of Segments Value must be an
integer.

2 Set value to number of
segments desired in
data flash (minimum
2). The fewer the
segments, the fewer
refreshes occur, but
the longer refreshes
take to complete
(erase time).

Start Address Manual Entry BSP_FEATURE_FLASH_
DATA_FLASH_START

Start address of the
flash area used by
Virtual EEPROM.

Total Size Manual Entry BSP_DATA_FLASH_SIZE
_BYTES

The total size (In bytes)
of the flash area used
by Virtual EEPROM.

Reference Data Size Value must be an
integer.

0 The size of the
reference area (In
bytes) used by Virtual
EEPROM.

Callback Name must be a valid
C symbol

vee_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the flash
interrupt service

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,723 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

routine (ISR).

Clock Configuration

There is no clock configuration for the RM_VEE_FLASH module.

Pin Configuration

This module does not use I/O pins.

Usage Notes
A refresh buffer is required to copy data between segments. Data flash cannot be simultaneously
read from and written to. Data will be temporarily copied into RAM during refresh operations.

Examples
Basic Example

This is a basic example of minimal use of the RM_VEE_FLASH module in an application.

volatile bool callback_called = false;

/* Record ID to use for storing pressure data. */

#define ID_PRESSURE (0U)

/* Example data structure. */

typedef struct st_pressure

{

 uint32_t timestamp;

 uint16_t low;

 uint16_t average;

 uint16_t high;

} pressure_t;

void rm_vee_example ()

{

 /* Open the Virtual EEPROM Module. */

 fsp_err_t err = RM_VEE_FLASH_Open(&g_vee_ctrl, &g_vee_cfg);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Read pressure data from external sensor. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,724 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

 pressure_t pressure_data;

 get_pressure_data(&pressure_data);

 /* Write the pressure data to a Virtual EEPROM Record. */

 err = RM_VEE_FLASH_RecordWrite(&g_vee_ctrl, ID_PRESSURE, (uint8_t *)

&pressure_data, sizeof(pressure_t));

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Wait for the Virtual EEPROM callback to indicate it finished writing data. */

 while (false == callback_called)

 {

 ;

 }

 /* Get a pointer to the record that is stored in data flash. */

 uint32_t length;

 pressure_t * p_pressure_data;

 err = RM_VEE_FLASH_RecordPtrGet(&g_vee_ctrl, ID_PRESSURE, (uint8_t **)

&p_pressure_data, &length);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Close the Virtual EEPROM Module. */

 err = RM_VEE_FLASH_Close(&g_vee_ctrl);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

}

void rm_vee_tests_callback (rm_vee_callback_args_t * p_args)

{

 callback_called = true;

 FSP_PARAMETER_NOT_USED(p_args);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,725 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

}

Data Structures

struct rm_vee_flash_cfg_t

struct rm_vee_flash_instance_ctrl_t

Data Structure Documentation

◆ rm_vee_flash_cfg_t

struct rm_vee_flash_cfg_t

User configuration structure, used in open function

Data Fields

flash_instance_t const * p_flash Pointer to a flash instance.

◆ rm_vee_flash_instance_ctrl_t

struct rm_vee_flash_instance_ctrl_t

Instance control block. This is private to the FSP and should not be used or modified by the
application.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,726 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_Open()

fsp_err_t RM_VEE_FLASH_Open (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_cfg_t const *const p_cfg
)

Open the RM_VEE_FLASH driver module

Implements rm_vee_api_t::open

Initializes the driver's internal structures and opens the Flash driver. The Flash driver must be
closed prior to opening VEE. The error code FSP_SUCCESS_RECOVERY indicates that VEE detected
corrupted data; most likely due to a power loss during a data flash write or erase. In these cases,
an automatic internal Refresh is performed and the partially written data is lost.

Return values
FSP_SUCCESS Successful. FSP_SUCCESS_RECOVERY

changed to FSP_SUCCESS

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_ALREADY_OPEN This function has already been called.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Interrupts disabled outside of VEE

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

FSP_ERR_INVALID_ARGUMENT The supplied configuration is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,727 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_RecordWrite()

fsp_err_t RM_VEE_FLASH_RecordWrite (rm_vee_ctrl_t *const p_api_ctrl, uint32_t const rec_id,
uint8_t const *const p_rec_data, uint32_t const num_bytes)

Writes a record to data flash.

Implements rm_vee_api_t::recordWrite

This function writes num_bytes of data pointed to by p_rec_data to data flash. This function returns
immediately after starting the flash write. BE SURE NOT TO MODIFY the data buffer contents until
after the write completes. This includes exiting the calling function when the data buffer is a local
variable (stack may be used by another function and corrupt the data buffer contents).

Return values
FSP_SUCCESS Write started successfully.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_INVALID_ARGUMENT An argument contains an illegal value.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,728 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_RefDataWrite()

fsp_err_t RM_VEE_FLASH_RefDataWrite (rm_vee_ctrl_t *const p_api_ctrl, uint8_t const *const
p_ref_data)

Writes new Reference data to the reference update area.

Implements rm_vee_api_t::refDataWrite

This function writes VEE_CFG_REF_DATA_SIZE bytes pointed to by p_ref_data to data flash. This
function returns immediately after starting the flash write. BE SURE NOT TO MODIFY the data buffer
contents until after the write completes.

Return values
FSP_SUCCESS Write started successfully.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_UNSUPPORTED Reference data is not supported in the
current configuration.

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,729 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_RecordPtrGet()

fsp_err_t RM_VEE_FLASH_RecordPtrGet (rm_vee_ctrl_t *const p_api_ctrl, uint32_t const rec_id,
uint8_t **const pp_rec_data, uint32_t *const p_num_bytes)

Gets a pointer to the most recent record data.

Implements rm_vee_api_t::recordPtrGet

This function sets the argument pointer to the most recent version of the record data in flash. Flash
cannot be accessed for reading and writing at the same time. Therefore, reading the data at
p_ref_data must be completed prior to initiating any type of Flash write.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION p_ref_data is NULL.

FSP_ERR_INVALID_ARGUMENT Record data not configured.

FSP_ERR_NOT_FOUND The record associated with the requested ID
could not be found.

◆ RM_VEE_FLASH_RefDataPtrGet()

fsp_err_t RM_VEE_FLASH_RefDataPtrGet (rm_vee_ctrl_t *const p_api_ctrl, uint8_t **const
pp_ref_data)

Gets a pointer to the most recent reference data.

Implements rm_vee_api_t::recordPtrGet

This function sets the argument pointer to the most recent version of the reference data in flash.
Flash cannot be accessed for reading and writing at the same time.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_UNSUPPORTED Reference data is not supported in the
current configuration.

FSP_ERR_NOT_FOUND No reference data was found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,730 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_Refresh()

fsp_err_t RM_VEE_FLASH_Refresh (rm_vee_ctrl_t *const p_api_ctrl)

Manually start a refresh operation

Implements rm_vee_api_t::refresh

This function is used to start a segment Refresh at any time. The Refresh process by default occurs
automatically when no more record or reference data space is available and a Write is requested.
However, the app may desire to force a refresh when it knows it is running low on space and large
amounts of data are about to be recorded.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,731 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_Format()

fsp_err_t RM_VEE_FLASH_Format (rm_vee_ctrl_t *const p_api_ctrl, uint8_t const *const p_ref_data
)

Start a manual format operation.

Implements rm_vee_api_t::format

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

◆ RM_VEE_FLASH_CallbackSet()

fsp_err_t RM_VEE_FLASH_CallbackSet (rm_vee_ctrl_t *const p_api_ctrl,
void(*)(rm_vee_callback_args_t *) p_callback, void const *const p_context, rm_vee_callback_args_t
*const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.

Implements rm_vee_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,732 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Storage > Virtual EEPROM on Flash (rm_vee_flash)

◆ RM_VEE_FLASH_StatusGet()

fsp_err_t RM_VEE_FLASH_StatusGet (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_status_t *const
p_status)

Get the current status of the driver.

Implements rm_vee_api_t::statusGet

This command is typically used to verify that the last Write or Refresh command has completed
before attempting to perform another API call.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

◆ RM_VEE_FLASH_Close()

fsp_err_t RM_VEE_FLASH_Close (rm_vee_ctrl_t *const p_api_ctrl)

Closes the Flash driver and VEE driver.

Implements rm_vee_api_t::close

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

5.2.18 System
Modules

Detailed Description

System Modules.

Modules

Clock Generation Circuit (r_cgc)

 Driver for the CGC peripheral on RA MCUs. This module implements
the CGC Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,733 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System

Event Link Controller (r_elc)

 Driver for the ELC peripheral on RA MCUs. This module implements
the ELC Interface.

I/O Port (r_ioport)

 Driver for the I/O Ports peripheral on RA MCUs. This module
implements the I/O Port Interface.

5.2.18.1 Clock Generation Circuit (r_cgc)
Modules » System

Functions

fsp_err_t R_CGC_Open (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

fsp_err_t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const
*const p_clock_cfg)

fsp_err_t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source, cgc_divider_cfg_t const *const p_divider_cfg)

fsp_err_t R_CGC_SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

fsp_err_t R_CGC_ClockCheck (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source)

fsp_err_t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_CallbackSet (cgc_ctrl_t *const p_api_ctrl,
void(*p_callback)(cgc_callback_args_t *), void const *const
p_context, cgc_callback_args_t *const p_callback_memory)

fsp_err_t R_CGC_Close (cgc_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,734 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

Detailed Description

Driver for the CGC peripheral on RA MCUs. This module implements the CGC Interface.

Note
This module is not required for the initial clock configuration. Initial clock settings are configurable on the
**Clocks tab of the RA Configuration editor. The initial clock settings are applied by the BSP during the startup
process before main.**

Overview
Features

The CGC module supports runtime modifications of clock settings. Key features include the following:

Supports changing the system clock source to any of the following options (provided they
are supported on the MCU):

High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
Main oscillator (external resonator or external clock input frequency)
Sub-clock oscillator (external resonator)
PLL/PLL2 (not available on all MCUs)

When the system core clock frequency changes, the following things are updated:
The CMSIS standard global variable SystemCoreClock is updated to reflect the new
clock frequency.
Wait states for ROM and RAM are adjusted to the minimum supported value for the
new clock frequency.
The operating power control mode is updated to the minimum supported value for
the new clock settings.

Supports starting or stopping any of the system clock sources
Supports changing dividers for the internal clocks
Supports the oscillation stop detection feature

Internal Clocks

The RA microcontrollers have up to seven internal clocks. Not all internal clocks exist on all MCUs.
Each clock domain has its own divider that can be updated in R_CGC_SystemClockSet(). The dividers
are subject to constraints described in the footnote of the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual.

The internal clocks include:

System clock (ICLK): core clock used for CPU, flash, internal SRAM, DTC, and DMAC
PCLKA/PCLKB/PCLKC/PCLKD: Peripheral clocks, refer to the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual to see which peripherals
are controlled by which clocks.
FCLK: Clock source for reading data flash and for programming/erasure of both code and
data flash.
BCLK: External bus clock

Configuration
Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,735 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

The initial clock settings are configurable on the Clocks tab of the RA Configuration editor.
There is a configuration to enable the HOCO on reset in the OFS1 settings on the BSP tab.
The following clock related settings are configurable in the RA Common section on the BSP tab:

Main Oscillator Wait Time
Main Oscillator Clock Source (external oscillator or crystal/resonator)
Subclock Populated
Subclock Drive
Subclock Stabilization Time (ms)

The default stabilization times are determined based on development boards provided by Renesas, but are
generally valid for most designs. Depending on the target board hardware configuration and requirements these
values may need to be adjusted for reliability or startup speed.

Build Time Configurations for r_cgc

The following build time configurations are defined in fsp_cfg/r_cgc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for System > Clock Generation Circuit (r_cgc)

This module can be added to the Stacks tab via New Stack > System > Clock Generation Circuit
(r_cgc). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Sub Clock Oscillation Stop Detection Settings

Enable sub clock
oscillator stop
detection via the
SOSC_STOP interrupt

Enabled
Disabled

Disabled Oscillation Stop
Detection for Sub Clock
enabled.

Sub Clock Oscillation
Stop Detection Time

Manual Entry 0 These bits specify the
oscillation stop
detection time. It is
detected that
oscillation has stopped
when oscillation has
been stopped for (A-2)
to (A+1) clock cycles,
where A refers to the
time specified by these
bits. Oscillation stop
detection time = Low-
speed on-chip oscillator
clock (LOCO) cycle x
((value of OSDCCMP) +
1).

Sub Clock Oscillation
Stop Detection

MCU Specific Options [Optional] Select the
interrupt priority for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,736 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

Interrupt Priority the Sub Clock
Oscillation Stop
Detection interrupt.

Main Oscillation Stop Detection Settings

Enable main clock
oscillator stop
detection via the
MOSC_STOP interrupt

Enabled
Disabled

Disabled Oscillation Stop
Detection for Main
Clock enabled.

Main Oscillation Stop
Detection Time

Manual Entry 0 These bits specify the
oscillation stop
detection time. It is
detected that
oscillation has stopped
when oscillation has
been stopped for (A -
2) to (A + 1) clock
cycles, where A refers
to the time specified by
these bits. Oscillation
stop detection time =
High speed on-chip
oscillator clock (HOCO)
cycle x ((value of
OSDCCMP) + 1).

Main Oscillation Stop
Detection Interrupt
Priority

MCU Specific Options [Optional] Select the
interrupt priority for
the Main Oscillation
Stop Detection
interrupt.

Oscillator Stop Detection Settings

Clock Switch Enable for
Oscillation Stop
Detected of SDADCCLK

Enabled
Disabled

Disabled The OSTDCSE bit
specifies the source
clock of the 24-bit
Sigma-delta A/D
Converter Clock
switched to HOCO
when oscillation stop
detected.

Name Name must be a valid
C symbol

g_cgc0 Module name.

Enable main oscillator
stop detection via the
NMI interrupt

Enabled
Disabled

Enabled Oscillation Stop
Detection for System
Clock enabled.

Oscillation Stop
Detection Callback

Name must be a valid
C symbol

NULL A user callback
function must be
provided if oscillation
stop detection for
System Clock/Main
Oscillation/Sub Clock

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,737 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

Oscillation is used. If
this callback function is
provided, it is called
from the NMI handler if
the main oscillator
stops.

Clock Configuration

This module is used to configure the system clocks. There are no module specific clock
configurations required to use it.

Pin Configuration

The CGC module controls the output of the CLOCKOUT signal.

If an external oscillator is used the XTAL and EXTAL pins must be configured accordingly. When
running from an on chip oscillator there is no requirement for the main clock external oscillator. In
this case, the XTAL and EXTAL pins can be set to a different function in the RA Configuration editor.

The functionality of the subclock external oscillator pins XCIN and XCOUT is fixed.

Usage Notes
Oscillation Stop Detection

CGC driver supports following oscillation stop detection function.

NMI Interrupt

The CGC driver uses the NMI for oscillation stop detection of the main oscillator after
R_CGC_OscStopDetectEnable is called. The NMI is enabled by default. No special configuration is
required. When the NMI is triggered, the callback function registered during R_CGC_Open() is called.

Main Oscillator Stop Detection Interrupt

A main clock oscillation stop detection interrupt (MOSTD_STOP) is generated when the Oscillation
Stop Detection for Main Clock is enabled. The main oscillation stop detection interrupt is a maskable
interrupt. When the MOSTD_STOP is triggered, the callback function registered during R_CGC_Open()
is called.

Subclk Oscillator Stop Detection Interrupt

A sub clock oscillation stop detection interrupt (SOSC_STOP) is generated when the Oscillation Stop
Detection for Sub Clock is enabled. The sub clock oscillation stop detection interrupt is a maskable
interrupt. When the SOSC_STOP is triggered, the callback function registered during R_CGC_Open() is
called.

ADC Clock Switching

When Clock Switch Enable for Oscillation Stop Detected is set.

When MOSC stop is detected when MOSC is selected for SDADCCLK, SDADCCLK is switched
to HOCO.
When SOSC stop is detected when PLL is selected for SDADCCLK, SDADCCLK is switched to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,738 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

HOCO.

Starting or Stopping the Subclock

If the Subclock Populated property is set to Populated on the BSP configuration tab, then the
subclock is started in the BSP startup routine. Otherwise, it is stopped in the BSP startup routine.
Starting and stopping the subclock at runtime is not recommended since the stabilization
requirements typically negate the negligible power savings.

The application is responsible for ensuring required clocks are started and stable before accessing
MCU peripheral registers.

Warning
The subclock can take up to several seconds to stabilize. RA startup code does not wait for
subclock stabilization unless the subclock is the main clock source. In this case the default
wait time is 1000ms (1 second). When running AGT or RTC off the subclock, the application
must ensure the subclock is stable before starting operation. Because there is no hardware
stabilization status bit for the subclock R_CGC_ClockCheck cannot be used to optimize this
wait.

Changing the subclock state during R_CGC_ClocksCfg() is not supported.

Low Power Operation

If "Use Low Voltage Mode" is enabled in the BSP MCU specific properties (not available on all MCUs),
the MCU is always in low voltage mode and no other power modes are considered. The following
conditions must be met for the MCU to run in low voltage mode:

Requires HOCO to be running, so HOCO cannot be stopped in low voltage mode
Requires PLL to be stopped, so PLL APIs are not available in low voltage mode
Requires ICLK <= 4 MHz
If oscillation stop detection is used, dividers of 1 or 2 cannot be used for any clock

If "Use Low Voltage Mode" is not enabled, the MCU applies the lowest power mode by searching
through the following list in order and applying the first power mode that is supported under the
current conditions:

Subosc-speed mode (lowest power)
Requires system clock to be LOCO or subclock
Requires MOCO, HOCO, main oscillator, and PLL (if present) to be stopped
Requires ICLK and FCLK dividers to be 1

Low-speed mode
Requires PLL to be stopped
Requires ICLK <= 1 MHz
If oscillation stop detection is used, dividers of 1, 2, 4, or 8 cannot be used for any
clock

Middle-speed mode (not supported on all MCUs)
Requires ICLK <= 8 MHz

High-speed mode
Default mode if no other operating mode is supported

Refer to the section "Function for Lower Operating Power Consumption" in the "Low Power Modes"
chapter of the hardware manual for MCU specific information about operating power control modes.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,739 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

The DCDC regulator (if present) is only available in Middle- and High-speed modes. The BSP will automatically
switch between DCDC and LDO when switching between compatible and incompatible modes if the DCDC
regulator is in use. Switching to the LDO incurs a 60 microsecond critical section wherein all interrupts AND
peripherals are stopped. Switching back to DCDC from the LDO incurs an additional 22 microsecond critical
section (peripherals running).

When low voltage mode is not used, the following functions adjust the operating power control mode
to ensure it remains within the hardware specification and to ensure the MCU is running at the
optimal operating power control mode:

R_CGC_ClockStart()
R_CGC_ClockStop()
R_CGC_SystemClockSet()
R_CGC_OscStopDetectEnable()
R_CGC_OscStopDetectDisable()

Note
FSP APIs, including these APIs, are not thread safe. These APIs and any other user code that modifies the
operating power control mode must not be allowed to interrupt each other. Proper care must be taken during
application design if these APIs are used in threads or interrupts to ensure this constraint is met.

No action is required by the user of these APIs. This section is provided for informational purposes
only.

Examples
Basic Example

This is a basic example of minimal use of the CGC in an application.

void cgc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Change the system clock to LOCO for power saving. */

 /* Start the LOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_LOCO, NULL);

 assert(FSP_SUCCESS == err);

 /* Wait for the LOCO stabilization wait time.

 *

 * NOTE: The MOCO, LOCO and subclock do not have stabilization status bits, so any

stabilization time must be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,740 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 * performed via a software wait when starting these oscillators. For all other

oscillators, R_CGC_ClockCheck can

 * be used to verify stabilization status.

 */

 R_BSP_SoftwareDelay(BSP_FEATURE_CGC_LOCO_STABILIZATION_MAX_US,

BSP_DELAY_UNITS_MICROSECONDS);

 /* Set divisors. Divisors for clocks that don't exist on the MCU are ignored. */

 cgc_divider_cfg_t dividers =

 {

 /* PCLKB is not used in this application, so select the maximum divisor for lowest

power. */

 .sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_64,

 /* PCLKD is not used in this application, so select the maximum divisor for lowest

power. */

 .sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_64,

 /* ICLK is the MCU clock, allow it to run as fast as the LOCO is capable. */

 .sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1,

 /* These clocks do not exist on some devices. If any clocks don't exist, set the

divider to 1. */

 .sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_1,

 };

 /* Switch the system clock to LOCO. */

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_LOCO, ÷rs);

 assert(FSP_SUCCESS == err);

}

Configuring Multiple Clocks

This example demonstrates switching to a new source clock and stopping the previous source clock
in a single function call using R_CGC_ClocksCfg().

void cgc_clocks_cfg_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,741 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Change the system clock to PLL running from the main oscillator. */

 /* Assuming the system clock is MOCO, switch to HOCO. */

 cgc_clocks_cfg_t clocks_cfg;

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC; // unused

 clocks_cfg.pll_cfg.multiplier = CGC_PLL_MUL_10_0; // unused

 clocks_cfg.pll_cfg.divider = CGC_PLL_DIV_2; // unused

 clocks_cfg.divider_cfg.sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

 assert(FSP_SUCCESS == err);

#if BSP_FEATURE_CGC_HAS_PLL

 /* Assuming the system clock is HOCO, switch to PLL running from main oscillator and

stop MOCO. */

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC;

 clocks_cfg.pll_cfg.multiplier = (cgc_pll_mul_t) BSP_CFG_PLL_MUL;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,742 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 clocks_cfg.pll_cfg.divider = (cgc_pll_div_t) BSP_CFG_PLL_DIV;

 clocks_cfg.divider_cfg.sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

 assert(FSP_SUCCESS == err);

#endif

}

Oscillation Stop Detection

This example demonstrates registering a callback for oscillation stop detection of the main oscillator.

/* Example callback called when oscillation stop is detected. */

void oscillation_stop_callback (cgc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) If the MCU was running on the main oscillator, the MCU is now running

on MOCO. Switch clocks if

 * desired. This example shows switching to HOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_HOCO, NULL);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Wait for HOCO to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_HOCO);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,743 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 } while (FSP_SUCCESS != err);

 cgc_divider_cfg_t dividers =

 {

 .sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_4,

 };

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_HOCO, ÷rs);

 assert(FSP_SUCCESS == err);

#if BSP_FEATURE_CGC_HAS_PLL

 /* (Optional) If the MCU was running on the PLL, the PLL is now in free-running

mode. Switch clocks if

 * desired. This example shows switching to the PLL running on HOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_HOCO, NULL);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Wait for HOCO to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_HOCO);

 } while (FSP_SUCCESS != err);

 cgc_pll_cfg_t pll_cfg =

 {

 .source_clock = CGC_CLOCK_HOCO,

 .multiplier = (cgc_pll_mul_t) BSP_CFG_PLL_MUL,

 .divider = (cgc_pll_div_t) BSP_CFG_PLL_DIV,

 };

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_PLL, &pll_cfg);

 assert(FSP_SUCCESS == err);

 do

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,744 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 /* Wait for PLL to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_PLL);

 } while (FSP_SUCCESS != err);

 cgc_divider_cfg_t pll_dividers =

 {

 .sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_4,

 .sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_4,

 };

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_PLL, &pll_dividers);

 assert(FSP_SUCCESS == err);

#endif

 /* (Optional) Clear the error flag. Only clear this flag after switching the MCU

clock source away from the main

 * oscillator and if the main oscillator is stable again. */

 err = R_CGC_OscStopStatusClear(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

}

void cgc_osc_stop_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable oscillation stop detection. The main oscillator must be running at this

point. */

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 /* (Optional) Oscillation stop detection must be disabled before entering any low

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,745 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

power mode. */

 err = R_CGC_OscStopDetectDisable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 __WFI();

 /* (Optional) Reenable oscillation stop detection after waking from low power mode.

*/

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct cgc_instance_ctrl_t

Data Structure Documentation

◆ cgc_instance_ctrl_t

struct cgc_instance_ctrl_t

CGC private control block. DO NOT MODIFY. Initialization occurs when R_CGC_Open() is called.

Data Fields

void const * p_context

Field Documentation

◆ p_context

void const* cgc_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in cgc_callback_args_t.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,746 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_Open()

fsp_err_t R_CGC_Open (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

Initialize the CGC API. Implements cgc_api_t::open.

Example:

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

Return values
FSP_SUCCESS CGC successfully initialized.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_ALREADY_OPEN Module is already open.

◆ R_CGC_ClocksCfg()

fsp_err_t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const p_clock_cfg)

Reconfigures all main system clocks. This API can be used for any of the following purposes:

start or stop clocks
change the system clock source
configure the PLL/PLL2 multiplication and division ratios when starting the PLL
configure the division ratios when starting the HOCO/MOCO/MOSC
change the system dividers

If the requested system clock source has a stabilization flag, this function blocks waiting for the
stabilization flag of the requested system clock source to be set. If the requested system clock
source was just started and it has no stabilization flag, this function blocks for the stabilization time
required by the requested system clock source according to the Electrical Characteristics section of
the hardware manual. If the requested system clock source has no stabilization flag and it is
already running, it is assumed to be stable and this function will not block. If the requested system
clock is the subclock, the subclock must be stable prior to calling this function.

The internal dividers (cgc_clocks_cfg_t::divider_cfg) are subject to constraints described in
footnotes of the hardware manual table detailing specifications for the clock generation circuit for
the internal clocks for the MCU. For example:

RA6M3: see footnotes of Table 9.2 "Specifications of the clock generation circuit for the
internal clocks" in the RA6M3 manual R01UH0886EJ0100
RA2A1: see footnotes of Table 9.2 "Clock generation circuit specifications for the internal
clocks" in the RA2A1 manual R01UH0888EJ0100

Do not attempt to stop the requested clock source or the source of a PLL if the PLL will be running
after this operation completes.

Implements cgc_api_t::clocksCfg.

Example:

 /* Assuming the system clock is MOCO, switch to HOCO. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,747 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 cgc_clocks_cfg_t clocks_cfg;

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC; // unused

 clocks_cfg.pll_cfg.multiplier = CGC_PLL_MUL_10_0; // unused

 clocks_cfg.pll_cfg.divider = CGC_PLL_DIV_2; // unused

 clocks_cfg.divider_cfg.sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Clock configuration applied successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE Attempt to stop the current system clock or
the PLL source clock.

FSP_ERR_CLOCK_ACTIVE PLL configuration cannot be changed while
PLL is running.

FSP_ERR_OSC_STOP_DET_ENABLED PLL multiplier must be less than 20 if
oscillation stop detect is enabled and the
input frequency is less than 12.5 MHz.

FSP_ERR_NOT_STABILIZED PLL clock source is not stable.

FSP_ERR_PLL_SRC_INACTIVE PLL clock source is not running.

FSP_ERR_INVALID_STATE The subclock must be running before
activating HOCO with FLL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,748 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_ClockStart()

fsp_err_t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source, cgc_pll_cfg_t const
*const p_pll_cfg)

Start the specified clock if it is not currently active. The PLL configuration cannot be changed while
the PLL is running. Implements cgc_api_t::clockStart.

The PLL source clock must be operating and stable prior to starting the PLL.

Example:

 /* Start the LOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_LOCO, NULL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Clock initialized successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_STABILIZED The clock source is not stabilized after being
turned off or PLL clock source is not stable.

FSP_ERR_PLL_SRC_INACTIVE PLL clock source is not running.

FSP_ERR_CLOCK_ACTIVE PLL configuration cannot be changed while
PLL is running.

FSP_ERR_OSC_STOP_DET_ENABLED PLL multiplier must be less than 20 if
oscillation stop detect is enabled and the
input frequency is less than 12.5 MHz.

FSP_ERR_INVALID_STATE The subclock must be running before
activating HOCO with FLL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,749 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_ClockStop()

fsp_err_t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Stop the specified clock if it is active. Implements cgc_api_t::clockStop.

Do not attempt to stop the current system clock source. Do not attempt to stop the source clock of
a PLL if the PLL is running.

Return values
FSP_SUCCESS Clock stopped successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE Attempt to stop the current system clock or
the PLL source clock.

FSP_ERR_OSC_STOP_DET_ENABLED Attempt to stop MOCO when Oscillation stop
is enabled.

FSP_ERR_NOT_STABILIZED Clock not stabilized after starting.

◆ R_CGC_SystemClockSet()

fsp_err_t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

Set the specified clock as the system clock and configure the internal dividers for ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, BCLK, and FCLK. Implements cgc_api_t::systemClockSet.

The requested clock source must be running and stable prior to calling this function. The internal
dividers are subject to constraints described in the hardware manual table "Specifications of the
Clock Generation Circuit for the internal clocks".

The internal dividers (p_divider_cfg) are subject to constraints described in footnotes of the
hardware manual table detailing specifications for the clock generation circuit for the internal
clocks for the MCU. For example:

RA6M3: see footnotes of Table 9.2 "Specifications of the clock generation circuit for the
internal clocks" in the RA6M3 manual R01UH0886EJ0100
RA2A1: see footnotes of Table 9.2 "Clock generation circuit specifications for the internal
clocks" in the RA2A1 manual R01UH0888EJ0100

This function also updates the RAM and ROM wait states, the operating power control mode, and
the SystemCoreClock CMSIS global variable.

Example:

 /* Set divisors. Divisors for clocks that don't exist on the MCU are ignored. */

 cgc_divider_cfg_t dividers =

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,750 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

 /* PCLKB is not used in this application, so select the maximum divisor for lowest

power. */

 .sckdivcr_b.pclkb_div = CGC_SYS_CLOCK_DIV_64,

 /* PCLKD is not used in this application, so select the maximum divisor for lowest

power. */

 .sckdivcr_b.pclkd_div = CGC_SYS_CLOCK_DIV_64,

 /* ICLK is the MCU clock, allow it to run as fast as the LOCO is capable. */

 .sckdivcr_b.iclk_div = CGC_SYS_CLOCK_DIV_1,

 /* These clocks do not exist on some devices. If any clocks don't exist, set the

divider to 1. */

 .sckdivcr_b.pclka_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.pclkc_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.fclk_div = CGC_SYS_CLOCK_DIV_1,

 .sckdivcr_b.bclk_div = CGC_SYS_CLOCK_DIV_1,

 };

 /* Switch the system clock to LOCO. */

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_LOCO, ÷rs);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CLOCK_INACTIVE The specified clock source is inactive.

FSP_ERR_NOT_STABILIZED The clock source has not stabilized

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,751 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_SystemClockGet()

fsp_err_t R_CGC_SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const p_clock_source,
cgc_divider_cfg_t *const p_divider_cfg)

Return the current system clock source and configuration. Implements cgc_api_t::systemClockGet.

Return values
FSP_SUCCESS Parameters returned successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

◆ R_CGC_ClockCheck()

fsp_err_t R_CGC_ClockCheck (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Check the specified clock for stability. Implements cgc_api_t::clockCheck.

Return values
FSP_SUCCESS Clock is running and stable.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_STABILIZED Clock not stabilized.

FSP_ERR_CLOCK_INACTIVE Clock not turned on.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,752 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopDetectEnable()

fsp_err_t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)

Enable the oscillation stop detection for the main clock. Implements
cgc_api_t::oscStopDetectEnable.

The MCU will automatically switch the system clock to MOCO when a stop is detected if Main Clock
is the system clock. If the system clock is the PLL, then the clock source will not be changed and
the PLL free running frequency will be the system clock frequency.

Example:

 /* Enable oscillation stop detection. The main oscillator must be running at this

point. */

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_LOW_VOLTAGE_MODE Settings not allowed in low voltage mode.

FSP_ERR_UNSUPPORTED Function not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,753 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopDetectDisable()

fsp_err_t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)

Disable the oscillation stop detection for the main clock. Implements
cgc_api_t::oscStopDetectDisable.

Example:

 /* (Optional) Oscillation stop detection must be disabled before entering any low

power mode. */

 err = R_CGC_OscStopDetectDisable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 __WFI();

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detect status flag is set.
Under this condition it is not possible to
disable the Oscillation stop detection
function.

FSP_ERR_UNSUPPORTED Function not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,754 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopStatusClear()

fsp_err_t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)

Clear the Oscillation Stop Detection Status register. This register is not cleared automatically if the
stopped clock is restarted. Implements cgc_api_t::oscStopStatusClear.

After clearing the status, oscillation stop detection is no longer enabled.

This register cannot be cleared while the main oscillator is the system clock or the PLL source
clock.

Example:

 /* (Optional) Clear the error flag. Only clear this flag after switching the MCU

clock source away from the main

 * oscillator and if the main oscillator is stable again. */

 err = R_CGC_OscStopStatusClear(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CLOCK_INACTIVE Main oscillator must be running to clear the
oscillation stop detection flag.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE The Oscillation Detect Status flag cannot be
cleared if the Main Osc or PLL is set as the
system clock. Change the system clock
before attempting to clear this bit.

FSP_ERR_INVALID_HW_CONDITION Oscillation stop status was not cleared.
Check preconditions and try again.

FSP_ERR_UNSUPPORTED Function not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,755 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Clock Generation Circuit (r_cgc)

◆ R_CGC_CallbackSet()

fsp_err_t R_CGC_CallbackSet (cgc_ctrl_t *const p_api_ctrl, void(*)(cgc_callback_args_t *)
p_callback, void const *const p_context, cgc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
cgc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

FSP_ERR_UNSUPPORTED Function not supported.

◆ R_CGC_Close()

fsp_err_t R_CGC_Close (cgc_ctrl_t *const p_ctrl)

Closes the CGC module. Implements cgc_api_t::close.

Return values
FSP_SUCCESS The module is successfully closed.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

5.2.18.2 Event Link Controller (r_elc)
Modules » System

Functions

fsp_err_t R_ELC_Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t R_ELC_Close (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_SoftwareEventGenerate (elc_ctrl_t *const p_ctrl,
elc_software_event_t event_number)

fsp_err_t R_ELC_LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,756 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

elc_event_t signal)

fsp_err_t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t R_ELC_Enable (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_Disable (elc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the ELC peripheral on RA MCUs. This module implements the ELC Interface.

Overview
The event link controller (ELC) uses the event requests generated by various peripheral modules as
source signals to connect (link) them to different modules, allowing direct cooperation between the
modules without central processing unit (CPU) intervention. The conceptual diagram below illustrates
a potential setup where a pin interrupt triggers a timer which later triggers an ADC conversion and
CTSU scan, while at the same time a serial communication interrupt automatically starts a data
transfer. These tasks would be automatically handled without the need for polling or interrupt
management.

Figure 294: Event Link Controller Conceptual Diagram

In essence, the ELC is an array of multiplexers to route a wide variety of interrupt signals to a subset
of peripheral functions. Events are linked by setting the multiplexer for the desired function to the
desired signal (through R_ELC_LinkSet). The diagram below illustrates one peripheral output of the
ELC. In this example, a conversion start is triggered for ADC0 Group A when the GPT0 counter
overflows:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,757 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

Figure 295: ELC Example

Features

The ELC HAL module can perform the following functions:

Initialize the ELC to a pre-defined set of links
Create an event link between two blocks
Break an event link between two blocks
Generate one of two software events that interrupt the CPU
Globally enable or disable event links

A variety of functions can be activated via events, including:

General-purpose timer (GPT) control
ADC and DAC conversion start
Synchronized I/O port output (ports 1-4 only)
Capacitive touch unit (CTSU) measurement activation

Note
The available sources and peripherals may differ between devices. A full list of selectable peripherals and events is
available in the User's Manual for your device.
Some peripherals have specific settings related to ELC event generation and/or reception. Details on how to enable
event functionality for each peripheral are located in the usage notes for the related module(s) as well as in the
User's Manual for your device.

Configuration
Note

Event links will be automatically generated based on the selections made in module properties. To view the
currently linked events check the Event Links tab in the RA Configuration editor.
Calling R_ELC_Open followed by R_ELC_Enable will automatically link all events shown in the Event Links tab.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,758 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

To manually link an event to a peripheral at runtime perform the following steps:

1. Configure the operation of the destination peripheral (including any configuration necessary
to receive events)

2. Use R_ELC_LinkSet to set the desired event link to the peripheral
3. Use R_ELC_Enable to enable transmission of event signals
4. Configure the signaling module to output the desired event (typically an interrupt)

To disable the event, either use R_ELC_LinkBreak to clear the link for a specific event or
R_ELC_Disable to globally disable event linking.

Note
The ELC module needs no pin, clocking or interrupt configuration; it is merely a mechanism to connect signals
between peripherals. However, when linking I/O Ports via the ELC the relevant I/O pins need to be configured as
inputs or outputs.

Build Time Configurations for r_elc

The following build time configurations are defined in fsp_cfg/r_elc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for System > Event Link Controller (r_elc)

This module can be added to the Stacks tab via New Stack > System > Event Link Controller (r_elc).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name ELC instance name
must be g_elc to match
elc_cfg_t data structure
created in elc_data.c

g_elc Module name. Fixed to
g_elc.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the ELC:

To link events it is necessary for the ELC and the related modules to be enabled. The ELC
cannot operate if the related modules are in the module stop state or the MCU is in a low
power consumption mode for which the module is stopped.
If two modules are linked across clock domains there may be a 1 to 2 cycle delay between
event signaling and reception. The delay timing is based on the frequency of the slowest
clock.

Examples

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,759 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

Basic Example

Below is a basic example of minimal use of event linking in an application.

/* This struct is automatically generated based on the events configured by

peripherals in the RA Configuration editor. */

static const elc_cfg_t g_elc_cfg =

{

 .link[ELC_PERIPHERAL_GPT_A] = ELC_EVENT_ICU_IRQ0,

 .link[ELC_PERIPHERAL_IOPORT1] = ELC_EVENT_GPT4_COUNTER_OVERFLOW

};

void elc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_GPT4_COUNTER_OVERFLOW);

 assert(FSP_SUCCESS == err);

 /* Globally enable event linking in the ELC. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

}

Software-Generated Events

This example demonstrates how to use a software-generated event to signal a peripheral. This can
be useful when the desired event source is not supported by the ELC hardware.

/* Interrupt handler for peripheral event not supported by the ELC */

void peripheral_isr (void)

{

 fsp_err_t err;

 /* Generate an event signal through software to the linked peripheral. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,760 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

}

void elc_software_event (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Link ADC0 conversion start to software event 0. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application code here. */

 }

}

Data Structures

struct elc_instance_ctrl_t

Data Structure Documentation

◆ elc_instance_ctrl_t

struct elc_instance_ctrl_t

ELC private control block. DO NOT MODIFY. Initialization occurs when R_ELC_Open() is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,761 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

◆ R_ELC_Open()

fsp_err_t R_ELC_Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

Initialize all the links in the Event Link Controller. Implements elc_api_t::open

The configuration structure passed in to this function includes links for every event source included
in the ELC and sets them all at once. To set or clear an individual link use R_ELC_LinkSet and
R_ELC_LinkBreak respectively.

Example:

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION p_ctrl or p_cfg was NULL

FSP_ERR_ALREADY_OPEN The module is currently open

◆ R_ELC_Close()

fsp_err_t R_ELC_Close (elc_ctrl_t *const p_ctrl)

Globally disable ELC linking. Implements elc_api_t::close

Return values
FSP_SUCCESS The ELC was successfully disabled

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,762 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

◆ R_ELC_SoftwareEventGenerate()

fsp_err_t R_ELC_SoftwareEventGenerate (elc_ctrl_t *const p_ctrl, elc_software_event_t
event_number)

Generate a software event in the Event Link Controller. Implements
elc_api_t::softwareEventGenerate

Example:

 /* Generate an event signal through software to the linked peripheral. */

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION Invalid event number or p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_LinkSet()

fsp_err_t R_ELC_LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link. Implements elc_api_t::linkSet

Example:

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_GPT4_COUNTER_OVERFLOW);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,763 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > Event Link Controller (r_elc)

◆ R_ELC_LinkBreak()

fsp_err_t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

Break an event link. Implements elc_api_t::linkBreak

Return values
FSP_SUCCESS Event link broken

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_Enable()

fsp_err_t R_ELC_Enable (elc_ctrl_t *const p_ctrl)

Enable the operation of the Event Link Controller. Implements elc_api_t::enable

Return values
FSP_SUCCESS ELC enabled.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_Disable()

fsp_err_t R_ELC_Disable (elc_ctrl_t *const p_ctrl)

Disable the operation of the Event Link Controller. Implements elc_api_t::disable

Return values
FSP_SUCCESS ELC disabled.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

5.2.18.3 I/O Port (r_ioport)
Modules » System

Functions

fsp_err_t R_IOPORT_Open (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,764 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

fsp_err_t R_IOPORT_Close (ioport_ctrl_t *const p_ctrl)

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t
*p_cfg)

fsp_err_t R_IOPORT_PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
uint32_t cfg)

fsp_err_t R_IOPORT_PinRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t R_IOPORT_PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_port_value)

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

fsp_err_t R_IOPORT_PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t
port, ioport_size_t direction_values, ioport_size_t mask)

fsp_err_t R_IOPORT_PortEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t *p_event_data)

fsp_err_t R_IOPORT_PinEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t *p_pin_event)

fsp_err_t R_IOPORT_PortEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t event_data, ioport_size_t
mask_value)

fsp_err_t R_IOPORT_PinEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t pin_value)

Detailed Description

Driver for the I/O Ports peripheral on RA MCUs. This module implements the I/O Port Interface.

Overview
The I/O port pins operate as general I/O port pins, I/O pins for peripheral modules, interrupt input
pins, analog I/O, port group function for the ELC, or bus control pins.

Features

The IOPORT HAL module can configure the following pin settings:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,765 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

Pin direction
Default output state
Pull-up
NMOS/PMOS
Drive strength
Event edge trigger (falling, rising or both)
Whether the pin is to be used as an IRQ pin
Whether the pin is to be used as an analog pin
Peripheral connection

The module also provides the following functionality:

Read/write GPIO pins/ports
Sets event output data
Reads event input data

Configuration
The I/O PORT HAL module must be configured by the user for the desired operation. The operating
state of an I/O pin can be set via the RA Configuration tool. When the project is built a pin
configuration file is created. The BSP will automatically configure the MCU IO ports accordingly at
startup using the same API functions mentioned in this document.

Build Time Configurations for r_ioport

The following build time configurations are defined in fsp_cfg/r_ioport_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for System > I/O Port (r_ioport)

This module can be added to the Stacks tab via New Stack > System > I/O Port (r_ioport).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_ioport Module name.

1st Port ELC Trigger
Source

MCU Specific Options ELC source that will
trigger the 1st port

2nd Port ELC Trigger
Source

MCU Specific Options ELC source that will
trigger the 2nd port

3rd Port ELC Trigger
Source

MCU Specific Options ELC source that will
trigger the 3rd port

4th Port ELC Trigger
Source

MCU Specific Options ELC source that will
trigger the 4th port

Pin Configuration Name Name must be a valid g_bsp_pin_cfg Name for pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,766 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

C symbol configuration structure

Clock Configuration

The I/O PORT HAL module does not require a specific clock configuration.

Pin Configuration

The IOPORT module is used for configuring pins.

Usage Notes
Port Group Function for ELC

Depending on pin configuration, the IOPORT module can perform automatic reads and writes on 4
ports (RA2 and RA0 series support 2 ports only, see the table of ELC triggers below) on receipt of an
ELC event.

ELC triggers RA6T2 RA2XX, RA0XX All others

1st Port Port B Port 1 Port 1

2nd Port Port C Port 2 Port 2

3rd Port Port D NA Port 3

4th Port Port E NA Port 4

When an event is received by a port, the state of the input pins on the port is saved in a hardware
register. Simultaneously, the state of output pins on the port is set or cleared based on settings
configured by the user. The functions R_IOPORT_PinEventInputRead and
R_IOPORT_PortEventInputRead allow reading the last event input state of a pin or port, and event-
triggered pin output can be configured through R_IOPORT_PinEventOutputWrite and
R_IOPORT_PortEventOutputWrite.

In addition, each pin on these ports can be configured to trigger an ELC event on rising, falling or
both edges. This event can be used to activate other modules when the pin changes state.

Note
The number of ELC-aware ports vary across MCUs. Refer to the Hardware User's Manual for your device for
more details.

Examples
Basic Example

This is a basic example of minimal use of the IOPORT in an application.

void basic_example ()

{

 bsp_io_level_t readLevel;

 fsp_err_t err;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,767 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

 /* Initialize the IOPORT module and configure the pins

 * Note: The default pin configuration name in the RA Configuration tool is

g_bsp_pin_cfg */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Call R_IOPORT_PinsCfg if the configuration was not part of initial configurations

made in open */

 err = R_IOPORT_PinsCfg(&g_ioport_ctrl, &g_runtime_pin_cfg);

 assert(FSP_SUCCESS == err);

 /* Set Pin 00 of Port 06 to High */

 err = R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, BSP_IO_LEVEL_HIGH

);

 assert(FSP_SUCCESS == err);

 /* Read Pin 00 of Port 06*/

 err = R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, &readLevel);

 assert(FSP_SUCCESS == err);

}

Blinky Example

This example uses IOPORT to configure and toggle a pin to blink an LED.

void blinky_example ()

{

 fsp_err_t err;

 /* Initialize the IOPORT module and configure the pins */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure Pin as output

 * Call the R_IOPORT_PinCfg if the configuration was not part of initial

configurations made in open */

 err = R_IOPORT_PinCfg(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00,

IOPORT_CFG_PORT_DIRECTION_OUTPUT);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,768 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

 assert(FSP_SUCCESS == err);

 bsp_io_level_t level = BSP_IO_LEVEL_LOW;

 while (1)

 {

 /* Determine the next state of the LEDs */

 if (BSP_IO_LEVEL_LOW == level)

 {

 level = BSP_IO_LEVEL_HIGH;

 }

 else

 {

 level = BSP_IO_LEVEL_LOW;

 }

 /* Update LED on RA6M3-PK */

 err = R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, level);

 assert(FSP_SUCCESS == err);

 /* Delay */

 R_BSP_SoftwareDelay(100, BSP_DELAY_UNITS_MILLISECONDS); // NOLINT

 }

}

ELC Example

This is an example of using IOPORT with ELC events. The ELC event system allows the captured data
to be stored when it occurs and then read back at a later time.

static elc_instance_ctrl_t g_elc_ctrl;

static elc_cfg_t g_elc_cfg;

void ioport_elc_example ()

{

 bsp_io_level_t eventValue;

 fsp_err_t err;

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,769 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

 assert(FSP_SUCCESS == err);

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, (elc_peripheral_t) ELC_PERIPHERAL_IOPORT2,

ELC_EVENT_ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

 /* Globally enable event linking in the ELC. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Initialize the IOPORT module and configure the pins */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 assert(FSP_SUCCESS == err);

 /* Call the R_IOPORT_PinCfg if the configuration was not part of initial

configurations made in open */

 err = R_IOPORT_PinCfg(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_00,

IOPORT_CFG_PORT_DIRECTION_INPUT);

 assert(FSP_SUCCESS == err);

 /* Generate an event signal through software to the linked peripheral. */

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

 /* Read Pin Event Input. The data(BSP_IO_LEVEL_HIGH/ BSP_IO_LEVEL_LOW) from

BSP_IO_PORT_02_PIN_00 is read into the

 * EIDR bit */

 err = R_IOPORT_PinEventInputRead(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_00,

&eventValue);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct ioport_instance_ctrl_t

Enumerations

enum ioport_port_pin_t

enum ioport_peripheral_t

enum ioport_cfg_options_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,770 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

Data Structure Documentation

◆ ioport_instance_ctrl_t

struct ioport_instance_ctrl_t

IOPORT private control block. DO NOT MODIFY. Initialization occurs when R_IOPORT_Open() is
called.

Enumeration Type Documentation

◆ ioport_port_pin_t

enum ioport_port_pin_t

Superset list of all possible IO port pins.

Enumerator

IOPORT_PORT_00_PIN_00 IO port 0 pin 0.

IOPORT_PORT_00_PIN_01 IO port 0 pin 1.

IOPORT_PORT_00_PIN_02 IO port 0 pin 2.

IOPORT_PORT_00_PIN_03 IO port 0 pin 3.

IOPORT_PORT_00_PIN_04 IO port 0 pin 4.

IOPORT_PORT_00_PIN_05 IO port 0 pin 5.

IOPORT_PORT_00_PIN_06 IO port 0 pin 6.

IOPORT_PORT_00_PIN_07 IO port 0 pin 7.

IOPORT_PORT_00_PIN_08 IO port 0 pin 8.

IOPORT_PORT_00_PIN_09 IO port 0 pin 9.

IOPORT_PORT_00_PIN_10 IO port 0 pin 10.

IOPORT_PORT_00_PIN_11 IO port 0 pin 11.

IOPORT_PORT_00_PIN_12 IO port 0 pin 12.

IOPORT_PORT_00_PIN_13 IO port 0 pin 13.

IOPORT_PORT_00_PIN_14 IO port 0 pin 14.

IOPORT_PORT_00_PIN_15 IO port 0 pin 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,771 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_01_PIN_00 IO port 1 pin 0.

IOPORT_PORT_01_PIN_01 IO port 1 pin 1.

IOPORT_PORT_01_PIN_02 IO port 1 pin 2.

IOPORT_PORT_01_PIN_03 IO port 1 pin 3.

IOPORT_PORT_01_PIN_04 IO port 1 pin 4.

IOPORT_PORT_01_PIN_05 IO port 1 pin 5.

IOPORT_PORT_01_PIN_06 IO port 1 pin 6.

IOPORT_PORT_01_PIN_07 IO port 1 pin 7.

IOPORT_PORT_01_PIN_08 IO port 1 pin 8.

IOPORT_PORT_01_PIN_09 IO port 1 pin 9.

IOPORT_PORT_01_PIN_10 IO port 1 pin 10.

IOPORT_PORT_01_PIN_11 IO port 1 pin 11.

IOPORT_PORT_01_PIN_12 IO port 1 pin 12.

IOPORT_PORT_01_PIN_13 IO port 1 pin 13.

IOPORT_PORT_01_PIN_14 IO port 1 pin 14.

IOPORT_PORT_01_PIN_15 IO port 1 pin 15.

IOPORT_PORT_02_PIN_00 IO port 2 pin 0.

IOPORT_PORT_02_PIN_01 IO port 2 pin 1.

IOPORT_PORT_02_PIN_02 IO port 2 pin 2.

IOPORT_PORT_02_PIN_03 IO port 2 pin 3.

IOPORT_PORT_02_PIN_04 IO port 2 pin 4.

IOPORT_PORT_02_PIN_05 IO port 2 pin 5.

IOPORT_PORT_02_PIN_06 IO port 2 pin 6.

IOPORT_PORT_02_PIN_07 IO port 2 pin 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,772 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_02_PIN_08 IO port 2 pin 8.

IOPORT_PORT_02_PIN_09 IO port 2 pin 9.

IOPORT_PORT_02_PIN_10 IO port 2 pin 10.

IOPORT_PORT_02_PIN_11 IO port 2 pin 11.

IOPORT_PORT_02_PIN_12 IO port 2 pin 12.

IOPORT_PORT_02_PIN_13 IO port 2 pin 13.

IOPORT_PORT_02_PIN_14 IO port 2 pin 14.

IOPORT_PORT_02_PIN_15 IO port 2 pin 15.

IOPORT_PORT_03_PIN_00 IO port 3 pin 0.

IOPORT_PORT_03_PIN_01 IO port 3 pin 1.

IOPORT_PORT_03_PIN_02 IO port 3 pin 2.

IOPORT_PORT_03_PIN_03 IO port 3 pin 3.

IOPORT_PORT_03_PIN_04 IO port 3 pin 4.

IOPORT_PORT_03_PIN_05 IO port 3 pin 5.

IOPORT_PORT_03_PIN_06 IO port 3 pin 6.

IOPORT_PORT_03_PIN_07 IO port 3 pin 7.

IOPORT_PORT_03_PIN_08 IO port 3 pin 8.

IOPORT_PORT_03_PIN_09 IO port 3 pin 9.

IOPORT_PORT_03_PIN_10 IO port 3 pin 10.

IOPORT_PORT_03_PIN_11 IO port 3 pin 11.

IOPORT_PORT_03_PIN_12 IO port 3 pin 12.

IOPORT_PORT_03_PIN_13 IO port 3 pin 13.

IOPORT_PORT_03_PIN_14 IO port 3 pin 14.

IOPORT_PORT_03_PIN_15 IO port 3 pin 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,773 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_04_PIN_00 IO port 4 pin 0.

IOPORT_PORT_04_PIN_01 IO port 4 pin 1.

IOPORT_PORT_04_PIN_02 IO port 4 pin 2.

IOPORT_PORT_04_PIN_03 IO port 4 pin 3.

IOPORT_PORT_04_PIN_04 IO port 4 pin 4.

IOPORT_PORT_04_PIN_05 IO port 4 pin 5.

IOPORT_PORT_04_PIN_06 IO port 4 pin 6.

IOPORT_PORT_04_PIN_07 IO port 4 pin 7.

IOPORT_PORT_04_PIN_08 IO port 4 pin 8.

IOPORT_PORT_04_PIN_09 IO port 4 pin 9.

IOPORT_PORT_04_PIN_10 IO port 4 pin 10.

IOPORT_PORT_04_PIN_11 IO port 4 pin 11.

IOPORT_PORT_04_PIN_12 IO port 4 pin 12.

IOPORT_PORT_04_PIN_13 IO port 4 pin 13.

IOPORT_PORT_04_PIN_14 IO port 4 pin 14.

IOPORT_PORT_04_PIN_15 IO port 4 pin 15.

IOPORT_PORT_05_PIN_00 IO port 5 pin 0.

IOPORT_PORT_05_PIN_01 IO port 5 pin 1.

IOPORT_PORT_05_PIN_02 IO port 5 pin 2.

IOPORT_PORT_05_PIN_03 IO port 5 pin 3.

IOPORT_PORT_05_PIN_04 IO port 5 pin 4.

IOPORT_PORT_05_PIN_05 IO port 5 pin 5.

IOPORT_PORT_05_PIN_06 IO port 5 pin 6.

IOPORT_PORT_05_PIN_07 IO port 5 pin 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,774 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_05_PIN_08 IO port 5 pin 8.

IOPORT_PORT_05_PIN_09 IO port 5 pin 9.

IOPORT_PORT_05_PIN_10 IO port 5 pin 10.

IOPORT_PORT_05_PIN_11 IO port 5 pin 11.

IOPORT_PORT_05_PIN_12 IO port 5 pin 12.

IOPORT_PORT_05_PIN_13 IO port 5 pin 13.

IOPORT_PORT_05_PIN_14 IO port 5 pin 14.

IOPORT_PORT_05_PIN_15 IO port 5 pin 15.

IOPORT_PORT_06_PIN_00 IO port 6 pin 0.

IOPORT_PORT_06_PIN_01 IO port 6 pin 1.

IOPORT_PORT_06_PIN_02 IO port 6 pin 2.

IOPORT_PORT_06_PIN_03 IO port 6 pin 3.

IOPORT_PORT_06_PIN_04 IO port 6 pin 4.

IOPORT_PORT_06_PIN_05 IO port 6 pin 5.

IOPORT_PORT_06_PIN_06 IO port 6 pin 6.

IOPORT_PORT_06_PIN_07 IO port 6 pin 7.

IOPORT_PORT_06_PIN_08 IO port 6 pin 8.

IOPORT_PORT_06_PIN_09 IO port 6 pin 9.

IOPORT_PORT_06_PIN_10 IO port 6 pin 10.

IOPORT_PORT_06_PIN_11 IO port 6 pin 11.

IOPORT_PORT_06_PIN_12 IO port 6 pin 12.

IOPORT_PORT_06_PIN_13 IO port 6 pin 13.

IOPORT_PORT_06_PIN_14 IO port 6 pin 14.

IOPORT_PORT_06_PIN_15 IO port 6 pin 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,775 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_07_PIN_00 IO port 7 pin 0.

IOPORT_PORT_07_PIN_01 IO port 7 pin 1.

IOPORT_PORT_07_PIN_02 IO port 7 pin 2.

IOPORT_PORT_07_PIN_03 IO port 7 pin 3.

IOPORT_PORT_07_PIN_04 IO port 7 pin 4.

IOPORT_PORT_07_PIN_05 IO port 7 pin 5.

IOPORT_PORT_07_PIN_06 IO port 7 pin 6.

IOPORT_PORT_07_PIN_07 IO port 7 pin 7.

IOPORT_PORT_07_PIN_08 IO port 7 pin 8.

IOPORT_PORT_07_PIN_09 IO port 7 pin 9.

IOPORT_PORT_07_PIN_10 IO port 7 pin 10.

IOPORT_PORT_07_PIN_11 IO port 7 pin 11.

IOPORT_PORT_07_PIN_12 IO port 7 pin 12.

IOPORT_PORT_07_PIN_13 IO port 7 pin 13.

IOPORT_PORT_07_PIN_14 IO port 7 pin 14.

IOPORT_PORT_07_PIN_15 IO port 7 pin 15.

IOPORT_PORT_08_PIN_00 IO port 8 pin 0.

IOPORT_PORT_08_PIN_01 IO port 8 pin 1.

IOPORT_PORT_08_PIN_02 IO port 8 pin 2.

IOPORT_PORT_08_PIN_03 IO port 8 pin 3.

IOPORT_PORT_08_PIN_04 IO port 8 pin 4.

IOPORT_PORT_08_PIN_05 IO port 8 pin 5.

IOPORT_PORT_08_PIN_06 IO port 8 pin 6.

IOPORT_PORT_08_PIN_07 IO port 8 pin 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,776 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_08_PIN_08 IO port 8 pin 8.

IOPORT_PORT_08_PIN_09 IO port 8 pin 9.

IOPORT_PORT_08_PIN_10 IO port 8 pin 10.

IOPORT_PORT_08_PIN_11 IO port 8 pin 11.

IOPORT_PORT_08_PIN_12 IO port 8 pin 12.

IOPORT_PORT_08_PIN_13 IO port 8 pin 13.

IOPORT_PORT_08_PIN_14 IO port 8 pin 14.

IOPORT_PORT_08_PIN_15 IO port 8 pin 15.

IOPORT_PORT_09_PIN_00 IO port 9 pin 0.

IOPORT_PORT_09_PIN_01 IO port 9 pin 1.

IOPORT_PORT_09_PIN_02 IO port 9 pin 2.

IOPORT_PORT_09_PIN_03 IO port 9 pin 3.

IOPORT_PORT_09_PIN_04 IO port 9 pin 4.

IOPORT_PORT_09_PIN_05 IO port 9 pin 5.

IOPORT_PORT_09_PIN_06 IO port 9 pin 6.

IOPORT_PORT_09_PIN_07 IO port 9 pin 7.

IOPORT_PORT_09_PIN_08 IO port 9 pin 8.

IOPORT_PORT_09_PIN_09 IO port 9 pin 9.

IOPORT_PORT_09_PIN_10 IO port 9 pin 10.

IOPORT_PORT_09_PIN_11 IO port 9 pin 11.

IOPORT_PORT_09_PIN_12 IO port 9 pin 12.

IOPORT_PORT_09_PIN_13 IO port 9 pin 13.

IOPORT_PORT_09_PIN_14 IO port 9 pin 14.

IOPORT_PORT_09_PIN_15 IO port 9 pin 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,777 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_10_PIN_00 IO port 10 pin 0.

IOPORT_PORT_10_PIN_01 IO port 10 pin 1.

IOPORT_PORT_10_PIN_02 IO port 10 pin 2.

IOPORT_PORT_10_PIN_03 IO port 10 pin 3.

IOPORT_PORT_10_PIN_04 IO port 10 pin 4.

IOPORT_PORT_10_PIN_05 IO port 10 pin 5.

IOPORT_PORT_10_PIN_06 IO port 10 pin 6.

IOPORT_PORT_10_PIN_07 IO port 10 pin 7.

IOPORT_PORT_10_PIN_08 IO port 10 pin 8.

IOPORT_PORT_10_PIN_09 IO port 10 pin 9.

IOPORT_PORT_10_PIN_10 IO port 10 pin 10.

IOPORT_PORT_10_PIN_11 IO port 10 pin 11.

IOPORT_PORT_10_PIN_12 IO port 10 pin 12.

IOPORT_PORT_10_PIN_13 IO port 10 pin 13.

IOPORT_PORT_10_PIN_14 IO port 10 pin 14.

IOPORT_PORT_10_PIN_15 IO port 10 pin 15.

IOPORT_PORT_11_PIN_00 IO port 11 pin 0.

IOPORT_PORT_11_PIN_01 IO port 11 pin 1.

IOPORT_PORT_11_PIN_02 IO port 11 pin 2.

IOPORT_PORT_11_PIN_03 IO port 11 pin 3.

IOPORT_PORT_11_PIN_04 IO port 11 pin 4.

IOPORT_PORT_11_PIN_05 IO port 11 pin 5.

IOPORT_PORT_11_PIN_06 IO port 11 pin 6.

IOPORT_PORT_11_PIN_07 IO port 11 pin 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,778 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_11_PIN_08 IO port 11 pin 8.

IOPORT_PORT_11_PIN_09 IO port 11 pin 9.

IOPORT_PORT_11_PIN_10 IO port 11 pin 10.

IOPORT_PORT_11_PIN_11 IO port 11 pin 11.

IOPORT_PORT_11_PIN_12 IO port 11 pin 12.

IOPORT_PORT_11_PIN_13 IO port 11 pin 13.

IOPORT_PORT_11_PIN_14 IO port 11 pin 14.

IOPORT_PORT_11_PIN_15 IO port 11 pin 15.

IOPORT_PORT_12_PIN_00 IO port 12 pin 0.

IOPORT_PORT_12_PIN_01 IO port 12 pin 1.

IOPORT_PORT_12_PIN_02 IO port 12 pin 2.

IOPORT_PORT_12_PIN_03 IO port 12 pin 3.

IOPORT_PORT_12_PIN_04 IO port 12 pin 4.

IOPORT_PORT_12_PIN_05 IO port 12 pin 5.

IOPORT_PORT_12_PIN_06 IO port 12 pin 6.

IOPORT_PORT_12_PIN_07 IO port 12 pin 7.

IOPORT_PORT_12_PIN_08 IO port 12 pin 8.

IOPORT_PORT_12_PIN_09 IO port 12 pin 9.

IOPORT_PORT_12_PIN_10 IO port 12 pin 10.

IOPORT_PORT_12_PIN_11 IO port 12 pin 11.

IOPORT_PORT_12_PIN_12 IO port 12 pin 12.

IOPORT_PORT_12_PIN_13 IO port 12 pin 13.

IOPORT_PORT_12_PIN_14 IO port 12 pin 14.

IOPORT_PORT_12_PIN_15 IO port 12 pin 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,779 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_13_PIN_00 IO port 13 pin 0.

IOPORT_PORT_13_PIN_01 IO port 13 pin 1.

IOPORT_PORT_13_PIN_02 IO port 13 pin 2.

IOPORT_PORT_13_PIN_03 IO port 13 pin 3.

IOPORT_PORT_13_PIN_04 IO port 13 pin 4.

IOPORT_PORT_13_PIN_05 IO port 13 pin 5.

IOPORT_PORT_13_PIN_06 IO port 13 pin 6.

IOPORT_PORT_13_PIN_07 IO port 13 pin 7.

IOPORT_PORT_13_PIN_08 IO port 13 pin 8.

IOPORT_PORT_13_PIN_09 IO port 13 pin 9.

IOPORT_PORT_13_PIN_10 IO port 13 pin 10.

IOPORT_PORT_13_PIN_11 IO port 13 pin 11.

IOPORT_PORT_13_PIN_12 IO port 13 pin 12.

IOPORT_PORT_13_PIN_13 IO port 13 pin 13.

IOPORT_PORT_13_PIN_14 IO port 13 pin 14.

IOPORT_PORT_13_PIN_15 IO port 13 pin 15.

IOPORT_PORT_14_PIN_00 IO port 14 pin 0.

IOPORT_PORT_14_PIN_01 IO port 14 pin 1.

IOPORT_PORT_14_PIN_02 IO port 14 pin 2.

IOPORT_PORT_14_PIN_03 IO port 14 pin 3.

IOPORT_PORT_14_PIN_04 IO port 14 pin 4.

IOPORT_PORT_14_PIN_05 IO port 14 pin 5.

IOPORT_PORT_14_PIN_06 IO port 14 pin 6.

IOPORT_PORT_14_PIN_07 IO port 14 pin 7.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,780 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PORT_14_PIN_08 IO port 14 pin 8.

IOPORT_PORT_14_PIN_09 IO port 14 pin 9.

IOPORT_PORT_14_PIN_10 IO port 14 pin 10.

IOPORT_PORT_14_PIN_11 IO port 14 pin 11.

IOPORT_PORT_14_PIN_12 IO port 14 pin 12.

IOPORT_PORT_14_PIN_13 IO port 14 pin 13.

IOPORT_PORT_14_PIN_14 IO port 14 pin 14.

IOPORT_PORT_14_PIN_15 IO port 14 pin 15.

◆ ioport_peripheral_t

enum ioport_peripheral_t

Superset of all peripheral functions.

Enumerator

IOPORT_PERIPHERAL_IO Pin will functions as an IO pin

IOPORT_PERIPHERAL_DEBUG Pin will function as a DEBUG pin

IOPORT_PERIPHERAL_AGT Pin will function as an AGT peripheral pin

IOPORT_PERIPHERAL_AGTW Pin will function as an AGT peripheral pin

IOPORT_PERIPHERAL_AGT1 Pin will function as an AGT peripheral pin

IOPORT_PERIPHERAL_GPT0 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_GPT1 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_SCI0_2_4_6_8 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SCI1_3_5_7_9 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SPI Pin will function as a SPI peripheral pin

IOPORT_PERIPHERAL_IIC Pin will function as a IIC peripheral pin

IOPORT_PERIPHERAL_KEY Pin will function as a KEY peripheral pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,781 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PERIPHERAL_CLKOUT_COMP_RTC Pin will function as a clock/comparator/RTC
peripheral pin

IOPORT_PERIPHERAL_CAC_AD Pin will function as a CAC/ADC peripheral pin

IOPORT_PERIPHERAL_BUS Pin will function as a BUS peripheral pin

IOPORT_PERIPHERAL_CTSU Pin will function as a CTSU peripheral pin

IOPORT_PERIPHERAL_ACMPHS Pin will function as a CMPHS peripheral pin

IOPORT_PERIPHERAL_LCDC Pin will function as a segment LCD peripheral
pin

IOPORT_PERIPHERAL_DE_SCI0_2_4_6_8 Pin will function as an SCI peripheral DEn pin

IOPORT_PERIPHERAL_DE_SCI1_3_5_7_9 Pin will function as an SCI DEn peripheral pin

IOPORT_PERIPHERAL_DALI Pin will function as a DALI peripheral pin

IOPORT_PERIPHERAL_CEU Pin will function as a CEU peripheral pin

IOPORT_PERIPHERAL_CAN Pin will function as a CAN peripheral pin

IOPORT_PERIPHERAL_QSPI Pin will function as a QSPI peripheral pin

IOPORT_PERIPHERAL_SSI Pin will function as an SSI peripheral pin

IOPORT_PERIPHERAL_USB_FS Pin will function as a USB full speed peripheral
pin

IOPORT_PERIPHERAL_USB_HS Pin will function as a USB high speed
peripheral pin

IOPORT_PERIPHERAL_GPT2 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_SDHI_MMC Pin will function as an SD/MMC peripheral pin

IOPORT_PERIPHERAL_GPT3 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_ETHER_MII Pin will function as an Ethernet MMI peripheral
pin

IOPORT_PERIPHERAL_GPT4 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_ETHER_RMII Pin will function as an Ethernet RMMI
peripheral pin

IOPORT_PERIPHERAL_PDC Pin will function as a PDC peripheral pin

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,782 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_PERIPHERAL_LCD_GRAPHICS Pin will function as a graphics LCD peripheral
pin

IOPORT_PERIPHERAL_CAC Pin will function as a CAC peripheral pin

IOPORT_PERIPHERAL_TRACE Pin will function as a debug trace peripheral
pin

IOPORT_PERIPHERAL_OSPI Pin will function as a OSPI peripheral pin

IOPORT_PERIPHERAL_CEC Pin will function as a CEC peripheral pin

IOPORT_PERIPHERAL_PGAOUT0 Pin will function as a PGAOUT peripheral pin

IOPORT_PERIPHERAL_PGAOUT1 Pin will function as a PGAOUT peripheral pin

IOPORT_PERIPHERAL_ULPT Pin will function as a ULPT peripheral pin

IOPORT_PERIPHERAL_MIPI Pin will function as a MIPI DSI peripheral pin

IOPORT_PERIPHERAL_UARTA Pin will function as an UARTA peripheral pin

◆ ioport_cfg_options_t

enum ioport_cfg_options_t

Options to configure pin functions

Enumerator

IOPORT_CFG_PORT_DIRECTION_INPUT Sets the pin direction to input (default)

IOPORT_CFG_PORT_DIRECTION_OUTPUT Sets the pin direction to output.

IOPORT_CFG_PORT_OUTPUT_LOW Sets the pin level to low.

IOPORT_CFG_PORT_OUTPUT_HIGH Sets the pin level to high.

IOPORT_CFG_PULLUP_ENABLE Enables the pin's internal pull-up.

IOPORT_CFG_PIM_TTL Enables the pin's input mode.

IOPORT_CFG_NMOS_ENABLE Enables the pin's NMOS open-drain output.

IOPORT_CFG_IRQ_ENABLE Sets pin as an IRQ pin.

IOPORT_CFG_ANALOG_ENABLE Enables pin to operate as an analog pin.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,783 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

IOPORT_CFG_PERIPHERAL_PIN Enables pin to operate as a peripheral pin.

IOPORT_CFG_PORT_DIRECTION_INPUT Sets the pin direction to input (default)

IOPORT_CFG_PORT_DIRECTION_OUTPUT Sets the pin direction to output.

IOPORT_CFG_PORT_OUTPUT_LOW Sets the pin level to low.

IOPORT_CFG_PORT_OUTPUT_HIGH Sets the pin level to high.

IOPORT_CFG_PULLUP_ENABLE Enables the pin's internal pull-up.

IOPORT_CFG_PIM_TTL Enables the pin's input mode.

IOPORT_CFG_NMOS_ENABLE Enables the pin's NMOS open-drain output.

IOPORT_CFG_PMOS_ENABLE Enables the pin's PMOS open-drain ouput.

IOPORT_CFG_DRIVE_MID Sets pin drive output to medium.

IOPORT_CFG_DRIVE_HS_HIGH Sets pin drive output to high along with
supporting high speed.

IOPORT_CFG_DRIVE_MID_IIC Sets pin to drive output needed for IIC on a
20mA port.

IOPORT_CFG_DRIVE_HIGH Sets pin drive output to high.

IOPORT_CFG_EVENT_RISING_EDGE Sets pin event trigger to rising edge.

IOPORT_CFG_EVENT_FALLING_EDGE Sets pin event trigger to falling edge.

IOPORT_CFG_EVENT_BOTH_EDGES Sets pin event trigger to both edges.

IOPORT_CFG_IRQ_ENABLE Sets pin as an IRQ pin.

IOPORT_CFG_ANALOG_ENABLE Enables pin to operate as an analog pin.

IOPORT_CFG_PERIPHERAL_PIN Enables pin to operate as a peripheral pin.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,784 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_Open()

fsp_err_t R_IOPORT_Open (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t * p_cfg)

Initializes internal driver data, then calls pin configuration function to configure pins.

Return values
FSP_SUCCESS Pin configuration data written to PFS

register(s)

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_ALREADY_OPEN Module is already open.

◆ R_IOPORT_Close()

fsp_err_t R_IOPORT_Close (ioport_ctrl_t *const p_ctrl)

Resets IOPORT registers. Implements ioport_api_t::close

Return values
FSP_SUCCESS The IOPORT was successfully uninitialized

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_IOPORT_PinsCfg()

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t * p_cfg)

Configures the functions of multiple pins by loading configuration data into pin PFS registers.
Implements ioport_api_t::pinsCfg.

This function initializes the supplied list of PmnPFS registers with the supplied values. This data can
be generated by the Pins tab of the RA Configuration editor or manually by the developer. Different
pin configurations can be loaded for different situations such as low power modes and testing.

Return values
FSP_SUCCESS Pin configuration data written to PFS

register(s)

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,785 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_PinCfg()

fsp_err_t R_IOPORT_PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t cfg)

Configures the settings of a pin. Implements ioport_api_t::pinCfg.

Return values
FSP_SUCCESS Pin configured

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different pins. This function will change the configuration of the pin with the new
configuration. For example it is not possible with this function to change the drive strength of a pin while leaving
all the other pin settings unchanged. To achieve this the original settings with the required change will need to be
written using this function.

◆ R_IOPORT_PinRead()

fsp_err_t R_IOPORT_PinRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t *
p_pin_value)

Reads the level on a pin. Implements ioport_api_t::pinRead.

Return values
FSP_SUCCESS Pin read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

Note
This function is re-entrant for different pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,786 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_PortRead()

fsp_err_t R_IOPORT_PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t *
p_port_value)

Reads the value on an IO port. Implements ioport_api_t::portRead.

The specified port will be read, and the levels for all the pins will be returned. Each bit in the
returned value corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to
pin 6, and so on.

Return values
FSP_SUCCESS Port read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PortWrite()

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t value,
ioport_size_t mask)

Writes to multiple pins on a port. Implements ioport_api_t::portWrite.

The input value will be written to the specified port. Each bit in the value parameter corresponds to
a bit on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the
mask parameter corresponds to a pin on the port.

Only the bits with the corresponding bit in the mask value set will be updated. For example, value
= 0xFFFF, mask = 0x0003 results in only bits 0 and 1 being updated.

Return values
FSP_SUCCESS Port written to

FSP_ERR_INVALID_ARGUMENT The port and/or mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports. This function makes use of the PCNTR3 register to atomically modify
the levels on the specified pins on a port.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,787 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_PinWrite()

fsp_err_t R_IOPORT_PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
level)

Sets a pin's output either high or low. Implements ioport_api_t::pinWrite.

Return values
FSP_SUCCESS Pin written to

FSP_ERR_INVALID_ARGUMENT The pin and/or level not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different pins. This function makes use of the PCNTR3 register to atomically modify
the level on the specified pin on a port.

◆ R_IOPORT_PortDirectionSet()

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
direction_values, ioport_size_t mask)

Sets the direction of individual pins on a port. Implements ioport_api_t::portDirectionSet().

Multiple pins on a port can be set to inputs or outputs at once. Each bit in the mask parameter
corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.
If a bit is set to 1 then the corresponding pin will be changed to an input or an output as specified
by the direction values. If a mask bit is set to 0 then the direction of the pin will not be changed.

Return values
FSP_SUCCESS Port direction updated

FSP_ERR_INVALID_ARGUMENT The port and/or mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,788 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_PortEventInputRead()

fsp_err_t R_IOPORT_PortEventInputRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t * p_event_data)

Reads the value of the event input data. Implements ioport_api_t::portEventInputRead().

The event input data for the port will be read. Each bit in the returned value corresponds to a pin
on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.

The port event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
FSP_SUCCESS Port read

FSP_ERR_INVALID_ARGUMENT Port not a valid ELC port

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_UNSUPPORTED Function not supported.

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PinEventInputRead()

fsp_err_t R_IOPORT_PinEventInputRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t * p_pin_event)

Reads the value of the event input data of a specific pin. Implements
ioport_api_t::pinEventInputRead.

The pin event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
FSP_SUCCESS Pin read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_INVALID_ARGUMENT Port is not valid ELC PORT.

FSP_ERR_UNSUPPORTED Function not supported.

Note
This function is re-entrant.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,789 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > System > I/O Port (r_ioport)

◆ R_IOPORT_PortEventOutputWrite()

fsp_err_t R_IOPORT_PortEventOutputWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

This function writes the set and reset event output data for a port. Implements
ioport_api_t::portEventOutputWrite.

Using the event system enables a port state to be stored by this function in advance of being
output on the port. The output to the port will occur when the ELC event occurs.

The input value will be written to the specified port when an ELC event configured for that port
occurs. Each bit in the value parameter corresponds to a bit on the port. For example, bit 7
corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the mask parameter corresponds to a pin
on the port.

Return values
FSP_SUCCESS Port event data written

FSP_ERR_INVALID_ARGUMENT Port or Mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PinEventOutputWrite()

fsp_err_t R_IOPORT_PinEventOutputWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t pin_value)

This function writes the event output data value to a pin. Implements
ioport_api_t::pinEventOutputWrite.

Using the event system enables a pin state to be stored by this function in advance of being output
on the pin. The output to the pin will occur when the ELC event occurs.

Return values
FSP_SUCCESS Pin event data written

FSP_ERR_INVALID_ARGUMENT Port or Pin or value not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,790 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers

5.2.19 Timers
Modules

Detailed Description

Timers Modules.

Modules

Independent Channel, 16-bit and 8-bit timer (r_tau)

 Driver for the TAU peripheral on RA MCUs. This module implements
the Timer Interface.

Port Output Enable for GPT (r_poeg)

 Driver for the POEG peripheral on RA MCUs. This module implements
the POEG Interface.

Realtime Clock (r_rtc)

 Driver for the RTC peripheral on RA MCUs. This module implements
the RTC Interface.

Realtime Clock (r_rtc_c)

 Driver for the RTC peripheral on RA MCUs. This module implements
the RTC Interface.

Three-Phase PWM (r_gpt_three_phase)

 Driver for 3-phase motor control using the GPT peripheral on RA
MCUs. This module implements the Three-Phase Interface.

Timer, 32-bit Interval Timer (r_tml)

 Driver for the TML peripherals on RA MCUs. This module implements
the Timer Interface.

Timer, General PWM (r_gpt)

 Driver for the GPT32 and GPT16 peripherals on RA MCUs. This
module implements the Timer Interface.

Timer, Low-Power (r_agt)

 Driver for the AGT and AGTW peripheral on RA MCUs. This module

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,791 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers

implements the Timer Interface.

Timer, Simultaneous Channel (r_tau_pwm)

 Driver for the TAU_PWM peripheral on RA MCUs. This module
implements the Timer Interface.

Timer, Ultra Low-Power (r_ulpt)

 Driver for the ULPT peripheral on RA MCUs. This module implements
the Timer Interface.

5.2.19.1 Independent Channel, 16-bit and 8-bit timer (r_tau)
Modules » Timers

Functions

fsp_err_t R_TAU_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_TAU_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_TAU_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_TAU_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_TAU_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_TAU_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_TAU_CallbackSet (timer_ctrl_t *const p_api_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,792 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_TAU_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the TAU peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The TAU module has the following features:

Supports Function Interval Timer, Square Wave Output, External Event Counter, Divider
Function, Input Pulse Interval Measurement, Delay Counter, Input Signal High- or Low-Level
Width Measurement.
Configurable clock source and external sources input to TImn
Configurable period (counts per timer cycle).
Supports operation clocks: CK00, CK01, CK02, and CK03.
Supports noise filter on input source.
Supports 16-bit and 8-bit timers.
Supports the runtime reconfiguration of the period.
Signal can be output to a pin.
Supports counting based on an external signal to TImn
Supports measuring pulse width or pulse period.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value. Below table illustrates
the channels and their corresponding supported features.

Chann
el

Interv
al

Timer

Squar
e

Wave
Outpu

t

Extern
al

Event
Count

er

Divide
r

Input
Pulse
Interv
al Mea
surem

ent

Delay
Count

er

Measu
re Hig
h-Low
Level
Pulse
Width

8-bit
timer
operat

ion

Opera
tion

clocks

Input
signal

s

Outpu
t

signal
s

TAU00 ✓ ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI00,
ELC

TO00

TAU01 ✓ ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01,
CK02,
CK03

TI01,
ELC

TO01

TAU02 ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI02 TO02

TAU03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01,
CK02,
CK03

TI03 TO03

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,793 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

TAU04 ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI04 TO04

TAU05 ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI05,
MOCO
,
LOCO,
FSUB

TO05

TAU06 ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI06 TO06

TAU07 ✓ ✓ ✓ ✓ ✓ ✓ CK00,
CK01

TI07,
RXD2

TO07

Configuration

Build Time Configurations for r_tau

The following build time configurations are defined in fsp_cfg/r_tau_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Interrupt Support Disabled
Enabled

Enabled Enable support for
interrupts

Pin Output Support Disabled
Enabled

Disabled Enable output for
either square wave or
divider output

Pin Input Support Disabled
Enabled

Disabled Enable input for pulse
width measurement,
level width
measurement,
pulse/edge counting or
divider functions.

Extra Input Mode
Support

Disabled
Enabled

Disabled Enable support for
event counting, system
clock count sources
and input noise filtering
when Pin Input Support
is enabled.

8-Bit Mode Support Disabled
Enabled

Disabled Enable support for 8-bit
timer modes (only
available on channels 1
and 3).

Configurations for Timers > Timer, Independent Channel, 16-bit and 8-bit Timer
Operation (r_tau)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,794 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

This module can be added to the Stacks tab via New Stack > Timers > Timer, Independent Channel,
16-bit and 8-bit Timer Operation (r_tau).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_timer0 Module name.

Channel Channel number must
be a non-negative
integer

0 Physical hardware
channel.

Function Interval Timer
Square Wave
Output
External Event
Counter
Divider
Input Pulse
Interval
Measurement
Measure Low
Level Pulse
Width
Measure High
Level Pulse
Width
Delay Counter

Interval Timer Function selection.
Note: The calculation of
the input pulse function
and the high-low level
pulse width
measurement function
is implemented using
interrupts. ISR's must
be enabled for these
functions even if
callback is unused.

Bit Timer Mode 16-bit timer
Higher 8-bit
timer
Lower 8-bit
timer
Higher and
Lower 8-bit
timer

16-bit timer Specify the 16 or 8-bit
timer mode

Operation Clock CK00
CK01
CK02
CK03

CK00 Specify the selection of
operation clock

Period Value must be a non-
negative integer

0x10000 Specify the timer
period based on the
selected units.

When the unit is set to
'Raw Counts', setting
the period to 0x10000
results in the maximum
period at the lowest
divisor (fastest timer
tick). When Pulse width
measurement or high-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,795 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

low level pulse width
measurement is
enabled, this period is
always generated as
zero.. The period
should be set
maximally 0x100 when
lower 8-bit mode or
higher and lower 8-bit
mode is enabled.
When 'Input->Trigger
Edge' is set to 'Trigger
Edge Rising' or 'Trigger
Edge Falling', this
period can be
maximally set to
0x20000 when using
the divider function.

If the requested period
cannot be achieved,
the settings with the
largest possible period,
that does not exceed
the requested period,
are used. The
theoretical calculated
period is printed in a
comment in the
timer_cfg_t structure.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Period (Higher 8-bit
timer)

Value must be a non-
negative integer

0x100 Specify the higher 8-bit
timer period based on
the selected unit.

When the unit is set to
'Raw Counts', setting
the period to 0x100
results in the maximum
period at the lowest
divisor (fastest timer
tick). This setting is
only applicable in
interval timer function
with higher 8bit mode
or higher and lower
8bit mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,796 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
tau_extended_cfg_t
structure.

Period Unit (Higher
8-bit timer)

Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Input

Input Source MCU Specific Options Input source, applies in
input pulse width
measurement function,
high-low level pulse
width measurement
function, external
event count function,
and divider function.

Trigger Edge Trigger Edge
Rising
Trigger Edge
Falling
Trigger Edge
Both

Trigger Edge Rising Select the trigger edge.
Applies in input pulse
width measurement
function, high-low level
pulse width
measurement function,
external event count
function, and divider
function.

Input Filter Disabled
Enabled

Disabled Input filter, applies in
input pulse width
measurement function,
high-low level pulse
width measurement
function, external
event count function,
and divider function.

Output

Initial Output Disabled
Start Level High
Start Level Low

Disabled Initial output, applies in
divider function and
square wave.

Interrupts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,797 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

Setting of starting
count and interrupt

Timer interrupt
is not
generated
when counting
is started/Start
trigger is invalid
during counting
operation.
Timer interrupt
is generated
when counting
is started/Start
trigger is valid
during counting
operation.

Timer interrupt is not
generated when
counting is
started/Start trigger is
invalid during counting
operation.

Specify OPIRQ bit
setting

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the timer period
elapses.

Interrupt Priority MCU Specific Options Timer interrupt priority.

Higher 8-bit Interrupt
Priority

MCU Specific Options Timer higher 8-bit
interrupt priority.

Clock Configuration

The TAU clock is based on the peripheral module clock (PCLKB) which is equal to the system clock
(ICLK).

Each TAU channel has certain operation clocks selections, these can be set with the
General>Operation Clock property in the module configuration. When the operation clock of a
channel is set to CK00, CK01, CK02, or CK03, the TAU module provides divisor values for each of
those clocks. These divisors may be set in the Clocks tab. As such, setting a divisor in the Clocks
tab affects all TAU channels that use that CK0x clock as an input. Adjusting these settings
determines the frequency range achievable by a TAU channel. If a desired frequency is not
achievable, the divider in the Clocks tab may be adjusted. The clock dividers cannot be adjusted at
runtime.

Pin Configuration

This module should use the TOmn pins as output pins for Square Wave Output, Divider Function

For input source, the input signal must be applied to External Event Counter, Divider, Input Pulse
Interval Measurement, Delay Counter, and Measure High-Low Level Pulse Width Function

Timer Period

The RA Configuration editor will automatically calculate the period count value based on the selected
period time, units, operation clock (set by General>Operation Clock property in the module
configuration), and clock divisor value (set in Clocks tab).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,798 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

When the selected unit is "Raw counts", the maximum and minimum allowed period setting varies
depending on the selected clock source:

Clock divisor Minimum period (counts) Maximum period (counts)

ICLK/1 0x00002 0x10000

All other divisors 0x00001 0x10000

Note
If ICLK (undivided) is selected as the operation clock (CK00, CK01) and TDR0n is set to 0x0000 (n = 0 to 7),
interrupt requests output from timer array units cannot be used. For this reason When Clock Source is ICLK,
Minimum period (counts) is 0x00002

Clock divisor Minimum Higher 8-bit period
(counts)

Maximum Higher 8-bit period
(counts)

All divisors 0x001 0x100

Note
Though the TAU is a 16-bit timer, because the period interrupt occurs when the counter underflow, setting the
period register to 0 results in an effective period of 1 count. For this reason all user-provided raw count values
reflect the actual number of period counts (not the raw register values).

Usage Notes
Interval Timer Function

This function can be used as a reference timer to generate TAU0_TMI0n (timer interrupt) at fixed
intervals. The interrupt generation period can be calculated by the following expression.

Generation period of TAU0_TMI0n (timer interrupt) = Period of count clock × (Set value of
TDR0n + 1)

The Interval Timer Function can operate as the higher/lower 8-bits mode.

When "Interrupts > Setting of starting count and interrupt" is "Timer interrupt is generated when
counting is started/Start trigger is valid during counting operation.", an interrupt is generated
immediately after R_TAU_Start() function is called and timer output also changed.

Square Wave Output Function

This function can use TO0n to perform a toggle operation as soon as TAU0_TMI0n has been
generated, and outputs a square wave with a duty factor of 50%.

The period and frequency for outputting a square wave from TO0n can be calculated by the following
expressions.

Period of square wave output from TO0n = Period of count clock × (Set value of TDR0n + 1)
× 2
Frequency of square wave output from TO0n = Frequency of count clock / {(Set value of
TDR0n + 1) × 2}

The Square Wave Output Function can operate as the lower 8-bits mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,799 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

When "Interrupts > Setting of starting count and interrupt" is "Timer interrupt is generated when
counting is started/Start trigger is valid during counting operation.", an interrupt is generated
immediately after R_TAU_Start() function is called and output pin is also changed.

External Event Counter Function

The timer array unit can be used as an external event counter that counts the number of times the
valid input edge (external event) is detected in the TI0n pin. When a specified count value is
reached, the event counter generates an interrupt. The specified number of counts can be calculated
by the following expression.

Specified number of counts = Set value of TDR0n + 1

Instead of using the TI0n pin input, a channel specified for the External Event Counter Function can
also use the signal as "Middle-speed on-chip oscillator (MOCO)", "Low-speed on-chip oscillator
(LOCO)", "Subsystem clock (FSUB)", and ELC event which selected in Input>Input Source property
as its input source to drive counting.

The External Event Counter Function can operate as the lower 8-bits mode.

Delay Counter Function

It is possible to start counting down when the valid edge of the TI0n pin input is detected (an
external event), and then generate TAU0_TMI0n (a timer interrupt) after any specified interval. The
interrupt generation period can be calculated by the following expression. Generation period of
TAU0_TMI0n (timer interrupt) = Period of count clock × (Set value of TDR0n + 1)

Instead of using the TI0n pin input, a channel specified for the Delay Counter Function can also use
the signal as "Middle-speed on-chip oscillator (MOCO)", "Low-speed on-chip oscillator (LOCO)",
"Subsystem clock (FSUB)", and ELC event which selected in Input>Input Source property as its
input source to drive counting.

The Delay Counter Function can operate as the lower 8-bits mode.

When "Interrupts > Setting of starting count and interrupt" is "Timer interrupt is generated when
counting is started/Start trigger is valid during counting operation.", a start trigger is valid during
counting operation.

Divider Function

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and
outputs the result from the TO00 pin. The divided clock frequency output from TO00 can be
calculated by the following expression. When rising edge/falling edge is selected:

Divided clock frequency = Input clock frequency / {(Set value of TDR00 + 1) × 2} When
both edges are selected:
Divided clock frequency ≈ Input clock frequency / (Set value of TDR00 + 1)

When "Interrupts > Setting of starting count and interrupt" is "Timer interrupt is generated when
counting is started/Start trigger is valid during counting operation.", an interrupt is generated
immediately after first input signal is detected and output pin is also changed.

Input Pulse Interval Measurement Function

The count value can be captured at the TI0n valid edge and the interval of the pulse input to TI0n

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,800 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

can be measured. The pulse interval can be calculated by the following expression.

TI0n input pulse interval = Period of count clock × ((0x10000 × TSR0n.OVF) + (Captured
value of TDR0n + 1))

Instead of using the TI0n pin input, a channel specified for the Input Pulse Interval Measurement can
also use the signal as "Middle-speed on-chip oscillator (MOCO)", "Low-speed on-chip oscillator
(LOCO)", "Subsystem clock (FSUB)", "Input signal of the RXD2 pin", and ELC event which selected in
Input>Input Source property as its input source to drive counting.

High-Low Level Pulse Width Measurement

By starting counting at one edge of the TI0n pin input and capturing the number of counts at another
edge, the signal width (high-level width or low-level width) of TI0n can be measured. The signal
width of TI0n can be calculated by the following expression.

Signal width of TI0n input = Period of count clock × ((0x10000 × TSR0n.OVF) + (Captured
value of TDR0n + 1))

Instead of using the TI0n pin input, a channel specified for the High-Low Level Pulse Width Function
can also use the signal as "Middle-speed on-chip oscillator (MOCO)", "Low-speed on-chip oscillator
(LOCO)", "Subsystem clock (FSUB)", "Input signal of the RXD2 pin", and ELC event which selected in
Input>Input Source property as its input source to drive counting.

Triggering ELC Events with TAU

The TAU timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Limitations

When using pin input a delay of 2 TAU input clocks (ICLK/CK0*) is required between
R_TAU_Open() and R_TAU_Start(). When using the noise filter, a delay of 4 clocks is required
instead. (See section 17.6.3 "Cautions on Channel Input Operation" in the RA0E1 Users
Manual (R01UH1040EL0100) for details.)
When using High-Low Level Pulse Width Measurement function, the counter can not be
reset by invoking R_TAU_Reset().

Examples
TAU Basic Example

This is a basic example of minimal use of the TAU in an application.

void tau_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,801 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer0_ctrl);

}

TAU Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

uint32_t g_counter_underflow = 0U;

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 g_counter_underflow++;

 }

 if (TIMER_EVENT_HIGHER_8BIT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

TAU 16-bit or 8-bit mode Example

To use the TAU as 16-bit or 8-bit mode, select Bit Mode Timer.

void tau_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,802 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_TAU_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer0_ctrl, &status);

}

void tau_higher_8bit_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer0_ctrl, &g_timer0_higher_8bit_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_TAU_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer0_ctrl, &status);

}

TAU Input Capture Example

This is an example of using the TAU to capture pulse width or pulse period measurements.

/* Example callback called when a capture occurs. */

uint32_t g_captured_time = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CAPTURE_EDGE == p_args->event)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,803 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

 /* Process capture from TAUIO. */

 g_captured_time = p_args->capture;

 }

}

void tau_input_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer_input_capture_ctrl, &g_timer_input_capture_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_TAU_Enable(&g_timer_input_capture_ctrl);

 /* (Optional) Disable captures. */

 (void) R_TAU_Disable(&g_timer_input_capture_ctrl);

}

TAU Period Update Example

This is an example of updating the period.

#define TAU_EXAMPLE_MSEC_PER_SEC (1000)

#define TAU_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void tau_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer0_ctrl);

 /* Get operation clock frequency

 * - Use the R_TAU_InfoGet function (it accounts for the clock source and divider of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,804 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

operation clock).

 */

 timer_info_t info;

 (void) R_TAU_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / iclk_freq_hz. A cast to uint32_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) ((timer_freq_hz * TAU_EXAMPLE_DESIRED_PERIOD_MSEC) /

TAU_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_TAU_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

TAU Square Wave Output Function Example

This is an example of configuration for Square Wave Output Function.

/* This example shows how configure squarewave output function. */

void tau_squarewave_output_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the timers. */

 err = R_TAU_Open(&g_timer_squarewave_ctrl, &g_timer_squarewave_cfg);

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer_squarewave_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer_squarewave_ctrl, &status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,805 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

}

TAU External Event Counter Function Example

This is an example of configuration for External Event Counter Function.

/* This example shows how to configure the external event counter function. */

void tau_external_event_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the timers. */

 err = R_TAU_Open(&g_timer_external_event_ctrl, &g_timer_external_event_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable external event counter */

 (void) R_TAU_Enable(&g_timer_external_event_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer_external_event_ctrl, &status);

}

TAU Divider Function Example

This is an example of configuration for Divider Function.

/* This example shows how configure divider function. */

void tau_divider_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the timers. */

 err = R_TAU_Open(&g_timer_divider_ctrl, &g_timer_divider_cfg);

 assert(FSP_SUCCESS == err);

 /* Start the divider. */

 (void) R_TAU_Start(&g_timer_divider_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer_divider_ctrl, &status);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,806 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

}

TAU Delay Counter Function Example

This is an example of configuration for Delay Counter Function.

/* This example shows how configure delay counter function. */

void tau_delay_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the timers. */

 err = R_TAU_Open(&g_timer_delay_counter_ctrl, &g_timer_delay_counter_cfg);

 assert(FSP_SUCCESS == err);

 /* Start Delay Counter. */

 (void) R_TAU_Enable(&g_timer_delay_counter_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer_delay_counter_ctrl, &status);

}

Data Structures

struct tau_instance_ctrl_t

struct tau_extended_cfg_t

Enumerations

enum tau_function_t

enum tau_bit_mode_t

enum tau_operation_ck_t

enum tau_trigger_edge_t

enum tau_interrupt_opirq_bit_t

enum tau_input_source_t

enum tau_pin_output_cfg_t

enum tau_input_noise_filter_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,807 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

Data Structure Documentation

◆ tau_instance_ctrl_t

struct tau_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ tau_extended_cfg_t

struct tau_extended_cfg_t

Optional TAU extension data structure.

Data Fields

tau_interrupt_opirq_bit_t opirq: 1 Setting of starting count and
interrupt.

tau_function_t tau_func Setting of Function for TAU.

tau_bit_mode_t bit_mode Setting of 16-bit timer or 8-bit
timer.

tau_pin_output_cfg_t initial_output Setting of Function for TAU.

tau_input_source_t input_source

tau_input_noise_filter_t tau_filter Input filter for TAU.

tau_trigger_edge_t trigger_edge Trigger edge to start pulse
period measurement or count
external event.

tau_operation_ck_t operation_clock

uint16_t period_higher_8bit_counts Period in raw higher 8 bit timer
counts.

uint8_t higher_8bit_cycle_end_ipl Cycle higher 8-bit end interrupt
priority.

IRQn_Type higher_8bit_cycle_end_irq Cycle higher 8-bit end interrupt.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,808 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ tau_function_t

enum tau_function_t

Timer function

Enumerator

TAU_FUNCTION_INTERVAL Interval Timer Function.

TAU_FUNCTION_SQUARE_WAVE Square Wave Function.

TAU_FUNCTION_EXTERNAL_EVENT_COUNT External Event Count Function.

TAU_FUNCTION_DIVIDER Divider Function.

TAU_FUNCTION_INPUT_PULSE_INTERVAL_MEASU
REMENT

Input Pulse Interval Function.

TAU_FUNCTION_LOW_LEVEL_WIDTH_MEASUREM
ENT

Low Level Width Measure Function.

TAU_FUNCTION_HIGH_LEVEL_WIDTH_MEASUREM
ENT

High Level Width Measure Function.

TAU_FUNCTION_DELAY_COUNT Delay Count Function.

◆ tau_bit_mode_t

enum tau_bit_mode_t

Timer bit mode

Enumerator

TAU_BIT_MODE_16BIT 16-Bit Timer Mode

TAU_BIT_MODE_HIGHER_8BIT Higher 8-bit Timer Mode.

TAU_BIT_MODE_LOWER_8BIT Lower 8-bit Timer Mode.

TAU_BIT_MODE_HIGHER_LOWER_8BIT Lower and Higher 8-bit Timer Mode.

◆ tau_operation_ck_t

enum tau_operation_ck_t

Timer operation clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,809 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ tau_trigger_edge_t

enum tau_trigger_edge_t

Trigger edge for pulse period measurement mode, high-low measurement, divider, delay counter
and event counting mode.

Enumerator

TAU_TRIGGER_EDGE_FALLING Measurement starts or events are counted on
falling edge.

TAU_TRIGGER_EDGE_RISING Measurement starts or events are counted on
rising edge.

TAU_TRIGGER_EDGE_BOTH Events are counted on both edges (pulse
period mode and high-low measurement)

◆ tau_interrupt_opirq_bit_t

enum tau_interrupt_opirq_bit_t

Interrupt and starting Count Mode

◆ tau_input_source_t

enum tau_input_source_t

Input source

Enumerator

TAU_INPUT_SOURCE_TI_PIN Timer Input Source is input pin.

TAU_INPUT_SOURCE_ELC ELC Timer Input Source.

TAU_INPUT_SOURCE_RXD2_PIN Timer Input Source is RXD2 pin.

TAU_INPUT_SOURCE_MOCO Timer Input Source is MOCO.

TAU_INPUT_SOURCE_LOCO Timer Input Source is LOCO.

TAU_INPUT_SOURCE_FSUB Timer Input Source is FSUB.

TAU_INPUT_SOURCE_NONE No Timer Input Source.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,810 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ tau_pin_output_cfg_t

enum tau_pin_output_cfg_t

Level of TAU pin

Enumerator

TAU_PIN_OUTPUT_CFG_START_LEVEL_LOW Pin level low.

TAU_PIN_OUTPUT_CFG_START_LEVEL_HIGH Pin level high.

TAU_PIN_OUTPUT_CFG_DISABLED Not used as output pin.

◆ tau_input_noise_filter_t

enum tau_input_noise_filter_t

Input filter, applies TAU in high-low measurement, pulse width measurement, delay counter,
divider, or event counter mode.

Enumerator

TAU_INPUT_NOISE_FILTER_DISABLE Disable noise filter.

TAU_INPUT_NOISE_FILTER_ENABLE Enable noise filter.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,811 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ R_TAU_Open()

fsp_err_t R_TAU_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the timer module and applies configurations. Implements timer_api_t::open.

The TAU implementation of the general timer can accept a tau_extended_cfg_t extension
parameter.

Example:

 /* Initializes the module. */

 err = R_TAU_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
period is not in the valid range

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_CHANNEL The channel does not support this feature.

FSP_ERR_IRQ_BSP_DISABLED Timer_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
callback

FSP_ERR_INVALID_MODE Invalid configuration for p_extend.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_TAU_Stop()

fsp_err_t R_TAU_Stop (timer_ctrl_t *const p_ctrl)

Stops timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_TAU_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,812 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ R_TAU_Start()

fsp_err_t R_TAU_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_TAU_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_Reset()

fsp_err_t R_TAU_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to the period minus one. Input Pulse Function is reset counter value to 0.
Implements timer_api_t::reset.

Note
This function can not reset the counter when counter is stopped, and function High/Low Measurement Function is
used.

Return values
FSP_SUCCESS The counter value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,813 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ R_TAU_Enable()

fsp_err_t R_TAU_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_TAU_Enable(&g_timer_input_capture_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_Disable()

fsp_err_t R_TAU_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Note
The timer could be running after R_TAU_Disable(). To ensure it is stopped, call R_TAU_Stop().

Example:

 /* (Optional) Disable captures. */

 (void) R_TAU_Disable(&g_timer_input_capture_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_PeriodSet()

fsp_err_t R_TAU_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Sets period value provided. If the timer is running, the period will be updated after the next counter
underflow. If the timer is stopped, this function resets the counter and updates the period. This
Function is not supported for Input pulse Function, High-Low Measurement Function. Implements
timer_api_t::periodSet.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,814 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

Note
if timer mode is Lower and Higher 8-bit Timer Mode, the last 8 bits are the lower 8-bits of the timer, and the
subsequent 8 bits are the higher 8-bits of the timer

Example:

 /* Get operation clock frequency

 * - Use the R_TAU_InfoGet function (it accounts for the clock source and divider of

operation clock).

 */

 timer_info_t info;

 (void) R_TAU_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / iclk_freq_hz. A cast to uint32_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) ((timer_freq_hz * TAU_EXAMPLE_DESIRED_PERIOD_MSEC) /

TAU_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_TAU_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL or period is invalid range.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_UNSUPPORTED Unsupported for Input pulse Function, High-
Low Measurement Function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,815 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ R_TAU_CompareMatchSet()

fsp_err_t R_TAU_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Placeholder for unsupported compareMatch function. Implements timer_api_t::compareMatchSet.

Return values
FSP_ERR_UNSUPPORTED TAU compare match is not supported.

◆ R_TAU_DutyCycleSet()

fsp_err_t R_TAU_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

timer_api_t::dutyCycleSet is not supported on the R_TAU Independent channels.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_TAU_InfoGet()

fsp_err_t R_TAU_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 timer_info_t info;

 (void) R_TAU_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

Return values
FSP_SUCCESS Period, count direction, frequency, and ELC

event written to caller's structure
successfully.

FSP_ERR_ASSERTION p_ctrl or p_info was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,816 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

◆ R_TAU_StatusGet()

fsp_err_t R_TAU_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get current timer status and store it in provided pointer p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current timer state and counter value set

successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_CallbackSet()

fsp_err_t R_TAU_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback. Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ R_TAU_Close()

fsp_err_t R_TAU_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables output pins, and clears internal driver data. Implements timer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,817 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Independent Channel, 16-bit and 8-bit timer (r_tau)

5.2.19.2 Port Output Enable for GPT (r_poeg)
Modules » Timers

Functions

fsp_err_t R_POEG_Open (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const
p_cfg)

fsp_err_t R_POEG_OutputDisable (poeg_ctrl_t *const p_ctrl)

fsp_err_t R_POEG_Reset (poeg_ctrl_t *const p_ctrl)

fsp_err_t R_POEG_StatusGet (poeg_ctrl_t *const p_ctrl, poeg_status_t *const
p_status)

fsp_err_t R_POEG_CallbackSet (poeg_ctrl_t *const p_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const
p_context, poeg_callback_args_t *const p_callback_memory)

fsp_err_t R_POEG_Close (poeg_ctrl_t *const p_ctrl)

Detailed Description

Driver for the POEG peripheral on RA MCUs. This module implements the POEG Interface.

Overview
The POEG module can be used to configure events to disable GPT GTIOC output pins.

Features

The POEG module has the following features:

Supports disabling GPT output pins based on GTETRG input pin level.
Supports disabling GPT output pins based on comparator crossing events (configurable in
the Comparator, High-Speed (r_acmphs) driver).
Supports disabling GPT output pins when GTIOC pins are the same level (configurable in the
Timer, General PWM (r_gpt) driver).
Supports disabling GPT output pins when main oscillator stop is detected.
Supports disabling GPT output pins by software API.
Supports notifying the application when GPT output pins are disabled by POEG.
Supports resetting POEG status.

Configuration

Build Time Configurations for r_poeg

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,818 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

The following build time configurations are defined in fsp_cfg/r_poeg_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Timers > Port Output Enable for GPT (r_poeg)

This module can be added to the Stacks tab via New Stack > Timers > Port Output Enable for GPT
(r_poeg). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_poeg0 Module name.

Channel Must be a valid POEG
channel

0 Specify the hardware
channel.

Trigger MCU Specific Options Select the trigger
sources that will enable
POEG. Software disable
is always supported.
This configuration can
only be set once after
reset. It cannot be
modified after the
initial setting.

Input

GTETRG Polarity Active High
Active Low

Active High Select the polarity of
the GTETRG pin. Only
applicable if GTETRG
pin is selected under
Trigger.

GTETRG Noise Filter Disabled
PCLKB/1
PCLKB/8
PCLKB/32
PCLKB/128

Disabled Configure the noise
filter for the GTETRG
pin. Only applicable if
GTETRG pin is selected
under Trigger.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified here. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) when GPT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,819 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

output pins are
disabled by POEG.

Interrupt Priority MCU Specific Options Select the POEG
interrupt priority.

Clock Configuration

The POEG clock is based on the PCLKB frequency.

Pin Configuration

This module can use GTETRGA, GTETRGB, GTETRGC, or GTETRGD as an input signal to disable GPT
output pins.

Usage Notes
POEG GTETRG Pin and Channel

The POEG channel number corresponds to the GTETRG input pin that can be used with the channel.
GTETRGA must be used with POEG channel 0, GTETRGB must be used with POEG channel 1, etc.

Limitations

The user should be aware of the following limitations when using POEG:

The POEG trigger source can only be set once per channel. Modifying the POEG trigger
source after it is set is not allowed by the hardware.
The POEG cannot be disabled using this API. The interrupt is disabled in R_POEG_Close(),
but the POEG will still disable the GPT output pins if a trigger is detected even if the module
is closed.

Examples
POEG Basic Example

This is a basic example of minimal use of the POEG in an application.

void poeg_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the POEG. */

 err = R_POEG_Open(&g_poeg0_ctrl, &g_poeg0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

POEG Callback Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,820 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

This is an example of a using the POEG callback to restore GPT output operation.

/* Example callback called when POEG disables GPT output pins. */

void poeg_callback (poeg_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 /* (Optional) Determine the cause of the POEG event. */

 poeg_status_t status;

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 /* Correct the cause of the POEG event before resetting POEG. */

 /* Reset the POEG before exiting the callback. */

 (void) R_POEG_Reset(&g_poeg0_ctrl);

 /* Wait for the status to clear after reset before exiting the callback to ensure

the interrupt does not fire

 * again. */

 do

 {

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 } while (POEG_STATE_NO_DISABLE_REQUEST != status.state);

 /* Alternatively, if the POEG cannot be reset, disable the POEG interrupt to prevent

it from firing continuously.

 * Update the 0 in the macro below to match the POEG channel number. */

 NVIC_DisableIRQ(VECTOR_NUMBER_POEG0_EVENT);

}

Data Structures

struct poeg_instance_ctrl_t

Data Structure Documentation

◆ poeg_instance_ctrl_t

struct poeg_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when poeg_api_t::open is called.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,821 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

◆ R_POEG_Open()

fsp_err_t R_POEG_Open (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

Initializes the POEG module and applies configurations. Implements poeg_api_t::open.

Note
The poeg_cfg_t::trigger setting can only be configured once after reset. Reopening with a different trigger
configuration is not possible.

Example:

 /* Initializes the POEG. */

 err = R_POEG_Open(&g_poeg0_ctrl, &g_poeg0_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION A required input pointer is NULL or the
source divider is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED poeg_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
callback.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_POEG_OutputDisable()

fsp_err_t R_POEG_OutputDisable (poeg_ctrl_t *const p_ctrl)

Disables GPT output pins. Implements poeg_api_t::outputDisable.

Return values
FSP_SUCCESS GPT output pins successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,822 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

◆ R_POEG_Reset()

fsp_err_t R_POEG_Reset (poeg_ctrl_t *const p_ctrl)

Resets status flags. Implements poeg_api_t::reset.

Note
Status flags are only reset if the original POEG trigger is resolved. Check the status using R_POEG_StatusGet
after calling this function to verify the status is cleared.

Example:

 /* Correct the cause of the POEG event before resetting POEG. */

 /* Reset the POEG before exiting the callback. */

 (void) R_POEG_Reset(&g_poeg0_ctrl);

 /* Wait for the status to clear after reset before exiting the callback to ensure

the interrupt does not fire

 * again. */

 do

 {

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 } while (POEG_STATE_NO_DISABLE_REQUEST != status.state);

Return values
FSP_SUCCESS Function attempted to clear status flags.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,823 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

◆ R_POEG_StatusGet()

fsp_err_t R_POEG_StatusGet (poeg_ctrl_t *const p_ctrl, poeg_status_t *const p_status)

Get current POEG status and store it in provided pointer p_status. Implements
poeg_api_t::statusGet.

Example:

 /* (Optional) Determine the cause of the POEG event. */

 poeg_status_t status;

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

Return values
FSP_SUCCESS Current POEG state stored successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_POEG_CallbackSet()

fsp_err_t R_POEG_CallbackSet (poeg_ctrl_t *const p_ctrl, void(*)(poeg_callback_args_t *)
p_callback, void const *const p_context, poeg_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements poeg_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,824 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Port Output Enable for GPT (r_poeg)

◆ R_POEG_Close()

fsp_err_t R_POEG_Close (poeg_ctrl_t *const p_ctrl)

Disables POEG interrupt. Implements poeg_api_t::close.

Note
This function does not disable the POEG.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

5.2.19.3 Realtime Clock (r_rtc)
Modules » Timers

Functions

fsp_err_t R_RTC_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t R_RTC_Close (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_ClockSourceSet (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl,
rtc_periodic_irq_select_t const rate)

fsp_err_t R_RTC_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

fsp_err_t R_RTC_CallbackSet (rtc_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,825 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

void(*p_callback)(rtc_callback_args_t *), void const *const p_context,
rtc_callback_args_t *const p_callback_memory)

fsp_err_t R_RTC_TimeCaptureSet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t
*const p_time_capture)

fsp_err_t R_RTC_TimeCaptureGet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t
*const p_time_capture)

Detailed Description

Driver for the RTC peripheral on RA MCUs. This module implements the RTC Interface.

Overview
The RTC HAL module configures the RTC module and controls clock, calendar and alarm functions. A
callback can be used to respond to the alarm and periodic interrupt.

Features

RTC time and date get and set.
RTC time and date alarm get and set.
RTC alarm and periodic event notification.
RTC time capture.

The RTC HAL module supports three different interrupt types:

An alarm interrupt generated on a match of any combination of year, month, day, day of
the week, hour, minute or second
A periodic interrupt generated every 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256
second(s)
A carry interrupt is used internally when reading time from the RTC calender to get
accurant time readings.
Note

See section "23.3.5 Reading 64-Hz Counter and Time" of the RA6M3 manual R01UH0886EJ0100 for
more details.

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will
be called from the interrupt service routine (ISR) for alarm and periodic interrupt. When
called, it is passed a pointer to a structure (rtc_callback_args_t) that holds a user-defined
context pointer and an indication of which type of interrupt was fired.

Date and Time validation

"Parameter Checking" needs to be enabled if date and time validation is required for
calendarTimeSet and calendarAlarmSet APIs. If "Parameter Checking" is enabled, the 'day of the
week' field is automatically calculated and updated by the driver for the provided date. When using
the calendarAlarmSet API, only the fields which have their corresponding match flag set are written
to the registers. Other register fields are reset to default value.

Sub-Clock error adjustment (Time Error Adjustment Function)

The time error adjustment function is used to correct errors, running fast or slow, in the time caused

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,826 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

by variation in the precision of oscillation by the sub-clock oscillator. Because 32,768 cycles of the
sub-clock oscillator constitute 1 second of operation when the sub-clock oscillator is selected, the
clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low. The time
error adjustment functions include:

Automatic adjustment
Adjustment by software

The error adjustment is reset every time RTC is reconfigured or time is set.

Note
RTC driver configurations do not do error adjustment internally while initiliazing the driver. Application must
make calls to the error adjustment api's for desired adjustment. See section 26.3.8 "Time Error Adjustment
Function" of the RA6M3 manual R01UH0886EJ0100) for more details on this feature

Configuration
Build Time Configurations for r_rtc

The following build time configurations are defined in fsp_cfg/r_rtc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Set Source Clock in
Open

Enabled
Disabled

Enabled If enabled RTC source
clock is initialized in
R_RTC_Open. If
disabled,
R_RTC_ClockSourceSet
must be called to set
the RTC source clock.
Disable if user wants to
control the setting of
RTC source clock after
warm start.

Configurations for Timers > Realtime Clock (r_rtc)

This module can be added to the Stacks tab via New Stack > Timers > Realtime Clock (r_rtc). Non-
secure callable guard functions can be generated for this module by right clicking the module in the
RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rtc0 Module name.

Clock Source MCU Specific Options Select the RTC clock
source.

Frequency Comparision
Value (LOCO)

Value must be a
positive integer
between 7 and 511

255 Frequency comparison
value when using LOCO

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,827 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

Automatic Adjustment
Mode

Enabled
Disabled

Enabled Enable/ Disable the
Error Adjustment mode

Automatic Adjustment
Period

10 Seconds
1 Minute
NONE

10 Seconds Select the Error
Adjustment Period for
Automatic Adjustment

Adjustment Type (Plus-
Minus)

NONE
Addition
Subtraction

NONE Select the Error
Adjustment type

Error Adjustment Value Value must be a
positive integer less
than equal to 63

0 Specify the Adjustment
Value (the number of
sub-clock cycles) from
the prescaler

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Alarm Interrupt Priority MCU Specific Options Select the alarm
interrupt priority.

Period Interrupt Priority MCU Specific Options Select the period
interrupt priority.

Carry Interrupt Priority MCU Specific Options Select the carry
interrupt priority.

Note
See 23.2.20 Frequency Register (RFRH/RFRL) of the RA6M3 manual R01UH0886EJ0100) for more details

Interrupt Configuration

To activate interrupts for the RTC module, the desired interrupts must be enabled, The underlying
implementation will be expected to handle any interrupts it can support and notify higher layers via
callback.

Clock Configuration

The RTC HAL module can use the following clock sources:

LOCO (Low Speed On-Chip Oscillator) with less accuracy
Sub-clock oscillator with increased accuracy

Users have to select the right source for their application. LOCO is the default during configuration
when it is available.

Pin Configuration

This module does not use I/O pins.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,828 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

Usage Notes
System Initialization

RTC driver does not start the sub-clock. The application is responsible for ensuring required
clocks are started and stable before accessing MCU peripheral registers.

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running AGT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Carry interrupt priority must be set to avoid incorrect time returned from calendarTimeGet
API during roll-over.
Even when only running in Periodic Interrupt mode R_RTC_CalendarTimeSet must be called
successfully to start the RTC.
In case of warm start or a hard reset (when VBATT powers RTC in case of power loss), user
might not want to reinitialize the clock source after reset. In this case, disable the Set
Source Clock in Open property for RTC and call R_RTC_ClockSourceSet() only when RTC
clock source needs to be set. Application should check for the reset type and should
accordingly call the R_RTC_ClockSourceSet().

Limitations

Developers should be aware of the following limitations when using the RTC:

R_RTC operates in 24-hour mode.
Binary-count mode is not supported.
The R_RTC_CalendarTimeGet() cannot be used from an interrupt that has higher priority
than the carry interrupt. Also, it must not be called with interrupts disabled globally, as this
API internally uses carry interrupt for its processing. API may return incorrect time if this is
done.
Time capture input pins should be configured prior to opening RTC.
When multiple events are detected, the capture time for the first event is retained. Time
capture value must be got and reset status bit for the next capture when having event
input.

VRTC-Domain

VRTC-domain provides power supply to SOSC and RTC on devices with IRTC:

In case VRTC-domain is invalid, SOSC and RTC will be in undetermined state. Any operation
related to RTC and sub-clock should be avoided.
When VRTC-domain becomes valid again, application is responsible to reinitialize SOSC and
RTC. Sub-clock initialization can be done by calling R_BSP_SubclockInitialize().
BSP provides R_BSP_SubclockStatusGet() to check the status of VRTC domain. But, it is
recommended to use LVD to monitor VRTC domain change. Please refer to
Low/Programmable Voltage Detection (r_lvd) module for more details.

Time Capture

The RTC is capable of storing the month, day, hour, minute and second when detecting an edge of a
signal on a time capture event input pin. On RA parts up to three capture channels can be
configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,829 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

Use R_RTC_TimeCaptureSet to configure the detection source and noise filter for each
capture channel.
Use R_RTC_TimeCaptureGet to check the latest capture. If no capture has been triggered
the function will return FSP_ERR_INVALID_STATE.
Even when the supply of power from the VCC power supply pin is stopped and VRTC power
is being supplied, the time capture function of the time capture event input pins (RTCICn)
can be used.

Examples
RTC Basic Example

This is a basic example of minimal use of the RTC in an application.

/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */

rtc_time_t set_time =

{

 .tm_sec = 10,

 .tm_min = 11,

 .tm_hour = 12,

 .tm_mday = 6,

 .tm_wday = 3,

 .tm_mon = 11,

 .tm_year = YEARS_SINCE_1900,

};

rtc_time_t get_time;

void rtc_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module */

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 /* Set the calendar time */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Get the calendar time */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,830 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

 R_RTC_CalendarTimeGet(&g_rtc0_ctrl, &get_time);

}

RTC Clock Source Set Example

This is an example of how to handle call to set the RTC clock.

void rtc_clock_source_set_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* This condition can differ based on use case. */

 if (R_SYSTEM->RSTSR0 == 1)

 {

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 }

 /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

 /* Wait for the periodic interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

}

RTC Periodic interrupt example

This is an example of periodic interrupt in RTC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,831 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

void rtc_periodic_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

 /* Wait for the periodic interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

}

RTC Alarm interrupt example

This is an example of alarm interrupt in RTC.

void rtc_alarm_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Open the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,832 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time1.time);

 R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_time1);

 /* Wait for the Alarm interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

}

RTC Error Adjustment example

This is an example of modifying error adjustment in RTC.

void rtc_erroradj_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Open the RTC module*/

 R_RTC_Open(&g_rtc0_ctrl, &g_rtc1_cfg);

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time1.time);

 /* Modify Error Adjustment after RTC is running */

 err = R_RTC_ErrorAdjustmentSet(&g_rtc0_ctrl, &err_cfg2);

 assert(FSP_SUCCESS == err);

}

RTC with VRTC-domain example

This is an example of calling RTC API on devices with VRTC-domain.

#if BSP_FEATURE_RTC_IS_IRTC

void rtc_vrtc_domain_checking_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 static uint32_t rtc_opened = 0;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,833 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

 while (1)

 {

 err = R_BSP_SubclockStatusGet();

 if (FSP_SUCCESS != err)

 {

 /* RTC API should not be called. */

 /* Try to initialize SOSC. */

 err = R_BSP_SubclockInitialize();

 if (FSP_SUCCESS == err)

 {

 /* Delay for sub-clock oscillation stabilization time */

 R_BSP_SoftwareDelay(BSP_CLOCK_CFG_SUBCLOCK_STABILIZATION_MS,

BSP_DELAY_UNITS_MILLISECONDS);

 }

 }

 else

 {

 /* VRTC-domain reset will not initialize RTC registers. */

 if (0 == rtc_opened)

 {

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 rtc_opened = (FSP_SUCCESS == err) ? 1 : 0;

 }

 /* Other RTC API can be called if needed. */

 }

 }

}

#endif

RTC Time Capture example

This is an example of calling Time Capture API on RTC with Independent Power Supply.

void rtc_irtc_time_capture_example ()

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,834 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc1_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure a GPIO pin to trigger the Time Capture pin */

 R_BSP_PinCfg(RTC_TIME_CAPTURE_TRIGGER_CHANNEL_0, (uint32_t) BSP_IO_DIRECTION_OUTPUT

);

 /* Preset trigger pin */

 R_BSP_PinWrite(RTC_TIME_CAPTURE_TRIGGER_CHANNEL_0, BSP_IO_LEVEL_LOW);

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Set time capture configuration for the provided channel when RTC is running */

 err = R_RTC_TimeCaptureSet(&g_rtc0_ctrl, &g_rtc_time_capture);

 assert(FSP_SUCCESS == err);

 /* Update trigger pin */

 R_BSP_PinWrite(RTC_TIME_CAPTURE_TRIGGER_CHANNEL_0, BSP_IO_LEVEL_HIGH);

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Get the time capture for the provided channel */

 err = R_RTC_TimeCaptureGet(&g_rtc0_ctrl, &g_rtc_time_capture);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rtc_extended_cfg_t

struct rtc_instance_ctrl_t

Data Structure Documentation

◆ rtc_extended_cfg_t

struct rtc_extended_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,835 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

RTC extend configuration

Data Fields

uint8_t alarm1_ipl Alarm 1 interrupt priority.

IRQn_Type alarm1_irq Alarm 1 interrupt vector.

◆ rtc_instance_ctrl_t

struct rtc_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when rtc_api_t::open is called

Data Fields

uint32_t open

 Whether or not driver is open.

const rtc_cfg_t * p_cfg

 Pointer to initial configurations.

volatile bool carry_isr_triggered

 Was the carry isr triggered.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,836 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_Open()

fsp_err_t R_RTC_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Opens and configures the RTC driver module. Implements rtc_api_t::open. Configuration includes
clock source, and interrupt callback function.

Example:

 /* Open the RTC module */

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

Return values
FSP_SUCCESS Initialization was successful and RTC has

started.

FSP_ERR_ASSERTION Invalid p_ctrl or p_cfg pointer.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

◆ R_RTC_Close()

fsp_err_t R_RTC_Close (rtc_ctrl_t *const p_ctrl)

Close the RTC driver. Implements rtc_api_t::close

Return values
FSP_SUCCESS De-Initialization was successful and RTC

driver closed.

FSP_ERR_ASSERTION Invalid p_ctrl.

FSP_ERR_NOT_OPEN Driver not open already for close.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,837 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_ClockSourceSet()

fsp_err_t R_RTC_ClockSourceSet (rtc_ctrl_t *const p_ctrl)

Sets the RTC clock source. Implements rtc_api_t::clockSourceSet.

Example:

 /* This condition can differ based on use case. */

 if (R_SYSTEM->RSTSR0 == 1)

 {

 /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property

is enabled. */

 R_RTC_ClockSourceSet(&g_rtc0_ctrl);

 }

Return values
FSP_SUCCESS Initialization was successful and RTC has

started.

FSP_ERR_ASSERTION Invalid p_ctrl or p_cfg pointer.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_ARGUMENT Invalid clock source.

◆ R_RTC_CalendarTimeSet()

fsp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time.

Implements rtc_api_t::calendarTimeSet.

Return values
FSP_SUCCESS Calendar time set operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,838 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_CalendarTimeGet()

fsp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Warning
Do not call this function from a critical section or from an interrupt with higher priority than
the carry interrupt, or the time returned may be inaccurate.

Implements rtc_api_t::calendarTimeGet

Return values
FSP_SUCCESS Calendar time get operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

◆ R_RTC_CalendarAlarmSet()

fsp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time.

Implements rtc_api_t::calendarAlarmSet.

Precondition
The calendar counter must be running before the alarm can be set.

Return values
FSP_SUCCESS Calendar alarm time set operation was

successful.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,839 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_CalendarAlarmGet()

fsp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time.

Implements rtc_api_t::calendarAlarmGet

Return values
FSP_SUCCESS Calendar alarm time get operation was

successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_PeriodicIrqRateSet()

fsp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const rate)

Set the periodic interrupt rate and enable periodic interrupt.

Implements rtc_api_t::periodicIrqRateSet

Note
To start the RTC R_RTC_CalendarTimeSet must be called at least once.

Example:

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

Return values
FSP_SUCCESS The periodic interrupt rate was successfully

set.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,840 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_InfoGet()

fsp_err_t R_RTC_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Set RTC clock source and running status information ad store it in provided pointer p_rtc_info

Implements rtc_api_t::infoGet

Return values
FSP_SUCCESS Get information Successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_ErrorAdjustmentSet()

fsp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

This function sets time error adjustment

Implements rtc_api_t::errorAdjustmentSet

Return values
FSP_SUCCESS Time error adjustment successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open for operation.

FSP_ERR_UNSUPPORTED The clock source is not sub-clock.

FSP_ERR_INVALID_ARGUMENT Invalid error adjustment value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,841 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_CallbackSet()

fsp_err_t R_RTC_CallbackSet (rtc_ctrl_t *const p_ctrl, void(*)(rtc_callback_args_t *) p_callback,
void const *const p_context, rtc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
rtc_api_t::callbackSet

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to RTC control block is NULL or the
RTC is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_RTC_TimeCaptureSet()

fsp_err_t R_RTC_TimeCaptureSet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Set time capture configuration for the provided channel.

Implements rtc_api_t::timeCaptureSet

Note
Updating capture settings requires significant software delay. Timing considerations should be carefully
considered when calling this function.

Return values
FSP_SUCCESS Setting for Time capture was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_INVALID_CHANNEL Invalid input channel set.

FSP_ERR_UNSUPPORTED Hardware not support this feature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,842 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc)

◆ R_RTC_TimeCaptureGet()

fsp_err_t R_RTC_TimeCaptureGet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Get time capture value of the provided channel.

Implements rtc_api_t::timeCaptureGet

Return values
FSP_SUCCESS Get time capture successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_INVALID_CHANNEL Invalid input channel get.

FSP_ERR_INVALID_STATE Invalid operation state.

FSP_ERR_UNSUPPORTED Hardware not support this feature.

5.2.19.4 Realtime Clock (r_rtc_c)
Modules » Timers

Functions

fsp_err_t R_RTC_C_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t R_RTC_C_Close (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_C_ClockSourceSet (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_C_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_C_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_C_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_C_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_C_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl,
rtc_periodic_irq_select_t const rate)

fsp_err_t R_RTC_C_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,843 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

fsp_err_t R_RTC_C_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

fsp_err_t R_RTC_C_CallbackSet (rtc_ctrl_t *const p_ctrl,
void(*p_callback)(rtc_callback_args_t *), void const *const p_context,
rtc_callback_args_t *const p_callback_memory)

fsp_err_t R_RTC_C_TimeCaptureSet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t
*const p_time_capture)

fsp_err_t R_RTC_C_TimeCaptureGet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t
*const p_time_capture)

Detailed Description

Driver for the RTC peripheral on RA MCUs. This module implements the RTC Interface.

Overview
The RTC HAL module configures the RTC module and controls clock, calendar and alarm functions. A
callback can be used to respond to the alarm and periodic interrupt.

Features

RTC_C time and date get and set.
RTC_C time and date alarm get and set.
RTC_C alarm and periodic event notification.

The RTC HAL module supports two different interrupt types:

An alarm interrupt generated on a match of any combination of minute, hour and day of the
week.
A periodic interrupt generated every 1 month, 1 day, 1 hour, 1 minute, 1 second and 1/2
second.

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will be called
from the interrupt service routine (ISR) for alarm and periodic interrupt. When called, it is passed a
pointer to a structure (rtc_callback_args_t) that holds a user-defined context pointer and an
indication of which type of interrupt was fired.

Date and Time validation

"Parameter Checking" needs to be enabled if date and time validation is required for
calendarTimeSet and calendarAlarmSet APIs. When using the calendarAlarmSet API, minute, hour
and day of the week are written to the related registers.

Sub-Clock error adjustment (Time Error Adjustment Function)

The time error adjustment function is used to correct errors, running fast or slow, in the time caused
by variation in the precision of oscillation by the sub-clock oscillator. Because 32,768 cycles of the
sub-clock oscillator constitute 1 second of operation when the sub-clock oscillator is selected, the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,844 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low.

The error adjustment is reset every time RTC is reconfigured or time is set.

Note
RTC driver configurations do not do error adjustment internally while initializing the driver. Application must
make calls to the error adjustment api's for desired adjustment.

Configuration
Build Time Configurations for r_rtc_c

The following build time configurations are defined in fsp_cfg/r_rtc_c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Timers > Realtime Clock (r_rtc_c)

This module can be added to the Stacks tab via New Stack > Timers > Realtime Clock (r_rtc_c).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rtc0 Module name.

Operation clock FSXP
SOSC/256 (128
Hz)

FSXP Select the RTC
operation clock. If
using 'SOSC/256' as
the source for RTCCLK,
the FSXP source cannot
be LOCO in Clock tab.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Interrupt Priority MCU Specific Options Select the period or
alarm interrupt priority.

Interrupt Configuration

To activate interrupts for the RTC module, the desired interrupts must be enabled, The underlying
implementation will be expected to handle any interrupts it can support and notify higher layers via
callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,845 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

Clock Configuration

The RTC HAL module can use the following clock sources(setting in clock page):

Sub-Clock: SOSC (32.768 kHz)
SOSC/256 (128 Hz)
LOCO (32.768 kHz)

Users have to select the right source for their application. Sub-Clock is the default during
configuration when it is available.

Pin Configuration

This module does not use I/O pins.

Usage Notes
System Initialization

RTC driver does not start the sub-clock. The application is responsible for ensuring required
clocks are started and stable before accessing MCU peripheral registers.

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running AGT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Even when only running in Periodic Interrupt mode R_RTC_C_CalendarTimeSet must be
called successfully to start the RTC.

Limitations

Developers should be aware of the following limitations when using the RTC_C:

R_RTC_C operates in 24-hour mode.
If using 'SOSC/256' as the source for RTC operation clock, the FSXP source cannot be LOCO
in Clock tab.
Time error correction function can only proceed when the setting of the RTCC0.RTC128EN
bit is 0.
Alarm clock interrupt can work under LOCO clock source, but it is unstable. Please use
alarm clock interrupt function under other clocks.

Examples
RTC Basic Example

This is a basic example of minimal use of the RTC_C in an application.

/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */

rtc_time_t set_time =

{

 .tm_sec = 10,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,846 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

 .tm_min = 11,

 .tm_hour = 12,

 .tm_mday = 6,

 .tm_wday = 3,

 .tm_mon = 11,

 .tm_year = YEARS_SINCE_1900,

};

rtc_time_t get_time;

void rtc_c_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module */

 err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the calendar time */

 R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Get the calendar time */

 R_RTC_C_CalendarTimeGet(&g_rtc0_ctrl, &get_time);

}

RTC Calendar Time Set example

This is an example of setting calendar time in RTC_C.

Warning
The weekday must be set correctly even when parameter checking is disabled.

/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */

rtc_time_t set_calendar_time =

{

 .tm_sec = 10,

 .tm_min = 11,

 .tm_hour = 12,

 .tm_mday = 6,

 /* tm_wday value must be set correctly */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,847 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

 .tm_wday = 5,

 .tm_mon = 11,

 .tm_year = YEARS_SINCE_1900,

};

void rtc_c_calendar_time_set_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module */

 err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the calendar time and date */

 err = R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_calendar_time);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

RTC Periodic interrupt example

This is an example of periodic interrupt in RTC.

void rtc_c_periodic_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the RTC module*/

 err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* R_RTC_C_CalendarTimeSet must be called at least once to start the RTC */

 R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_C_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

 /* Wait for the periodic interrupt */

 while (1)

 {

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,848 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

 /* Wait for interrupt */

 }

}

RTC Alarm interrupt example

This is an example of alarm interrupt in RTC.

void rtc_c_alarm_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Open the RTC module*/

 err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 R_RTC_C_CalendarAlarmSet(&g_rtc0_ctrl, &set_time1);

 /* Wait for the Alarm interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

}

RTC Error Adjustment example

This is an example of modifying error adjustment in RTC.

void rtc_c_erroradj_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Open the RTC module*/

 R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc1_cfg);

 R_RTC_C_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Modify Error Adjustment after RTC is running */

 err = R_RTC_C_ErrorAdjustmentSet(&g_rtc0_ctrl, &err_cfg2);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,849 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rtc_c_extended_cfg

struct rtc_c_instance_ctrl_t

Enumerations

enum rtc_c_subclock_division_t

Data Structure Documentation

◆ rtc_c_extended_cfg

struct rtc_c_extended_cfg

RTC extended configuration

Data Fields

rtc_c_subclock_division_t clock_source_div The sub clock division value.

◆ rtc_c_instance_ctrl_t

struct rtc_c_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when rtc_api_t::open is called

Data Fields

uint32_t open

 Whether or not driver is open.

const rtc_cfg_t * p_cfg

 Pointer to initial configurations.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,850 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ rtc_c_subclock_division_t

enum rtc_c_subclock_division_t

RTC sub_clock division

Enumerator

RTC_CLOCK_SOURCE_SUBCLOCK_DIV_BY_1 Using sub_clock for rct_c clock.

RTC_CLOCK_SOURCE_SUBCLOCK_DIV_BY_256 Using (sub_clock / 256) for rct_c clock.

Function Documentation

◆ R_RTC_C_Open()

fsp_err_t R_RTC_C_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Opens and configures the RTC driver module. Implements rtc_api_t::open. Configuration includes
clock source, and interrupt callback function.

R_RTC_Open should be called to manipulate the RTC instead of setting register directly.

Example:

 /* Open the RTC module */

 err = R_RTC_C_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

Return values
FSP_SUCCESS Initialization was successful and RTC has

started.

FSP_ERR_UNSUPPORTED Invalid clock source.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_MODE Subsystem clock should use SOSC before
setting realtime clock to SOSC/256.

FSP_ERR_ASSERTION Invalid time parameter field.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,851 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ R_RTC_C_Close()

fsp_err_t R_RTC_C_Close (rtc_ctrl_t *const p_ctrl)

Close the RTC driver. Implements rtc_api_t::close

Return values
FSP_SUCCESS De-Initialization was successful and RTC

driver closed.

FSP_ERR_ASSERTION Invalid p_ctrl.

FSP_ERR_NOT_OPEN Driver not open already for close.

◆ R_RTC_C_ClockSourceSet()

fsp_err_t R_RTC_C_ClockSourceSet (rtc_ctrl_t *const p_ctrl)

Setting clock source is not supported on the RTC_C.

Return values
FSP_ERR_UNSUPPORTED Please set clock source in clock page.

◆ R_RTC_C_CalendarTimeSet()

fsp_err_t R_RTC_C_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time.

Implements rtc_api_t::calendarTimeSet.

Return values
FSP_SUCCESS Calendar time set operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_INVALID_ARGUMENT Invalid parameter field.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,852 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ R_RTC_C_CalendarTimeGet()

fsp_err_t R_RTC_C_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Warning
Do not call this function from a critical section or from an interrupt with higher priority than
the carry interrupt, or the time returned may be inaccurate.

Implements rtc_api_t::calendarTimeGet

Return values
FSP_SUCCESS Calendar time get operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_C_CalendarAlarmSet()

fsp_err_t R_RTC_C_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time. For the p_alarm, only minutes, hours and weekdays are valid. Minutes
0 to 59. Hours 0 to 23. Weekdays 0 to 127.

Implements rtc_api_t::calendarAlarmSet.

Precondition
The calendar counter must be running before the alarm can be set.

Return values
FSP_SUCCESS Calendar alarm time set operation was

successful.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED Interrupt must be enabled to use the alarm.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,853 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ R_RTC_C_CalendarAlarmGet()

fsp_err_t R_RTC_C_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time. For the p_alarm, only minutes, hours and weekdays will be got.

Implements rtc_api_t::calendarAlarmGet

Return values
FSP_SUCCESS Calendar alarm time get operation was

successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_C_PeriodicIrqRateSet()

fsp_err_t R_RTC_C_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const rate
)

Set the periodic interrupt rate and enable periodic interrupt.

Implements rtc_api_t::periodicIrqRateSet

Note
To start the RTC R_RTC_C_CalendarTimeSet must be called at least once.

Example:

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_C_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

Return values
FSP_SUCCESS The periodic interrupt rate was successfully

set.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,854 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ R_RTC_C_InfoGet()

fsp_err_t R_RTC_C_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Get RTC_C running status information ad store it in provided pointer p_rtc_info

Implements rtc_api_t::infoGet

Return values
FSP_SUCCESS Get information Successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Realtime clock module is stopped.

◆ R_RTC_C_ErrorAdjustmentSet()

fsp_err_t R_RTC_C_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

This function sets time error adjustment

Implements rtc_api_t::errorAdjustmentSet

Return values
FSP_SUCCESS Time error adjustment successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open for operation.

FSP_ERR_INVALID_ARGUMENT Not under sub-clock or invalid error
adjustment value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,855 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Realtime Clock (r_rtc_c)

◆ R_RTC_C_CallbackSet()

fsp_err_t R_RTC_C_CallbackSet (rtc_ctrl_t *const p_ctrl, void(*)(rtc_callback_args_t *) p_callback,
void const *const p_context, rtc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
rtc_api_t::callbackSet

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to RTC control block is NULL or the
RTC is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_RTC_C_TimeCaptureSet()

fsp_err_t R_RTC_C_TimeCaptureSet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Capture is not supported on the RTC_C.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_RTC_C_TimeCaptureGet()

fsp_err_t R_RTC_C_TimeCaptureGet (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Capture is not supported on the RTC_C.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

5.2.19.5 Three-Phase PWM (r_gpt_three_phase)
Modules » Timers

Functions

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,856 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

fsp_err_t R_GPT_THREE_PHASE_Open (three_phase_ctrl_t *const p_ctrl,
three_phase_cfg_t const *const p_cfg)

fsp_err_t R_GPT_THREE_PHASE_Stop (three_phase_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_THREE_PHASE_Start (three_phase_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_THREE_PHASE_Reset (three_phase_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_THREE_PHASE_DutyCycleSet (three_phase_ctrl_t *const
p_ctrl, three_phase_duty_cycle_t *const p_duty_cycle)

fsp_err_t R_GPT_THREE_PHASE_CallbackSet (three_phase_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_GPT_THREE_PHASE_Close (three_phase_ctrl_t *const p_ctrl)

Detailed Description

Driver for 3-phase motor control using the GPT peripheral on RA MCUs. This module implements the
Three-Phase Interface.

Overview
The General PWM Timer (GPT) Three-Phase driver provides basic functionality for synchronously
starting and stopping three PWM channels for use in 3-phase motor control applications. A function is
additionally provided to allow setting duty cycle values for all three channels, optionally with double-
buffering.

Features

The GPT Three-Phase driver provides the following functions:

Synchronize configuration of three GPT channels
Synchronously start, stop and reset all three GPT channels
Set duty cycle on all three channels with one function

Configuration
Build Time Configurations for r_gpt_three_phase

The following build time configurations are defined in fsp_cfg/r_gpt_three_phase_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,857 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

Configurations for Timers > Three-Phase PWM (r_gpt_three_phase)

This module can be added to the Stacks tab via New Stack > Timers > Three-Phase PWM
(r_gpt_three_phase). Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_three_phase0 Module name.

Mode Triangle-Wave
Symmetric
PWM
Triangle-Wave
Asymmetric
PWM
Triangle-Wave
Asymmetric
PWM (Mode 3)

Triangle-Wave
Symmetric PWM

Mode selection.
Triangle-Wave
Symmetric PWM:
Generates symmetric
PWM waveforms with
duty cycle determined
by compare match set
during a crest interrupt
and updated at the
next trough.
Triangle-Wave
Asymmetric PWM:
Generates asymmetric
PWM waveforms with
duty cycle determined
by compare match set
during a crest/trough
interrupt and updated
at the next
trough/crest.

Period Value must be a non-
negative integer less
than or equal to
0x40000000000

15 Specify the timer
period in units selected
below. Setting the
period to 0x100000000
raw counts results in
the maximum period.
Set the period to
0x100000000 raw
counts for a free
running timer or an
input capture
configuration. The
period can be set up to
0x40000000000, which
will use a divider of
1024 with the
maximum period.

If the requested period
cannot be achieved,
the settings with the
largest possible period

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,858 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
generated timer_cfg_t
structures for each
timer.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Kilohertz Unit of the period
specified above

GPT U-Channel Value must be an
integer greater than or
equal to 0

0 Specify the GPT
channel for U signal
output.

GPT V-Channel Value must be an
integer greater than or
equal to 0

1 Specify the GPT
channel for V signal
output.

GPT W-Channel Value must be an
integer greater than or
equal to 0

2 Specify the GPT
channel for W signal
output.

Callback Channel U-Channel
V-Channel
W-Channel

U-Channel Specify the GPT
channel to set a
callback for when using
R_GPT_THREE_PHASE_
CallbackSet.

Buffer Mode Single Buffer
Double Buffer

Single Buffer When Double Buffer is
selected the
'duty_buffer' array in
three_phase_duty_cycl
e_t is used as a buffer
for the 'duty' array.
This allows setting the
duty cycle for the next
two crest/trough
events in asymmetric
mode with only one call
to R_GPT_THREE_PHAS
E_DutyCycleSet.

GTIOCA Stop Level Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

GTIOCB Stop Level Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,859 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

Extra Features

Extra Features > Dead Time

Dead Time Count Up
(Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during up
counting. This value
also applies during
down counting for the
GPT32 and GPT16
variants.

Dead Time Count Down
(Raw Counts)
(GPTE/GPTEH only)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during down
counting. This value
only applies to the
GPT32E and GPT32EH
variants.

Clock Configuration

Please refer to the Timer, General PWM (r_gpt) section for more information.

Pin Configuration

Please refer to the Timer, General PWM (r_gpt) section for more information.

Usage Notes
Warning

Be sure the GTIOCA/B stop level and dead time values are set appropriately for your
application before attempting to drive a motor. Failure to do so may result in damage to the
motor drive circuitry and/or the motor itself if the timer is stopped by software.

Initial Setup

The following should be configured once the GPT Three-Phase module has been added to a project:

1. Set "Pin Output Support" in one of the GPT submodules to "Enabled with Extra Features"
2. Configure common settings in the GPT Three-Phase module properties
3. Set the crest and trough interrupt priority and callback function in one of the three GPT

submodules (if desired)
4. Set the "Extra Features -> Output Disable" settings in each GPT submodule as needed for

your application

Note
Because all three modules are operated synchronously with the same period interrupts only need to be enabled in
one of the three GPT modules.

Buffer Modes

There are two buffering modes available for duty cycle values - single- and double-buffered. In single
buffer mode only the values specified in the duty array element of three_phase_duty_cycle_t are
used by R_GPT_THREE_PHASE_DutyCycleSet. At the next trough or crest event the output duty cycle
will be internally updated to the set values.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,860 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

In double buffer mode the duty_buffer array values are used as buffer values for the duty elements.
Once passed to R_GPT_THREE_PHASE_DutyCycleSet, the next trough or crest event will update the
output duty cycle to the values specified in duty as before. However, at the following crest or trough
event the output duty cycle will be updated to the values in duty_buffer. This allows the duty cycle
for both sides of an asymmetric PWM waveform to be set at only one trough or crest event per
period instead of at every event.

Examples
GPT Three-Phase Basic Example

This is a basic example of minimal use of the GPT Three-Phase module in an application. The duty
cycle is updated at every timer trough with the previously loaded buffer value, then the duty cycle
buffer is reloaded in the trough interrupt callback.

void gpt_callback (timer_callback_args_t * p_args)

{

 fsp_err_t err;

 three_phase_duty_cycle_t duty_cycle;

 if (TIMER_EVENT_TROUGH == p_args->event)

 {

 /* Update duty cycle values (example) */

 duty_cycle.duty[THREE_PHASE_CHANNEL_U] =

get_duty_counts(THREE_PHASE_CHANNEL_U);

 duty_cycle.duty[THREE_PHASE_CHANNEL_V] =

get_duty_counts(THREE_PHASE_CHANNEL_V);

 duty_cycle.duty[THREE_PHASE_CHANNEL_W] =

get_duty_counts(THREE_PHASE_CHANNEL_W);

 /* Update duty cycle values */

 err = R_GPT_THREE_PHASE_DutyCycleSet(&g_gpt_three_phase_ctrl, &duty_cycle);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Handle crest event. */

 }

}

void gpt_three_phase_basic_example (void)

{

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,861 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_THREE_PHASE_Open(&g_gpt_three_phase_ctrl, &g_gpt_three_phase_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_THREE_PHASE_Start(&g_gpt_three_phase_ctrl);

}

Data Structures

struct gpt_three_phase_instance_ctrl_t

Data Structure Documentation

◆ gpt_three_phase_instance_ctrl_t

struct gpt_three_phase_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when three_phase_api_t::open is
called.

Function Documentation

◆ R_GPT_THREE_PHASE_Open()

fsp_err_t R_GPT_THREE_PHASE_Open (three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

Initializes the 3-phase timer module (and associated timers) and applies configurations.
Implements three_phase_api_t::open.

Example:

 /* Initializes the module. */

 err = R_GPT_THREE_PHASE_Open(&g_gpt_three_phase_ctrl, &g_gpt_three_phase_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION A required input pointer is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,862 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_Stop()

fsp_err_t R_GPT_THREE_PHASE_Stop (three_phase_ctrl_t *const p_ctrl)

Stops all timers synchronously. Implements three_phase_api_t::stop.

Return values
FSP_SUCCESS Timers successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_THREE_PHASE_Start()

fsp_err_t R_GPT_THREE_PHASE_Start (three_phase_ctrl_t *const p_ctrl)

Starts all timers synchronously. Implements three_phase_api_t::start.

Example:

 /* Start the timer. */

 (void) R_GPT_THREE_PHASE_Start(&g_gpt_three_phase_ctrl);

Return values
FSP_SUCCESS Timers successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_THREE_PHASE_Reset()

fsp_err_t R_GPT_THREE_PHASE_Reset (three_phase_ctrl_t *const p_ctrl)

Resets the counter values to 0. Implements three_phase_api_t::reset.

Return values
FSP_SUCCESS Counters were reset successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,863 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_DutyCycleSet()

fsp_err_t R_GPT_THREE_PHASE_DutyCycleSet (three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

Sets duty cycle for all three timers. Implements three_phase_api_t::dutyCycleSet.

In symmetric PWM mode duty cycle values are reflected after the next trough. In asymmetric PWM
mode values are reflected at the next trough OR crest, whichever comes first.

When double-buffering is enabled the values in three_phase_duty_cycle_t::duty_buffer are set to
the double-buffer registers. When values are reflected the first time the single buffer values
(three_phase_duty_cycle_t::duty) are used. On the second reflection the duty_buffer values are
used. In asymmetric PWM mode this enables both count-up and count-down PWM values to be set
at trough (or crest) exclusively.

Note
It is recommended to call this function in a high-priority callback to ensure that it is not interrupted and that no
GPT events occur during setting that would result in a duty cycle buffer load operation.

Example:

 /* Update duty cycle values */

 err = R_GPT_THREE_PHASE_DutyCycleSet(&g_gpt_three_phase_ctrl, &duty_cycle);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Duty cycle updated successfully.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT One or more duty cycle count values was
outside the range 0..(period - 1).

◆ R_GPT_THREE_PHASE_CallbackSet()

fsp_err_t R_GPT_THREE_PHASE_CallbackSet (three_phase_ctrl_t *const p_ctrl,
void(*)(timer_callback_args_t *) p_callback, void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Updates the user callback for the GPT U-channel with the option to provide memory for the callback
argument structure. Implements three_phase_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,864 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Three-Phase PWM (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_Close()

fsp_err_t R_GPT_THREE_PHASE_Close (three_phase_ctrl_t *const p_ctrl)

Stops counters, disables output pins, and clears internal driver data. Implements
three_phase_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

5.2.19.6 Timer, 32-bit Interval Timer (r_tml)
Modules » Timers

Functions

fsp_err_t R_TML_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_TML_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TML_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TML_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TML_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TML_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TML_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_TML_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_TML_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_TML_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_TML_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,865 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

fsp_err_t R_TML_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_TML_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the TML peripherals on RA MCUs. This module implements the Timer Interface.

Overview
The TML module can be used to count or count input events. TML operates with the HOCO, MOCO,
MOSC, LOCO/SOSC clock or the event input from the ELC, which is asynchronous to CPU operation.

Features

The TML module has the following features:

Supports 8-bit counter mode: 4 independent channels (Channel 0,Channel 1,Channel 2 and
Channel 3).
Supports 16-bit counter mode: 2 independent channels (Channel 0 and Channel 2).
Supports 32-bit counter mode: 1 channel (channel 0).
Supports 16-bit capture mode: 1 channel (channel 0).
Supports count source of HOCO, MOCO, MOSC, LOCO/SOSC clock or ELC events.
Configurable period (counts per timer cycle).
Supports runtime reconfiguration of period.
Supports capture-start by external sources from ELC events.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status.

Selecting a Timer

RA MCUs have different timer peripherals: the General PWM Timer (GPT), the 32-bit Interval Timer
(TML), Timer Array Unit (TAU), and the Asynchronous General Purpose Timer (AGT). Some MCUs
have multiple timer modules. When selecting between them, consider these factors:

GPT TML AGT TAU

Low Power Modes The GPT can
operate in sleep
mode.

The TML can
operate in all low
power modes.

The AGT can
operate in all low
power modes.

The TAU can not
operate in all low
power modes.

Available
Channels

The number of
GPT channels is
device specific.
Currently
supported MCUs
have at least 7
GPT channels.

Currently
supported MCUs
have 4 TML
channels.

Currently
supported MCUs
have 2 AGT
channels.

Currently
supported MCUs
have 8 TAU
channels.

Timer Resolution Currently The TML timers The AGT timers The TAU timers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,866 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

supported MCUs
have at least one
32-bit GPT timer.

are
32-bit/16-bit/8-bit
timers.

are 16-bit timers. are 16-bit/8-bit
timers.

Clock Source The GPT runs off
PCLKD with a
configurable
divider up to
1024. It can also
be configured to
count ELC events
or external pulses.

The TML runs off
MOSC,
LOCO/SOSC,
HOCO, MOCO with
a configurable
divider up to 128
or ELC events.

The AGT runs off
PCLKB, LOCO, or
subclock.

The TAU runs off
PCLK with a
configurable
divider up to
32768

Configuration

Build Time Configurations for r_tml

The following build time configurations are defined in fsp_cfg/r_tml_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Critical Section
Guarding

Enabled
Disabled

Disabled Enable critical section
guarding around
peripheral
configuration updates.
This should be enabled
if multiple instances of
the R_TML module are
being used.

16-bit Capture Mode
Support

Disabled
Enabled

Disabled Controls whether 16-bit
capture mode support
is included in the build.
This setting applies
globally to all
r_tml_instances. If
16-bit capture mode is
not used by any
instance, disable this
setting to reduce ROM
usage.

Enable Single Channel Disabled
Enabled

Disabled Enable single channel
to reduce code size.
Assumes channel 0.

Interrupt Support Disabled
Enabled

Disabled Enable support for
interrupts.

Configurations for Timers > 32-bit Interval Timer (r_tml)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,867 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

This module can be added to the Stacks tab via New Stack > Timers > 32-bit Interval Timer (r_tml).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_timer0 Module name.

Mode 8-bit Counter
Mode
16-bit Counter
Mode
32-bit Counter
Mode
16-bit Capture
Mode

16-bit Counter Mode Selection of Operating
mode.

Channel Selection Channel number must
exist on this MCU

0 Specify the hardware
channel.

ELC event MCU Specific Options Select the elc event.

Counter Mode Settings

Period Value must be positive
integer

0x10000 Specify the timer
period in units selected
below.

Set the period to 0x100
(8-bit) or 0x10000
(16-bit) or
0x100000000 (32-bit)
raw counts for a free
running timer. Since
the maxmimum divider
is 128... the raw counts
period can be set up to
the (max
count+1)*128. [0x8000
(8-bit) or 0x800000
(16-bit), or
0x8000000000
(32-bit)].

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above. When
the Counter Clock
Source is the ELC, only
Raw Counts can be
selected here.

Capture Mode Settings

Capture Mode Settings > 16-Bit Counter Input Settings (when Capture source = Interrupt on
compare match with ITLCMP01)

Period Value must be positive 0x10000 Specify the timer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,868 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

integer period in units selected
below.

Set the period to
0x10000 raw counts in
the maximum period of
16-bit capture.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above. When
the Capture Clock
Source is the ELC, only
Raw Counts can be
selected here.

Capture Trigger MCU Specific Options Selection of capture
trigger.

Capture Clock Divider fITL0
fITL0/2
fITL0/4
fITL0/8
fITL0/16
fITL0/32
fITL0/64
fITL0/128

fITL0 Selection of the FITL0
counter clock divider.

Counter Status Retained after
the completion
of capturing
Cleared after
the completion
of capturing

Retained after the
completion of
capturing

Selection of the 16-bit
counter (ITL000 +
ITL001) clearing after
capturing.

Interrupt

Callback function Name must be a valid
C symbol

NULL A user callback
function can be
provided here. If this
callback function is
provided, it is called
from the interrupt
service routine (ISR)
each time the IRQn
triggers

Priority MCU Specific Options Select the interrupt
priority.

Clock Configuration

The TML operating clock is based on the HOCO, MOCO, MOSC, or LOCO/SOSC. The operating
frequency will be based on the source chosen and the divider selected. You can set the clock
frequencies using the Clocks tab of the RA Configuration editor or change the clock divider for the
capture mode channel by Capture Mode Settings->Capture Clock Divider.

Note

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,869 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

The TML channels may be alternatively configured to use an event input from the ELC as a count clock in case no
frequency/duration can be input, only "Raw Counts".

Pin Configuration

Usage Notes
Maximum Period

In capture mode, the clock divider for the capture channel has to be selected in Capture Mode
Settings->Capture Clock Divider. If ITLCMP01 is the capture trigger input, the clock divider for
channels 2 + 3 is not available.

When no capture mode is active, the RA Configuration editor will automatically calculate the period
count value and source clock divider based on the selected period time, units and clock speed.

When the selected period unit is "Raw counts", the maximum period setting is
0x8000000000/0x800000/0x8000 on a 32-bit/16-bit/8-bit timer. This will configure the timer with the
maximum period and a count clock divisor of 128.

Note
When an event input from ELC is used as an operation clock, the automatic calculation of the period count value
and source clock divider is not available.

Updating Period

The period is updated after calling R_TML_PeriodSet().

Note
The period is only updated when the counter is stopped.
When using the API to set the period counts, the maximum timer_cfg_t::period_counts for 8-bit and 16-bit modes
are 0x100 and 0x10000, respectively. To set the the maximum count for 32-bit mode, set the
timer_cfg_t::period_counts to 0 (as 0x10000000 is outside the 32-bit range).
In the 16-bit capture mode, if the interrupt on compare match with ITLCMP01 is used as trigger source, the period
counts of the 16-bit timer channels 2 + 3 can be changed at run-time.

Capture mode

When the 16-bit capture mode is to be used for channels 0 and 1, the counter value is stored in
interval timer capture register 00 (ITLCAP00) in response to the selected capture trigger.

Note
When Channels 0 and 1 are in capture mode, Channels 2 and 3 can be used to trigger the capture when ITLCMP01
is the capture trigger. In this case the counter setup for Channels 2 and 3 are in Capture Mode Settings->16-Bit
Counter Input Settings. If ITLCMP01 is not the capture trigger input, Channels 2 and 3 may be setup as an
independent instance of 16-bit Counter channel.
When a capture trigger is generated when the timer is not running, the previous counter value of the capture
channel is still copied to the Interval Timer Capture Register (ITLCAP00).
The Common->16-bit Capture Mode Support property in the module configuration must be enabled to use the
capture operation.

Controlling TML with ELC Events

The TML timer can be configured to start count down or trigger capture when an ELC event occurs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,870 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

Note
The configurable ELC TML sources are shared by all TML channels.
The event links for the ELC must be configured outside this module.

Triggering ELC Events with TML

The TML timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Examples
TML Basic Example

This is a basic example of minimal use of the TML in an application.

void tml_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TML_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TML_Start(&g_timer0_ctrl);

}

TML Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,871 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

TML Counter Example

This is an example of 8/16/32-bit Counter.

void tml_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TML_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TML_Start(&g_timer0_ctrl);

 /* Read the current state. Counter value is in status.state. */

 timer_status_t status;

 (void) R_TML_StatusGet(&g_timer0_ctrl, &status);

 /* (Optional) Enable the mask for the interrupt flag. */

 (void) R_TML_Disable(&g_timer0_ctrl);

 /* (Optional) Disable the mask to use the interrupt. */

 (void) R_TML_Enable(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_TML_Stop(&g_timer0_ctrl);

}

TML Capture Example

This is an example of using the TML to capture the counter value of configured channel.

/* Example callback called when a capture occurs. */

uint64_t g_captured_time = 0U;

uint32_t g_capture_overflows = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CAPTURE_EDGE == p_args->event)

 {

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,872 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

 (void) R_TML_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

 g_captured_time = (period * g_capture_overflows) + p_args->capture;

 g_capture_overflows = 0U;

 }

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* An overflow occurred during capture. This must be accounted for at the

application layer. */

 g_capture_overflows++;

 }

}

void tml_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TML_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* There are 4 ways to trigger the capture:

 * - Use software trigger by set the ITLCC0.CAPR bit to 1 directly after call start

 * - Use ELC event and wait for valid input

 * - Use LOCO/SOSC clock and wait for valid edge

 * - Use interrupt on compare match with ITLCPM01

 *

 * This example uses the last option.

 */

 (void) R_TML_Start(&g_timer0_ctrl);

}

TML Period Update Example

This an example of updating the period.

#define TML_EXAMPLE_MSEC_PER_SEC (1000)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,873 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

#define TML_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void tml_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TML_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Get the source clock frequency (in Hz) */

 timer_info_t info;

 (void) R_TML_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX. A cast to uint64_t is used to prevent

this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * TML_EXAMPLE_DESIRED_PERIOD_MSEC) /

TML_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. */

 err = R_TML_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TML_Start(&g_timer0_ctrl);

}

Data Structures

struct tml_extended_cfg_t

struct tml_instance_ctrl_t

Enumerations

enum tml_clock_t

enum tml_capture_trigger_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,874 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

enum tml_counter_status_t

Data Structure Documentation

◆ tml_extended_cfg_t

struct tml_extended_cfg_t

User configuration structure, used in open function

Data Fields

tml_capture_trigger_t capture_trigger Select the capture source for
capture channel.

tml_counter_status_t counter_status Status of 16-bit counter (ITL000
+ ITL001) after completion of
capturing.

◆ tml_instance_ctrl_t

struct tml_instance_ctrl_t

TML instance control block.

Data Fields

uint32_t open

 Used to determine if the channel is configured.

const timer_cfg_t * p_cfg

 Pointer to the configuration block.

uint8_t channel_mask

 Mask value of channel used.

void(* p_callback)(timer_callback_args_t *)

 Pointer to callback that is called when a timer event occurs.

void const * p_context

 Pointer to context to be passed into callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,875 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

Enumeration Type Documentation

◆ tml_clock_t

enum tml_clock_t

Enumeration for TML FITL0, FITL1 clock source

Enumerator

TML_CLOCK_HOCO HOCO.

TML_CLOCK_MOCO MOCO.

TML_CLOCK_MOSC MOSC.

TML_CLOCK_LOCO_SOSC SOSC.

TML_CLOCK_ELC_EVENT Event input from the ELC.

◆ tml_capture_trigger_t

enum tml_capture_trigger_t

Enumeration for TML FITL2 capture trigger source

Enumerator

TML_CAPTURE_TRIGGER_SOFTWARE Software trigger.

TML_CAPTURE_TRIGGER_ITLCMP01 Interrupt on compare match with ITLCMP01.

TML_CAPTURE_TRIGGER_LOCO_SOSC LOCO/SOSC (rising edge)

TML_CAPTURE_TRIGGER_EVENT_ELC Event input from ELC (rising edge)

◆ tml_counter_status_t

enum tml_counter_status_t

Enumeration for status of 16-bit counter (ITL000 + ITL001) after completion of capturing

Enumerator

TML_COUNTER_STATUS_RETAINED_AFTER_CAPT
URING

16-bit counter (ITL000 + ITL001) is retained
after the completion of capturing

TML_COUNTER_STATUS_CLEARED_AFTER_CAPTU
RING

16-bit counter (ITL000 + ITL001) is cleared
after the completion of capturing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,876 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

Function Documentation

◆ R_TML_Open()

fsp_err_t R_TML_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the timer module and applies configurations. Implements timer_api_t::open.

TML hardware does not support one-shot functionality natively. If one shot mode is desired, the
user code should stop the timer after the timer expires the first time in an ISR after the requested
period has elapsed.

The TML implementation of the general timer can accept a tml_extended_cfg_t extension
parameter.

Example:

 /* Initializes the module. */

 err = R_TML_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
source divider is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED timer_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
one-shot mode or callback.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

FSP_ERR_INVALID_CHANNEL Selected channel is invalid

FSP_ERR_INVALID_MODE The mode requested in the p_cfg parameter
is incorrect. It must be the same for all
instances.

FSP_ERR_IN_USE Channel is running

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,877 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_Stop()

fsp_err_t R_TML_Stop (timer_ctrl_t *const p_ctrl)

Stops the counter and disable the capture. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_TML_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_TML_Start()

fsp_err_t R_TML_Start (timer_ctrl_t *const p_ctrl)

Starts the counter and enable the capture. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_TML_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,878 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_Reset()

fsp_err_t R_TML_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to 0. Implements timer_api_t::reset.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_TML_Enable()

fsp_err_t R_TML_Enable (timer_ctrl_t *const p_ctrl)

Enable the interrupt generation from the selected channel timer_api_t::enable.

Example:

 /* (Optional) Disable the mask to use the interrupt. */

 (void) R_TML_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,879 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_Disable()

fsp_err_t R_TML_Disable (timer_ctrl_t *const p_ctrl)

Disable the interrupt generation for this timer. Implements timer_api_t::disable.

Note
The timer could be stop after R_TML_Disable().

Example:

 /* (Optional) Enable the mask for the interrupt flag. */

 (void) R_TML_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,880 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_PeriodSet()

fsp_err_t R_TML_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Sets period value provided. Only set this value when all timers are stop. Implements
timer_api_t::periodSet.

Example:

 /* Get the source clock frequency (in Hz) */

 timer_info_t info;

 (void) R_TML_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX. A cast to uint64_t is used to prevent

this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * TML_EXAMPLE_DESIRED_PERIOD_MSEC) /

TML_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. */

 err = R_TML_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IN_USE Channel is running

◆ R_TML_DutyCycleSet()

fsp_err_t R_TML_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

timer_api_t::dutyCycleSet is not supported on the TML.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,881 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_CompareMatchSet()

fsp_err_t R_TML_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

timer_api_t::compareMatchSet is not supported on the TML.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_TML_InfoGet()

fsp_err_t R_TML_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get timer configuration information and store it in provided pointer p_info. Implements
timer_api_t::infoGet.

Example:

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_TML_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

Return values
FSP_SUCCESS Period, count direction, frequency, and ELC

event written to caller's structure
successfully.

FSP_ERR_ASSERTION p_ctrl or p_info was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,882 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_StatusGet()

fsp_err_t R_TML_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get current timer status and store it in provided pointer p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current state. Counter value is in status.state. */

 timer_status_t status;

 (void) R_TML_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current timer state and counter value set

successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_TML_CallbackSet()

fsp_err_t R_TML_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,883 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, 32-bit Interval Timer (r_tml)

◆ R_TML_Close()

fsp_err_t R_TML_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables output pins, and clears internal driver data. Implements timer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

FSP_ERR_IN_USE Channel is running

5.2.19.7 Timer, General PWM (r_gpt)
Modules » Timers

Functions

fsp_err_t R_GPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_GPT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_GPT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,884 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

fsp_err_t R_GPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_GPT_CounterSet (timer_ctrl_t *const p_ctrl, uint32_t counter)

fsp_err_t R_GPT_OutputEnable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

fsp_err_t R_GPT_OutputDisable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

fsp_err_t R_GPT_AdcTriggerSet (timer_ctrl_t *const p_ctrl,
gpt_adc_compare_match_t which_compare_match, uint32_t
compare_match_value)

fsp_err_t R_GPT_PwmOutputDelaySet (timer_ctrl_t *const p_ctrl,
gpt_pwm_output_delay_edge_t edge,
gpt_pwm_output_delay_setting_t delay_setting, uint32_t const pin)

fsp_err_t R_GPT_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_GPT_Close (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_PwmOutputDelayInitialize ()

Detailed Description

Driver for the GPT32 and GPT16 peripherals on RA MCUs. This module implements the Timer
Interface.

Overview
The GPT module can be used to count events, measure external input signals, generate a periodic
interrupt, or output a periodic or PWM signal to a GTIOC pin.

This module supports the GPT peripherals GPT32EH, GPT32E, GPT32, and GPT16. GPT16 is a 16-bit
timer. The other peripherals (GPT32EH, GPT32E, and GPT32) are 32-bit timers. The 32-bit timers are
all treated the same in this module from the API perspective.

Features

The GPT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.
Supports count source of PCLK, GTETRG pins, GTIOC pins, or ELC events.
Supports debounce filter on GTIOC pins.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Supports runtime reconfiguration of period.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,885 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Supports runtime reconfiguration of duty cycle in PWM mode.
Supports runtime reconfiguration of compare match value.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.
Supports start, stop, clear, count up, count down, and capture by external sources from
GTETRG pins, GTIOC pins, or ELC events.
Supports symmetric and asymmetric PWM waveform generation.
Supports One shot synchronous pulse waveform generation.
Supports automatic addition of dead time.
Supports generating ELC events to start an ADC scan at a compare match value (see Event
Link Controller (r_elc)) and updating the compare match value.
Supports linking with a POEG channel to automatically disable GPT output when an error
condition is detected.
Supports setting the counter value while the timer is stopped.
Supports enabling and disabling output pins.
Supports skipping up to seven overflow/underflow (crest/trough) interrupts at a time
Supports generating custom PWM waveforms by configuring the pin's output level at each
compare match and cycle end.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes.

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have 2 AGT channels.

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers are 16-bit
timers.

Clock Source The GPT runs off PCLKD with a
configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

The AGT runs off PCLKB, LOCO,
or subclock.

Configuration

Build Time Configurations for r_gpt

The following build time configurations are defined in fsp_cfg/r_gpt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled

Default (BSP) If selected code for
parameter checking is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,886 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Disabled included in the build.

Pin Output Support Disabled
Enabled
Enabled with
Extra Features

Disabled Enables or disables
support for outputting
PWM waveforms on
GTIOCx pins. The
"Enabled with Extra
Features" option
enables support for
Triangle wave modes
and also enables the
features located in the
"Extra Features"
section of each module
instance.

Write Protect Enable Enabled
Disabled

Disabled If selected write
protection is applied to
all GPT channels.

Configurations for Timers > Timer, General PWM (r_gpt)

This module can be added to the Stacks tab via New Stack > Timers > Timer, General PWM (r_gpt).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

General > Compare Match

General > Compare Match > Compare Match A

Status Enabled
Disabled

Disabled

Compare match value Value must be a non-
negative integer less
than or equal to
0x40000000000

0 Specify the compare
match A value in units
that selected in Period
Unit section.

General > Compare Match > Compare Match B

Status Enabled
Disabled

Disabled

Compare match value Value must be a non-
negative integer less
than or equal to
0x40000000000

0 Specify the compare
match B value in units
that selected in Period
Unit section.

Name Name must be a valid
C symbol

g_timer0 Module name.

Channel Enter the supported
Channel number

0 Specify the hardware
channel.

Mode Periodic Periodic Mode selection.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,887 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

One-Shot
One-Shot Pulse
Saw-wave PWM
Triangle-wave
PWM
(symmetric,
Mode 1)
Triangle-wave
PWM
(asymmetric,
Mode 2)
Triangle-wave
PWM
(asymmetric,
Mode 3)

Periodic: Generates
periodic interrupts or
square waves.
One-shot: Generate a
single interrupt or a
pulse wave. Note: One-
shot mode is
implemented in
software. ISRs must be
enabled for one-shot
even if callback is
unused.
One-Shot Pulse:
Counter performs saw-
wave operation with
fixed buffer operation.
Saw-wave PWM:
Generates basic saw-
wave PWM waveforms.
Triangle-wave PWM
(symmetric, Mode 1):
Generates symmetric
PWM waveforms with
duty cycle determined
by compare match set
with 32-bit transfer
during a crest event
and updated at the
next trough with single
or double buffer
operation.
Triangle-wave PWM
(asymmetric, Mode 2):
Generates asymmetric
PWM waveforms with
duty cycle determined
by compare match set
with 32-bit transfer
during a crest/trough
event and updated at
the next trough/crest.
Triangle-wave PWM
(asymmetric, Mode 3):
Generates PWM
waveforms with duty
cycle determined by
compare match set
with 64-bit transfer
during a crest interrupt
and updated at the
next trough with fixed
buffer operation.

Period Value must be a non-
negative integer less

0x10000 Specify the timer
period in units selected

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,888 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

than or equal to
0x40000000000

below. Set the period
to 0x100000000
(32-bit) or 0x10000
(16-bit) raw counts for
a free running timer or
an input capture
configuration. The
period can be set up to
0x40000000000
(32-bit) or 0x4000000
(16-bit) which will use a
divider of 1024 with
the maximum period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
generated timer_cfg_t
structure.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Output

Output > Custom Waveform

Output > Custom Waveform > GTIOA

Initial Output Level Pin Level Low
Pin Level High

Pin Level Low Set the initial output
level of GTIOCxA.

Cycle End Output Level Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxA at cycle end.

Compare Match Output
Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxA at compare
match.

Retain Output Level at
Count Stop

Disabled
Enabled

Disabled Retain the current
GTIOxA output level

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,889 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

when counting is
stopped.

Output > Custom Waveform > GTIOB

Initial Output Level Pin Level Low
Pin Level High

Pin Level Low Set the initial output
level of GTIOCxB.

Cycle End Output Level Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxB at cycle end.

Compare Match Output
Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxB at compare
match.

Retain Output Level at
Count Stop

Disabled
Enabled

Disabled Retain the current
GTIOxB output level
when counting is
stopped.

Custom Waveform
Enable

Disabled
Enabled

Disabled Enable custom
waveform
configuration.

Duty Cycle Percent
(only applicable in
PWM mode)

Value must be between
0 and 100

50 Specify the timer duty
cycle percent. Only
used in PWM mode.

GTIOCA Output
Enabled

True
False

False Enable the output of
GTIOCA on a pin.

GTIOCA Stop Level Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

GTIOCB Output
Enabled

True
False

False Enable the output of
GTIOCB on a pin.

GTIOCB Stop Level Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

Input

Count Up Source MCU Specific Options Select external source
that will increment the
counter. If any count
up source is selected,
the timer will count the
external sources only.
It will not count PCLKD
cycles.

Count Down Source MCU Specific Options Select external source
that will decrement the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,890 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

counter. If any count
down source is
selected, the timer will
count the external
sources only. It will not
count PCLKD cycles.

Start Source MCU Specific Options Select external source
that will start the timer.

For pulse width
measurement, set the
Start Source and the
Clear Source to the
trigger edge (the edge
to start the
measurement), and set
the Stop Source and
Capture Source (either
A or B) to the opposite
edge (the edge to stop
the measurement).

For pulse period
measurement, set the
Start Source, the Clear
Source, and the
Capture Source (either
A or B) to the trigger
edge (the edge to start
the measurement).

Stop Source MCU Specific Options Select external source
that will stop the timer.

Clear Source MCU Specific Options Select external source
that will clear the
timer.

Capture A Source MCU Specific Options Select external source
that will trigger a
capture A event.

Capture B Source MCU Specific Options Select external source
that will trigger a
capture B event.

Noise Filter A Sampling
Clock Select

No Filter
Filter PCLKD / 1
Filter PCLKD / 4
Filter PCLKD /
16
Filter PCLKD /
64

No Filter Select the input filter
for GTIOCA.

Noise Filter B Sampling
Clock Select

No Filter
Filter PCLKD / 1
Filter PCLKD / 4

No Filter Select the input filter
for GTIOCB.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,891 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Filter PCLKD /
16
Filter PCLKD /
64

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified here. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the timer period
elapses

Overflow/Crest
Interrupt Priority

MCU Specific Options Select the overflow
interrupt priority. This
is the crest interrupt
for triangle-wave PWM.

Capture/Compare
match A Interrupt
Priority

MCU Specific Options Select the interrupt
priority for
Capture/Compare
match A.

Capture/Compare
match B Interrupt
Priority

MCU Specific Options Select the interrupt
priority for
Capture/Compare
match B.

Underflow/Trough
Interrupt Priority

MCU Specific Options Select the interrupt
priority for the trough
interrupt (triangle-
wave PWM only).

Extra Features

Extra Features > Output Disable

POEG Link POEG Channel
0
POEG Channel
1
POEG Channel
2
POEG Channel
3

POEG Channel 0 Select which POEG to
link this GPT channel
to.

Output Disable POEG
Trigger

Dead Time
Error
GTIOCA and
GTIOCB High
Level
GTIOCA and
GTIOCB Low
Level

Select which errors
send an output disable
trigger to POEG. Dead
time error is only
available GPT channels
that have
GTINTAD.GRPDTE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,892 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

GTIOCA Disable Setting Disable
Prohibited
Set Hi Z
Level Low
Level High

Disable Prohibited Select the disable
setting for GTIOCA.

GTIOCB Disable Setting Disable
Prohibited
Set Hi Z
Level Low
Level High

Disable Prohibited Select the disable
setting for GTIOCB.

Extra Features > ADC Trigger

Start Event Trigger
(Channels with
GTINTAD only)

Trigger Event
A/D Converter
Start Request A
During Up
Counting
Trigger Event
A/D Converter
Start Request A
During Down
Counting
Trigger Event
A/D Converter
Start Request B
During Up
Counting
Trigger Event
A/D Converter
Start Request B
During Down
Counting

Select which A/D
converter start request
interrupts to generate
and at which point in
the cycle to generate
them.

ADC A Compare Match
(Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the compare
match value that
generates a GPTn AD
TRIG A event.

ADC B Compare Match
(Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the compare
match value that
generates a GPTn AD
TRIG B event.

Extra Features > Dead Time (Value range varies with Channel)

Dead Time Count Up
(Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during up
counting. This value
also applies during
down counting for
channels that do not
have GTDVD. The dead
time count up value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,893 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

can be set up to
0xffffffff (32-bit) or
0xffff (16-bit).

Dead Time Count Down
(Raw Counts)
(Channels with GTDVD
only)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during down
counting. The dead
time count down value
can be set up to
0xffffffff (32-bit) or
0xffff (16-bit).

Extra Features > Interrupt Skipping (Channels with GTITC only)

Interrupt to Count None
Overflow and
Underflow
(sawtooth)
Crest (triangle)
Trough
(triangle)

None Select the count source
for interrupt skipping.
The interrupt skip
counter increments
after each source
event. All
crest/overflow and
trough/underflow
interrupts are skipped
when the interrupt skip
counter is non-zero.

Interrupt Skip Count 0
1
2
3
4
5
6
7

0 Select the number of
interrupts to skip.

Skip ADC Events None
ADC A Compare
Match
ADC B Compare
Match
ADC A and B
Compare Match

None Select ADC events to
suppress when the
interrupt skip count is
not zero.

Extra Features Enabled
Disabled

Disabled Select whether to
enable extra features
on this channel.

Clock Configuration

The GPT clock is based on the PCLKD frequency. You can set the PCLKD frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

This module can use GTETRGA, GTETRGB, GTETRGC, GTETRGD, GTIOCA and GTIOCB pins as count
sources.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,894 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

This module can use GTIOCA and GTIOCB pins as output pins for periodic or PWM signals.

This module can use GTIOCA and GTIOCB as input pins to measure input signals.

Usage Notes
Maximum Period

The RA Configuration editor will automatically calculate the period count value and source clock
divider based on the selected period time, units and clock speed.

When the selected period unit is "Raw counts", the maximum period setting is 0x40000000000 on a
32-bit timer or 0x4000000 on a 16-bit timer. This will configure the timer with the maximum period
and a count clock divisor of 1024.

Note
16-bit channels inherently have a reduced maximum period compared to 32-bit channels. When setting period
values of hundreds of milliseconds or more on 16-bit channels be sure to check the generated output to confirm the
actual configured value as it will clip much earlier than 32-bit channels. In general, it is recommended to use a
lower-power timer like AGT or RTC if long hardware delays are required.

Updating Period and Duty Cycle

The period and duty cycle are updated after the next counter overflow after calling
R_GPT_PeriodSet() or R_GPT_DutyCycleSet(). To force them to update before the next counter
overflow, call R_GPT_Reset() while the counter is running.

Note
When manually changing the timer period counts the maximum value for a 32-bit GPT is 0x100000000. This
number overflows the 32-bit value for timer_cfg_t::period_counts. To configure the timer for the maximum period,
set timer_cfg_t::period_counts to 0.

One-Shot Mode

The GPT timer does not support one-shot mode natively. One-shot mode is achieved by stopping the
timer in the interrupt service routine before the callback is called. If the interrupt is not serviced
before the timer period expires again, the timer generates more than one event. The callback is only
called once in this case, but multiple events may be generated if the timer is linked to the Transfer
(r_dtc).

One-Shot Mode Output

The output waveform in one-shot mode is one PCLKD cycle less than the configured period. The
configured period must be at least 2 counts to generate an output pulse.

Examples of one-shot signals that can be generated by this module are shown below:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,895 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Figure 296: GPT One-Shot Output

One-Shot Pulse Mode

The one-shot pulse mode is an asymmetric PWM mode that provides more control over the rising
and falling edges of the output. The user provides a period and initial output level and controls the
signal by specifying compare match values for the leading and trailing edges each period.

Note
Despite its name, the One-Shot Pulse Mode operates continuously and does not stop after the first period.

One-Shot Pulse Mode Output

Examples of PWM signals that can be generated by this module are shown below. The leading and
trailing edge match values can be modified using R_GPT_DutyCycleSet() in the overflow interrupt.

Figure 297: GPT One-Shot Pulse Output (without dead time)

 If dead time is enabled only match values for GTIOCnA need to be set; the match values for
GTIOCnB will be automatically configured in hardware.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,896 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Figure 298: GPT One-Shot Pulse Output (with dead time)

Periodic Output

The GTIOC pin toggles twice each time the timer expires in periodic mode. This is achieved by
defining a PWM wave at a 50 percent duty cycle so that the period of the resulting square wave
(from rising edge to rising edge) matches the period of the GPT timer. Since the periodic output is
actually a PWM output, the time at the stop level is one cycle shorter than the time opposite the stop
level for odd period values.

Examples of periodic signals that can be generated by this module are shown below:

Figure 299: GPT Periodic Output

PWM Output

The PWM output signal is high at the beginning of the cycle and low at the end of the cycle.

Examples of PWM signals that can be generated by this module are shown below:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,897 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Figure 300: GPT PWM Output

Triangle-Wave PWM Output

Examples of PWM signals that can be generated by this module are shown below. The
duty_cycle_counts can be modified using R_GPT_DutyCycleSet() in the crest interrupt and updated at
the following trough for symmetric PWM or modified in both the crest/trough interrupts and updated
at the following trough/crest for asymmetric PWM.

Figure 301: GPT Triangle-Wave PWM Output

PWM Output Delay Circuit

On select MCUs, an additional PWM output delay circuit can be configured in order to fine tune the
rising and falling edge delays in increments of 1/32 times the period of the GPT core clock. The PWM
output delay function must be configured prior to initializing the GPT channels using
R_GPT_PwmOutputDelayInitialize.

Note
1. In Saw-wave PWM mode, the output delay setting cannot be changed while the capture compare setting
(GTCCRn) is greater than or equal the period setting (GTPR) - 2.
2. In Triangle PWM modes, the output delay setting cannot be changed while the counter is counting down, and the
capture compare setting (GTCCRn) is less than or equal to 2.
3. When the PWM Output Delay Circuit is enabled, the PWM signal is delayed by 3 GPT core clock cycles.
4. When the GPTCLK is used as the GPT core clock, the following delay is required between writes to the rising or
falling edge output delay setting for a given pin: Write_Interval[ns] = Period_of_PCLKA [ns] × 6 +
Period_of_GPTCLK [ns] × 4).

Event Counting

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,898 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Event counting can be done by selecting up or down counting sources from GTETRG pins, ELC
events, or GTIOC pins. In event counting mode, the GPT counter is not affected by PCLKD.

Note
In event counting mode, the application must call R_GPT_Start() to enable event counting. The counter will not
change after calling R_GPT_Start() until an event occurs.

Pulse Measurement

If the capture edge occurs before the start edge in pulse measurement, the first capture is invalid
(0).

Controlling GPT with GTETRG Edges

The GPT timer can be configured to stop, start, clear, count up, or count down when a GTETRG rising
or falling edge occurs.

Note
The GTETRG pins are shared by all GPT channels.
GTETRG pins require POEG to be on (example code for this is provided in GPT Free Running Counter Example).
If input filtering is required on the GTETRG pins, that must also be handled outside this module.

Controlling GPT with ELC Events

The GPT timer can be configured to stop, start, clear, count up, or count down when an ELC event
occurs.

Note
The configurable ELC GPT sources are shared by all GPT channels.
The event links for the ELC must be configured outside this module.

Triggering ELC Events with GPT

The GPT timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Enabling External Sources for Start, Stop, Clear, or Capture

R_GPT_Enable() must be called when external sources are used for start, stop, clear, or capture.

Interrupt Skipping

When an interrupt skipping source is selected a hardware counter will increment each time the
selected event occurs. Each interrupt past the first (up to the specified skip count) will be
suppressed. If ADC events are selected for skipping they will also be suppressed except during the
timer period leading to the selected interrupt skipping event (see below diagram).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,899 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

Figure 302: Crest interrupt skipping in triangle-wave PWM modes (skip count 2)

Complementary Output

By using the Custom Waveform option the output pins can be made to output complementary
waveforms. To ensure these waveforms stay in sync, the duty cycle for both pins can be set
simultaneously by calling R_GPT_DutyCycleSet once with a pin parameter of
GPT_IO_PIN_GTIOCA_AND_GTIOCB.

Note
The pin level for 0% and 100% duty cycle is determined by the Cycle End Output Level in normal PWM mode and
the Initial Output Level in triangle PWM modes. 100% duty will output the configured level and 0% will output the
opposite. Do not use Pin Level Toggle or Pin Level Retain for the Cycle End Output Level if normal PWM
waveforms are desired.

Examples
GPT Basic Example

This is a basic example of minimal use of the GPT in an application.

void gpt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

}

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,900 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

GPT Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

GPT Free Running Counter Example

To use the GPT as a free running counter, select periodic mode and set the the Period to 0xFFFFFFFF
for a 32-bit timer or 0xFFFF for a 16-bit timer.

void gpt_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) If event count mode is used to count edges on a GTETRG pin, POEG must

be started to use GTETRG.

 * Reference Note 1 of Table 23.2 "GPT functions" in the RA6M3 manual

R01UH0886EJ0100. */

 R_BSP_MODULE_START(FSP_IP_POEG, 0U);

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_GPT_Stop(&g_timer0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,901 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_GPT_StatusGet(&g_timer0_ctrl, &status);

}

GPT Input Capture Example

This is an example of using the GPT to capture pulse width or pulse period measurements.

/* Example callback called when a capture occurs. */

uint64_t g_captured_time = 0U;

uint32_t g_capture_overflows = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if ((TIMER_EVENT_CAPTURE_A == p_args->event) || (TIMER_EVENT_CAPTURE_B ==

p_args->event))

 {

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint64_t period = info.period_counts;

 /* The maximum period is one more than the maximum 32-bit number, but will be

reflected as 0 in

 * timer_info_t::period_counts. */

 if (0U == period)

 {

 period = UINT32_MAX + 1U;

 }

 g_captured_time = (period * g_capture_overflows) + p_args->capture;

 g_capture_overflows = 0U;

 }

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* An overflow occurred during capture. This must be accounted for at the

application layer. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,902 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 g_capture_overflows++;

 }

}

void gpt_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_GPT_Enable(&g_timer0_ctrl);

 /* (Optional) Disable captures. */

 (void) R_GPT_Disable(&g_timer0_ctrl);

}

GPT Period Update Example

This an example of updating the period.

#define GPT_EXAMPLE_MSEC_PER_SEC (1000)

#define GPT_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void gpt_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz). There are 3 ways to do this in FSP:

 * - If the PCLKD frequency has not changed since reset, the source clock frequency

is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,903 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 * BSP_STARTUP_PCLKD_HZ >> timer_cfg_t::source_div

 * - Use the R_GPT_InfoGet function (it accounts for the divider).

 * - Calculate the current PCLKD frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) and right shift

 * by timer_cfg_t::source_div.

 *

 * This example uses the 3rd option (R_FSP_SystemClockHzGet).

 */

 uint32_t pclkd_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkd_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) pclkd_freq_hz * GPT_EXAMPLE_DESIRED_PERIOD_MSEC) /

GPT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. */

 err = R_GPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

GPT Duty Cycle Update Example

This an example of updating the duty cycle.

#define GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT (25)

#define GPT_EXAMPLE_MAX_PERCENT (100)

/* This example shows how to calculate a new duty cycle value at runtime. */

void gpt_duty_cycle_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,904 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. Note that if the

period could be larger than

 * UINT32_MAX / 100, this calculation could overflow. A cast to uint64_t is used to

prevent this. The cast is

 * not required for 16-bit timers. */

 uint32_t duty_cycle_counts =

 (uint32_t) (((uint64_t) current_period_counts *

GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 GPT_EXAMPLE_MAX_PERCENT);

 /* Set the calculated duty cycle. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, GPT_IO_PIN_GTIOCB);

 assert(FSP_SUCCESS == err);

}

GPT A/D Converter Start Request Example

This is an example of using the GPT to start the ADC at a configurable A/D converter compare match
value.

#if ((1U << GPT_EXAMPLE_CHANNEL) & (BSP_FEATURE_GPT_GPTE_CHANNEL_MASK |

BSP_FEATURE_GPT_GPTEH_CHANNEL_MASK | \

 BSP_FEATURE_GPT_AD_DIRECT_START_CHANNEL_MASK))

/* This example shows how to configure the GPT to generate an A/D start request at an

A/D start request compare

 * match value. This example can only be used with GPTE or GPTEH variants. */

void gpt_adc_start_request_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,905 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 #if ((BSP_FEATURE_GPT_GPTE_SUPPORTED | BSP_FEATURE_GPT_GPTEH_SUPPORTED) &&

!BSP_FEATURE_GPT_AD_DIRECT_START_SUPPORTED)

 /* Initialize and configure the ELC. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 assert(FSP_SUCCESS == err);

 /* Configure the ELC to start a scan on ADC unit 0 when GPT channel 0. Note: This is

typically configured in

 * g_elc_cfg and already set during R_ELC_Open. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0, ELC_EVENT_GPT0_AD_TRIG_A);

 assert(FSP_SUCCESS == err);

 /* Globally enable ELC events. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

 #else /* BSP_FEATURE_GPT_AD_DIRECT_START_SUPPORTED */

 /* Do not configure AD ELC trigger for devices with GPT ADC direct-start support */

 #endif

 /* Initialize the ADC to start a scan based on an GPT compare-match event trigger.

Set adc_cfg_t::trigger to

 * ADC_TRIGGER_SYNC_ELC. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable synchronous triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Initializes the GPT module. Configure gpt_extended_pwm_cfg_t::adc_trigger to set

when the A/D start request

 * is generated. Set gpt_extended_pwm_cfg_t::adc_a_compare_match to set the desired

compare match value. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 assert(FSP_SUCCESS == err);

 /* Start the timer. A/D converter start request events are generated each time the

counter is equal to the

 * A/D start request compare match value. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,906 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 (void) R_GPT_Start(&g_timer0_ctrl);

}

#endif

GPT One-Shot Pulse Mode Example

This example demonstrates the configuration and use of one-shot pulse mode with GPT timer.

/* Example callback called when timer overflows. */

void gpt_overflow_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 g_timer_cycle_end_counter++;

 /* Use R_GPT_DutyCycleSet() API to set new values for each cycle.

 * - Use GPT_IO_PIN_ONE_SHOT_LEADING_EDGE to set the leading edge transition match

value (GTCCRC or GTCCRE register).

 * - Use GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE to set the trailing edge transition match

value (GTCCRD or GTCCRF register).

 */

 }

}

/* GTIOCA (configured for active-high) first and second pulse will be:

 * - 1/2 period, offset by 3/8 period

 * - 1/4 period, offset by 1/4 period */

#define GPT_ONE_SHOT_EXAMPLE_FIRST_EDGE_PIN_A ((g_timer0_cfg.period_counts * 3) / 8)

#define GPT_ONE_SHOT_EXAMPLE_SECOND_EDGE_PIN_A ((g_timer0_cfg.period_counts * 7) / 8)

#define GPT_ONE_SHOT_EXAMPLE_THIRD_EDGE_PIN_A ((g_timer0_cfg.period_counts * 1) / 4)

#define GPT_ONE_SHOT_EXAMPLE_FOURTH_EDGE_PIN_A ((g_timer0_cfg.period_counts * 2) / 4)

/* GTIOCB (configured for active-low) first and second pulse will be:

 * - 1/2 period, offset by 1/4 period

 * - 1/4 period, offset by 1/2 period */

#define GPT_ONE_SHOT_EXAMPLE_FIRST_EDGE_PIN_B ((g_timer0_cfg.period_counts * 1) / 4)

#define GPT_ONE_SHOT_EXAMPLE_SECOND_EDGE_PIN_B ((g_timer0_cfg.period_counts * 3) / 4)

#define GPT_ONE_SHOT_EXAMPLE_THIRD_EDGE_PIN_B ((g_timer0_cfg.period_counts * 2) / 4)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,907 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

#define GPT_ONE_SHOT_EXAMPLE_FOURTH_EDGE_PIN_B ((g_timer0_cfg.period_counts * 3) / 4)

/* Configure and output a one-shot pulse that resembles what is shown in the example

above. */

void gpt_one_shot_pulse_mode_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 assert(FSP_SUCCESS == err);

 /* Set first edge transition count for GTIOCA and GTIOCB.

 *

 * Notes:

 * - Two temporary registers (A and B) are used for the second edge.

 * - Temporary register A and Temporary register B may only be loaded by shifting

from GTCCRD and GTCCRF, which is why the GPT_BUFFER_FORCE_PUSH is necessary

 * - If GPT_BUFFER_FORCE_PUSH is not used, timing for the first pulse will be

undefined.

 * - For more information, see "Example setting for saw-wave one-shot pulse mode" in

the UM for your MCU. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_FIRST_EDGE_PIN_A,

 GPT_IO_PIN_GTIOCA | GPT_IO_PIN_ONE_SHOT_LEADING_EDGE);

 assert(FSP_SUCCESS == err);

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_FIRST_EDGE_PIN_B,

 GPT_IO_PIN_GTIOCB | GPT_IO_PIN_ONE_SHOT_LEADING_EDGE);

 assert(FSP_SUCCESS == err);

 /* Set third edge transition count for GTIOCA and GTIOCB

 * Also force-push to shift all four counts into active buffer locations. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_SECOND_EDGE_PIN_A,

 GPT_IO_PIN_GTIOCA | GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE);

 assert(FSP_SUCCESS == err);

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,908 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 GPT_ONE_SHOT_EXAMPLE_SECOND_EDGE_PIN_B,

 GPT_IO_PIN_GTIOCB | GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE | GPT_BUFFER_FORCE_PUSH);

 assert(FSP_SUCCESS == err);

 /* Set third leading edge transition count for GTIOCA and GTIOCB.

 * Note: It is not necessary to set third and fourth transition edges if it is not

required by the application. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_THIRD_EDGE_PIN_A,

 GPT_IO_PIN_GTIOCA | GPT_IO_PIN_ONE_SHOT_LEADING_EDGE);

 assert(FSP_SUCCESS == err);

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_THIRD_EDGE_PIN_B,

 GPT_IO_PIN_GTIOCB | GPT_IO_PIN_ONE_SHOT_LEADING_EDGE);

 assert(FSP_SUCCESS == err);

 /* Set fourth edge transition count for GTIOCA and GTIOCB

 * Do not force-push, shifting third and fourth edges would overwrite active buffer

locations (first and second edge counts). */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_FOURTH_EDGE_PIN_A,

 GPT_IO_PIN_GTIOCA | GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE);

 assert(FSP_SUCCESS == err);

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl,

 GPT_ONE_SHOT_EXAMPLE_FOURTH_EDGE_PIN_B,

 GPT_IO_PIN_GTIOCB | GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE);

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 R_GPT_Start(&g_timer0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for the one-shot pulse output to complete then stop GPT

 *

 * Notes:

 * - FSP driver does not currently support automatically stopping one-shot pulse. If

GPT is not stopped the last waveform timing will be repeated indefinitely.

 * - Some (more recent) MCUs added a new register (GTPC) that could be used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,909 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

automatically stop GPT after a set number of periods. Software driver support for

this is scheduled to be added in the future.

 * - The last transition edge timings will continue to be used indefinitely until

the user application stops GPT operation. */

 while (g_timer_cycle_end_counter < 2)

 {

 /* Wait for one-shot pulse output to complete (two pulses) */

 }

 /* (Optional) Stop the timer. */

 err = R_GPT_Stop(&g_timer0_ctrl);

 assert(FSP_SUCCESS == err);

}

GPT Compare Match Set Example

This example demonstrates the configuration and use of compare match with GPT timer.

/* Example callback called when compare match occurs. */

void gpt_compare_match_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_COMPARE_A == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

#define GPT_COMPARE_MATCH_EXAMPLE_VALUE (0x2000U)

void gpt_compare_match_set_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the compare match value (GPT_COMPARE_MATCH_EXAMPLE_VALUE). This value must be

less than or equal to period value. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,910 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 err = R_GPT_CompareMatchSet(&g_timer0_ctrl, GPT_COMPARE_MATCH_EXAMPLE_VALUE,

TIMER_COMPARE_MATCH_A);

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_GPT_Stop(&g_timer0_ctrl);

}

Data Structures

struct gpt_output_pin_t

struct gpt_gtior_setting_t

struct gpt_instance_ctrl_t

struct gpt_extended_pwm_cfg_t

struct gpt_extended_cfg_t

Enumerations

enum gpt_io_pin_t

enum gpt_buffer_force_push

enum gpt_pin_level_t

enum gpt_source_t

enum gpt_capture_filter_t

enum gpt_adc_trigger_t

enum gpt_poeg_link_t

enum gpt_output_disable_t

enum gpt_gtioc_disable_t

enum gpt_adc_compare_match_t

enum gpt_interrupt_skip_source_t

enum gpt_interrupt_skip_count_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,911 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

enum gpt_interrupt_skip_adc_t

enum gpt_pwm_output_delay_setting_t

enum gpt_pwm_output_delay_edge_t

Data Structure Documentation

◆ gpt_output_pin_t

struct gpt_output_pin_t

Configurations for output pins.

Data Fields

bool output_enabled Set to true to enable output,
false to disable output.

gpt_pin_level_t stop_level Select a stop level from
gpt_pin_level_t.

◆ gpt_gtior_setting_t

struct gpt_gtior_setting_t

Custom GTIOR settings used for configuring GTIOCxA and GTIOCxB pins.

◆ gpt_instance_ctrl_t

struct gpt_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ gpt_extended_pwm_cfg_t

struct gpt_extended_pwm_cfg_t

GPT extension for advanced PWM features.

Data Fields

uint8_t trough_ipl Trough interrupt priority.

IRQn_Type trough_irq Trough interrupt.

gpt_poeg_link_t poeg_link Select which POEG channel
controls output disable for this
GPT channel.

gpt_output_disable_t output_disable Select which trigger sources
request output disable from
POEG.

gpt_adc_trigger_t adc_trigger Select trigger sources to start
A/D conversion.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,912 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

uint32_t dead_time_count_up Set a dead time value for
counting up.

uint32_t dead_time_count_down Set a dead time value for
counting down (available on
GPT32E and GPT32EH only)

uint32_t adc_a_compare_match Select the compare match
value used to trigger an A/D
conversion start request using
ELC_EVENT_GPT<channel>_AD
_TRIG_A.

uint32_t adc_b_compare_match Select the compare match
value used to trigger an A/D
conversion start request using
ELC_EVENT_GPT<channel>_AD
_TRIG_B.

gpt_interrupt_skip_source_t interrupt_skip_source Interrupt source to count for
interrupt skipping.

gpt_interrupt_skip_count_t interrupt_skip_count Number of interrupts to skip
between events.

gpt_interrupt_skip_adc_t interrupt_skip_adc ADC events to skip when
interrupt skipping is enabled.

gpt_gtioc_disable_t gtioca_disable_setting Select how to configure GTIOCA
when output is disabled.

gpt_gtioc_disable_t gtiocb_disable_setting Select how to configure GTIOCB
when output is disabled.

◆ gpt_extended_cfg_t

struct gpt_extended_cfg_t

GPT extension configures the output pins for GPT.

Data Fields

gpt_output_pin_t gtioca Configuration for GPT I/O pin A.

gpt_output_pin_t gtiocb Configuration for GPT I/O pin B.

gpt_source_t start_source Event sources that trigger the
timer to start.

gpt_source_t stop_source Event sources that trigger the
timer to stop.

gpt_source_t clear_source Event sources that trigger the
timer to clear.

gpt_source_t capture_a_source Event sources that trigger
capture of GTIOCA.

gpt_source_t capture_b_source Event sources that trigger
capture of GTIOCB.

gpt_source_t count_up_source Event sources that trigger a

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,913 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

single up count. If
GPT_SOURCE_NONE is selected
for both count_up_source and
count_down_source, then the
timer count source is PCLK.

gpt_source_t count_down_source Event sources that trigger a
single down count. If
GPT_SOURCE_NONE is selected
for both count_up_source and
count_down_source, then the
timer count source is PCLK.

gpt_capture_filter_t capture_filter_gtioca

gpt_capture_filter_t capture_filter_gtiocb

uint8_t capture_a_ipl Capture A interrupt priority.

uint8_t capture_b_ipl Capture B interrupt priority.

IRQn_Type capture_a_irq Capture A interrupt.

IRQn_Type capture_b_irq Capture B interrupt.

uint32_t compare_match_value[2] Storing compare match value
for channels.

uint8_t compare_match_status Storing the compare match
register status.

gpt_extended_pwm_cfg_t const
*

p_pwm_cfg Advanced PWM features,
optional.

gpt_gtior_setting_t gtior_setting Custom GTIOR settings used for
configuring GTIOCxA and
GTIOCxB pins.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,914 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_io_pin_t

enum gpt_io_pin_t

Input/Output pins, used to select which duty cycle to update in R_GPT_DutyCycleSet().

Enumerator

GPT_IO_PIN_GTIOCA GTIOCA.

GPT_IO_PIN_GTIOCB GTIOCB.

GPT_IO_PIN_GTIOCA_AND_GTIOCB GTIOCA and GTIOCB.

GPT_IO_PIN_TROUGH Used in R_GPT_DutyCycleSet when Triangle-
wave PWM Mode 3 is selected.

GPT_IO_PIN_CREST Used in R_GPT_DutyCycleSet when Triangle-
wave PWM Mode 3 is selected.

GPT_IO_PIN_ONE_SHOT_LEADING_EDGE Used in R_GPT_DutyCycleSet to set GTCCRC
and GTCCRE registers when One-Shot Pulse
mode is selected.

GPT_IO_PIN_ONE_SHOT_TRAILING_EDGE Used in R_GPT_DutyCycleSet to set GTCCRD
and GTCCRF registers when One-Shot Pulse
mode is selected.

◆ gpt_buffer_force_push

enum gpt_buffer_force_push

Forced buffer push operation used in One-Sot Pulse mode with R_GPT_DutyCycleSet().

Enumerator

GPT_BUFFER_FORCE_PUSH Used in R_GPT_DutyCycleSet to force push the
data from GTCCRn registers to temporary
buffer A or B when One-Shot Pulse mode is
selected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,915 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_pin_level_t

enum gpt_pin_level_t

Level of GPT pin

Enumerator

GPT_PIN_LEVEL_LOW Pin level low.

GPT_PIN_LEVEL_HIGH Pin level high.

◆ gpt_source_t

enum gpt_source_t

Sources can be used to start the timer, stop the timer, count up, or count down. These
enumerations represent a bitmask. Multiple sources can be ORed together.

Enumerator

GPT_SOURCE_NONE No active event sources.

GPT_SOURCE_GTETRGA_RISING Action performed on GTETRGA rising edge.

GPT_SOURCE_GTETRGA_FALLING Action performed on GTETRGA falling edge.

GPT_SOURCE_GTETRGB_RISING Action performed on GTETRGB rising edge.

GPT_SOURCE_GTETRGB_FALLING Action performed on GTETRGB falling edge.

GPT_SOURCE_GTETRGC_RISING Action performed on GTETRGC rising edge.

GPT_SOURCE_GTETRGC_FALLING Action performed on GTETRGC falling edge.

GPT_SOURCE_GTETRGD_RISING Action performed on GTETRGB rising edge.

GPT_SOURCE_GTETRGD_FALLING Action performed on GTETRGB falling edge.

GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_L
OW

Action performed when GTIOCA input rises
while GTIOCB is low.

GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HI
GH

Action performed when GTIOCA input rises
while GTIOCB is high.

GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_
LOW

Action performed when GTIOCA input falls
while GTIOCB is low.

GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_
HIGH

Action performed when GTIOCA input falls
while GTIOCB is high.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,916 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_L
OW

Action performed when GTIOCB input rises
while GTIOCA is low.

GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HI
GH

Action performed when GTIOCB input rises
while GTIOCA is high.

GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_
LOW

Action performed when GTIOCB input falls
while GTIOCA is low.

GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_
HIGH

Action performed when GTIOCB input falls
while GTIOCA is high.

GPT_SOURCE_GPT_A Action performed on ELC GPTA event.

GPT_SOURCE_GPT_B Action performed on ELC GPTB event.

GPT_SOURCE_GPT_C Action performed on ELC GPTC event.

GPT_SOURCE_GPT_D Action performed on ELC GPTD event.

GPT_SOURCE_GPT_E Action performed on ELC GPTE event.

GPT_SOURCE_GPT_F Action performed on ELC GPTF event.

GPT_SOURCE_GPT_G Action performed on ELC GPTG event.

GPT_SOURCE_GPT_H Action performed on ELC GPTH event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,917 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_capture_filter_t

enum gpt_capture_filter_t

Input capture signal noise filter (debounce) setting. Only available for input signals GTIOCxA and
GTIOCxB. The noise filter samples the external signal at intervals of the PCLK divided by one of the
values. When 3 consecutive samples are at the same level (high or low), then that level is passed
on as the observed state of the signal. See "Noise Filter Function" in the hardware manual, GPT
section.

Enumerator

GPT_CAPTURE_FILTER_NONE None - no filtering.

GPT_CAPTURE_FILTER_PCLKD_DIV_1 PCLK/1 - fast sampling.

GPT_CAPTURE_FILTER_PCLKD_DIV_4 PCLK/4.

GPT_CAPTURE_FILTER_PCLKD_DIV_16 PCLK/16.

GPT_CAPTURE_FILTER_PCLKD_DIV_64 PCLK/64 - slow sampling.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,918 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_adc_trigger_t

enum gpt_adc_trigger_t

Trigger options to start A/D conversion.

Enumerator

GPT_ADC_TRIGGER_NONE None - no output disable request.

GPT_ADC_TRIGGER_UP_COUNT_START_ADC_A Request A/D conversion from ADC unit 0 at up
counting compare match of
gpt_extended_pwm_cfg_t::adc_a_compare_mat
ch.

GPT_ADC_TRIGGER_DOWN_COUNT_START_ADC_
A

Request A/D conversion from ADC unit 0 at
down counting compare match of
gpt_extended_pwm_cfg_t::adc_a_compare_mat
ch.

GPT_ADC_TRIGGER_UP_COUNT_START_ADC_B Request A/D conversion from ADC unit 1 at up
counting compare match of
gpt_extended_pwm_cfg_t::adc_b_compare_mat
ch.

GPT_ADC_TRIGGER_DOWN_COUNT_START_ADC_
B

Request A/D conversion from ADC unit 1 at
down counting compare match of
gpt_extended_pwm_cfg_t::adc_b_compare_mat
ch.

◆ gpt_poeg_link_t

enum gpt_poeg_link_t

POEG channel to link to this channel.

Enumerator

GPT_POEG_LINK_POEG0 Link this GPT channel to POEG channel 0
(GTETRGA)

GPT_POEG_LINK_POEG1 Link this GPT channel to POEG channel 1
(GTETRGB)

GPT_POEG_LINK_POEG2 Link this GPT channel to POEG channel 2
(GTETRGC)

GPT_POEG_LINK_POEG3 Link this GPT channel to POEG channel 3
(GTETRGD)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,919 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_output_disable_t

enum gpt_output_disable_t

Select trigger to send output disable request to POEG.

Enumerator

GPT_OUTPUT_DISABLE_NONE None - no output disable request.

GPT_OUTPUT_DISABLE_DEAD_TIME_ERROR Request output disable if a dead time error
occurs.

GPT_OUTPUT_DISABLE_GTIOCA_GTIOCB_HIGH Request output disable if GTIOCA and GTIOCB
are high at the same time.

GPT_OUTPUT_DISABLE_GTIOCA_GTIOCB_LOW Request output disable if GTIOCA and GTIOCB
are low at the same time.

◆ gpt_gtioc_disable_t

enum gpt_gtioc_disable_t

Disable level options for GTIOC pins.

Enumerator

GPT_GTIOC_DISABLE_PROHIBITED Do not allow output disable.

GPT_GTIOC_DISABLE_SET_HI_Z Set GTIOC to high impedance when output is
disabled.

GPT_GTIOC_DISABLE_LEVEL_LOW Set GTIOC level low when output is disabled.

GPT_GTIOC_DISABLE_LEVEL_HIGH Set GTIOC level high when output is disabled.

◆ gpt_adc_compare_match_t

enum gpt_adc_compare_match_t

Trigger options to start A/D conversion.

Enumerator

GPT_ADC_COMPARE_MATCH_ADC_A Set A/D conversion start request value for GPT
A/D converter start request A.

GPT_ADC_COMPARE_MATCH_ADC_B Set A/D conversion start request value for GPT
A/D converter start request B.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,920 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_interrupt_skip_source_t

enum gpt_interrupt_skip_source_t

Interrupt skipping modes

Enumerator

GPT_INTERRUPT_SKIP_SOURCE_NONE Do not skip interrupts.

GPT_INTERRUPT_SKIP_SOURCE_OVERFLOW_UND
ERFLOW

Count and skip overflow and underflow
interrupts.

GPT_INTERRUPT_SKIP_SOURCE_CREST Count crest interrupts for interrupt skipping.
Skip the number of crest and trough interrupts
configured in gpt_interrupt_skip_count_t. When
the interrupt does fire, the trough interrupt
fires before the crest interrupt.

GPT_INTERRUPT_SKIP_SOURCE_TROUGH Count trough interrupts for interrupt skipping.
Skip the number of crest and trough interrupts
configured in gpt_interrupt_skip_count_t. When
the interrupt does fire, the crest interrupt fires
before the trough interrupt.

◆ gpt_interrupt_skip_count_t

enum gpt_interrupt_skip_count_t

Number of interrupts to skip between events

Enumerator

GPT_INTERRUPT_SKIP_COUNT_0 Do not skip interrupts.

GPT_INTERRUPT_SKIP_COUNT_1 Skip one interrupt.

GPT_INTERRUPT_SKIP_COUNT_2 Skip two interrupts.

GPT_INTERRUPT_SKIP_COUNT_3 Skip three interrupts.

GPT_INTERRUPT_SKIP_COUNT_4 Skip four interrupts.

GPT_INTERRUPT_SKIP_COUNT_5 Skip five interrupts.

GPT_INTERRUPT_SKIP_COUNT_6 Skip six interrupts.

GPT_INTERRUPT_SKIP_COUNT_7 Skip seven interrupts.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,921 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_interrupt_skip_adc_t

enum gpt_interrupt_skip_adc_t

ADC events to skip during interrupt skipping

Enumerator

GPT_INTERRUPT_SKIP_ADC_NONE Do not skip ADC events.

GPT_INTERRUPT_SKIP_ADC_A Skip ADC A events.

GPT_INTERRUPT_SKIP_ADC_B Skip ADC B events.

GPT_INTERRUPT_SKIP_ADC_A_AND_B Skip ADC A and B events.

◆ gpt_pwm_output_delay_setting_t

enum gpt_pwm_output_delay_setting_t

Delay setting for the PWM Delay Generation Circuit (PDG).

Enumerator

GPT_PWM_OUTPUT_DELAY_SETTING_0_32 Delay is not applied.

GPT_PWM_OUTPUT_DELAY_SETTING_1_32 Delay of 1 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_2_32 Delay of 2 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_3_32 Delay of 3 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_4_32 Delay of 4 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_5_32 Delay of 5 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_6_32 Delay of 6 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_7_32 Delay of 7 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_8_32 Delay of 8 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_9_32 Delay of 9 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_10_32 Delay of 10 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_11_32 Delay of 11 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_12_32 Delay of 12 / 32 GTCLK period applied.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,922 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

GPT_PWM_OUTPUT_DELAY_SETTING_13_32 Delay of 13 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_14_32 Delay of 14 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_15_32 Delay of 15 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_16_32 Delay of 16 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_17_32 Delay of 17 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_18_32 Delay of 18 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_19_32 Delay of 19 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_20_32 Delay of 20 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_21_32 Delay of 21 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_22_32 Delay of 22 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_23_32 Delay of 23 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_24_32 Delay of 24 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_25_32 Delay of 25 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_26_32 Delay of 26 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_27_32 Delay of 27 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_28_32 Delay of 28 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_29_32 Delay of 29 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_30_32 Delay of 30 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_31_32 Delay of 31 / 32 GTCLK period applied.

GPT_PWM_OUTPUT_DELAY_SETTING_BYPASS Bypass the PWM Output Delay Circuit.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,923 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ gpt_pwm_output_delay_edge_t

enum gpt_pwm_output_delay_edge_t

Select which PWM Output Delay setting to apply.

Enumerator

GPT_PWM_OUTPUT_DELAY_EDGE_RISING Configure the PWM Output Delay setting for
rising edge.

GPT_PWM_OUTPUT_DELAY_EDGE_FALLING Configure the PWM Output Delay setting for
falling edge.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,924 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_Open()

fsp_err_t R_GPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the timer module and applies configurations. Implements timer_api_t::open.

GPT hardware does not support one-shot functionality natively. When using one-shot mode, the
timer will be stopped in an ISR after the requested period has elapsed.

The GPT implementation of the general timer can accept a gpt_extended_cfg_t extension
parameter.

Example:

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
source divider is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED timer_cfg_t::mode is
TIMER_MODE_ONE_SHOT or
timer_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
one-shot mode or callback.

FSP_ERR_INVALID_MODE Triangle wave PWM is only supported if
GPT_CFG_OUTPUT_SUPPORT_ENABLE is 2.
Selected channel does not support external
count sources. External and event count
sources not are available in this mode.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,925 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_Stop()

fsp_err_t R_GPT_Stop (timer_ctrl_t *const p_ctrl)

Stops timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_GPT_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_Start()

fsp_err_t R_GPT_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,926 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_Reset()

fsp_err_t R_GPT_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to 0. Implements timer_api_t::reset.

Note
This function also updates to the new period if no counter overflow has occurred since the last call to
R_GPT_PeriodSet().

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_Enable()

fsp_err_t R_GPT_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_GPT_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,927 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_Disable()

fsp_err_t R_GPT_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Note
The timer could be running after R_GPT_Disable(). To ensure it is stopped, call R_GPT_Stop().

Example:

 /* (Optional) Disable captures. */

 (void) R_GPT_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_PeriodSet()

fsp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Sets period value provided. If the timer is running, the period will be updated after the next counter
overflow. If the timer is stopped, this function resets the counter and updates the period.
Implements timer_api_t::periodSet.

Warning
If periodic output is used, the duty cycle buffer registers are updated after the period buffer
register. If this function is called while the timer is running and a GPT overflow occurs
during processing, the duty cycle will not be the desired 50% duty cycle until the counter
overflow after processing completes.

Example:

 /* Get the source clock frequency (in Hz). There are 3 ways to do this in FSP:

 * - If the PCLKD frequency has not changed since reset, the source clock frequency

is

 * BSP_STARTUP_PCLKD_HZ >> timer_cfg_t::source_div

 * - Use the R_GPT_InfoGet function (it accounts for the divider).

 * - Calculate the current PCLKD frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) and right shift

 * by timer_cfg_t::source_div.

 *

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,928 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

 * This example uses the 3rd option (R_FSP_SystemClockHzGet).

 */

 uint32_t pclkd_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkd_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) pclkd_freq_hz * GPT_EXAMPLE_DESIRED_PERIOD_MSEC) /

GPT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. */

 err = R_GPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_DutyCycleSet()

fsp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets duty cycle on requested pin. Implements timer_api_t::dutyCycleSet.

Duty cycle is updated in the buffer register. The updated duty cycle is reflected after the next cycle
end (counter overflow).

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. Note that if the

period could be larger than

 * UINT32_MAX / 100, this calculation could overflow. A cast to uint64_t is used to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,929 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

prevent this. The cast is

 * not required for 16-bit timers. */

 uint32_t duty_cycle_counts =

 (uint32_t) (((uint64_t) current_period_counts *

GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 GPT_EXAMPLE_MAX_PERCENT);

 /* Set the calculated duty cycle. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, GPT_IO_PIN_GTIOCB);

 assert(FSP_SUCCESS == err);

Parameters
[in] p_ctrl Pointer to instance control

block.

[in] duty_cycle_counts Duty cycle to set in counts.

[in] pin Use gpt_io_pin_t to select
GPT_IO_PIN_GTIOCA or
GPT_IO_PIN_GTIOCB

Return values
FSP_SUCCESS Duty cycle updated successfully.

FSP_ERR_ASSERTION p_ctrl was NULL or the pin is not one of
gpt_io_pin_t

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT Duty cycle is larger than period.

FSP_ERR_INVALID_MODE GPT_IO_PIN_TROUGH, and
GPT_IO_PIN_CREST settings are invalid in
the this mode.

FSP_ERR_UNSUPPORTED GPT_CFG_OUTPUT_SUPPORT_ENABLE is 0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,930 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_CompareMatchSet()

fsp_err_t R_GPT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Set value for compare match feature. Implements timer_api_t::compareMatchSet.

Note
This API should be used when timer is stop counting. And shall not be used along with PWM operation.

Example:

 /* Set the compare match value (GPT_COMPARE_MATCH_EXAMPLE_VALUE). This value must be

less than or equal to period value. */

 err = R_GPT_CompareMatchSet(&g_timer0_ctrl, GPT_COMPARE_MATCH_EXAMPLE_VALUE,

TIMER_COMPARE_MATCH_A);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Set the compare match value successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_NOT_ENABLED Requested compare channel is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,931 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_InfoGet()

fsp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint64_t period = info.period_counts;

 /* The maximum period is one more than the maximum 32-bit number, but will be

reflected as 0 in

 * timer_info_t::period_counts. */

 if (0U == period)

 {

 period = UINT32_MAX + 1U;

 }

Return values
FSP_SUCCESS Period, count direction, frequency, and ELC

event written to caller's structure
successfully.

FSP_ERR_ASSERTION p_ctrl or p_info was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,932 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_StatusGet()

fsp_err_t R_GPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get current timer status and store it in provided pointer p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_GPT_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current timer state and counter value set

successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_CounterSet()

fsp_err_t R_GPT_CounterSet (timer_ctrl_t *const p_ctrl, uint32_t counter)

Set counter value.

Note
Do not call this API while the counter is counting. The counter value can only be updated while the counter is
stopped.

Return values
FSP_SUCCESS Counter value updated.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IN_USE The timer is running. Stop the timer before
calling this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,933 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_OutputEnable()

fsp_err_t R_GPT_OutputEnable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

Enable output for GTIOCA and/or GTIOCB.

Return values
FSP_SUCCESS Output is enabled.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_OutputDisable()

fsp_err_t R_GPT_OutputDisable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

Disable output for GTIOCA and/or GTIOCB.

Return values
FSP_SUCCESS Output is disabled.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_AdcTriggerSet()

fsp_err_t R_GPT_AdcTriggerSet (timer_ctrl_t *const p_ctrl, gpt_adc_compare_match_t
which_compare_match, uint32_t compare_match_value)

Set A/D converter start request compare match value.

Return values
FSP_SUCCESS Counter value updated.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,934 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_PwmOutputDelaySet()

fsp_err_t R_GPT_PwmOutputDelaySet (timer_ctrl_t *const p_ctrl, gpt_pwm_output_delay_edge_t
edge, gpt_pwm_output_delay_setting_t delay_setting, uint32_t const pin)

Set the Output Delay setting for the PWM output pin.

Return values
FSP_SUCCESS The output delay was set.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_CHANNEL The channel does not support this feature.

FSP_ERR_NOT_INITIALIZED The PWM Output Delay Circuit has not been
initialized.

FSP_ERR_INVALID_STATE The PWM Output Delay setting cannot be
updated in the current state.

FSP_ERR_UNSUPPORTED This feature is not supported on this MCU.

◆ R_GPT_CallbackSet()

fsp_err_t R_GPT_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,935 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, General PWM (r_gpt)

◆ R_GPT_Close()

fsp_err_t R_GPT_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables output pins, and clears internal driver data. Implements timer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_PwmOutputDelayInitialize()

fsp_err_t R_GPT_PwmOutputDelayInitialize ()

Initialize the PWM Delay Generation Circuit (PDG). This function must be called before calling
R_GPT_PwmOutputDelaySet.

Note
This function will delay for 20 microseconds.

Return values
FSP_SUCCESS Initialization sequence completed

successfully.

FSP_ERR_INVALID_STATE The source clock frequnecy is out of the
required range for the PDG.

FSP_ERR_UNSUPPORTED This feature is not supported.

5.2.19.8 Timer, Low-Power (r_agt)
Modules » Timers

Functions

fsp_err_t R_AGT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_AGT_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Enable (timer_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,936 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

fsp_err_t R_AGT_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_AGT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_AGT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_AGT_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_AGT_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the AGT and AGTW peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The AGT module has the following features:

Supports 16- and 32-bit timers via the AGT and AGTW peripherals, respectively.
Supports periodic mode, one-shot mode, and PWM mode.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Configurable clock source, including PCLKB, LOCO, SUBCLK, and external sources input to
AGTIO.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
Supports counting based on an external clock input to AGTIO.
Supports debounce filter on AGTIO pins.
Supports measuring pulse width or pulse period.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Selecting a Timer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,937 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes (when count
source is LOCO or subclock).

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have at least 2 AGT
channels.

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers can be 16-bit or
32-bit timers.

Clock Source The GPT runs off PCLKD with a
configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

The AGT runs off PCLKB, LOCO,
or subclock with a configurable
divider up to 8 for PCLKB or up
to 128 for LOCO or subclock.

Configuration

Build Time Configurations for r_agt

The following build time configurations are defined in fsp_cfg/r_agt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Pin Output Support Disabled
Enabled

Disabled If selected code for
outputting a waveform
to a pin is included in
the build.

Pin Input Support Disabled
Enabled

Disabled Enable input support to
use pulse width
measurement mode,
pulse period
measurement mode, or
input from P402, P403,
P404, or AGTIO.

Configurations for Timers > Timer, Low-Power (r_agt)

This module can be added to the Stacks tab via New Stack > Timers > Timer, Low-Power (r_agt).
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,938 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_timer0 Module name.

Counter Bit Width MCU Specific Options Counter register bit
width (16-bit or 32-bit))

Channel Channel number must
be a non-negative
integer

0 Physical hardware
channel.

Mode Periodic
One-Shot
PWM

Periodic Mode selection. Note:
One-shot mode is
implemented in
software. ISR's must be
enabled for one shot
even if callback is
unused.

Period Value must be non-
negative

0x10000 Specify the timer
period based on the
selected unit.

When the unit is set to
'Raw Counts', setting
the period to
0x100000000 (32-bit)
or 0x10000 (16-bit)
results in the maximum
period at the lowest
divisor (fastest timer
tick). Set the period to
0x100000000 (32-bit)
or 0x10000 (16-bit) for
a free running timer,
pulse width
measurement or pulse
period measurement.
Setting the period
higher will
automatically select a
higher divider; the
period can be set up to
0x800000000 (32-bit)
or 0x80000 (16-bit)
when counting from
PCLKB or
0x8000000000 (32-bit)
or 0x800000 (16-bit)
when counting from
LOCO/subclock, which
will use a divider of 8
or 128 respectively
with the maximum

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,939 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
timer_cfg_t structure.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Count Source MCU Specific Options AGT counter clock
source. NOTE: The
divisor is calculated
automatically based on
the selected period.
See agt_clock_t
documentation for
details.

Output

Duty Cycle Percent
(only applicable in
PWM mode)

Value must be between
0 and 100

50 Specify the timer duty
cycle percent. Only
used in PWM mode.

AGTOA Output Disabled
Start Level Low
Start Level High

Disabled Configure AGTOA
output.

AGTOB Output Disabled
Start Level Low
Start Level High

Disabled Configure AGTOB
output.

AGTO Output Disabled
Start Level Low
Start Level High

Disabled Configure AGTO
output.

Input

Measurement Mode Measure
Disabled
Measure Low
Level Pulse
Width
Measure High
Level Pulse

Measure Disabled Select if the AGT
should be used to
measure pulse width or
pulse period. In high
level pulse width
measurement mode,
the AGT counts when

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,940 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

Width
Measure Pulse
Period

AGTIO is high and
starts counting
immediately in the
middle of a pulse if
AGTIO is high when
R_AGT_Start() is called.
In low level pulse width
measurement mode,
the AGT counts when
AGTIO is low and could
start counting in the
middle of a pulse if
AGTIO is low when
R_AGT_Start() is called.

Input Filter No Filter
Filter sampled
at PCLKB
Filter sampled
at PCLKB / 8
Filter sampled
at PCLKB / 32

No Filter Input filter, applies
AGTIO in pulse period
measurement, pulse
width measurement, or
event counter mode.
The filter requires the
signal to be at the
same level for 3
successive reads at the
specified filter
frequency.

Enable Pin Enable Pin Not
Used
Enable Pin
Active Low
Enable Pin
Active High

Enable Pin Not Used Select active edge for
the AGTEE pin if used.
Only applies if the
count source is P402,
P403 or AGTIO.

Trigger Edge Trigger Edge
Rising
Trigger Edge
Falling
Trigger Edge
Both

Trigger Edge Rising Select the trigger edge.
Applies if measurement
mode is pulse period,
or if the count source is
P402, P403, or AGTIO.
Do not select Trigger
Edge Both with pulse
period measurement.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the timer period
elapses.

Underflow Interrupt
Priority

MCU Specific Options Timer interrupt priority.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,941 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

When using the AGT module on devices with both AGT and AGTW peripherals, the channel numbers
used with the AGT driver are combined between both peripherals; AGTW channels are listed first
followed by AGT. For example, on the RA2A2 there are 2 AGTW channels and 8 AGT channels. These
correspond to channels 0-1 for AGTW0-AGTW1 and 2-9 for AGT0-AGT7.

Clock Configuration

The AGT clock is based on the PCLKB, LOCO, or Subclock frequency. You can set the clock frequency
using the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

This module can use the AGTOA and AGTOB pins as output pins for periodic, one-shot, or PWM
signals.

For input capture, the input signal must be applied to the AGTIOn pin.

For event counting, the AGTEEn enable pin is optional.

Timer Period

The RA Configuration editor will automatically calculate the period count value and source clock
divider based on the selected period time, units, and clock speed.

When the selected unit is "Raw counts", the maximum allowed period setting varies depending on
the selected clock source:

Clock source 16-bit Timer Maximum period
(counts)

32-bit Timer Maximum period
(counts)

LOCO/Subclock 0x800000 0x8000000000

PCLKB 0x80000 0x800000000

All other sources 0x10000 0x100000000

Note
The period interrupt occurs when the counter underflows, setting the period register to 0 results in an effective
period of 1 count. For this reason all user-provided raw count values reflect the actual number of period counts
(not the raw register values).
When using a 32-bit channel (AGTW), a special period count value of 0 is used to obtain an actual period register
value of 0xFFFFFFFF.

Usage Notes
Starting and Stopping the AGT

After starting or stopping the timer, AGT registers cannot be accessed until the AGT state is updated
after 3 AGTCLK cycles. If another AGT function is called before the 3 AGTCLK period elapses, the
function spins waiting for the AGT state to update. The required wait time after starting or stopping
the timer can be determined using the frequency of AGTCLK, which is derived from
timer_cfg_t::source_div and agt_extended_cfg_t::count_source.

The application is responsible for ensuring required clocks are started and stable before accessing
MCU peripheral registers.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,942 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running AGT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Low Power Modes

The AGT1 (channel 1 only) can be used to enter snooze mode or to wake the MCU from snooze,
software standby, or deep software standby modes when a counter underflow occurs. The compare
match A and B events can also be used to wake from software standby or snooze modes.

One-Shot Mode

The AGT timer does not support one-shot mode natively. One-shot mode is achieved by stopping the
timer in the interrupt service routine before the callback is called. If the interrupt is not serviced
before the timer period expires again, the timer generates more than one event. The callback is only
called once in this case, but multiple events may be generated if the timer is linked to the Transfer
(r_dtc).

One-Shot Mode Output

The output waveform in one-shot mode is one AGT clock cycle less than the configured period. The
configured period must be at least 2 counts to generate an output pulse.

Examples of one-shot signals that can be generated by this module are shown below:

Figure 303: AGT One-Shot Output

Periodic Output

The AGTOA or AGTOB pin toggles twice each time the timer expires in periodic mode. This is
achieved by defining a PWM wave at a 50 percent duty cycle so that the period of the resulting
square (from rising edge to rising edge) matches the period of the AGT timer. Since the periodic
output is actually a PWM output, the time at the stop level is one cycle shorter than the time
opposite the stop level for odd period values.

Examples of periodic signals that can be generated by this module are shown below:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,943 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

Figure 304: AGT Periodic Output

PWM Output

This module does not support in phase PWM output. The PWM output signal is low at the beginning
of the cycle and high at the end of the cycle.

Examples of PWM signals that can be generated by this module are shown below:

Figure 305: AGT PWM Output

Triggering ELC Events with AGT

The AGT timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Examples
AGT Basic Example

This is a basic example of minimal use of the AGT in an application.

void agt_basic_example (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,944 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

}

AGT Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

AGT Free Running Counter Example

To use the AGT as a free running counter, select periodic mode and set the the Period to 0xFFFFFFFF
for a 32-bit timer or 0xFFFF for a 16-bit timer.

void agt_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,945 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_AGT_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer0_ctrl, &status);

}

AGT Input Capture Example

This is an example of using the AGT to capture pulse width or pulse period measurements.

/* Example callback called when a capture occurs. */

uint64_t g_captured_time = 0U;

uint32_t g_capture_overflows = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CAPTURE_A == p_args->event)

 {

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

 /* Process capture from AGTIO. */

 g_captured_time = ((uint64_t) period * g_capture_overflows) +

p_args->capture;

 g_capture_overflows = 0U;

 }

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* An overflow occurred during capture. This must be accounted for at the

application layer. */

 g_capture_overflows++;

 }

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,946 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

}

void agt_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_AGT_Enable(&g_timer0_ctrl);

 /* (Optional) Disable captures. */

 (void) R_AGT_Disable(&g_timer0_ctrl);

}

AGT Period Update Example

This an example of updating the period.

#define AGT_EXAMPLE_MSEC_PER_SEC (1000)

#define AGT_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void agt_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz). There are several ways to do this in FSP:

 * - If LOCO or subclock is chosen in agt_extended_cfg_t::clock_source

 * - The source clock frequency is BSP_LOCO_HZ >> timer_cfg_t::source_div

 * - If PCLKB is chosen in agt_extended_cfg_t::clock_source and the PCLKB frequency

has not changed since reset,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,947 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

 * - The source clock frequency is BSP_STARTUP_PCLKB_HZ >> timer_cfg_t::source_div

 * - Use the R_AGT_InfoGet function (it accounts for the clock source and divider).

 * - Calculate the current PCLKB frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) and right shift

 * by timer_cfg_t::source_div.

 *

 * This example uses the last option (R_FSP_SystemClockHzGet).

 */

 uint32_t timer_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkb_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * AGT_EXAMPLE_DESIRED_PERIOD_MSEC) /

AGT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_AGT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

AGT Duty Cycle Update Example

This an example of updating the duty cycle.

#define AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT (25)

#define AGT_EXAMPLE_MAX_PERCENT (100)

/* This example shows how to calculate a new duty cycle value at runtime. */

void agt_duty_cycle_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,948 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint32_t duty_cycle_counts = (current_period_counts *

AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 AGT_EXAMPLE_MAX_PERCENT;

 /* Set the calculated duty cycle. */

 err = R_AGT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, AGT_OUTPUT_PIN_AGTOA

);

 assert(FSP_SUCCESS == err);

}

AGT Cascaded Timers Example

This an example of using underflow from an even AGT channel as the count source for the next
channel (in this case, AGT0 and AGT1).

/* This example shows how use cascaded timers. The count source for AGT channel 1 is

set to AGT0 underflow. */

void agt_cascaded_timers_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the timers in any order. */

 err = R_AGT_Open(&g_timer_channel0_ctrl, &g_timer_channel0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_AGT_Open(&g_timer_channel1_ctrl, &g_timer_channel1_cfg);

 assert(FSP_SUCCESS == err);

 /* Start AGT channel 1 first. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,949 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

 (void) R_AGT_Start(&g_timer_channel1_ctrl);

 (void) R_AGT_Start(&g_timer_channel0_ctrl);

 /* (Optional) Stop AGT channel 0 first. */

 (void) R_AGT_Stop(&g_timer_channel0_ctrl);

 (void) R_AGT_Stop(&g_timer_channel1_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer_channel1_ctrl, &status);

}

Data Structures

struct agt_instance_ctrl_t

struct agt_extended_cfg_t

Enumerations

enum agt_clock_t

enum agt_measure_t

enum agt_agtio_filter_t

enum agt_enable_pin_t

enum agt_trigger_edge_t

enum agt_output_pin_t

enum agt_pin_cfg_t

enum agt_counter_bit_width_t

Data Structure Documentation

◆ agt_instance_ctrl_t

struct agt_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ agt_extended_cfg_t

struct agt_extended_cfg_t

Optional AGT extension data structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,950 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

Data Fields

agt_clock_t count_source AGT channel clock source. Valid
values are: AGT_CLOCK_PCLKB,
AGT_CLOCK_LOCO,
AGT_CLOCK_FSUB.

union agt_extended_cfg_t __unnamed__

agt_pin_cfg_t agto: 3 Configure AGTO pin.

Note
AGTIO polarity is opposite
AGTO

agt_measure_t measurement_mode Measurement mode.

agt_agtio_filter_t agtio_filter Input filter for AGTIO.

agt_enable_pin_t enable_pin Enable pin (event counting
only)

agt_trigger_edge_t trigger_edge Trigger edge to start pulse
period measurement or count
external event.

agt_counter_bit_width_t counter_bit_width Counter bit width.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,951 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ agt_clock_t

enum agt_clock_t

Count source

Enumerator

AGT_CLOCK_PCLKB PCLKB count source, division by 1, 2, or 8
allowed.

AGT_CLOCK_LOCO LOCO count source, division by 1, 2, 4, 8, 16,
32, 64, or 128 allowed.

AGT_CLOCK_AGT_UNDERFLOW Underflow event signal from next lowest AGT
channel, division must be 1.

AGT_CLOCK_SUBCLOCK Subclock count source, division by 1, 2, 4, 8,
16, 32, 64, or 128 allowed.

AGT_CLOCK_P402 Counts events on P402, events are counted in
deep software standby mode.

AGT_CLOCK_P403 Counts events on P403, events are counted in
deep software standby mode.

AGT_CLOCK_P404 Counts events on P404, events are counted in
deep software standby mode.

AGT_CLOCK_AGTIO Counts events on AGTIOn, events are not
counted in software standby modes.

◆ agt_measure_t

enum agt_measure_t

Enable pin for event counting mode.

Enumerator

AGT_MEASURE_DISABLED AGT used as a counter.

AGT_MEASURE_PULSE_WIDTH_LOW_LEVEL AGT used to measure low level pulse width.

AGT_MEASURE_PULSE_WIDTH_HIGH_LEVEL AGT used to measure high level pulse width.

AGT_MEASURE_PULSE_PERIOD AGT used to measure pulse period.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,952 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ agt_agtio_filter_t

enum agt_agtio_filter_t

Input filter, applies AGTIO in pulse period measurement, pulse width measurement, or event
counter mode. The filter requires the signal to be at the same level for 3 successive reads at the
specified filter frequency.

Enumerator

AGT_AGTIO_FILTER_NONE No filter.

AGT_AGTIO_FILTER_PCLKB Filter at PCLKB.

AGT_AGTIO_FILTER_PCLKB_DIV_8 Filter at PCLKB / 8.

AGT_AGTIO_FILTER_PCLKB_DIV_32 Filter at PCLKB / 32.

◆ agt_enable_pin_t

enum agt_enable_pin_t

Enable pin for event counting mode.

Enumerator

AGT_ENABLE_PIN_NOT_USED AGTEE/AGTWEE is not used.

AGT_ENABLE_PIN_ACTIVE_LOW Events are only counted when AGTEE/AGTWEE
is low.

AGT_ENABLE_PIN_ACTIVE_HIGH Events are only counted when AGTEE/AGTWEE
is high.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,953 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ agt_trigger_edge_t

enum agt_trigger_edge_t

Trigger edge for pulse period measurement mode and event counting mode.

Enumerator

AGT_TRIGGER_EDGE_RISING Measurement starts or events are counted on
rising edge.

AGT_TRIGGER_EDGE_FALLING Measurement starts or events are counted on
falling edge.

AGT_TRIGGER_EDGE_BOTH Events are counted on both edges (n/a for
pulse period mode)

◆ agt_output_pin_t

enum agt_output_pin_t

Output pins, used to select which duty cycle to update in R_AGT_DutyCycleSet().

Enumerator

AGT_OUTPUT_PIN_AGTOA AGTOA.

AGT_OUTPUT_PIN_AGTOB AGTOB.

◆ agt_pin_cfg_t

enum agt_pin_cfg_t

Level of AGT pin

Enumerator

AGT_PIN_CFG_DISABLED Not used as output pin.

AGT_PIN_CFG_START_LEVEL_LOW Pin level low.

AGT_PIN_CFG_START_LEVEL_HIGH Pin level high.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,954 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ agt_counter_bit_width_t

enum agt_counter_bit_width_t

Counter type to determine regsiter size

Enumerator

AGT_COUNTER_BIT_WIDTH_DEFAULT Legacy.

AGT_COUNTER_BIT_WIDTH_16 AGT.

AGT_COUNTER_BIT_WIDTH_32 AGTW.

Function Documentation

◆ R_AGT_Open()

fsp_err_t R_AGT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the AGT module instance. Implements timer_api_t::open.

The AGT hardware does not support one-shot functionality natively. The one-shot feature is
therefore implemented in the AGT HAL layer. For a timer configured as a one-shot timer, the timer
is stopped upon the first timer expiration.

The AGT implementation of the general timer can accept an optional agt_extended_cfg_t extension
parameter. For AGT, the extension specifies the clock to be used as timer source and the output
pin configurations. If the extension parameter is not specified (NULL), the default clock PCLKB is
used and the output pins are disabled.

Example:

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
period is not in the valid range of 1 to
0xFFFF.

FSP_ERR_ALREADY_OPEN R_AGT_Open has already been called for
this p_ctrl.

FSP_ERR_IRQ_BSP_DISABLED A required interrupt has not been enabled in
the vector table.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel number is not available
on AGT.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,955 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_Start()

fsp_err_t R_AGT_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer started.

FSP_ERR_ASSERTION p_ctrl is null.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_Stop()

fsp_err_t R_AGT_Stop (timer_ctrl_t *const p_ctrl)

Stops the timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_AGT_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,956 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_Reset()

fsp_err_t R_AGT_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to the period minus one. Implements timer_api_t::reset.

Return values
FSP_SUCCESS Counter reset.

FSP_ERR_ASSERTION p_ctrl is NULL

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_Enable()

fsp_err_t R_AGT_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_AGT_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,957 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_Disable()

fsp_err_t R_AGT_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Example:

 /* (Optional) Disable captures. */

 (void) R_AGT_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_AGT_PeriodSet()

fsp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Updates period. The new period is updated immediately and the counter is reset to the maximum
value. Implements timer_api_t::periodSet.

Warning
If periodic output is used, the duty cycle buffer registers are updated after the period buffer
register. If this function is called while the timer is running and an AGT underflow occurs
during processing, the duty cycle will not be the desired 50% duty cycle until the counter
underflow after processing completes.
Stop the timer before calling this function if one-shot output is used.

Example:

 /* Get the source clock frequency (in Hz). There are several ways to do this in FSP:

 * - If LOCO or subclock is chosen in agt_extended_cfg_t::clock_source

 * - The source clock frequency is BSP_LOCO_HZ >> timer_cfg_t::source_div

 * - If PCLKB is chosen in agt_extended_cfg_t::clock_source and the PCLKB frequency

has not changed since reset,

 * - The source clock frequency is BSP_STARTUP_PCLKB_HZ >> timer_cfg_t::source_div

 * - Use the R_AGT_InfoGet function (it accounts for the clock source and divider).

 * - Calculate the current PCLKB frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) and right shift

 * by timer_cfg_t::source_div.

 *

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,958 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

 * This example uses the last option (R_FSP_SystemClockHzGet).

 */

 uint32_t timer_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkb_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * AGT_EXAMPLE_DESIRED_PERIOD_MSEC) /

AGT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_AGT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the period
was not in the valid range of 1 to 0xFFFF.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,959 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_DutyCycleSet()

fsp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Updates duty cycle. If the timer is counting, the new duty cycle is reflected after the next counter
underflow. Implements timer_api_t::dutyCycleSet.

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint32_t duty_cycle_counts = (current_period_counts *

AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 AGT_EXAMPLE_MAX_PERCENT;

 /* Set the calculated duty cycle. */

 err = R_AGT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, AGT_OUTPUT_PIN_AGTOA

);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Duty cycle updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the pin was
not AGT_AGTO_AGTOA or
AGT_AGTO_AGTOB.

FSP_ERR_INVALID_ARGUMENT Duty cycle was not in the valid range of 0 to
period (counts) - 1

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

FSP_ERR_UNSUPPORTED AGT_CFG_OUTPUT_SUPPORT_ENABLE is 0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,960 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_CompareMatchSet()

fsp_err_t R_AGT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Placeholder for unsupported compareMatch function. Implements timer_api_t::compareMatchSet.

Return values
FSP_ERR_UNSUPPORTED AGT compare match is not supported.

◆ R_AGT_InfoGet()

fsp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Gets timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

Return values
FSP_SUCCESS Period, count direction, and frequency

stored in p_info.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,961 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_StatusGet()

fsp_err_t R_AGT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Retrieves the current state and counter value stores them in p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current status and counter value provided

in p_status.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_CallbackSet()

fsp_err_t R_AGT_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,962 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Low-Power (r_agt)

◆ R_AGT_Close()

fsp_err_t R_AGT_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables interrupts, disables output pins, and clears internal driver data. Implements
timer_api_t::close.

Return values
FSP_SUCCESS Timer closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

5.2.19.9 Timer, Simultaneous Channel (r_tau_pwm)
Modules » Timers

Functions

fsp_err_t R_TAU_PWM_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const
*const p_cfg)

fsp_err_t R_TAU_PWM_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_PWM_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_PWM_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_PWM_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_TAU_PWM_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_TAU_PWM_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t
const compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_TAU_PWM_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_TAU_PWM_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const
p_info)

fsp_err_t R_TAU_PWM_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t
*const p_status)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,963 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

fsp_err_t R_TAU_PWM_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_TAU_PWM_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the TAU_PWM peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The TAU_PWM module has the following features:

Supports simultaneous channel operation functions: one-shot pulse output, PWM output and
multiple PWM output.
Configurable clock source (CK00, CK01).
Build-time configuration of clock divider
Configurable period (counts per timer cycle).
Configurable trigger source (TImn input) for one-shot pulse output
Supports noise filter on input source in one-shot pulse output mode (always enabled)
Supports runtime reconfiguration of period/delay, pulse width or duty cycle percent.
Signal can be output to a pin.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.
Build-time availabilty of multi-slave mode for PWM outputs

Configuration

Build Time Configurations for r_tau_pwm

The following build time configurations are defined in fsp_cfg/r_tau_pwm_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

One-shot Pulse Output
Mode Support

Disabled
Enabled

Disabled Controls whether one-
shot pulse output mode
support is included in
the build. This setting
applies globally to all
r_tau_pwm_instances.
If one shot mode is not
used by any instance,
disable this setting to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,964 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

reduce ROM usage.

PWM Output Mode
Support

Disabled
Enabled

Enabled Controls whether PWM
mode support is
included in the build.
This setting applies
globally to all
r_tau_pwm_instances.
If PWM mode is not
used by any instance,
disable this setting to
reduce ROM usage.

Multi-Slave Disabled
Enabled

Disabled Enable support for
multiple slaves

Configurations for Timers > Timer, Simultaneous Channel Operation (r_tau_pwm)

This module can be added to the Stacks tab via New Stack > Timers > Timer, Simultaneous Channel
Operation (r_tau_pwm).

Configuration Options Default Description

General

Name Name must be a valid
C symbol

g_timer0 Module name.

Operation Clock CK00
CK01

CK00 Select the operation
clock

Mode One-shot pulse
output
PWM output

PWM output Mode selection.

Master Channel Channel number must
be even.

0 Select the TAU master
channel. When two or
more master channels
are to be used, slave
channels with a master
channel between them
may not be set.

Period Value must be a non-
negative integer

0x10000 Specify the timer
period based on the
selected unit. In One-
shot pulse output mode
this value corresponds
to the delay time.

When the unit is set to
'Raw Counts', setting
the period to
0x10000/0x10001
results in the maximum
period for PWM Output
function/One-shot
pulse output function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,965 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

at the lowest divisor
(fastest timer tick). The
theoretical calculated
period is printed in a
comment in the
timer_cfg_t structure.

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Input (One-shot pulse)

Trigger Source MCU Specific Options Select the trigger
source for master
channel.

Detect Edge Falling Edge
Rising Edge
Both Edges

Falling Edge Select the detect edge.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If provided,
the callback function is
called from the
interrupt service
routine (ISR) each time
the timer period
elapses in PWM mode,
and when the timer
delay elapses in one-
shot mode. If the
optional slave channel
interrupt is enabled,
the callback is also
called when the signal
switches state during
the PWM cycle in PWM
mode, and when the
pulse output is
complete in one-shot
mode.

Interrupt Priority MCU Specific Options Timer interrupt priority.

Configurations for Timers > TAU PWM Channel Configuration (r_tau_pwm)

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,966 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

Channel Manual Entry 1 Specify the slave
channel.

Output

Output Level Start Level Low
Start Level High

Start Level Low Output level of TAU
slave channel.

Output Polarity Active-high
Active-low

Active-high Output polarity of TAU
slave channel.

One-Shot Pulse Width Value must be a non-
negative integer

0xffff Specify the pulse width
based on the selected
unit.

When the unit is set to
'Raw Counts', setting
the period to 0xffff
results in the maximum
period at the lowest
divisor (fastest timer
tick).

One-Shot Pulse Width
Unit

Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

PWM Duty Cycle
Percent

Value must be a non-
negative integer
between 0 and 100

50 Specify the duty cycle
percent for output
pulse of slave channel.

Interrupts

Interrupt Priority MCU Specific Options Timer interrupt priority.

Clock Configuration

The TAU PWM clock is based on the peripheral module clock (PCLKB) which is equal to the system
clock (ICLK).

Each TAU PWM channel has certain operation clocks selections, these can be set with the
General>Operation Clock property in the module configuration. When the operation clock of a
channel is set to CK00, or CK01, the TAU_PWM module provides divisor values for each of those
clocks. These divisors may be set in the Clocks tab. As such, setting a divisor in the Clocks tab
affects all TAU PWM and TAU channels that use that CK0x clock as an input. Adjusting these settings
determines the frequency range achievable by a TAU_PWM channel. If a desired frequency is not
achievable, the divider in the Clocks tab may be adjusted. The clock dividers cannot be adjusted at
runtime.

Pin Configuration

This module can use the TOmn pins as output pins for One-shot and PWM signals.

This module can use the TImn pin as the input pin for One-shot signals.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,967 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

Timer Period And Duty Cycle

The RA Configuration editor will automatically calculate the period/pulse width/duty cycle percent
based on the selected period time, units, clock source, clock divider and mode.

When the selected unit is "Raw counts", the maximum and minimum allowed period/pulse width/duty
cycle setting are presented by the following tables:

In One-shot pulse output mode:

Clock divider Minimum period
(counts)

Maximum period
(counts)

Minimum pulse
width (counts)

Maximum pulse
width (counts)

PCLK/1 0x00003 0x10001 0x0001 0xffff

PCLK/2 to
PCLK/32768

0x00002 0x10000 0x0000 0xffff

In PWM output mode:

Clock divider Minimum period
(counts)

Maximum period
(counts)

Minimum duty
cycle (%)

Maximum duty
cycle (%)

PCLK/1 0x00002 0x10001 0 100

PCLK/2 to
PCLK/32768

0x00001 0x10000 0 100

Note
If PCLK (undivided) is selected as the operation clock (CK00, CK01) and TDR0n is set to 0x0000 (n = 0 to 7),
interrupt requests output from timer array units cannot be used. So, when PCLK is undivided, the minimum period
must be plus one.
Because the period interrupt occurs when the counter underflows, setting the period register to 0 results in an
effective period of 1 count. For this reason, all user-provided raw count values reflect the actual number of period
counts (not the raw register values).

Usage Notes
Updating Period and Duty Cycle

The period and duty cycle are updated after the next counter underflow after calling
R_TAU_PWM_PeriodSet() or R_TAU_PWM_DutyCycleSet().

One-Shot Pulse Output Mode

By using two channels as a set, a one-shot pulse having any delay pulse width can be generated
from the signal input to the TI0n pin.

The delay time is counted by the master channel, and the pulse width is counted by the slave
channel.

PWM Output

Two channels can be used as a set to generate a pulse of any period and duty factor (duty cycle). By
extending the PWM function and using multiple slave channels, many PWM waveforms with different

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,968 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

duty values can be output.

When multiple slaves are to be connected to a single master, the build time option for multiple
slaves needs to be set.

Note
When two or more master channels are to be used, slave channels with a master channel between them may not be
set. For example, if channels 0 and 4 are set as master channels, channels 1 to 3 can be set as the slave channels of
master channel 0, channels 5 to 7 cannot be set as the slave channels of master channel 0.

The period is counted by the master channel, and the duty cycle is counted by the slave channel.

Controlling TAU_PWM with ELC Events

The TAU_PWM timer can be configured to trigger the timer counter when an ELC event occurs.

Note
Triggering the timer using ELC events is supported only when master channel is set to 0 and mode is set to One-
shot pulse output.
The event links for the ELC must be configured outside this module.

Triggering ELC Events with TAU_PWM

The TAU_PWM timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Note
Only event signals from channel 00 to 03 are available.

Limitations

None

Examples
TAU_PWM Basic Example

This is a basic example of minimal use of the TAU PWM (in PWM Output mode) in an application.

void tau_pwm_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,969 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

}

TAU_PWM Callback Example

This is an example of a timer callback.

Note
The callback function always called after the period time (in PWM output mode) or delay time (in One-shot pulse
output mode) has expired. Additionally, it can be optionally called after the duty cycle (in PWM output mode) or
pulse width (in One-shot pulse output mode) has expired by enabling the slave channel's interrupt.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_MASTER_CYCLE_END == p_args->event)

 {

 /* Add application code to be called here. */

 }

 if (TIMER_EVENT_SLAVE_CYCLE_END == p_args->event)

 {

 /* Add application code to be called here. */

 }

}

TAU_PWM One-Shot Pulse Output Mode Example

TAU_PWM One-Shot Pulse Output Mode Example - Software Trigger

This example demonstrates the configuration and use of One-shot pulse output mode with TAU_PWM
timer when using the software trigger.

timer_event_t g_callback_event;

void tau_pwm_one_shot_software_trigger_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_one_shot_software_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,970 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

 assert(FSP_SUCCESS == err);

 /* Enable triggering (including by software). */

 (void) R_TAU_PWM_Enable(&g_timer0_ctrl);

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 /* Start trigger by software. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 while (g_callback_event != TIMER_EVENT_SLAVE_CYCLE_END)

 {

 /* Wait for one shot pulse output to complete */

 }

 /* Stop timer and disable the software trigger. */

 (void) R_TAU_PWM_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_PWM_StatusGet(&g_timer0_ctrl, &status);

}

TAU_PWM One-Shot Pulse Output Mode Example - Pin Input Trigger

This example demonstrates the configuration and use of One-shot pulse output mode with TAU_PWM
timer when using an external pin input trigger.

void tau_pwm_one_shot_pin_input_trigger_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_one_shot_input_pin_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the input trigger. */

 (void) R_TAU_PWM_Enable(&g_timer0_ctrl);

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 // Wait for trigger source from the input pin

 /* Disable the input trigger. */

 (void) R_TAU_PWM_Stop(&g_timer0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,971 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_PWM_StatusGet(&g_timer0_ctrl, &status);

}

TAU_PWM PWM Output Mode Example

This example demonstrates the configuration and use of PWM output mode with TAU_PWM timer.

void tau_pwm_multiple_pwm_output_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_pwm_output_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_TAU_PWM_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_PWM_StatusGet(&g_timer0_ctrl, &status);

}

TAU_PWM Period Update Example

This an example of updating the period.

#define TAU_PWM_EXAMPLE_MSEC_PER_SEC (1000)

#define TAU_PWM_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void tau_pwm_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,972 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz) */

 timer_info_t info;

 (void) R_TAU_PWM_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX. A cast to uint32_t is used to prevent

this. */

 uint32_t period_counts =

 (uint32_t) ((timer_freq_hz * TAU_PWM_EXAMPLE_DESIRED_PERIOD_MSEC) /

TAU_PWM_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_TAU_PWM_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

TAU_PWM Duty Cycle Update Example

This an example of updating the duty cycle.

#define TAU_PWM_EXAMPLE_MSEC_PER_SEC (1000)

#define TAU_PWM_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void tau_pwm_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_cfg);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,973 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz) */

 timer_info_t info;

 (void) R_TAU_PWM_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX. A cast to uint32_t is used to prevent

this. */

 uint32_t period_counts =

 (uint32_t) ((timer_freq_hz * TAU_PWM_EXAMPLE_DESIRED_PERIOD_MSEC) /

TAU_PWM_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_TAU_PWM_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

ELC Example

This is an example of using TAU_PWM with ELC events.

/* This example shows how to use ELC event to trigger the timer counters. */

void tau_pwm_elc_event_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_elc_event_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the elc event trigger. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,974 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

 (void) R_TAU_PWM_Enable(&g_timer0_ctrl);

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

 // Wait for ELC event

 /* Disable the elc event trigger. */

 (void) R_TAU_PWM_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_PWM_StatusGet(&g_timer0_ctrl, &status);

}

Data Structures

struct tau_pwm_channel_cfg_t

struct tau_pwm_extended_cfg_t

struct tau_pwm_instance_ctrl_t

Enumerations

enum tau_pwm_operation_clock_t

enum tau_pwm_source_t

enum tau_pwm_detect_edge_t

enum tau_pwm_output_level_t

enum tau_pwm_output_polarity_t

enum tau_pwm_io_pin_t

Data Structure Documentation

◆ tau_pwm_channel_cfg_t

struct tau_pwm_channel_cfg_t

TAU_PWM per channel configuration.

Data Fields

uint8_t channel Slave Channel Number (1..7)

uint16_t duty_cycle_counts One-shot: Pulse_width_counts;
PWM: Duty_cycle_counts.

tau_pwm_output_level_t output_level Setting of output level for TAU.

tau_pwm_output_polarity_t output_polarity Setting of output polarity for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,975 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

TAU.

uint8_t cycle_end_ipl TAU slave channel IPL.

IRQn_Type cycle_end_irq TAU slave channel IRQ.

◆ tau_pwm_extended_cfg_t

struct tau_pwm_extended_cfg_t

Extended configuration structure for TAU_PWM

Data Fields

tau_pwm_operation_clock_t operation_clock Setting of operation clock for
master and slave channels.

tau_pwm_source_t trigger_source Trigger source for master
channel.

tau_pwm_detect_edge_t detect_edge Trigger edge to start pulse
period measurement.

tau_pwm_channel_cfg_t const * p_slave_channel_cfgs[TAU_PWM
_MAX_NUM_SLAVE_CHANNELS]

Configuration for each slave
channel, at least 1 slave
channel is required.

◆ tau_pwm_instance_ctrl_t

struct tau_pwm_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

Enumeration Type Documentation

◆ tau_pwm_operation_clock_t

enum tau_pwm_operation_clock_t

Operation clock.

Enumerator

TAU_PWM_OPERATION_CLOCK_CK00 Operation Clock CK00.

TAU_PWM_OPERATION_CLOCK_CK01 Operation CLock CK01.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,976 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ tau_pwm_source_t

enum tau_pwm_source_t

Trigger Source

Enumerator

TAU_PWM_SOURCE_PIN_INPUT Use TI0n pin input as trigger source.

TAU_PWM_SOURCE_ELC_EVENT Use ELC events as trigger source.

◆ tau_pwm_detect_edge_t

enum tau_pwm_detect_edge_t

TI0n pin input edge

Enumerator

TAU_PWM_DETECT_EDGE_FALLING Detects falling edge.

TAU_PWM_DETECT_EDGE_RISING Detects rising edge.

TAU_PWM_DETECT_EDGES_BOTH Detects both edges.

◆ tau_pwm_output_level_t

enum tau_pwm_output_level_t

Level of TAU pin

Enumerator

TAU_PWM_OUTPUT_LEVEL_LOW Pin level low.

TAU_PWM_OUTPUT_LEVEL_HIGH Pin level high.

◆ tau_pwm_output_polarity_t

enum tau_pwm_output_polarity_t

Timer output polarity

Enumerator

TAU_PWM_OUTPUT_POLARITY_ACTIVE_HIGH Positive logic output (active-high)

TAU_PWM_OUTPUT_POLARITY_ACTIVE_LOW Negative logic output (active-low)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,977 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ tau_pwm_io_pin_t

enum tau_pwm_io_pin_t

Input/Output pins, used to select which duty cycle to update in R_TAU_PWM_DutyCycleSet().

Enumerator

TAU_PWM_IO_PIN_CHANNEL_0 I/O pin of channel 0.

TAU_PWM_IO_PIN_CHANNEL_1 I/O pin of channel 1.

TAU_PWM_IO_PIN_CHANNEL_2 I/O pin of channel 2.

TAU_PWM_IO_PIN_CHANNEL_3 I/O pin of channel 3.

TAU_PWM_IO_PIN_CHANNEL_4 I/O pin of channel 4.

TAU_PWM_IO_PIN_CHANNEL_5 I/O pin of channel 5.

TAU_PWM_IO_PIN_CHANNEL_6 I/O pin of channel 6.

TAU_PWM_IO_PIN_CHANNEL_7 I/O pin of channel 7.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,978 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_Open()

fsp_err_t R_TAU_PWM_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the timer module and applies configurations. Implements timer_api_t::open.

The TAU_PWM implementation of the timer requires a tau_pwm_extended_cfg_t extension
parameter.

Example:

 /* Initializes the module. */

 err = R_TAU_PWM_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION A required input pointer is NULL, the source
divider/period/duty cycle counts or number
of slave channels is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED ISR of master channel must be enabled

FSP_ERR_INVALID_MODE Invalid configuration option provided for
selected timer mode

FSP_ERR_INVALID_CHANNEL The master/slave channel selected is not
available on this device, slave channel
number must be greater than master
channel number.

◆ R_TAU_PWM_Stop()

fsp_err_t R_TAU_PWM_Stop (timer_ctrl_t *const p_ctrl)

Stops timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_TAU_PWM_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,979 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_Start()

fsp_err_t R_TAU_PWM_Start (timer_ctrl_t *const p_ctrl)

Starts timer (pwm mode) or triggers the one-shot pulse output by software (one-shot mode).
Implements timer_api_t::start.

Note
In one-shot mode, this function is supported only after the timer has been placed into the start trigger detection
wait state by calling timer_api_t::enable

Example:

 /* Start the timer. */

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_NOT_ENABLED In One-shot mode, timer must be enabled
first.

◆ R_TAU_PWM_Reset()

fsp_err_t R_TAU_PWM_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to the current period and duty cycle. Implements timer_api_t::reset.

Note
If the timer is stopped when calling this function, the timer counter is not reset. The counter will be reset one cycle
after the timer is next started (or restarted), since it takes one cycle to reload the initial count when starting the
timer.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,980 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_Enable()

fsp_err_t R_TAU_PWM_Enable (timer_ctrl_t *const p_ctrl)

Enables external event inputs that can start the counter and enables the software trigger. After a
successful call to this function, the timer is placed into the trigger detection wait state. Implements
timer_api_t::enable.

Example:

 /* Enable triggering (including by software). */

 (void) R_TAU_PWM_Enable(&g_timer0_ctrl);

 (void) R_TAU_PWM_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_MODE The mode is invalid, only called in
TIMER_MODE_ONE_SHOT mode.

FSP_ERR_UNSUPPORTED Unsupported when one shot mode support
is disabled

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,981 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_PeriodSet()

fsp_err_t R_TAU_PWM_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Sets period value provided. If the timer is running, the period will be updated after the next counter
underflow. If the timer is stopped, this function resets the counter and updates the period.
Implements timer_api_t::periodSet.

Example:

 /* Get the source clock frequency (in Hz) */

 timer_info_t info;

 (void) R_TAU_PWM_InfoGet(&g_timer0_ctrl, &info);

 uint32_t timer_freq_hz = info.clock_frequency;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX. A cast to uint32_t is used to prevent

this. */

 uint32_t period_counts =

 (uint32_t) ((timer_freq_hz * TAU_PWM_EXAMPLE_DESIRED_PERIOD_MSEC) /

TAU_PWM_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_TAU_PWM_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT Period counts is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,982 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_CompareMatchSet()

fsp_err_t R_TAU_PWM_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Placeholder for unsupported compareMatch function. Implements timer_api_t::compareMatchSet.

Return values
FSP_ERR_UNSUPPORTED TAU PWM compare match is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,983 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_DutyCycleSet()

fsp_err_t R_TAU_PWM_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets duty cycle on requested pin. Implements timer_api_t::dutyCycleSet.

Duty cycle is updated in the timer data register. The updated duty cycle is reflected after the next
cycle end (counter underflow).

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_TAU_PWM_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint16_t duty_cycle_counts = (uint16_t) ((current_period_counts *

TAU_PWM_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 TAU_PWM_EXAMPLE_MAX_PERCENT);

 /* Set the calculated duty cycle. */

 err = R_TAU_PWM_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, 1);

 assert(FSP_SUCCESS == err);

Parameters
[in] p_ctrl Pointer to instance control

block.

[in] duty_cycle_counts Duty cycle to set in counts.

[in] pin Use tau_pwm_io_pin_t to
select the target slave
channel

Return values
FSP_SUCCESS Duty cycle updated successfully.

FSP_ERR_ASSERTION p_ctrl was NULL or the pin is not one of
tau_pwm_io_pin_t.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT Duty cycle is out of range or larger than
period.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,984 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_InfoGet()

fsp_err_t R_TAU_PWM_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_TAU_PWM_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

Return values
FSP_SUCCESS Period, count direction, frequency written to

caller's structure successfully

FSP_ERR_ASSERTION p_ctrl or p_info was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_PWM_StatusGet()

fsp_err_t R_TAU_PWM_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Retrieves the current timer state and master channel counter value and stores them in provided
pointer p_status. Implements timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_TAU_PWM_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current timer state and counter value

retrieved successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,985 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Simultaneous Channel (r_tau_pwm)

◆ R_TAU_PWM_CallbackSet()

fsp_err_t R_TAU_PWM_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION p_ctrl or p_callback was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_TAU_PWM_Close()

fsp_err_t R_TAU_PWM_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables output pins, and clears internal driver data. Implements timer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

5.2.19.10 Timer, Ultra Low-Power (r_ulpt)
Modules » Timers

Functions

fsp_err_t R_ULPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_ULPT_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_ULPT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_ULPT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_ULPT_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_ULPT_Disable (timer_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,986 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

fsp_err_t R_ULPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_ULPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_ULPT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t R_ULPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_ULPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_ULPT_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_ULPT_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the ULPT peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The ULPT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Configurable clock source, LOCO, SUBCLK, and external sources input to ULPTEVIn.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
Supports counting based on an external clock input to ULPTEVIn.
Supports debounce filter on ULPTEVIn pins.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Selecting a Timer

RA MCUs can have multiple timer peripherals: the General PWM Timer (GPT) and the Asynchronous
General Purpose Timer, and the Ultra Low Power Timer (ULPT). When selecting between them,
consider these factors:

GPT AGT ULPT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,987 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Low Power Modes The GPT can operate in
sleep mode.

The AGT can operate in
all low power modes
(when count source is
LOCO or subclock).

The ULPT can operate
in all low power up to
DSTBYs (when count
source is LOCO or
subclock).

Available Channels The number of GPT
channels is device
specific. All currently
supported MCUs have
at least 7 GPT
channels.

All MCUs have 2 AGT
channels.

The number of ULPT
channels is device
specific, 2 is common.

Timer Resolution All MCUs have at least
one 32-bit GPT timer.

The AGT timers are
16-bit timers.

The ULPT timers are
32-bit timers.

Clock Source The GPT runs off PCLKD
with a configurable
divider up to 1024. It
can also be configured
to count ELC events or
external pulses.

The AGT runs off
PCLKB, LOCO, or
subclock with a
configurable divider up
to 8 for PCLKB or up to
128 for LOCO or
subclock.

The ULPT runs off
PCLKB. LOCO, or
subclock are count
sources with a
configurable divider up
to 128.

Configuration

Build Time Configurations for r_ulpt

The following build time configurations are defined in fsp_cfg/r_ulpt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Pin Output Support Disabled
Enabled

Disabled If selected code for
outputting a waveform
to a pin is included in
the build.

Pin Input Support Disabled
Enabled

Disabled Enable input support to
use ULPTEVin as count
source

Configurations for Timers > Timer, Ultra-Low-Power (r_ulpt)

This module can be added to the Stacks tab via New Stack > Timers > Timer, Ultra-Low-Power
(r_ulpt). Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,988 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Name Name must be a valid
C symbol

g_timer0 Module name.

Channel Channel number does
not exist

0 Physical hardware
channel.

Mode Periodic
One-Shot
PWM

Periodic Mode selection. Note:
One-shot mode is
implemented in
software. ISR's must be
enabled for one shot
even if callback is
unused.

Period Value must be non-
negative

0x10000 Specify the timer
period based on the
selected unit.

When the unit is set to
'Raw Counts', setting
the period to 0x10000
results in the maximum
period at the lowest
divisor (fastest timer
tick). Set the period to
0x10000 for a free
running timer, pulse
width measurement or
pulse period
measurement. Setting
the period higher will
automatically select a
higher divider; the
period can be set up to
0x80000 when
counting from PCLKB or
0x800000 when
counting from
LOCO/subclock, which
will use a divider of 8
or 128 respectively
with the maximum
period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
timer_cfg_t structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,989 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Count Source LOCO
SUBCLOCK
EVI

LOCO ULPT count source.
NOTE: The divisor is
calculated
automatically based on
the selected period.
See
ulpt_count_source_t
documentation for
details.

Output

Duty Cycle Percent
(only applicable in
PWM mode)

Value must be between
0 and 100

50 Specify the timer duty
cycle percent. Only
used in PWM mode.

ULPTOA Output Disabled
Start Level Low
Start Level High

Disabled Configure Match
ULPTOA output.

ULPTOB Output Disabled
Start Level Low
Start Level High

Disabled Configure Match
ULPTOB output.

ULPTO Output Disabled
Start Level Low
Start Level High

Disabled Configure Pulse ULPTO
output.

Input

Input Filter No Filter
Filter sampled
at PCLKB
Filter sampled
at PCLKB / 8
Filter sampled
at PCLKB / 32

No Filter ULPTEVIn filter. Only
applies if the count
source is ULPTEVIn,
event counter mode.
The filter requires the
signal to be at the
same level for 3
successive reads at the
specified filter
frequency.

Enable Pin Enable Function
Ignored
Enable Function
Low
Enable Function
High
Enable Function
Start
Enable Function

Enable Function
Ignored

ULPTEEn enable edge.
Only applies if the
count source is
ULPTEVIn, event
counter mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,990 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Restart

Trigger Edge Trigger Edge
Rising
Trigger Edge
Falling
Trigger Edge
Both

Trigger Edge Rising ULPTEVIn trigger edge.
Applies Only applies if
the count source is
ULPTEVIn, event
counter mode.

Event Edge Event Edge
Rising
Event Edge
Falling
Event Edge
Both

Event Edge Rising Select the ULPTEVin
edge. Applies if count
input is ULPTEVin.

Interrupts

Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the timer period
elapses.

Underflow Interrupt
Priority

MCU Specific Options Timer interrupt priority.

Clock Configuration

The ULPT subsystem is driven by the PCLKB, but countdown is driven LOCO, Subclock, or event
input. You can set the clock frequency using the Clocks tab of the RA Configuration editor or by
using the CGC Interface at run-time.

Pin Configuration

This module can use the ULPTO, ULPTOA and ULPTOB pins as output pins for periodic, one-shot, or
PWM signals.

For event counting, the input clocking signal must be applied to the ULPTEVIn pin.

Timer Period

The RA Configuration editor will automatically calculate the period count value and source clock
divider based on the selected period time, units, and clock speed.

When the selected unit is "Raw counts", the maximum allowed period setting varies depending on
the selected clock source:

Clock source Maximum period (counts)

LOCO/Subclock 0xFFFFFFFF

All other sources 0xFFFFFFFF

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,991 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Note
Though the ULPT is a 32-bit timer, because the period interrupt occurs when the counter underflows, setting the
period register to 0 results in an effective period of 1 count. For this reason all user-provided raw count values
reflect the actual number of period counts (not the raw register values).

Usage Notes
Starting and Stopping the ULPT

After starting or stopping the timer, ULPT registers cannot be accessed until the ULPT state is
updated after 3 ULPTCLK cycles. If another ULPT function is called before the 3 ULPTCLK period
elapses, the function spins waiting for the ULPT state to update. The required wait time after starting
or stopping the timer can be determined using the frequency of ULPTCLK, which is derived from
timer_cfg_t::source_div and ulpt_extended_cfg_t::count_source.

The application is responsible for ensuring required clocks are started and stable before accessing
MCU peripheral registers.

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running ULPT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Low Power Modes

The ULPT can be used to enter snooze mode or to wake the MCU from snooze, software standby, or
deep software standby modes when a counter underflow occurs. The compare match A and B events
can also be used to wake from software standby or snooze modes.

One-Shot Mode

The ULPT timer does support one-shot mode natively. The interrupt with put the module in the stop
state. The callback is only called once in this case. If needed the timer needs to be re-started via the
driver call.

Periodic Output

The ULPTO toggles each time the counter underflows.

Examples of periodic signals that can be generated by this module are shown below:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,992 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Figure 306: ULPT Periodic Output

PWM Output

The ULPTOA or ULPTOB pin toggles each time the compare match timer matches the down counter.
It also toggles once the underflow occurs in periodic mode. for example setting the ULPT counter to
0x1000, and compare match A to half (0x800) will created a 50% duty cycle output on ULPTOA.
Setting ULPTB to a quarter of that (0x400) will create a 25% duty cycle wave. Since the periodic
output is actually a PWM output, the time at the stop level is one cycle shorter than the time
opposite the stop level for odd period values.

Examples of periodic signals that can be generated by this module are shown below:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,993 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Figure 307: ULPT Periodic Output

Triggering ELC Events with ULPT

The ULPT timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Examples
ULPT Basic Example

This is a basic example of minimal use of the ULPT in an application.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,994 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

void ulpt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ULPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_ULPT_Start(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 (void) R_ULPT_StatusGet(&g_timer0_ctrl, &status);

}

ULPT Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

ULPT Free Running Counter Example

To use the ULPT as a free running counter, select periodic mode and set the the Period to
0xFFFFFFFF.

void ulpt_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 timer_status_t status;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,995 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

 /* Initializes the module. */

 err = R_ULPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_ULPT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. This will set the counter back to max */

 (void) R_ULPT_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 (void) R_ULPT_StatusGet(&g_timer0_ctrl, &status);

}

ULPT Period Update Example

This an example of updating the period.

#define ULPT_EXAMPLE_MSEC_PER_SEC (1000)

#define ULPT_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void ulpt_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 timer_info_t ulptInfo;

 uint32_t timer_freq_hz =0;

 /* Initializes the module. */

 err = R_ULPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_ULPT_Start(&g_timer0_ctrl);

 err = R_ULPT_Enable(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz).

 * - Use the R_ULPT_InfoGet function (it accounts for the clock source and divider).

*/

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,996 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

 if (R_ULPT_InfoGet (&g_timer0_ctrl, &ulptInfo) == FSP_SUCCESS)

 {

 timer_freq_hz = ulptInfo.clock_frequency;

 }

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkb_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * ULPT_EXAMPLE_DESIRED_PERIOD_MSEC) /

ULPT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_ULPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

 err = R_ULPT_Disable(&g_timer0_ctrl);

}

ULPT Duty Cycle Update Example

This an example of updating the duty cycle.

#define ULPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT (25)

#define ULPT_EXAMPLE_MAX_PERCENT (100)

/* This example shows how to calculate a new duty cycle value at runtime. */

void ulpt_duty_cycle_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ULPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_ULPT_Start(&g_timer0_ctrl);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,997 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_ULPT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint32_t duty_cycle_counts = (current_period_counts *

ULPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 ULPT_EXAMPLE_MAX_PERCENT;

 /* Set the calculated duty cycle. */

 err = R_ULPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts,

ULPT_OUTPUT_PIN_ULPTOA);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct ulpt_instance_ctrl_t

struct ulpt_extended_cfg_t

Enumerations

enum ulpt_clock_t

enum ulpt_enable_function_t

enum ulpt_trigger_edge_t

enum ulpt_event_pin_t

enum ulpt_output_pin_t

enum ulpt_pulse_pin_cfg_t

enum ulpt_match_pin_cfg_t

enum ulpt_ulptevi_filter_t

Data Structure Documentation

◆ ulpt_instance_ctrl_t

struct ulpt_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,998 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ ulpt_extended_cfg_t

struct ulpt_extended_cfg_t

Optional ULPT extension data structure.

Data Fields

ulpt_clock_t count_source ULPT channel clock source.

ulpt_ulptevi_filter_t ulptevi_filter Input filter for ULTPEVI.

ulpt_enable_function_t enable_function Counter function when ULPTEE
is valid.

ulpt_trigger_edge_t trigger_edge Enable trigger edge (start and
restart functions only).

ulpt_event_pin_t event_pin Event pin (event counting only).

ulpt_pulse_pin_cfg_t ulpto Pulse output pin.

union ulpt_extended_cfg_t __unnamed__

Enumeration Type Documentation

◆ ulpt_clock_t

enum ulpt_clock_t

Count source.

Enumerator

ULPT_CLOCK_LOCO LOCO count source, division by 1, 2, 4, 8, 16,
32, 64, 128.

ULPT_CLOCK_SUBCLOCK Subclock count source, division by 1, 2, 4, 8,
16, 32, 64, 128.

ULPT_CLOCK_ULPTEVI Counts external events on ULPTEVI.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 3,999 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ ulpt_enable_function_t

enum ulpt_enable_function_t

Counter mode for event enable.

Enumerator

ULPT_ENABLE_FUNCTION_IGNORED Always count external events, ignore ULPTEE.

ULPT_ENABLE_FUNCTION_ENABLE_LOW Event counting is enabled while ULPTEE is low
(event counting only).

ULPT_ENABLE_FUNCTION_ENABLE_HIGH Event counting is enabled while ULPTEE is high
(event counting only).

ULPT_ENABLE_FUNCTION_START Counting is started after ULPTEE.

ULPT_ENABLE_FUNCTION_RESTART Counting is restarted after ULPTEE.

◆ ulpt_trigger_edge_t

enum ulpt_trigger_edge_t

Enable signal trigger edge for start and restart functions.

Enumerator

ULPT_TRIGGER_EDGE_RISING Timer enable function occurs on the rising
edge of ULPTEE.

ULPT_TRIGGER_EDGE_FALLING Timer enable function occurs on the falling
edge of ULPTEE.

ULPT_TRIGGER_EDGE_BOTH Timer enable function occurs on any edge of
ULPTEE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,000 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ ulpt_event_pin_t

enum ulpt_event_pin_t

Event signal pin.

Enumerator

ULPT_EVENT_PIN_RISING Event count occurs on the rising edge.

ULPT_EVENT_PIN_FALLING Event count occurs on the falling edge.

ULPT_EVENT_PIN_BOTH Event count occurs on both edges.

◆ ulpt_output_pin_t

enum ulpt_output_pin_t

Output pins, used to select which duty cycle to update in R_ULPT_DutyCycleSet().

Enumerator

ULPT_OUTPUT_PIN_ULPTOA Compare match A output.

ULPT_OUTPUT_PIN_ULPTOB Compare match B output.

◆ ulpt_pulse_pin_cfg_t

enum ulpt_pulse_pin_cfg_t

ULPTO pulse output pin.

Enumerator

ULPT_PULSE_PIN_CFG_DISABLED Output pin disabled.

ULPT_PULSE_PIN_CFG_ENABLED_START_LEVEL_L
OW

Output pin Enabled Start Low.

ULPT_PULSE_PIN_CFG_ENABLED_START_LEVEL_H
IGH

Output pin enabled Start Hig.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,001 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ ulpt_match_pin_cfg_t

enum ulpt_match_pin_cfg_t

ULPT match output pin.

Enumerator

ULPT_MATCH_PIN_CFG_DISABLED Match output disabled.

ULPT_MATCH_PIN_CFG_START_LEVEL_LOW Match output enabled, starts low.

ULPT_MATCH_PIN_CFG_START_LEVEL_HIGH Match output enabled, starts high.

◆ ulpt_ulptevi_filter_t

enum ulpt_ulptevi_filter_t

Input filter, applied to ULPTEVI in event counter mode. The filter requires the signal to be at the
same level for 3 successive reads at the specified filter frequency.

Enumerator

ULPT_ULPTEVI_FILTER_NONE No filter.

ULPT_ULPTEVI_FILTER_PCLKB Filter at PCLKB.

ULPT_ULPTEVI_FILTER_PCLKB_DIV_8 Filter at PCLKB / 8.

ULPT_ULPTEVI_FILTER_PCLKB_DIV_32 Filter at PCLKB / 32.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,002 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_Open()

fsp_err_t R_ULPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the ULPT module instance. Implements timer_api_t::open.

The ULPT implementation of the general timer can accept an optional ulpt_extended_cfg_t
extension parameter. For ULPT, the extension specifies the clock to be used as timer source and
the output pin configurations. If the extension parameter is not specified (NULL), the default clock
LOCO is used and the output pins are disabled.

Example:

 /* Initializes the module. */

 err = R_ULPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
period is not in the valid range of 1 to
0xFFFF.

FSP_ERR_ALREADY_OPEN R_ULPT_Open has already been called for
this p_ctrl.

FSP_ERR_IRQ_BSP_DISABLED A required interrupt has not been enabled in
the vector table.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel number is not available
on ULPT.

◆ R_ULPT_Start()

fsp_err_t R_ULPT_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_ULPT_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer started.

FSP_ERR_ASSERTION p_ctrl is null.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,003 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_Stop()

fsp_err_t R_ULPT_Stop (timer_ctrl_t *const p_ctrl)

Stops the timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. This will set the counter back to max */

 (void) R_ULPT_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_ULPT_Reset()

fsp_err_t R_ULPT_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to the period minus one. Implements timer_api_t::reset.

Return values
FSP_SUCCESS Counter reset.

FSP_ERR_ASSERTION p_ctrl is NULL

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,004 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_Enable()

fsp_err_t R_ULPT_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 err = R_ULPT_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_ULPT_Disable()

fsp_err_t R_ULPT_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Example:

 err = R_ULPT_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,005 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_PeriodSet()

fsp_err_t R_ULPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Updates period. The new period is updated immediately and the counter is reset to the maximum
value. Implements timer_api_t::periodSet.

Warning
If periodic output is used, the duty cycle buffer registers are updated after the period buffer
register. If this function is called while the timer is running and an AGT underflow occurs
during processing, the duty cycle will not be the desired 50% duty cycle until the counter
underflow after processing completes.
Stop the timer before calling this function if one-shot output is used.

Example:

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_ULPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the period
was not in the valid range of 1 to 0xFFFF.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,006 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_DutyCycleSet()

fsp_err_t R_ULPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Updates duty cycle. If the timer is counting, the new duty cycle is reflected after the next counter
underflow. Implements timer_api_t::dutyCycleSet.

Example:

 /* Set the calculated duty cycle. */

 err = R_ULPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts,

ULPT_OUTPUT_PIN_ULPTOA);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Duty cycle updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the pin was
not ULPT_ULPTO_ULPTOA or
ULPT_ULPTO_ULPTOB.

FSP_ERR_INVALID_ARGUMENT Duty cycle was not in the valid range of 0 to
period (counts) - 1

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

FSP_ERR_UNSUPPORTED ULPT_CFG_OUTPUT_SUPPORT_ENABLE is 0.

◆ R_ULPT_CompareMatchSet()

fsp_err_t R_ULPT_CompareMatchSet (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Placeholder for unsupported compareMatch function. Implements timer_api_t::compareMatchSet.

Return values
FSP_ERR_UNSUPPORTED ULPT compare match is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,007 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_InfoGet()

fsp_err_t R_ULPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Gets timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* Get the source clock frequency (in Hz).

 * - Use the R_ULPT_InfoGet function (it accounts for the clock source and divider).

*/

 if (R_ULPT_InfoGet (&g_timer0_ctrl, &ulptInfo) == FSP_SUCCESS)

 {

 timer_freq_hz = ulptInfo.clock_frequency;

 }

Return values
FSP_SUCCESS Period, count direction, and frequency

stored in p_info.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_ULPT_StatusGet()

fsp_err_t R_ULPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Retrieves the current state and counter value stores them in p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 (void) R_ULPT_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current status and counter value provided

in p_status.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,008 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Timers > Timer, Ultra Low-Power (r_ulpt)

◆ R_ULPT_CallbackSet()

fsp_err_t R_ULPT_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_ULPT_Close()

fsp_err_t R_ULPT_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables interrupts, disables output pins, and clears internal driver data. Implements
timer_api_t::close.

Return values
FSP_SUCCESS Timer closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

5.2.20 Transfer
Modules

Detailed Description

Transfer Modules.

Modules

Transfer (r_dmac)

 Driver for the DMAC peripheral on RA MCUs. This module implements

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,009 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer

the Transfer Interface.

Transfer (r_dtc)

 Driver for the DTC peripheral on RA MCUs. This module implements
the Transfer Interface.

5.2.20.1 Transfer (r_dmac)
Modules » Transfer

Functions

fsp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

fsp_err_t R_DMAC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl,
transfer_properties_t *const p_info)

fsp_err_t R_DMAC_Reload (transfer_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const num_transfers)

fsp_err_t R_DMAC_CallbackSet (transfer_ctrl_t *const p_api_ctrl,
void(*p_callback)(dmac_callback_args_t *), void const *const
p_context, dmac_callback_args_t *const p_callback_memory)

fsp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the DMAC peripheral on RA MCUs. This module implements the Transfer Interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,010 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

Overview
The Direct Memory Access Controller (DMAC) transfers data from one memory location to another
without using the CPU.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer
Repeat-Block transfer (Not available on all MCUs)

Address increment, decrement, fixed, or offset modes
Triggered by ELC events

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

Supports 1, 2, and 4 byte data units

Configuration

Build Time Configurations for r_dmac

The following build time configurations are defined in fsp_cfg/r_dmac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Transfer > Transfer (r_dmac)

This module can be added to the Stacks tab via New Stack > Transfer > Transfer (r_dmac).

Configuration Options Default Description

Name Name must be a valid
C symbol

g_transfer0 Module name.

Channel Value must be a non-
negative integer

0 Specify the hardware
channel.

Mode MCU Specific Options Select the transfer
mode. Normal: One
transfer per activation,
transfer ends after
Number of Transfers;
Repeat: One transfer
per activation, Repeat
Area address reset
after Number of
Transfers, transfer
ends after Number of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,011 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

Blocks; Block: Number
of Blocks per
activation, Repeat Area
address reset after
Number of Transfers,
transfer ends after
Number of Blocks.

Transfer Size 1 Byte
2 Bytes
4 Bytes

2 Bytes Select the transfer size.

Destination Address
Mode

Fixed
Offset addition
Incremented
Decremented

Fixed Select the address
mode for the
destination.

Source Address Mode Fixed
Offset addition
Incremented
Decremented

Fixed Select the address
mode for the source.

Repeat Area (Unused in
Normal Mode)

Destination
Source

Source Select the repeat area.
Either the source or
destination address
resets to its initial
value after completing
Number of Transfers in
Repeat or Block mode.

Number of Transfers Value must be a non-
negative integer

1 Specify the number of
transfers for repeat
and normal mode or
block size for repeat-
block transfer mode.

Number of Blocks
(Valid only in
Repeat,Block or Repeat-
Block Mode)

Value must be a non-
negative integer

0 Specify the number of
blocks to transfer in
Repeat,Block or Repeat-
Block mode.

Activation Source MCU Specific Options Select the DMAC
transfer start event. If
no ELC event is chosen
then software start can
be used.

Callback Name must be a valid
C symbol

NULL A user callback that is
called at the end of the
transfer.

Transfer End Interrupt
Priority

MCU Specific Options Select the transfer end
interrupt priority.

Interrupt Frequency Interrupt after
all transfers
have completed
Interrupt after
each block, or

Interrupt after all
transfers have
completed

Select to have interrupt
after each transfer or
after last transfer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,012 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

repeat size is
transfered

Offset value (Valid only
when address mode is
\'Offset\')

Value must be a 24 bit
signed integer.

1 Offset value is added
to the address after
each transfer.

Source Buffer Size Value must be a non-
negative integer with a
maximum configurable
value of 65535.

1 Specify the size of
whole source buffer
(valid only for Repeat-
Block transfer mode
with source address
update mode other
than offset addition).

Clock Configuration

The DMAC peripheral module uses ICLK as the clock source. The ICLK frequency is set by using the
Clocks tab of the RA Configuration editor prior to a build, or by using the CGC module at run-time.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Source and Destination Configuration

R_DMAC_Reset() API function should be called to set the source and destination before starting
transfer operation.

Transfer Modes

The DMAC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time the configured
ELC event is received by the DMAC channel. A data unit can be 1-byte, 2-bytes, or 4-bytes.
The source and destination addresses can be fixed, increment, decrement, or add an offset
to the next data unit after each transfer. A 16-bit counter decrements after each transfer.
When the counter reaches 0, transfers will no longer be triggered by the ELC event and the
CPU can be interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,1024]. When the transfer counter reaches 0, the
counter is reset to its configured value, the repeat area (source or destination address)
resets to its starting address and the block count remaining will decrement by 1. When the
block count reaches 0, transfers will no longer be triggered by the ELC event and the CPU
may be interrupted to signal that all transfers have finished.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,1024]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area (source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.
Repeat-Block Mode - In repeat-block mode, the amount of data units transfered by each
interrupt can be set to an integer in the range [1,1024]. The number of blocks to transfer
can be configured to a 16 bit number. If the destination address mode is offset mode,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,013 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

maximum configurable number of blocks is 0xFFFF for block size(length) of one with data
transfer size as byte,0x7FFF for block size of one with data transfer size as half word and
0x3FFF for block size of one with data size as word. After each block transfer the source
address and the destination address will be incremented or decremented to the next block
address. In case of offset address mode for source address, the source address size is the
total size of source buffer after which the source area is rolled over, block size can be
smaller than the source buffer size.For source address mode as offset mode, the maximum
configurable source buffer size is 0xFFFF for transfer data size of a byte,0x7FFF for transfer
data size of half word and 0x3FFF for transfer data size of word. Repeat-block mode can be
used to implement single ring buffer to multiple ring buffer transfer type design.

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x
4 bytes

Max block size is 1024 x
4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

Offset Address Mode Not supported Supported

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,014 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

Block Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

Repeat-block Mode

DTC DMAC

TRANSFER_IRQ_EACH N/A N/A

TRANSFER_IRQ_END N/A Interrupt after last block

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.

Offset Address Mode

When the source or destination mode is configured to offset mode, a configurable offset is added to
the source or destination pointer after each transfer. The offset is a signed 24 bit number.

Examples
Basic Example

This is a basic example of minimal use of the DMAC in an application. In this case, one or more
events have been routed to the DMAC for handling so it only needs to be enabled to start accepting
transfers.

void dmac_minimal_example (void)

{

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DMAC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the DMAC so that it responds to transfer requests. */

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,015 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

 err = R_DMAC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

}

CRC32 Example

In this example the DMAC is used to feed the CRC peripheral to perform a CRC32 operation.

volatile bool g_transfer_complete = false;

void dmac_callback (dmac_callback_args_t * cb_data)

{

 FSP_PARAMETER_NOT_USED(cb_data);

 g_transfer_complete = true;

}

void dmac_crc_example (void)

{

 uint8_t p_src[TRANSFER_LENGTH];

 /* Initialize p_src to [ABC..OP] */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 p_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Set transfer source address to p_src */

 g_transfer_cfg.p_info->p_src = (void *) p_src;

 /* Set transfer destination address to the CRC data input register */

 g_transfer_cfg.p_info->p_dest = (void *) &R_CRC->CRCDIR;

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DMAC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable DMAC transfers. */

 (void) R_DMAC_Enable(&g_transfer_ctrl);

 /* Open the CRC module. */

 err = R_CRC_Open(&g_crc_ctrl, &g_crc_cfg);

 assert(FSP_SUCCESS == err);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,016 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

 /* Clear the transfer complete flag. */

 g_transfer_complete = false;

 /* Trigger the transfer using software. */

 err = R_DMAC_SoftwareStart(&g_transfer_ctrl, TRANSFER_START_MODE_SINGLE);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer complete interrupt */

 }

 /* Get CRC result and perform final XOR. */

 uint32_t crc32;

 (void) R_CRC_CalculatedValueGet(&g_crc_ctrl, &crc32);

 crc32 ^= CRC32_FINAL_XOR_VALUE;

 /* Verify that the CRC32 is calculated correctly. */

 /* CRC32("ABCD...NOP") = 0xE0E8FF4D. */

 const uint32_t expected_crc32 = 0xE0E8FF4D;

 if (expected_crc32 != crc32)

 {

 /* Handle any CRC errors. This function should be defined by the user. */

 handle_crc_error();

 }

}

Data Structures

struct dmac_instance_ctrl_t

struct dmac_extended_cfg_t

Macros

#define DMAC_MAX_NORMAL_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_TRANSFER_LENGTH

#define DMAC_MAX_BLOCK_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_COUNT

#define DMAC_MAX_BLOCK_COUNT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,017 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

Data Structure Documentation

◆ dmac_instance_ctrl_t

struct dmac_instance_ctrl_t

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

◆ dmac_extended_cfg_t

struct dmac_extended_cfg_t

DMAC transfer configuration extension. This extension is required.

Data Fields

uint8_t channel

 Channel number, does not apply to all HAL drivers.

IRQn_Type irq

 DMAC interrupt number.

uint8_t ipl

 DMAC interrupt priority.

int32_t offset

 Offset value used with
transfer_addr_mode_t::TRANSFER_ADDR_MODE_OFFSET.

uint16_t src_buffer_size

elc_event_t activation_source

void(* p_callback)(dmac_callback_args_t *cb_data)

void const * p_context

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,018 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

Field Documentation

◆ src_buffer_size

uint16_t dmac_extended_cfg_t::src_buffer_size

Source ring buffer size for TRANSFER_MODE_REPEAT_BLOCK.

◆ activation_source

elc_event_t dmac_extended_cfg_t::activation_source

Select which event will trigger the transfer.

Note
Select ELC_EVENT_NONE for software activation in order to use softwareStart and softwareStart to trigger
transfers.

◆ p_callback

void(* dmac_extended_cfg_t::p_callback) (dmac_callback_args_t *cb_data)

Callback for transfer end interrupt.

◆ p_context

void const* dmac_extended_cfg_t::p_context

Placeholder for user data. Passed to the user p_callback in transfer_callback_args_t.

Macro Definition Documentation

◆ DMAC_MAX_NORMAL_TRANSFER_LENGTH

#define DMAC_MAX_NORMAL_TRANSFER_LENGTH

Max configurable number of transfers in TRANSFER_MODE_NORMAL.

◆ DMAC_MAX_REPEAT_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_TRANSFER_LENGTH

Max number of transfers per repeat for TRANSFER_MODE_REPEAT.

◆ DMAC_MAX_BLOCK_TRANSFER_LENGTH

#define DMAC_MAX_BLOCK_TRANSFER_LENGTH

Max number of transfers per block in TRANSFER_MODE_BLOCK

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,019 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

◆ DMAC_MAX_REPEAT_COUNT

#define DMAC_MAX_REPEAT_COUNT

Max configurable number of repeats to trasnfer in TRANSFER_MODE_REPEAT

◆ DMAC_MAX_BLOCK_COUNT

#define DMAC_MAX_BLOCK_COUNT

Max configurable number of blocks to transfer in TRANSFER_MODE_BLOCK

Function Documentation

◆ R_DMAC_Open()

fsp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Configure a DMAC channel.

Return values
FSP_SUCCESS Successful open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The configured channel is invalid.

FSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

◆ R_DMAC_Reconfigure()

fsp_err_t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t * p_info)

Reconfigure the transfer with new transfer info.

Return values
FSP_SUCCESS Transfer is configured and will start when

trigger occurs.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_ENABLED DMAC is not enabled. The current
configuration must not be valid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,020 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

◆ R_DMAC_Reset()

fsp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void *volatile
p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers.

Return values
FSP_SUCCESS Transfer reset successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_ENABLED DMAC is not enabled. The current
configuration must not be valid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_SoftwareStart()

fsp_err_t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

If the mode is TRANSFER_START_MODE_SINGLE initiate a single transfer with software. If the mode
is TRANSFER_START_MODE_REPEAT continue triggering transfers until all of the transfers are
completed.

Return values
FSP_SUCCESS Transfer started written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

FSP_ERR_UNSUPPORTED Handle was not configured for software
activation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,021 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

◆ R_DMAC_SoftwareStop()

fsp_err_t R_DMAC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

Stop software transfers if they were started with TRANSFER_START_MODE_REPEAT.

Return values
FSP_SUCCESS Transfer stopped written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_Enable()

fsp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfers for the configured activation source.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_Disable()

fsp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfers so that they are no longer triggered by the activation source.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,022 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

◆ R_DMAC_InfoGet()

fsp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const p_info)

Set driver specific information in provided pointer.

Return values
FSP_SUCCESS Information has been written to p_info.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

◆ R_DMAC_Reload()

fsp_err_t R_DMAC_Reload (transfer_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const num_transfers)

To update next transfer information without interruption during transfer.

Return values
FSP_ERR_UNSUPPORTED This feature is not supported.

◆ R_DMAC_CallbackSet()

fsp_err_t R_DMAC_CallbackSet (transfer_ctrl_t *const p_api_ctrl, void(*)(dmac_callback_args_t *)
p_callback, void const *const p_context, dmac_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,023 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dmac)

◆ R_DMAC_Close()

fsp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

Disable transfer and clean up internal data. Implements transfer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

5.2.20.2 Transfer (r_dtc)
Modules » Transfer

Functions

fsp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

fsp_err_t R_DTC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t
*const p_properties)

fsp_err_t R_DTC_Reload (transfer_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const num_transfers)

fsp_err_t R_DTC_CallbackSet (transfer_ctrl_t *const p_api_ctrl,
void(*p_callback)(transfer_callback_args_t *), void const *const
p_context, transfer_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,024 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

fsp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the DTC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview
The Data Transfer Controller (DTC) transfers data from one memory location to another without
using the CPU.

The DTC uses a RAM based vector table. Each entry in the vector table corresponds to an entry in
the ISR vector table. When the DTC is triggered by an interrupt, it reads the DTC vector table,
fetches the transfer information, and then executes the transfer. After the transfer is executed, the
DTC writes the updated transfer info back to the location pointed to by the DTC vector table.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer

Chain transfers
Address increment, decrement or fixed modes
Can be triggered by any event that has reserved a slot in the interrupt vector table.

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

Supports 1, 2, and 4 byte data units

Configuration

Build Time Configurations for r_dtc

The following build time configurations are defined in fsp_cfg/r_dtc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Linker section to keep
DTC vector table

Manual Entry .fsp_dtc_vector_table Section to place the
DTC vector table.

Configurations for Transfer > Transfer (r_dtc)

This module can be added to the Stacks tab via New Stack > Transfer > Transfer (r_dtc).

Configuration Options Default Description

Name Name must be a valid g_transfer0 Module name.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,025 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

C symbol

Mode Normal
Repeat
Block

Normal Select the transfer
mode. Select the
transfer mode. Normal:
One transfer per
activation, transfer
ends after Number of
Transfers; Repeat: One
transfer per activation,
Repeat Area address
reset after Number of
Transfers, transfer
repeats until stopped;
Block: Number of
Blocks per activation,
Repeat Area address
reset after Number of
Transfers, transfer
ends after Number of
Blocks.

Transfer Size 1 Byte
2 Bytes
4 Bytes

2 Bytes Select the transfer size.

Destination Address
Mode

Fixed
Incremented
Decremented

Fixed Select the address
mode for the
destination.

Source Address Mode Fixed
Incremented
Decremented

Fixed Select the address
mode for the source.

Repeat Area (Unused in
Normal Mode)

Destination
Source

Source Select the repeat area.
Either the source or
destination address
resets to its initial
value after completing
Number of Transfers in
Repeat or Block mode.

Interrupt Frequency After all
transfers have
completed
After each
transfer

After all transfers have
completed

Select to have interrupt
after each transfer or
after last transfer.

Number of Transfers Value must be a non-
negative integer

0 Specify the number of
transfers.

Number of Blocks
(Valid only in Block
Mode)

Must be a valid non-
negative integer with a
maximum configurable
value of 65536.
Applicable only in Block
Mode.

0 Specify the number of
blocks to transfer in
Block mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,026 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

Number of Transfer
Descriptors

Value must be a non-
negative integer

1 Specify the number of
transfer descriptors.
Users have to initialize
descriptors if its value
is greater than 1.

Activation Source MCU Specific Options Select the DTC transfer
start event.

Clock Configuration

The DTC peripheral module uses ICLK as the clock source. The ICLK frequency is set by using the
Clocks tab of the RA Configuration editor prior to a build or by using the CGC module at runtime.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Source and Destination Configuration

R_DTC_Reset() API function should be called to set the Source and Destination address before
starting the transfer operation.

Transfer Modes

The DTC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time an interrupt is
received by the DTC. A data unit can be 1-byte, 2-bytes, or 4-bytes. The source and
destination addresses can be fixed, increment or decrement to the next data unit after each
transfer. A 16-bit counter (length) decrements after each transfer. When the counter
reaches 0, transfers will no longer be triggered by the interrupt source and the CPU can be
interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,256]. When the tranfer counter reaches 0, the counter
is reset to its configured value and the repeat area (source or destination address) resets to
its starting address and transfers will still be triggered by the interrupt.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,256]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area (source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Note
1. The source and destination address of the transfer must be aligned to the configured data unit.
2. In normal mode the length can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.
3. In block mode, num_blocks can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.

Chaining Transfers

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,027 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

Multiple transfers can be configured for the same interrupt source by specifying an array of
transfer_info_t structs instead of just passing a pointer to one. In this configuration, every
transfer_info_t struct must be configured for a chain mode except for the last one. There are two
types of chain mode; CHAIN_MODE_EACH and CHAIN_MODE_END. If a transfer is configured in
CHAIN_MODE_EACH then it triggers the next transfer in the chain after it completes each transfer. If
a transfer is configured in CHAIN_MODE_END then it triggers the next transfer in the chain after it
completes its last transfer.

Figure 308: DTC Transfer Flowchart

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x Max block size is 1024 x

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,028 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

4 bytes 4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

Offset Address Mode Not supported Supported

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.
The DTC interrupts the CPU using the activation source's IRQ. Each DMAC channel has its
own IRQ.
The necessary alignment of the transfer_info_t structs depends on the underlying MCU. The
DTC_TRANSFER_INFO_ALIGNMENT macro is supplied to align the structs as necessary.

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured event IRQ as the
interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

Block Mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,029 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

Note
DTC_VECTOR_TABLE_SIZE = (ICU_NVIC_IRQ_SOURCES x 4) Bytes

Peripheral Interrupts and DTC

When an interrupt is configured to trigger DTC transfers, the peripheral ISR will trigger on the
following conditions:

Each transfer completed (transfer_info_t::irq = TRANSFER_IRQ_EACH)
Last transfer completed (transfer_info_t::irq = TRANSFER_IRQ_END)

For example, if SCI1_RXI is configured to trigger DTC transfers and a SCI1_RXI event occurs, the
interrupt will not fire until the DTC transfer is completed. If the DTC transfer_info_t::irq is configured
to only interrupt on the last transfer, then no RXI interrupts will occur until the last transfer is
completed.

Note
1. The DTC activation source must be enabled in the NVIC in order to trigger DTC transfers (Modules that are
designed to integrate the R_DTC module will automatically handle this).
2. The DTC prioritizes activation sources by granting the smaller interrupt vector numbers higher priority. The
priority of interrupts to the CPU is determined by the NVIC priority.

Low Power Modes

DTCST must be set to 0 before transitioning to any of the following:

Module-stop state
Software Standby mode without Snooze mode transition
Deep Software Standby mode

Note
1. R_LPM Module stops the DTC before entering deep software standby mode and software standby without snooze
mode transition.
2. For more information see 18.9 and 18.10 in the RA6M3 manual R01UH0886EJ0100.

Limitations

Developers should be aware of the following limitations when using the DTC:

If the DTC is configured to service many different activation sources, the system could run
in to performance issues due to memory contention. To address this issue, it is
reccomended that the DTC vector table and transfer information be moved to their own
dedicated memory area (Ex: SRAM0, SRAM1, SRAMHS). This allows memory accesses from
different BUS Masters (CPU, DTC, DMAC, EDMAC and Graphics IPs) to occur in parallel.

Examples
Basic Example

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,030 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

This is a basic example of minimal use of the DTC in an application.

void dtc_minimal_example (void)

{

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DTC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the DTC to handle incoming transfer requests. */

 err = R_DTC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct dtc_extended_cfg_t

struct dtc_instance_ctrl_t

Macros

#define DTC_MAX_NORMAL_TRANSFER_LENGTH

#define DTC_MAX_REPEAT_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_COUNT

#define DTC_TRANSFER_INFO_ALIGNMENT

Data Structure Documentation

◆ dtc_extended_cfg_t

struct dtc_extended_cfg_t

DTC transfer configuration extension. This extension is required.

Data Fields

IRQn_Type activation_source Select which IRQ will trigger the
transfer.

◆ dtc_instance_ctrl_t

struct dtc_instance_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,031 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

Macro Definition Documentation

◆ DTC_MAX_NORMAL_TRANSFER_LENGTH

#define DTC_MAX_NORMAL_TRANSFER_LENGTH

Max configurable number of transfers in NORMAL MODE

◆ DTC_MAX_REPEAT_TRANSFER_LENGTH

#define DTC_MAX_REPEAT_TRANSFER_LENGTH

Max number of transfers per repeat for REPEAT MODE

◆ DTC_MAX_BLOCK_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_TRANSFER_LENGTH

Max number of transfers per block in BLOCK MODE

◆ DTC_MAX_BLOCK_COUNT

#define DTC_MAX_BLOCK_COUNT

Max configurable number of blocks to transfer in BLOCK MODE

◆ DTC_TRANSFER_INFO_ALIGNMENT

#define DTC_TRANSFER_INFO_ALIGNMENT

Alignment required for transfer_info_t structures.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,032 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

◆ R_DTC_Open()

fsp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Configure the vector table if it hasn't been configured, enable the Module and copy the pointer to
the transfer info into the DTC vector table. Implements transfer_api_t::open.

Example:

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DTC_Open(&g_transfer_ctrl, &g_transfer_cfg);

Return values
FSP_SUCCESS Successful open. Transfer transfer info

pointer copied to DTC Vector table. Module
started. DTC vector table configured.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_UNSUPPORTED Address Mode Offset is selected.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

FSP_ERR_IN_USE The index for this IRQ in the DTC vector
table is already configured.

FSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

◆ R_DTC_Reconfigure()

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t * p_info)

Copy pointer to transfer info into the DTC vector table and enable transfer in ICU. Implements
transfer_api_t::reconfigure.

Return values
FSP_SUCCESS Transfer is configured and will start when

trigger occurs.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_NOT_ENABLED Transfer source address is NULL or is not
aligned correctly. Transfer destination
address is NULL or is not aligned correctly.

Note
p_info must persist until all transfers are completed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,033 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

◆ R_DTC_Reset()

fsp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void *volatile
p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers. Implements transfer_api_t::reset.

Return values
FSP_SUCCESS Transfer reset successfully (transfers are

enabled).

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_NOT_ENABLED Transfer source address is NULL or is not
aligned correctly. Transfer destination
address is NULL or is not aligned correctly.

◆ R_DTC_SoftwareStart()

fsp_err_t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

Placeholder for unsupported softwareStart function. Implements transfer_api_t::softwareStart.

Return values
FSP_ERR_UNSUPPORTED DTC software start is not supported.

◆ R_DTC_SoftwareStop()

fsp_err_t R_DTC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

Placeholder for unsupported softwareStop function. Implements transfer_api_t::softwareStop.

Return values
FSP_ERR_UNSUPPORTED DTC software stop is not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,034 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

◆ R_DTC_Enable()

fsp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfers on this activation source. Implements transfer_api_t::enable.

Example:

 /* Enable the DTC to handle incoming transfer requests. */

 err = R_DTC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Transfers will be triggered by the activation

source

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_UNSUPPORTED Address Mode Offset is selected.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

◆ R_DTC_Disable()

fsp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfer on this activation source. Implements transfer_api_t::disable.

Return values
FSP_SUCCESS Transfers will not occur on activation

events.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,035 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

◆ R_DTC_InfoGet()

fsp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const
p_properties)

Provides information about this transfer. Implements transfer_api_t::infoGet.

Return values
FSP_SUCCESS p_info updated with current instance

information.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

◆ R_DTC_Reload()

fsp_err_t R_DTC_Reload (transfer_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const num_transfers)

To update next transfer information without interruption during transfer.

Return values
FSP_ERR_UNSUPPORTED This feature is not supported.

◆ R_DTC_CallbackSet()

fsp_err_t R_DTC_CallbackSet (transfer_ctrl_t *const p_api_ctrl, void(*)(transfer_callback_args_t *)
p_callback, void const *const p_context, transfer_callback_args_t *const p_callback_memory)

Placeholder for unsupported callbackset function. Implements transfer_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED DTC does not support direct callbacks.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,036 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > Transfer > Transfer (r_dtc)

◆ R_DTC_Close()

fsp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

Disables DTC activation in the ICU, then clears transfer data from the DTC vector table. Implements
transfer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

5.2.21 TrustZone
Modules

Detailed Description

Arm TrustZone Modules.

Modules

Arm TrustZone Context RA Port (rm_tz_context)

 RTOS Context Management for RA MCUs.

5.2.21.1 Arm TrustZone Context RA Port (rm_tz_context)
Modules » TrustZone

RTOS Context Management for RA MCUs.

Overview
Add this module to a secure TrustZone project to allow the associated non-secure project to use an
RTOS. It is used by an RTOS port for RA MCUs (for example, the FreeRTOS Port (rm_freertos_port),
which is automatically added to RA projects when FreeRTOS is selected during project creation).

Note
The RTOS Context Management module does not provide any interfaces to the user. To use this module to port an

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,037 / 5,560

Flexible Software Package

User’s Manual
API Reference > Modules > TrustZone > Arm TrustZone Context RA Port (rm_tz_context)

RTOS, consult the Arm documentation at https://arm-
software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html for further information.

Configuration
Build Time Configurations for rm_tz_context

The following build time configurations are defined in fsp_cfg/rm_tz_context_cfg.h:

Configuration Options Default Description

Process Stack Slots Value must be a non-
negative integer
greater than 0

8 The maximum number
of threads that can
allocate a secure
context. For
applications using
FreeRTOS, the Idle task
requires 1 context as
well.

Process Stack Size Value must be a non-
negative multiple of 8

256 The maximum stack
size of all non-secure
callable functions.

Clock Configuration

This module does not use peripheral clocks.

Pin Configuration

This module does not use I/O pins.

Usage Notes
TrustZone Integration

When using an RTOS in a TrustZone project, Arm recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the task has allocated a secure context. To
allocate a secure context, reference the documentation for the RTOS port used. For example,
reference TrustZone Integration when FreeRTOS is used.

Sealing the Process Stack

This module seals each process stack by placing the value 0xFEF5EDA5 above the stack top. For
more information, refer to section 3.5 "Sealing a Stack" in "Secure software guidelines for ARMv8-M":
https://developer.arm.com/documentation/100720/0300.

5.3 Interfaces

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,038 / 5,560

https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html
https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html
https://developer.arm.com/documentation/100720/0300

Flexible Software Package

User’s Manual
API Reference > Interfaces

Detailed Description

FSP interfaces provide APIs for common functionality. They can be implemented by one or more
modules. Modules can use other modules as dependencies using this interface layer.

Modules

Analog

 Analog Interfaces.

AI

 AI Interfaces.

Audio

 Audio Interfaces.

CapTouch

 CapTouch Interfaces.

Connectivity

 Connectivity Interfaces.

DSP

 DSP Interfaces.

Graphics

 Graphics Interfaces.

Input

 Input Interfaces.

Monitoring

 Monitoring Interfaces.

Motor

 Motor Interfaces.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,039 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces

Networking

 Networking Interfaces.

Power

 Power Interfaces.

Security

 Security Interfaces.

Sensor

 Sensor Interfaces.

Storage

 Storage Interfaces.

System

 System Interfaces.

Timers

 Timers Interfaces.

Transfer

 Transfer Interfaces.

5.3.1 Analog
Interfaces

Detailed Description

Analog Interfaces.

Modules

ADC Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,040 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog

 Interface for A/D Converters.

Comparator Interface

 Interface for comparators.

DAC Interface

 Interface for D/A converters.

OPAMP Interface

 Interface for Operational Amplifiers.

5.3.1.1 ADC Interface
Interfaces » Analog

Detailed Description

Interface for A/D Converters.

Summary
The ADC interface provides standard ADC functionality including one-shot mode (single scan),
continuous scan and group scan. It also allows configuration of hardware and software triggers for
starting scans. After each conversion an interrupt can be triggered, and if a callback function is
provided, the call back is invoked with the appropriate event information.

Data Structures

struct adc_status_t

struct adc_callback_args_t

struct adc_info_t

struct adc_cfg_t

struct adc_api_t

struct adc_instance_t

Typedefs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,041 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

typedef void adc_ctrl_t

Enumerations

enum adc_mode_t

enum adc_resolution_t

enum adc_alignment_t

enum adc_trigger_t

enum adc_event_t

enum adc_channel_t

enum adc_group_id_t

enum adc_group_mask_t

enum adc_state_t

Data Structure Documentation

◆ adc_status_t

struct adc_status_t

ADC status.

Data Fields

adc_state_t state Current state.

◆ adc_callback_args_t

struct adc_callback_args_t

ADC callback arguments definitions

Data Fields

uint16_t unit ADC device in use.

adc_event_t event ADC callback event.

void const * p_context Placeholder for user data.

adc_channel_t channel Channel of conversion result.

uint64_t channel_mask Channel mask for conversion
result. Only valid for r_adc_b
and r_sdadc_b.

adc_group_mask_t group_mask Group Mask.

◆ adc_info_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,042 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

struct adc_info_t

ADC Information Structure for Transfer Interface

Data Fields

__I void * p_address The address to start reading the
data from.

uint32_t length The total number of transfers to
read.

transfer_size_t transfer_size The size of each transfer.

elc_peripheral_t elc_peripheral Name of the peripheral in the
ELC list.

elc_event_t elc_event Name of the ELC event for the
peripheral.

uint32_t calibration_data Temperature sensor calibration
data (0xFFFFFFFF if
unsupported) for reference
voltage.

int16_t slope_microvolts Temperature sensor slope in
microvolts/degrees C.

bool calibration_ongoing Calibration is in progress.

◆ adc_cfg_t

struct adc_cfg_t

ADC general configuration

Data Fields

uint16_t unit

 ADC unit to be used.

adc_mode_t mode

 ADC operation mode.

adc_resolution_t resolution

 ADC resolution.

adc_alignment_t alignment

 Specify left or right alignment; ignored if addition used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,043 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

adc_trigger_t trigger

 Default and Group A trigger source.

IRQn_Type scan_end_irq

 Scan end IRQ number.

IRQn_Type scan_end_b_irq

 Scan end group B IRQ number.

IRQn_Type scan_end_c_irq

 Scan end group C IRQ number.

uint8_t scan_end_ipl

 Scan end interrupt priority.

uint8_t scan_end_b_ipl

 Scan end group B interrupt priority.

uint8_t scan_end_c_ipl

 Scan end group C interrupt priority.

void(* p_callback)(adc_callback_args_t *p_args)

 Callback function; set to NULL for none.

void const * p_context

 Placeholder for user data. Passed to the user callback in
adc_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,044 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

void const * p_extend

 Extension parameter for hardware specific settings.

◆ adc_api_t

struct adc_api_t

ADC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t(* scanCfg)(adc_ctrl_t *const p_ctrl, void const *const p_extend)

fsp_err_t(* scanStart)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanGroupStart)(adc_ctrl_t *p_ctrl, adc_group_mask_t group_mask)

fsp_err_t(* scanStop)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanStatusGet)(adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

fsp_err_t(* read)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t
*const p_data)

fsp_err_t(* read32)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t(* calibrate)(adc_ctrl_t *const p_ctrl, void const *p_extend)

fsp_err_t(* offsetSet)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
int32_t const offset)

fsp_err_t(* callbackSet)(adc_ctrl_t *const p_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,045 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

fsp_err_t(* close)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Field Documentation

◆ open

fsp_err_t(* adc_api_t::open) (adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

Initialize ADC Unit; apply power, set the operational mode, trigger sources, interrupt priority, and
configurations common to all channels and sensors.

Precondition
Configure peripheral clocks, ADC pins and IRQs prior to calling this function.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

◆ scanCfg

fsp_err_t(* adc_api_t::scanCfg) (adc_ctrl_t *const p_ctrl, void const *const p_extend)

Configure the scan including the channels, groups, and scan triggers to be used for the unit that
was initialized in the open call. Some configurations are not supported for all implementations. See
implementation for details.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_extend See implementation for
details

◆ scanStart

fsp_err_t(* adc_api_t::scanStart) (adc_ctrl_t *const p_ctrl)

Start the scan (in case of a software trigger), or enable the hardware trigger.

Parameters
[in] p_ctrl Pointer to control handle

structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,046 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ scanGroupStart

fsp_err_t(* adc_api_t::scanGroupStart) (adc_ctrl_t *p_ctrl, adc_group_mask_t group_mask)

Start the scan group (in case of a software trigger), or enable the hardware trigger.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] group_mask Mask of groups to start

◆ scanStop

fsp_err_t(* adc_api_t::scanStop) (adc_ctrl_t *const p_ctrl)

Stop the ADC scan (in case of a software trigger), or disable the hardware trigger.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStatusGet

fsp_err_t(* adc_api_t::scanStatusGet) (adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

Check scan status.

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_status Pointer to store current
status in

◆ read

fsp_err_t(* adc_api_t::read) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t *const
p_data)

Read ADC conversion result.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,047 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ read32

fsp_err_t(* adc_api_t::read32) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Read ADC conversion result into a 32-bit word.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

◆ calibrate

fsp_err_t(* adc_api_t::calibrate) (adc_ctrl_t *const p_ctrl, void const *p_extend)

Calibrate ADC or associated PGA (programmable gain amplifier). The driver may require
implementation specific arguments to the p_extend input. Not supported for all implementations.
See implementation for details.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_extend Pointer to implementation
specific arguments

◆ offsetSet

fsp_err_t(* adc_api_t::offsetSet) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Set offset for input PGA configured for differential input. Not supported for all implementations. See
implementation for details.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] offset See implementation for
details.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,048 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ callbackSet

fsp_err_t(* adc_api_t::callbackSet) (adc_ctrl_t *const p_ctrl, void(*p_callback)(adc_callback_args_t
*), void const *const p_context, adc_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the ADC control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* adc_api_t::close) (adc_ctrl_t *const p_ctrl)

Close the specified ADC unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ infoGet

fsp_err_t(* adc_api_t::infoGet) (adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Return the ADC data register address of the first (lowest number) channel and the total number of
bytes to be read in order for the DTC/DMAC to read the conversion results of all configured
channels. Return the temperature sensor calibration and slope data.

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_adc_info Pointer to ADC information
structure

◆ adc_instance_t

struct adc_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,049 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

adc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

adc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

void const * p_channel_cfg Pointer to the channel
configuration structure for this
instance.

adc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ adc_ctrl_t

typedef void adc_ctrl_t

ADC control block. Allocate using driver instance control structure from driver instance header file.

Enumeration Type Documentation

◆ adc_mode_t

enum adc_mode_t

ADC operation mode definitions

Enumerator

ADC_MODE_SINGLE_SCAN Single scan - one or more channels.

ADC_MODE_GROUP_SCAN Two trigger sources to trigger scan for two
groups which contain one or more channels.

ADC_MODE_CONTINUOUS_SCAN Continuous scan - one or more channels.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,050 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_resolution_t

enum adc_resolution_t

ADC data resolution definitions

Enumerator

ADC_RESOLUTION_10_BIT 10 bit resolution

ADC_RESOLUTION_8_BIT 8 bit resolution

ADC_RESOLUTION_12_BIT 12 bit resolution

ADC_RESOLUTION_12_BIT 12 bit resolution

ADC_RESOLUTION_10_BIT 10 bit resolution

ADC_RESOLUTION_8_BIT 8 bit resolution

ADC_RESOLUTION_14_BIT 14 bit resolution

ADC_RESOLUTION_16_BIT 16 bit resolution

ADC_RESOLUTION_24_BIT 24 bit resolution

◆ adc_alignment_t

enum adc_alignment_t

ADC data alignment definitions

Enumerator

ADC_ALIGNMENT_RIGHT Data alignment right.

ADC_ALIGNMENT_LEFT Data alignment left.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,051 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_trigger_t

enum adc_trigger_t

ADC trigger mode definitions

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger; not for group modes.

ADC_TRIGGER_SYNC_ELC Synchronous trigger via ELC.

ADC_TRIGGER_ASYNC_EXTERNAL External asynchronous trigger; not for group
modes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,052 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_event_t

enum adc_event_t

ADC callback event definitions

Enumerator

ADC_EVENT_SCAN_COMPLETE Normal/Group A scan complete.

ADC_EVENT_SCAN_COMPLETE_GROUP_B Group B scan complete.

ADC_EVENT_SCAN_COMPLETE_GROUP_C Group C scan complete.

ADC_EVENT_CALIBRATION_COMPLETE Calibration complete.

ADC_EVENT_CONVERSION_COMPLETE Conversion complete.

ADC_EVENT_CALIBRATION_REQUEST Calibration requested.

ADC_EVENT_CONVERSION_ERROR Scan error.

ADC_EVENT_OVERFLOW Overflow occurred.

ADC_EVENT_LIMIT_CLIP Limiter clipping occurred.

ADC_EVENT_FIFO_READ_REQUEST FIFO read requested.

ADC_EVENT_FIFO_OVERFLOW FIFO overflow occurred.

ADC_EVENT_WINDOW_COMPARE_A Window A comparison condition met.

ADC_EVENT_WINDOW_COMPARE_B Window B comparison condition met.

ADC_EVENT_ZERO_CROSS_DETECTION Zero-cross detection interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,053 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_channel_t

enum adc_channel_t

ADC channels

Enumerator

ADC_CHANNEL_0 ADC channel 0.

ADC_CHANNEL_1 ADC channel 1.

ADC_CHANNEL_2 ADC channel 2.

ADC_CHANNEL_3 ADC channel 3.

ADC_CHANNEL_4 ADC channel 4.

ADC_CHANNEL_5 ADC channel 5.

ADC_CHANNEL_6 ADC channel 6.

ADC_CHANNEL_7 ADC channel 7.

ADC_CHANNEL_8 ADC channel 8.

ADC_CHANNEL_9 ADC channel 9.

ADC_CHANNEL_10 ADC channel 10.

ADC_CHANNEL_11 ADC channel 11.

ADC_CHANNEL_12 ADC channel 12.

ADC_CHANNEL_13 ADC channel 13.

ADC_CHANNEL_14 ADC channel 14.

ADC_CHANNEL_15 ADC channel 15.

ADC_CHANNEL_16 ADC channel 16.

ADC_CHANNEL_17 ADC channel 17.

ADC_CHANNEL_18 ADC channel 18.

ADC_CHANNEL_19 ADC channel 19.

ADC_CHANNEL_20 ADC channel 20.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,054 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

ADC_CHANNEL_21 ADC channel 21.

ADC_CHANNEL_22 ADC channel 22.

ADC_CHANNEL_23 ADC channel 23.

ADC_CHANNEL_24 ADC channel 24.

ADC_CHANNEL_25 ADC channel 25.

ADC_CHANNEL_26 ADC channel 26.

ADC_CHANNEL_27 ADC channel 27.

ADC_CHANNEL_28 ADC channel 28.

ADC_CHANNEL_SELF_DIAGNOSIS Self-Diagnosis channel.

ADC_CHANNEL_TEMPERATURE Temperature sensor output.

ADC_CHANNEL_VOLT Internal reference voltage.

ADC_CHANNEL_DA0 D/A Converter Channel 0.

ADC_CHANNEL_DA1 D/A Converter Channel 1.

ADC_CHANNEL_DA2 D/A Converter Channel 2.

ADC_CHANNEL_DA3 D/A Converter Channel 3.

ADC_CHANNEL_0 Channel 0 for select mode or channel 0 to 3 for
scan mode.

ADC_CHANNEL_1 Channel 1 for select mode or channel 1 to 4 for
scan mode.

ADC_CHANNEL_2 Channel 2 for select mode or channel 2 to 5 for
scan mode.

ADC_CHANNEL_3 Channel 3 for select mode or channel 3 to 6 for
scan mode.

ADC_CHANNEL_4 Channel 4 for select mode or channel 4 to 7 for
scan mode.

ADC_CHANNEL_5 Channel 5 for select mode.

ADC_CHANNEL_6 Channel 6 for select mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,055 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

ADC_CHANNEL_7 Channel 7 for select mode.

ADC_CHANNEL_21 Channel 21 for select mode.

ADC_CHANNEL_22 Channel 22 for select mode.

ADC_CHANNEL_TEMPERATURE Temperature sensor output voltage for select
mode.

ADC_CHANNEL_VOLT Internal reference voltage for select mode.

ADC_CHANNEL_POSITIVE_SIDE_VREF Select positive reference voltage as target
conversion.

ADC_CHANNEL_NEGATIVE_SIDE_VREF Select negative reference voltage as target
conversion.

ADC_CHANNEL_0 ADC channel 0.

ADC_CHANNEL_1 ADC channel 1.

ADC_CHANNEL_2 ADC channel 2.

ADC_CHANNEL_3 ADC channel 3.

ADC_CHANNEL_4 ADC channel 4.

ADC_CHANNEL_5 ADC channel 5.

ADC_CHANNEL_6 ADC channel 6.

ADC_CHANNEL_7 ADC channel 7.

ADC_CHANNEL_8 ADC channel 8.

ADC_CHANNEL_9 ADC channel 9.

ADC_CHANNEL_10 ADC channel 10.

ADC_CHANNEL_11 ADC channel 11.

ADC_CHANNEL_12 ADC channel 12.

ADC_CHANNEL_13 ADC channel 13.

ADC_CHANNEL_14 ADC channel 14.

ADC_CHANNEL_15 ADC channel 15.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,056 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

ADC_CHANNEL_16 ADC channel 16.

ADC_CHANNEL_17 ADC channel 17.

ADC_CHANNEL_18 ADC channel 18.

ADC_CHANNEL_19 ADC channel 19.

ADC_CHANNEL_20 ADC channel 20.

ADC_CHANNEL_21 ADC channel 21.

ADC_CHANNEL_22 ADC channel 22.

ADC_CHANNEL_23 ADC channel 23.

ADC_CHANNEL_24 ADC channel 24.

ADC_CHANNEL_25 ADC channel 25.

ADC_CHANNEL_26 ADC channel 26.

ADC_CHANNEL_27 ADC channel 27.

ADC_CHANNEL_28 ADC channel 28.

ADC_CHANNEL_DUPLEX_A Data duplexing register A.

ADC_CHANNEL_DUPLEX_B Data duplexing register B.

ADC_CHANNEL_DUPLEX Data duplexing register.

ADC_CHANNEL_TEMPERATURE Temperature sensor output.

ADC_CHANNEL_VOLT Internal reference voltage.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,057 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_group_id_t

enum adc_group_id_t

Enumerator

ADC_GROUP_ID_0 Group ID 0.

ADC_GROUP_ID_1 Group ID 1.

ADC_GROUP_ID_2 Group ID 2.

ADC_GROUP_ID_3 Group ID 3.

ADC_GROUP_ID_4 Group ID 4.

ADC_GROUP_ID_5 Group ID 5.

ADC_GROUP_ID_6 Group ID 6.

ADC_GROUP_ID_7 Group ID 7.

ADC_GROUP_ID_8 Group ID 8.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,058 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > ADC Interface

◆ adc_group_mask_t

enum adc_group_mask_t

Enumerator

ADC_GROUP_MASK_NONE Group Mask Unknown or None.

ADC_GROUP_MASK_0 Group Mask 0.

ADC_GROUP_MASK_1 Group Mask 1.

ADC_GROUP_MASK_2 Group Mask 2.

ADC_GROUP_MASK_3 Group Mask 3.

ADC_GROUP_MASK_4 Group Mask 4.

ADC_GROUP_MASK_5 Group Mask 5.

ADC_GROUP_MASK_6 Group Mask 6.

ADC_GROUP_MASK_7 Group Mask 7.

ADC_GROUP_MASK_8 Group Mask 8.

ADC_GROUP_MASK_ALL All Groups.

◆ adc_state_t

enum adc_state_t

ADC states.

Enumerator

ADC_STATE_IDLE ADC is idle.

ADC_STATE_SCAN_IN_PROGRESS ADC scan in progress.

ADC_STATE_CALIBRATION_IN_PROGRESS ADC calibration in progress - Not used by all
ADC instances.

5.3.1.2 Comparator Interface
Interfaces » Analog

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,059 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

Detailed Description

Interface for comparators.

Summary
The comparator interface provides standard comparator functionality, including generating an event
when the comparator result changes.

Data Structures

struct comparator_info_t

struct comparator_status_t

struct comparator_callback_args_t

struct comparator_cfg_t

struct comparator_api_t

struct comparator_instance_t

Typedefs

typedef void comparator_ctrl_t

Enumerations

enum comparator_mode_t

enum comparator_trigger_t

enum comparator_polarity_invert_t

enum comparator_pin_output_t

enum comparator_filter_t

enum comparator_state_t

Data Structure Documentation

◆ comparator_info_t

struct comparator_info_t

Comparator information.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,060 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

uint32_t min_stabilization_wait_us Minimum stabilization wait time
in microseconds.

◆ comparator_status_t

struct comparator_status_t

Comparator status.

Data Fields

comparator_state_t state Current comparator state.

◆ comparator_callback_args_t

struct comparator_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
comparator_api_t::open
function in comparator_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ comparator_cfg_t

struct comparator_cfg_t

User configuration structure, used in open function

Data Fields

uint8_t channel

 Hardware channel used.

comparator_mode_t mode

 Normal or window mode.

comparator_trigger_t trigger

 Trigger setting.

comparator_filter_t filter

 Digital filter clock divisor setting.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,061 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

comparator_polarity_invert_t invert

 Whether to invert output.

comparator_pin_output_t pin_output

 Whether to include output on output pin.

uint8_t vref_select

 Internal Vref Select.

uint8_t ipl

 Interrupt priority.

IRQn_Type irq

 NVIC interrupt number.

void(* p_callback)(comparator_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Comparator hardware dependent configuration.

Field Documentation

◆ p_callback

void(* comparator_cfg_t::p_callback) (comparator_callback_args_t *p_args)

Callback called when comparator event occurs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,062 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

◆ p_context

void const* comparator_cfg_t::p_context

Placeholder for user data. Passed to the user callback in comparator_callback_args_t.

◆ comparator_api_t

struct comparator_api_t

Comparator functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(comparator_ctrl_t *const p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err_t(* outputEnable)(comparator_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

fsp_err_t(* statusGet)(comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

fsp_err_t(* close)(comparator_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* comparator_api_t::open) (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const
p_cfg)

Initialize the comparator.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,063 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

◆ outputEnable

fsp_err_t(* comparator_api_t::outputEnable) (comparator_ctrl_t *const p_ctrl)

Start the comparator.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ infoGet

fsp_err_t(* comparator_api_t::infoGet) (comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

Provide information such as the recommended minimum stabilization wait time.

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_info Comparator information
stored here

◆ statusGet

fsp_err_t(* comparator_api_t::statusGet) (comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

Provide current comparator status.

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_status Status stored here

◆ close

fsp_err_t(* comparator_api_t::close) (comparator_ctrl_t *const p_ctrl)

Stop the comparator.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ comparator_instance_t

struct comparator_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,064 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

comparator_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

comparator_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

comparator_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ comparator_ctrl_t

typedef void comparator_ctrl_t

Includes board and MCU related header files. Comparator control block. Allocate an instance
specific control block to pass into the comparator API calls.

Enumeration Type Documentation

◆ comparator_mode_t

enum comparator_mode_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_MODE_NORMAL Normal mode.

COMPARATOR_MODE_WINDOW Window mode, not supported by all
implementations.

◆ comparator_trigger_t

enum comparator_trigger_t

Trigger type: rising edge, falling edge, both edges, low level.

Enumerator

COMPARATOR_TRIGGER_RISING Rising edge trigger.

COMPARATOR_TRIGGER_FALLING Falling edge trigger.

COMPARATOR_TRIGGER_BOTH_EDGE Both edges trigger.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,065 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

◆ comparator_polarity_invert_t

enum comparator_polarity_invert_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_POLARITY_INVERT_OFF Do not invert polarity.

COMPARATOR_POLARITY_INVERT_ON Invert polarity.

◆ comparator_pin_output_t

enum comparator_pin_output_t

Select whether to include the comparator output on the output pin.

Enumerator

COMPARATOR_PIN_OUTPUT_OFF Do not include comparator output on output
pin.

COMPARATOR_PIN_OUTPUT_ON Include comparator output on output pin.

◆ comparator_filter_t

enum comparator_filter_t

Comparator digital filtering sample clock divisor settings.

Enumerator

COMPARATOR_FILTER_OFF Disable debounce filter.

COMPARATOR_FILTER_1 Filter using PCLK divided by 1, not supported
by all implementations.

COMPARATOR_FILTER_8 Filter using PCLK divided by 8.

COMPARATOR_FILTER_16 Filter using PCLK divided by 16, not supported
by all implementations.

COMPARATOR_FILTER_32 Filter using PCLK divided by 32.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,066 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > Comparator Interface

◆ comparator_state_t

enum comparator_state_t

Current comparator state.

Enumerator

COMPARATOR_STATE_OUTPUT_LOW VCMP < VREF if polarity is not inverted, VCMP
> VREF if inverted.

COMPARATOR_STATE_OUTPUT_HIGH VCMP > VREF if polarity is not inverted, VCMP
< VREF if inverted.

COMPARATOR_STATE_OUTPUT_DISABLED comparator_api_t::outputEnable() has not been
called

5.3.1.3 DAC Interface
Interfaces » Analog

Detailed Description

Interface for D/A converters.

Summary
The DAC interface provides standard Digital/Analog Converter functionality. A DAC application writes
digital sample data to the device and generates analog output on the DAC output pin.

Data Structures

struct dac_info_t

struct dac_cfg_t

struct dac_api_t

struct dac_instance_t

Typedefs

typedef void dac_ctrl_t

Enumerations

enum dac_data_format_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,067 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > DAC Interface

Data Structure Documentation

◆ dac_info_t

struct dac_info_t

DAC information structure to store various information for a DAC

Data Fields

uint8_t bit_width Resolution of the DAC.

◆ dac_cfg_t

struct dac_cfg_t

DAC Open API configuration parameter

Data Fields

uint8_t channel ID associated with this DAC
channel.

bool ad_da_synchronized AD/DA synchronization.

void const * p_extend

◆ dac_api_t

struct dac_api_t

DAC driver structure. General DAC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t(* close)(dac_ctrl_t *const p_ctrl)

fsp_err_t(* write)(dac_ctrl_t *const p_ctrl, uint16_t value)

fsp_err_t(* start)(dac_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(dac_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,068 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > DAC Interface

◆ open

fsp_err_t(* dac_api_t::open) (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* dac_api_t::close) (dac_ctrl_t *const p_ctrl)

Close the D/A Converter.

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ write

fsp_err_t(* dac_api_t::write) (dac_ctrl_t *const p_ctrl, uint16_t value)

Write sample value to the D/A Converter.

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

[in] value Sample value to be written
to the D/A Converter.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,069 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > DAC Interface

◆ start

fsp_err_t(* dac_api_t::start) (dac_ctrl_t *const p_ctrl)

Start the D/A Converter if it has not been started yet.

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ stop

fsp_err_t(* dac_api_t::stop) (dac_ctrl_t *const p_ctrl)

Stop the D/A Converter if the converter is running.

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ dac_instance_t

struct dac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

dac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

dac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

dac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ dac_ctrl_t

typedef void dac_ctrl_t

DAC control block. Allocate an instance specific control block to pass into the DAC API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,070 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > DAC Interface

◆ dac_data_format_t

enum dac_data_format_t

DAC Open API data format settings.

Enumerator

DAC_DATA_FORMAT_FLUSH_RIGHT LSB of data is flush to the right leaving the top
4 bits unused.

DAC_DATA_FORMAT_FLUSH_LEFT MSB of data is flush to the left leaving the
bottom 4 bits unused.

5.3.1.4 OPAMP Interface
Interfaces » Analog

Detailed Description

Interface for Operational Amplifiers.

Summary
The OPAMP interface provides standard operational amplifier functionality, including starting and
stopping the amplifier.

Data Structures

struct opamp_trim_args_t

struct opamp_info_t

struct opamp_status_t

struct opamp_cfg_t

struct opamp_api_t

struct opamp_instance_t

Typedefs

typedef void opamp_ctrl_t

Enumerations

enum opamp_trim_cmd_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,071 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > OPAMP Interface

enum opamp_trim_input_t

Data Structure Documentation

◆ opamp_trim_args_t

struct opamp_trim_args_t

OPAMP trim arguments.

Data Fields

uint8_t channel Channel.

opamp_trim_input_t input Which input of the channel
above.

◆ opamp_info_t

struct opamp_info_t

OPAMP information.

Data Fields

uint32_t min_stabilization_wait_us Minimum stabilization wait time
in microseconds.

◆ opamp_status_t

struct opamp_status_t

OPAMP status.

Data Fields

uint32_t operating_channel_mask Bitmask of channels currently
operating.

◆ opamp_cfg_t

struct opamp_cfg_t

OPAMP general configuration.

Data Fields

void const * p_extend Extension parameter for
hardware specific settings.

◆ opamp_api_t

struct opamp_api_t

OPAMP functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,072 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > OPAMP Interface

fsp_err_t(* start)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

fsp_err_t(* stop)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

fsp_err_t(* trim)(opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

fsp_err_t(* infoGet)(opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

fsp_err_t(* statusGet)(opamp_ctrl_t *const p_ctrl, opamp_status_t *const
p_status)

fsp_err_t(* close)(opamp_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* opamp_api_t::open) (opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

Initialize the operational amplifier.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

◆ start

fsp_err_t(* opamp_api_t::start) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Start the op-amp(s).

Parameters
[in] p_ctrl Pointer to instance control

block

[in] channel_mask Bitmask of channels to start

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,073 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > OPAMP Interface

◆ stop

fsp_err_t(* opamp_api_t::stop) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Stop the op-amp(s).

Parameters
[in] p_ctrl Pointer to instance control

block

[in] channel_mask Bitmask of channels to stop

◆ trim

fsp_err_t(* opamp_api_t::trim) (opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

Trim the op-amp(s). Not supported on all MCUs. See implementation for procedure details.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] cmd Trim command

[in] p_args Pointer to arguments for the
command

◆ infoGet

fsp_err_t(* opamp_api_t::infoGet) (opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

Provide information such as the recommended minimum stabilization wait time.

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_info OPAMP information stored
here

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,074 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > OPAMP Interface

◆ statusGet

fsp_err_t(* opamp_api_t::statusGet) (opamp_ctrl_t *const p_ctrl, opamp_status_t *const p_status)

Provide status of each op-amp channel.

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_status Status stored here

◆ close

fsp_err_t(* opamp_api_t::close) (opamp_ctrl_t *const p_ctrl)

Close the specified OPAMP unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ opamp_instance_t

struct opamp_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

opamp_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

opamp_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

opamp_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ opamp_ctrl_t

typedef void opamp_ctrl_t

OPAMP control block. Allocate using driver instance control structure from driver instance header
file.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,075 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Analog > OPAMP Interface

◆ opamp_trim_cmd_t

enum opamp_trim_cmd_t

Includes board and MCU related header files. Trim command.

Enumerator

OPAMP_TRIM_CMD_START Initialize trim state machine.

OPAMP_TRIM_CMD_NEXT_STEP Move to next step in state machine.

OPAMP_TRIM_CMD_CLEAR_BIT Clear trim bit.

◆ opamp_trim_input_t

enum opamp_trim_input_t

Trim input.

Enumerator

OPAMP_TRIM_INPUT_PCH Trim non-inverting (+) input.

OPAMP_TRIM_INPUT_NCH Trim inverting (-) input.

5.3.2 AI
Interfaces

Detailed Description

AI Interfaces.

Modules

Data Collector Interface

 Interface for RAI Data Collector.

Data Shipper Interface

 Interface for RAI Data Shipper.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,076 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

5.3.2.1 Data Collector Interface
Interfaces » AI

Detailed Description

Interface for RAI Data Collector.

Summary
The rai data collector interface provides functionality to collect data from differnet channels using
snapshot mode, data feed mode or mixed mode.

Data Structures

struct rai_data_collector_error_callback_args_t

struct rai_data_collector_frame_buffer_t

struct rai_data_collector_callback_args_t

struct rai_data_collector_snapshot_cfg_t

struct rai_data_collector_data_feed_cfg_t

struct rai_data_collector_cfg_t

struct rai_data_collector_api_t

struct rai_data_collector_instance_t

Typedefs

typedef void rai_data_collector_ctrl_t

Enumerations

enum rai_data_collector_data_type_t

enum rai_data_collector_error_event_t

Data Structure Documentation

◆ rai_data_collector_error_callback_args_t

struct rai_data_collector_error_callback_args_t

Error callback function parameter

Data Fields

uint8_t instance_id Instance ID.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,077 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

rai_data_collector_error_event_t event Error event.

◆ rai_data_collector_frame_buffer_t

struct rai_data_collector_frame_buffer_t

Frame buffer structure

Data Fields

void * p_buf Pointer to data buffer.

rai_data_collector_data_type_t data_type Data samples in the buffer.

◆ rai_data_collector_callback_args_t

struct rai_data_collector_callback_args_t

Data ready callback function parameter

Data Fields

uint8_t frames Number of frame buffers.

uint8_t instance_id Instance id.

uint32_t frame_buf_len Frame buffers shall have the
same amount of data sample.

rai_data_collector_frame_buffer
_t
const *

p_frame_buf Array of frame buffers.

void const * p_context Pointer to the user-provided
context.

◆ rai_data_collector_snapshot_cfg_t

struct rai_data_collector_snapshot_cfg_t

Snapshot mode configuration

Data Fields

uint8_t channels Total snapshot mode channels.

uint16_t transfer_len DTC transfer length.

timer_instance_t const * p_timer Pointer to timer instance.

transfer_instance_t const * p_transfer Pointer to DTC instance.

◆ rai_data_collector_data_feed_cfg_t

struct rai_data_collector_data_feed_cfg_t

Data feed mode configuration

Data Fields

uint8_t channels Total data feed mode channels.

◆ rai_data_collector_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,078 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

struct rai_data_collector_cfg_t

RAI Data Collector general configuration

Data Fields

uint32_t channels: 8

 Total number of channels.

uint32_t instance_id: 8

 Instance id.

uint32_t virt_channels: 8

 Virtual channels.

uint32_t reserved: 8

 Reserved.

uint32_t channel_ready_mask

 Bitmask of configured channels.

uint32_t required_frame_len

 Length of each frame buffer.

rai_data_collector_snapshot_
cfg_t const *

p_snapshot_cfg

 Pointer to snapshot mode configuration structure.

rai_data_collector_data_feed
_cfg_t const *

p_data_feed_cfg

 Pointer to data feed mode configuration structure.

void * p_extend

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,079 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

 Pointer to extended configuration structure.

void(* p_callback)(rai_data_collector_callback_args_t const *p_args)

 Pointer to the callback function when data is collected.

void(* p_error_callback)(rai_data_collector_error_callback_args_t const
*p_args)

 Pointer to the callback function when there is an error.

void const * p_context

 Pointer to the user-provided context.

◆ rai_data_collector_api_t

struct rai_data_collector_api_t

RAI Data Collector interface API.

Data Fields

fsp_err_t(* open)(rai_data_collector_ctrl_t *const p_ctrl, rai_data_collector_cfg_t
const *const p_cfg)

fsp_err_t(* snapshotChannelRegister)(rai_data_collector_ctrl_t *const p_ctrl,
uint8_t channel, void const *p_src)

fsp_err_t(* bufferRelease)(rai_data_collector_ctrl_t *const p_ctrl)

fsp_err_t(* bufferReset)(rai_data_collector_ctrl_t *const p_ctrl)

fsp_err_t(* snapshotStart)(rai_data_collector_ctrl_t *const p_ctrl)

fsp_err_t(* snapshotStop)(rai_data_collector_ctrl_t *const p_ctrl)

fsp_err_t(* channelBufferGet)(rai_data_collector_ctrl_t *const p_ctrl, uint8_t
channel, void **pp_buf)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,080 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

fsp_err_t(* channelWrite)(rai_data_collector_ctrl_t *const p_ctrl, uint8_t
channel, const void *p_buf, uint32_t len)

fsp_err_t(* close)(rai_data_collector_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rai_data_collector_api_t::open) (rai_data_collector_ctrl_t *const p_ctrl,
rai_data_collector_cfg_t const *const p_cfg)

Initialize Data Collector module instance.

Note
To reopen after calling this function, call rai_data_collector_api_t::close first.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

◆ snapshotChannelRegister

fsp_err_t(* rai_data_collector_api_t::snapshotChannelRegister) (rai_data_collector_ctrl_t *const
p_ctrl, uint8_t channel, void const *p_src)

Config transfer source address for snapshot mode channel

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_src Pointer to transfer source
address

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,081 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

◆ bufferRelease

fsp_err_t(* rai_data_collector_api_t::bufferRelease) (rai_data_collector_ctrl_t *const p_ctrl)

Release frame buffers by upper modules

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] channel Which snapshot mode
channel

[in] p_src Chanenl source buffer
address

◆ bufferReset

fsp_err_t(* rai_data_collector_api_t::bufferReset) (rai_data_collector_ctrl_t *const p_ctrl)

Reset internal buffers

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ snapshotStart

fsp_err_t(* rai_data_collector_api_t::snapshotStart) (rai_data_collector_ctrl_t *const p_ctrl)

Starts snapshot mode.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ snapshotStop

fsp_err_t(* rai_data_collector_api_t::snapshotStop) (rai_data_collector_ctrl_t *const p_ctrl)

Stops snapshot mode.

Parameters
[in] p_ctrl Pointer to control handle

structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,082 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

◆ channelBufferGet

fsp_err_t(* rai_data_collector_api_t::channelBufferGet) (rai_data_collector_ctrl_t *const p_ctrl,
uint8_t channel, void **pp_buf)

Get the PING or PONG buffer address for data transfer. For data feed mode only.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] channel Which data feed mode
channel

[out] pp_buf Returned buffer address

◆ channelWrite

fsp_err_t(* rai_data_collector_api_t::channelWrite) (rai_data_collector_ctrl_t *const p_ctrl, uint8_t
channel, const void *p_buf, uint32_t len)

Write data to frame buffer using CPU copy. For data feed mode only.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] channel Which data feed mode
channel

[in] p_buf Data buffer

[in] len Length of data buffer in data
samples

◆ close

fsp_err_t(* rai_data_collector_api_t::close) (rai_data_collector_ctrl_t *const p_ctrl)

Close the specified Data Collector module instance.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ rai_data_collector_instance_t

struct rai_data_collector_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rai_data_collector_ctrl_t * p_ctrl Pointer to the control structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,083 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Collector Interface

for this instance.

rai_data_collector_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rai_data_collector_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rai_data_collector_ctrl_t

typedef void rai_data_collector_ctrl_t

Data Collector control block. Allocate an instance specific control block to pass into the Data
Collector API calls.

Enumeration Type Documentation

◆ rai_data_collector_data_type_t

enum rai_data_collector_data_type_t

Data types

Enumerator

RAI_DATA_COLLECTOR_DATA_TYPE_INT8_T Signed 8-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_UINT8_T Unsigned 8-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_INT16_T Signed 16-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_UINT16_T Unsigned 16-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_INT32_T Signed 32-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_UINT32_T Unsigned 32-bit.

RAI_DATA_COLLECTOR_DATA_TYPE_FLOAT Float.

RAI_DATA_COLLECTOR_DATA_TYPE_DOUBLE Double.

◆ rai_data_collector_error_event_t

enum rai_data_collector_error_event_t

Data Collector module error events

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,084 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Shipper Interface

5.3.2.2 Data Shipper Interface
Interfaces » AI

Detailed Description

Interface for RAI Data Shipper.

Summary
The rai data shipper interface provides multiple communication methods.

Data Structures

struct rai_data_shipper_callback_args_t

struct rai_data_shipper_write_params_t

struct rai_data_shipper_cfg_t

struct rai_data_shipper_api_t

struct rai_data_shipper_instance_t

Typedefs

typedef void rai_data_shipper_ctrl_t

Data Structure Documentation

◆ rai_data_shipper_callback_args_t

struct rai_data_shipper_callback_args_t

Callback function parameter structure

Data Fields

rm_comms_event_t result Whether data is sent
successfully or not.

void const * p_context Pointer to the user-provided
context.

uint8_t instance Data collector instance ID.

◆ rai_data_shipper_write_params_t

struct rai_data_shipper_write_params_t

Data Shipper write funciton parameter structure

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,085 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Shipper Interface

uint16_t events Events.

uint16_t diagnostic_data_len Diagnostic data length.

uint8_t * p_diagnostic_data Pointer to diagnostic data.

rai_data_collector_callback_args
_t *

p_sensor_data Pointer to sensor data info.

◆ rai_data_shipper_cfg_t

struct rai_data_shipper_cfg_t

RAI Data Shipper general configuration

Data Fields

uint8_t divider

 Send data on every (divider + 1) requests in case the interface
bandwidth is not sufficient.

crc_instance_t const * p_crc

 Pointer to CRC instance.

rm_comms_instance_t const
*

p_comms

 Pointer to COMMS API instance.

void const * p_context

 Pointer to the user-provided context.

void(* p_callback)(rai_data_shipper_callback_args_t *p_args)

 Pointer to the callback function on data sent or error.

◆ rai_data_shipper_api_t

struct rai_data_shipper_api_t

RAI Data Shipper interface API.

Data Fields

fsp_err_t(* open)(rai_data_shipper_ctrl_t *const p_ctrl, rai_data_shipper_cfg_t
const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,086 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Shipper Interface

fsp_err_t(* read)(rai_data_shipper_ctrl_t *const p_ctrl, void *const p_buf,
uint32_t *const buf_len)

fsp_err_t(* write)(rai_data_shipper_ctrl_t *const p_ctrl,
rai_data_shipper_write_params_t const *p_write_params)

fsp_err_t(* close)(rai_data_shipper_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rai_data_shipper_api_t::open) (rai_data_shipper_ctrl_t *const p_ctrl,
rai_data_shipper_cfg_t const *const p_cfg)

Initialize Data Shipper module instance.

Note
To reopen after calling this function, call rai_data_shipper_api_t::close first.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

◆ read

fsp_err_t(* rai_data_shipper_api_t::read) (rai_data_shipper_ctrl_t *const p_ctrl, void *const p_buf,
uint32_t *const buf_len)

Read data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to the location to
store read data.

[in] buf_len Number of bytes to read.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,087 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > AI > Data Shipper Interface

◆ write

fsp_err_t(* rai_data_shipper_api_t::write) (rai_data_shipper_ctrl_t *const p_ctrl,
rai_data_shipper_write_params_t const *p_write_params)

Write data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] write_params Pointer to write parameters
structure

◆ close

fsp_err_t(* rai_data_shipper_api_t::close) (rai_data_shipper_ctrl_t *const p_ctrl)

Close the specified Data Shipper module instance.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ rai_data_shipper_instance_t

struct rai_data_shipper_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rai_data_shipper_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rai_data_shipper_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rai_data_shipper_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rai_data_shipper_ctrl_t

typedef void rai_data_shipper_ctrl_t

Data Shipper control block. Allocate an instance specific control block to pass into the Data Shipper
API calls.

5.3.3 Audio

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,088 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio

Interfaces

Detailed Description

Audio Interfaces.

Modules

ADPCM Decoder Interface

 Interface for ADPCM decoder.

AUDIO PLAYBACK Interface

 Interface for the Audio Playback.

5.3.3.1 ADPCM Decoder Interface
Interfaces » Audio

Detailed Description

Interface for ADPCM decoder.

Summary
The ADPCM decoder interface provides functionality to decode the 4bit ADPCM data to 16bit PCM
output.

Data Structures

struct adpcm_decoder_cfg_t

struct adpcm_decoder_api_t

struct adpcm_decoder_instance_t

Typedefs

typedef void adpcm_decoder_ctrl_t

Data Structure Documentation

◆ adpcm_decoder_cfg_t

struct adpcm_decoder_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,089 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > ADPCM Decoder Interface

Audio Decoder general configuration

◆ adpcm_decoder_api_t

struct adpcm_decoder_api_t

Audio Decoder interface API.

Data Fields

fsp_err_t(* open)(adpcm_decoder_ctrl_t *const p_ctrl, adpcm_decoder_cfg_t
const *const p_cfg)

fsp_err_t(* decode)(adpcm_decoder_ctrl_t *const p_ctrl, void const *p_src, void
*p_dest, uint32_t src_len_bytes)

fsp_err_t(* reset)(adpcm_decoder_ctrl_t *const p_ctrl)

fsp_err_t(* close)(adpcm_decoder_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* adpcm_decoder_api_t::open) (adpcm_decoder_ctrl_t *const p_ctrl, adpcm_decoder_cfg_t
const *const p_cfg)

Initialize Audio Decoder device.

Note
To reconfigure after calling this function, call adpcm_decoder_api_t::close first.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,090 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > ADPCM Decoder Interface

◆ decode

fsp_err_t(* adpcm_decoder_api_t::decode) (adpcm_decoder_ctrl_t *const p_ctrl, void const *p_src,
void *p_dest, uint32_t src_len_bytes)

Decodes the compressed data and stores it in output buffer.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_src Pointer to a source data
buffer from which data will
be picked up for decode
operation. The argument
must not be NULL.

[out] p_dest Pointer to the location to
store the decoded data.

[in] p_dest Number of bytes to be
decoded.

◆ reset

fsp_err_t(* adpcm_decoder_api_t::reset) (adpcm_decoder_ctrl_t *const p_ctrl)

Resets the ADPCM driver.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ close

fsp_err_t(* adpcm_decoder_api_t::close) (adpcm_decoder_ctrl_t *const p_ctrl)

Close the specified Audio decoder modules.

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ adpcm_decoder_instance_t

struct adpcm_decoder_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

adpcm_decoder_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,091 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > ADPCM Decoder Interface

adpcm_decoder_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

adpcm_decoder_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ adpcm_decoder_ctrl_t

typedef void adpcm_decoder_ctrl_t

Audio Decoder control block. Allocate an instance specific control block to pass into the Audio
Decoder API calls.

5.3.3.2 AUDIO PLAYBACK Interface
Interfaces » Audio

Detailed Description

Interface for the Audio Playback.

Defines the API and data structures for the Audio Playback implementation.

Summary
This module provides common interface for Audio Playback.

Data Structures

struct audio_playback_callback_args_t

struct audio_playback_cfg_t

struct audio_playback_api_t

struct audio_playback_instance_t

Typedefs

typedef void audio_playback_ctrl_t

Enumerations

enum audio_playback_event_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,092 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > AUDIO PLAYBACK Interface

◆ audio_playback_callback_args_t

struct audio_playback_callback_args_t

Callback function parameter data

Data Fields

void * p_context Placeholder for user data.

audio_playback_event_t event Event that triggered the
callback.

◆ audio_playback_cfg_t

struct audio_playback_cfg_t

Audio Playback configuration parameters.

Data Fields

void const * p_extend

 Hardware dependent configuration.

void(* p_callback)(audio_playback_callback_args_t *p_args)

void * p_context

Field Documentation

◆ p_callback

void(* audio_playback_cfg_t::p_callback) (audio_playback_callback_args_t *p_args)

Callback called when play is complete.

◆ p_context

void* audio_playback_cfg_t::p_context

Placeholder for user data. Passed to the user callback in audio_playback_callback_args_t.

◆ audio_playback_api_t

struct audio_playback_api_t

Audio Playback functions implemented by the Audio Playback drivers will follow this API.

Data Fields

fsp_err_t(* open)(audio_playback_ctrl_t *const p_ctrl, audio_playback_cfg_t
const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,093 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > AUDIO PLAYBACK Interface

fsp_err_t(* start)(audio_playback_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(audio_playback_ctrl_t *const p_ctrl)

fsp_err_t(* play)(audio_playback_ctrl_t *const p_ctrl, void const *const p_buffer,
uint32_t length)

fsp_err_t(* close)(audio_playback_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* audio_playback_api_t::open) (audio_playback_ctrl_t *const p_ctrl, audio_playback_cfg_t
const *const p_cfg)

Open a audio playback module.

Parameters
[in] p_ctrl Pointer to memory allocated

for control block.

[in] p_cfg Pointer to the hardware
configurations.

◆ start

fsp_err_t(* audio_playback_api_t::start) (audio_playback_ctrl_t *const p_ctrl)

Start audio playback hardware.

Parameters
[in] p_ctrl Pointer to control block.

◆ stop

fsp_err_t(* audio_playback_api_t::stop) (audio_playback_ctrl_t *const p_ctrl)

Stop audio playback hardware.

Parameters
[in] p_ctrl Pointer to control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,094 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > AUDIO PLAYBACK Interface

◆ play

fsp_err_t(* audio_playback_api_t::play) (audio_playback_ctrl_t *const p_ctrl, void const *const
p_buffer, uint32_t length)

Play audio buffer.

Parameters
[in] p_ctrl Pointer to control block.

[in] p_buffer Pointer to buffer with PCM
samples to play. Data must
be scaled for audio playback
hardware.

[in] length Length of data in p_buffer.

◆ close

fsp_err_t(* audio_playback_api_t::close) (audio_playback_ctrl_t *const p_ctrl)

Close the audio driver.

Parameters
[in] p_ctrl Pointer to control block

initialized in
audio_playback_api_t::open.

◆ audio_playback_instance_t

struct audio_playback_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

audio_playback_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

audio_playback_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

audio_playback_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ audio_playback_ctrl_t

typedef void audio_playback_ctrl_t

Audio Playback control block. Allocate an instance specific control block to pass into the
AUDIO_PLAYBACK API calls.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,095 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Audio > AUDIO PLAYBACK Interface

Enumeration Type Documentation

◆ audio_playback_event_t

enum audio_playback_event_t

Callback event types.

Enumerator

AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE Audio playback complete event.

5.3.4 CapTouch
Interfaces

Detailed Description

CapTouch Interfaces.

Modules

CTSU Interface

 Interface for Capacitive Touch Sensing Unit (CTSU) functions.

Touch Middleware Interface

 Interface for Touch Middleware functions.

5.3.4.1 CTSU Interface
Interfaces » CapTouch

Detailed Description

Interface for Capacitive Touch Sensing Unit (CTSU) functions.

Summary
The CTSU interface provides CTSU functionality.

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,096 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

struct ctsu_callback_args_t

struct ctsu_element_cfg_t

struct ctsu_cfg_t

struct ctsu_api_t

struct ctsu_instance_t

Typedefs

typedef void ctsu_ctrl_t

Enumerations

enum ctsu_event_t

enum ctsu_cap_t

enum ctsu_txvsel_t

enum ctsu_txvsel2_t

enum ctsu_atune1_t

enum ctsu_atune12_t

enum ctsu_md_t

enum ctsu_posel_t

enum ctsu_ssdiv_t

enum ctsu_specific_data_type_t

Data Structure Documentation

◆ ctsu_callback_args_t

struct ctsu_callback_args_t

Callback function parameter data

Data Fields

ctsu_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data. Set in
ctsu_api_t::open function in
ctsu_cfg_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,097 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ ctsu_element_cfg_t

struct ctsu_element_cfg_t

CTSU Configuration parameters. Element Configuration

Data Fields

ctsu_ssdiv_t ssdiv CTSU Spectrum Diffusion
Frequency Division Setting
(CTSU Only)

uint16_t so CTSU Sensor Offset Adjustment.

uint8_t snum CTSU Measurement Count
Setting.

uint8_t sdpa CTSU Base Clock Setting.

◆ ctsu_cfg_t

struct ctsu_cfg_t

User configuration structure, used in open function

Data Fields

ctsu_cap_t cap

 CTSU Scan Start Trigger Select.

ctsu_txvsel_t txvsel

 CTSU Transmission Power Supply Select.

ctsu_txvsel2_t txvsel2

 CTSU Transmission Power Supply Select 2 (CTSU2 Only)

ctsu_atune1_t atune1

 CTSU Power Supply Capacity Adjustment (CTSU Only)

ctsu_atune12_t atune12

 CTSU Power Supply Capacity Adjustment (CTSU2 Only)

ctsu_md_t md

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,098 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

 CTSU Measurement Mode Select.

ctsu_posel_t posel

 CTSU Non-Measured Channel Output Select (CTSU2 Only)

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,099 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

ctsu_element_cfg_t const * p_elements

 Pointer to elements configuration array.

uint8_t num_rx

 Number of receive terminals.

uint8_t num_tx

 Number of transmit terminals.

uint16_t num_moving_average

 Number of moving average for measurement data.

bool tunning_enable

 Initial offset tuning flag.

void(* p_callback)(ctsu_callback_args_t *p_args)

 Callback provided when CTSUFN ISR occurs.

transfer_instance_t const * p_transfer_tx

 DTC instance for transmit at CTSUWR. Set to NULL if unused.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,100 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

transfer_instance_t const * p_transfer_rx

 DTC instance for receive at CTSURD. Set to NULL if unused.

adc_instance_t const * p_adc_instance

 ADC instance for temperature correction.

IRQn_Type write_irq

 CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 CTSU_CTSUFN interrupt vector.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Pointer to extended configuration by instance of interface.

uint16_t tuning_self_target_value

 Target self value for initial offset tuning.

uint16_t tuning_mutual_target_value

 Target mutual value for initial offset tuning.

◆ ctsu_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,101 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

struct ctsu_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

fsp_err_t(* scanStop)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* diagnosis)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(ctsu_ctrl_t *const p_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* specificDataGet)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_specific_data,
ctsu_specific_data_type_t specific_data_type)

fsp_err_t(* dataInsert)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_insert_data)

fsp_err_t(* offsetTuning)(ctsu_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* ctsu_api_t::open) (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,102 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ scanStart

fsp_err_t(* ctsu_api_t::scanStart) (ctsu_ctrl_t *const p_ctrl)

Scan start.

Parameters
[in] p_ctrl Pointer to control structure.

◆ dataGet

fsp_err_t(* ctsu_api_t::dataGet) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

Data get.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_data Pointer to get data array.

◆ scanStop

fsp_err_t(* ctsu_api_t::scanStop) (ctsu_ctrl_t *const p_ctrl)

ScanStop.

Parameters
[in] p_ctrl Pointer to control structure.

◆ diagnosis

fsp_err_t(* ctsu_api_t::diagnosis) (ctsu_ctrl_t *const p_ctrl)

Diagnosis.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,103 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ callbackSet

fsp_err_t(* ctsu_api_t::callbackSet) (ctsu_ctrl_t *const p_ctrl, void(*p_callback)(ctsu_callback_args_t
*), void const *const p_context, ctsu_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the CTSU control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* ctsu_api_t::close) (ctsu_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ specificDataGet

fsp_err_t(* ctsu_api_t::specificDataGet) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_specific_data,
ctsu_specific_data_type_t specific_data_type)

Specific Data get.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_specific_data Pointer to get specific data
array.

[in] specific_data_type Specific data type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,104 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ dataInsert

fsp_err_t(* ctsu_api_t::dataInsert) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_insert_data)

Data Insert.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_insert_data Pointer to insert data.

◆ offsetTuning

fsp_err_t(* ctsu_api_t::offsetTuning) (ctsu_ctrl_t *const p_ctrl)

Adjust the offset value to tune the sensor.

Parameters
[in] p_ctrl Pointer to control structure.

◆ ctsu_instance_t

struct ctsu_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ctsu_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ctsu_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ctsu_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ctsu_ctrl_t

typedef void ctsu_ctrl_t

CTSU Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,105 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ ctsu_event_t

enum ctsu_event_t

CTSU Events for callback function

Enumerator

CTSU_EVENT_SCAN_COMPLETE Normal end.

CTSU_EVENT_OVERFLOW Sensor counter overflow (CTSUST.CTSUSOVF
set)

CTSU_EVENT_ICOMP Abnormal TSCAP voltage
(CTSUERRS.CTSUICOMP set)

CTSU_EVENT_ICOMP1 Abnormal sensor current (CTSUSR.ICOMP1 set)

◆ ctsu_cap_t

enum ctsu_cap_t

CTSU Scan Start Trigger Select

Enumerator

CTSU_CAP_SOFTWARE Scan start by software trigger.

CTSU_CAP_EXTERNAL Scan start by external trigger.

◆ ctsu_txvsel_t

enum ctsu_txvsel_t

CTSU Transmission Power Supply Select

Enumerator

CTSU_TXVSEL_VCC VCC selected.

CTSU_TXVSEL_INTERNAL_POWER Internal logic power supply selected.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,106 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ ctsu_txvsel2_t

enum ctsu_txvsel2_t

CTSU Transmission Power Supply Select 2 (CTSU2 Only)

Enumerator

CTSU_TXVSEL_MODE Follow TXVSEL setting.

CTSU_TXVSEL_VCC_PRIVATE VCC private selected.

◆ ctsu_atune1_t

enum ctsu_atune1_t

CTSU Power Supply Capacity Adjustment (CTSU Only)

Enumerator

CTSU_ATUNE1_NORMAL Normal output (40uA)

CTSU_ATUNE1_HIGH High-current output (80uA)

◆ ctsu_atune12_t

enum ctsu_atune12_t

CTSU Power Supply Capacity Adjustment (CTSU2 Only)

Enumerator

CTSU_ATUNE12_80UA High-current output (80uA)

CTSU_ATUNE12_40UA Normal output (40uA)

CTSU_ATUNE12_20UA Low-current output (20uA)

CTSU_ATUNE12_160UA Very high-current output (160uA)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,107 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ ctsu_md_t

enum ctsu_md_t

CTSU Measurement Mode Select

Enumerator

CTSU_MODE_SELF_MULTI_SCAN Self-capacitance multi scan mode.

CTSU_MODE_MUTUAL_FULL_SCAN Mutual capacitance full scan mode.

CTSU_MODE_MUTUAL_CFC_SCAN Mutual capacitance cfc scan mode (CTSU2
Only)

CTSU_MODE_CURRENT_SCAN Current scan mode (CTSU2 Only)

CTSU_MODE_CORRECTION_SCAN Correction scan mode (CTSU2 Only)

CTSU_MODE_DIAGNOSIS_SCAN Diagnosis scan mode.

◆ ctsu_posel_t

enum ctsu_posel_t

CTSU Non-Measured Channel Output Select (CTSU2 Only)

Enumerator

CTSU_POSEL_LOW_GPIO Output low through GPIO.

CTSU_POSEL_HI_Z Hi-Z.

CTSU_POSEL_LOW Setting prohibited.

CTSU_POSEL_SAME_PULSE Same phase pulse output as transmission
channel through the power setting by the
TXVSEL[1:0] bits.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,108 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > CTSU Interface

◆ ctsu_ssdiv_t

enum ctsu_ssdiv_t

CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

Enumerator

CTSU_SSDIV_4000 4.00 <= Base clock frequency (MHz)

CTSU_SSDIV_2000 2.00 <= Base clock frequency (MHz) < 4.00

CTSU_SSDIV_1330 1.33 <= Base clock frequency (MHz) < 2.00

CTSU_SSDIV_1000 1.00 <= Base clock frequency (MHz) < 1.33

CTSU_SSDIV_0800 0.80 <= Base clock frequency (MHz) < 1.00

CTSU_SSDIV_0670 0.67 <= Base clock frequency (MHz) < 0.80

CTSU_SSDIV_0570 0.57 <= Base clock frequency (MHz) < 0.67

CTSU_SSDIV_0500 0.50 <= Base clock frequency (MHz) < 0.57

CTSU_SSDIV_0440 0.44 <= Base clock frequency (MHz) < 0.50

CTSU_SSDIV_0400 0.40 <= Base clock frequency (MHz) < 0.44

CTSU_SSDIV_0360 0.36 <= Base clock frequency (MHz) < 0.40

CTSU_SSDIV_0330 0.33 <= Base clock frequency (MHz) < 0.36

CTSU_SSDIV_0310 0.31 <= Base clock frequency (MHz) < 0.33

CTSU_SSDIV_0290 0.29 <= Base clock frequency (MHz) < 0.31

CTSU_SSDIV_0270 0.27 <= Base clock frequency (MHz) < 0.29

CTSU_SSDIV_0000 0.00 <= Base clock frequency (MHz) < 0.27

◆ ctsu_specific_data_type_t

enum ctsu_specific_data_type_t

CTSU select data type for slect data get

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,109 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

5.3.4.2 Touch Middleware Interface
Interfaces » CapTouch

Detailed Description

Interface for Touch Middleware functions.

Summary
The TOUCH interface provides TOUCH functionality.

Data Structures

struct touch_button_cfg_t

struct touch_slider_cfg_t

struct touch_wheel_cfg_t

struct touch_pad_cfg_t

struct touch_cfg_t

struct touch_sensitivity_info_t

struct touch_api_t

struct touch_instance_t

Macros

#define TOUCH_COUNT_MAX

 Value of Maximum count.

#define TOUCH_OFF_VALUE

 Value of Non-touch.

Typedefs

typedef void touch_ctrl_t

typedef struct
st_ctsu_callback_args

touch_callback_args_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,110 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

◆ touch_button_cfg_t

struct touch_button_cfg_t

Configuration of each button

Data Fields

uint8_t elem_index Element number used by this
button.

uint16_t threshold Touch/non-touch judgment
threshold.

uint16_t hysteresis Threshold hysteresis for
chattering prevention.

◆ touch_slider_cfg_t

struct touch_slider_cfg_t

Configuration of each slider

Data Fields

uint8_t const * p_elem_index Element number array used by
this slider.

uint8_t num_elements Number of elements used by
this slider.

uint16_t threshold Position calculation start
threshold value.

◆ touch_wheel_cfg_t

struct touch_wheel_cfg_t

Configuration of each wheel

Data Fields

uint8_t const * p_elem_index Element number array used by
this wheel.

uint8_t num_elements Number of elements used by
this wheel.

uint16_t threshold Position calculation start
threshold value.

◆ touch_pad_cfg_t

struct touch_pad_cfg_t

Configuration of each pads

Data Fields

uint8_t const * p_elem_index_rx RX of element number arrays
used by this pad.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,111 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

uint8_t const * p_elem_index_tx TX of element number arrays
used by this pad.

uint8_t num_elements Number of elements used by
this pad.

uint16_t threshold Coordinate calculation
threshold value.

uint16_t rx_pixel rx coordinate resolution

uint16_t tx_pixel tx coordinate resolution

uint8_t max_touch Maximum number of touch
judgments used by the pad.

uint8_t num_drift Number of pad drift.

◆ touch_cfg_t

struct touch_cfg_t

User configuration structure, used in open function

Data Fields

touch_button_cfg_t const * p_buttons Pointer to array of button
configuration.

touch_slider_cfg_t const * p_sliders Pointer to array of slider
configuration.

touch_wheel_cfg_t const * p_wheels Pointer to array of wheel
configuration.

touch_pad_cfg_t const * p_pad Pointer of pad configuration.

uint8_t num_buttons Number of buttons.

uint8_t num_sliders Number of sliders.

uint8_t num_wheels Number of wheels.

uint8_t on_freq The cumulative number of
determinations of ON.

uint8_t off_freq The cumulative number of
determinations of OFF.

uint16_t drift_freq Base value drift frequency. [0 :
no use].

uint16_t cancel_freq Maximum continuous ON. [0 :
no use].

uint8_t number Configuration number for QE
monitor.

ctsu_instance_t const * p_ctsu_instance Pointer to CTSU instance.

uart_instance_t const * p_uart_instance Pointer to UART instance.

void const * p_context User defined context passed
into callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,112 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ touch_sensitivity_info_t

struct touch_sensitivity_info_t

Configuration of each touch sensitivity information

Data Fields

uint16_t * p_touch_sensitivity_ratio Pointer to sensitivity ratio array.

uint16_t old_threshold_ratio Old threshold ratio.

uint16_t new_threshold_ratio New threshold ratio.

uint8_t new_hysteresis_ratio New hysteresis ratio.

◆ touch_api_t

struct touch_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(touch_ctrl_t *const p_ctrl, uint64_t *p_button_status,
uint16_t *p_slider_position, uint16_t *p_wheel_position)

fsp_err_t(* scanStop)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* padDataGet)(touch_ctrl_t *const p_ctrl, uint16_t
*p_pad_rx_coordinate, uint16_t *p_pad_tx_coordinate, uint8_t
*p_pad_num_touch)

fsp_err_t(* callbackSet)(touch_ctrl_t *const p_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const
p_context, touch_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* sensitivityRatioGet)(touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,113 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

fsp_err_t(* thresholdAdjust)(touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

fsp_err_t(* driftControl)(touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Field Documentation

◆ open

fsp_err_t(* touch_api_t::open) (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ scanStart

fsp_err_t(* touch_api_t::scanStart) (touch_ctrl_t *const p_ctrl)

Scan start.

Parameters
[in] p_ctrl Pointer to control structure.

◆ dataGet

fsp_err_t(* touch_api_t::dataGet) (touch_ctrl_t *const p_ctrl, uint64_t *p_button_status, uint16_t
*p_slider_position, uint16_t *p_wheel_position)

Data get.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_button_status Pointer to get data bitmap.

[out] p_slider_position Pointer to get data array.

[out] p_wheel_position Pointer to get data array.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,114 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

◆ scanStop

fsp_err_t(* touch_api_t::scanStop) (ctsu_ctrl_t *const p_ctrl)

ScanStop.

Parameters
[in] p_ctrl Pointer to control structure.

◆ padDataGet

fsp_err_t(* touch_api_t::padDataGet) (touch_ctrl_t *const p_ctrl, uint16_t *p_pad_rx_coordinate,
uint16_t *p_pad_tx_coordinate, uint8_t *p_pad_num_touch)

pad data get.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_pad_rx_coordinate Pointer to get coordinate of
receiver side.

[out] p_pad_tx_coordinate Pointer to get coordinate of
transmitter side.

[out] p_pad_num_touch Pointer to get touch count.

◆ callbackSet

fsp_err_t(* touch_api_t::callbackSet) (touch_ctrl_t *const p_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const p_context, touch_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the CTSU control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,115 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

◆ close

fsp_err_t(* touch_api_t::close) (touch_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ sensitivityRatioGet

fsp_err_t(* touch_api_t::sensitivityRatioGet) (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

Sensitivity ratio get.

Parameters
[in] p_ctrl Pointer to control structure.

[in,out] p_touch_sensitivity_info Pointer to touch sensitivity
structure.

◆ thresholdAdjust

fsp_err_t(* touch_api_t::thresholdAdjust) (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

Threshold adjust.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_touch_sensitivity_info Pointer to touch sensitivity
structure.

◆ driftControl

fsp_err_t(* touch_api_t::driftControl) (touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Drift control.

Parameters
[in] p_ctrl Pointer to control structure.

[in] input_drift_freq Drift frequency value.

◆ touch_instance_t

struct touch_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,116 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > CapTouch > Touch Middleware Interface

Data Fields

touch_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

touch_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

touch_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ touch_ctrl_t

typedef void touch_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

◆ touch_callback_args_t

typedef struct st_ctsu_callback_args touch_callback_args_t

Callback function parameter data

5.3.5 Connectivity
Interfaces

Detailed Description

Connectivity Interfaces.

Modules

CAN Interface

 Interface for CAN peripheral.

CEC Interface

 Interface for CEC peripheral.

Communicatons Middleware Interface

 Interface for Communications Middleware functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,117 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity

I2C Master Interface

 Interface for I2C master communication.

I2C Slave Interface

 Interface for I2C slave communication.

I2S Interface

 Interface for I2S audio communication.

I3C Interface

 Interface for I3C.

LIN Interface

 Interface for LIN communications.

SMCI Interface

 Interface for SMCI communications.

SPI Interface

 Interface for SPI communications.

UART Interface

 Interface for UART communications.

USB HCDC Interface

 Interface for USB HCDC functions.

USB HHID Interface

 Interface for USB HHID functions.

USB HMSC Interface

 Interface for USB HMSC functions.

USB Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,118 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity

 Interface for USB functions.

USB PCDC Interface

 Interface for USB PCDC functions.

USB PHID Interface

 Interface for USB PHID functions.

USB PMSC Interface

 Interface for USB PMSC functions.

USB PPRN Interface

 Interface for USB PPRN functions.

5.3.5.1 CAN Interface
Interfaces » Connectivity

Detailed Description

Interface for CAN peripheral.

Summary
The CAN interface provides common APIs for CAN HAL drivers. CAN interface supports following
features.

Full-duplex CAN communication
Generic CAN parameter setting
Interrupt driven transmit/receive processing
Callback function support with returning event code
Hardware resource locking during a transaction

Data Structures

struct can_info_t

struct can_bit_timing_cfg_t

struct can_frame_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,119 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

struct can_callback_args_t

struct can_cfg_t

struct can_api_t

struct can_instance_t

Typedefs

typedef void can_ctrl_t

Enumerations

enum can_event_t

enum can_operation_mode_t

enum can_test_mode_t

enum can_id_mode_t

enum can_frame_type_t

Data Structure Documentation

◆ can_info_t

struct can_info_t

CAN status info

Data Fields

uint32_t status Useful information from the
CAN status register.

uint32_t rx_mb_status RX Message Buffer New Data
flags.

uint32_t rx_fifo_status RX FIFO Empty flags.

uint8_t error_count_transmit Transmit error count.

uint8_t error_count_receive Receive error count.

uint32_t error_code Error code, cleared after
reading.

◆ can_bit_timing_cfg_t

struct can_bit_timing_cfg_t

CAN bit rate configuration.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,120 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

uint32_t baud_rate_prescaler Baud rate prescaler. Valid
values: 1 - 1024.

uint32_t time_segment_1 Time segment 1 control.

uint32_t time_segment_2 Time segment 2 control.

uint32_t synchronization_jump_width Synchronization jump width.

◆ can_frame_t

struct can_frame_t

CAN data Frame

Data Fields

uint32_t id CAN ID.

can_id_mode_t id_mode Standard or Extended ID (IDE).

can_frame_type_t type Frame type (RTR).

uint8_t data_length_code CAN Data Length Code (DLC).

uint32_t options Implementation-specific
options.

uint8_t data[CAN_DATA_BUFFER_LENG
TH]

CAN data.

◆ can_callback_args_t

struct can_callback_args_t

CAN callback parameter definition

Data Fields

uint32_t channel Device channel number.

can_event_t event Event code.

uint32_t error Error code.

union can_callback_args_t __unnamed__

void const * p_context Context provided to user during
callback.

can_frame_t frame Received frame data.

◆ can_cfg_t

struct can_cfg_t

CAN Configuration

Data Fields

uint32_t channel

 CAN channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,121 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

can_bit_timing_cfg_t * p_bit_timing

 CAN bit timing.

void(* p_callback)(can_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined callback context.

void const * p_extend

 CAN hardware dependent configuration.

uint8_t ipl

 Error/Transmit/Receive interrupt priority.

IRQn_Type error_irq

 Error IRQ number.

IRQn_Type rx_irq

 Receive IRQ number.

IRQn_Type tx_irq

 Transmit IRQ number.

◆ can_api_t

struct can_api_t

Shared Interface definition for CAN

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,122 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

Data Fields

fsp_err_t(* open)(can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

fsp_err_t(* write)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t
*const p_frame)

fsp_err_t(* read)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t
*const p_frame)

fsp_err_t(* close)(can_ctrl_t *const p_ctrl)

fsp_err_t(* modeTransition)(can_ctrl_t *const p_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

fsp_err_t(* infoGet)(can_ctrl_t *const p_ctrl, can_info_t *const p_info)

fsp_err_t(* callbackSet)(can_ctrl_t *const p_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* can_api_t::open) (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open function for CAN device

Parameters
[in,out] p_ctrl Pointer to the CAN control

block. Must be declared by
user. Value set here.

[in] p_cfg Pointer to CAN configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,123 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

◆ write

fsp_err_t(* can_api_t::write) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Write function for CAN device

Parameters
[in] p_ctrl Pointer to the CAN control

block.

[in] buffer Buffer number (mailbox or
message buffer) to write to.

[in] p_frame Pointer for frame of CAN ID,
DLC, data and frame type to
write.

◆ read

fsp_err_t(* can_api_t::read) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Read function for CAN device

Parameters
[in] p_ctrl Pointer to the CAN control

block.

[in] buffer Message buffer (number) to
read from.

[in] p_frame Pointer to store the CAN ID,
DLC, data and frame type.

◆ close

fsp_err_t(* can_api_t::close) (can_ctrl_t *const p_ctrl)

Close function for CAN device

Parameters
[in] p_ctrl Pointer to the CAN control

block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,124 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

◆ modeTransition

fsp_err_t(* can_api_t::modeTransition) (can_ctrl_t *const p_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

Mode Transition function for CAN device

Parameters
[in] p_ctrl Pointer to the CAN control

block.

[in] operation_mode Destination CAN operation
state.

[in] test_mode Destination CAN test state.

◆ infoGet

fsp_err_t(* can_api_t::infoGet) (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN channel info.

Parameters
[in] p_ctrl Handle for channel (pointer

to channel control block)

[out] p_info Memory address to return
channel specific data to.

◆ callbackSet

fsp_err_t(* can_api_t::callbackSet) (can_ctrl_t *const p_ctrl, void(*p_callback)(can_callback_args_t
*), void const *const p_context, can_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

can_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ can_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,125 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

struct can_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

can_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

can_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

can_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ can_ctrl_t

typedef void can_ctrl_t

CAN control block. Allocate an instance specific control block to pass into the CAN API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,126 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

◆ can_event_t

enum can_event_t

CAN event codes

Enumerator

CAN_EVENT_ERR_WARNING Error Warning event.

CAN_EVENT_ERR_PASSIVE Error Passive event.

CAN_EVENT_ERR_BUS_OFF Bus Off event.

CAN_EVENT_BUS_RECOVERY Bus Off Recovery event.

CAN_EVENT_MAILBOX_MESSAGE_LOST Mailbox has been overrun.

CAN_EVENT_ERR_BUS_LOCK Bus lock detected (32 consecutive dominant
bits).

CAN_EVENT_ERR_CHANNEL Channel error has occurred.

CAN_EVENT_TX_ABORTED Transmit abort event.

CAN_EVENT_RX_COMPLETE Receive complete event.

CAN_EVENT_TX_COMPLETE Transmit complete event.

CAN_EVENT_ERR_GLOBAL Global error has occurred.

CAN_EVENT_TX_FIFO_EMPTY Transmit FIFO is empty.

CAN_EVENT_FIFO_MESSAGE_LOST Receive FIFO overrun.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,127 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

◆ can_operation_mode_t

enum can_operation_mode_t

CAN Operation modes

Enumerator

CAN_OPERATION_MODE_NORMAL CAN Normal Operation Mode.

CAN_OPERATION_MODE_RESET CAN Reset Operation Mode.

CAN_OPERATION_MODE_HALT CAN Halt Operation Mode.

CAN_OPERATION_MODE_SLEEP CAN Sleep Operation Mode.

◆ can_test_mode_t

enum can_test_mode_t

CAN Test modes

Enumerator

CAN_TEST_MODE_DISABLED CAN Test Mode Disabled.

CAN_TEST_MODE_LISTEN CAN Test Listen Mode.

CAN_TEST_MODE_LOOPBACK_EXTERNAL CAN Test External Loopback Mode.

CAN_TEST_MODE_LOOPBACK_INTERNAL CAN Test Internal Loopback Mode.

CAN_TEST_MODE_INTERNAL_BUS CANFD Internal CAN Bus Communication Test
Mode.

◆ can_id_mode_t

enum can_id_mode_t

CAN ID modes

Enumerator

CAN_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_ID_MODE_EXTENDED Extended IDs of 29 bits used.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,128 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CAN Interface

◆ can_frame_type_t

enum can_frame_type_t

CAN frame types

Enumerator

CAN_FRAME_TYPE_DATA Data frame.

CAN_FRAME_TYPE_REMOTE Remote frame.

5.3.5.2 CEC Interface
Interfaces » Connectivity

Detailed Description

Interface for CEC peripheral.

Summary
The CEC interface provides common APIs for CEC HAL drivers and supports the following features:

Opening and closing the CEC module.
Allocation for full range of local address settings (TV, Recording Device, Playback Device,
etc.)
Supports a user-callback function (required), invoked when transmit, receive, or error
interrupts are received.

Data Structures

union cec_message_t

struct cec_callback_args_t

struct cec_cfg_t

struct cec_api_t

struct cec_instance_t

Typedefs

typedef void cec_ctrl_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,129 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

enum cec_addr_t

enum cec_clock_source_t

enum cec_state_t

enum cec_error_t

enum cec_event_t

Data Structure Documentation

◆ cec_message_t

union cec_message_t

CEC message

Data Fields

struct cec_message_t __unnamed__

uint8_t raw_data[CEC_DATA_BUFFER_L
ENGTH+2 *sizeof(uint8_t)]

Contiguous raw data.

◆ cec_callback_args_t

struct cec_callback_args_t

CEC callback parameter definition

Data Fields

cec_event_t event Event code.

void const * p_context Context provided to user during
callback.

bool addr_match Local addresss matches
message destination.

uint8_t data_byte Received data byte (INTDA)

cec_status_t status CEC Module status data.

cec_error_t errors Error code bitfield.

◆ cec_cfg_t

struct cec_cfg_t

CEC Configuration

Data Fields

cec_timing_t const * bit_timing_cfg

 CEC Bit Timing Configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,130 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

uint16_t rx_data_sample_time

 Receive Data Sample Time Setting.

uint16_t rx_data_bit_reference_width

 Receive Data Bit Reference Width.

void(* p_callback)(cec_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined callback context.

uint8_t ipl

 Error/Data/Message interrupt priority level.

IRQn_Type error_irq

 Error IRQ number.

IRQn_Type data_irq

 Data IRQ number.

IRQn_Type msg_irq

 Communication Complete IRQ number.

void * p_extend

 Pointer to extended configuration structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,131 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ cec_api_t

struct cec_api_t

Shared Interface definition for CEC

Data Fields

fsp_err_t(* open)(cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

fsp_err_t(* write)(cec_ctrl_t *const p_ctrl, cec_message_t const *const
p_message, uint32_t message_size)

fsp_err_t(* close)(cec_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

fsp_err_t(* callbackSet)(cec_ctrl_t *const p_ctrl,
void(*p_callback)(cec_callback_args_t *), void const *const
p_context, cec_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* cec_api_t::open) (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

Open function for CEC device

Parameters
[in,out] p_ctrl Pointer to the CEC control

block. Must be declared by
user. Value set here.

[in] p_cfg Pointer to CEC configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,132 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ mediaInit

fsp_err_t(* cec_api_t::mediaInit) (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

Initializes the CEC device. May be called any time after the CEC module has been opened. This API
blocks until the device initialization procedure is complete.

Parameters
[in] p_ctrl Pointer to CEC instance

control block.

[out] local_address Desired Logical address for
local device.

◆ write

fsp_err_t(* cec_api_t::write) (cec_ctrl_t *const p_ctrl, cec_message_t const *const p_message,
uint32_t message_size)

Write function for CEC device

Parameters
[in] p_ctrl Pointer to CEC instance

control block

[in] p_message Message data

[in] message_size Total size of entire message

◆ close

fsp_err_t(* cec_api_t::close) (cec_ctrl_t *const p_ctrl)

Close function for CEC device

Parameters
[in] p_ctrl Pointer to CEC instance

control block

[out] p_message Message data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,133 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ statusGet

fsp_err_t(* cec_api_t::statusGet) (cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

Get CEC channel info.

Parameters
[in] p_ctrl Pointer to CEC instance

control block

[out] p_status Memory address to return
channel specific data to.

◆ callbackSet

fsp_err_t(* cec_api_t::callbackSet) (cec_ctrl_t *const p_ctrl, void(*p_callback)(cec_callback_args_t *),
void const *const p_context, cec_callback_args_t *const p_callback_memory)

Specify callback function, optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

cec_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_callback_memory Pointer to volatile memory
where callback structure cec
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ cec_instance_t

struct cec_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cec_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cec_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cec_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,134 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ cec_ctrl_t

typedef void cec_ctrl_t

CEC control block. Allocate an instance specific control block to pass into the CEC API calls.

Enumeration Type Documentation

◆ cec_addr_t

enum cec_addr_t

CEC Addresses

Enumerator

CEC_ADDR_TV CEC Address for TV.

CEC_ADDR_RECORDING_DEVICE_1 CEC Address for Recording Device 1.

CEC_ADDR_RECORDING_DEVICE_2 CEC Address for Recording Devide 2.

CEC_ADDR_TUNER_1 CEC Address for Tuner 1.

CEC_ADDR_PLAYBACK_DEVICE_1 CEC Address for Playback Device 1.

CEC_ADDR_AUDIO_SYSTEM CEC Address for Audio System.

CEC_ADDR_TUNER_2 CEC Address for Tuner 2.

CEC_ADDR_TUNER_3 CEC Address for Tuner 3.

CEC_ADDR_PLAYBACK_DEVICE_2 CEC Address for Playback Device 2.

CEC_ADDR_RECORDING_DEVICE_3 CEC Address for Recording Device 3.

CEC_ADDR_TUNER_4 CEC Address for Tuner 4.

CEC_ADDR_PLAYBACK_DEVICE_3 CEC Address for Playback Device 3.

CEC_ADDR_SPECIFIC_USE CEC Address for Specific Use.

CEC_ADDR_UNREGISTERED CEC Address for Unregistered Devices.

CEC_ADDR_BROADCAST CEC Broadcast message.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,135 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ cec_clock_source_t

enum cec_clock_source_t

CEC Source Clock

Enumerator

CEC_CLOCK_SOURCE_PCLKB_DIV_32 PCLKB / 32 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_64 PCLKB / 64 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_128 PCLKB / 128 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_256 PCLKB / 256 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_512 PCLKB / 512 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_1024 PCLKB / 1024 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_CECCLK CECCLK is the source of the CEC Clock.

CEC_CLOCK_SOURCE_CECCLK_DIV_256 CECCLK / 256 is the source of the CEC Clock.

◆ cec_state_t

enum cec_state_t

CEC State

Enumerator

CEC_STATE_UNINIT Module requires initialization.

CEC_STATE_READY Module ready for operation.

CEC_STATE_TX_ACTIVE Transmit in progress, either direct or
broadcast.

CEC_STATE_RX_ACTIVE Receive in progress, either direct or
broadcast.

CEC_STATE_BUSY CEC Signal Free Time has not yet elapsed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,136 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > CEC Interface

◆ cec_error_t

enum cec_error_t

CEC Error Code

Enumerator

CEC_ERROR_NONE No errors currently active.

CEC_ERROR_OERR Overrun error.

CEC_ERROR_UERR Unterrun Error.

CEC_ERROR_ACKERR ACK Error.

CEC_ERROR_TERR Timing Error.

CEC_ERROR_TXERR Transmission Error.

CEC_ERROR_AERR Bus arbitration Loss.

CEC_ERROR_BLERR Bus lock error.

CEC_ERROR_ADDR Address allocation error.

◆ cec_event_t

enum cec_event_t

CEC event codes

Enumerator

CEC_EVENT_RX_DATA Receive Data byte event.

CEC_EVENT_RX_COMPLETE Receive complete event.

CEC_EVENT_TX_COMPLETE Transmit complete event.

CEC_EVENT_READY CEC Address allocated and module is now
ready.

CEC_EVENT_ERR Error has occurred.

5.3.5.3 Communicatons Middleware Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,137 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > Communicatons Middleware Interface

Interfaces » Connectivity

Detailed Description

Interface for Communications Middleware functions.

Summary
The Communications interface provides multiple communications functionality.

Data Structures

struct rm_comms_write_read_params_t

struct rm_comms_callback_args_t

struct rm_comms_cfg_t

struct rm_comms_api_t

struct rm_comms_instance_t

Typedefs

typedef void rm_comms_ctrl_t

Enumerations

enum rm_comms_event_t

Data Structure Documentation

◆ rm_comms_write_read_params_t

struct rm_comms_write_read_params_t

Struct to pack params for writeRead

◆ rm_comms_callback_args_t

struct rm_comms_callback_args_t

Communications middleware callback parameter definition

◆ rm_comms_cfg_t

struct rm_comms_cfg_t

Communications middleware configuration block

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,138 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > Communicatons Middleware Interface

uint32_t semaphore_timeout

 Timeout for read/write.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void const * p_lower_level_cfg

 Pointer to lower level driver configuration structure.

void const * p_context

 Pointer to the user-provided context.

void(* p_callback)(rm_comms_callback_args_t *p_args)

 Pointer to callback function, mostly used if using non-blocking
functionality.

◆ rm_comms_api_t

struct rm_comms_api_t

COMM APIs

Data Fields

fsp_err_t(* open)(rm_comms_ctrl_t *const p_ctrl, rm_comms_cfg_t const *const
p_cfg)

fsp_err_t(* close)(rm_comms_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* write)(rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

fsp_err_t(* writeRead)(rm_comms_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,139 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > Communicatons Middleware Interface

rm_comms_write_read_params_t write_read_params)

fsp_err_t(* callbackSet)(rm_comms_ctrl_t *const p_ctrl,
void(*p_callback)(rm_comms_callback_args_t *), void const *const
p_context)

Field Documentation

◆ open

fsp_err_t(* rm_comms_api_t::open) (rm_comms_ctrl_t *const p_ctrl, rm_comms_cfg_t const *const
p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_comms_api_t::close) (rm_comms_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_comms_api_t::read) (rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Read data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,140 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > Communicatons Middleware Interface

◆ write

fsp_err_t(* rm_comms_api_t::write) (rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Write data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

◆ writeRead

fsp_err_t(* rm_comms_api_t::writeRead) (rm_comms_ctrl_t *const p_ctrl,
rm_comms_write_read_params_t write_read_params)

Write bytes over comms followed by a read, will have a struct for params.

Parameters
[in] p_ctrl Pointer to control structure.

[in] write_read_params Parameters structure.

◆ callbackSet

fsp_err_t(* rm_comms_api_t::callbackSet) (rm_comms_ctrl_t *const p_ctrl,
void(*p_callback)(rm_comms_callback_args_t *), void const *const p_context)

Specify callback function and optional context pointer.

Parameters
[in] p_ctrl Pointer to the control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

◆ rm_comms_instance_t

struct rm_comms_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,141 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > Communicatons Middleware Interface

◆ rm_comms_ctrl_t

typedef void rm_comms_ctrl_t

Communications control block. Allocate an instance specific control block to pass into the
Communications API calls.

Enumeration Type Documentation

◆ rm_comms_event_t

enum rm_comms_event_t

Event in the callback function

5.3.5.4 I2C Master Interface
Interfaces » Connectivity

Detailed Description

Interface for I2C master communication.

Summary
The I2C master interface provides a common API for I2C HAL drivers. The I2C master interface
supports:

Interrupt driven transmit/receive processing
Callback function support which can return an event code

Data Structures

struct i2c_master_callback_args_t

struct i2c_master_status_t

struct i2c_master_cfg_t

struct i2c_master_api_t

struct i2c_master_instance_t

Typedefs

typedef void i2c_master_ctrl_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,142 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

enum i2c_master_rate_t

enum i2c_master_addr_mode_t

enum i2c_master_event_t

Data Structure Documentation

◆ i2c_master_callback_args_t

struct i2c_master_callback_args_t

I2C callback parameter definition

Data Fields

void const * p_context Pointer to user-provided
context.

i2c_master_event_t event Event code.

◆ i2c_master_status_t

struct i2c_master_status_t

I2C status indicators

Data Fields

bool open True if driver is open.

◆ i2c_master_cfg_t

struct i2c_master_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_master_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint32_t slave

 The address of the slave device.

i2c_master_addr_mode_t addr_mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,143 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

 Indicates how slave fields should be interpreted.

uint8_t ipl

 Interrupt priority level. Same for RXI, TXI, TEI and ERI.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

transfer_instance_t const * p_transfer_tx

 Transfer instance for I2C transmit. Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 Transfer instance for I2C receive. Set to NULL if unused.

void(* p_callback)(i2c_master_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,144 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

void const * p_extend

 Any configuration data needed by the hardware. More...

Field Documentation

◆ channel

uint8_t i2c_master_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_transfer_tx

transfer_instance_t const* i2c_master_cfg_t::p_transfer_tx

Transfer instance for I2C transmit. Set to NULL if unused.

Transfer API support

◆ p_callback

void(* i2c_master_cfg_t::p_callback) (i2c_master_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

◆ p_extend

void const* i2c_master_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_master_api_t

struct i2c_master_api_t

Interface definition for I2C access as master

Data Fields

fsp_err_t(* open)(i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

fsp_err_t(* write)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,145 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

const bytes, bool const restart)

fsp_err_t(* abort)(i2c_master_ctrl_t *const p_ctrl)

fsp_err_t(* slaveAddressSet)(i2c_master_ctrl_t *const p_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t(* callbackSet)(i2c_master_ctrl_t *const p_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t(* statusGet)(i2c_master_ctrl_t *const p_ctrl, i2c_master_status_t
*p_status)

fsp_err_t(* close)(i2c_master_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* i2c_master_api_t::open) (i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C Master driver and initializes the hardware.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,146 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

◆ read

fsp_err_t(* i2c_master_api_t::read) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read operation on an I2C Master device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_master_api_t::open
call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

[in] restart Specify if the restart
condition should be issued
after reading.

◆ write

fsp_err_t(* i2c_master_api_t::write) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write operation on an I2C Master device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_master_api_t::open
call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

[in] restart Specify if the restart
condition should be issued
after writing.

◆ abort

fsp_err_t(* i2c_master_api_t::abort) (i2c_master_ctrl_t *const p_ctrl)

Performs a reset of the peripheral.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_master_api_t::open
call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,147 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

◆ slaveAddressSet

fsp_err_t(* i2c_master_api_t::slaveAddressSet) (i2c_master_ctrl_t *const p_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address of the slave device without reconfiguring the bus.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_master_api_t::open
call.

[in] slave_address Address of the slave device.

[in] address_mode Addressing mode.

◆ callbackSet

fsp_err_t(* i2c_master_api_t::callbackSet) (i2c_master_ctrl_t *const p_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the IIC Master

control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ statusGet

fsp_err_t(* i2c_master_api_t::statusGet) (i2c_master_ctrl_t *const p_ctrl, i2c_master_status_t
*p_status)

Gets the status of the configured I2C device.

Parameters
[in] p_ctrl Pointer to the IIC Master

control block.

[out] p_status Pointer to store current
status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,148 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

◆ close

fsp_err_t(* i2c_master_api_t::close) (i2c_master_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Master device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_master_api_t::open
call.

◆ i2c_master_instance_t

struct i2c_master_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2c_master_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2c_master_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_master_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2c_master_ctrl_t

typedef void i2c_master_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Enumeration Type Documentation

◆ i2c_master_rate_t

enum i2c_master_rate_t

Communication speed options

Enumerator

I2C_MASTER_RATE_STANDARD 100 kHz

I2C_MASTER_RATE_FAST 400 kHz

I2C_MASTER_RATE_FASTPLUS 1 MHz

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,149 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Master Interface

◆ i2c_master_addr_mode_t

enum i2c_master_addr_mode_t

Addressing mode options

Enumerator

I2C_MASTER_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_MASTER_ADDR_MODE_10BIT Use 10-bit addressing mode.

◆ i2c_master_event_t

enum i2c_master_event_t

Callback events

Enumerator

I2C_MASTER_EVENT_ABORTED A transfer was aborted.

I2C_MASTER_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_MASTER_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

I2C_MASTER_EVENT_START I2C sent a start condition.

I2C_MASTER_EVENT_BYTE_ACK I2C finished sending/receiving 1 data byte.

5.3.5.5 I2C Slave Interface
Interfaces » Connectivity

Detailed Description

Interface for I2C slave communication.

Summary
The I2C slave interface provides a common API for I2C HAL drivers. The I2C slave interface supports:

Interrupt driven transmit/receive processing
Callback function support which returns a event codes

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,150 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

Data Structures

struct i2c_slave_callback_args_t

struct i2c_slave_cfg_t

struct i2c_slave_api_t

struct i2c_slave_instance_t

Typedefs

typedef void i2c_slave_ctrl_t

Enumerations

enum i2c_slave_rate_t

enum i2c_slave_addr_mode_t

enum i2c_slave_event_t

Data Structure Documentation

◆ i2c_slave_callback_args_t

struct i2c_slave_callback_args_t

I2C callback parameter definition

Data Fields

void const * p_context Pointer to user-provided
context.

uint32_t bytes Number of received/transmitted
bytes in buffer.

i2c_slave_event_t event Event code.

◆ i2c_slave_cfg_t

struct i2c_slave_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_slave_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,151 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

uint16_t slave

 The address of the slave device.

i2c_slave_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

bool general_call_enable

 Allow a General call from master.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t ipl

 Interrupt priority level for receive, transmit, and transmit end
interrupts.

uint8_t eri_ipl

 Interrupt priority level for error interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,152 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

bool clock_stretching_enable

 Low Hold SCL during reception for the period between the 9th and
the 1st clock cycle.

transfer_instance_t const * p_transfer_tx

 DTC instance for I2C transmit.Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 DTC instance for I2C receive. Set to NULL if unused.

void(* p_callback)(i2c_slave_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

Field Documentation

◆ channel

uint8_t i2c_slave_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_transfer_tx

transfer_instance_t const* i2c_slave_cfg_t::p_transfer_tx

DTC instance for I2C transmit.Set to NULL if unused.

DTC support

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,153 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

◆ p_callback

void(* i2c_slave_cfg_t::p_callback) (i2c_slave_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

◆ p_extend

void const* i2c_slave_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_slave_api_t

struct i2c_slave_api_t

Interface definition for I2C access as slave

Data Fields

fsp_err_t(* open)(i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* write)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

fsp_err_t(* callbackSet)(i2c_slave_ctrl_t *const p_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(i2c_slave_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,154 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

◆ open

fsp_err_t(* i2c_slave_api_t::open) (i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const p_cfg)

Opens the I2C Slave driver and initializes the hardware.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* i2c_slave_api_t::read) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read operation on an I2C Slave device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_slave_api_t::open call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

◆ write

fsp_err_t(* i2c_slave_api_t::write) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes)

Performs a write operation on an I2C Slave device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_slave_api_t::open call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,155 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

◆ callbackSet

fsp_err_t(* i2c_slave_api_t::callbackSet) (i2c_slave_ctrl_t *const p_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the IIC Slave

control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* i2c_slave_api_t::close) (i2c_slave_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Slave device.

Parameters
[in] p_ctrl Pointer to control block set

in i2c_slave_api_t::open call.

◆ i2c_slave_instance_t

struct i2c_slave_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2c_slave_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2c_slave_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_slave_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,156 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

◆ i2c_slave_ctrl_t

typedef void i2c_slave_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Enumeration Type Documentation

◆ i2c_slave_rate_t

enum i2c_slave_rate_t

Communication speed options

Enumerator

I2C_SLAVE_RATE_STANDARD 100 kHz

I2C_SLAVE_RATE_FAST 400 kHz

I2C_SLAVE_RATE_FASTPLUS 1 MHz

◆ i2c_slave_addr_mode_t

enum i2c_slave_addr_mode_t

Addressing mode options

Enumerator

I2C_SLAVE_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_SLAVE_ADDR_MODE_10BIT Use 10-bit addressing mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,157 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2C Slave Interface

◆ i2c_slave_event_t

enum i2c_slave_event_t

Callback events

Enumerator

I2C_SLAVE_EVENT_ABORTED A transfer was aborted.

I2C_SLAVE_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_SLAVE_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

I2C_SLAVE_EVENT_RX_REQUEST A read operation expected from slave.
Detected a write from master.

I2C_SLAVE_EVENT_TX_REQUEST A write operation expected from slave.
Detected a read from master.

I2C_SLAVE_EVENT_RX_MORE_REQUEST A read operation expected from slave. Master
sends out more data than configured to be
read in slave.

I2C_SLAVE_EVENT_TX_MORE_REQUEST A write operation expected from slave. Master
requests more data than configured to be
written by slave.

I2C_SLAVE_EVENT_GENERAL_CALL General Call address received from Master.
Detected a write from master.

5.3.5.6 I2S Interface
Interfaces » Connectivity

Detailed Description

Interface for I2S audio communication.

Summary
The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication.

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,158 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

struct i2s_callback_args_t

struct i2s_status_t

struct i2s_cfg_t

struct i2s_api_t

struct i2s_instance_t

Typedefs

typedef void i2s_ctrl_t

Enumerations

enum i2s_pcm_width_t

enum i2s_word_length_t

enum i2s_event_t

enum i2s_mode_t

enum i2s_mute_t

enum i2s_ws_continue_t

enum i2s_state_t

Data Structure Documentation

◆ i2s_callback_args_t

struct i2s_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
i2s_api_t::open function in
i2s_cfg_t.

i2s_event_t event The event can be used to
identify what caused the
callback (overflow or error).

◆ i2s_status_t

struct i2s_status_t

I2S status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,159 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

Data Fields

i2s_state_t state Current I2S state.

◆ i2s_cfg_t

struct i2s_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel

i2s_pcm_width_t pcm_width

 Audio PCM data width.

i2s_word_length_t word_length

 Audio word length, bits must be >= i2s_cfg_t::pcm_width bits.

i2s_ws_continue_t ws_continue

 Whether to continue WS transmission during idle state.

i2s_mode_t operating_mode

 Master or slave mode.

transfer_instance_t const * p_transfer_tx

transfer_instance_t const * p_transfer_rx

void(* p_callback)(i2s_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,160 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t idle_err_ipl

 Idle/Error interrupt priority.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type int_irq

 Idle/Error IRQ number.

Field Documentation

◆ channel

uint32_t i2s_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_transfer_tx

transfer_instance_t const* i2s_cfg_t::p_transfer_tx

To use DMA for transmitting link a Transfer instance here. Set to NULL if unused.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,161 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ p_transfer_rx

transfer_instance_t const* i2s_cfg_t::p_transfer_rx

To use DMA for receiving link a Transfer instance here. Set to NULL if unused.

◆ p_callback

void(* i2s_cfg_t::p_callback) (i2s_callback_args_t *p_args)

Callback provided when an I2S ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* i2s_cfg_t::p_context

Placeholder for user data. Passed to the user callback in i2s_callback_args_t.

◆ i2s_api_t

struct i2s_api_t

I2S functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t(* stop)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* mute)(i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t(* write)(i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const
bytes)

fsp_err_t(* read)(i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const
bytes)

fsp_err_t(* writeRead)(i2s_ctrl_t *const p_ctrl, void const *const p_src, void
*const p_dest, uint32_t const bytes)

fsp_err_t(* statusGet)(i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

fsp_err_t(* close)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(i2s_ctrl_t *const p_ctrl,
void(*p_callback)(i2s_callback_args_t *), void const *const p_context,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,162 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

i2s_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* i2s_api_t::open) (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Initial configuration.

Precondition
Peripheral clocks and any required output pins should be configured prior to calling this
function.

Note
To reconfigure after calling this function, call i2s_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ stop

fsp_err_t(* i2s_api_t::stop) (i2s_ctrl_t *const p_ctrl)

Stop communication. Communication is stopped when callback is called with I2S_EVENT_IDLE.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

◆ mute

fsp_err_t(* i2s_api_t::mute) (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Enable or disable mute.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

[in] mute_enable Whether to enable or disable
mute.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,163 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ write

fsp_err_t(* i2s_api_t::write) (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const bytes)

Write I2S data. All transmit data is queued when callback is called with I2S_EVENT_TX_EMPTY.
Transmission is complete when callback is called with I2S_EVENT_IDLE.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8.

◆ read

fsp_err_t(* i2s_api_t::read) (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const bytes)

Read I2S data. Reception is complete when callback is called with I2S_EVENT_RX_EMPTY.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
receive will stop at the
multiple of 8 below
requested bytes.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,164 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ writeRead

fsp_err_t(* i2s_api_t::writeRead) (i2s_ctrl_t *const p_ctrl, void const *const p_src, void *const
p_dest, uint32_t const bytes)

Simultaneously write and read I2S data. Transmission and reception are complete when callback is
called with I2S_EVENT_IDLE.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffers. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8, and receive
will stop at the multiple of 8
below requested bytes.

◆ statusGet

fsp_err_t(* i2s_api_t::statusGet) (i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

Get current status and store it in provided pointer p_status.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

[out] p_status Current status of the driver.

◆ close

fsp_err_t(* i2s_api_t::close) (i2s_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Parameters
[in] p_ctrl Control block set in

i2s_api_t::open call for this
instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,165 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ callbackSet

fsp_err_t(* i2s_api_t::callbackSet) (i2s_ctrl_t *const p_ctrl, void(*p_callback)(i2s_callback_args_t *),
void const *const p_context, i2s_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the I2S control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ i2s_instance_t

struct i2s_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2s_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2s_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2s_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2s_ctrl_t

typedef void i2s_ctrl_t

I2S control block. Allocate an instance specific control block to pass into the I2S API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,166 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ i2s_pcm_width_t

enum i2s_pcm_width_t

Audio PCM width

Enumerator

I2S_PCM_WIDTH_8_BITS Using 8-bit PCM.

I2S_PCM_WIDTH_16_BITS Using 16-bit PCM.

I2S_PCM_WIDTH_18_BITS Using 18-bit PCM.

I2S_PCM_WIDTH_20_BITS Using 20-bit PCM.

I2S_PCM_WIDTH_22_BITS Using 22-bit PCM.

I2S_PCM_WIDTH_24_BITS Using 24-bit PCM.

I2S_PCM_WIDTH_32_BITS Using 32-bit PCM.

◆ i2s_word_length_t

enum i2s_word_length_t

Audio system word length.

Enumerator

I2S_WORD_LENGTH_8_BITS Using 8-bit system word length.

I2S_WORD_LENGTH_16_BITS Using 16-bit system word length.

I2S_WORD_LENGTH_24_BITS Using 24-bit system word length.

I2S_WORD_LENGTH_32_BITS Using 32-bit system word length.

I2S_WORD_LENGTH_48_BITS Using 48-bit system word length.

I2S_WORD_LENGTH_64_BITS Using 64-bit system word length.

I2S_WORD_LENGTH_128_BITS Using 128-bit system word length.

I2S_WORD_LENGTH_256_BITS Using 256-bit system word length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,167 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ i2s_event_t

enum i2s_event_t

Events that can trigger a callback function

Enumerator

I2S_EVENT_IDLE Communication is idle.

I2S_EVENT_TX_EMPTY Transmit buffer is below FIFO trigger level.

I2S_EVENT_RX_FULL Receive buffer is above FIFO trigger level.

◆ i2s_mode_t

enum i2s_mode_t

I2S communication mode

Enumerator

I2S_MODE_SLAVE Slave mode.

I2S_MODE_MASTER Master mode.

◆ i2s_mute_t

enum i2s_mute_t

Mute audio samples.

Enumerator

I2S_MUTE_OFF Disable mute.

I2S_MUTE_ON Enable mute.

◆ i2s_ws_continue_t

enum i2s_ws_continue_t

Whether to continue WS (word select line) transmission during idle state.

Enumerator

I2S_WS_CONTINUE_ON Enable WS continue mode.

I2S_WS_CONTINUE_OFF Disable WS continue mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,168 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I2S Interface

◆ i2s_state_t

enum i2s_state_t

Possible status values returned by i2s_api_t::statusGet.

Enumerator

I2S_STATE_IN_USE I2S is in use.

I2S_STATE_STOPPED I2S is stopped.

5.3.5.7 I3C Interface
Interfaces » Connectivity

Detailed Description

Interface for I3C.

Summary
The I3C interface provides APIs and definitions for I3C communication.

Data Structures

struct i3c_device_status_t

struct i3c_slave_info_t

struct i3c_device_table_cfg_t

struct i3c_device_cfg_t

struct i3c_command_descriptor_t

struct i3c_callback_args_t

struct i3c_cfg_t

struct i3c_api_t

struct i3c_instance_t

Typedefs

typedef void i3c_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,169 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

Enumerations

enum i3c_common_command_code_t

enum i3c_event_t

enum i3c_device_type_t

enum i3c_device_protocol_t

enum i3c_address_assignment_mode_t

enum i3c_ibi_type_t

Data Structure Documentation

◆ i3c_device_status_t

struct i3c_device_status_t

The current status of the slave device (See GETSTATUS in the MIPI I3C Specification v1.0).

Data Fields

uint8_t pending_interrupt Contains the interrupt number
of any pending interrupt, or 0 if
no interrupts are pending.

uint8_t vendor_status Reserved for vendor-specific
meaning.

◆ i3c_slave_info_t

struct i3c_slave_info_t

Device characteristics that define the I3C capabilities of a slave.

Data Fields

uint8_t pid[6] Provisional ID.

union i3c_slave_info_t __unnamed__

uint8_t dcr Device Characteristics Register.

◆ i3c_device_table_cfg_t

struct i3c_device_table_cfg_t

Structure for configuring an entry in the device table when the driver is in master mode (See
i3c_api_t::masterDeviceTableSet).

Data Fields

uint8_t static_address I3C Static address / I2C address
for this device.

uint8_t dynamic_address Dynamic address for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,170 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

device. This address will be
assigned during Dynamic
Address Assignment.

i3c_device_protocol_t device_protocol The protocol used to
communicate with this device
(I3C / I2C Legacy).

bool ibi_accept Accept or reject IBI requests
from this device.

bool master_request_accept Accept mastership requests
from this device.

bool ibi_payload IBI requests from this device
have a data payload.

Note: When the device is
configured using ENTDAA, the
ibi_payload will automatically
be updated based on the value
of BCR.

◆ i3c_device_cfg_t

struct i3c_device_cfg_t

Structure for configuring a slave address when the driver is in slave mode (See
i3c_api_t::deviceCfgSet).

Data Fields

uint8_t static_address I3C Static address / I2C address
for this device.

uint8_t dynamic_address Dynamic address for this
device. Note that the dynamic
address will automatically be
updated when ENTDAA is
completed.

i3c_slave_info_t slave_info PID, BCR, and DCR registers for
the device (Slave mode only).

◆ i3c_command_descriptor_t

struct i3c_command_descriptor_t

Descriptor for completing CCC/HDR transfers.

Data Fields

uint8_t command_code Common Command Code / HDR
Command Code for the
transfer.

uint8_t * p_buffer Buffer for reading or writing
data.

uint32_t length Length of the data portion of
the command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,171 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

bool restart If true, issue a repeated-start
after the transfer is completed.

bool rnw Set to true if the command type
is Direct Get.

◆ i3c_callback_args_t

struct i3c_callback_args_t

Arguments that are passed to the user callback when an event occurs.

Data Fields

i3c_event_t event The type of event that has
occurred.

uint32_t event_status Status flags associated with the
event.

uint32_t transfer_size Number of bytes transferred.

i3c_slave_info_t const * p_slave_info A pointer to the Characteristics
Registers read during ENTDAA.

uint8_t dynamic_address The dynamic address that was
assigned to the slave during
ENTDAA.

i3c_ibi_type_t ibi_type The type of IBI that has been
received.

uint8_t ibi_address The address of the device that
sent the IBI.

uint8_t command_code The command code of the
received command.

void const * p_context User defined context.

◆ i3c_cfg_t

struct i3c_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel

i3c_device_type_t device_type

void(* p_callback)(i3c_callback_args_t const *const p_args)

void const * p_context

 Pointer to the user-provided context.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,172 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

void const * p_extend

Field Documentation

◆ channel

uint32_t i3c_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ device_type

i3c_device_type_t i3c_cfg_t::device_type

The type of device.

◆ p_callback

void(* i3c_cfg_t::p_callback) (i3c_callback_args_t const *const p_args)

Pointer to the user callback.

◆ p_extend

void const* i3c_cfg_t::p_extend

Pointer to extended configuration.

◆ i3c_api_t

struct i3c_api_t

I3C functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(i3c_ctrl_t *const p_ctrl, i3c_cfg_t const *const p_cfg)

fsp_err_t(* enable)(i3c_ctrl_t *const p_ctrl)

fsp_err_t(* deviceCfgSet)(i3c_ctrl_t *const p_ctrl, i3c_device_cfg_t const *const
p_device_cfg)

fsp_err_t(* masterDeviceTableSet)(i3c_ctrl_t *const p_ctrl, uint32_t
device_index, i3c_device_table_cfg_t const *const
p_device_table_cfg)

fsp_err_t(* deviceSelect)(i3c_ctrl_t *const p_ctrl, uint32_t device_index, uint32_t
bitrate_mode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,173 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

fsp_err_t(* dynamicAddressAssignmentStart)(i3c_ctrl_t *const p_ctrl,
i3c_address_assignment_mode_t address_assignment_mode,
uint32_t starting_device_index, uint32_t device_count)

fsp_err_t(* slaveStatusSet)(i3c_ctrl_t *const p_ctrl, i3c_device_status_t
device_status)

fsp_err_t(* commandSend)(i3c_ctrl_t *const p_ctrl, i3c_command_descriptor_t
const *const p_command_descriptor)

fsp_err_t(* write)(i3c_ctrl_t *const p_ctrl, uint8_t const *const p_data, uint32_t
length, bool restart)

fsp_err_t(* read)(i3c_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t length,
bool restart)

fsp_err_t(* ibiWrite)(i3c_ctrl_t *const p_ctrl, i3c_ibi_type_t ibi_type, uint8_t const
*const p_data, uint32_t length)

fsp_err_t(* ibiRead)(i3c_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
length)

fsp_err_t(* close)(i3c_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* i3c_api_t::open) (i3c_ctrl_t *const p_ctrl, i3c_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,174 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ enable

fsp_err_t(* i3c_api_t::enable) (i3c_ctrl_t *const p_ctrl)

Enable the I3C device.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

◆ deviceCfgSet

fsp_err_t(* i3c_api_t::deviceCfgSet) (i3c_ctrl_t *const p_ctrl, i3c_device_cfg_t const *const
p_device_cfg)

Set the configuration of this device.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] p_device_cfg Pointer to device
configuration.

◆ masterDeviceTableSet

fsp_err_t(* i3c_api_t::masterDeviceTableSet) (i3c_ctrl_t *const p_ctrl, uint32_t device_index,
i3c_device_table_cfg_t const *const p_device_table_cfg)

Set the configuration for the device at the given index in the device table. The configuration will be
used by transfers when it is selected by deviceSelect.

Note: This function is not used in slave mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] device_index Index into the device table.

[in] p_device_table_cfg Pointer to the table settings
for the entry in the master
device table.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,175 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ deviceSelect

fsp_err_t(* i3c_api_t::deviceSelect) (i3c_ctrl_t *const p_ctrl, uint32_t device_index, uint32_t
bitrate_mode)

In master mode, select the device for the next transfer.

Note: This function is not used in slave mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] device_index Index into the device table.

[in] bitrate_setting The bitrate settings for the
selected device.

◆ dynamicAddressAssignmentStart

fsp_err_t(* i3c_api_t::dynamicAddressAssignmentStart) (i3c_ctrl_t *const p_ctrl,
i3c_address_assignment_mode_t address_assignment_mode, uint32_t starting_device_index,
uint32_t device_count)

Start Dynamic Address Assignment by sending either the ENTDAA or SETDASA command See
i3c_address_assignment_mode_t for more information.

Note: This function is not used in slave mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] address_assignment_mode The command to use for
Dynamic Address
Assignment.

[in] starting_device_index The device index that will be
used to assign the first
device during Dynamic
Address Assignment.

[in] device_count The number of devices to
assign (Only used with
I3C_ADDRESS_ASSIGNMENT_
MODE_ENTDAA).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,176 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ slaveStatusSet

fsp_err_t(* i3c_api_t::slaveStatusSet) (i3c_ctrl_t *const p_ctrl, i3c_device_status_t device_status)

Set the status returned to the master in response to a GETSTATUS command.

Note: This function is not used in master mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] device_status New status settings for
responding to the
GETSTATUS command code.

◆ commandSend

fsp_err_t(* i3c_api_t::commandSend) (i3c_ctrl_t *const p_ctrl, i3c_command_descriptor_t const
*const p_command_descriptor)

Send a read/write/broadcast CCC or HDR command.

Note: This function is not used in slave mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] p_command_descriptor A descriptor for executing
the command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,177 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ write

fsp_err_t(* i3c_api_t::write) (i3c_ctrl_t *const p_ctrl, uint8_t const *const p_data, uint32_t length,
bool restart)

In master mode: Start a write transfer. When the transfer is completed send a stop condition or a
repeated-start. In slave mode: Set the write buffer and configure the number of bytes that will be
transferred before the the transfer is ended by the slave via the 'T' bit or by the master issueing a
stop condition.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] p_data Pointer to a buffer to write.

[in] length Number of bytes to transfer.

[in] restart If true, issue a repeated-
start after the transfer is
completed (Master only).

◆ read

fsp_err_t(* i3c_api_t::read) (i3c_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t length, bool
restart)

In master mode: Start a read transfer. When the transfer is completed, send a stop condition or a
repeated-start. In slave mode: Set the read buffer for storing data read during the transfer. When
the buffer is full, the application will receive a callback requesting a new read buffer. If no buffer is
provided by the application, the driver will discard any remaining bytes read during the transfer.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] p_data Pointer to a buffer to store
the bytes read during the
transfer.

[in] length Number of bytes to transfer.

[in] restart If true, issue a repeated-
start after the transfer is
completed (Master only).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,178 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ ibiWrite

fsp_err_t(* i3c_api_t::ibiWrite) (i3c_ctrl_t *const p_ctrl, i3c_ibi_type_t ibi_type, uint8_t const *const
p_data, uint32_t length)

Initiate an IBI write operation.

Note: This function is not used in master mode.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] ibi_type The type of In-Band
Interrupt.

[in] p_data Pointer to a buffer to start
the bytes read during the
transfer.

[in] length Number of bytes to transfer.

◆ ibiRead

fsp_err_t(* i3c_api_t::ibiRead) (i3c_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t length)

Set the read buffer for storing received IBI data (This function is not used in slave mode).

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

[in] p_data Pointer to a buffer to store
the bytes read during the
transfer.

[in] length Number of bytes to transfer.

◆ close

fsp_err_t(* i3c_api_t::close) (i3c_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Parameters
[in] p_ctrl Control block set in

i3c_api_t::open call for this
instance.

◆ i3c_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,179 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

struct i3c_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i3c_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i3c_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i3c_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i3c_ctrl_t

typedef void i3c_ctrl_t

I3C control block. Allocate an instance specific control block to pass into the I3C API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,180 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ i3c_common_command_code_t

enum i3c_common_command_code_t

Common Command Codes defined by MIPI I3C Specification v1.1.

Enumerator

I3C_CCC_BROADCAST_ENEC Enable Slave initiated events.

I3C_CCC_BROADCAST_DISEC Disable Slave initiated events.

I3C_CCC_BROADCAST_ENTAS0 Enter Activity State 0.

I3C_CCC_BROADCAST_ENTAS1 Enter Activity State 1.

I3C_CCC_BROADCAST_ENTAS2 Enter Activity State 2.

I3C_CCC_BROADCAST_ENTAS3 Enter Activity State 3.

I3C_CCC_BROADCAST_RSTDAA Reset Dynamic Address Assignment.

I3C_CCC_BROADCAST_ENTDAA Enter Dynamic Address Assignment.

I3C_CCC_BROADCAST_DEFSVLS Define List of Slaves.

I3C_CCC_BROADCAST_SETMWL Set Max Write Length.

I3C_CCC_BROADCAST_SETMRL Set Max Read Length.

I3C_CCC_BROADCAST_ENTTM Enter Test Mode.

I3C_CCC_BROADCAST_SETBUSCON Set BUS Context.

I3C_CCC_BROADCAST_ENDXFER Data Transfer Ending Procedure Control.

I3C_CCC_BROADCAST_ENTHDR0 Enter HDR Mode 0.

I3C_CCC_BROADCAST_ENTHDR1 Enter HDR Mode 1.

I3C_CCC_BROADCAST_ENTHDR2 Enter HDR Mode 2.

I3C_CCC_BROADCAST_ENTHDR3 Enter HDR Mode 3.

I3C_CCC_BROADCAST_ENTHDR4 Enter HDR Mode 4 (Reserved for future
definition).

I3C_CCC_BROADCAST_ENTHDR5 Enter HDR Mode 5 (Reserved for future
definition).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,181 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

I3C_CCC_BROADCAST_ENTHDR6 Enter HDR Mode 6 (Reserved for future
definition).

I3C_CCC_BROADCAST_ENTHDR7 Enter HDR Mode 7 (Reserved for future
definition).

I3C_CCC_BROADCAST_SETXTIME Set Exchange Timing Info.

I3C_CCC_BROADCAST_SETAASA Set All Addresses to Static Address.

I3C_CCC_BROADCAST_RSTACT Slave Reset Action.

I3C_CCC_BROADCAST_DEFGRPA Define List of Group Address.

I3C_CCC_BROADCAST_RSTGRPA Reset Group Address.

I3C_CCC_BROADCAST_MLANE Multi-Lane Data Transfer Control.

I3C_CCC_DIRECT_ENEC Enable Slave initiated events.

I3C_CCC_DIRECT_DISEC Disable Slave initiated events.

I3C_CCC_DIRECT_ENTAS0 Enter Activity State 0.

I3C_CCC_DIRECT_ENTAS1 Enter Activity State 1.

I3C_CCC_DIRECT_ENTAS2 Enter Activity State 2.

I3C_CCC_DIRECT_ENTAS3 Enter Activity State 3.

I3C_CCC_DIRECT_RSTDAA Reset Dynamic Address Assignment
(DEPRECATED v1.0).

I3C_CCC_DIRECT_SETDASA Set Dynamic Address from Static Address.

I3C_CCC_DIRECT_SETNEWDA Set New Dynamic Address.

I3C_CCC_DIRECT_SETMWL Set Max Write Length.

I3C_CCC_DIRECT_SETMRL Set Max Read Length.

I3C_CCC_DIRECT_GETMWL Get Max Write Length.

I3C_CCC_DIRECT_GETMRL Get Max Read Length.

I3C_CCC_DIRECT_GETPID Get Provisional ID.

I3C_CCC_DIRECT_GETBCR Get Bus Characteristic Register.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,182 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

I3C_CCC_DIRECT_GETDCR Get Device Characteristic Register.

I3C_CCC_DIRECT_GETSTATUS Get Device Status.

I3C_CCC_DIRECT_GETACCMST Get Accept Mastership.

I3C_CCC_DIRECT_ENDXFER Data Transfer Ending Procedure Control.

I3C_CCC_DIRECT_SETBRGTGT Set Bridge Targets.

I3C_CCC_DIRECT_GETMXDS Get Max Data Speed.

I3C_CCC_DIRECT_GETHDRCAP Get HDR Capability.

I3C_CCC_DIRECT_SETROUTE Set Route.

I3C_CCC_DIRECT_D2DXFER Device to Device(s) Tunneling Control.

I3C_CCC_DIRECT_SETXTIME Set Exchange Timing Information.

I3C_CCC_DIRECT_GETXTIME Get Exchange Timing Information.

I3C_CCC_DIRECT_RSTACT Reset Slave Action.

I3C_CCC_DIRECT_SETGRPA Set Group Address.

I3C_CCC_DIRECT_RSTGRPA Reset Group Address.

I3C_CCC_DIRECT_MLANE Multi-Lane Data Transfer Control.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,183 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ i3c_event_t

enum i3c_event_t

I3C Events that result in a callback.

Enumerator

I3C_EVENT_ENTDAA_ADDRESS_PHASE Events that only occur in Master mode. A Slave
device has finished writing its PID, BCR, and
DCR. This information is provided in
i3c_callback_args_t::p_slave_info.

I3C_EVENT_IBI_READ_COMPLETE An IBI has successfully been read.

I3C_EVENT_IBI_READ_BUFFER_FULL There is no more space in the IBI read buffer.
The application may provide another buffer by
calling i3c_api_t::ibiRead.

I3C_EVENT_READ_BUFFER_FULL Events that only occur in Slave mode. There is
no more space in the read buffer. The
application may provide another buffer by
calling i3c_api_t::read.

I3C_EVENT_IBI_WRITE_COMPLETE A IBI was written successfully.

I3C_EVENT_HDR_EXIT_PATTERN_DETECTED The HDR exit pattern was detected on the bus.

I3C_EVENT_ADDRESS_ASSIGNMENT_COMPLETE Dynamic Address Assignment has completed.

Events that are common to Master and Slave
mode.

I3C_EVENT_COMMAND_COMPLETE A command was completed.

I3C_EVENT_WRITE_COMPLETE A write transfer has completed.

I3C_EVENT_READ_COMPLETE A read transfer has completed.

I3C_EVENT_TIMEOUT_DETECTED SCL is stuck at the logic high or logic low level
during a transfer.

I3C_EVENT_INTERNAL_ERROR An internal error occurred.

I3C_EVENT_SDA_WRITE_COMPLETE An SDA (Short Data Argument) write transfer
has completed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,184 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ i3c_device_type_t

enum i3c_device_type_t

The type of device.

Enumerator

I3C_DEVICE_TYPE_MAIN_MASTER The main master starts in master mode and is
responsible for configuring the bus.

I3C_DEVICE_TYPE_SLAVE A slave device listens to the bus for relevant I3C
Commands (CCCs) sent by the current master,
and responds accordingly. Slave devices may
also initiate In-band interrupts and Hot-Join
requests.

◆ i3c_device_protocol_t

enum i3c_device_protocol_t

Identifies the protocol for transferring data with the device on the bus.

Enumerator

I3C_DEVICE_PROTOCOL_I2C Transfers will use legacy I2C protocol with
open-drain output at a reduced baudrate.

I3C_DEVICE_PROTOCOL_I3C Transfers will use I3C SDR mode.

◆ i3c_address_assignment_mode_t

enum i3c_address_assignment_mode_t

Address Assignment Mode.

Enumerator

I3C_ADDRESS_ASSIGNMENT_MODE_ENTDAA Send the ENTDAA command to enter Dynamic
Address Assignment mode and assign dynamic
addresses in order, starting with the starting
device index. The procedure is completed after
the specified number of devices have been
configured. The callback will be called after the
PID, DCR, and BCR registers have been read
for each device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,185 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > I3C Interface

◆ i3c_ibi_type_t

enum i3c_ibi_type_t

The type of In-Band Interrupt.

Enumerator

I3C_IBI_TYPE_INTERRUPT Application specific In-Band Interrupt for
notifying the master when an event occurs.

I3C_IBI_TYPE_HOT_JOIN Request the master to perform the Dynamic
Address Assignment process.

I3C_IBI_TYPE_MASTERSHIP_REQUEST Request the master to give up control of the
bus.

5.3.5.8 LIN Interface
Interfaces » Connectivity

Detailed Description

Interface for LIN communications.

Summary
The LIN interface provides common APIs for LIN HAL drivers. The LIN interface supports the following
features:

Half-duplex master or slave LIN communication
Interrupt driven transmit/receive processing
Callback function with returned event code and data
Checksum generation and validation (standard or enhanced)

Data Structures

struct lin_transfer_params_t

struct lin_callback_args_t

struct lin_cfg_t

struct lin_api_t

struct lin_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,186 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

Typedefs

typedef void lin_ctrl_t

Enumerations

enum lin_mode_t

enum lin_checksum_type_t

enum lin_event_t

Data Structure Documentation

◆ lin_transfer_params_t

struct lin_transfer_params_t

LIN Transfer Parameters

Data Fields

uint8_t id The unprotected frame ID
associated with the information
frame transfer.

uint8_t * p_information Pointer to rx or tx buffer
associated with the information
frame transfer.

uint8_t num_bytes Length of buffer pointed to by
p_information, in bytes.

lin_checksum_type_t checksum_type Checksum type to use for
checksum generation (when
writing frame) or validation
(when reading frame). See
lin_checksum_type_t.

◆ lin_callback_args_t

struct lin_callback_args_t

LIN Callback Arguments

Data Fields

uint32_t channel Channel number.

lin_event_t event Event code.

uint8_t bytes_received Valid for the following events:

LIN_EVENT_RX_INFORM
ATION_FRAME_COMPLET
E
LIN_EVENT_ERR_FRAMIN
G
LIN_EVENT_ERR_INVALI

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,187 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

D_CHECKSUM

Contains the number of
information bytes received for
an information frame
reception.

uint8_t pid For LIN slave: Contains the
most recently received
protected identifier For LIN
master: Contains the most
recently transmitted protected
identifier.

uint8_t checksum Received checksum. Valid for
the following events:

LIN_EVENT_RX_INFORM
ATION_FRAME_COMPLET
E
LIN_EVENT_ERR_INVALI
D_CHECKSUM.

void const * p_context Context provided to user during
callback.

◆ lin_cfg_t

struct lin_cfg_t

LIN configuration block

Data Fields

uint8_t channel

 Select a channel corresponding to the channel number of the
hardware.

lin_mode_t mode

 Driver mode (master or slave)

uint8_t rxi_ipl

 Receive interrupt priority.

IRQn_Type rxi_irq

 Receive interrupt IRQ number.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,188 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

uint8_t txi_ipl

 Transmit interrupt priority.

IRQn_Type txi_irq

 Transmit interrupt IRQ number.

uint8_t tei_ipl

 Transmit end interrupt priority.

IRQn_Type tei_irq

 Transmit end interrupt IRQ number.

uint8_t eri_ipl

 Error interrupt priority.

IRQn_Type eri_irq

 Error interrupt IRQ number.

void(* p_callback)(lin_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 LIN hardware dependent configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,189 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

◆ lin_api_t

struct lin_api_t

Interface definition for LIN

Data Fields

fsp_err_t(* open)(lin_ctrl_t *const p_ctrl, lin_cfg_t const *const p_cfg)

fsp_err_t(* startFrameWrite)(lin_ctrl_t *const p_ctrl, uint8_t const id)

fsp_err_t(* informationFrameWrite)(lin_ctrl_t *const p_ctrl, const
lin_transfer_params_t *const p_transfer_params)

fsp_err_t(* informationFrameRead)(lin_ctrl_t *const p_ctrl, lin_transfer_params_t
*const p_transfer_params)

fsp_err_t(* communicationAbort)(lin_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(lin_ctrl_t *const p_ctrl,
void(*p_callback)(lin_callback_args_t *), void const *const p_context,
lin_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(lin_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* lin_api_t::open) (lin_ctrl_t *const p_ctrl, lin_cfg_t const *const p_cfg)

Open LIN device. Transmission and reception of LIN frames is enabled upon successful return from
this function.

Parameters
[in,out] p_ctrl Pointer to the LIN control

block. Must be declared by
user. Value set here.

[in] p_cfg Pointer to LIN configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,190 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

◆ startFrameWrite

fsp_err_t(* lin_api_t::startFrameWrite) (lin_ctrl_t *const p_ctrl, uint8_t const id)

Begin non-blocking transmission of the LIN start frame. The start frame consists of the break
pattern, sync word, and protected frame identifier (PID). The unprotected identifier should be
supplied. The driver will compute the PID.

When the start frame has been transmitted, the callback is called with event
LIN_EVENT_TX_START_FRAME_COMPLETE.

Parameters
[in,out] p_ctrl Pointer to the LIN control

block.

[in] id Unprotected frame identifier

◆ informationFrameWrite

fsp_err_t(* lin_api_t::informationFrameWrite) (lin_ctrl_t *const p_ctrl, const lin_transfer_params_t
*const p_transfer_params)

Begin non-blocking transmission of the LIN information frame.

The write buffer is used until the write is complete. When the write completes successfully (all
bytes are fully transmitted on the wire) the callback is called with event
LIN_EVENT_TX_INFORMATION_FRAME_COMPLETE.

Parameters
[in,out] p_ctrl Pointer to the LIN control

block.

[in] p_transfer_params Pointer to parameters
required for the write
transaction.

◆ informationFrameRead

fsp_err_t(* lin_api_t::informationFrameRead) (lin_ctrl_t *const p_ctrl, lin_transfer_params_t *const
p_transfer_params)

Begin non-blocking read of information frame bytes.

When a read completes successfully, the callback is called with event
LIN_EVENT_RX_INFORMATION_FRAME_COMPLETE.

Parameters
[in] p_ctrl Pointer to the LIN control

block for the channel.

[in] p_transfer_params Pointer to parameters
required for the read
transaction.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,191 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

◆ communicationAbort

fsp_err_t(* lin_api_t::communicationAbort) (lin_ctrl_t *const p_ctrl)

Abort ongoing transfer.

Parameters
[in] p_ctrl Pointer to the LIN control

block.

◆ callbackSet

fsp_err_t(* lin_api_t::callbackSet) (lin_ctrl_t *const p_ctrl, void(*p_callback)(lin_callback_args_t *),
void const *const p_context, lin_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the LIN control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* lin_api_t::close) (lin_ctrl_t *const p_ctrl)

Close LIN device.

Parameters
[in] p_ctrl Pointer to the LIN control

block.

◆ lin_instance_t

struct lin_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lin_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,192 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

lin_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

lin_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ lin_ctrl_t

typedef void lin_ctrl_t

LIN control block. Allocate an instance specific control block to pass into the LIN API calls.

Enumeration Type Documentation

◆ lin_mode_t

enum lin_mode_t

LIN driver mode

Enumerator

LIN_MODE_SLAVE Slave mode.

LIN_MODE_MASTER Master mode.

◆ lin_checksum_type_t

enum lin_checksum_type_t

LIN checksum type

Enumerator

LIN_CHECKSUM_TYPE_CLASSIC 8 bit LIN classic checksum over information
bytes only

LIN_CHECKSUM_TYPE_ENHANCED 8 bit LIN enhanced checksum over information
bytes and PID

LIN_CHECKSUM_TYPE_NONE Skip driver checksum generation/validation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,193 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > LIN Interface

◆ lin_event_t

enum lin_event_t

LIN Event codes

Enumerator

LIN_EVENT_NONE No event present.

LIN_EVENT_RX_START_FRAME_COMPLETE Start frame received event.

LIN_EVENT_RX_INFORMATION_FRAME_COMPLETE

Information frame received event.

LIN_EVENT_TX_START_FRAME_COMPLETE Start frame transmission complete event.

LIN_EVENT_TX_INFORMATION_FRAME_COMPLETE

Information transmission complete event.

LIN_EVENT_ERR_INVALID_CHECKSUM Information frame received successfully, but
checksum was invalid.

LIN_EVENT_ERR_BUS_COLLISION_DETECTED Bus collision detection event.

LIN_EVENT_ERR_FRAMING Framing error event.

LIN_EVENT_ERR_COUNTER_OVERFLOW Counter overflow event.

LIN_EVENT_ERR_OVERRUN Overrun error event.

LIN_EVENT_ERR_PARITY Parity error event (start frame only, LIN
information is sent without parity)

5.3.5.9 SMCI Interface
Interfaces » Connectivity

Detailed Description

Interface for SMCI communications.

Summary
The SMCI interface provides common APIs for SMCI HAL drivers. The SMCI interface supports the
following features:

Interrupt driven transmit/receive processing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,194 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

Callback function with returned event code
Runtime baud-rate change (baud = 1/ETU)
Hardware resource locking during a transaction

Data Structures

struct smci_status_t

struct smci_transfer_mode_t

struct smci_speed_params_t

struct smci_callback_args_t

struct smci_cfg_t

struct smci_api_t

struct smci_instance_t

Typedefs

typedef void smci_ctrl_t

Enumerations

enum smci_state_t

enum smci_event_t

enum smci_convention_type_t

enum smci_clock_conversion_integer_t

enum smci_baudrate_adjustment_integer_t

enum smci_protocol_type_t

Data Structure Documentation

◆ smci_status_t

struct smci_status_t

SMCI driver specific information

Data Fields

smci_state_t smci_state State ot the smci state
machine.

uint32_t bytes_recvd Bytes read into receive buffer
since read was called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,195 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ smci_transfer_mode_t

struct smci_transfer_mode_t

SMCI Transfer Mode settings

Data Fields

smci_protocol_type_t protocol Protocol (Normal t=0, or Block
t=1)

smci_convention_type_t convention Convention Direct or Inverse.

bool gsm_mode True=GMS Mode,
false=Normal.

◆ smci_speed_params_t

struct smci_speed_params_t

SMCI settings that are used as inputs to register setting calculations

Data Fields

uint32_t baudrate Bits per second requested,
1/ETU.

smci_baudrate_adjustment_inte
ger_t

di Referred to as D in ISO spec
(from Table 8 in ISO7816-3 3rd
Edition)

smci_clock_conversion_integer_
t

fi Index of in ISO spec (from Table
8 in ISO7816-3 3rd Edition)

◆ smci_callback_args_t

struct smci_callback_args_t

SMCI Callback parameter definition

Data Fields

uint32_t channel Device channel number.

smci_event_t event Event code.

uint8_t data Data Byte to process.

Contains the next character
received for the events
SMCI_EVENT_RX_CHAR,
SMCI_EVENT_ERR_PARITY,
SMCI_EVENT_ERR_LOW_SIGNAL,
or SMCI_EVENT_ERR_OVERRUN.
Otherwise unused.

void const * p_context Context provided to user during
callback.

◆ smci_cfg_t

struct smci_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,196 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

Configuration Structure for SMCI

Data Fields

uint8_t channel

 Channel number of the hardware.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t eri_ipl

 Error interrupt priority.

IRQn_Type rxi_irq

 Receive interrupt IRQ number.

IRQn_Type txi_irq

 Transmit interrupt IRQ number.

IRQn_Type eri_irq

 Error interrupt IRQ number.

void(* p_callback)(smci_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,197 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

void const * p_extend

 SMCI hardware dependent configuration.

◆ smci_api_t

struct smci_api_t

Shared Interface definition for SMCI

Data Fields

fsp_err_t(* open)(smci_ctrl_t *const p_ctrl, smci_cfg_t const *const p_cfg)

fsp_err_t(* read)(smci_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

fsp_err_t(* write)(smci_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

fsp_err_t(* transferModeSet)(smci_ctrl_t *const p_ctrl, smci_transfer_mode_t
const *const p_transfer_mode_params)

fsp_err_t(* baudSet)(smci_ctrl_t *const p_ctrl, void const *const p_baud_setting)

fsp_err_t(* statusGet)(smci_ctrl_t *const p_ctrl, smci_status_t *const p_status)

fsp_err_t(* clockControl)(smci_ctrl_t *const p_ctrl, bool clock_enable)

fsp_err_t(* callbackSet)(smci_ctrl_t *const p_ctrl,
void(*p_callback)(smci_callback_args_t *), void const *const
p_context, smci_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(smci_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,198 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ open

fsp_err_t(* smci_api_t::open) (smci_ctrl_t *const p_ctrl, smci_cfg_t const *const p_cfg)

Open Smart Card Interface Mode (SMCI)

Parameters
[in,out] p_ctrl Pointer to the SMCI control

block. Must be declared by
user. Value set here.

[in] smci_cfg_t Pointer to SMCI configuration
structure. All elements of
this structure must be set by
user.

◆ read

fsp_err_t(* smci_api_t::read) (smci_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes)

Read from Smart Card device. The read buffer is used until the read is complete. When a transfer is
complete, the callback is called with event SMCI_EVENT_RX_COMPLETE. Bytes received outside an
active transfer are received in the callback function with event SMCI_EVENT_RX_CHAR.

Parameters
[in] p_ctrl Pointer to the SMCI control

block for the channel.

[in] p_dest Destination address to read
data from.

[in] bytes Read data length.

◆ write

fsp_err_t(* smci_api_t::write) (smci_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Write to Smart Card device. The write buffer is used until write is complete. Do not overwrite write
buffer contents until the write is finished. When the write is complete (all bytes are fully
transmitted on the wire), the callback called with event SMCI_EVENT_TX_COMPLETE.

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[in] p_src Source address to write data
to.

[in] bytes Write data length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,199 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ transferModeSet

fsp_err_t(* smci_api_t::transferModeSet) (smci_ctrl_t *const p_ctrl, smci_transfer_mode_t const
*const p_transfer_mode_params)

Change the peripheral settings based on provided transfer mode and data convention type

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[in] p_transfer_mode_params Pointer to SMCI setting like
protocol, convention, and
gsm_mode

◆ baudSet

fsp_err_t(* smci_api_t::baudSet) (smci_ctrl_t *const p_ctrl, void const *const p_baud_setting)

Change baud rate.

Warning
Calling this API aborts any in-progress transmission and disables reception until the new
baud settings have been applied.

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[in] p_baud_setting Pointer to module specific
setting for configuring baud
rate.

◆ statusGet

fsp_err_t(* smci_api_t::statusGet) (smci_ctrl_t *const p_ctrl, smci_status_t *const p_status)

Get the driver specific information.

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[out] p_status State info for the driver.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,200 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ clockControl

fsp_err_t(* smci_api_t::clockControl) (smci_ctrl_t *const p_ctrl, bool clock_enable)

Enable or disable the SMCI clock to control the start of the activation or de-activation

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[in] clock_enable True: enables clock output,
False disables it

◆ callbackSet

fsp_err_t(* smci_api_t::callbackSet) (smci_ctrl_t *const p_ctrl,
void(*p_callback)(smci_callback_args_t *), void const *const p_context, smci_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and callback memory pointer.

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_callback_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* smci_api_t::close) (smci_ctrl_t *const p_ctrl)

Close SMCI device.

Parameters
[in] p_ctrl Pointer to the SMCI control

block.

◆ smci_instance_t

struct smci_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,201 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

Data Fields

smci_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

smci_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

smci_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ smci_ctrl_t

typedef void smci_ctrl_t

Smart Card Interface control block. Allocate an instance specific control block to pass into the SMCI
API calls.

Enumeration Type Documentation

◆ smci_state_t

enum smci_state_t

Enumerator

SMCI_STATE_IDLE_CLOCK_OFF SMCI idle state with no clock output.

SMCI_STATE_TX_RX_IDLE SMCI is in idle state, clock is active.

SMCI_STATE_TX_PROGRESSING Transmission is in progress.

SMCI_STATE_RX_PROGRESSING Reception is in progress.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,202 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ smci_event_t

enum smci_event_t

SMCI Event codes

Enumerator

SMCI_EVENT_RX_COMPLETE Receive complete event.

SMCI_EVENT_TX_COMPLETE Transmit complete event.

SMCI_EVENT_RX_CHAR Character transfer is completed.

SMCI_EVENT_ERR_PARITY Parity error event.

SMCI_EVENT_ERR_LOW_SIGNAL Low error signal response occurred event.

SMCI_EVENT_ERR_OVERRUN Overrun error event.

◆ smci_convention_type_t

enum smci_convention_type_t

Enumerator

SMCI_CONVENTION_TYPE_DIRECT Direct convention type (LSB First, High=1)

SMCI_CONVENTION_TYPE_INVERSE Inverse convention type (MSB First, Low=1)

◆ smci_clock_conversion_integer_t

enum smci_clock_conversion_integer_t

Enumerator

SMCI_CLOCK_CONVERSION_INTEGER_372_4 372 base cycles for 1-bit period, max freq =
4Mhz

SMCI_CLOCK_CONVERSION_INTEGER_372_5 372 base cycles for 1-bit period, max freq =
5Mhz

SMCI_CLOCK_CONVERSION_INTEGER_558_6 558 base cycles for 1-bit period, max freq =
6Mhz

SMCI_CLOCK_CONVERSION_INTEGER_744_8 744 base cycles for 1-bit period, max freq =
8Mhz

SMCI_CLOCK_CONVERSION_INTEGER_1116_12

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,203 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

1116 base cycles for 1-bit period, max freq =
12Mhz

SMCI_CLOCK_CONVERSION_INTEGER_1488_16 1488 base cycles for 1-bit period, max freq =
16Mhz

SMCI_CLOCK_CONVERSION_INTEGER_1860_20 1860 base cycles for 1-bit period, max freq =
20Mhz

SMCI_CLOCK_CONVERSION_INTEGER_UNSUPPOR
TED7

Unsupported Clock Cycles.

SMCI_CLOCK_CONVERSION_INTEGER_UNSUPPOR
TED8

Unsupported Clock Cycles.

SMCI_CLOCK_CONVERSION_INTEGER_512_5 512 base cycles for 1-bit period, max freq =
5Mhz

SMCI_CLOCK_CONVERSION_INTEGER_768_75 768 base cycles for 1-bit period, max freq =
7.5Mhz

SMCI_CLOCK_CONVERSION_INTEGER_1024_10 1024 base cycles for 1-bit period, max freq =
10Mhz

SMCI_CLOCK_CONVERSION_INTEGER_1536_15 1536 base cycles for 1-bit period, max freq =
15Mhz

SMCI_CLOCK_CONVERSION_INTEGER_2048_20 2048 base cycles for 1-bit period, max freq =
20Mhz

SMCI_CLOCK_CONVERSION_INTEGER_UNSUPPOR
TED14

Unsupported Clock Cycles.

SMCI_CLOCK_CONVERSION_INTEGER_UNSUPPOR
TED15

Unsupported Clock Cycles.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,204 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ smci_baudrate_adjustment_integer_t

enum smci_baudrate_adjustment_integer_t

Enumerator

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU0 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_1 Di=1.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_2 Di=2.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_4 Di=4.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_8 Di=8.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_16 Di=16.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_32 Di=32.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_64 Di=64.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_12 Di=12.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_20 Di=20.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU10 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU11 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU12 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU13 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU14 RESERVED.

SMCI_BAUDRATE_ADJUSTMENT_INTEGER_RFU15 RESERVED.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,205 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SMCI Interface

◆ smci_protocol_type_t

enum smci_protocol_type_t

SMCI Protocol Type according to ISO7816-3

Enumerator

SMCI_PROTOCOL_TYPE_T0 Normal mode operation (Protocol T = 0)

SMCI_PROTOCOL_TYPE_T1 Block transfer mode operation (Protocol T = 1)

5.3.5.10 SPI Interface
Interfaces » Connectivity

Detailed Description

Interface for SPI communications.

Summary
Provides a common interface for communication using the SPI Protocol.

Data Structures

struct spi_callback_args_t

struct spi_write_read_guard_args_t

struct spi_cfg_t

struct spi_api_t

struct spi_instance_t

Typedefs

typedef void spi_ctrl_t

Enumerations

enum spi_bit_width_t

enum spi_mode_t

enum spi_clk_phase_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,206 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

enum spi_clk_polarity_t

enum spi_mode_fault_t

enum spi_bit_order_t

enum spi_event_t

Data Structure Documentation

◆ spi_callback_args_t

struct spi_callback_args_t

Common callback parameter definition

Data Fields

uint32_t channel Device channel number.

spi_event_t event Event code.

void const * p_context Context provided to user during
callback.

◆ spi_write_read_guard_args_t

struct spi_write_read_guard_args_t

Non-secure arguments for write-read guard function

◆ spi_cfg_t

struct spi_cfg_t

SPI interface configuration

Data Fields

uint8_t channel

 Channel number to be used.

IRQn_Type rxi_irq

 Receive Buffer Full IRQ number.

IRQn_Type txi_irq

 Transmit Buffer Empty IRQ number.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,207 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

IRQn_Type tei_irq

 Transfer Complete IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t rxi_ipl

 Receive Interrupt priority.

uint8_t txi_ipl

 Transmit Interrupt priority.

uint8_t tei_ipl

 Transfer Complete Interrupt priority.

uint8_t eri_ipl

 Error Interrupt priority.

spi_mode_t operating_mode

 Select master or slave operating mode.

spi_clk_phase_t clk_phase

 Data sampling on odd or even clock edge.

spi_clk_polarity_t clk_polarity

 Clock level when idle.

spi_mode_fault_t mode_fault

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,208 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

 Mode fault error (master/slave conflict) flag.

spi_bit_order_t bit_order

 Select to transmit MSB/LSB first.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMAC write transfer, link a transfer instance here.
Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMAC read transfer, link a transfer instance here. Set
to NULL if unused.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Extended SPI hardware dependent configuration.

◆ spi_api_t

struct spi_api_t

Shared Interface definition for SPI

Data Fields

fsp_err_t(* open)(spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t(* read)(spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,209 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

fsp_err_t(* write)(spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t(* writeRead)(spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t(* callbackSet)(spi_ctrl_t *const p_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(spi_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* spi_api_t::open) (spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to SPI configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,210 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ read

fsp_err_t(* spi_api_t::read) (spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from a SPI device.

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

◆ write

fsp_err_t(* spi_api_t::write) (spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device.

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,211 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ writeRead

fsp_err_t(* spi_api_t::writeRead) (spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to a SPI device while receiving data from a SPI device (full duplex).

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count. The
argument must not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,212 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ callbackSet

fsp_err_t(* spi_api_t::callbackSet) (spi_ctrl_t *const p_ctrl, void(*p_callback)(spi_callback_args_t *),
void const *const p_context, spi_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the SPI control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* spi_api_t::close) (spi_ctrl_t *const p_ctrl)

Remove power to the SPI channel designated by the handle and disable the associated interrupts.

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

◆ spi_instance_t

struct spi_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

spi_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

spi_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

spi_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,213 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ spi_ctrl_t

typedef void spi_ctrl_t

SPI control block. Allocate an instance specific control block to pass into the SPI API calls.

Enumeration Type Documentation

◆ spi_bit_width_t

enum spi_bit_width_t

Data bit width

Enumerator

SPI_BIT_WIDTH_4_BITS Data bit width is 4 bits.

SPI_BIT_WIDTH_5_BITS Data bit width is 5 bits.

SPI_BIT_WIDTH_6_BITS Data bit width is 6 bits.

SPI_BIT_WIDTH_7_BITS Data bit width is 7 bits.

SPI_BIT_WIDTH_8_BITS Data bit width is 8 bits.

SPI_BIT_WIDTH_9_BITS Data bit width is 9 bits.

SPI_BIT_WIDTH_10_BITS Data bit width is 10 bits.

SPI_BIT_WIDTH_11_BITS Data bit width is 11 bits.

SPI_BIT_WIDTH_12_BITS Data bit width is 12 bits.

SPI_BIT_WIDTH_13_BITS Data bit width is 13 bits.

SPI_BIT_WIDTH_14_BITS Data bit width is 14 bits.

SPI_BIT_WIDTH_15_BITS Data bit width is 15 bits.

SPI_BIT_WIDTH_16_BITS Data bit width is 16 bits.

SPI_BIT_WIDTH_17_BITS Data bit width is 17 bits.

SPI_BIT_WIDTH_18_BITS Data bit width is 18 bits.

SPI_BIT_WIDTH_19_BITS Data bit width is 19 bits.

SPI_BIT_WIDTH_20_BITS Data bit width is 20 bits.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,214 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

SPI_BIT_WIDTH_21_BITS Data bit width is 21 bits.

SPI_BIT_WIDTH_22_BITS Data bit width is 22 bits.

SPI_BIT_WIDTH_23_BITS Data bit width is 23 bits.

SPI_BIT_WIDTH_24_BITS Data bit width is 24 bits.

SPI_BIT_WIDTH_25_BITS Data bit width is 25 bits.

SPI_BIT_WIDTH_26_BITS Data bit width is 26 bits.

SPI_BIT_WIDTH_27_BITS Data bit width is 27 bits.

SPI_BIT_WIDTH_28_BITS Data bit width is 28 bits.

SPI_BIT_WIDTH_29_BITS Data bit width is 29 bits.

SPI_BIT_WIDTH_30_BITS Data bit width is 30 bits.

SPI_BIT_WIDTH_31_BITS Data bit width is 31 bits.

SPI_BIT_WIDTH_32_BITS Data bit width is 32 bits.

◆ spi_mode_t

enum spi_mode_t

Master or slave operating mode

Enumerator

SPI_MODE_MASTER Channel operates as SPI master.

SPI_MODE_SLAVE Channel operates as SPI slave.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,215 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ spi_clk_phase_t

enum spi_clk_phase_t

Clock phase

Enumerator

SPI_CLK_PHASE_EDGE_ODD 0: Data sampling on odd edge, data variation
on even edge

SPI_CLK_PHASE_EDGE_EVEN 1: Data variation on odd edge, data sampling
on even edge

◆ spi_clk_polarity_t

enum spi_clk_polarity_t

Clock polarity

Enumerator

SPI_CLK_POLARITY_LOW 0: Clock polarity is low when idle

SPI_CLK_POLARITY_HIGH 1: Clock polarity is high when idle

◆ spi_mode_fault_t

enum spi_mode_fault_t

Mode fault error flag. This error occurs when the device is setup as a master, but the SSLA line
does not seem to be controlled by the master. This usually happens when the connecting device is
also acting as master. A similar situation can also happen when configured as a slave.

Enumerator

SPI_MODE_FAULT_ERROR_ENABLE Mode fault error flag on.

SPI_MODE_FAULT_ERROR_DISABLE Mode fault error flag off.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,216 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > SPI Interface

◆ spi_bit_order_t

enum spi_bit_order_t

Bit order

Enumerator

SPI_BIT_ORDER_MSB_FIRST Send MSB first in transmission.

SPI_BIT_ORDER_LSB_FIRST Send LSB first in transmission.

◆ spi_event_t

enum spi_event_t

SPI events

Enumerator

SPI_EVENT_TRANSFER_COMPLETE The data transfer was completed.

SPI_EVENT_TRANSFER_ABORTED The data transfer was aborted.

SPI_EVENT_ERR_MODE_FAULT Mode fault error.

SPI_EVENT_ERR_READ_OVERFLOW Read overflow error.

SPI_EVENT_ERR_PARITY Parity error.

SPI_EVENT_ERR_OVERRUN Overrun error.

SPI_EVENT_ERR_FRAMING Framing error.

SPI_EVENT_ERR_MODE_UNDERRUN Underrun error.

5.3.5.11 UART Interface
Interfaces » Connectivity

Detailed Description

Interface for UART communications.

Summary

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,217 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

The UART interface provides common APIs for UART HAL drivers. The UART interface supports the
following features:

Full-duplex UART communication
Interrupt driven transmit/receive processing
Callback function with returned event code
Runtime baud-rate change
Hardware resource locking during a transaction
CTS/RTS hardware flow control support (with an associated IOPORT pin)

Data Structures

struct uart_info_t

struct uart_callback_args_t

struct uart_cfg_t

struct uart_api_t

struct uart_instance_t

Typedefs

typedef void uart_ctrl_t

Enumerations

enum uart_event_t

enum uart_data_bits_t

enum uart_parity_t

enum uart_stop_bits_t

enum uart_dir_t

Data Structure Documentation

◆ uart_info_t

struct uart_info_t

UART driver specific information

Data Fields

uint32_t write_bytes_max Maximum bytes that can be
written at this time. Only
applies if
uart_cfg_t::p_transfer_tx is not
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,218 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

uint32_t read_bytes_max Maximum bytes that are
available to read at one time.
Only applies if
uart_cfg_t::p_transfer_rx is not
NULL.

◆ uart_callback_args_t

struct uart_callback_args_t

UART Callback parameter definition

Data Fields

uint32_t channel Device channel number.

uart_event_t event Event code.

uint32_t data Contains the next character
received for the events
UART_EVENT_RX_CHAR,
UART_EVENT_ERR_PARITY,
UART_EVENT_ERR_FRAMING, or
UART_EVENT_ERR_OVERFLOW.
Otherwise unused.

void const * p_context Context provided to user during
callback.

◆ uart_cfg_t

struct uart_cfg_t

UART Configuration

Data Fields

uint8_t channel

 Select a channel corresponding to the channel number of the
hardware.

uart_data_bits_t data_bits

 Data bit length (8 or 7 or 9)

uart_parity_t parity

 Parity type (none or odd or even)

uart_stop_bits_t stop_bits

 Stop bit length (1 or 2)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,219 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

uint8_t rxi_ipl

 Receive interrupt priority.

IRQn_Type rxi_irq

 Receive interrupt IRQ number.

uint8_t txi_ipl

 Transmit interrupt priority.

IRQn_Type txi_irq

 Transmit interrupt IRQ number.

uint8_t tei_ipl

 Transmit end interrupt priority.

IRQn_Type tei_irq

 Transmit end interrupt IRQ number.

uint8_t eri_ipl

 Error interrupt priority.

IRQn_Type eri_irq

 Error interrupt IRQ number.

transfer_instance_t const * p_transfer_rx

transfer_instance_t const * p_transfer_tx

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,220 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

void(* p_callback)(uart_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 UART hardware dependent configuration.

Field Documentation

◆ p_transfer_rx

transfer_instance_t const* uart_cfg_t::p_transfer_rx

Optional transfer instance used to receive multiple bytes without interrupts. Set to NULL if unused.
If NULL, the number of bytes allowed in the read API is limited to one byte at a time.

◆ p_transfer_tx

transfer_instance_t const* uart_cfg_t::p_transfer_tx

Optional transfer instance used to send multiple bytes without interrupts. Set to NULL if unused. If
NULL, the number of bytes allowed in the write APIs is limited to one byte at a time.

◆ uart_api_t

struct uart_api_t

Shared Interface definition for UART

Data Fields

fsp_err_t(* open)(uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

fsp_err_t(* read)(uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

fsp_err_t(* write)(uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

fsp_err_t(* baudSet)(uart_ctrl_t *const p_ctrl, void const *const
p_baudrate_info)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,221 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

fsp_err_t(* infoGet)(uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

fsp_err_t(* communicationAbort)(uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t(* callbackSet)(uart_ctrl_t *const p_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(uart_ctrl_t *const p_ctrl)

fsp_err_t(* readStop)(uart_ctrl_t *const p_ctrl, uint32_t *remaining_bytes)

Field Documentation

◆ open

fsp_err_t(* uart_api_t::open) (uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

Open UART device.

Parameters
[in,out] p_ctrl Pointer to the UART control

block. Must be declared by
user. Value set here.

[in] uart_cfg_t Pointer to UART
configuration structure. All
elements of this structure
must be set by user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,222 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

◆ read

fsp_err_t(* uart_api_t::read) (uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes)

Read from UART device. The read buffer is used until the read is complete. When a transfer is
complete, the callback is called with event UART_EVENT_RX_COMPLETE. Bytes received outside an
active transfer are received in the callback function with event UART_EVENT_RX_CHAR. The
maximum transfer size is reported by infoGet().

Parameters
[in] p_ctrl Pointer to the UART control

block for the channel.

[in] p_dest Destination address to read
data from.

[in] bytes Read data length.

◆ write

fsp_err_t(* uart_api_t::write) (uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Write to UART device. The write buffer is used until write is complete. Do not overwrite write buffer
contents until the write is finished. When the write is complete (all bytes are fully transmitted on
the wire), the callback called with event UART_EVENT_TX_COMPLETE. The maximum transfer size is
reported by infoGet().

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in] p_src Source address to write data
to.

[in] bytes Write data length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,223 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

◆ baudSet

fsp_err_t(* uart_api_t::baudSet) (uart_ctrl_t *const p_ctrl, void const *const p_baudrate_info)

Change baud rate.

Warning
Calling this API aborts any in-progress transmission and disables reception until the new
baud settings have been applied.

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in] p_baudrate_info Pointer to module specific
information for configuring
baud rate.

◆ infoGet

fsp_err_t(* uart_api_t::infoGet) (uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

Get the driver specific information.

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in] baudrate Baud rate in bps.

◆ communicationAbort

fsp_err_t(* uart_api_t::communicationAbort) (uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

Abort ongoing transfer.

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in] communication_to_abort Type of abort request.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,224 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

◆ callbackSet

fsp_err_t(* uart_api_t::callbackSet) (uart_ctrl_t *const p_ctrl, void(*p_callback)(uart_callback_args_t
*), void const *const p_context, uart_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* uart_api_t::close) (uart_ctrl_t *const p_ctrl)

Close UART device.

Parameters
[in] p_ctrl Pointer to the UART control

block.

◆ readStop

fsp_err_t(* uart_api_t::readStop) (uart_ctrl_t *const p_ctrl, uint32_t *remaining_bytes)

Stop ongoing read and return the number of bytes remaining in the read.

Parameters
[in] p_ctrl Pointer to the UART control

block.

[in,out] remaining_bytes Pointer to location to store
remaining bytes for read.

◆ uart_instance_t

struct uart_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,225 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

uart_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

uart_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

uart_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ uart_ctrl_t

typedef void uart_ctrl_t

UART control block. Allocate an instance specific control block to pass into the UART API calls.

Enumeration Type Documentation

◆ uart_event_t

enum uart_event_t

UART Event codes

Enumerator

UART_EVENT_RX_COMPLETE Receive complete event.

UART_EVENT_TX_COMPLETE Transmit complete event.

UART_EVENT_RX_CHAR Character received.

UART_EVENT_ERR_PARITY Parity error event.

UART_EVENT_ERR_FRAMING Mode fault error event.

UART_EVENT_ERR_OVERFLOW FIFO Overflow error event.

UART_EVENT_BREAK_DETECT Break detect error event.

UART_EVENT_TX_DATA_EMPTY Last byte is transmitting, ready for more data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,226 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

◆ uart_data_bits_t

enum uart_data_bits_t

UART Data bit length definition

Enumerator

UART_DATA_BITS_5 Data bits 5-bit.

UART_DATA_BITS_9 Data bits 9-bit.

UART_DATA_BITS_7 Data bits 7-bit.

UART_DATA_BITS_8 Data bits 8-bit.

UART_DATA_BITS_9 Data bits 9-bit.

UART_DATA_BITS_8 Data bits 8-bit.

UART_DATA_BITS_7 Data bits 7-bit.

◆ uart_parity_t

enum uart_parity_t

UART Parity definition

Enumerator

UART_PARITY_OFF No parity.

UART_PARITY_ZERO Zero parity.

UART_PARITY_EVEN Even parity.

UART_PARITY_ODD Odd parity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,227 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > UART Interface

◆ uart_stop_bits_t

enum uart_stop_bits_t

UART Stop bits definition

Enumerator

UART_STOP_BITS_1 Stop bit 1-bit.

UART_STOP_BITS_2 Stop bits 2-bit.

◆ uart_dir_t

enum uart_dir_t

UART transaction definition

Enumerator

UART_DIR_RX_TX Both RX and TX.

UART_DIR_RX Only RX.

UART_DIR_TX Only TX.

5.3.5.12 USB HCDC Interface
Interfaces » Connectivity

Detailed Description

Interface for USB HCDC functions.

Summary
The USB HCDC interface provides USB HCDC functionality.

Data Structures

struct usb_hcdc_encapsulated_t

struct usb_hcdc_abstractstate_t

struct usb_hcdc_countrysetting_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,228 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

union usb_hcdc_commfeature_t

struct usb_hcdc_linecoding_t

struct usb_hcdc_controllinestate_t

struct usb_hcdc_serialstate_t

struct usb_hcdc_breakduration_t

struct usb_hcdc_device_info_t

struct usb_hcdc_api_t

struct usb_hcdc_instance_t

Enumerations

enum usb_hcdc_data_bit_t

enum usb_hcdc_stop_bit_t

enum usb_hcdc_parity_bit_t

enum usb_hcdc_line_speed_t

enum usb_hcdc_feature_selector_t

Data Structure Documentation

◆ usb_hcdc_encapsulated_t

struct usb_hcdc_encapsulated_t

Encapsulated data

Data Fields

uint8_t * p_data Protocol dependent data.

uint16_t wlength Data length in bytes.

◆ usb_hcdc_abstractstate_t

struct usb_hcdc_abstractstate_t

Abstract Control Model (ACM) settings bitmap

Data Fields

uint16_t bis: 1 Idle enable.

uint16_t bdms: 1 Data multiplexing enable.

uint16_t rsv: 14 Reserved.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,229 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

◆ usb_hcdc_countrysetting_t

struct usb_hcdc_countrysetting_t

Country code data

Data Fields

uint16_t country_code Country code.

◆ usb_hcdc_commfeature_t

union usb_hcdc_commfeature_t

Feature setting data

Data Fields

usb_hcdc_abstractstate_t abstract_state ACM settings bitmap.

usb_hcdc_countrysetting_t country_setting Country code.

◆ usb_hcdc_linecoding_t

struct usb_hcdc_linecoding_t

Virtual UART configuration (line coding)

Data Fields

usb_hcdc_line_speed_t dwdte_rate Data terminal rate in bits per
second.

usb_hcdc_stop_bit_t bchar_format Stop bits.

usb_hcdc_parity_bit_t bparity_type Parity.

usb_hcdc_data_bit_t bdata_bits Data bits.

uint8_t rsv Reserved.

◆ usb_hcdc_controllinestate_t

struct usb_hcdc_controllinestate_t

Virtual UART control signal bitmap

Data Fields

uint16_t bdtr: 1 DTR.

uint16_t brts: 1 RTS.

uint16_t rsv: 14 Reserved.

◆ usb_hcdc_serialstate_t

struct usb_hcdc_serialstate_t

Virtual UART state bitmap

Data Fields

uint16_t brx_carrier: 1 DCD signal.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,230 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

uint16_t btx_carrier: 1 DSR signal.

uint16_t bbreak: 1 Break detection status.

uint16_t bring_signal: 1 Ring signal.

uint16_t bframing: 1 Framing error.

uint16_t bparity: 1 Parity error.

uint16_t bover_run: 1 Over Run error.

uint16_t rsv: 9 Reserved.

◆ usb_hcdc_breakduration_t

struct usb_hcdc_breakduration_t

Break duration data

Data Fields

uint16_t wtime_ms Duration of Break.

◆ usb_hcdc_device_info_t

struct usb_hcdc_device_info_t

Break duration data

Data Fields

uint16_t vendor_id Vendor ID.

uint16_t product_id Product ID.

uint8_t subclass Subclass code.

◆ usb_hcdc_api_t

struct usb_hcdc_api_t

USB HCDC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* controlDataRead)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, uint8_t device_address)

fsp_err_t(* deviceRegister)(usb_ctrl_t *const p_api_ctrl, uint16_t vendor_id,
uint16_t product_id)

fsp_err_t(* infoGet)(usb_ctrl_t *const p_api_ctrl, usb_hcdc_device_info_t *p_info,
uint8_t device_address)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,231 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

◆ controlDataRead

fsp_err_t(* usb_hcdc_api_t::controlDataRead) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, uint8_t device_address)

Read Control Data (CDC Interrupt IN data)

Parameters
[in] p_api_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] device_address Device address.

◆ deviceRegister

fsp_err_t(* usb_hcdc_api_t::deviceRegister) (usb_ctrl_t *const p_api_ctrl, uint16_t vendor_id,
uint16_t product_id)

Register the specified vendor class device in the device table.

Parameters
[in] p_api_ctrl Pointer to control structure.

[in] vendor_id Vendor ID.

[in] product_id Product ID.

◆ infoGet

fsp_err_t(* usb_hcdc_api_t::infoGet) (usb_ctrl_t *const p_api_ctrl, usb_hcdc_device_info_t *p_info,
uint8_t device_address)

Get connected device information.

Parameters
[in] p_api_ctrl Pointer to control structure.

[in] p_info Pointer to store CDC device
information.

[in] device_address Device address.

◆ usb_hcdc_instance_t

struct usb_hcdc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,232 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_hcdc_api_t const * p_api Pointer to the API structure for
this instance.

Enumeration Type Documentation

◆ usb_hcdc_data_bit_t

enum usb_hcdc_data_bit_t

Virtual UART data length

Enumerator

USB_HCDC_DATA_BIT_7 7 bits

USB_HCDC_DATA_BIT_8 8 bits

◆ usb_hcdc_stop_bit_t

enum usb_hcdc_stop_bit_t

Virtual UART stop bit length

Enumerator

USB_HCDC_STOP_BIT_1 1 bit

USB_HCDC_STOP_BIT_15 1.5 bits

USB_HCDC_STOP_BIT_2 2 bits

◆ usb_hcdc_parity_bit_t

enum usb_hcdc_parity_bit_t

Virtual UART parity bit setting

Enumerator

USB_HCDC_PARITY_BIT_NONE No parity bit.

USB_HCDC_PARITY_BIT_ODD Odd parity.

USB_HCDC_PARITY_BIT_EVEN Even parity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,233 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HCDC Interface

◆ usb_hcdc_line_speed_t

enum usb_hcdc_line_speed_t

Virtual UART bitrate

◆ usb_hcdc_feature_selector_t

enum usb_hcdc_feature_selector_t

Feature Selector

5.3.5.13 USB HHID Interface
Interfaces » Connectivity

Detailed Description

Interface for USB HHID functions.

Summary
The USB HHID interface provides USB HHID functionality.

Data Structures

struct usb_hhid_api_t

struct usb_hhid_instance_t

Macros

#define USB_HID_OTHER

 Other.

#define USB_HID_KEYBOARD

 Keyboard.

#define USB_HID_MOUSE

 Mouse.

#define USB_HID_IN

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,234 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HHID Interface

 In Transfer.

#define USB_HID_OUT

 Out Transfer.

Data Structure Documentation

◆ usb_hhid_api_t

struct usb_hhid_api_t

USB HHID functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* typeGet)(usb_ctrl_t *const p_ctrl, uint8_t *p_type, uint8_t
device_address)

fsp_err_t(* maxPacketSizeGet)(usb_ctrl_t *const p_ctrl, uint16_t *p_size, uint8_t
direction, uint8_t device_address)

Field Documentation

◆ typeGet

fsp_err_t(* usb_hhid_api_t::typeGet) (usb_ctrl_t *const p_ctrl, uint8_t *p_type, uint8_t
device_address)

Get HID protocol.(USB Mouse/USB Keyboard/Other Type.)

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_type Pointer to store HID protocol
value.

[in] device_address Device Address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,235 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HHID Interface

◆ maxPacketSizeGet

fsp_err_t(* usb_hhid_api_t::maxPacketSizeGet) (usb_ctrl_t *const p_ctrl, uint16_t *p_size, uint8_t
direction, uint8_t device_address)

Obtains max packet size for the connected HID device. The max packet size is set to the area. Set
the direction (USB_HID_IN/USB_HID_OUT).

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_size Pointer to the area to store
the max package size.

[in] direction Transfer direction.

[in] device_address Device Address.

◆ usb_hhid_instance_t

struct usb_hhid_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_hhid_api_t const * p_api Pointer to the API structure for
this instance.

5.3.5.14 USB HMSC Interface
Interfaces » Connectivity

Detailed Description

Interface for USB HMSC functions.

Summary
The USB HMSC interface provides USB HMSC functionality.

Data Structures

struct usb_hmsc_api_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,236 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HMSC Interface

enum usb_atapi_t

enum usb_csw_result_t

Data Structure Documentation

◆ usb_hmsc_api_t

struct usb_hmsc_api_t

USB HMSC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* storageCommand)(usb_ctrl_t *const p_ctrl, uint8_t *buf, uint8_t
command, uint8_t destination)

fsp_err_t(* driveNumberGet)(usb_ctrl_t *const p_ctrl, uint8_t *p_drive, uint8_t
destination)

fsp_err_t(* storageReadSector)(uint16_t drive_number, uint8_t *const buff,
uint32_t sector_number, uint16_t sector_count)

fsp_err_t(* storageWriteSector)(uint16_t drive_number, uint8_t const *const
buff, uint32_t sector_number, uint16_t sector_count)

fsp_err_t(* semaphoreGet)(void)

fsp_err_t(* semaphoreRelease)(void)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,237 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HMSC Interface

◆ storageCommand

fsp_err_t(* usb_hmsc_api_t::storageCommand) (usb_ctrl_t *const p_ctrl, uint8_t *buf, uint8_t
command, uint8_t destination)

Processing for MassStorage(ATAPI) command.

Parameters
[in] p_ctrl Pointer to control structure.

[in] *buf Pointer to the buffer area to
store the transfer data.

[in] command ATAPI command.

[in] destination Represents a device
address.

◆ driveNumberGet

fsp_err_t(* usb_hmsc_api_t::driveNumberGet) (usb_ctrl_t *const p_ctrl, uint8_t *p_drive, uint8_t
destination)

Get number of Storage drive.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_drive Store address for Drive No.

[in] destination Represents a device
address.

◆ storageReadSector

fsp_err_t(* usb_hmsc_api_t::storageReadSector) (uint16_t drive_number, uint8_t *const buff,
uint32_t sector_number, uint16_t sector_count)

Read sector information.

Parameters
[in] drive_number Drive number.

[out] *buff Pointer to the buffer area to
store the transfer data.

[in] sector_number The sector number to start
with.

[in] sector_count Transmit with the sector size
of the number of times.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,238 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HMSC Interface

◆ storageWriteSector

fsp_err_t(* usb_hmsc_api_t::storageWriteSector) (uint16_t drive_number, uint8_t const *const buff,
uint32_t sector_number, uint16_t sector_count)

Write sector information.

Parameters
[in] drive_number Drive number.

[in] *buff Pointer to the buffer area to
store the transfer data.

[in] sector_number The sector number to start
with.

[in] sector_count Transmit with the sector size
of the number of times.

◆ semaphoreGet

fsp_err_t(* usb_hmsc_api_t::semaphoreGet) (void)

Get Semaphore.

◆ semaphoreRelease

fsp_err_t(* usb_hmsc_api_t::semaphoreRelease) (void)

Release Semaphore.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,239 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HMSC Interface

◆ usb_atapi_t

enum usb_atapi_t

ATAPI commands

Enumerator

USB_ATAPI_TEST_UNIT_READY Test Unit Ready.

USB_ATAPI_REQUEST_SENSE Request Sense.

USB_ATAPI_FORMAT_UNIT Format Unit.

USB_ATAPI_INQUIRY Inquiry.

USB_ATAPI_MODE_SELECT6 Mode Select6.

USB_ATAPI_MODE_SENSE6 Mode Sense6.

USB_ATAPI_START_STOP_UNIT Start Stop Unit.

USB_ATAPI_PREVENT_ALLOW Prevent Allow.

USB_ATAPI_READ_FORMAT_CAPACITY Read Format Capacity.

USB_ATAPI_READ_CAPACITY Read Capacity.

USB_ATAPI_READ10 Read10.

USB_ATAPI_WRITE10 Write10.

USB_ATAPI_SEEK Seek.

USB_ATAPI_WRITE_AND_VERIFY Write and Verify.

USB_ATAPI_VERIFY10 Verify10.

USB_ATAPI_MODE_SELECT10 Mode Select10.

USB_ATAPI_MODE_SENSE10 Mode Sense10.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,240 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB HMSC Interface

◆ usb_csw_result_t

enum usb_csw_result_t

Command Status Wrapper (CSW)

Enumerator

USB_CSW_RESULT_SUCCESS CSW was successful.

USB_CSW_RESULT_FAIL CSW failed.

USB_CSW_RESULT_PHASE CSW has phase error.

5.3.5.15 USB Interface
Interfaces » Connectivity

Detailed Description

Interface for USB functions.

Summary
The USB interface provides USB functionality.

Data Structures

struct usb_cfg_t

struct usb_api_t

struct usb_instance_t

Macros

#define USB_BREQUEST

 b15-8

#define USB_GET_STATUS

 USB Standard request Get Status.

#define USB_CLEAR_FEATURE

 USB Standard request Clear Feature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,241 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_REQRESERVED

 USB Standard request Reqreserved.

#define USB_SET_FEATURE

 USB Standard request Set Feature.

#define USB_REQRESERVED1

 USB Standard request Reqreserved1.

#define USB_SET_ADDRESS

 USB Standard request Set Address.

#define USB_GET_DESCRIPTOR

 USB Standard request Get Descriptor.

#define USB_SET_DESCRIPTOR

 USB Standard request Set Descriptor.

#define USB_GET_CONFIGURATION

 USB Standard request Get Configuration.

#define USB_SET_CONFIGURATION

 USB Standard request Set Configuration.

#define USB_GET_INTERFACE

 USB Standard request Get Interface.

#define USB_SET_INTERFACE

 USB Standard request Set Interface.

#define USB_SYNCH_FRAME

 USB Standard request Synch Frame.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,242 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_HOST_TO_DEV

 From host to device.

#define USB_DEV_TO_HOST

 From device to host.

#define USB_STANDARD

 Standard Request.

#define USB_CLASS

 Class Request.

#define USB_VENDOR

 Vendor Request.

#define USB_DEVICE

 Device.

#define USB_INTERFACE

 Interface.

#define USB_ENDPOINT

 End Point.

#define USB_OTHER

 Other.

#define USB_NULL

 NULL pointer.

#define USB_IP0

 USB0 module.

#define USB_IP1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,243 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

 USB1 module.

#define USB_PIPE0

 Pipe Number0.

#define USB_PIPE1

 Pipe Number1.

#define USB_PIPE2

 Pipe Number2.

#define USB_PIPE3

 Pipe Number3.

#define USB_PIPE4

 Pipe Number4.

#define USB_PIPE5

 Pipe Number5.

#define USB_PIPE6

 Pipe Number6.

#define USB_PIPE7

 Pipe Number7.

#define USB_PIPE8

 Pipe Number8.

#define USB_PIPE9

 Pipe Number9.

#define USB_EP0

 End Point Number0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,244 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_EP1

 End Point Number1.

#define USB_EP2

 End Point Number2.

#define USB_EP3

 End Point Number3.

#define USB_EP4

 End Point Number4.

#define USB_EP5

 End Point Number5.

#define USB_EP6

 End Point Number6.

#define USB_EP7

 End Point Number7.

#define USB_EP8

 End Point Number8.

#define USB_EP9

 End Point Number9.

#define USB_EP10

 End Point Number10.

#define USB_EP11

 End Point Number11.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,245 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_EP12

 End Point Number12.

#define USB_EP13

 End Point Number13.

#define USB_EP14

 End Point Number14.

#define USB_EP15

 End Point Number15.

#define USB_EP_DIR

 b7: Endpoint Direction

#define USB_EP_DIR_IN

 b7: Endpoint Direction In

#define USB_EP_DIR_OUT

 b7: Endpoint Direction Out

#define USB_DT_DEVICE

 Device Descriptor.

#define USB_DT_CONFIGURATION

 Configuration Descriptor.

#define USB_DT_STRING

 String Descriptor.

#define USB_DT_INTERFACE

 Interface Descriptor.

#define USB_DT_ENDPOINT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,246 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

 Endpoint Descriptor.

#define USB_DT_DEVICE_QUALIFIER

 Device Qualifier Descriptor.

#define USB_DT_OTHER_SPEED_CONF

 Other Speed Configuration Descriptor.

#define USB_DT_INTERFACE_POWER

 Interface Power Descriptor.

#define USB_DT_OTGDESCRIPTOR

 OTG Descriptor.

#define USB_DT_HUBDESCRIPTOR

 HUB descriptor.

#define USB_IFCLS_NOT

 Un corresponding Class.

#define USB_IFCLS_AUD

 Audio Class.

#define USB_IFCLS_CDC

 CDC Class.

#define USB_IFCLS_CDCC

 CDC-Control Class.

#define USB_IFCLS_HID

 HID Class.

#define USB_IFCLS_PHY

 Physical Class.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,247 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_IFCLS_IMG

 Image Class.

#define USB_IFCLS_PRN

 Printer Class.

#define USB_IFCLS_MAS

 Mass Storage Class.

#define USB_IFCLS_HUB

 HUB Class.

#define USB_IFCLS_CDCD

 CDC-Data Class.

#define USB_IFCLS_CHIP

 Chip/Smart Card Class.

#define USB_IFCLS_CNT

 Content-Security Class.

#define USB_IFCLS_VID

 Video Class.

#define USB_IFCLS_DIAG

 Diagnostic Device.

#define USB_IFCLS_WIRE

 Wireless Controller.

#define USB_IFCLS_APL

 Application-Specific.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,248 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

#define USB_IFCLS_VEN

 Vendor-Specific Class.

#define USB_EP_IN

 In Endpoint.

#define USB_EP_OUT

 Out Endpoint.

#define USB_EP_ISO

 Isochronous Transfer.

#define USB_EP_BULK

 Bulk Transfer.

#define USB_EP_INT

 Interrupt Transfer.

#define USB_CF_RESERVED

 Reserved(set to 1)

#define USB_CF_SELFP

 Self Powered.

#define USB_CF_BUSP

 Bus Powered.

#define USB_CF_RWUPON

 Remote Wake up ON.

#define USB_CF_RWUPOFF

 Remote Wake up OFF.

#define USB_DD_BLENGTH

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,249 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

 Device Descriptor Length.

#define USB_CD_BLENGTH

 Configuration Descriptor Length.

#define USB_ID_BLENGTH

 Interface Descriptor Length.

#define USB_ED_BLENGTH

 Endpoint Descriptor Length.

Typedefs

typedef void usb_ctrl_t

Enumerations

enum usb_speed_t

enum usb_setup_status_t

enum usb_status_t

enum usb_class_t

enum usb_bcport_t

enum usb_onoff_t

enum usb_transfer_t

enum usb_transfer_type_t

enum usb_mode_t

enum usb_compliancetest_status_t

enum usb_typec_mode_t

enum usb_typec_plug_t

enum usb_typec_connection_status_t

enum usb_typec_vbus_status_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,250 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

Data Structure Documentation

◆ usb_cfg_t

struct usb_cfg_t

USB configuration.

Data Fields

usb_mode_t usb_mode USB_MODE_HOST/USB_MODE_P
ERI.

usb_speed_t usb_speed USB speed
(USB_HS/USB_FS/USB_LS)

uint8_t module_number USB module number
(USB_IP0/USB_IP1)

usb_class_t type USB device class etc.

usb_descriptor_t * p_usb_reg Pointer to the usb_decriptor_t
structure area.

usb_compliance_cb_t * usb_complience_cb

IRQn_Type irq USBI dedicated interrupt
number storage variable.

IRQn_Type irq_r USBR dedicated interrupt
number storage variable.

IRQn_Type irq_d0 FS D0FIFO dedicated interrupt
number storage variable.

IRQn_Type irq_d1 FS D1FIFO dedicated interrupt
number storage variable.

IRQn_Type hsirq USBIR dedicated interrupt
number storage variable.

IRQn_Type irq_typec USB Type-C IR dedicated
interrupt number storage
variable.

IRQn_Type hsirq_d0 HS D0FIFO dedicated interrupt
number storage variable.

IRQn_Type hsirq_d1 HS D1FIFO dedicated interrupt
number storage variable.

uint8_t ipl Variable to store the interrupt
priority of USBI.

uint8_t ipl_r Variable to store the interrupt
priority of USBR.

uint8_t ipl_d0 Variable to store the interrupt
priority of FS D0FIFO.

uint8_t ipl_d1 Variable to store the interrupt
priority of FS D1FIFO.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,251 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

uint8_t hsipl Variable to store the interrupt
priority of USBIR.

uint8_t ipl_typec Variable to store the interrupt
priority of USB Type-C IR.

uint8_t hsipl_d0 Variable to store the interrupt
priority of HS D0FIFO.

uint8_t hsipl_d1 Variable to store the interrupt
priority of HS D1FIFO.

usb_callback_t * p_usb_apl_callback Application Callback.

void const * p_context Other Context.

const transfer_instance_t * p_transfer_tx Send context.

const transfer_instance_t * p_transfer_rx Receive context.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ usb_api_t

struct usb_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(usb_ctrl_t *const p_ctrl, usb_cfg_t const *const p_cfg)

fsp_err_t(* close)(usb_ctrl_t *const p_ctrl)

fsp_err_t(* read)(usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
destination)

fsp_err_t(* write)(usb_ctrl_t *const p_ctrl, uint8_t const *const p_buf, uint32_t
size, uint8_t destination)

fsp_err_t(* stop)(usb_ctrl_t *const p_ctrl, usb_transfer_t direction, uint8_t
destination)

fsp_err_t(* suspend)(usb_ctrl_t *const p_ctrl)

fsp_err_t(* resume)(usb_ctrl_t *const p_ctrl)

fsp_err_t(* vbusSet)(usb_ctrl_t *const p_ctrl, uint16_t state)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,252 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

fsp_err_t(* infoGet)(usb_ctrl_t *const p_ctrl, usb_info_t *p_info, uint8_t
destination)

fsp_err_t(* pipeRead)(usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size,
uint8_t pipe_number)

fsp_err_t(* pipeWrite)(usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size,
uint8_t pipe_number)

fsp_err_t(* pipeStop)(usb_ctrl_t *const p_ctrl, uint8_t pipe_number)

fsp_err_t(* usedPipesGet)(usb_ctrl_t *const p_ctrl, uint16_t *p_pipe, uint8_t
destination)

fsp_err_t(* pipeInfoGet)(usb_ctrl_t *const p_ctrl, usb_pipe_t *p_info, uint8_t
pipe_number)

fsp_err_t(* eventGet)(usb_ctrl_t *const p_ctrl, usb_status_t *event)

fsp_err_t(* callback)(usb_callback_t *p_callback)

fsp_err_t(* pullUp)(usb_ctrl_t *const p_ctrl, uint8_t state)

fsp_err_t(* hostControlTransfer)(usb_ctrl_t *const p_ctrl, usb_setup_t *p_setup,
uint8_t *p_buf, uint8_t device_address)

fsp_err_t(* periControlDataGet)(usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t
size)

fsp_err_t(* periControlDataSet)(usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t
size)

fsp_err_t(* periControlStatusSet)(usb_ctrl_t *const p_ctrl, usb_setup_status_t
status)

fsp_err_t(* remoteWakeup)(usb_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,253 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

fsp_err_t(* driverActivate)(usb_ctrl_t *const p_api_ctrl)

fsp_err_t(* callbackMemorySet)(usb_ctrl_t *const p_api_ctrl,
usb_callback_args_t *p_callback_memory)

fsp_err_t(* moduleNumberGet)(usb_ctrl_t *const p_ctrl, uint8_t
*module_number)

fsp_err_t(* classTypeGet)(usb_ctrl_t *const p_ctrl, usb_class_t *class_type)

fsp_err_t(* deviceAddressGet)(usb_ctrl_t *const p_ctrl, uint8_t *device_address)

fsp_err_t(* pipeNumberGet)(usb_ctrl_t *const p_ctrl, uint8_t *pipe_number)

fsp_err_t(* deviceStateGet)(usb_ctrl_t *const p_ctrl, uint16_t *state)

fsp_err_t(* dataSizeGet)(usb_ctrl_t *const p_ctrl, uint32_t *data_size)

fsp_err_t(* setupGet)(usb_ctrl_t *const p_ctrl, usb_setup_t *setup)

fsp_err_t(* otgCallbackSet)(usb_ctrl_t *const p_ctrl, usb_otg_callback_t
*p_callback)

fsp_err_t(* otgSRP)(usb_ctrl_t *const p_ctrl)

fsp_err_t(* typecInfoGet)(usb_ctrl_t *const p_ctrl, usb_typec_info_t *p_info)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,254 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ open

fsp_err_t(* usb_api_t::open) (usb_ctrl_t *const p_ctrl, usb_cfg_t const *const p_cfg)

Start the USB module

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* usb_api_t::close) (usb_ctrl_t *const p_ctrl)

Stop the USB module

Parameters
[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* usb_api_t::read) (usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
destination)

Request USB data read

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,255 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ write

fsp_err_t(* usb_api_t::write) (usb_ctrl_t *const p_ctrl, uint8_t const *const p_buf, uint32_t size,
uint8_t destination)

Request USB data write

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

◆ stop

fsp_err_t(* usb_api_t::stop) (usb_ctrl_t *const p_ctrl, usb_transfer_t direction, uint8_t destination)

Stop USB data read/write processing

Parameters
[in] p_ctrl Pointer to control structure.

[in] direction Receive
(USB_TRANSFER_READ) or
send
(USB_TRANSFER_WRITE).

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

◆ suspend

fsp_err_t(* usb_api_t::suspend) (usb_ctrl_t *const p_ctrl)

Request suspend

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,256 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ resume

fsp_err_t(* usb_api_t::resume) (usb_ctrl_t *const p_ctrl)

Request resume

Parameters
[in] p_ctrl Pointer to control structure.

◆ vbusSet

fsp_err_t(* usb_api_t::vbusSet) (usb_ctrl_t *const p_ctrl, uint16_t state)

Sets VBUS supply start/stop.

Parameters
[in] p_ctrl Pointer to control structure.

[in] state VBUS supply start/stop
specification

◆ infoGet

fsp_err_t(* usb_api_t::infoGet) (usb_ctrl_t *const p_ctrl, usb_info_t *p_info, uint8_t destination)

Get information on USB device.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_info Pointer to usb_info_t
structure area.

[in] destination Device address for Host.

◆ pipeRead

fsp_err_t(* usb_api_t::pipeRead) (usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
pipe_number)

Request data read from specified pipe

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] pipe_number Pipe Number.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,257 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ pipeWrite

fsp_err_t(* usb_api_t::pipeWrite) (usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
pipe_number)

Request data write to specified pipe

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] pipe_number Pipe Number.

◆ pipeStop

fsp_err_t(* usb_api_t::pipeStop) (usb_ctrl_t *const p_ctrl, uint8_t pipe_number)

Stop USB data read/write processing to specified pipe

Parameters
[in] p_ctrl Pointer to control structure.

[in] pipe_number Pipe Number.

◆ usedPipesGet

fsp_err_t(* usb_api_t::usedPipesGet) (usb_ctrl_t *const p_ctrl, uint16_t *p_pipe, uint8_t destination)

Get pipe number

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_pipe Pointer to area that stores
the selected pipe number
(bit map information).

[in] destination Device address for Host.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,258 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ pipeInfoGet

fsp_err_t(* usb_api_t::pipeInfoGet) (usb_ctrl_t *const p_ctrl, usb_pipe_t *p_info, uint8_t
pipe_number)

Get pipe information

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_info Pointer to usb_pipe_t
structure area.

[in] pipe_number Pipe Number.

◆ eventGet

fsp_err_t(* usb_api_t::eventGet) (usb_ctrl_t *const p_ctrl, usb_status_t *event)

Return USB-related completed events (OS less only)

Parameters
[in] p_ctrl Pointer to control structure.

[out] event Pointer to event.

◆ callback

fsp_err_t(* usb_api_t::callback) (usb_callback_t *p_callback)

Register a callback function to be called upon completion of a USB related event. (RTOS only)

Parameters
[in] p_callback Pointer to Callback function.

◆ pullUp

fsp_err_t(* usb_api_t::pullUp) (usb_ctrl_t *const p_ctrl, uint8_t state)

Pull-up enable/disable setting of D+/D- line.

Parameters
[in] p_ctrl Pointer to control structure.

[in] state Pull-up enable/disable
setting.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,259 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ hostControlTransfer

fsp_err_t(* usb_api_t::hostControlTransfer) (usb_ctrl_t *const p_ctrl, usb_setup_t *p_setup, uint8_t
*p_buf, uint8_t device_address)

Performs settings and transmission processing when transmitting a setup packet.

Parameters
[in] p_ctrl USB control structure.

[in] p_setup Setup packet information.

[in] p_buf Transfer area information.

[in] device_address Device address information.

◆ periControlDataGet

fsp_err_t(* usb_api_t::periControlDataGet) (usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size)

Receives data sent by control transfer.

Parameters
[in] p_ctrl USB control structure.

[in] p_buf Data reception area
information.

[in] size Data reception size
information.

◆ periControlDataSet

fsp_err_t(* usb_api_t::periControlDataSet) (usb_ctrl_t *const p_ctrl, uint8_t *p_buf, uint32_t size)

Performs transfer processing for control transfer.

Parameters
[in] p_ctrl USB control structure.

[in] p_buf Area information for data
transfer.

[in] size Transfer size information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,260 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ periControlStatusSet

fsp_err_t(* usb_api_t::periControlStatusSet) (usb_ctrl_t *const p_ctrl, usb_setup_status_t status)

Set the response to the setup packet.

Parameters
[in] p_ctrl USB control structure.

[in] status USB port startup
information.

◆ remoteWakeup

fsp_err_t(* usb_api_t::remoteWakeup) (usb_ctrl_t *const p_ctrl)

Sends a remote wake-up signal to the connected Host.

Parameters
[in] p_ctrl USB control structure.

◆ driverActivate

fsp_err_t(* usb_api_t::driverActivate) (usb_ctrl_t *const p_api_ctrl)

Activate USB Driver

Parameters
[in] p_api_ctrl USB control structure.

◆ callbackMemorySet

fsp_err_t(* usb_api_t::callbackMemorySet) (usb_ctrl_t *const p_api_ctrl, usb_callback_args_t
*p_callback_memory)

Set callback memory to USB driver.

Parameters
[in] p_api_ctrl USB control structure.

[in] p_callback_memory Pointer to store USB event
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,261 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ moduleNumberGet

fsp_err_t(* usb_api_t::moduleNumberGet) (usb_ctrl_t *const p_ctrl, uint8_t *module_number)

This API gets the module number.

Parameters
[in] p_ctrl USB control structure.

[out] module_number Module number to get.

◆ classTypeGet

fsp_err_t(* usb_api_t::classTypeGet) (usb_ctrl_t *const p_ctrl, usb_class_t *class_type)

This API gets the module number.

Parameters
[in] p_ctrl USB control structure.

[out] class_type Class type to get.

◆ deviceAddressGet

fsp_err_t(* usb_api_t::deviceAddressGet) (usb_ctrl_t *const p_ctrl, uint8_t *device_address)

This API gets the device address.

Parameters
[in] p_ctrl USB control structure.

[out] device_address Device address to get.

◆ pipeNumberGet

fsp_err_t(* usb_api_t::pipeNumberGet) (usb_ctrl_t *const p_ctrl, uint8_t *pipe_number)

This API gets the pipe number.

Parameters
[in] p_ctrl USB control structure.

[out] pipe_number Pipe number to get.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,262 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ deviceStateGet

fsp_err_t(* usb_api_t::deviceStateGet) (usb_ctrl_t *const p_ctrl, uint16_t *state)

This API gets the state of the device.

Parameters
[in] p_ctrl USB control structure.

[out] state Device state to get.

◆ dataSizeGet

fsp_err_t(* usb_api_t::dataSizeGet) (usb_ctrl_t *const p_ctrl, uint32_t *data_size)

This API gets the data size.

Parameters
[in] p_ctrl USB control structure.

[out] data_size Data size to get.

◆ setupGet

fsp_err_t(* usb_api_t::setupGet) (usb_ctrl_t *const p_ctrl, usb_setup_t *setup)

This API gets the setup type.

Parameters
[in] p_ctrl USB control structure.

[out] setup Setup type to get.

◆ otgCallbackSet

fsp_err_t(* usb_api_t::otgCallbackSet) (usb_ctrl_t *const p_ctrl, usb_otg_callback_t *p_callback)

This API sets the callback function for OTG.

Parameters
[in] p_ctrl USB control structure.

[in] p_callback Pointer to the callback
function for OTG.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,263 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ otgSRP

fsp_err_t(* usb_api_t::otgSRP) (usb_ctrl_t *const p_ctrl)

This API starts SRP processing for OTG.

Parameters
[in] p_ctrl USB control structure.

◆ typecInfoGet

fsp_err_t(* usb_api_t::typecInfoGet) (usb_ctrl_t *const p_ctrl, usb_typec_info_t *p_info)

Get information on USB Type-C Connection.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_info Pointer to usb_typec_info_t
structure area.

◆ usb_instance_t

struct usb_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ usb_ctrl_t

typedef void usb_ctrl_t

USB control block. Allocate an instance specific control block to pass into the USB API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,264 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_speed_t

enum usb_speed_t

USB speed type

Enumerator

USB_SPEED_LS Low speed operation.

USB_SPEED_FS Full speed operation.

USB_SPEED_HS Hi speed operation.

◆ usb_setup_status_t

enum usb_setup_status_t

USB request result

Enumerator

USB_SETUP_STATUS_ACK ACK response.

USB_SETUP_STATUS_STALL STALL response.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,265 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_status_t

enum usb_status_t

USB driver status

Enumerator

USB_STATUS_POWERED Powered State.

USB_STATUS_DEFAULT Default State.

USB_STATUS_ADDRESS Address State.

USB_STATUS_CONFIGURED Configured State.

USB_STATUS_SUSPEND Suspend State.

USB_STATUS_RESUME Resume State.

USB_STATUS_DETACH Detach State.

USB_STATUS_REQUEST Request State.

USB_STATUS_REQUEST_COMPLETE Request Complete State.

USB_STATUS_READ_COMPLETE Read Complete State.

USB_STATUS_WRITE_COMPLETE Write Complete State.

USB_STATUS_BC battery Charge State

USB_STATUS_OVERCURRENT Over Current state.

USB_STATUS_NOT_SUPPORT Device Not Support.

USB_STATUS_NONE None Status.

USB_STATUS_MSC_CMD_COMPLETE MSC_CMD Complete.

◆ usb_class_t

enum usb_class_t

USB class type

Enumerator

USB_CLASS_PCDC PCDC Class.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,266 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

USB_CLASS_PCDCC PCDCC Class.

USB_CLASS_PCDC2 PCDC2 Class.

USB_CLASS_PCDCC2 PCDCC2 Class.

USB_CLASS_PHID PHID Class.

USB_CLASS_PHID2 PHID2 Class.

USB_CLASS_PAUD PAUD Class.

USB_CLASS_PPRN PPRN Class.

USB_CLASS_DFU DFU Class.

USB_CLASS_PVND PVND Class.

USB_CLASS_HCDC HCDC Class.

USB_CLASS_HCDCC HCDCC Class.

USB_CLASS_HHID HHID Class.

USB_CLASS_HVND HVND Class.

USB_CLASS_HMSC HMSC Class.

USB_CLASS_PMSC PMSC Class.

USB_CLASS_HPRN HPRN Class.

USB_CLASS_HUVC HUVC Class.

USB_CLASS_REQUEST USB Class Request.

USB_CLASS_HUB HUB Class.

USB_CLASS_END USB Class End Code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,267 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_bcport_t

enum usb_bcport_t

USB battery charging type

Enumerator

USB_BCPORT_SDP SDP port settings.

USB_BCPORT_CDP CDP port settings.

USB_BCPORT_DCP DCP port settings.

◆ usb_onoff_t

enum usb_onoff_t

USB status

Enumerator

USB_OFF USB Off State.

USB_ON USB On State.

◆ usb_transfer_t

enum usb_transfer_t

USB read/write type

Enumerator

USB_TRANSFER_READ Data Receive communication.

USB_TRANSFER_WRITE Data transmission communication.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,268 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_transfer_type_t

enum usb_transfer_type_t

USB transfer type

Enumerator

USB_TRANSFER_TYPE_BULK Bulk communication.

USB_TRANSFER_TYPE_INT Interrupt communication.

USB_TRANSFER_TYPE_ISO Isochronous communication.

◆ usb_mode_t

enum usb_mode_t

Enumerator

USB_MODE_HOST Host mode.

USB_MODE_PERI Peripheral mode.

◆ usb_compliancetest_status_t

enum usb_compliancetest_status_t

Enumerator

USB_COMPLIANCETEST_ATTACH Device Attach Detection.

USB_COMPLIANCETEST_DETACH Device Detach Detection.

USB_COMPLIANCETEST_TPL TPL device connect.

USB_COMPLIANCETEST_NOTTPL Not TPL device connect.

USB_COMPLIANCETEST_HUB USB Hub connect.

USB_COMPLIANCETEST_OVRC Over current.

USB_COMPLIANCETEST_NORES Response Time out for Control Read Transfer.

USB_COMPLIANCETEST_SETUP_ERR Setup Transaction Error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,269 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_typec_mode_t

enum usb_typec_mode_t

USB TypeC operation_mode

Enumerator

USB_TYPEC_MODE_SINK Sink Only Mode.

USB_TYPEC_MODE_USB20_ONLY_SINK USB 2.0 Only Sink Mode.

◆ usb_typec_plug_t

enum usb_typec_plug_t

USB TypeC Connection of Plug Orientation

Enumerator

USB_TYPEC_PLUG_CC1_CONNECTED CC1 connected.

USB_TYPEC_PLUG_CC2_CONNECTED CC2 connected.

◆ usb_typec_connection_status_t

enum usb_typec_connection_status_t

USB TypeC Status of Connection State Machine

Enumerator

USB_TYPEC_CONNECTION_STATUS_DISABLED Disabled.

USB_TYPEC_CONNECTION_STATUS_UNATTACHE
D

Unattached.SNK.

USB_TYPEC_CONNECTION_STATUS_ATTACHED_
WAIT

AttachedWait.SNK.

USB_TYPEC_CONNECTION_STATUS_ATTACHED Attached.SNK.

USB_TYPEC_CONNECTION_STATUS_ATTACHED_P
OWER_DEFAULT

Attached.SNK (PowerDefault.SNK)

USB_TYPEC_CONNECTION_STATUS_ATTACHED_P
OWER_15

Attached.SNK (Power1.5.SNK)

USB_TYPEC_CONNECTION_STATUS_ATTACHED_P
OWER_30

Attached.SNK (Power3.0.SNK)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,270 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB Interface

◆ usb_typec_vbus_status_t

enum usb_typec_vbus_status_t

USB TypeC VBUS status

Enumerator

USB_TYPEC_VBUS_STATUS_OFF VBUS Off State.

USB_TYPEC_VBUS_STATUS_ON VBUS On State.

5.3.5.16 USB PCDC Interface
Interfaces » Connectivity

Detailed Description

Interface for USB PCDC functions.

Summary
The USB PCDC interface provides USB PCDC functionality.

Data Structures

struct usb_serial_state_bitmap_t

union usb_sci_serialstate_t

struct usb_pcdc_linecoding_t

struct usb_pcdc_ctrllinestate_t

Macros

#define USB_PCDC_SET_LINE_CODING

 Set Line Coding.

#define USB_PCDC_GET_LINE_CODING

 Get Line Coding.

#define USB_PCDC_SET_CONTROL_LINE_STATE

 Control Line State.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,271 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB PCDC Interface

#define USB_PCDC_SERIAL_STATE

 Serial State Code.

#define USB_PCDC_SETUP_TBL_BSIZE

 Setup packet table size (uint16_t * 5)

Data Structure Documentation

◆ usb_serial_state_bitmap_t

struct usb_serial_state_bitmap_t

Virtual UART signal state

Data Fields

uint16_t b_rx_carrier: 1 DCD signal.

uint16_t b_tx_carrier: 1 DSR signal.

uint16_t b_break: 1 Break signal.

uint16_t b_ring_signal: 1 Ring signal.

uint16_t b_framing: 1 Framing error.

uint16_t b_parity: 1 Parity error.

uint16_t b_over_run: 1 Overrun error.

uint16_t rsv: 9 Reserved.

◆ usb_sci_serialstate_t

union usb_sci_serialstate_t

Class Notification Serial State

Data Fields

uint32_t word Word Access.

usb_serial_state_bitmap_t bit Bit Access.

◆ usb_pcdc_linecoding_t

struct usb_pcdc_linecoding_t

Virtual UART communication settings

Data Fields

uint32_t dw_dte_rate Bitrate.

uint8_t b_char_format Stop bits.

uint8_t b_parity_type Parity.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,272 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB PCDC Interface

uint8_t b_data_bits Data bits.

uint8_t rsv Reserved.

◆ usb_pcdc_ctrllinestate_t

struct usb_pcdc_ctrllinestate_t

Virtual UART control line state

Data Fields

uint16_t bdtr: 1 DTR.

uint16_t brts: 1 RTS.

uint16_t rsv: 14 Reserved.

5.3.5.17 USB PHID Interface
Interfaces » Connectivity

Detailed Description

Interface for USB PHID functions.

Summary
The USB interface provides USB functionality.

5.3.5.18 USB PMSC Interface
Interfaces » Connectivity

Detailed Description

Interface for USB PMSC functions.

Summary
The USB PMSC interface provides USB PMSC functionality.

Macros

#define USB_MASS_STORAGE_RESET

 Mass storage reset request code.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,273 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Connectivity > USB PMSC Interface

#define USB_GET_MAX_LUN

 Get max logical unit number request code.

5.3.5.19 USB PPRN Interface
Interfaces » Connectivity

Detailed Description

Interface for USB PPRN functions.

Summary
The USB PPRN interface provides USB PPRN functionality.

Macros

#define USB_PPRN_GET_DEVICE_ID

 Get Device ID.

#define USB_PRPN_GET_PORT_STATUS

 Get Port Status.

#define USB_PPRN_SOFT_RESET

 Soft Reset.

#define USB_PPRN_PORT_STATUS_PAPER_EMPTY

 1: Paper Empty, 0: Paper Not Empty

#define USB_PPRN_PORT_STATUS_SELECT

 1: Selected, 0: Not Selected

#define USB_PPRN_PORT_STATUS_NOT_ERROR

 1: No Error, 0; Error

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,274 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > DSP

5.3.6 DSP
Interfaces

Detailed Description

DSP Interfaces.

Modules

IIR Interface

 Interface for IIR filter functionality.

5.3.6.1 IIR Interface
Interfaces » DSP

Detailed Description

Interface for IIR filter functionality.

Summary
The IIR interface allows access to the IIRFA peripheral for hardware acceleration of direct form 2
transposed biquad IIR filters.

Data Structures

struct iir_filter_coeffs_t

struct iir_filter_state_t

struct iir_filter_cfg_t

struct iir_status_t

struct iir_cfg_t

struct iir_api_t

struct iirfa_instance_t

Typedefs

typedef void iir_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,275 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > DSP > IIR Interface

Data Structure Documentation

◆ iir_filter_coeffs_t

struct iir_filter_coeffs_t

Filter stage coefficient data

Data Fields

float b0 Coefficient B0.

float b1 Coefficient B1.

float b2 Coefficient B2.

float a1 Coefficient A0.

float a2 Coefficient A1.

◆ iir_filter_state_t

struct iir_filter_state_t

Filter stage state data

Data Fields

float d0 State variable D0.

float d1 State variable D1.

◆ iir_filter_cfg_t

struct iir_filter_cfg_t

Filter configuration

Data Fields

iir_filter_coeffs_t * p_filter_coeffs Filter coefficients.

iir_filter_state_t * p_filter_state Filter state data.

uint8_t stage_base Hardware stage to start from.

uint8_t stage_num Number of filter stages to use.

◆ iir_status_t

struct iir_status_t

Filter state register status

◆ iir_cfg_t

struct iir_cfg_t

IIRFA API configuration parameter

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,276 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > DSP > IIR Interface

void const * p_extend

uint8_t channel IIRFA channel to use.

◆ iir_api_t

struct iir_api_t

IIR driver structure. IIR functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(iir_ctrl_t *const p_ctrl, iir_cfg_t const *const p_cfg)

fsp_err_t(* close)(iir_ctrl_t *const p_ctrl)

fsp_err_t(* configure)(iir_ctrl_t *const p_ctrl, iir_filter_cfg_t const *const
p_filter_cfg)

fsp_err_t(* filter)(iir_ctrl_t *const p_ctrl, float const *p_data_in, float
*p_data_out, uint16_t const num_samples)

fsp_err_t(* statusGet)(iir_ctrl_t *const p_ctrl, iir_status_t *const p_status)

Field Documentation

◆ open

fsp_err_t(* iir_api_t::open) (iir_ctrl_t *const p_ctrl, iir_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,277 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > DSP > IIR Interface

◆ close

fsp_err_t(* iir_api_t::close) (iir_ctrl_t *const p_ctrl)

Close the IIRFA channel.

Parameters
[in] p_ctrl Control block set in

iir_api_t::open.

◆ configure

fsp_err_t(* iir_api_t::configure) (iir_ctrl_t *const p_ctrl, iir_filter_cfg_t const *const p_filter_cfg)

Configure filter coefficients and state variables.

Parameters
[in] p_ctrl Control block set in

iir_api_t::open.

[in] p_filter_cfg Pointer to filter configuration
to write.

◆ filter

fsp_err_t(* iir_api_t::filter) (iir_ctrl_t *const p_ctrl, float const *p_data_in, float *p_data_out, uint16_t
const num_samples)

Filter the specified data.

Parameters
[in] p_ctrl Control block set in

iir_api_t::open.

[in] p_data_in Pointer to float input data.

[in] p_data_out Pointer to float output
buffer.

[in] num_samples Number of samples to
process.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,278 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > DSP > IIR Interface

◆ statusGet

fsp_err_t(* iir_api_t::statusGet) (iir_ctrl_t *const p_ctrl, iir_status_t *const p_status)

Retrieve current status (including state registers).

Parameters
[in] p_ctrl Control block set in

iir_api_t::open.

[in] p_status Pointer to status struct.

◆ iirfa_instance_t

struct iirfa_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

iir_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

iir_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

iir_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ iir_ctrl_t

typedef void iir_ctrl_t

IIR control block. Allocate an instance specific control block to pass into the DAC API calls.

5.3.7 Graphics
Interfaces

Detailed Description

Graphics Interfaces.

Modules

CAPTURE Interface

 Interface for CAPTURE functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,279 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics

Display Interface

 Interface for LCD panel displays.

JPEG Codec Interface

 Interface for JPEG functions.

MIPI DSI Interface

 Interface for MIPI DSI communications.

SLCDC Interface

 Interface for Segment LCD controllers.

5.3.7.1 CAPTURE Interface
Interfaces » Graphics

Detailed Description

Interface for CAPTURE functions.

Summary
The CAPTURE interface provides the functionality for capturing an image from an image
sensor/camera. When a capture is complete a capture complete interrupt is triggered.

Data Structures

struct capture_status_t

struct capture_callback_args_t

struct capture_cfg_t

struct capture_api_t

struct capture_instance_t

Typedefs

typedef uint32_t capture_event_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,280 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > CAPTURE Interface

typedef void capture_ctrl_t

Enumerations

enum capture_state_t

Data Structure Documentation

◆ capture_status_t

struct capture_status_t

CAPTURE status

Data Fields

capture_state_t state Current state.

uint32_t * p_buffer Pointer to active buffer.

uint32_t data_size Size of data written to provided
buffer.

◆ capture_callback_args_t

struct capture_callback_args_t

CAPTURE callback function parameter data

Data Fields

capture_event_t event Event causing the callback.

uint8_t * p_buffer Pointer to buffer that contains
captured data.

void const * p_context Placeholder for user data. Set in
capture_api_t::open function in
capture_cfg_t.

◆ capture_cfg_t

struct capture_cfg_t

CAPTURE configuration parameters.

Data Fields

uint16_t x_capture_start_pixel

 Horizontal position to start capture.

uint16_t x_capture_pixels

 Number of horizontal pixels to capture.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,281 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > CAPTURE Interface

uint16_t y_capture_start_pixel

 Vertical position to start capture.

uint16_t y_capture_pixels

 Number of vertical lines/pixels to capture.

uint8_t bytes_per_pixel

 Number of bytes per pixel.

void(* p_callback)(capture_callback_args_t *p_args)

 Callback provided when a CAPTURE transfer ISR occurs.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Extension parameter for hardware specific settings.

◆ capture_api_t

struct capture_api_t

CAPTURE functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(capture_ctrl_t *const p_ctrl, capture_cfg_t const *const p_cfg)

fsp_err_t(* close)(capture_ctrl_t *const p_ctrl)

fsp_err_t(* captureStart)(capture_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

fsp_err_t(* callbackSet)(capture_ctrl_t *const p_ctrl,
void(*p_callback)(capture_callback_args_t *), void const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,282 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > CAPTURE Interface

p_context, capture_callback_args_t *const p_callback_memory)

fsp_err_t(* statusGet)(capture_ctrl_t *const p_ctrl, capture_status_t *p_status)

Field Documentation

◆ open

fsp_err_t(* capture_api_t::open) (capture_ctrl_t *const p_ctrl, capture_cfg_t const *const p_cfg)

Initial configuration.

Note
To reconfigure after calling this function, call capture_api_t::close first.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* capture_api_t::close) (capture_ctrl_t *const p_ctrl)

Closes the driver and allows reconfiguration. May reduce power consumption.

Parameters
[in] p_ctrl Pointer to control structure.

◆ captureStart

fsp_err_t(* capture_api_t::captureStart) (capture_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Start a capture.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buffer New pointer to store
captured image data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,283 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > CAPTURE Interface

◆ callbackSet

fsp_err_t(* capture_api_t::callbackSet) (capture_ctrl_t *const p_ctrl,
void(*p_callback)(capture_callback_args_t *), void const *const p_context, capture_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the CAPTURE

control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ statusGet

fsp_err_t(* capture_api_t::statusGet) (capture_ctrl_t *const p_ctrl, capture_status_t *p_status)

Check scan status.

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_status Pointer to store current
status in

◆ capture_instance_t

struct capture_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

capture_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

capture_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

capture_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,284 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > CAPTURE Interface

◆ capture_event_t

typedef uint32_t capture_event_t

CAPTURE callback event ID - see implimentation for details

◆ capture_ctrl_t

typedef void capture_ctrl_t

CAPTURE control block. Allocate an instance specific control block to pass into the CAPTURE API
calls.

Enumeration Type Documentation

◆ capture_state_t

enum capture_state_t

CAPTURE states.

Enumerator

CAPTURE_STATE_IDLE CAPTURE is idle.

CAPTURE_STATE_IN_PROGRESS CAPTURE capture in progress.

CAPTURE_STATE_BUSY CAPTURE reset in progress.

5.3.7.2 Display Interface
Interfaces » Graphics

Detailed Description

Interface for LCD panel displays.

Summary
The display interface provides standard display functionality:

Signal timing configuration for LCD panels with RGB interface.
Dot clock source selection (internal or external) and frequency divider.
Blending of multiple graphics layers on the background screen.
Color correction (brightness/configuration/gamma correction).
Interrupts and callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,285 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

Data Structures

struct display_timing_t

struct display_color_t

struct display_coordinate_t

struct display_brightness_t

struct display_contrast_t

struct display_correction_t

struct gamma_correction_t

struct display_gamma_correction_t

struct display_clut_t

struct display_colorkeying_cfg_t

struct display_colorkeying_layer_t

struct display_input_cfg_t

struct display_output_cfg_t

struct display_layer_t

struct display_callback_args_t

struct display_cfg_t

struct display_runtime_cfg_t

struct display_clut_cfg_t

struct display_status_t

struct display_api_t

struct display_instance_t

Typedefs

typedef void display_ctrl_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,286 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

enum display_frame_layer_t

enum display_state_t

enum display_event_t

enum display_in_format_t

enum display_out_format_t

enum display_endian_t

enum display_color_order_t

enum display_signal_polarity_t

enum display_sync_edge_t

enum display_fade_control_t

enum display_fade_status_t

enum display_color_keying_t

enum display_data_swap_t

Data Structure Documentation

◆ display_timing_t

struct display_timing_t

Display signal timing setting

Data Fields

uint16_t total_cyc Total cycles in one line or total
lines in one frame.

uint16_t display_cyc Active video cycles or lines.

uint16_t back_porch Back porch cycles or lines.

uint16_t sync_width Sync signal asserting width.

display_signal_polarity_t sync_polarity Sync signal polarity.

◆ display_color_t

struct display_color_t

RGB Color setting

◆ display_coordinate_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,287 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

struct display_coordinate_t

Contrast (gain) correction setting

Data Fields

int16_t x Coordinate X, this allows to set
signed value.

int16_t y Coordinate Y, this allows to set
signed value.

◆ display_brightness_t

struct display_brightness_t

Brightness (DC) correction setting

Data Fields

bool enable Brightness Correction On/Off.

uint16_t r Brightness (DC) adjustment for
R channel.

uint16_t g Brightness (DC) adjustment for
G channel.

uint16_t b Brightness (DC) adjustment for
B channel.

◆ display_contrast_t

struct display_contrast_t

Contrast (gain) correction setting

Data Fields

bool enable Contrast Correction On/Off.

uint8_t r Contrast (gain) adjustment for
R channel.

uint8_t g Contrast (gain) adjustment for
G channel.

uint8_t b Contrast (gain) adjustment for
B channel.

◆ display_correction_t

struct display_correction_t

Color correction setting

Data Fields

display_brightness_t brightness Brightness.

display_contrast_t contrast Contrast.

◆ gamma_correction_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,288 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

struct gamma_correction_t

Gamma correction setting for each color

Data Fields

bool enable Gamma Correction On/Off.

uint16_t * gain Gain adjustment.

uint16_t * threshold Start threshold.

◆ display_gamma_correction_t

struct display_gamma_correction_t

Gamma correction setting

Data Fields

gamma_correction_t r Gamma correction for R
channel.

gamma_correction_t g Gamma correction for G
channel.

gamma_correction_t b Gamma correction for B
channel.

◆ display_clut_t

struct display_clut_t

CLUT setting

Data Fields

uint32_t color_num The number of colors in CLUT.

const uint32_t * p_clut Address of the area storing the
CLUT data (in ARGB8888
format)

◆ display_colorkeying_cfg_t

struct display_colorkeying_cfg_t

Color Keying setting

Data Fields

display_color_t src_color Source color.

display_color_t dst_color Destination color.

display_color_keying_t enable_ckey Select enable or disable.

◆ display_colorkeying_layer_t

struct display_colorkeying_layer_t

Color Keying layer setting

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,289 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ display_input_cfg_t

struct display_input_cfg_t

Graphics plane input configuration structure

Data Fields

uint32_t * p_base Base address to the frame
buffer.

uint16_t hsize Horizontal pixel size in a line.

uint16_t vsize Vertical pixel size in a frame.

uint32_t hstride Memory stride (bytes) in a line.

display_in_format_t format Input format setting.

bool line_descending_enable Line descending enable.

bool lines_repeat_enable Line repeat enable.

uint16_t lines_repeat_times Expected number of line
repeating.

◆ display_output_cfg_t

struct display_output_cfg_t

Display output configuration structure

Data Fields

display_timing_t htiming Horizontal display cycle setting.

display_timing_t vtiming Vertical display cycle setting.

display_out_format_t format Output format setting.

display_endian_t endian Bit order of output data.

display_color_order_t color_order Color order in pixel.

display_signal_polarity_t data_enable_polarity Data Enable signal polarity.

display_sync_edge_t sync_edge Signal sync edge selection.

display_color_t bg_color Background color.

display_brightness_t brightness Brightness setting.

display_contrast_t contrast Contrast setting.

display_gamma_correction_t * p_gamma_correction Pointer to gamma correction
setting.

bool dithering_on Dithering on/off.

◆ display_layer_t

struct display_layer_t

Graphics layer blend setup parameter structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,290 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

Data Fields

display_coordinate_t coordinate Blending location (starting point
of image)

display_color_t bg_color Color outside region.

display_fade_control_t fade_control Layer fade-in/out control on/off.

uint8_t fade_speed Layer fade-in/out frame rate.

◆ display_callback_args_t

struct display_callback_args_t

Display callback parameter definition

Data Fields

display_event_t event Event code.

void const * p_context Context provided to user during
callback.

◆ display_cfg_t

struct display_cfg_t

Display main configuration structure

Data Fields

display_input_cfg_t input [2]

 Graphics input frame setting. More...

display_output_cfg_t output

 Graphics output frame setting.

display_layer_t layer [2]

 Graphics layer blend setting.

uint8_t line_detect_ipl

 Line detect interrupt priority.

uint8_t underflow_1_ipl

 Underflow 1 interrupt priority.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,291 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

uint8_t underflow_2_ipl

 Underflow 2 interrupt priority.

IRQn_Type line_detect_irq

 Line detect interrupt vector.

IRQn_Type underflow_1_irq

 Underflow 1 interrupt vector.

IRQn_Type underflow_2_irq

 Underflow 2 interrupt vector.

void(* p_callback)(display_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Display hardware dependent configuration. More...

Field Documentation

◆ input

display_input_cfg_t display_cfg_t::input[2]

Graphics input frame setting.

Generic configuration for display devices

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,292 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ p_callback

void(* display_cfg_t::p_callback) (display_callback_args_t *p_args)

Pointer to callback function.

Configuration for display event processing

◆ p_extend

void const* display_cfg_t::p_extend

Display hardware dependent configuration.

Pointer to display peripheral specific configuration

◆ display_runtime_cfg_t

struct display_runtime_cfg_t

Display main configuration structure

Data Fields

display_input_cfg_t input Graphics input frame setting.

Generic configuration for
display devices

display_layer_t layer Graphics layer alpha blending
setting.

◆ display_clut_cfg_t

struct display_clut_cfg_t

Display CLUT configuration structure

Data Fields

uint32_t * p_base Pointer to CLUT source data.

uint16_t start Beginning of CLUT entry to be
updated.

uint16_t size Size of CLUT entry to be
updated.

◆ display_status_t

struct display_status_t

Display Status

Data Fields

display_state_t state Status of display module.

display_fade_status_t fade_status[
DISPLAY_FRAME_LAYER_2+1]

Status of fade-in/fade-out
status.

◆ display_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,293 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

struct display_api_t

Shared Interface definition for display peripheral

Data Fields

fsp_err_t(* open)(display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

fsp_err_t(* close)(display_ctrl_t *const p_ctrl)

fsp_err_t(* start)(display_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(display_ctrl_t *const p_ctrl)

fsp_err_t(* layerChange)(display_ctrl_t const *const p_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
frame)

fsp_err_t(* bufferChange)(display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

fsp_err_t(* correction)(display_ctrl_t const *const p_ctrl, display_correction_t
const *const p_param)

fsp_err_t(* clut)(display_ctrl_t const *const p_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t layer)

fsp_err_t(* clutEdit)(display_ctrl_t const *const p_ctrl, display_frame_layer_t
layer, uint8_t index, uint32_t color)

fsp_err_t(* colorKeySet)(display_ctrl_t const *const p_ctrl,
display_colorkeying_layer_t key_cfg, display_frame_layer_t layer)

fsp_err_t(* statusGet)(display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,294 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ open

fsp_err_t(* display_api_t::open) (display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

Open display device.

Parameters
[in,out] p_ctrl Pointer to display interface

control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by user.

◆ close

fsp_err_t(* display_api_t::close) (display_ctrl_t *const p_ctrl)

Close display device.

Parameters
[in] p_ctrl Pointer to display interface

control block.

◆ start

fsp_err_t(* display_api_t::start) (display_ctrl_t *const p_ctrl)

Display start.

Parameters
[in] p_ctrl Pointer to display interface

control block.

◆ stop

fsp_err_t(* display_api_t::stop) (display_ctrl_t *const p_ctrl)

Display stop.

Parameters
[in] p_ctrl Pointer to display interface

control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,295 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ layerChange

fsp_err_t(* display_api_t::layerChange) (display_ctrl_t const *const p_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t frame)

Change layer parameters at runtime.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] p_cfg Pointer to run-time layer
configuration structure.

[in] frame Number of graphic frames.

◆ bufferChange

fsp_err_t(* display_api_t::bufferChange) (display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

Change layer framebuffer pointer.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] framebuffer Pointer to desired
framebuffer.

[in] frame Number of graphic frames.

◆ correction

fsp_err_t(* display_api_t::correction) (display_ctrl_t const *const p_ctrl, display_correction_t const
*const p_param)

Color correction.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] param Pointer to color correction
configuration structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,296 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ clut

fsp_err_t(* display_api_t::clut) (display_ctrl_t const *const p_ctrl, display_clut_cfg_t const *const
p_clut_cfg, display_frame_layer_t layer)

Set CLUT for display device.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] p_clut_cfg Pointer to CLUT
configuration structure.

[in] layer Layer number corresponding
to the CLUT.

◆ clutEdit

fsp_err_t(* display_api_t::clutEdit) (display_ctrl_t const *const p_ctrl, display_frame_layer_t layer,
uint8_t index, uint32_t color)

Set CLUT element for display device.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] layer Layer number corresponding
to the CLUT.

[in] index CLUT element index.

[in] color Desired CLUT index color.

◆ colorKeySet

fsp_err_t(* display_api_t::colorKeySet) (display_ctrl_t const *const p_ctrl,
display_colorkeying_layer_t key_cfg, display_frame_layer_t layer)

Configure color keying.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] key_cfg Pointer to color keying
configuration.

[in] layer Layer to apply color keying.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,297 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ statusGet

fsp_err_t(* display_api_t::statusGet) (display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

Get status for display device.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] status Pointer to display interface
status structure.

◆ display_instance_t

struct display_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

display_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

display_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

display_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ display_ctrl_t

typedef void display_ctrl_t

Display control block. Allocate an instance specific control block to pass into the display API
calls.Display control block

Enumeration Type Documentation

◆ display_frame_layer_t

enum display_frame_layer_t

Display frame number

Enumerator

DISPLAY_FRAME_LAYER_1 Frame layer 1.

DISPLAY_FRAME_LAYER_2 Frame layer 2.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,298 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ display_state_t

enum display_state_t

Display interface operation state

Enumerator

DISPLAY_STATE_CLOSED Display closed.

DISPLAY_STATE_OPENED Display opened.

DISPLAY_STATE_DISPLAYING Displaying.

◆ display_event_t

enum display_event_t

Display event codes

Enumerator

DISPLAY_EVENT_GR1_UNDERFLOW Graphics frame1 underflow occurs.

DISPLAY_EVENT_GR2_UNDERFLOW Graphics frame2 underflow occurs.

DISPLAY_EVENT_LINE_DETECTION Designated line is processed.

DISPLAY_EVENT_FRAME_END Frame end is processed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,299 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ display_in_format_t

enum display_in_format_t

Input format setting

Enumerator

DISPLAY_IN_FORMAT_32BITS_ARGB8888 ARGB8888, 32 bits.

DISPLAY_IN_FORMAT_32BITS_RGB888 RGB888, 32 bits.

DISPLAY_IN_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB1555 ARGB1555, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB4444 ARGB4444, 16 bits.

DISPLAY_IN_FORMAT_CLUT8 CLUT8.

DISPLAY_IN_FORMAT_CLUT4 CLUT4.

DISPLAY_IN_FORMAT_CLUT1 CLUT1.

◆ display_out_format_t

enum display_out_format_t

Output format setting

Enumerator

DISPLAY_OUT_FORMAT_24BITS_RGB888 RGB888, 24 bits.

DISPLAY_OUT_FORMAT_18BITS_RGB666 RGB666, 18 bits.

DISPLAY_OUT_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_OUT_FORMAT_8BITS_SERIAL SERIAL, 8 bits.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,300 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ display_endian_t

enum display_endian_t

Data endian select

Enumerator

DISPLAY_ENDIAN_LITTLE Little-endian.

DISPLAY_ENDIAN_BIG Big-endian.

◆ display_color_order_t

enum display_color_order_t

RGB color order select

Enumerator

DISPLAY_COLOR_ORDER_RGB Color order RGB.

DISPLAY_COLOR_ORDER_BGR Color order BGR.

◆ display_signal_polarity_t

enum display_signal_polarity_t

Polarity of a signal select

Enumerator

DISPLAY_SIGNAL_POLARITY_LOACTIVE Low active signal.

DISPLAY_SIGNAL_POLARITY_HIACTIVE High active signal.

◆ display_sync_edge_t

enum display_sync_edge_t

Signal synchronization edge select

Enumerator

DISPLAY_SIGNAL_SYNC_EDGE_RISING Signal is synchronized to rising edge.

DISPLAY_SIGNAL_SYNC_EDGE_FALLING Signal is synchronized to falling edge.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,301 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > Display Interface

◆ display_fade_control_t

enum display_fade_control_t

Fading control

Enumerator

DISPLAY_FADE_CONTROL_NONE Applying no fading control.

DISPLAY_FADE_CONTROL_FADEIN Applying fade-in control.

DISPLAY_FADE_CONTROL_FADEOUT Applying fade-out control.

◆ display_fade_status_t

enum display_fade_status_t

Fading status

Enumerator

DISPLAY_FADE_STATUS_NOT_UNDERWAY Fade-in/fade-out is not in progress.

DISPLAY_FADE_STATUS_FADING_UNDERWAY Fade-in or fade-out is in progress.

DISPLAY_FADE_STATUS_PENDING Fade-in/fade-out is configured but not yet
started.

◆ display_color_keying_t

enum display_color_keying_t

Color Keying enable or disable

Enumerator

DISPLAY_COLOR_KEYING_DISABLE Color keying disable.

DISPLAY_COLOR_KEYING_ENABLE Color keying enable.

◆ display_data_swap_t

enum display_data_swap_t

Data swap settings

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,302 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

5.3.7.3 JPEG Codec Interface
Interfaces » Graphics

Detailed Description

Interface for JPEG functions.

Data Structures

struct jpeg_encode_image_size_t

struct jpeg_callback_args_t

struct jpeg_cfg_t

struct jpeg_api_t

struct jpeg_instance_t

Typedefs

typedef void jpeg_ctrl_t

Enumerations

enum jpeg_color_space_t

enum jpeg_data_order_t

enum jpeg_status_t

enum jpeg_decode_pixel_format_t

enum jpeg_decode_subsample_t

Data Structure Documentation

◆ jpeg_encode_image_size_t

struct jpeg_encode_image_size_t

Image parameter structure

Data Fields

uint16_t horizontal_stride_pixels Horizontal stride.

uint16_t horizontal_resolution Horizontal Resolution in pixels.

uint16_t vertical_resolution Vertical Resolution in pixels.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,303 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ jpeg_callback_args_t

struct jpeg_callback_args_t

Callback status structure

Data Fields

jpeg_status_t status JPEG status.

uint32_t image_size JPEG image size.

void const * p_context Pointer to user-provided
context.

◆ jpeg_cfg_t

struct jpeg_cfg_t

User configuration structure, used in open function.

Data Fields

IRQn_Type jedi_irq

 Data transfer interrupt IRQ number.

IRQn_Type jdti_irq

 Decompression interrupt IRQ number.

uint8_t jdti_ipl

 Data transfer interrupt priority.

uint8_t jedi_ipl

 Decompression interrupt priority.

jpeg_mode_t default_mode

 Mode to use at startup.

jpeg_data_order_t decode_input_data_order

 Input data stream byte order.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,304 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

jpeg_data_order_t decode_output_data_order

 Output data stream byte order.

jpeg_decode_pixel_format_t pixel_format

 Pixel format.

uint8_t alpha_value

 Alpha value to be applied to decoded pixel data. Only valid for
ARGB8888 format.

void(* p_decode_callback)(jpeg_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_decode_context

 Placeholder for user data. Passed to user callback in
jpeg_callback_args_t.

jpeg_data_order_t encode_input_data_order

 Input data stream byte order.

jpeg_data_order_t encode_output_data_order

 Output data stream byte order.

uint16_t dri_marker

 DRI Marker setting (0 = No DRI or RST marker)

uint16_t horizontal_resolution

 Horizontal resolution of input image.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,305 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

uint16_t vertical_resolution

 Vertical resolution of input image.

uint16_t horizontal_stride_pixels

 Horizontal stride of input image.

uint8_t const * p_quant_luma_table

 Luma quantization table.

uint8_t const * p_quant_chroma_table

 Chroma quantization table.

uint8_t const * p_huffman_luma_ac_table

 Huffman AC table for luma.

uint8_t const * p_huffman_luma_dc_table

 Huffman DC table for luma.

uint8_t const * p_huffman_chroma_ac_table

 Huffman AC table for chroma.

uint8_t const * p_huffman_chroma_dc_table

 Huffman DC table for chroma.

void(* p_encode_callback)(jpeg_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_encode_context

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,306 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

 Placeholder for user data. Passed to user callback in
jpeg_callback_args_t.

◆ jpeg_api_t

struct jpeg_api_t

JPEG functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(jpeg_ctrl_t *const p_ctrl, jpeg_cfg_t const *const p_cfg)

fsp_err_t(* inputBufferSet)(jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

fsp_err_t(* outputBufferSet)(jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

fsp_err_t(* statusGet)(jpeg_ctrl_t *const p_ctrl, jpeg_status_t *const p_status)

fsp_err_t(* close)(jpeg_ctrl_t *const p_ctrl)

fsp_err_t(* horizontalStrideSet)(jpeg_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

fsp_err_t(* pixelFormatGet)(jpeg_ctrl_t *const p_ctrl, jpeg_color_space_t *const
p_color_space)

fsp_err_t(* imageSubsampleSet)(jpeg_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

fsp_err_t(* linesDecodedGet)(jpeg_ctrl_t *const p_ctrl, uint32_t *const p_lines)

fsp_err_t(* imageSizeGet)(jpeg_ctrl_t *const p_ctrl, uint16_t *p_horizontal_size,
uint16_t *p_vertical_size)

fsp_err_t(* imageSizeSet)(jpeg_ctrl_t *const p_ctrl, jpeg_encode_image_size_t
*p_image_size)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,307 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

fsp_err_t(* modeSet)(jpeg_ctrl_t *const p_ctrl, jpeg_mode_t mode)

Field Documentation

◆ open

fsp_err_t(* jpeg_api_t::open) (jpeg_ctrl_t *const p_ctrl, jpeg_cfg_t const *const p_cfg)

Initial configuration

Precondition
none

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ inputBufferSet

fsp_err_t(* jpeg_api_t::inputBufferSet) (jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t buffer_size)

Assign input data buffer to JPEG codec.

Precondition
the JPEG codec module must have been opened properly.

Note
The buffer starting address must be 8-byte aligned.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] p_buffer Pointer to the input buffer
space

[in] buffer_size Size of the input buffer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,308 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ outputBufferSet

fsp_err_t(* jpeg_api_t::outputBufferSet) (jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

Assign output buffer to JPEG codec for storing output data.

Precondition
The JPEG codec module must have been opened properly.

Note
The buffer starting address must be 8-byte aligned. For the decoding process, the HLD driver automatically
computes the number of lines of the image to decoded so the output data fits into the given space. If the supplied
output buffer is not able to hold the entire frame, the application should call the Output Full Callback function so it
can be notified when additional buffer space is needed.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] p_buffer Pointer to the output buffer
space

[in] buffer_size Size of the output buffer

◆ statusGet

fsp_err_t(* jpeg_api_t::statusGet) (jpeg_ctrl_t *const p_ctrl, jpeg_status_t *const p_status)

Retrieve current status of the JPEG codec module.

Precondition
the JPEG codec module must have been opened properly.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[out] p_status JPEG module status

◆ close

fsp_err_t(* jpeg_api_t::close) (jpeg_ctrl_t *const p_ctrl)

Cancel an outstanding operation.

Precondition
the JPEG codec module must have been opened properly.

Note
If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,309 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ horizontalStrideSet

fsp_err_t(* jpeg_api_t::horizontalStrideSet) (jpeg_ctrl_t *const p_ctrl, uint32_t horizontal_stride)

Configure the horizontal stride value.

Precondition
The JPEG codec module must have been opened properly.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] horizontal_stride Horizontal stride value to be
used for the decoded image
data.

[in] buffer_size Size of the output buffer

◆ pixelFormatGet

fsp_err_t(* jpeg_api_t::pixelFormatGet) (jpeg_ctrl_t *const p_ctrl, jpeg_color_space_t *const
p_color_space)

Get the input pixel format.

Precondition
the JPEG codec module must have been opened properly.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[out] p_color_space JPEG input format.

◆ imageSubsampleSet

fsp_err_t(* jpeg_api_t::imageSubsampleSet) (jpeg_ctrl_t *const p_ctrl, jpeg_decode_subsample_t
horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample settings.

Precondition
The JPEG codec module must have been opened properly.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] horizontal_subsample Horizontal subsample value

[in] vertical_subsample Vertical subsample value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,310 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ linesDecodedGet

fsp_err_t(* jpeg_api_t::linesDecodedGet) (jpeg_ctrl_t *const p_ctrl, uint32_t *const p_lines)

Return the number of lines decoded into the output buffer.

Precondition
the JPEG codec module must have been opened properly.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[out] p_lines Number of lines decoded

◆ imageSizeGet

fsp_err_t(* jpeg_api_t::imageSizeGet) (jpeg_ctrl_t *const p_ctrl, uint16_t *p_horizontal_size, uint16_t
*p_vertical_size)

Retrieve image size during decoding operation.

Precondition
the JPEG codec module must have been opened properly.

Note
If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[out] p_horizontal_size Image horizontal size, in
number of pixels.

[out] p_vertical_size Image vertical size, in
number of pixels.

◆ imageSizeSet

fsp_err_t(* jpeg_api_t::imageSizeSet) (jpeg_ctrl_t *const p_ctrl, jpeg_encode_image_size_t
*p_image_size)

Set image parameters to JPEG Codec

Precondition
The JPEG codec module must have been opened properly.

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_image_size Pointer to the RAW image
parameters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,311 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ modeSet

fsp_err_t(* jpeg_api_t::modeSet) (jpeg_ctrl_t *const p_ctrl, jpeg_mode_t mode)

Switch between encode and decode mode or vice-versa.

Precondition
The JPEG codec module must have been opened properly. The JPEG Codec can only perform
one operation at a time and requires different configuration for encode and decode. This
function facilitates easy switching between the two modes in case both are needed in an
application.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] mode Mode to switch to

◆ jpeg_instance_t

struct jpeg_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

jpeg_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

jpeg_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

jpeg_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ jpeg_ctrl_t

typedef void jpeg_ctrl_t

JPEG decode control block. Allocate an instance specific control block to pass into the JPEG decode
API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,312 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ jpeg_color_space_t

enum jpeg_color_space_t

Configuration for this module Image color space definitions

Enumerator

JPEG_COLOR_SPACE_YCBCR444 Color Space YCbCr 444.

JPEG_COLOR_SPACE_YCBCR422 Color Space YCbCr 422.

JPEG_COLOR_SPACE_YCBCR420 Color Space YCbCr 420.

JPEG_COLOR_SPACE_YCBCR411 Color Space YCbCr 411.

◆ jpeg_data_order_t

enum jpeg_data_order_t

Multi-byte Data Format

Enumerator

JPEG_DATA_ORDER_NORMAL (1)(2)(3)(4)(5)(6)(7)(8) Normal byte order

JPEG_DATA_ORDER_BYTE_SWAP (2)(1)(4)(3)(6)(5)(8)(7) Byte Swap

JPEG_DATA_ORDER_WORD_SWAP (3)(4)(1)(2)(7)(8)(5)(6) Word Swap

JPEG_DATA_ORDER_WORD_BYTE_SWAP (4)(3)(2)(1)(8)(7)(6)(5) Word-Byte Swap

JPEG_DATA_ORDER_LONGWORD_SWAP (5)(6)(7)(8)(1)(2)(3)(4) Longword Swap

JPEG_DATA_ORDER_LONGWORD_BYTE_SWAP (6)(5)(8)(7)(2)(1)(4)(3) Longword Byte Swap

JPEG_DATA_ORDER_LONGWORD_WORD_SWAP (7)(8)(5)(6)(3)(4)(1)(2) Longword Word Swap

JPEG_DATA_ORDER_LONGWORD_WORD_BYTE_S
WAP

(8)(7)(6)(5)(4)(3)(2)(1) Longword Word Byte
Swap

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,313 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ jpeg_status_t

enum jpeg_status_t

JPEG HLD driver internal status information. The driver can simultaneously be in more than any one
status at the same time. Parse the status bit-fields using the definitions in this enum to determine
driver status

Enumerator

JPEG_STATUS_NONE JPEG codec module is not initialized.

JPEG_STATUS_IDLE JPEG Codec module is open but not running.

JPEG_STATUS_RUNNING JPEG Codec is running.

JPEG_STATUS_HEADER_PROCESSING JPEG Codec module is reading the JPEG header
information.

JPEG_STATUS_INPUT_PAUSE JPEG Codec paused waiting for more input
data.

JPEG_STATUS_OUTPUT_PAUSE JPEG Codec paused after it decoded the
number of lines specified by user.

JPEG_STATUS_IMAGE_SIZE_READY JPEG decoding operation obtained image size,
and paused.

JPEG_STATUS_ERROR JPEG Codec module encountered an error.

JPEG_STATUS_OPERATION_COMPLETE JPEG Codec has completed the operation.

◆ jpeg_decode_pixel_format_t

enum jpeg_decode_pixel_format_t

Pixel Data Format

Enumerator

JPEG_DECODE_PIXEL_FORMAT_ARGB8888 Pixel Data ARGB8888 format.

JPEG_DECODE_PIXEL_FORMAT_RGB565 Pixel Data RGB565 format.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,314 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > JPEG Codec Interface

◆ jpeg_decode_subsample_t

enum jpeg_decode_subsample_t

Data type for horizontal and vertical subsample settings. This setting applies only to the decoding
operation.

Enumerator

JPEG_DECODE_OUTPUT_NO_SUBSAMPLE No subsample. The image is decoded with no
reduction in size.

JPEG_DECODE_OUTPUT_SUBSAMPLE_HALF The output image size is reduced by half.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_QUAR
TER

The output image size is reduced to one-
quarter.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_EIGHT
H

The output image size is reduced to one-
eighth.

5.3.7.4 MIPI DSI Interface
Interfaces » Graphics

Detailed Description

Interface for MIPI DSI communications.

Summary
The MIPI DSI interface provides functionality involved with driving display panels over MIPI.

Data Structures

struct mipi_dsi_cmd_t

union mipi_dsi_ack_err_status_t

struct mipi_dsi_status_t

struct mipi_dsi_callback_args_t

struct mipi_dsi_timing_t

struct mipi_dsi_cfg_t

struct mipi_dsi_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,315 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

struct mipi_dsi_instance_t

Typedefs

typedef __PACKED_STRUCT st_mipi_dsi_result

 Data of received packet header. More...

typedef void mipi_dsi_ctrl_t

Enumerations

enum mipi_dsi_cmd_id_t

enum mipi_dsi_dcs_id_t

enum mipi_dsi_video_data_t

enum mipi_dsi_ack_err_t

enum mipi_dsi_vc_t

enum mipi_dsi_cmd_flag_t

enum mipi_dsi_event_t

enum mipi_dsi_sequence_status_t

enum mipi_dsi_video_status_t

enum mipi_dsi_receive_status_t

enum mipi_dsi_fatal_status_t

enum mipi_dsi_phy_status_t

enum mipi_dsi_link_status_t

enum mipi_dsi_lane_t

Variables

mipi_dsi_cmd_id_t cmd_id

 Data type.

uint8_t virtual_channel_id

 Virtual channel ID.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,316 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

uint8_t long_packet

 Sort packet (0) or Long packet (1)

uint8_t rx_success

 Response packet or ack trigger received.

uint8_t timeout

 Fatal timeout error.

uint8_t rx_fail

 Expected receive not done.

uint8_t rx_data_fail

 Receive packet data fail.

uint8_t rx_correctable_error

 Correctable error detected.

uint8_t rx_ack_err

 Rx acknowledge and error report packet received.

uint8_t info_overwrite

 This information was overwritten.

Data Structure Documentation

◆ mipi_dsi_cmd_t

struct mipi_dsi_cmd_t

MIPI DSI Command

Data Fields

uint8_t channel Virtual Channel ID.

mipi_dsi_cmd_id_t cmd_id Message ID.

mipi_dsi_cmd_flag_t flags Flags controlling this message
transition.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,317 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

uint16_t tx_len Transmit buffer size.

const uint8_t * p_tx_buffer Transmit buffer pointer.

const uint8_t * p_rx_buffer Receive buffer pointer.

◆ mipi_dsi_ack_err_status_t

union mipi_dsi_ack_err_status_t

MIPI DSI Acknowledge and Error status type

Data Fields

__PACKED_STRUCT Error report bits.

mipi_dsi_vc_t virtual_channel: 4 Virtual Channel ID.

uint32_t __pad0__: 12

uint32_t bits

◆ mipi_dsi_status_t

struct mipi_dsi_status_t

MIPI DSI status type

Data Fields

mipi_dsi_link_status_t link_status Link status.

mipi_dsi_ack_err_status_t ack_err_latest Latest Acknowledge and Error
Report Packet Latest Info.

mipi_dsi_ack_err_status_t ack_err_accumulated Accumulated Acknowledge and
Error Report Packet Latest Info.

◆ mipi_dsi_callback_args_t

struct mipi_dsi_callback_args_t

MIPI DSI callback parameter definition

Data Fields

mipi_dsi_event_t event Event code.

union mipi_dsi_callback_args_t __unnamed__

mipi_dsi_receive_result_t * p_result Receive result pointer.

void const * p_context Context provided to user during
callback.

◆ mipi_dsi_timing_t

struct mipi_dsi_timing_t

MIPI DSI transition timing

Data Fields

uint32_t clock_stop_time Clock stop time.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,318 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

uint32_t clock_beforehand_time Clock beforehand time.

uint32_t clock_keep_time Clock Keep time.

uint32_t go_lp_and_back Go LP and Back time.

◆ mipi_dsi_cfg_t

struct mipi_dsi_cfg_t

MIPI DSI main configuration structure

Data Fields

mipi_phy_instance_t const * p_mipi_phy_instance

 Pointer to mipi physical layer instance.

mipi_dsi_timing_t const * p_timing

 Pointer to MIPI DSI timing configuration.

bool hsa_no_lp

 Suppress the transition to LP during HSA period and keep HS.

bool hbp_no_lp

 Suppress the transition to LP during HBP period and keep HS.

bool hfp_no_lp

 Suppress the transition to LP during HFP period and keep HS.

uint8_t num_lanes

 Number of MIPI lanes to use.

uint8_t ulps_wakeup_period

 ULPS wakeup period.

uint8_t continuous_clock

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,319 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

 Always run HS clock on/off.

uint32_t hs_tx_timeout

 HS-Tx Timeout value.

uint32_t lp_rx_timeout

 LP-Rx host processor timeout.

uint32_t turnaround_timeout

 Turnaround Acknowledge Timeout.

uint32_t bta_timeout

 Peripheral Response Timeout.

uint32_t lprw_timeout

 LP Read and Write Timeouts.

uint32_t hsrw_timeout

 HS Read and Write Timeouts.

uint32_t max_return_packet_size

 Maximum return packet size.

bool ecc_enable

 ECC Check enable.

mipi_dsi_vc_t crc_check_mask

 Virtual channel CRC check enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,320 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

bool scramble_enable

 Scramble on/off.

bool tearing_detect

 External tearing effect detection mode (0:rising, 1:falling edge)

bool eotp_enable

 End of Transmit Packet (EoTP) on/off.

bool sync_pulse

 Enable for Non-Burst Mode with Sync Pulse sequence.

mipi_dsi_video_data_t data_type

 Video mode data type: 16-bit RGB, 18-bit RGB, 24-bit RGB.

uint8_t virtual_channel_id

 Video mode virtual channel to use (from 0x0 to 0x3)

uint32_t vertical_sync_lines

 Number of vertical sync active lines.

bool vertical_sync_polarity

 V-Sync Polarity.

uint32_t vertical_active_lines

 Number of vertical active lines.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,321 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

uint32_t vertical_back_porch

 Vertical back porch.

uint32_t vertical_front_porch

 Vertical front porch.

uint32_t horizontal_sync_lines

 Number of horizontal sync active lines.

bool horizontal_sync_polarity

 H-Sync Polarity.

uint32_t horizontal_active_lines

 Number of horizontal active lines.

uint32_t horizontal_back_porch

 Horizontal back porch.

uint32_t horizontal_front_porch

 Horizontal front porch.

void(* p_callback)(mipi_dsi_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,322 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

 MIPI hardware dependent configuration. More...

Field Documentation

◆ p_callback

void(* mipi_dsi_cfg_t::p_callback) (mipi_dsi_callback_args_t *p_args)

Pointer to callback function.

Callback configuration

◆ p_extend

void const* mipi_dsi_cfg_t::p_extend

MIPI hardware dependent configuration.

Pointer to display peripheral specific configuration

◆ mipi_dsi_api_t

struct mipi_dsi_api_t

Shared Interface definition for MIPI DSI peripheral

Data Fields

fsp_err_t(* open)(mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_cfg_t const *const
p_cfg)

fsp_err_t(* close)(mipi_dsi_ctrl_t *const p_ctrl)

fsp_err_t(* start)(mipi_dsi_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(mipi_dsi_ctrl_t *const p_ctrl)

fsp_err_t(* ulpsEnter)(mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_lane_t lane)

fsp_err_t(* ulpsExit)(mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_lane_t lane)

fsp_err_t(* command)(mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_cmd_t *p_cmd)

fsp_err_t(* statusGet)(mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_status_t *p_status)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,323 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

Field Documentation

◆ open

fsp_err_t(* mipi_dsi_api_t::open) (mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_cfg_t const *const p_cfg)

Open MIPI DSI device.

Parameters
[in,out] p_ctrl Pointer to MIPI DSI interface

control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to MIPI DSI
configuration structure. All
elements of this structure
must be set by user.

◆ close

fsp_err_t(* mipi_dsi_api_t::close) (mipi_dsi_ctrl_t *const p_ctrl)

Close MIPI DSI device.

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

◆ start

fsp_err_t(* mipi_dsi_api_t::start) (mipi_dsi_ctrl_t *const p_ctrl)

Start pixel data output.

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

◆ stop

fsp_err_t(* mipi_dsi_api_t::stop) (mipi_dsi_ctrl_t *const p_ctrl)

Stop pixel data output.

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,324 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ ulpsEnter

fsp_err_t(* mipi_dsi_api_t::ulpsEnter) (mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_lane_t lane)

Enter Ultra-low Power State (ULPS).

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

[in] lane Physical lane(s) to transition
into ULPS

◆ ulpsExit

fsp_err_t(* mipi_dsi_api_t::ulpsExit) (mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_lane_t lane)

Exit Ultra-low Power State (ULPS).

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

[in] lane Physical lane(s) to transition
from ULPS

◆ command

fsp_err_t(* mipi_dsi_api_t::command) (mipi_dsi_ctrl_t *const p_api_ctrl, mipi_dsi_cmd_t *p_cmd)

Send a command to the display.

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

[in] p_cmd Pointer to a command
structure

◆ statusGet

fsp_err_t(* mipi_dsi_api_t::statusGet) (mipi_dsi_ctrl_t *const p_ctrl, mipi_dsi_status_t *p_status)

Get status of MIPI link.

Parameters
[in] p_ctrl Pointer to MIPI DSI interface

control block.

[in] p_status Pointer to MIPI DSI interface
status structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,325 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_instance_t

struct mipi_dsi_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

mipi_dsi_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

mipi_dsi_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

mipi_dsi_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ st_mipi_dsi_result

typedef __PACKED_STRUCT st_mipi_dsi_result

Data of received packet header.

MIPI DSI Result

◆ mipi_dsi_ctrl_t

typedef void mipi_dsi_ctrl_t

MIPI DSI control block. Allocate an instance specific control block to pass into the MIPI DSI API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,326 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_cmd_id_t

enum mipi_dsi_cmd_id_t

MIPI DSI packet Data Type (commands) - See MIPI specification for additional information

Enumerator

MIPI_DSI_CMD_ID_V_SYNC_START (Short) Sync Event, V Sync Start

MIPI_DSI_CMD_ID_V_SYNC_END (Short) Sync Event, V Sync End

MIPI_DSI_CMD_ID_H_SYNC_START (Short) Sync Event, H Sync Start

MIPI_DSI_CMD_ID_H_SYNC_END (Short) Sync Event, H Sync End

MIPI_DSI_CMD_ID_COMPRESSION_MODE (Short) Compression Mode Command

MIPI_DSI_CMD_ID_END_OF_TRANSMISSION (Short) End of Transmission packet (EoTp)

MIPI_DSI_CMD_ID_COLOR_MODE_OFF (Short) Color Mode (CM) Off Command

MIPI_DSI_CMD_ID_COLOR_MODE_ON (Short) Color Mode (CM) On Command

MIPI_DSI_CMD_ID_SHUTDOWN_PERIPHERAL (Short) Shut Down Peripheral Command

MIPI_DSI_CMD_ID_TURN_ON_PERIPHERAL (Short) Turn On Peripheral Command

MIPI_DSI_CMD_ID_GENERIC_SHORT_WRITE_0_PA
RAM

(Short) Generic Short WRITE, no parameters

MIPI_DSI_CMD_ID_GENERIC_SHORT_WRITE_1_PA
RAM

(Short) Generic Short WRITE, 1 parameter

MIPI_DSI_CMD_ID_GENERIC_SHORT_WRITE_2_PA
RAM

(Short) Generic Short WRITE, 2 parameters

MIPI_DSI_CMD_ID_GENERIC_READ_REQUEST_0_P
ARAM

(Short) Generic READ, no parameters

MIPI_DSI_CMD_ID_GENERIC_READ_REQUEST_1_P
ARAM

(Short) Generic READ, 1 parameter

MIPI_DSI_CMD_ID_GENERIC_READ_REQUEST_2_P
ARAM

(Short) Generic READ, 2 parameters

MIPI_DSI_CMD_ID_DCS_SHORT_WRITE_0_PARAM (Short) DCS Short WRITE, no parameters

MIPI_DSI_CMD_ID_DCS_SHORT_WRITE_1_PARAM (Short) DCS Short WRITE, 1 parameter

MIPI_DSI_CMD_ID_DCS_READ (Short) DCS READ, no parameters

MIPI_DSI_CMD_ID_EXECUTE_QUEUE (Short) Execute Queue

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,327 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

MIPI_DSI_CMD_ID_SET_MAXIMUM_RETURN_PACK
ET_SIZE

(Short) Set Maximum Return Packet Size

MIPI_DSI_CMD_ID_NULL_PACKET (Long) Null Packet, no data

MIPI_DSI_CMD_ID_BLANKING_PACKET (Long) Blanking Packet, no data

MIPI_DSI_CMD_ID_GENERIC_LONG_WRITE (Long) Generic Long Write

MIPI_DSI_CMD_ID_DCS_LONG_WRITE (Long) DCS Long Write/write_LUT Command
Packet

MIPI_DSI_CMD_ID_PICTURE_PARAMETER_SET (Long) Picture Parameter Set

MIPI_DSI_CMD_ID_COMPRESSED_PIXEL_STREAM (Long) Compressed Pixel Stream

MIPI_DSI_CMD_ID_LOOSELY_PACKED_PIXEL_STRE
AM_YCBCR20

(Long) Loosely Packed Pixel Stream, 20-bit
YCbCr, 4:2:2 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_YCBC
R24

(Long) Packed Pixel Stream, 24-bit YCbCr,
4:2:2 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_YCBC
R16

(Long) Packed Pixel Stream, 16-bit YCbCr,
4:2:2 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_30 (Long) Packed Pixel Stream, 30-bit RGB,
10-10-10 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_36 (Long) Packed Pixel Stream, 36-bit RGB,
12-12-12 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_YCBC
R12

(Long) Packed Pixel Stream, 12-bit YCbCr,
4:2:0 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_16 (Long) Packed Pixel Stream, 16-bit RGB, 5-6-5
Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_18 (Long) Packed Pixel Stream, 18-bit RGB, 6-6-6
Format

MIPI_DSI_CMD_ID_LOOSELY_PACKED_PIXEL_STRE
AM_18

(Long) Loosely Packed Pixel Stream, 18-bit
RGB, 6-6-6 Format

MIPI_DSI_CMD_ID_PACKED_PIXEL_STREAM_24 (Long) Packed Pixel Stream, 24-bit RGB, 8-8-8
Format

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,328 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_dcs_id_t

enum mipi_dsi_dcs_id_t

MIPI DCS ID types - See MIPI DCS specification for additional information

Enumerator

MIPI_DSI_DCS_ID_ENTER_IDLE_MODE Enter idle mode.

MIPI_DSI_DCS_ID_ENTER_INVERT_MODE Displayed image colors inverted.

MIPI_DSI_DCS_ID_ENTER_NORMAL_MODE Whole display area used for image.

MIPI_DSI_DCS_ID_ENTER_PARTIAL_MODE Part of display area used for image.

MIPI_DSI_DCS_ID_ENTER_SLEEP_MODE Power off the display panel.

MIPI_DSI_DCS_ID_EXIT_IDLE_MODE Full color depth used.

MIPI_DSI_DCS_ID_EXIT_INVERT_MODE Displayed image colors not inverted.

MIPI_DSI_DCS_ID_EXIT_SLEEP_MODE Power on the display panel.

MIPI_DSI_DCS_ID_GET_3D_CONTROL Get display module 3D mode.

MIPI_DSI_DCS_ID_GET_ADDRESS_MODE Get data order for transfers from host to the
display device.

MIPI_DSI_DCS_ID_GET_BLUE_CHANNEL Get blue component of pixel at 0,0.

MIPI_DSI_DCS_ID_GET_CABC_MIN_BRIGHTNESS Get current minimum brightness level of the
active CABC mode.

MIPI_DSI_DCS_ID_GET_COMPRESSION_MODE Get current compression mode.

MIPI_DSI_DCS_ID_GET_CONTROL_DISPLAY Get control display mode.

MIPI_DSI_DCS_ID_GET_DIAGNOSTIC_RESULT Get peripheral self-diagnostic result.

MIPI_DSI_DCS_ID_GET_DISPLAY_BRIGHTNESS Get current display brightness level.

MIPI_DSI_DCS_ID_GET_DISPLAY_MODE Get current display mode from the peripheral.

MIPI_DSI_DCS_ID_GET_DSI_MODE Get DSI operation mode.

MIPI_DSI_DCS_ID_GET_ERROR_COUNT_ON_DSI Get number of corrupted packets on DSI.

MIPI_DSI_DCS_ID_GET_GREEN_CHANNEL Get green component of pixel at 0,0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,329 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

MIPI_DSI_DCS_ID_GET_IMAGE_CHECKSUM_CT Returns checksum of frame of color-
transformed pixel data.

MIPI_DSI_DCS_ID_GET_IMAGE_CHECKSUM_RGB Returns checksum of frame of RGB pixel data.

MIPI_DSI_DCS_ID_GET_PIXEL_FORMAT Get current pixel format.

MIPI_DSI_DCS_ID_GET_POWER_MODE Get current power mode.

MIPI_DSI_DCS_ID_GET_POWER_SAVE Get current power-save mode.

MIPI_DSI_DCS_ID_GET_RED_CHANNEL Get red component of pixel at 0,0.

MIPI_DSI_DCS_ID_GET_SCANLINE Get current scanline.

MIPI_DSI_DCS_ID_GET_SIGNAL_MODE Get display module signaling mode.

MIPI_DSI_DCS_ID_NOP No operation.

MIPI_DSI_DCS_ID_READ_ACMD Perform read access to the ACMD registers.

MIPI_DSI_DCS_ID_READ_DDB_CONTINUE Continue reading the DDB from the last read
location.

MIPI_DSI_DCS_ID_READ_DDB_START Read the DDB from the provided location.

MIPI_DSI_DCS_ID_READ_DSE_MAILBOX Read access to the registers of the DSE read or
write control mailbox.

MIPI_DSI_DCS_ID_READ_MEMORY_CONTINUE Read image data from peripheral, continuing
after last read.

MIPI_DSI_DCS_ID_READ_MEMORY_START Read image data from the peripheral to the
host.

MIPI_DSI_DCS_ID_READ_PPS_CONTINUE Continue reading the specified length of PPS
data.

MIPI_DSI_DCS_ID_READ_PPS_START Read PPS data.

MIPI_DSI_DCS_ID_SET_3D_CONTROL 3D is used on the display panel

MIPI_DSI_DCS_ID_SET_ADDRESS_MODE Set data order for transfers from host to
peripheral.

MIPI_DSI_DCS_ID_SET_ARP_OFF Disable ARP.

MIPI_DSI_DCS_ID_SET_ARP_ON Enable ARP and set T2 timer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,330 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

MIPI_DSI_DCS_ID_SET_CABC_MIN_BRIGHTNESS Set minimum brightness level for CABC mode.

MIPI_DSI_DCS_ID_SET_COLUMN_ADDRESS Set column extent.

MIPI_DSI_DCS_ID_SET_DISPLAY_BRIGHTNESS Set display brightness level.

MIPI_DSI_DCS_ID_SET_DISPLAY_OFF Blank the display device.

MIPI_DSI_DCS_ID_SET_DISPLAY_ON Show image on display device.

MIPI_DSI_DCS_ID_SET_DSI_MODE Set DSI operation mode.

MIPI_DSI_DCS_ID_SET_GAMMA_CURVE Select gamma curve used by display.

MIPI_DSI_DCS_ID_SET_PAGE_ADDRESS Set page extent.

MIPI_DSI_DCS_ID_SET_PARTIAL_COLUMNS Define the number of columns in the partial
display area.

MIPI_DSI_DCS_ID_SET_PARTIAL_ROWS Define the number of rows in the partial
display area.

MIPI_DSI_DCS_ID_SET_PIXEL_FORMAT Define how many bits per pixel are used.

MIPI_DSI_DCS_ID_SET_SCROLL_AREA Define vertical scrolling and fixed area.

MIPI_DSI_DCS_ID_SET_SCROLL_START Define vertical scrolling starting point.

MIPI_DSI_DCS_ID_SET_TEAR_OFF Sync information not sent from the display
module to the host.

MIPI_DSI_DCS_ID_SET_TEAR_ON Sync information is sent from the display
module to the host.

MIPI_DSI_DCS_ID_SET_TEAR_SCANLINE Sync information is sent from display to the
host when display refresh reaches profivided
scan line.

MIPI_DSI_DCS_ID_SET_VSYNC_TIMING Set VSYNC timing to the specified length of PPS
data.

MIPI_DSI_DCS_ID_SOFT_RESET Software reset.

MIPI_DSI_DCS_ID_WRITE_ACMD Write access to ACMD registers.

MIPI_DSI_DCS_ID_WRITE_CONTROL_DISPLAY Write control mode of display brightness.

MIPI_DSI_DCS_ID_WRITE_DSE_MAILBOX Write registers of DSE read or write control
mailbox.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,331 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

MIPI_DSI_DCS_ID_WRITE_LUT Fill peripheral look-up table with provided
data.

MIPI_DSI_DCS_ID_WRITE_MEMORY_CONTINUE Continue image information transfer from last
address.

MIPI_DSI_DCS_ID_WRITE_MEMORY_START Transfer image information from host to
peripheral.

MIPI_DSI_DCS_ID_WRITE_POWER_SAVE Writes power save mode.

◆ mipi_dsi_video_data_t

enum mipi_dsi_video_data_t

MIPI DSI Video Data type

Enumerator

MIPI_DSI_VIDEO_DATA_16RGB_PIXEL_STREAM 16-bit RGB Packed Pixel Stream

MIPI_DSI_VIDEO_DATA_18RGB_PIXEL_STREAM 18-bit RGB Packed Pixel Stream

MIPI_DSI_VIDEO_DATA_24RGB_PIXEL_STREAM 24-bit RGB Packed Pixel Stream

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,332 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_ack_err_t

enum mipi_dsi_ack_err_t

MIPI DSI Acknowledge and Error type

Enumerator

MIPI_DSI_ACK_ERR_NONE No Errors.

MIPI_DSI_ACK_ERR_SOT_ERROR SoT Error.

MIPI_DSI_ACK_ERR_SOT_SYNC_ERROR SoT Sync Error.

MIPI_DSI_ACK_ERR_EOT_SYNC_ERROR EoT Sync Error.

MIPI_DSI_ACK_ERR_ESCAPE_ENTRY_ERROR Escape Mode Entry Error.

MIPI_DSI_ACK_ERR_LOW_POWER_SYNC_ERROR Low-Power Transmit Sync Error.

MIPI_DSI_ACK_ERR_PERIPHERAL_TIMEOUT_ERRO
R

Peripheral Timeout Error.

MIPI_DSI_ACK_ERR_FALSE_CONTROL_ERROR False Control Error.

MIPI_DSI_ACK_ERR_CONTENTION_DETECTED Contention Detected Error.

MIPI_DSI_ACK_ERR_ECC_SINGLE ECC Error, single-bit.

MIPI_DSI_ACK_ERR_ECC_MULTI ECC Error, multi-bit.

MIPI_DSI_ACK_ERR_CKSM_ERROR Checksum Error (Long packet only)

MIPI_DSI_ACK_ERR_DSI_DATA_ERROR DSI Data Type Not Recognized.

MIPI_DSI_ACK_ERR_DSI_VC_ID_ERROR DSI VC ID Invalid.

MIPI_DSI_ACK_ERR_INVALID_TX_LEN Invalid Transmission Length.

MIPI_DSI_ACK_ERR_DSI_PROTOCOL_VIOLATION DSI Protocol Violation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,333 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_vc_t

enum mipi_dsi_vc_t

Enumerator

MIPI_DSI_VC_NONE No channels selected.

MIPI_DSI_VC_0 Virtual channel 0.

MIPI_DSI_VC_1 Virtual channel 1.

MIPI_DSI_VC_2 Virtual channel 2.

MIPI_DSI_VC_3 Virtual channel 3.

◆ mipi_dsi_cmd_flag_t

enum mipi_dsi_cmd_flag_t

MIPI DSI Message Flags

Enumerator

MIPI_DSI_CMD_FLAG_NONE No flags.

MIPI_DSI_CMD_FLAG_BTA Assert bus turnaround at end of transfer.

MIPI_DSI_CMD_FLAG_BTA_READ Assert bus turnaround followed by read
request (No WRITE request before BTA)

MIPI_DSI_CMD_FLAG_BTA_NO_WRITE Immediately assert bus turnaround (No WRITE
request before BTA)

MIPI_DSI_CMD_FLAG_AUX_OPERATION Execute auxiliary operation command.

MIPI_DSI_CMD_FLAG_ACT_CODE_RESET_TRIGGE
R

Send action code reset trigger message.

MIPI_DSI_CMD_FLAG_ACT_CODE_INITIAL_SKEW_C
AL

Send action code initial skew calibration
message.

MIPI_DSI_CMD_FLAG_ACT_CODE_PERIODIC_SKE
W_CAL

Send action code periodic skew message.

MIPI_DSI_CMD_FLAG_ACT_CODE_NO_OPERATION

Send action code NOOP message.

MIPI_DSI_CMD_FLAG_LOW_POWER Transmit in low-power mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,334 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_event_t

enum mipi_dsi_event_t

MIPI DSI event codes

Enumerator

MIPI_DSI_EVENT_SEQUENCE_0 Sequence 0 event (Low-Power)

MIPI_DSI_EVENT_SEQUENCE_1 Sequence 1 event (High-Speed)

MIPI_DSI_EVENT_VIDEO Video event.

MIPI_DSI_EVENT_RECEIVE Receive event.

MIPI_DSI_EVENT_FATAL Fatal event.

MIPI_DSI_EVENT_PHY Physical layer event.

MIPI_DSI_EVENT_POST_OPEN Interface has been opened. Perform post-open
application processing.

MIPI_DSI_EVENT_PRE_START Video is about to start. Perform pre-video
application processing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,335 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_sequence_status_t

enum mipi_dsi_sequence_status_t

MIPI DSI Sequence status

Enumerator

MIPI_DSI_SEQUENCE_STATUS_NONE Sequence status not set.

MIPI_DSI_SEQUENCE_STATUS_RUNNING Sequence operation in progress.

MIPI_DSI_SEQUENCE_STATUS_ACTIONS_FINISHE
D

All descriptor actions finished.

MIPI_DSI_SEQUENCE_STATUS_DESCRIPTORS_FINI
SHED

All descriptors finished.

MIPI_DSI_SEQUENCE_STATUS_DESCRIPTOR_ABO
RT

Descriptor abort interrupt.

MIPI_DSI_SEQUENCE_STATUS_SIZE_ERROR Packet size error.

MIPI_DSI_SEQUENCE_STATUS_TX_INTERNAL_BUS
_ERROR

Tx internal bus error.

MIPI_DSI_SEQUENCE_STATUS_RX_FATAL_ERROR Receive fatal error.

MIPI_DSI_SEQUENCE_STATUS_RX_FAIL Receive fail.

MIPI_DSI_SEQUENCE_STATUS_RX_PACKET_DATA_
FAIL

Receive packet data fail.

MIPI_DSI_SEQUENCE_STATUS_RX_CORRECTABLE
_ERROR

Receive correctable error.

MIPI_DSI_SEQUENCE_STATUS_RX_ACK_AND_ERR
OR

Receive acknowledge and error report.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,336 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_video_status_t

enum mipi_dsi_video_status_t

MIPI DSI video status errors

Enumerator

MIPI_DSI_VIDEO_STATUS_NONE Video status not set.

MIPI_DSI_VIDEO_STATUS_START Video started event.

MIPI_DSI_VIDEO_STATUS_STOP Video stopped event.

MIPI_DSI_VIDEO_STATUS_RUNNING Video running status.

MIPI_DSI_VIDEO_STATUS_READY Video ready event.

MIPI_DSI_VIDEO_STATUS_TIMING_ERROR Video timing error event.

MIPI_DSI_VIDEO_STATUS_UNDERFLOW Video buffer underflow event.

MIPI_DSI_VIDEO_STATUS_OVERFLOW Video buffer overflow event.

◆ mipi_dsi_receive_status_t

enum mipi_dsi_receive_status_t

MIPI DSI receive status errors

Enumerator

MIPI_DSI_RECEIVE_STATUS_NONE Receive status not set.

MIPI_DSI_RECEIVE_STATUS_BTA_REQUEST_END Receive BTA request end.

MIPI_DSI_RECEIVE_STATUS_LP_RX_HOST_TIMEOU
T

Receive low power receive timeout.

MIPI_DSI_RECEIVE_STATUS_BTA_ACK_TIMEOUT Receive BTA ack timeout.

MIPI_DSI_RECEIVE_STATUS_RESPONSE_PACKET Receive response.

MIPI_DSI_RECEIVE_STATUS_EOTP Receive end of transmission packet.

MIPI_DSI_RECEIVE_STATUS_TEARING_TRIGGER Receive tearing trigger.

MIPI_DSI_RECEIVE_STATUS_ACK_TRIGGER Receive ack trigger.

MIPI_DSI_RECEIVE_STATUS_TEARING_DETECT Receive tearing detect.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,337 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

MIPI_DSI_RECEIVE_STATUS_MALFORM_ERROR Receive malform error.

MIPI_DSI_RECEIVE_STATUS_ECC_MULTI Receive ecc multi-bit error.

MIPI_DSI_RECEIVE_STATUS_UNEXPECTED_PACKE
T

Receive unexpected packet.

MIPI_DSI_RECEIVE_STATUS_WORD_COUNT Receive word count.

MIPI_DSI_RECEIVE_STATUS_CRC Receive crc error.

MIPI_DSI_RECEIVE_STATUS_INTERNAL_BUS Receive internal bus error.

MIPI_DSI_RECEIVE_STATUS_BUFFER_OVERFLOW Receive buffer overflow.

MIPI_DSI_RECEIVE_STATUS_TIMEOUT Receive timeout.

MIPI_DSI_RECEIVE_STATUS_NO_RESPONSE Receive no response.

MIPI_DSI_RECEIVE_STATUS_PACKET_SIZE Receive packet size error.

MIPI_DSI_RECEIVE_STATUS_ECC_SINGLE Receive ecc single bit error.

MIPI_DSI_RECEIVE_STATUS_ACK_AND_ERROR Receive ack and error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,338 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_fatal_status_t

enum mipi_dsi_fatal_status_t

MIPI DSI fatal status errors

Enumerator

MIPI_DSI_FATAL_STATUS_NONE Fatal status not set.

MIPI_DSI_FATAL_STATUS_HS_TX_TIMEOUT Fatal high speed transmit timeout.

MIPI_DSI_FATAL_STATUS_LP_RX_TIMEOUT Fatal low power receive timeout.

MIPI_DSI_FATAL_STATUS_BTA_ACK_TIMEOUT Fatal BTA ack timeout.

MIPI_DSI_FATAL_STATUS_ESCAPE_ENTRY_ERROR

Fatal escape mode entry error.

MIPI_DSI_FATAL_STATUS_LPDT_SYNC_ERROR Fatal low power data transmission
synchronization error.

MIPI_DSI_FATAL_STATUS_CTRL_ERROR Fatal control error.

MIPI_DSI_FATAL_STATUS_LP0_CONTENTION_DET
ECT

Fatal lane 0 low power contention detect.

MIPI_DSI_FATAL_STATUS_LP1_CONTENTION_DET
ECT

Fatal lane 1 low power contention detect.

MIPI_DSI_FATAL_STATUS_LP0_CONTENTION Fatal lane 0 low power contention status.

MIPI_DSI_FATAL_STATUS_LP1_CONTENTION Fatal lane 1 low power contention status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,339 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_phy_status_t

enum mipi_dsi_phy_status_t

MIPI DSI physical lane status

Enumerator

MIPI_DSI_PHY_STATUS_NONE Physical lane status not set.

MIPI_DSI_PHY_STATUS_ULP_NOT_ACTIVE Physical lane ULP not active.

MIPI_DSI_PHY_STATUS_CLOCK_LANE_STOP Clock lane in stopped state.

MIPI_DSI_PHY_STATUS_DATA_LANE0_LP_RX Data lane low power receive mode.

MIPI_DSI_PHY_STATUS_DATA_LANE0_ULP_RX Data lane ultra low power receive mode.

MIPI_DSI_PHY_STATUS_DATA_LANE0_NOT_ULP Data lane 0 not in ULP mode.

MIPI_DSI_PHY_STATUS_DATA_LANE1_NOT_ULP Data lane 1 not in ULP mode.

MIPI_DSI_PHY_STATUS_DATA_LANE0_STOP Data lane 0 stop state.

MIPI_DSI_PHY_STATUS_DATA_LANE1_STOP Data lane 1 stop state.

MIPI_DSI_PHY_STATUS_DATA_LANE0_RX_TO_TX Data lane Rx to Tx transition event.

MIPI_DSI_PHY_STATUS_DATA_LANE0_TX_TO_RX Data lane Tx to Rx transition event.

MIPI_DSI_PHY_STATUS_DATA_LANE0_RX_STATE Data lane Rx active state.

MIPI_DSI_PHY_STATUS_CLOCK_ULPS_ENTER Clock lane ULPS enter event.

MIPI_DSI_PHY_STATUS_CLOCK_ULPS_EXIT Clock lane ULPS exit event.

MIPI_DSI_PHY_STATUS_CLOCK_LP_TO_HS Clock lane LP to HS transition event.

MIPI_DSI_PHY_STATUS_CLOCK_HS_TO_LP Clock lane HS to LP transition event.

MIPI_DSI_PHY_STATUS_DATA_LANE_ULPS_ENTER Data lane ULPS enter event.

MIPI_DSI_PHY_STATUS_DATA_LANE_ULPS_EXIT Data lane ULPS exit event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,340 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > MIPI DSI Interface

◆ mipi_dsi_link_status_t

enum mipi_dsi_link_status_t

MIPI DSI link status bits

Enumerator

MIPI_DSI_LINK_STATUS_IDLE Link idle or uninitialized.

MIPI_DSI_LINK_STATUS_CH0_RUNNING Channel 0 running.

MIPI_DSI_LINK_STATUS_CH1_RUNNING Channel 1 running.

MIPI_DSI_LINK_STATUS_VIDEO_RUNNING Video output running.

MIPI_DSI_LINK_STATUS_HP_MODE_BUSY HP operation busy.

MIPI_DSI_LINK_STATUS_LP_MODE_BUSY LP operation busy.

◆ mipi_dsi_lane_t

enum mipi_dsi_lane_t

MIPI DSI Lane Type

Enumerator

MIPI_DSI_LANE_CLOCK Clock Lanes.

MIPI_DSI_LANE_DATA_ALL All Data Lanes.

5.3.7.5 SLCDC Interface
Interfaces » Graphics

Detailed Description

Interface for Segment LCD controllers.

Data Structures

struct slcdc_cfg_t

struct slcdc_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,341 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

struct slcdc_instance_t

Typedefs

typedef void slcdc_ctrl_t

Enumerations

enum slcdc_bias_method_t

enum slcdc_time_slice_t

enum slcdc_waveform_t

enum slcdc_drive_volt_gen_t

enum slcdc_ref_volt_sel_t

enum slcdc_display_area_control_blink_t

enum slcdc_display_area_t

enum slcdc_contrast_t

enum slcdc_display_on_off_t

enum slcdc_display_enable_disable_t

enum slcdc_display_clock_t

enum slcdc_clk_div_t

Data Structure Documentation

◆ slcdc_cfg_t

struct slcdc_cfg_t

SLCDC configuration block

Data Fields

slcdc_display_clock_t slcdc_clock LCD clock source (LCDSCKSEL)

slcdc_clk_div_t slcdc_clock_setting LCD clock setting (LCDC0)

slcdc_bias_method_t bias_method LCD display bias method select
(LBAS bit)

slcdc_time_slice_t time_slice Time slice of LCD display select
(LDTY bit)

slcdc_waveform_t waveform LCD display waveform select
(LWAVE bit)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,342 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

slcdc_drive_volt_gen_t drive_volt_gen LCD Drive Voltage Generator
Select (MDSET bit)

slcdc_contrast_t contrast LCD Boost Level (contrast
setting)

slcdc_ref_volt_sel_t ref_volt_sel LCD reference voltage selection
(MDSET2 bit)

◆ slcdc_api_t

struct slcdc_api_t

SLCDC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

fsp_err_t(* write)(slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t
const *p_data, uint8_t const segment_count)

fsp_err_t(* modify)(slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t
const data_mask, uint8_t const data)

fsp_err_t(* start)(slcdc_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(slcdc_ctrl_t *const p_ctrl)

fsp_err_t(* setContrast)(slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const
contrast)

fsp_err_t(* setDisplayArea)(slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

fsp_err_t(* close)(slcdc_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,343 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ open

fsp_err_t(* slcdc_api_t::open) (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

Open SLCDC.

Parameters
[in,out] p_ctrl Pointer to display interface

control block. Must be
declared by user.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by the user.

◆ write

fsp_err_t(* slcdc_api_t::write) (slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t const
*p_data, uint8_t const segment_count)

Write data to the SLCDC segment data array. Specifies the initial display data. Except when using
8-time slice mode, store values in the lower 4 bits when writing to the A-pattern area and in the
upper 4 bits when writing to the B-pattern area.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] start_segment Specify the start segment
number to be written.

[in] p_data Pointer to the display data to
be written to the specified
segments.

[in] segment_count Number of segments to be
written.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,344 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ modify

fsp_err_t(* slcdc_api_t::modify) (slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t const
data_mask, uint8_t const data)

Rewrite data in the SLCDC segment data array. Rewrites the LCD display data in 1-bit units. If a bit
is not specified for rewriting, the value stored in the bit is held as it is.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] segment The segment to be written.

[in] data_mask Mask the data being
displayed. Set 0 to the bit to
be rewritten and set 1 to the
other bits. Multiple bits can
be rewritten.

[in] data Specify display data to
rewrite to the specified
segment.

◆ start

fsp_err_t(* slcdc_api_t::start) (slcdc_ctrl_t *const p_ctrl)

Enable display signal output. Displays the segment data on the LCD.

Parameters
[in] p_ctrl Pointer to display interface

control block.

◆ stop

fsp_err_t(* slcdc_api_t::stop) (slcdc_ctrl_t *const p_ctrl)

Disable display signal output. Stops displaying data on the LCD.

Parameters
[in] p_ctrl Pointer to display interface

control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,345 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ setContrast

fsp_err_t(* slcdc_api_t::setContrast) (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const contrast)

Set the display contrast. This function can be used only when the internal voltage boosting method
is used for drive voltage generation.

Parameters
[in] p_ctrl Pointer to display interface

control block.

◆ setDisplayArea

fsp_err_t(* slcdc_api_t::setDisplayArea) (slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

Set LCD display area. This function sets a specified display area, A-pattern or B-pattern. This
function can be used to 'blink' the display between A-pattern and B-pattern area data.

When using blinking, the RTC is required to operate before this function is executed. To configure
the RTC, follow the steps below. 1) Open RTC 2) Set Periodic IRQ 3) Start RTC counter 4) Enable
IRQ, RTC_EVENT_PERIODIC_IRQ Refer to the User's Manual for the detailed procedure.

Parameters
[in] p_ctrl Pointer to display interface

control block.

[in] display_area Display area to be used, A-
pattern or B-pattern area.

◆ close

fsp_err_t(* slcdc_api_t::close) (slcdc_ctrl_t *const p_ctrl)

Close SLCDC.

Parameters
[in] p_ctrl Pointer to display interface

control block.

◆ slcdc_instance_t

struct slcdc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

slcdc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

slcdc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,346 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

slcdc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ slcdc_ctrl_t

typedef void slcdc_ctrl_t

SLCDC control block. Allocate an instance specific control block to pass into the SLCDC API
calls.SLCDC control block

Enumeration Type Documentation

◆ slcdc_bias_method_t

enum slcdc_bias_method_t

LCD display bias method.

Enumerator

SLCDC_BIAS_2 1/2 bias method

SLCDC_BIAS_3 1/3 bias method

SLCDC_BIAS_4 1/4 bias method

◆ slcdc_time_slice_t

enum slcdc_time_slice_t

Time slice of LCD display.

Enumerator

SLCDC_STATIC Static.

SLCDC_SLICE_2 2-time slice

SLCDC_SLICE_3 3-time slice

SLCDC_SLICE_4 4-time slice

SLCDC_SLICE_6 6-time slice

SLCDC_SLICE_8 8-time slice

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,347 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ slcdc_waveform_t

enum slcdc_waveform_t

LCD display waveform select.

Enumerator

SLCDC_WAVE_A Waveform A.

SLCDC_WAVE_B Waveform B.

◆ slcdc_drive_volt_gen_t

enum slcdc_drive_volt_gen_t

LCD Drive Voltage Generator Select.

Enumerator

SLCDC_VOLT_EXTERNAL External resistance division method.

SLCDC_VOLT_INTERNAL Internal voltage boosting method.

SLCDC_VOLT_CAPACITOR Capacitor split method.

◆ slcdc_ref_volt_sel_t

enum slcdc_ref_volt_sel_t

LCD Reference Voltage Selection.

Enumerator

SLCDC_REF_INTERNAL_VL1_CAPACITOR_VCC_EX
TERNAL

Select VL1 reference for internal voltage or
VCC reference for capacitor split or external
division.

Select VL2 reference for internal voltage or VL4
reference for capacitor split

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,348 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ slcdc_display_area_control_blink_t

enum slcdc_display_area_control_blink_t

Display Data Area Control

Enumerator

SLCDC_NOT_BLINKING Display either A-pattern or B-pattern data.

SLCDC_BLINKING Alternately display A-pattern and B-pattern
data.

◆ slcdc_display_area_t

enum slcdc_display_area_t

Display Area data

Enumerator

SLCDC_DISP_A Display A-pattern data.

SLCDC_DISP_B Display B-pattern data.

SLCDC_DISP_BLINK Blink between A- and B-pattern.

◆ slcdc_contrast_t

enum slcdc_contrast_t

LCD Boost Level (contrast) settings

Enumerator

SLCDC_CONTRAST_0 Contrast level 0.

SLCDC_CONTRAST_1 Contrast level 1.

SLCDC_CONTRAST_2 Contrast level 2.

SLCDC_CONTRAST_3 Contrast level 3.

SLCDC_CONTRAST_4 Contrast level 4.

SLCDC_CONTRAST_5 Contrast level 5.

SLCDC_CONTRAST_6 Contrast level 6.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,349 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

SLCDC_CONTRAST_7 Contrast level 7.

SLCDC_CONTRAST_8 Contrast level 8.

SLCDC_CONTRAST_9 Contrast level 9.

SLCDC_CONTRAST_10 Contrast level 10.

SLCDC_CONTRAST_11 Contrast level 11.

SLCDC_CONTRAST_12 Contrast level 12.

SLCDC_CONTRAST_13 Contrast level 13.

SLCDC_CONTRAST_14 Contrast level 14.

SLCDC_CONTRAST_15 Contrast level 15.

SLCDC_CONTRAST_16 Contrast level 16.

SLCDC_CONTRAST_17 Contrast level 17.

SLCDC_CONTRAST_18 Contrast level 18.

SLCDC_CONTRAST_19 Contrast level 19.

SLCDC_CONTRAST_20 Contrast level 20.

SLCDC_CONTRAST_21 Contrast level 21.

SLCDC_CONTRAST_22 Contrast level 22.

◆ slcdc_display_on_off_t

enum slcdc_display_on_off_t

LCD Display Enable/Disable

Enumerator

SLCDC_DISP_OFF Display off.

SLCDC_DISP_ON Display on.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,350 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

◆ slcdc_display_enable_disable_t

enum slcdc_display_enable_disable_t

LCD Display output enable

Enumerator

SLCDC_DISP_DISABLE Output ground level to segment/common pins.

SLCDC_DISP_ENABLE Output enable.

◆ slcdc_display_clock_t

enum slcdc_display_clock_t

LCD Display clock selection

Enumerator

SLCDC_CLOCK_LOCO Display clock source LOCO.

SLCDC_CLOCK_SOSC Display clock source SOSC.

SLCDC_CLOCK_MOSC Display clock source MOSC.

SLCDC_CLOCK_MOCO Display clock source MOCO.

SLCDC_CLOCK_HOCO Display clock source HOCO.

◆ slcdc_clk_div_t

enum slcdc_clk_div_t

LCD clock settings

Enumerator

SLCDC_CLK_DIVISOR_LOCO_4 LOCO Clock/4.

SLCDC_CLK_DIVISOR_LOCO_8 LOCO Clock/8.

SLCDC_CLK_DIVISOR_LOCO_16 LOCO Clock/16.

SLCDC_CLK_DIVISOR_LOCO_32 LOCO Clock/32.

SLCDC_CLK_DIVISOR_LOCO_64 LOCO Clock/64.

SLCDC_CLK_DIVISOR_LOCO_128 LOCO Clock/128.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,351 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Graphics > SLCDC Interface

SLCDC_CLK_DIVISOR_LOCO_256 LOCO Clock/256.

SLCDC_CLK_DIVISOR_LOCO_512 LOCO Clock/512.

SLCDC_CLK_DIVISOR_LOCO_1024 LOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_256 HOCO Clock/256.

SLCDC_CLK_DIVISOR_HOCO_512 HOCO Clock/512.

SLCDC_CLK_DIVISOR_HOCO_1024 HOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_2048 HOCO Clock/2048.

SLCDC_CLK_DIVISOR_HOCO_4096 HOCO Clock/4096.

SLCDC_CLK_DIVISOR_HOCO_8192 HOCO Clock/8192.

SLCDC_CLK_DIVISOR_HOCO_16384 HOCO Clock/16384.

SLCDC_CLK_DIVISOR_HOCO_32768 HOCO Clock/32768.

SLCDC_CLK_DIVISOR_HOCO_65536 HOCO Clock/65536.

SLCDC_CLK_DIVISOR_HOCO_131072 HOCO Clock/131072.

SLCDC_CLK_DIVISOR_HOCO_262144 HOCO Clock/262144.

SLCDC_CLK_DIVISOR_HOCO_524288 HOCO Clock/524288.

SLCDC_CLK_DIVISOR_HOCO_1048576 HOCO Clock/1048576.

5.3.8 Input
Interfaces

Detailed Description

Input Interfaces.

Modules

External IRQ Interface

 Interface for detecting external interrupts.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,352 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input

Key Matrix Interface

 Interface for key matrix functions.

5.3.8.1 External IRQ Interface
Interfaces » Input

Detailed Description

Interface for detecting external interrupts.

Summary
The External IRQ Interface is for configuring interrupts to fire when a trigger condition is detected on
an external IRQ pin.

Data Structures

struct external_irq_callback_args_t

struct external_irq_cfg_t

struct external_irq_api_t

struct external_irq_instance_t

Typedefs

typedef void external_irq_ctrl_t

Enumerations

enum external_irq_trigger_t

enum external_irq_clock_source_div_t

Data Structure Documentation

◆ external_irq_callback_args_t

struct external_irq_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
external_irq_api_t::open

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,353 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > External IRQ Interface

function in external_irq_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ external_irq_cfg_t

struct external_irq_cfg_t

User configuration structure, used in open function

Data Fields

uint8_t channel

 Hardware channel used.

uint8_t ipl

 Interrupt priority.

IRQn_Type irq

 Interrupt number assigned to this instance.

external_irq_trigger_t trigger

 Trigger setting.

external_irq_clock_source_di
v_t

clock_source_div

 Digital filter clock divisor setting.

bool filter_enable

 Digital filter enable/disable setting.

void(* p_callback)(external_irq_callback_args_t *p_args)

void const * p_context

void const * p_extend

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,354 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > External IRQ Interface

 External IRQ hardware dependent configuration.

Field Documentation

◆ p_callback

void(* external_irq_cfg_t::p_callback) (external_irq_callback_args_t *p_args)

Callback provided external input trigger occurs.

◆ p_context

void const* external_irq_cfg_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

◆ external_irq_api_t

struct external_irq_api_t

External interrupt driver structure. External interrupt functions implemented at the HAL layer will
follow this API.

Data Fields

fsp_err_t(* open)(external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

fsp_err_t(* enable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(external_irq_ctrl_t *const p_ctrl,
void(*p_callback)(external_irq_callback_args_t *), void const *const
p_context, external_irq_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(external_irq_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,355 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > External IRQ Interface

◆ open

fsp_err_t(* external_irq_api_t::open) (external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

Initial configuration.

Parameters
[out] p_ctrl Pointer to control block.

Must be declared by user.
Value set here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ enable

fsp_err_t(* external_irq_api_t::enable) (external_irq_ctrl_t *const p_ctrl)

Enable callback when an external trigger condition occurs.

Parameters
[in] p_ctrl Control block set in Open

call for this external
interrupt.

◆ disable

fsp_err_t(* external_irq_api_t::disable) (external_irq_ctrl_t *const p_ctrl)

Disable callback when external trigger condition occurs.

Parameters
[in] p_ctrl Control block set in Open

call for this external
interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,356 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > External IRQ Interface

◆ callbackSet

fsp_err_t(* external_irq_api_t::callbackSet) (external_irq_ctrl_t *const p_ctrl,
void(*p_callback)(external_irq_callback_args_t *), void const *const p_context,
external_irq_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the External IRQ

control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* external_irq_api_t::close) (external_irq_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Parameters
[in] p_ctrl Control block set in Open

call for this external
interrupt.

◆ external_irq_instance_t

struct external_irq_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

external_irq_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

external_irq_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

external_irq_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,357 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > External IRQ Interface

◆ external_irq_ctrl_t

typedef void external_irq_ctrl_t

External IRQ control block. Allocate an instance specific control block to pass into the external IRQ
API calls.

Enumeration Type Documentation

◆ external_irq_trigger_t

enum external_irq_trigger_t

Condition that will trigger an interrupt when detected.

Enumerator

EXTERNAL_IRQ_TRIG_FALLING Falling edge trigger.

EXTERNAL_IRQ_TRIG_RISING Rising edge trigger.

EXTERNAL_IRQ_TRIG_BOTH_EDGE Both edges trigger.

EXTERNAL_IRQ_TRIG_LEVEL_LOW Low level trigger.

EXTERNAL_IRQ_TRIG_LEVEL_HIGH High level trigger.

◆ external_irq_clock_source_div_t

enum external_irq_clock_source_div_t

External IRQ input pin digital filtering sample clock divisor settings. The digital filter rejects trigger
conditions that are shorter than 3 periods of the filter clock.

Enumerator

EXTERNAL_IRQ_CLOCK_SOURCE_DIV_1 Filter using clock source divided by 1.

EXTERNAL_IRQ_CLOCK_SOURCE_DIV_8 Filter using clock source divided by 8.

EXTERNAL_IRQ_CLOCK_SOURCE_DIV_32 Filter using clock source divided by 32.

EXTERNAL_IRQ_CLOCK_SOURCE_DIV_64 Filter using clock source divided by 64.

5.3.8.2 Key Matrix Interface
Interfaces » Input

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,358 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > Key Matrix Interface

Detailed Description

Interface for key matrix functions.

Summary
The KEYMATRIX interface provides standard Key Matrix functionality including event generation on a
rising or falling edge for one or more channels at the same time. The generated event indicates all
channels that are active in that instant via a bit mask. This allows the interface to be used with a
matrix configuration or a one-to-one hardware implementation that is triggered on either a rising or
a falling edge.

Data Structures

struct keymatrix_callback_args_t

struct keymatrix_cfg_t

struct keymatrix_api_t

struct keymatrix_instance_t

Typedefs

typedef void keymatrix_ctrl_t

Enumerations

enum keymatrix_trigger_t

Data Structure Documentation

◆ keymatrix_callback_args_t

struct keymatrix_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Holder for user data. Set in
keymatrix_api_t::open function
in keymatrix_cfg_t.

uint32_t channel_mask Bit vector representing the
physical hardware channel(s)
that caused the interrupt.

◆ keymatrix_cfg_t

struct keymatrix_cfg_t

User configuration structure, used in open function

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,359 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > Key Matrix Interface

uint32_t channel_mask

 Key Input channel(s). Bit mask of channels to open.

keymatrix_trigger_t trigger

 Key Input trigger setting.

uint8_t ipl

 Interrupt priority level.

IRQn_Type irq

 NVIC IRQ number.

void(* p_callback)(keymatrix_callback_args_t *p_args)

 Callback for key interrupt ISR.

void const * p_context

 Holder for user data. Passed to callback in keymatrix_user_cb_data_t.

void const * p_extend

 Extension parameter for hardware specific settings.

◆ keymatrix_api_t

struct keymatrix_api_t

Key Matrix driver structure. Key Matrix functions implemented at the HAL layer will use this API.

Data Fields

fsp_err_t(* open)(keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

fsp_err_t(* enable)(keymatrix_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,360 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > Key Matrix Interface

fsp_err_t(* disable)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* close)(keymatrix_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* keymatrix_api_t::open) (keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

Initial configuration.

Parameters
[out] p_ctrl Pointer to control block.

Must be declared by user.
Value set in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ enable

fsp_err_t(* keymatrix_api_t::enable) (keymatrix_ctrl_t *const p_ctrl)

Enable Key interrupt

Parameters
[in] p_ctrl Control block pointer set in

Open call for this Key
interrupt.

◆ disable

fsp_err_t(* keymatrix_api_t::disable) (keymatrix_ctrl_t *const p_ctrl)

Disable Key interrupt.

Parameters
[in] p_ctrl Control block pointer set in

Open call for this Key
interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,361 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Input > Key Matrix Interface

◆ close

fsp_err_t(* keymatrix_api_t::close) (keymatrix_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Parameters
[in] p_ctrl Control block pointer set in

Open call for this Key
interrupt.

◆ keymatrix_instance_t

struct keymatrix_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

keymatrix_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

keymatrix_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

keymatrix_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ keymatrix_ctrl_t

typedef void keymatrix_ctrl_t

Key matrix control block. Allocate an instance specific control block to pass into the key matrix API
calls.

Enumeration Type Documentation

◆ keymatrix_trigger_t

enum keymatrix_trigger_t

Trigger type: rising edge, falling edge

Enumerator

KEYMATRIX_TRIG_FALLING Falling edge trigger.

KEYMATRIX_TRIG_RISING Rising edge trigger.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,362 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring

5.3.9 Monitoring
Interfaces

Detailed Description

Monitoring Interfaces.

Modules

CAC Interface

 Interface for clock frequency accuracy measurements.

CRC Interface

 Interface for cyclic redundancy checking.

DOC Interface

 Interface for the Data Operation Circuit.

Low Voltage Detection Interface

 Interface for Low Voltage Detection.

WDT Interface

 Interface for watch dog timer functions.

5.3.9.1 CAC Interface
Interfaces » Monitoring

Detailed Description

Interface for clock frequency accuracy measurements.

Summary
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of pulses of
the clock to be measured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,363 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

Data Structures

struct cac_ref_clock_config_t

struct cac_meas_clock_config_t

struct cac_callback_args_t

struct cac_cfg_t

struct cac_api_t

struct cac_instance_t

Typedefs

typedef void cac_ctrl_t

Enumerations

enum cac_event_t

enum cac_clock_type_t

enum cac_clock_source_t

enum cac_ref_divider_t

enum cac_ref_digfilter_t

enum cac_ref_edge_t

enum cac_meas_divider_t

Data Structure Documentation

◆ cac_ref_clock_config_t

struct cac_ref_clock_config_t

Structure defining the settings that apply to reference clock configuration.

Data Fields

cac_ref_divider_t divider Divider specification for the
Reference clock.

cac_clock_source_t clock Clock source for the Reference
clock.

cac_ref_digfilter_t digfilter Digital filter selection for the
CACREF ext clock.

cac_ref_edge_t edge Edge detection for the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,364 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

Reference clock.

◆ cac_meas_clock_config_t

struct cac_meas_clock_config_t

Structure defining the settings that apply to measurement clock configuration.

Data Fields

cac_meas_divider_t divider Divider specification for the
Measurement clock.

cac_clock_source_t clock Clock source for the
Measurement clock.

◆ cac_callback_args_t

struct cac_callback_args_t

Callback function parameter data

Data Fields

cac_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Value provided in configuration
structure.

◆ cac_cfg_t

struct cac_cfg_t

CAC Configuration

Data Fields

cac_ref_clock_config_t cac_ref_clock

 Reference clock specific settings.

cac_meas_clock_config_t cac_meas_clock

 Measurement clock specific settings.

uint16_t cac_upper_limit

 The upper limit counter threshold.

uint16_t cac_lower_limit

 The lower limit counter threshold.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,365 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

IRQn_Type mendi_irq

 Measurement End IRQ number.

IRQn_Type ovfi_irq

 Measurement Overflow IRQ number.

IRQn_Type ferri_irq

 Frequency Error IRQ number.

uint8_t mendi_ipl

 Measurement end interrupt priority.

uint8_t ovfi_ipl

 Overflow interrupt priority.

uint8_t ferri_ipl

 Frequency error interrupt priority.

void(* p_callback)(cac_callback_args_t *p_args)

 Callback provided when a CAC interrupt ISR occurs.

void const * p_context

 Passed to user callback in cac_callback_args_t.

void const * p_extend

 CAC hardware dependent configuration */.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,366 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ cac_api_t

struct cac_api_t

CAC functions implemented at the HAL layer API

Data Fields

fsp_err_t(* open)(cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t(* startMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* stopMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* read)(cac_ctrl_t *const p_ctrl, uint32_t *const p_counter)

fsp_err_t(* callbackSet)(cac_ctrl_t *const p_ctrl,
void(*p_callback)(cac_callback_args_t *), void const *const
p_context, cac_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(cac_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* cac_api_t::open) (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

Open function for CAC device.

Parameters
[out] p_ctrl Pointer to CAC device

control. Must be declared by
user.

[in] cac_cfg_t Pointer to CAC configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,367 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ startMeasurement

fsp_err_t(* cac_api_t::startMeasurement) (cac_ctrl_t *const p_ctrl)

Begin a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ stopMeasurement

fsp_err_t(* cac_api_t::stopMeasurement) (cac_ctrl_t *const p_ctrl)

End a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ read

fsp_err_t(* cac_api_t::read) (cac_ctrl_t *const p_ctrl, uint32_t *const p_counter)

Read function for CAC peripheral.

Parameters
[in] p_ctrl Control for the CAC device

context.

[in] p_counter Pointer to variable in which
to store the current
CACNTBR register contents.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,368 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ callbackSet

fsp_err_t(* cac_api_t::callbackSet) (cac_ctrl_t *const p_ctrl, void(*p_callback)(cac_callback_args_t *),
void const *const p_context, cac_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

cac_api_t::open call

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* cac_api_t::close) (cac_ctrl_t *const p_ctrl)

Close function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ cac_instance_t

struct cac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,369 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ cac_ctrl_t

typedef void cac_ctrl_t

CAC control block. Allocate an instance specific control block to pass into the CAC API calls.

Enumeration Type Documentation

◆ cac_event_t

enum cac_event_t

Event types returned by the ISR callback when used in CAC interrupt mode

Enumerator

CAC_EVENT_FREQUENCY_ERROR Frequency error.

CAC_EVENT_MEASUREMENT_COMPLETE Measurement complete.

CAC_EVENT_COUNTER_OVERFLOW Counter overflow.

◆ cac_clock_type_t

enum cac_clock_type_t

Enumeration of the two possible clocks.

Enumerator

CAC_CLOCK_MEASURED Measurement clock.

CAC_CLOCK_REFERENCE Reference clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,370 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ cac_clock_source_t

enum cac_clock_source_t

Enumeration of the possible clock sources for both the reference and measurement clocks.

Enumerator

CAC_CLOCK_SOURCE_MAIN_OSC Main clock oscillator.

CAC_CLOCK_SOURCE_SUBCLOCK Sub-clock.

CAC_CLOCK_SOURCE_HOCO HOCO (High speed on chip oscillator)

CAC_CLOCK_SOURCE_MOCO MOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_LOCO LOCO (Low speed on chip oscillator)

CAC_CLOCK_SOURCE_PCLKB PCLKB (Peripheral Clock B)

CAC_CLOCK_SOURCE_IWDT IWDT-dedicated on-chip oscillator.

CAC_CLOCK_SOURCE_EXTERNAL Externally supplied measurement clock on
CACREF pin.

◆ cac_ref_divider_t

enum cac_ref_divider_t

Enumeration of available dividers for the reference clock.

Enumerator

CAC_REF_DIV_32 Reference clock divided by 32.

CAC_REF_DIV_128 Reference clock divided by 128.

CAC_REF_DIV_1024 Reference clock divided by 1024.

CAC_REF_DIV_8192 Reference clock divided by 8192.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,371 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ cac_ref_digfilter_t

enum cac_ref_digfilter_t

Enumeration of available digital filter settings for an external reference clock.

Enumerator

CAC_REF_DIGITAL_FILTER_OFF No digital filter on the CACREF pin for
reference clock.

CAC_REF_DIGITAL_FILTER_1 Sampling clock for digital filter = measuring
frequency.

CAC_REF_DIGITAL_FILTER_4 Sampling clock for digital filter = measuring
frequency/4.

CAC_REF_DIGITAL_FILTER_16 Sampling clock for digital filter = measuring
frequency/16.

◆ cac_ref_edge_t

enum cac_ref_edge_t

Enumeration of available edge detect settings for the reference clock.

Enumerator

CAC_REF_EDGE_RISE Rising edge detect for the Reference clock.

CAC_REF_EDGE_FALL Falling edge detect for the Reference clock.

CAC_REF_EDGE_BOTH Both Rising and Falling edges detect for the
Reference clock.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,372 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CAC Interface

◆ cac_meas_divider_t

enum cac_meas_divider_t

Enumeration of available dividers for the measurement clock

Enumerator

CAC_MEAS_DIV_1 Measurement clock divided by 1.

CAC_MEAS_DIV_4 Measurement clock divided by 4.

CAC_MEAS_DIV_8 Measurement clock divided by 8.

CAC_MEAS_DIV_32 Measurement clock divided by 32.

5.3.9.2 CRC Interface
Interfaces » Monitoring

Detailed Description

Interface for cyclic redundancy checking.

Summary
The CRC (Cyclic Redundancy Check) calculator generates CRC codes using five different polynomials
including 8 bit, 16 bit, and 32 bit variations. Calculation can be performed by sending data to the
block using the CPU or by snooping on read or write activity on one of SCI channels.

Data Structures

struct crc_input_t

struct crc_cfg_t

struct crc_api_t

struct crc_instance_t

Typedefs

typedef void crc_ctrl_t

Enumerations

enum crc_polynomial_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,373 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CRC Interface

enum crc_bit_order_t

enum crc_snoop_direction_t

Data Structure Documentation

◆ crc_input_t

struct crc_input_t

Structure for CRC inputs

Data Fields

uint32_t num_bytes Length of input buffer. It must
be 4-byte aligned when a 32-bit
CRC polynomial function is
used.

uint32_t crc_seed CRC seed value.

const void * p_input_buffer Pointer to input buffer.

◆ crc_cfg_t

struct crc_cfg_t

User configuration structure, used in open function

Data Fields

uint8_t channel Channel number.

crc_polynomial_t polynomial CRC Generating Polynomial
Switching (GPS)

crc_bit_order_t bit_order CRC Calculation Switching
(LMS)

uint32_t snoop_address Register Snoop Address
(CRCSA)

void const * p_extend CRC Hardware Dependent
Configuration.

◆ crc_api_t

struct crc_api_t

CRC driver structure. General CRC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t(* close)(crc_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,374 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CRC Interface

fsp_err_t(* crcResultGet)(crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

fsp_err_t(* snoopEnable)(crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

fsp_err_t(* snoopDisable)(crc_ctrl_t *const p_ctrl)

fsp_err_t(* calculate)(crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input,
uint32_t *p_crc_result)

Field Documentation

◆ open

fsp_err_t(* crc_api_t::open) (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module.

Parameters
[in] p_ctrl Pointer to CRC device

handle.

[in] p_cfg Pointer to a configuration
structure.

◆ close

fsp_err_t(* crc_api_t::close) (crc_ctrl_t *const p_ctrl)

Close the CRC module driver

Parameters
[in] p_ctrl Pointer to CRC device handle

Return values
FSP_SUCCESS Configuration was successful.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,375 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CRC Interface

◆ crcResultGet

fsp_err_t(* crc_api_t::crcResultGet) (crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

Return the current calculated value.

Parameters
[in] p_ctrl Pointer to CRC device

handle.

[out] crc_result The calculated value from
the last CRC calculation.

◆ snoopEnable

fsp_err_t(* crc_api_t::snoopEnable) (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Configure and Enable snooping.

Parameters
[in] p_ctrl Pointer to CRC device

handle.

[in] crc_seed CRC seed.

◆ snoopDisable

fsp_err_t(* crc_api_t::snoopDisable) (crc_ctrl_t *const p_ctrl)

Disable snooping.

Parameters
[in] p_ctrl Pointer to CRC device

handle.

◆ calculate

fsp_err_t(* crc_api_t::calculate) (crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input, uint32_t
*p_crc_result)

Perform a CRC calculation on a block of data.

Parameters
[in] p_ctrl Pointer to CRC device

handle.

[in] p_crc_input A pointer to structure for
CRC inputs

[out] crc_result The calculated value of the
CRC calculation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,376 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CRC Interface

◆ crc_instance_t

struct crc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

crc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

crc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

crc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ crc_ctrl_t

typedef void crc_ctrl_t

CRC control block. Allocate an instance specific control block to pass into the CRC API calls.

Enumeration Type Documentation

◆ crc_polynomial_t

enum crc_polynomial_t

CRC Generating Polynomial Switching (GPS).

Enumerator

CRC_POLYNOMIAL_CRC_8 8-bit CRC-8 (X^8 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_16 16-bit CRC-16 (X^16 + X^15 + X^2 + 1)

CRC_POLYNOMIAL_CRC_CCITT 16-bit CRC-CCITT (X^16 + X^12 + X^5 + 1)

CRC_POLYNOMIAL_CRC_32 32-bit CRC-32 (X^32 + X^26 + X^23 + X^22
+ X^16 + X^12 + X^11 + X^10 + X^8 +
X^7 + X^5 + X^4 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_32C 32-bit CRC-32C (X^32 + X^28 + X^27 +
X^26 + X^25 + X^23 + X^22 + X^20 +
X^19 + X^18 + X^14 + X^13 + X^11 +
X^10 + X^9 + X^8 + X^6 + 1)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,377 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > CRC Interface

◆ crc_bit_order_t

enum crc_bit_order_t

CRC Calculation Switching (LMS)

Enumerator

CRC_BIT_ORDER_LMS_LSB Generates CRC for LSB first communication.

CRC_BIT_ORDER_LMS_MSB Generates CRC for MSB first communication.

◆ crc_snoop_direction_t

enum crc_snoop_direction_t

Snoop-On-Write/Read Switch (CRCSWR)

Enumerator

CRC_SNOOP_DIRECTION_RECEIVE Snoop-on-read.

CRC_SNOOP_DIRECTION_TRANSMIT Snoop-on-write.

5.3.9.3 DOC Interface
Interfaces » Monitoring

Detailed Description

Interface for the Data Operation Circuit.

Defines the API and data structures for the DOC implementation of the Data Operation Circuit (DOC)
interface.

Summary
This module implements the DOC_API using the Data Operation Circuit (DOC).

Data Structures

struct doc_callback_args_t

struct doc_cfg_t

struct doc_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,378 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

struct doc_instance_t

Typedefs

typedef void doc_ctrl_t

Enumerations

enum doc_event_t

enum doc_bit_width_t

Data Structure Documentation

◆ doc_callback_args_t

struct doc_callback_args_t

Callback function parameter data.

Data Fields

void const * p_context Set in doc_api_t::open function
in doc_cfg_t.

Placeholder for user data.

◆ doc_cfg_t

struct doc_cfg_t

User configuration structure, used in the open function.

Data Fields

doc_event_t event

 Select enumerated value from doc_event_t.

doc_bit_width_t bit_width

 The bit width of operations.

uint32_t doc_data

uint32_t doc_data_extra

uint8_t ipl

 DOC interrupt priority.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,379 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

IRQn_Type irq

 Interrupt number assigned to this instance.

void(* p_callback)(doc_callback_args_t *p_args)

void const * p_context

Field Documentation

◆ doc_data

uint32_t doc_cfg_t::doc_data

Initial/Reference data for addition, subtraction, and comparison operations.

In Addition and Subtraction mode, this value sets the initial value of the operations.
In Comparison match, mismatch, lower, and upper modes, this value is compared with data
that is written.
In Comparison inside window and outside window modes, this value is used as the lower
bound for comparisons.

◆ doc_data_extra

uint32_t doc_cfg_t::doc_data_extra

Additional reference data for use in Window Comparison operations.

In Comparison inside window and outside window modes, this value is used as the upper
bound for comparisons.

◆ p_callback

void(* doc_cfg_t::p_callback) (doc_callback_args_t *p_args)

Callback provided when a DOC ISR occurs.

◆ p_context

void const* doc_cfg_t::p_context

Placeholder for user data. Passed to the user callback in doc_callback_args_t.

◆ doc_api_t

struct doc_api_t

Data Operation Circuit (DOC) API structure. DOC functions implemented at the HAL layer will follow
this API.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,380 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

fsp_err_t(* open)(doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

fsp_err_t(* close)(doc_ctrl_t *const p_ctrl)

fsp_err_t(* read)(doc_ctrl_t *const p_ctrl, uint32_t *p_result)

fsp_err_t(* write)(doc_ctrl_t *const p_ctrl, uint32_t data)

fsp_err_t(* callbackSet)(doc_ctrl_t *const p_ctrl,
void(*p_callback)(doc_callback_args_t *), void const *const
p_context, doc_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* doc_api_t::open) (doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* doc_api_t::close) (doc_ctrl_t *const p_ctrl)

Allow the driver to be reconfigured. Will reduce power consumption.

Parameters
[in] p_ctrl Control block set in

doc_api_t::open call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,381 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

◆ read

fsp_err_t(* doc_api_t::read) (doc_ctrl_t *const p_ctrl, uint32_t *p_result)

Gets the result of addition/subtraction operations and stores it in the provided pointer p_result.

Parameters
[in] p_ctrl Control block set in

doc_api_t::open call.

[in] p_result The result of the DOC
operation.

◆ write

fsp_err_t(* doc_api_t::write) (doc_ctrl_t *const p_ctrl, uint32_t data)

Write to the DODIR register.

Parameters
[in] p_ctrl Control block set in

doc_api_t::open call.

[in] data data to be written to DOC
DODIR register.

◆ callbackSet

fsp_err_t(* doc_api_t::callbackSet) (doc_ctrl_t *const p_ctrl, void(*p_callback)(doc_callback_args_t
*), void const *const p_context, doc_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the DOC control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ doc_instance_t

struct doc_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,382 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

doc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

doc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

doc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ doc_ctrl_t

typedef void doc_ctrl_t

DOC control block. Allocate an instance specific control block to pass into the DOC API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,383 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > DOC Interface

◆ doc_event_t

enum doc_event_t

Event that can trigger a callback function.

Enumerator

DOC_EVENT_COMPARISON_MISMATCH The data is not equal to the reference data
setting.

DOC_EVENT_ADDITION Addition resulted in a value greater than the
max for the configured bit width.

DOC_EVENT_SUBTRACTION Subtraction resulted in a value less than 0.

DOC_EVENT_COMPARISON_MATCH The data is equal to the reference data
settting.

DOC_EVENT_COMPARISON_LOWER The data is less than the reference data
setting.

DOC_EVENT_COMPARISON_UPPER The data is greater than the reference data
setting.

DOC_EVENT_COMPARISON_INSIDE_WINDOW The data is between the two reference data
settings.

DOC_EVENT_COMPARISON_OUTSIDE_WINDOW The data is outside the two reference data
setttings.

◆ doc_bit_width_t

enum doc_bit_width_t

The bit width used during operations.

Enumerator

DOC_BIT_WIDTH_16 Operations are 16-bit.

DOC_BIT_WIDTH_32 Operations are 32-bit.

5.3.9.4 Low Voltage Detection Interface
Interfaces » Monitoring

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,384 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

Detailed Description

Interface for Low Voltage Detection.

Summary
The LVD driver provides functions for configuring the LVD voltage monitors and detectors.

Data Structures

struct lvd_status_t

struct lvd_callback_args_t

struct lvd_cfg_t

struct lvd_api_t

struct lvd_instance_t

Typedefs

typedef void lvd_ctrl_t

Enumerations

enum lvd_threshold_t

enum lvd_response_t

enum lvd_voltage_slope_t

enum lvd_sample_clock_t

enum lvd_negation_delay_t

enum lvd_threshold_crossing_t

enum lvd_current_state_t

Data Structure Documentation

◆ lvd_status_t

struct lvd_status_t

Current state of a voltage monitor.

Data Fields

lvd_threshold_crossing_t crossing_detected Threshold crossing detection
(latched)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,385 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

lvd_current_state_t current_state Instantaneous status of
monitored voltage (above or
below threshold)

◆ lvd_callback_args_t

struct lvd_callback_args_t

LVD callback parameter definition

Data Fields

uint32_t monitor_number Monitor number.

lvd_current_state_t current_state Current state of the voltage
monitor.

void const * p_context Placeholder for user data.

◆ lvd_cfg_t

struct lvd_cfg_t

LVD configuration structure

Data Fields

uint32_t monitor_number

lvd_threshold_t voltage_threshold

lvd_response_t detection_response

lvd_voltage_slope_t voltage_slope

lvd_negation_delay_t negation_delay

lvd_sample_clock_t sample_clock_divisor

IRQn_Type irq

uint8_t monitor_ipl

void(* p_callback)(lvd_callback_args_t *p_args)

void const * p_context

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,386 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

void const * p_extend

Field Documentation

◆ monitor_number

uint32_t lvd_cfg_t::monitor_number

Monitor number, 1, 2, ...

◆ voltage_threshold

lvd_threshold_t lvd_cfg_t::voltage_threshold

Threshold for out of range voltage detection

◆ detection_response

lvd_response_t lvd_cfg_t::detection_response

Response on detecting a threshold crossing

◆ voltage_slope

lvd_voltage_slope_t lvd_cfg_t::voltage_slope

Direction of voltage crossing that will trigger a detection (Rising Edge, Falling Edge, Both).

◆ negation_delay

lvd_negation_delay_t lvd_cfg_t::negation_delay

Negation of LVD signal follows reset or voltage in range

◆ sample_clock_divisor

lvd_sample_clock_t lvd_cfg_t::sample_clock_divisor

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

◆ irq

IRQn_Type lvd_cfg_t::irq

Interrupt number.

◆ monitor_ipl

uint8_t lvd_cfg_t::monitor_ipl

Interrupt priority level.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,387 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ p_callback

void(* lvd_cfg_t::p_callback) (lvd_callback_args_t *p_args)

User function to be called from interrupt

◆ p_context

void const* lvd_cfg_t::p_context

Placeholder for user data. Passed to the user callback in

◆ p_extend

void const* lvd_cfg_t::p_extend

Extension parameter for hardware specific settings

◆ lvd_api_t

struct lvd_api_t

LVD driver API structure. LVD driver functions implemented at the HAL layer will adhere to this API.

Data Fields

fsp_err_t(* open)(lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

fsp_err_t(* statusGet)(lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

fsp_err_t(* statusClear)(lvd_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(lvd_ctrl_t *const p_ctrl,
void(*p_callback)(lvd_callback_args_t *), void const *const p_context,
lvd_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(lvd_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,388 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ open

fsp_err_t(* lvd_api_t::open) (lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a low voltage detection driver according to the passed-in configuration structure.

Parameters
[in] p_ctrl Pointer to control structure

for the driver instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

◆ statusGet

fsp_err_t(* lvd_api_t::statusGet) (lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

Get the current state of the monitor, (threshold crossing detected, voltage currently above or
below threshold). Must be used if the peripheral was initialized with lvd_response_t set to
LVD_RESPONSE_NONE.

Parameters
[in] p_ctrl Pointer to the control

structure for the driver
instance

[in,out] p_lvd_status Pointer to a lvd_status_t
structure

◆ statusClear

fsp_err_t(* lvd_api_t::statusClear) (lvd_ctrl_t *const p_ctrl)

Clears the latched status of the monitor. Must be used if the peripheral was initialized with
lvd_response_t set to LVD_RESPONSE_NONE.

Parameters
[in] p_ctrl Pointer to the control

structure for the driver
instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,389 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ callbackSet

fsp_err_t(* lvd_api_t::callbackSet) (lvd_ctrl_t *const p_ctrl, void(*p_callback)(lvd_callback_args_t *),
void const *const p_context, lvd_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the LVD control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* lvd_api_t::close) (lvd_ctrl_t *const p_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Parameters
[in] p_ctrl Pointer to the control

structure for the driver
instance

◆ lvd_instance_t

struct lvd_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lvd_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lvd_cfg_t const * p_cfg Pointer to the configuration
structure for this interface
instance.

lvd_api_t const * p_api Pointer to the API structure for
this interface instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,390 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ lvd_ctrl_t

typedef void lvd_ctrl_t

LVD control block. Allocate an instance specific control block to pass into the LVD API calls.

Enumeration Type Documentation

◆ lvd_threshold_t

enum lvd_threshold_t

Register definitions, common services, and error codes. Voltage detection level The thresholds
supported by each MCU are in the MCU User's Manual as well as in the r_lvd module description on
the stack tab of the RA project.

Enumerator

LVD_THRESHOLD_MONITOR_1_LEVEL_4_08V 4.08V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_88V 3.88V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_67V 3.67V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_47V 3.47V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_27V 3.27V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_06V 3.06V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_91V 2.91V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_76V 2.76V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_60V 2.60V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_45V 2.45V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_35V 2.35V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_25V 2.25V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_15V 2.15V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_04V 2.04V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_94V 1.94V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_84V 1.84V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,391 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_1_LEVEL_1_74V 1.74V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_63V 1.63V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_16V 4.16V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_14V 4.14V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_03V 4.03V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_86V 3.86V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_10V 3.10V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_00V 3.00V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_90V 2.90V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_79V 2.79V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_68V 2.68V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_58V 2.58V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_48V 2.48V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_20V 2.20V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_96V 1.96V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_86V 1.86V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_75V 1.75V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_65V 1.65V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_85V 2.85V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,392 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_2_LEVEL_4_31V 4.31V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_17V 4.17V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_14V 4.14V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_03V 4.03V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_2_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_85V 2.85V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_3_1V 3.1V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_9V 2.9V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_8V 2.8V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_7V 2.7V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_6V 2.6V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_4V 2.4V

LVD_THRESHOLD_EXLVDVBAT_LEVEL_2_2V 2.2V

LVD_THRESHOLD_LVDVRTC_LEVEL_2_8V 2.8V

LVD_THRESHOLD_LVDVRTC_LEVEL_2_6V 2.6V

LVD_THRESHOLD_LVDVRTC_LEVEL_2_4V 2.4V

LVD_THRESHOLD_LVDVRTC_LEVEL_2_2V 2.2V

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,393 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ lvd_response_t

enum lvd_response_t

Response types for handling threshold crossing event.

Enumerator

LVD_RESPONSE_NMI Non-maskable interrupt.

LVD_RESPONSE_INTERRUPT Maskable interrupt.

LVD_RESPONSE_RESET Reset on VCC-fall.

LVD_RESPONSE_RESET_ON_RISING Reset on VCC-rise.

LVD_RESPONSE_NONE No response, status must be requested via
statusGet function.

◆ lvd_voltage_slope_t

enum lvd_voltage_slope_t

The direction from which VCC must cross the threshold to trigger a detection (rising, falling, or
both).

Enumerator

LVD_VOLTAGE_SLOPE_RISING When VCC >= Vdet2 (rise) is detected.

LVD_VOLTAGE_SLOPE_FALLING When VCC < Vdet2 (drop) is detected.

LVD_VOLTAGE_SLOPE_BOTH When drop and rise are detected.

◆ lvd_sample_clock_t

enum lvd_sample_clock_t

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

Enumerator

LVD_SAMPLE_CLOCK_LOCO_DIV_2 Digital filter sample clock is LOCO divided by 2.

LVD_SAMPLE_CLOCK_LOCO_DIV_4 Digital filter sample clock is LOCO divided by 4.

LVD_SAMPLE_CLOCK_LOCO_DIV_8 Digital filter sample clock is LOCO divided by 8.

LVD_SAMPLE_CLOCK_LOCO_DIV_16 Digital filter sample clock is LOCO divided by
16.

LVD_SAMPLE_CLOCK_DISABLED Digital filter is disabled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,394 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > Low Voltage Detection Interface

◆ lvd_negation_delay_t

enum lvd_negation_delay_t

Negation delay of LVD reset signal follows reset or voltage in range

Enumerator

LVD_NEGATION_DELAY_FROM_VOLTAGE Negation follows a stabilization time (tLVDn)
after VCC > Vdet1 is detected. If a transition to
software standby or deep software standby is
to be made, the only possible value for the RN
bit is LVD_NEGATION_DELAY_FROM_VOLTAGE

LVD_NEGATION_DELAY_FROM_RESET Negation follows a stabilization time (tLVDn)
after assertion of the LVDn reset. If a transition
to software standby or deep software standby
is to be made, the only possible value for the
RN bit is
LVD_NEGATION_DELAY_FROM_VOLTAGE

◆ lvd_threshold_crossing_t

enum lvd_threshold_crossing_t

Threshold crossing detection (latched)

Enumerator

LVD_THRESHOLD_CROSSING_NOT_DETECTED Threshold crossing has not been detected.

LVD_THRESHOLD_CROSSING_DETECTED Threshold crossing has been detected.

◆ lvd_current_state_t

enum lvd_current_state_t

Instantaneous status of VCC (above or below threshold)

Enumerator

LVD_CURRENT_STATE_BELOW_THRESHOLD VCC < threshold.

LVD_CURRENT_STATE_ABOVE_THRESHOLD VCC >= threshold or monitor is disabled.

5.3.9.5 WDT Interface
Interfaces » Monitoring

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,395 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

Detailed Description

Interface for watch dog timer functions.

Summary
The WDT interface for the Watchdog Timer (WDT) peripheral provides watchdog functionality
including resetting the device or generating an interrupt.

Data Structures

struct wdt_callback_args_t

struct wdt_timeout_values_t

struct wdt_cfg_t

struct wdt_api_t

struct wdt_instance_t

Typedefs

typedef void wdt_ctrl_t

Enumerations

enum wdt_timeout_t

enum wdt_clock_division_t

enum wdt_window_start_t

enum wdt_window_end_t

enum wdt_reset_control_t

enum wdt_stop_control_t

enum wdt_status_t

Data Structure Documentation

◆ wdt_callback_args_t

struct wdt_callback_args_t

Callback function parameter data

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,396 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

void const * p_context Placeholder for user data. Set in
wdt_api_t::open function in
wdt_cfg_t.

◆ wdt_timeout_values_t

struct wdt_timeout_values_t

WDT timeout data. Used to return frequency of WDT clock and timeout period

Data Fields

uint32_t clock_frequency_hz Frequency of watchdog clock
after divider.

uint32_t timeout_clocks Timeout period in units of
watchdog clock ticks.

◆ wdt_cfg_t

struct wdt_cfg_t

WDT configuration parameters.

Data Fields

wdt_timeout_t timeout

 Timeout period.

wdt_clock_division_t clock_division

 Clock divider.

wdt_window_start_t window_start

 Refresh permitted window start position.

wdt_window_end_t window_end

 Refresh permitted window end position.

wdt_reset_control_t reset_control

 Select NMI/IRQ or reset generated on underflow.

wdt_stop_control_t stop_control

 Select whether counter operates in sleep mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,397 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT ISR occurs.

void const * p_context

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_context

void const* wdt_cfg_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

◆ wdt_api_t

struct wdt_api_t

WDT functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t(* refresh)(wdt_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

fsp_err_t(* statusClear)(wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

fsp_err_t(* counterGet)(wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

fsp_err_t(* timeoutGet)(wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const
p_timeout)

fsp_err_t(* callbackSet)(wdt_ctrl_t *const p_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,398 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

Field Documentation

◆ open

fsp_err_t(* wdt_api_t::open) (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Initialize the WDT in register start mode. In auto-start mode (Supported devices only) with NMI
output it registers the NMI callback.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ refresh

fsp_err_t(* wdt_api_t::refresh) (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer.

Parameters
[in] p_ctrl Pointer to control structure.

◆ statusGet

fsp_err_t(* wdt_api_t::statusGet) (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the status of the WDT.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to variable to return
status information through.

◆ statusClear

fsp_err_t(* wdt_api_t::statusClear) (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the status flags of the WDT.

Parameters
[in] p_ctrl Pointer to control structure.

[in] status Status condition(s) to clear.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,399 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

◆ counterGet

fsp_err_t(* wdt_api_t::counterGet) (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current WDT counter value.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_count Pointer to variable to return
current WDT counter value.

◆ timeoutGet

fsp_err_t(* wdt_api_t::timeoutGet) (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read the watchdog timeout values.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_timeout Pointer to structure to return
timeout values.

◆ callbackSet

fsp_err_t(* wdt_api_t::callbackSet) (wdt_ctrl_t *const p_ctrl, void(*p_callback)(wdt_callback_args_t
*), void const *const p_context, wdt_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the WDT control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_callback_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ wdt_instance_t

struct wdt_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,400 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

wdt_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

wdt_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

wdt_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ wdt_ctrl_t

typedef void wdt_ctrl_t

WDT control block. Allocate an instance specific control block to pass into the WDT API calls.

Enumeration Type Documentation

◆ wdt_timeout_t

enum wdt_timeout_t

WDT time-out periods.

Enumerator

WDT_TIMEOUT_128 128 clock cycles

WDT_TIMEOUT_512 512 clock cycles

WDT_TIMEOUT_1024 1024 clock cycles

WDT_TIMEOUT_2048 2048 clock cycles

WDT_TIMEOUT_4096 4096 clock cycles

WDT_TIMEOUT_8192 8192 clock cycles

WDT_TIMEOUT_16384 16384 clock cycles

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,401 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

◆ wdt_clock_division_t

enum wdt_clock_division_t

WDT clock division ratio.

Enumerator

WDT_CLOCK_DIVISION_1 CLK/1.

WDT_CLOCK_DIVISION_4 CLK/4.

WDT_CLOCK_DIVISION_16 CLK/16.

WDT_CLOCK_DIVISION_32 CLK/32.

WDT_CLOCK_DIVISION_64 CLK/64.

WDT_CLOCK_DIVISION_128 CLK/128.

WDT_CLOCK_DIVISION_256 CLK/256.

WDT_CLOCK_DIVISION_512 CLK/512.

WDT_CLOCK_DIVISION_2048 CLK/2048.

WDT_CLOCK_DIVISION_8192 CLK/8192.

◆ wdt_window_start_t

enum wdt_window_start_t

WDT refresh permitted period window start position.

Enumerator

WDT_WINDOW_START_25 Start position = 25%.

WDT_WINDOW_START_50 Start position = 50%.

WDT_WINDOW_START_75 Start position = 75%.

WDT_WINDOW_START_100 Start position = 100%.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,402 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

◆ wdt_window_end_t

enum wdt_window_end_t

WDT refresh permitted period window end position.

Enumerator

WDT_WINDOW_END_75 End position = 75%.

WDT_WINDOW_END_50 End position = 50%.

WDT_WINDOW_END_25 End position = 25%.

WDT_WINDOW_END_0 End position = 0%.

◆ wdt_reset_control_t

enum wdt_reset_control_t

WDT Counter underflow and refresh error control.

Enumerator

WDT_RESET_CONTROL_NMI NMI/IRQ request when counter underflows.

WDT_RESET_CONTROL_RESET Reset request when counter underflows.

◆ wdt_stop_control_t

enum wdt_stop_control_t

WDT Counter operation in sleep mode.

Enumerator

WDT_STOP_CONTROL_DISABLE Count will not stop when device enters sleep
mode.

WDT_STOP_CONTROL_ENABLE Count will automatically stop when device
enters sleep mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,403 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Monitoring > WDT Interface

◆ wdt_status_t

enum wdt_status_t

WDT status

Enumerator

WDT_STATUS_NO_ERROR No status flags set.

WDT_STATUS_UNDERFLOW Underflow flag set.

WDT_STATUS_REFRESH_ERROR Refresh error flag set. Refresh outside of
permitted window.

WDT_STATUS_UNDERFLOW_AND_REFRESH_ERR
OR

Underflow and refresh error flags set.

WDT_STATUS_OVERFLOW Overflow flag set.

5.3.10 Motor
Interfaces

Detailed Description

Motor Interfaces.

Modules

Motor 120-Degree Control Interface

 Interface for motor 120 control functions.

Motor 120-Degree Driver Interface

 Interface for motor driver functions.

Motor Inertia Estimate Interface

 Interface for Motor inertia estimate functions.

Motor Interface

 Interface for Motor functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,404 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor

Motor Return Origin Function Interface

 Interface for Motor return origin functions.

Motor angle Interface

 Interface for motor angle and speed calculation functions.

Motor current Interface

 Interface for motor current functions.

Motor driver Interface

 Interface for motor driver functions.

Motor position Interface

 Interface for motor position functions.

Motor speed Interface

 Interface for motor speed functions.

5.3.10.1 Motor 120-Degree Control Interface
Interfaces » Motor

Detailed Description

Interface for motor 120 control functions.

Summary
The motor 120 control interface for speed calculation and setting, fixed cycle processing

Data Structures

struct motor_120_control_callback_args_t

struct motor_120_control_motor_parameter_t

struct motor_120_control_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,405 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

struct motor_120_control_api_t

struct motor_120_control_instance_t

Typedefs

typedef void motor_120_control_ctrl_t

Enumerations

enum motor_120_control_event_t

enum motor_120_conduction_type_t

enum motor_120_control_status_t

enum motor_120_control_run_mode_t

enum motor_120_control_rotation_direction_t

enum motor_120_control_wait_stop_flag_t

enum motor_120_control_timeout_error_flag_t

enum motor_120_control_pattern_error_flag_t

enum motor_120_control_speed_ref_t

enum motor_120_control_voltage_ref_t

Data Structure Documentation

◆ motor_120_control_callback_args_t

struct motor_120_control_callback_args_t

Callback function parameter data

Data Fields

motor_120_control_event_t event Event trigger.

void const * p_context Placeholder for user data.

◆ motor_120_control_motor_parameter_t

struct motor_120_control_motor_parameter_t

Motor parameter for motor 120 control

Data Fields

uint32_t u4_motor_pp Pole pairs.

float f4_motor_r Resistance (ohm)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,406 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

float f4_motor_ld Inductance for d-axis (H)

float f4_motor_lq Inductance for q-axis (H)

float f4_motor_m Magnet flux (Wb)

float f4_motor_j Rotor inertia (kgm^2)

◆ motor_120_control_cfg_t

struct motor_120_control_cfg_t

Configuration parameters.

Data Fields

motor_120_conduction_type
_t

conduction_type

 0:First 60 degree PWM, 1:Complementary first 60 degree PWM

uint32_t u4_timeout_cnt

 Undetected time.

float f4_max_drive_v

 Max output voltage (V)

float f4_min_drive_v

 Min output voltage (V)

uint32_t u4_speed_pi_decimation

 Speed PI control decimation counter.

uint32_t u4_free_run_timer_freq

 Speed calc free run timer frequency (MHz)

float f4_speed_lpf_k

 Speed LPF parameter.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,407 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

float f4_limit_speed_change

 Speed ref change limit.

float f4_pi_ctrl_kp

 PI control error.

float f4_pi_ctrl_ki

 PI control buffer of integral term.

float f4_pi_ctrl_ilimit

 PI control limit of integral term.

motor_120_control_motor_p
arameter_t

motor_param

 Motor parameter.

void(* p_callback)(motor_120_control_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Extended configurations.

◆ motor_120_control_api_t

struct motor_120_control_api_t

Functions implemented at the HAL layer will follow these APIs.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,408 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

Data Fields

fsp_err_t(* open)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

fsp_err_t(* close)(motor_120_control_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_120_control_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_120_control_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_120_control_ctrl_t *const p_ctrl)

fsp_err_t(* speedSet)(motor_120_control_ctrl_t *const p_ctrl, float const
speed_rpm)

fsp_err_t(* speedGet)(motor_120_control_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

fsp_err_t(* currentGet)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

fsp_err_t(* waitStopFlagGet)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_wait_stop_flag_t *const p_flag)

fsp_err_t(* timeoutErrorFlagGet)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

fsp_err_t(* patternErrorFlagGet)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

fsp_err_t(* voltageRefGet)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_voltage_ref_t *const p_voltage_ref)

fsp_err_t(* parameterUpdate)(motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,409 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ open

fsp_err_t(* motor_120_control_api_t::open) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

Initialize the motor 120 control module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_120_control_api_t::close) (motor_120_control_ctrl_t *const p_ctrl)

Close the motor 120 control module

Parameters
[in] p_ctrl Pointer to control structure.

◆ run

fsp_err_t(* motor_120_control_api_t::run) (motor_120_control_ctrl_t *const p_ctrl)

Run the motor 120 control module

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_120_control_api_t::stop) (motor_120_control_ctrl_t *const p_ctrl)

Stop the motor 120 control module

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_120_control_api_t::reset) (motor_120_control_ctrl_t *const p_ctrl)

Reset variables of the motor 120 control module

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,410 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ speedSet

fsp_err_t(* motor_120_control_api_t::speedSet) (motor_120_control_ctrl_t *const p_ctrl, float const
speed_rpm)

Set speed[rpm]

Parameters
[in] p_ctrl Pointer to control structure.

[out] speed_rpm Pointer to get speed
data[rpm]

◆ speedGet

fsp_err_t(* motor_120_control_api_t::speedGet) (motor_120_control_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

Get speed.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_rpm Pointer to get speed
data[rpm]

◆ currentGet

fsp_err_t(* motor_120_control_api_t::currentGet) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

Get phase current, Vdc and Va_max data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_current_status Pointer to get data structure.

◆ waitStopFlagGet

fsp_err_t(* motor_120_control_api_t::waitStopFlagGet) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_wait_stop_flag_t *const p_flag)

Get wait stop flag.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_flag Pointer to wait stop flag

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,411 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ timeoutErrorFlagGet

fsp_err_t(* motor_120_control_api_t::timeoutErrorFlagGet) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_timeout_error_flag_t *const p_timeout_error_flag)

Get timerout error flag.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_timeout_error_flag Pointer to timeout error flag

◆ patternErrorFlagGet

fsp_err_t(* motor_120_control_api_t::patternErrorFlagGet) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_pattern_error_flag_t *const p_pattern_error_flag)

Get pattern error flag.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_pattern_error_flag Pointer to pattern error flag

◆ voltageRefGet

fsp_err_t(* motor_120_control_api_t::voltageRefGet) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_voltage_ref_t *const p_voltage_ref)

Get voltage ref.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_voltage_ref Pointer to flag voltage ref

◆ parameterUpdate

fsp_err_t(* motor_120_control_api_t::parameterUpdate) (motor_120_control_ctrl_t *const p_ctrl,
motor_120_control_cfg_t const *const p_cfg)

Update configuration parameters for the calculation in the motor 120 control module

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_120_control_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,412 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

struct motor_120_control_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_120_control_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_120_control_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_120_control_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_120_control_ctrl_t

typedef void motor_120_control_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

◆ motor_120_control_event_t

enum motor_120_control_event_t

Events that can trigger a callback function

Enumerator

MOTOR_120_CONTROL_EVENT_ADC_FORWARD Event before motor 120 driver process.

MOTOR_120_CONTROL_EVENT_ADC_BACKWARD Event after motor 120 driver process.

MOTOR_120_CONTROL_EVENT_CYCLE_FORWAR
D

Before cyclic process of speed control.

MOTOR_120_CONTROL_EVENT_CYCLE_BACKWAR
D

After cyclic process of speed control.

◆ motor_120_conduction_type_t

enum motor_120_conduction_type_t

Enumerator

MOTOR_120_CONDUCTION_TYPE_FIRST60 First 60 degree PWM.

MOTOR_120_CONDUCTION_TYPE_COMPLEMENTA
RY

Complementary first 60 degree PWM.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,413 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ motor_120_control_status_t

enum motor_120_control_status_t

120 control status

Enumerator

MOTOR_120_CONTROL_STATUS_INACTIVE 120 control status inactive

MOTOR_120_CONTROL_STATUS_ACTIVE 120 control status active

◆ motor_120_control_run_mode_t

enum motor_120_control_run_mode_t

Run mode

Enumerator

MOTOR_120_CONTROL_RUN_MODE_INIT Run mode init.

MOTOR_120_CONTROL_RUN_MODE_BOOT Run mode boot.

MOTOR_120_CONTROL_RUN_MODE_DRIVE Run mode drive.

◆ motor_120_control_rotation_direction_t

enum motor_120_control_rotation_direction_t

Rotation direction

Enumerator

MOTOR_120_CONTROL_ROTATION_DIRECTION_C
W

Clockwise.

MOTOR_120_CONTROL_ROTATION_DIRECTION_C
CW

Counter clockwise.

MOTOR_120_CONTROL_ROTATION_DIRECTION_M
AX

Max value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,414 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ motor_120_control_wait_stop_flag_t

enum motor_120_control_wait_stop_flag_t

Flag for waiting for motor stop

Enumerator

MOTOR_120_CONTROL_WAIT_STOP_FLAG_CLEAR

Wait stop flag clear.

MOTOR_120_CONTROL_WAIT_STOP_FLAG_SET Wait stop flag set.

◆ motor_120_control_timeout_error_flag_t

enum motor_120_control_timeout_error_flag_t

Flag for timeout error status

Enumerator

MOTOR_120_CONTROL_TIMEOUT_ERROR_FLAG_
CLEAR

Timeout error flag clear.

MOTOR_120_CONTROL_TIMEOUT_ERROR_FLAG_
SET

Timeout error flag set.

◆ motor_120_control_pattern_error_flag_t

enum motor_120_control_pattern_error_flag_t

Flag for pattern error status

Enumerator

MOTOR_120_CONTROL_PATTERN_ERROR_FLAG_
CLEAR

Pattern error flag clear.

MOTOR_120_CONTROL_PATTERN_ERROR_FLAG_
SET

Pattern error flag set.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,415 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Control Interface

◆ motor_120_control_speed_ref_t

enum motor_120_control_speed_ref_t

Speed reference status

Enumerator

MOTOR_120_CONTROL_SPEED_REF_ZERO_CONS
T

Speed reference zero const.

MOTOR_120_CONTROL_SPEED_REF_OPENLOOP_
1

Speed reference openloop 1.

MOTOR_120_CONTROL_SPEED_REF_OPENLOOP_
2

Speed reference openloop 2.

MOTOR_120_CONTROL_SPEED_REF_OPENLOOP_
3

Speed reference openloop 3.

MOTOR_120_CONTROL_SPEED_REF_CHANGE Speed reference change.

◆ motor_120_control_voltage_ref_t

enum motor_120_control_voltage_ref_t

Voltage reference status

Enumerator

MOTOR_120_CONTROL_VOLTAGE_REF_ZERO_CO
NST

Voltage reference zero const.

MOTOR_120_CONTROL_VOLTAGE_REF_UP Voltage reference up.

MOTOR_120_CONTROL_VOLTAGE_REF_CONST Voltage reference const.

MOTOR_120_CONTROL_VOLTAGE_REF_OPENLOO
P

Voltage reference opneloop.

MOTOR_120_CONTROL_VOLTAGE_REF_PI_OUTPU
T

Voltage reference pi output.

5.3.10.2 Motor 120-Degree Driver Interface
Interfaces » Motor

Detailed Description

Interface for motor driver functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,416 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

Summary
The MOTOR_120_DRIVER interface for setting the PWM modulation duty

Data Structures

struct motor_120_driver_callback_args_t

struct motor_120_driver_current_status_t

struct motor_120_driver_cfg_t

struct motor_120_driver_api_t

struct motor_120_driver_instance_t

Typedefs

typedef void motor_120_driver_ctrl_t

Enumerations

enum motor_120_driver_event_t

enum motor_120_driver_flag_offset_calc_t

enum motor_120_driver_phase_pattern_t

Data Structure Documentation

◆ motor_120_driver_callback_args_t

struct motor_120_driver_callback_args_t

Callback function parameter data

Data Fields

motor_120_driver_event_t event Event trigger.

void const * p_context Placeholder for user data.

◆ motor_120_driver_current_status_t

struct motor_120_driver_current_status_t

Current data get structure

Data Fields

float iu U phase current (A)

float iv V phase current (A)

float iw W phase current (A)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,417 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

float vdc Main line voltage (V)

float vu U phase voltage (V)

float vv V phase voltage (V)

float vw W phase voltage (V)

◆ motor_120_driver_cfg_t

struct motor_120_driver_cfg_t

Configuration parameters.

Data Fields

void(* p_callback)(motor_120_driver_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Placeholder for user extension.

◆ motor_120_driver_api_t

struct motor_120_driver_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_120_driver_ctrl_t *const p_ctrl, motor_120_driver_cfg_t
const *const p_cfg)

fsp_err_t(* close)(motor_120_driver_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_120_driver_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_120_driver_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_120_driver_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,418 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

fsp_err_t(* phaseVoltageSet)(motor_120_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

fsp_err_t(* phasePatternSet)(motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_phase_pattern_t const pattern)

fsp_err_t(* currentGet)(motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

fsp_err_t(* currentOffsetCalc)(motor_120_driver_ctrl_t *const p_ctrl)

fsp_err_t(* flagCurrentOffsetGet)(motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_flag_offset_calc_t *const p_flag_offset)

fsp_err_t(* parameterUpdate)(motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_120_driver_api_t::open) (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_cfg_t const *const p_cfg)

Initialize the motor 120 driver module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_120_driver_api_t::close) (motor_120_driver_ctrl_t *const p_ctrl)

Close the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,419 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

◆ run

fsp_err_t(* motor_120_driver_api_t::run) (motor_120_driver_ctrl_t *const p_ctrl)

Run the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_120_driver_api_t::stop) (motor_120_driver_ctrl_t *const p_ctrl)

Stop the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_120_driver_api_t::reset) (motor_120_driver_ctrl_t *const p_ctrl)

Reset variables of the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

◆ phaseVoltageSet

fsp_err_t(* motor_120_driver_api_t::phaseVoltageSet) (motor_120_driver_ctrl_t *const p_ctrl, float
const u_voltage, float const v_voltage, float const w_voltage)

Set (Input) phase voltage data into the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

[in] u_voltage U phase voltage [V]

[in] v_voltage V phase voltage [V]

[in] w_voltage W phase voltage [V]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,420 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

◆ phasePatternSet

fsp_err_t(* motor_120_driver_api_t::phasePatternSet) (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_phase_pattern_t const pattern)

Set phase voltage pattern the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

[in] pattern Voltage pattern

◆ currentGet

fsp_err_t(* motor_120_driver_api_t::currentGet) (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_current_status_t *const p_current_status)

Get phase current, Vdc and Va_max data from the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_current_status Pointer to get data structure.

◆ currentOffsetCalc

fsp_err_t(* motor_120_driver_api_t::currentOffsetCalc) (motor_120_driver_ctrl_t *const p_ctrl)

current offset detection from the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

◆ flagCurrentOffsetGet

fsp_err_t(* motor_120_driver_api_t::flagCurrentOffsetGet) (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_flag_offset_calc_t *const p_flag_offset)

Get the flag of finish current offset detection from the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_flag_offset Flag of finish current offset
detection

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,421 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

◆ parameterUpdate

fsp_err_t(* motor_120_driver_api_t::parameterUpdate) (motor_120_driver_ctrl_t *const p_ctrl,
motor_120_driver_cfg_t const *const p_cfg)

Update configuration parameters for the calculation in the motor 120 driver module

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_120_driver_instance_t

struct motor_120_driver_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_120_driver_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_120_driver_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_120_driver_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_120_driver_ctrl_t

typedef void motor_120_driver_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,422 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

◆ motor_120_driver_event_t

enum motor_120_driver_event_t

Events that can trigger a callback function

Enumerator

MOTOR_120_DRIVER_EVENT_FORWARD Event before motor 120 driver process (before
current control timing)

MOTOR_120_DRIVER_EVENT_120_CONTROL Event 120 detection.

MOTOR_120_DRIVER_EVENT_BACKWARD Event after motor 120 driver process (after
PWM duty setting)

◆ motor_120_driver_flag_offset_calc_t

enum motor_120_driver_flag_offset_calc_t

The flag represents that the offset measurement is finished

Enumerator

MOTOR_120_DRIVER_FLAG_OFFSET_CALC_CLEA
R

Offset calculation not finished.

MOTOR_120_DRIVER_FLAG_OFFSET_CALC_OFF_F
INISH

Off voltage offset calculation finished.

MOTOR_120_DRIVER_FLAG_OFFSET_CALC_ALL_FI
NISH

All offset calculation finished.

◆ motor_120_driver_phase_pattern_t

enum motor_120_driver_phase_pattern_t

Phase voltage pattern

Enumerator

MOTOR_120_DRIVER_PHASE_PATTERN_ERROR Phase voltage pattern error.

MOTOR_120_DRIVER_PHASE_PATTERN_UP_PWM_
VN_ON

Up(PWM) to Vn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_UP_PWM_
WN_ON

Up(PWM) to Wn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_PWM_
UN_ON

Vp(PWM) to Un(on)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_PWM_
WN_ON

Vp(PWM) to Wn(on)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,423 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor 120-Degree Driver Interface

MOTOR_120_DRIVER_PHASE_PATTERN_WP_PWM
_UN_ON

Wp(PWM) to Un(on)

MOTOR_120_DRIVER_PHASE_PATTERN_WP_PWM
_VN_ON

Wp(PWM) to Vn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_UP_ON_V
N_PWM

Up(on) to Vn(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_UP_ON_W
N_PWM

Up(on) to Wn(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_ON_U
N_PWM

Vp(on) to Un(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_ON_W
N_PWM

Vp(on) to Wn(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_WP_ON_U
N_PWM

Wp(on) to Un(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_WP_ON_V
N_PWM

Wp(on) to Vn(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_U_PWM_V
N_ON

U(PWM) to Vn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_U_PWM_
WN_ON

U(PWM) to Wn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_V_PWM_U
N_ON

V(PWM) to Un(on)

MOTOR_120_DRIVER_PHASE_PATTERN_V_PWM_
WN_ON

V(PWM) to Wn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_W_PWM_
UN_ON

W(PWM) to Un(on)

MOTOR_120_DRIVER_PHASE_PATTERN_W_PWM_
VN_ON

W(PWM) to Vn(on)

MOTOR_120_DRIVER_PHASE_PATTERN_UP_ON_V
_PWM

Up(on) to V(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_UP_ON_W
_PWM

Up(on) to W(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_ON_U
_PWM

Vp(on) to U(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_VP_ON_W
_PWM

Vp(on) to W(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_WP_ON_U
_PWM

Wp(on) to U(PWM)

MOTOR_120_DRIVER_PHASE_PATTERN_WP_ON_V
_PWM

Wp(on) to V(PWM)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,424 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Inertia Estimate Interface

5.3.10.3 Motor Inertia Estimate Interface
Interfaces » Motor

Detailed Description

Interface for Motor inertia estimate functions.

Summary
The Motor interface provides Motor inertia estimate functionality.

Data Structures

struct motor_inertia_estimate_info_t

struct motor_inertia_estimate_cfg_t

struct motor_inertia_estimate_api_t

struct motor_inertia_estimate_instance_t

Typedefs

typedef void motor_inertia_estimate_ctrl_t

Data Structure Documentation

◆ motor_inertia_estimate_info_t

struct motor_inertia_estimate_info_t

Interface data structure

Data Fields

int16_t s2_position_reference_degree Position reference [degree].

motor_inertia_estimate_mode_t mode Internal mode of inertia
estimation.

float f_estimated_inertia Estimated inertia data.

◆ motor_inertia_estimate_cfg_t

struct motor_inertia_estimate_cfg_t

Configuration parameters.

Data Fields

void const * p_context

void const * p_extend Placeholder for user extension.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,425 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Inertia Estimate Interface

◆ motor_inertia_estimate_api_t

struct motor_inertia_estimate_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_cfg_t const *const p_cfg)

fsp_err_t(* close)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* start)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_info_t *const p_info)

fsp_err_t(* dataSet)(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_set_data_t *const p_set_data)

fsp_err_t(* speedCyclic)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* currentCyclic)(motor_inertia_estimate_ctrl_t *const p_ctrl)

fsp_err_t(* parameterUpdate)(motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_cfg_t const *p_cfg)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,426 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Inertia Estimate Interface

◆ open

fsp_err_t(* motor_inertia_estimate_api_t::open) (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_inertia_estimate_api_t::close) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ start

fsp_err_t(* motor_inertia_estimate_api_t::start) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Start the function.

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_inertia_estimate_api_t::stop) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Stop(same as cancel) the function.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_inertia_estimate_api_t::reset) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Reset the function. (recover from error state)

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,427 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Inertia Estimate Interface

◆ infoGet

fsp_err_t(* motor_inertia_estimate_api_t::infoGet) (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_info_t *const p_info)

Get information from the function (to set speed & position control)

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Pointer to information

◆ dataSet

fsp_err_t(* motor_inertia_estimate_api_t::dataSet) (motor_inertia_estimate_ctrl_t *const p_ctrl,
motor_inertia_estimate_set_data_t *const p_set_data)

Set the data to the function (from speed, position and current control)

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_set_data Pointer to set the data

◆ speedCyclic

fsp_err_t(* motor_inertia_estimate_api_t::speedCyclic) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Speed cyclic process of the function

Parameters
[in] p_ctrl Pointer to control structure.

◆ currentCyclic

fsp_err_t(* motor_inertia_estimate_api_t::currentCyclic) (motor_inertia_estimate_ctrl_t *const p_ctrl)

Current cyclic process of the function

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,428 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Inertia Estimate Interface

◆ parameterUpdate

fsp_err_t(* motor_inertia_estimate_api_t::parameterUpdate) (motor_inertia_estimate_ctrl_t *const
p_ctrl, motor_inertia_estimate_cfg_t const *p_cfg)

Update parameters for the function.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_inertia_estimate_instance_t

struct motor_inertia_estimate_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_inertia_estimate_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_inertia_estimate_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

motor_inertia_estimate_api_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_inertia_estimate_ctrl_t

typedef void motor_inertia_estimate_ctrl_t

Motor inertia estimate block. Allocate an instance specific control block to pass into the API calls.

5.3.10.4 Motor Interface
Interfaces » Motor

Detailed Description

Interface for Motor functions.

Summary
The Motor interface provides Motor functionality.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,429 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

Data Structures

struct motor_callback_args_t

struct motor_cfg_t

struct motor_api_t

struct motor_instance_t

Typedefs

typedef void motor_ctrl_t

Enumerations

enum motor_error_t

enum motor_callback_event_t

enum motor_wait_stop_flag_t

enum motor_function_select_t

Data Structure Documentation

◆ motor_callback_args_t

struct motor_callback_args_t

callback function parameter data

Data Fields

void const * p_context Placeholder for user data.

motor_callback_event_t event

◆ motor_cfg_t

struct motor_cfg_t

Configuration parameters.

Data Fields

motor_speed_instance_t
const *

p_motor_speed_instance

 Speed Instance.

motor_current_instance_t
const *

p_motor_current_instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,430 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

 Current Instance.

void(* p_callback)(motor_callback_args_t *p_args)

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_callback

void(* motor_cfg_t::p_callback) (motor_callback_args_t *p_args)

Placeholder for user data. Passed to the user callback in motor_callback_args_t.

◆ motor_api_t

struct motor_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg)

fsp_err_t(* close)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* errorSet)(motor_ctrl_t *const p_ctrl, motor_error_t const error)

fsp_err_t(* speedSet)(motor_ctrl_t *const p_ctrl, float const speed_rpm)

fsp_err_t(* positionSet)(motor_ctrl_t *const p_ctrl, motor_speed_position_data_t
const *const p_position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,431 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

fsp_err_t(* statusGet)(motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

fsp_err_t(* angleGet)(motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

fsp_err_t(* speedGet)(motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

fsp_err_t(* waitStopFlagGet)(motor_ctrl_t *const p_ctrl, motor_wait_stop_flag_t
*const p_flag)

fsp_err_t(* errorCheck)(motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

fsp_err_t(* functionSelect)(motor_ctrl_t *const p_ctrl, motor_function_select_t
const function)

Field Documentation

◆ open

fsp_err_t(* motor_api_t::open) (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_api_t::close) (motor_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,432 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

◆ run

fsp_err_t(* motor_api_t::run) (motor_ctrl_t *const p_ctrl)

Run the motor. (Start the motor rotation.)

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_api_t::stop) (motor_ctrl_t *const p_ctrl)

Stop the motor. (Stop the motor rotation.)

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_api_t::reset) (motor_ctrl_t *const p_ctrl)

Reset the motor control. (Recover from the error status.)

Parameters
[in] p_ctrl Pointer to control structure.

◆ errorSet

fsp_err_t(* motor_api_t::errorSet) (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set Error Information.

Parameters
[in] p_ctrl Pointer to control structure.

[in] error Happend error code

◆ speedSet

fsp_err_t(* motor_api_t::speedSet) (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set rotation speed.

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_rpm Required rotation speed
[rpm]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,433 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

◆ positionSet

fsp_err_t(* motor_api_t::positionSet) (motor_ctrl_t *const p_ctrl, motor_speed_position_data_t const
*const p_position)

Set reference position.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_position Pointer to set required data

◆ statusGet

fsp_err_t(* motor_api_t::statusGet) (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get the motor control status.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to get the motor
control status

◆ angleGet

fsp_err_t(* motor_api_t::angleGet) (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get the rotor angle.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_angle_rad Pointer to get the rotor angle
[rad]

◆ speedGet

fsp_err_t(* motor_api_t::speedGet) (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

Get the rotation speed.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_rpm Pointer to get the rotation
speed [rpm]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,434 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

◆ waitStopFlagGet

fsp_err_t(* motor_api_t::waitStopFlagGet) (motor_ctrl_t *const p_ctrl, motor_wait_stop_flag_t *const
p_flag)

Get wait stop flag.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_flag Pointer to wait stop flag

◆ errorCheck

fsp_err_t(* motor_api_t::errorCheck) (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the error occurrence

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_error Pointer to get occured error

◆ functionSelect

fsp_err_t(* motor_api_t::functionSelect) (motor_ctrl_t *const p_ctrl, motor_function_select_t const
function)

FunctionSelect.

Parameters
[in] p_ctrl Pointer to control structure.

[in] function Selected function

◆ motor_instance_t

struct motor_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,435 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

◆ motor_ctrl_t

typedef void motor_ctrl_t

Motor Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

◆ motor_error_t

enum motor_error_t

Error information

◆ motor_callback_event_t

enum motor_callback_event_t

Events that can trigger a callback function

Enumerator

MOTOR_CALLBACK_EVENT_SPEED_FORWARD Event forward speed control.

MOTOR_CALLBACK_EVENT_SPEED_BACKWARD Event backward speed control.

MOTOR_CALLBACK_EVENT_CURRENT_FORWARD Event forward current control.

MOTOR_CALLBACK_EVENT_CURRENT_BACKWAR
D

Event backward current control.

MOTOR_CALLBACK_EVENT_ADC_FORWARD Event before motor 120 driver process.

MOTOR_CALLBACK_EVENT_ADC_BACKWARD Event after motor 120 driver process.

MOTOR_CALLBACK_EVENT_CYCLE_FORWARD Before cyclic process of speed control.

MOTOR_CALLBACK_EVENT_CYCLE_BACKWARD After cyclic process of speed control.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,436 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Interface

◆ motor_wait_stop_flag_t

enum motor_wait_stop_flag_t

Flag for waiting for motor stop

Enumerator

MOTOR_WAIT_STOP_FLAG_CLEAR Wait stop flag clear.

MOTOR_WAIT_STOP_FLAG_SET Wait stop flag set.

◆ motor_function_select_t

enum motor_function_select_t

Function select

Enumerator

MOTOR_FUNCTION_SELECT_NONE No function selected.

MOTOR_FUNCTION_SELECT_INERTIA_ESTIMATE Inertia estimation.

MOTOR_FUNCTION_SELECT_RETURN_ORIGIN Return origin position.

5.3.10.5 Motor Return Origin Function Interface
Interfaces » Motor

Detailed Description

Interface for Motor return origin functions.

Summary
The Motor interface provides Motor return origin functionality.

Data Structures

struct motor_return_origin_info_t

struct motor_return_origin_cfg_t

struct motor_return_origin_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,437 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Return Origin Function Interface

struct motor_return_origin_instance_t

Typedefs

typedef void motor_return_origin_ctrl_t

Enumerations

enum motor_return_origin_mode_t

Data Structure Documentation

◆ motor_return_origin_info_t

struct motor_return_origin_info_t

Interface data structure

Data Fields

float f_position_reference_degree Position reference [degree].

motor_return_origin_state_t state

float f_result_angle Result angle position.

◆ motor_return_origin_cfg_t

struct motor_return_origin_cfg_t

Configuration parameters.

Data Fields

motor_return_origin_mode_t mode

void const * p_context

void const * p_extend Placeholder for user extension.

◆ motor_return_origin_api_t

struct motor_return_origin_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *const p_cfg)

fsp_err_t(* close)(motor_return_origin_ctrl_t *const p_ctrl)

fsp_err_t(* start)(motor_return_origin_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_return_origin_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,438 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Return Origin Function Interface

fsp_err_t(* reset)(motor_return_origin_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_info_t *const p_info)

fsp_err_t(* dataSet)(motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_set_data_t *const p_set_data)

fsp_err_t(* speedCyclic)(motor_return_origin_ctrl_t *const p_ctrl)

fsp_err_t(* parameterUpdate)(motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_return_origin_api_t::open) (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_return_origin_api_t::close) (motor_return_origin_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,439 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Return Origin Function Interface

◆ start

fsp_err_t(* motor_return_origin_api_t::start) (motor_return_origin_ctrl_t *const p_ctrl)

Start the function.

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_return_origin_api_t::stop) (motor_return_origin_ctrl_t *const p_ctrl)

Stop the function. (Cancel the function works.)

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_return_origin_api_t::reset) (motor_return_origin_ctrl_t *const p_ctrl)

Reset the function. (Initialize the function.)

Parameters
[in] p_ctrl Pointer to control structure.

◆ infoGet

fsp_err_t(* motor_return_origin_api_t::infoGet) (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_info_t *const p_info)

Get the function information.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Pointer to info

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,440 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Return Origin Function Interface

◆ dataSet

fsp_err_t(* motor_return_origin_api_t::dataSet) (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_set_data_t *const p_set_data)

Set the data to the function

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_set_data Pointer to set the data

◆ speedCyclic

fsp_err_t(* motor_return_origin_api_t::speedCyclic) (motor_return_origin_ctrl_t *const p_ctrl)

Speed cyclic process of the function

Parameters
[in] p_ctrl Pointer to control structure.

◆ parameterUpdate

fsp_err_t(* motor_return_origin_api_t::parameterUpdate) (motor_return_origin_ctrl_t *const p_ctrl,
motor_return_origin_cfg_t const *p_cfg)

Update parameters for the function.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_return_origin_instance_t

struct motor_return_origin_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_return_origin_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_return_origin_cfg_t const
*

p_cfg Pointer to the configuration
structure for this instance.

motor_return_origin_api_t const
*

p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,441 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor Return Origin Function Interface

◆ motor_return_origin_ctrl_t

typedef void motor_return_origin_ctrl_t

Motor return origin function block. Allocate an instance specific control block to pass into the API
calls.

Enumeration Type Documentation

◆ motor_return_origin_mode_t

enum motor_return_origin_mode_t

Selection type of return origin function

Enumerator

MOTOR_RETURN_ORIGIN_MODE_PUSH Return origin position with pushing.

MOTOR_RETURN_ORIGIN_MODE_SENSOR Return origin position with origin sensor.

MOTOR_RETURN_ORIGIN_MODE_2_SENSOR Return origin position with 2 sensors.

MOTOR_RETURN_ORIGIN_MODE_3_SENSOR Return origin position with 3 sensors.

5.3.10.6 Motor angle Interface
Interfaces » Motor

Detailed Description

Interface for motor angle and speed calculation functions.

Summary
The Motor angle interface calculates the rotor angle and rotational speed from other data.

Data Structures

struct motor_angle_cfg_t

struct motor_angle_current_t

struct motor_angle_voltage_reference_t

struct motor_angle_ad_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,442 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

struct motor_angle_encoder_info_t

struct motor_angle_api_t

struct motor_angle_instance_t

Typedefs

typedef void motor_angle_ctrl_t

Enumerations

enum motor_sense_encoder_angle_adjust_t

enum motor_angle_open_loop_t

enum motor_angle_error_t

Data Structure Documentation

◆ motor_angle_cfg_t

struct motor_angle_cfg_t

Configuration parameters.

◆ motor_angle_current_t

struct motor_angle_current_t

Interface structure

Data Fields

float id d-axis current

float iq q-axis current

◆ motor_angle_voltage_reference_t

struct motor_angle_voltage_reference_t

Motor angle voltage reference

Data Fields

float vd d-axis voltage reference

float vq q-axis voltage reference

◆ motor_angle_ad_data_t

struct motor_angle_ad_data_t

A/D conversion data

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,443 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

float sin_ad_data sin A/D data of induction sensor

float cos_ad_data cos A/D data of induction
sensor

◆ motor_angle_encoder_info_t

struct motor_angle_encoder_info_t

Motor angle encoder adjustment info

Data Fields

motor_sense_encoder_angle_ad
just_t

e_adjust_status Encoder Adjustment Status.

uint8_t u1_adjust_count_full Adjustment count became full.

motor_angle_open_loop_t e_open_loop_status Openloop status.

float f_openloop_speed Openloop speed.

float f_openloop_id_ref Openloop d-axis current.

◆ motor_angle_api_t

struct motor_angle_api_t

Functions implemented as application interface will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* currentSet)(motor_angle_ctrl_t *const p_ctrl, motor_angle_current_t
*const p_st_current, motor_angle_voltage_reference_t *const
p_st_voltage)

fsp_err_t(* speedSet)(motor_angle_ctrl_t *const p_ctrl, float const speed_ctrl,
float const damp_speed)

fsp_err_t(* flagPiCtrlSet)(motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

fsp_err_t(* internalCalculate)(motor_angle_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,444 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

fsp_err_t(* angleSpeedGet)(motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

fsp_err_t(* angleAdjust)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* encoderCyclic)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* cyclicProcess)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* sensorDataSet)(motor_angle_ctrl_t *const p_ctrl,
motor_angle_ad_data_t *const p_ad_data)

fsp_err_t(* estimatedComponentGet)(motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

fsp_err_t(* infoGet)(motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

fsp_err_t(* parameterUpdate)(motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_angle_api_t::open) (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

Initialize the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

◆ close

fsp_err_t(* motor_angle_api_t::close) (motor_angle_ctrl_t *const p_ctrl)

Close (Finish) the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_angle_api_t::reset) (motor_angle_ctrl_t *const p_ctrl)

Reset the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

◆ currentSet

fsp_err_t(* motor_angle_api_t::currentSet) (motor_angle_ctrl_t *const p_ctrl, motor_angle_current_t
*const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage)

Set (Input) Current & Voltage Reference data into the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_st_current Pointer to current structure

[in] p_st_voltage Pointer to voltage Reference
structure

◆ speedSet

fsp_err_t(* motor_angle_api_t::speedSet) (motor_angle_ctrl_t *const p_ctrl, float const speed_ctrl,
float const damp_speed)

Set (Input) Speed Information into the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_ctrl Control reference of
rotational speed [rad/s]

[in] damp_speed Damping rotational speed
[rad/s]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

◆ flagPiCtrlSet

fsp_err_t(* motor_angle_api_t::flagPiCtrlSet) (motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

Set the flag of PI Control runs.

Parameters
[in] p_ctrl Pointer to control structure.

[in] flag_pi The flag of PI control runs

◆ internalCalculate

fsp_err_t(* motor_angle_api_t::internalCalculate) (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters of encoder process.

Parameters
[in] p_ctrl Pointer to control structure.

◆ angleSpeedGet

fsp_err_t(* motor_angle_api_t::angleSpeedGet) (motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

Get rotor angle and rotational speed from the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_angl Memory address to get rotor
angle data

[out] p_speed Memory address to get
rotational speed data

[out] p_phase_err Memory address to get
phase(angle) error data

◆ angleAdjust

fsp_err_t(* motor_angle_api_t::angleAdjust) (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

◆ encoderCyclic

fsp_err_t(* motor_angle_api_t::encoderCyclic) (motor_angle_ctrl_t *const p_ctrl)

DEPRECATED Encoder Cyclic Process.

Parameters
[in] p_ctrl Pointer to control structure.

◆ cyclicProcess

fsp_err_t(* motor_angle_api_t::cyclicProcess) (motor_angle_ctrl_t *const p_ctrl)

Cyclic Process. please

Parameters
[in] p_ctrl Pointer to control structure.

◆ sensorDataSet

fsp_err_t(* motor_angle_api_t::sensorDataSet) (motor_angle_ctrl_t *const p_ctrl,
motor_angle_ad_data_t *const p_ad_data)

Set sensor A/D data into the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_ad_data Pointer to A/D conversion
data

◆ estimatedComponentGet

fsp_err_t(* motor_angle_api_t::estimatedComponentGet) (motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

Get estimated d/q-axis component from the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_ed Memory address to get
estimated d-axis component

[out] p_eq Memory address to get
estimated q-axis component

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

◆ infoGet

fsp_err_t(* motor_angle_api_t::infoGet) (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Get Encoder Calculate Information.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Memory address to get
angle internal information

◆ parameterUpdate

fsp_err_t(* motor_angle_api_t::parameterUpdate) (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *p_cfg)

Update Parameters for the calculation in the Motor_Angle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_angle_instance_t

struct motor_angle_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_angle_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_angle_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_angle_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_angle_ctrl_t

typedef void motor_angle_ctrl_t

Motor Angle Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor angle Interface

◆ motor_sense_encoder_angle_adjust_t

enum motor_sense_encoder_angle_adjust_t

Enumerator

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_90_D
EGREE

Roter Angle Adjustment to pull in 90degree.

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_0_DE
GREE

Roter Angle Adjustment to pull in 0degree.

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_FINIS
H

Roter Angle Adjustment Finish.

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_OPEN
LOOP

Roter Angle Adjustment Finish.

◆ motor_angle_open_loop_t

enum motor_angle_open_loop_t

Enumerator

MOTOR_ANGLE_OPEN_LOOP_INACTIVE Openloop inactive.

MOTOR_ANGLE_OPEN_LOOP_ACTIVE Openloop active.

◆ motor_angle_error_t

enum motor_angle_error_t

Flag for induction correction error status

Enumerator

MOTOR_ANGLE_ERROR_NONE No error happen.

MOTOR_ANGLE_ERROR_INDUCTION Error happens in induction sensor correction
process.

5.3.10.7 Motor current Interface
Interfaces » Motor

Detailed Description

Interface for motor current functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

Summary
The Motor current interface for getting the PWM modulation duty from electric current and speed

Data Structures

struct motor_current_output_t

struct motor_current_input_current_t

struct motor_current_input_voltage_t

struct motor_current_get_voltage_t

struct motor_current_cfg_t

struct motor_current_api_t

struct motor_current_instance_t

Typedefs

typedef void motor_current_ctrl_t

Enumerations

enum motor_current_event_t

Data Structure Documentation

◆ motor_current_output_t

struct motor_current_output_t

Structure of interface to speed control Output parameters

Data Fields

float f_id D-axis current [A].

float f_iq Q-axis current [A].

float f_vamax

float f_speed_rad Speed value [rad/s].

float f_speed_rpm Speed value [rpm].

float f_rotor_angle Motor rotor angle [rad].

float f_position_rad Motor rotor position [rad].

float f_ed Estimated d-axis component[V]
of flux due to the permanent
magnet.

float f_eq Estimated q-axis component[V]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

of flux due to the permanent
magnet.

float f_phase_err_rad Phase error [rad].

uint8_t u1_flag_get_iref Flag to set d/q-axis current
reference.

uint8_t u1_adjust_status Angle adjustment satatus.

uint8_t u1_adjust_count_full Angle adjustment count full.

uint8_t u1_openloop_status Openloop status.

float f_openloop_speed Openloop speed.

float f_openloop_id_ref Openloop d-axis current.

◆ motor_current_input_current_t

struct motor_current_input_current_t

Three-phase input current

Data Fields

float iu U phase current[A].

float iv V phase current[A].

float iw W phase current[A].

◆ motor_current_input_voltage_t

struct motor_current_input_voltage_t

Input voltage

Data Fields

float vdc Main line voltage[V].

float va_max Maximum magnitude of voltage
vector[V].

◆ motor_current_get_voltage_t

struct motor_current_get_voltage_t

Struct to get motor current

Data Fields

float u_voltage U phase voltage[V].

float v_voltage V phase voltage[V].

float w_voltage W phase voltage[V].

float vd_reference d-axis voltage reference

float vq_reference q-axis voltage reference

◆ motor_current_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

struct motor_current_cfg_t

Configuration parameters.

◆ motor_current_api_t

struct motor_current_api_t

Functions implemented at the Motor Current Module will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* parameterSet)(motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

fsp_err_t(* currentReferenceSet)(motor_current_ctrl_t *const p_ctrl, float const
id_reference, float const iq_reference)

fsp_err_t(* speedPhaseSet)(motor_current_ctrl_t *const p_ctrl, float const
speed_rad, float const phase_rad)

fsp_err_t(* currentSet)(motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current,
motor_current_input_voltage_t const *const p_st_voltage)

fsp_err_t(* parameterGet)(motor_current_ctrl_t *const p_ctrl,
motor_current_output_t *const p_st_output)

fsp_err_t(* currentGet)(motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

fsp_err_t(* phaseVoltageGet)(motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

fsp_err_t(* parameterUpdate)(motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_current_api_t::open) (motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t
const *const p_cfg)

Initialize the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_current_api_t::close) (motor_current_ctrl_t *const p_ctrl)

Close (Finish) the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_current_api_t::reset) (motor_current_ctrl_t *const p_ctrl)

Reset variables for the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ run

fsp_err_t(* motor_current_api_t::run) (motor_current_ctrl_t *const p_ctrl)

Activate the motor current control.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

◆ parameterSet

fsp_err_t(* motor_current_api_t::parameterSet) (motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

Set (Input) parameters into the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_st_input Pointer to input data
structure(speed control
output data)

◆ currentReferenceSet

fsp_err_t(* motor_current_api_t::currentReferenceSet) (motor_current_ctrl_t *const p_ctrl, float
const id_reference, float const iq_reference)

Set (Input) Current reference into the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] id_reference D-axis current reference [A]

[in] iq_reference Q-axis current reference [A]

◆ speedPhaseSet

fsp_err_t(* motor_current_api_t::speedPhaseSet) (motor_current_ctrl_t *const p_ctrl, float const
speed_rad, float const phase_rad)

Set (Input) Speed & Phase data into the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_rad Rotational speed [rad/s]

[in] phase_rad Rotor phase [rad]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

◆ currentSet

fsp_err_t(* motor_current_api_t::currentSet) (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current, motor_current_input_voltage_t const
*const p_st_voltage)

Set (Input) Current data into the motor current module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_st_current Pointer to input current
structure

[in] p_st_voltage Pointer to input voltage
structure

◆ parameterGet

fsp_err_t(* motor_current_api_t::parameterGet) (motor_current_ctrl_t *const p_ctrl,
motor_current_output_t *const p_st_output)

Get (output) parameters from the motor current module

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_st_output Pointer to output data
structure(speed control input
data)

◆ currentGet

fsp_err_t(* motor_current_api_t::currentGet) (motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

Get d/q-axis current

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_id Pointer to get d-axis current
[A]

[out] p_iq Pointer to get q-axis current
[A]

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

◆ phaseVoltageGet

fsp_err_t(* motor_current_api_t::phaseVoltageGet) (motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

Get phase output voltage

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_voltage Pointer to get voltages

◆ parameterUpdate

fsp_err_t(* motor_current_api_t::parameterUpdate) (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Update parameters for the calculation in the motor current control.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_current_instance_t

struct motor_current_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_current_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_current_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_current_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_current_ctrl_t

typedef void motor_current_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor current Interface

◆ motor_current_event_t

enum motor_current_event_t

Events that can trigger a callback function

Enumerator

MOTOR_CURRENT_EVENT_FORWARD Event forward current control.

MOTOR_CURRENT_EVENT_DATA_SET Event set speed control output data.

MOTOR_CURRENT_EVENT_BACKWARD Event backward current control.

5.3.10.8 Motor driver Interface
Interfaces » Motor

Detailed Description

Interface for motor driver functions.

Summary
The Motor driver interface for setting the PWM modulation duty

Data Structures

struct motor_driver_callback_args_t

struct motor_driver_current_get_t

struct motor_driver_cfg_t

struct motor_driver_api_t

struct motor_driver_instance_t

Typedefs

typedef void motor_driver_ctrl_t

Enumerations

enum motor_driver_event_t

enum motor_driver_shunt_type_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

Data Structure Documentation

◆ motor_driver_callback_args_t

struct motor_driver_callback_args_t

Callback function parameter data

Data Fields

motor_driver_event_t event Event trigger.

void const * p_context Placeholder for user data.

◆ motor_driver_current_get_t

struct motor_driver_current_get_t

Current Data Get Structure

Data Fields

float iu U phase current [A].

float iv V phase current [A].

float iw W phase current [A].

float vdc Main Line Voltage [V].

float va_max maximum magnitude of voltage
vector

float sin_ad Induction sensor sin signal.

float cos_ad Induction sensor cos signal.

◆ motor_driver_cfg_t

struct motor_driver_cfg_t

Configuration parameters.

Data Fields

adc_channel_t iu_ad_ch

 A/D Channel for U Phase Current.

adc_channel_t iv_ad_ch

 A/D Channel for V Phase Current.

adc_channel_t iw_ad_ch

 A/D Channel for W Phase Current.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

adc_channel_t vdc_ad_ch

 A/D Channel for Main Line Voltage.

adc_channel_t sin_ad_ch

 A/D Channel for induction sensor sin signal.

adc_channel_t cos_ad_ch

 A/D Channel for induction sensor cos signal.

motor_driver_shunt_type_t shunt

 Selection of shunt type.

void const * p_context

 Placeholder for user data.

◆ motor_driver_api_t

struct motor_driver_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* phaseVoltageSet)(motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

fsp_err_t(* currentGet)(motor_driver_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

motor_driver_current_get_t *const p_current_get)

fsp_err_t(* flagCurrentOffsetGet)(motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

fsp_err_t(* currentOffsetRestart)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* parameterUpdate)(motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_driver_api_t::open) (motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

Initialize the Motor Driver Module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_driver_api_t::close) (motor_driver_ctrl_t *const p_ctrl)

Close the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_driver_api_t::reset) (motor_driver_ctrl_t *const p_ctrl)

Reset variables of the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

◆ phaseVoltageSet

fsp_err_t(* motor_driver_api_t::phaseVoltageSet) (motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

Set (Input) Phase Voltage data into the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

[in] u_voltage U phase voltage [V]

[in] v_voltage V phase voltage [V]

[in] w_voltage W phase voltage [V]

◆ currentGet

fsp_err_t(* motor_driver_api_t::currentGet) (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

Get Phase current, Vdc and Va_max data from the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_current_get Pointer to get data structure.

◆ flagCurrentOffsetGet

fsp_err_t(* motor_driver_api_t::flagCurrentOffsetGet) (motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

Get the flag of finish current offset detection from the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_flag_offset Flag of finish current offset
detection

◆ currentOffsetRestart

fsp_err_t(* motor_driver_api_t::currentOffsetRestart) (motor_driver_ctrl_t *const p_ctrl)

Restart current offset detection

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

◆ parameterUpdate

fsp_err_t(* motor_driver_api_t::parameterUpdate) (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Update Configuration Parameters for the calculation in the Motor Driver Module

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_driver_instance_t

struct motor_driver_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_driver_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_driver_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_driver_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_driver_ctrl_t

typedef void motor_driver_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor driver Interface

◆ motor_driver_event_t

enum motor_driver_event_t

Events that can trigger a callback function

Enumerator

MOTOR_DRIVER_EVENT_FORWARD Event before Motor Driver Process (before
Current Control timing)

MOTOR_DRIVER_EVENT_CURRENT Event Current Control timing.

MOTOR_DRIVER_EVENT_BACKWARD Event after Motor Driver Process (after PWM
duty setting)

◆ motor_driver_shunt_type_t

enum motor_driver_shunt_type_t

Selection of shunt type

Enumerator

MOTOR_DRIVER_SHUNT_TYPE_1_SHUNT Only use U phase current.

MOTOR_DRIVER_SHUNT_TYPE_2_SHUNT Use U and W phase current.

MOTOR_DRIVER_SHUNT_TYPE_3_SHUNT Use all phase current.

5.3.10.9 Motor position Interface
Interfaces » Motor

Detailed Description

Interface for motor position functions.

Summary
The Motor position interface for getting the speed references from Encoder Sensor

Data Structures

struct motor_position_info_t

struct motor_position_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

struct motor_position_api_t

struct motor_position_instance_t

Typedefs

typedef void motor_position_ctrl_t

Enumerations

enum motor_position_ctrl_mode_t

Data Structure Documentation

◆ motor_position_info_t

struct motor_position_info_t

Position information

Data Fields

uint8_t u1_state_position_profile Position control profile state.

int16_t s2_position_degree Position data [degree].

◆ motor_position_cfg_t

struct motor_position_cfg_t

Configuration parameters.

Data Fields

void const * p_context Placeholder for user data.

void const * p_extend

◆ motor_position_api_t

struct motor_position_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* positionGet)(motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

fsp_err_t(* positionSet)(motor_position_ctrl_t *const p_ctrl, float const
position_rad)

fsp_err_t(* positionReferenceSet)(motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

fsp_err_t(* controlModeSet)(motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

fsp_err_t(* positionControl)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* ipdSpeedPControl)(motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

fsp_err_t(* speedReferencePControlGet)(motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

fsp_err_t(* speedReferenceIpdControlGet)(motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

fsp_err_t(* speedReferenceFeedforwardGet)(motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

fsp_err_t(* infoGet)(motor_position_ctrl_t *const p_ctrl, motor_position_info_t
*const p_info)

fsp_err_t(* parameterUpdate)(motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

◆ open

fsp_err_t(* motor_position_api_t::open) (motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t
const *const p_cfg)

Initialize the Motor Position Module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_position_api_t::close) (motor_position_ctrl_t *const p_ctrl)

Close (Finish) the Motor Position Module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_position_api_t::reset) (motor_position_ctrl_t *const p_ctrl)

Reset(Stop) the Motor Position Module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ positionGet

fsp_err_t(* motor_position_api_t::positionGet) (motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

Get Position data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_position Pointer to get position data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

◆ positionSet

fsp_err_t(* motor_position_api_t::positionSet) (motor_position_ctrl_t *const p_ctrl, float const
position_rad)

Set Position data from Encoder.

Parameters
[in] p_ctrl Pointer to control structure.

[in] position_rad Position data [radian]

◆ positionReferenceSet

fsp_err_t(* motor_position_api_t::positionReferenceSet) (motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

Set (Input) Position reference into the Motor Position Module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] position_refernce_deg Position reference [degree]

◆ controlModeSet

fsp_err_t(* motor_position_api_t::controlModeSet) (motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

Set (Input) Position Control Mode.

Parameters
[in] p_ctrl Pointer to control structure.

[in] mode Position Control Mode

◆ positionControl

fsp_err_t(* motor_position_api_t::positionControl) (motor_position_ctrl_t *const p_ctrl)

Calculate internal position reference

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

◆ ipdSpeedPControl

fsp_err_t(* motor_position_api_t::ipdSpeedPControl) (motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

Calculate iq reference

Parameters
[in] p_ctrl Pointer to control structure.

[in] ref_speed_rad Speed Reference [rad/sec]

[in] speed_rad Current Speed [rad/sec]

[out] p_iq_ref Pointer to get iq reference

◆ speedReferencePControlGet

fsp_err_t(* motor_position_api_t::speedReferencePControlGet) (motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

Get Speed Reference by P Control

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

◆ speedReferenceIpdControlGet

fsp_err_t(* motor_position_api_t::speedReferenceIpdControlGet) (motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

Get Speed Reference by IPD Control

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

◆ speedReferenceFeedforwardGet

fsp_err_t(* motor_position_api_t::speedReferenceFeedforwardGet) (motor_position_ctrl_t *const
p_ctrl, float *const p_speed_ref)

Get Speed Reference by Speed Feedforward

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

◆ infoGet

fsp_err_t(* motor_position_api_t::infoGet) (motor_position_ctrl_t *const p_ctrl, motor_position_info_t
*const p_info)

Get Position information.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Pointer to get information

◆ parameterUpdate

fsp_err_t(* motor_position_api_t::parameterUpdate) (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Update Parameters for the calculation in the Motor Position Module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_position_instance_t

struct motor_position_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_position_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_position_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_position_api_t const * p_api Pointer to the API structure for

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor position Interface

this instance.

Typedef Documentation

◆ motor_position_ctrl_t

typedef void motor_position_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

◆ motor_position_ctrl_mode_t

enum motor_position_ctrl_mode_t

Position Control Mode

5.3.10.10 Motor speed Interface
Interfaces » Motor

Detailed Description

Interface for motor speed functions.

Summary
The Motor speed interface for getting the current references from electric current and rotational
speed

Data Structures

struct motor_speed_callback_args_t

struct motor_speed_position_data_t

struct motor_speed_cfg_t

struct motor_speed_api_t

struct motor_speed_instance_t

Typedefs

typedef void motor_speed_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

Enumerations

enum motor_speed_event_t

enum motor_speed_loop_mode_t

enum motor_speed_step_t

Data Structure Documentation

◆ motor_speed_callback_args_t

struct motor_speed_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data.

motor_speed_event_t event

◆ motor_speed_position_data_t

struct motor_speed_position_data_t

Motor speed and position structure

Data Fields

motor_speed_step_t e_step_mode Select step mode.

motor_speed_loop_mode_t e_loop_mode Select control mode.

int16_t position_reference_degree Position reference [degree].

◆ motor_speed_cfg_t

struct motor_speed_cfg_t

Configuration parameters.

Data Fields

motor_speed_input_t * st_input

 Input data structure for automatic set.

motor_speed_output_t * st_output

 Output data structure for automatic receive.

motor_position_instance_t
const *

p_position_instance

 Position module instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

void const * p_context

 Placeholder for user data.

◆ motor_speed_api_t

struct motor_speed_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* speedReferenceSet)(motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

fsp_err_t(* positionReferenceSet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

fsp_err_t(* parameterSet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

fsp_err_t(* speedControl)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* parameterGet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

fsp_err_t(* parameterUpdate)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

◆ open

fsp_err_t(* motor_speed_api_t::open) (motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

Initialize the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_speed_api_t::close) (motor_speed_ctrl_t *const p_ctrl)

Close (Finish) the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_speed_api_t::reset) (motor_speed_ctrl_t *const p_ctrl)

Reset(Stop) the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

◆ run

fsp_err_t(* motor_speed_api_t::run) (motor_speed_ctrl_t *const p_ctrl)

Activate the motor speed control.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

◆ speedReferenceSet

fsp_err_t(* motor_speed_api_t::speedReferenceSet) (motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

Set (Input) speed reference into the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_refernce_rpm Speed reference [rpm]

◆ positionReferenceSet

fsp_err_t(* motor_speed_api_t::positionReferenceSet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

Set (Input) position reference and control mode

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_position_data Pointer to structure position
data

◆ parameterSet

fsp_err_t(* motor_speed_api_t::parameterSet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

Set (Input) speed parameters into the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_st_input Pointer to structure to input
parameters.

◆ speedControl

fsp_err_t(* motor_speed_api_t::speedControl) (motor_speed_ctrl_t *const p_ctrl)

Calculate current reference

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

◆ parameterGet

fsp_err_t(* motor_speed_api_t::parameterGet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

Get speed control output parameters

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_st_output Pointer to get speed control
parameters

◆ parameterUpdate

fsp_err_t(* motor_speed_api_t::parameterUpdate) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Update Parameters for the calculation in the motor speed module.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_speed_instance_t

struct motor_speed_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_speed_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_speed_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_speed_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_speed_ctrl_t

typedef void motor_speed_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor > Motor speed Interface

◆ motor_speed_event_t

enum motor_speed_event_t

Events that can trigger a callback function

Enumerator

MOTOR_SPEED_EVENT_FORWARD Event forward speed control.

MOTOR_SPEED_EVENT_BACKWARD Event backward speed control.

MOTOR_SPEED_EVENT_ENCODER_CYCLIC Event encoder cyclic.

MOTOR_SPEED_EVENT_ENCODER_ADJUST Event encoder adjust.

◆ motor_speed_loop_mode_t

enum motor_speed_loop_mode_t

Enumerator

MOTOR_SPEED_LOOP_MODE_SPEED Speed control mode.

MOTOR_SPEED_LOOP_MODE_POSITION Position control mode.

◆ motor_speed_step_t

enum motor_speed_step_t

Enumerator

MOTOR_SPEED_STEP_DISABLE Position control works without step mode.

MOTOR_SPEED_STEP_ENABLE Position control works with step mode.

5.3.11 Networking
Interfaces

Detailed Description

Networking Interfaces.

Modules

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking

BLE ABS Interface

 Interface for BLE Abstraction functions.

BLE Interface

 Interface for Bluetooth Low Energy (BLE) functions.

BLE Mesh Network Interfaces

 BLE Mesh Network Interfaces.

DA16XXX AT Command Transport Layer

 Abstraction interface for DA16XXX AT Command functions.

Ethernet Interface

 Interface for Ethernet functions.

Ethernet PHY Interface

 Interface for Ethernet PHY functions.

PTP Interface

 Interface for PTP functions.

WiFi Interface

 Interface for common WiFi APIs.

5.3.11.1 BLE ABS Interface
Interfaces » Networking

Detailed Description

Interface for BLE Abstraction functions.

Summary
The BLE Abstraction (BLE ABS) interface provides an abstraction layer for various Renesas BLE
hardware.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

Data Structures

struct ble_device_address_t

struct ble_gap_connection_parameter_t

struct ble_gap_connection_phy_parameter_t

struct ble_gap_scan_phy_parameter_t

struct ble_gap_scan_on_t

struct ble_abs_callback_args_t

struct ble_abs_pairing_parameter_t

struct ble_abs_gatt_server_callback_set_t

struct ble_abs_gatt_client_callback_set_t

struct ble_abs_legacy_advertising_parameter_t

struct ble_abs_extend_advertising_parameter_t

struct ble_abs_non_connectable_advertising_parameter_t

struct ble_abs_periodic_advertising_parameter_t

struct ble_abs_scan_phy_parameter_t

struct ble_abs_scan_parameter_t

struct ble_abs_connection_phy_parameter_t

struct ble_abs_connection_parameter_t

struct ble_abs_cfg_t

struct ble_abs_api_t

struct ble_abs_instance_t

Macros

#define BLE_ABS_ADVERTISING_PHY_LEGACY

 Non-Connectable Legacy Advertising phy setting.

Typedefs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

typedef void(* ble_gap_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_evt_data_t *p_event_data)

typedef void(* ble_vendor_specific_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_vs_evt_data_t *p_event_data)

typedef void(* ble_gatt_server_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_gatts_evt_data_t *p_event_data)

typedef void(* ble_gatt_client_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_gattc_evt_data_t *p_event_data)

typedef void(* ble_abs_delete_bond_application_callback_t) (st_ble_dev_addr_t
*p_addr)

typedef void ble_abs_ctrl_t

Enumerations

enum ble_abs_advertising_filter_t

enum ble_abs_local_bond_information_t

enum ble_abs_remote_bond_information_t

enum ble_abs_delete_non_volatile_area_t

Data Structure Documentation

◆ ble_device_address_t

struct ble_device_address_t

st_ble_device_address is the type of bluetooth device address(BD_ADDR).

Data Fields

uint8_t addr[BLE_BD_ADDR_LEN] bluetooth device address.

uint8_t type the type of bluetooth device
address.

◆ ble_gap_connection_parameter_t

struct ble_gap_connection_parameter_t

ble_gap_connection_parameter_t is Connection parameters included in connection interval, slave
latency, supervision timeout, ce length.

Data Fields

uint16_t conn_intv_min Minimum connection interval.

uint16_t conn_intv_max Maximum connection interval.

uint16_t conn_latency Slave latency.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

uint16_t sup_to Supervision timeout.

uint16_t min_ce_length Minimum CE Length.

uint16_t max_ce_length Maximum CE Length.

◆ ble_gap_connection_phy_parameter_t

struct ble_gap_connection_phy_parameter_t

ble_gap_connection_phy_parameter_t is Connection parameters per PHY.

Data Fields

uint16_t scan_intv Scan interval.

uint16_t scan_window Scan window.

ble_gap_connection_parameter_
t *

p_conn_param Connection interval, slave
latency, supervision timeout,
and CE length.

◆ ble_gap_scan_phy_parameter_t

struct ble_gap_scan_phy_parameter_t

Scan parameters per scan PHY.

Data Fields

uint8_t scan_type Scan type.

uint16_t scan_intv Scan interval.

uint16_t scan_window Scan window.

◆ ble_gap_scan_on_t

struct ble_gap_scan_on_t

Parameters configured when scanning starts.

Data Fields

uint8_t proc_type Procedure type.

uint8_t filter_dups Filter duplicates.

uint16_t duration Scan duration.

uint16_t period Scan period.

◆ ble_abs_callback_args_t

struct ble_abs_callback_args_t

Callback function parameter data

Data Fields

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

ble_event_cb_t ble_abs_event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data. Set in
ble_abs_api_t::open function in
ble_abs_cfg_t.

◆ ble_abs_pairing_parameter_t

struct ble_abs_pairing_parameter_t

st_ble_abs_pairing_parameter_t includes the pairing parameters.

Data Fields

uint8_t io_capabilitie_local_device IO capabilities of local device.

uint8_t mitm_protection_policy MITM protection policy.

uint8_t secure_connection_only Determine whether to accept
only Secure Connections or not.

uint8_t local_key_distribute Type of keys to be distributed
from local device.

uint8_t remote_key_distribute Type of keys which local device
requests a remote device to
distribute.

uint8_t maximum_key_size Maximum LTK size.

uint8_t padding[2] Reserved.

◆ ble_abs_gatt_server_callback_set_t

struct ble_abs_gatt_server_callback_set_t

GATT Server callback function and the priority.

Data Fields

ble_gatt_server_application_call
back_t

gatt_server_callback_function GATT Server callback function.

uint8_t gatt_server_callback_priority The priority number of GATT
Server callback function.

◆ ble_abs_gatt_client_callback_set_t

struct ble_abs_gatt_client_callback_set_t

GATT Client callback function and the priority.

Data Fields

ble_gatt_client_application_callb
ack_t

gatt_client_callback_function GATT Client callback function.

uint8_t gatt_client_callback_priority The priority number of GATT
Client callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ ble_abs_legacy_advertising_parameter_t

struct ble_abs_legacy_advertising_parameter_t

st_ble_abs_legacy_advertising_parameter_t is the parameters for legacy advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_peer_address
parameter is not NULL, Direct
Connectable Advertising is
performed to the remote
address.
If the p_peer_address
parameter is NULL, Undirect
Connectable Advertising is
performed according to
the advertising filter policy
specified by the filter
parameter.

uint8_t * p_advertising_data Advertising Data.
If the p_advertising_data is
specified as NULL, Advertising
Data is not included in the
advertising PDU.

uint8_t * p_scan_response_data Scan Response Data.
If the p_scan_response_data is
specified as NULL, Scan
Response Data is not included
in the advertising PDU.

uint32_t fast_advertising_interval Advertising with the
fast_advertising_interval
parameter continues for the
period specified
by the fast_advertising_period
parameter.
Time(ms) =
fast_advertising_interval *
0.625.
If the fast_advertising_period
parameter is 0, this parameter
is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t slow_advertising_interval After the elapse of the
fast_advertising_period,
advertising with the
slow_advertising_interval
parameter continues
for the period specified by the
slow_advertising_period
parameter.
Time(ms) =

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

slow_advertising_interval *
0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t fast_advertising_period The period which advertising
with the
fast_advertising_interval
parameter continues for.
Time = duration * 10ms.
After the elapse of the
fast_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the fast_advertising_period
parameter is 0x0000,
advertising with the
fast_advertising_interval
parameter is not performed.

uint16_t slow_advertising_period The period which advertising
with the
slow_advertising_interval
parameter continues for. Time
= duration * 10ms.
After the elapse of the
slow_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the slow_advertising_period
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length(byte).
Valid range is 0-31.
If the advertising_data_length is
0, Advertising Data is not
included in the advertising PDU.

uint16_t scan_response_data_length Scan response data length (in
bytes).
Scan Response Data(byte).
Valid range is 0-31.
If the
scan_response_data_length is
0, Scan Response Data is not
included in the advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 39 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t advertising_filter_policy Advertising filter policy.
If the p_peer_address
parameter is NULL, the
advertising is performed
according to the advertising
filter policy.
If the p_peer_address
parameter is not NULL, this
parameter is ignored.
macro description

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_A
NY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_W
HITE_LIST(0x0
1)

Process scan
and
connection
requests from
only devices
in the White
List.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.

I

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t padding[3] Reserved.

◆ ble_abs_extend_advertising_parameter_t

struct ble_abs_extend_advertising_parameter_t

st_ble_abs_extend_advertising_parameter_t is the parameters for extended advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_addr parameter is not
NULL, Direct Connectable
Advertising is performed to the
remote address.
If the p_addr parameter is
NULL, Undirect Connectable
Advertising is performed
according to the advertising
filter policy specified by the
filter parameter.

uint8_t * p_advertising_data Advertising data. If p_adv_data
is specified as NULL, advertising
data is not set.

uint32_t fast_advertising_interval Advertising with the
fast_advertising_interval
parameter continues for
the period specified by the
fast_advertising_period
parameter.
Time(ms) =
fast_advertising_interval *
0.625.
If the fast_advertising_period
parameter is 0, this parameter
is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t slow_advertising_interval After the elapse of the
fast_advertising_period,
advertising with the
slow_advertising_interval
parameter
continues for the period
specified by the
slow_advertising_period
parameter.
Time(ms) =
slow_advertising_interval *

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t fast_advertising_period The period which advertising
with the
fast_advertising_interval
parameter continues for.
Time = duration * 10ms.
After the elapse of the
fast_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the fast_advertising_period
parameter is 0x0000, the
fast_advertising_interval
parameter is ignored.

uint16_t slow_advertising_period The period which advertising
with the
slow_advertising_interval
parameter continues for.
Time = duration * 10ms.
After the elapse of the
slow_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the slow_advertising_period
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length (in
bytes).
Valid range is 0-229.
If the adv_data_length is 0,
Advertising Data is not included
in the advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values. macr

o
descr
iption

BLE_
GAP_
ADV_
CH_3
7(0x0
1)

Use
37
CH.

BLE_ Use

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

GAP_
ADV_
CH_3
8(0x0
2)

38
CH.

BLE_
GAP_
ADV_
CH_3
9(0x0
4)

Use
39
CH.

BLE_
GAP_
ADV_
CH_A
LL(0x
07)

Use
37 -
39
CH.

uint8_t advertising_filter_policy Advertising filter policy.
If the p_peer_address
parameter is NULL, the
advertising is performed
according to the advertising
filter policy.
If the p_peer_address
parameter is not NULL, this
parameter is ignored.
macro description

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_A
NY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_W
HITE_LIST(0x0
1)

Process scan
and
connection
requests from
only devices
in the White
List.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

(Identity
Resolving
Key) of local
device has
not been
registered in
Resolving List,
public address
is used.

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t primary_advertising_phy Primary advertising PHY.
In this parameter, only 1M PHY
and Coded PHY can be
specified, and 2M PHY cannot
be specified.
macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising
PHY.
When the
adv_prop_typ
e field is
Legacy
Advertising
PDU type, this
field shall be
set to BLE_GA
P_ADV_PHY_1
M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY as
Primary
Advertising
PHY.
Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t secondary_advertising_phy Secondary advertising Phy.
Select one of the following.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

.

uint8_t padding[3] Reserved.

◆ ble_abs_non_connectable_advertising_parameter_t

struct ble_abs_non_connectable_advertising_parameter_t

st_ble_abs_non_connectable_advertising_parameter_t is the parameters for non-connectable
advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_peer_address
parameter is not NULL, Direct
Connectable Advertising is
performed to the remote
address.
If the p_peer_address
parameter is NULL, Undirect
Connectable Advertising is
performed
according to the advertising
filter policy specified by the
filter parameter.

uint8_t * p_advertising_data Advertising data. If p_adv_data
is specified as NULL, advertising
data is not set.

uint32_t advertising_interval Advertising with the
advertising_interval parameter
continues for the period
specified by the duration
parameter.
Time(ms) = advertising_interval
* 0.625.
If the duration parameter is
0x0000, the advertising with
the advertising_interval
parameter continue.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t advertising_duration The period which advertising
with the advertising_interval

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

parameter continues for.
Time = advertising_duration *
10ms.
After the elapse of the
advertising_duration,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the advertising_duration
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length (in
bytes).
If the primary_advertising_phy
parameter is
BLE_ABS_ADVERTISING_PHY_LE
GACY(0x00), the valid range is
0-31.
If the primary_advertising_phy
parameter is the other values,
the valid range is 0-1650.
If the advertising_data_length
parameter is 0, Advertising
Data is not included in the
advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values. macr

o
descr
iption

BLE_
GAP_
ADV_
CH_3
7(0x0
1)

Use
37
CH.

BLE_
GAP_
ADV_
CH_3
8(0x0
2)

Use
38
CH.

BLE_
GAP_
ADV_
CH_3
9(0x0
4)

Use
39
CH.

BLE_ Use

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

GAP_
ADV_
CH_A
LL(0x
07)

37 -
39
CH.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK
(Identity
Resolving
Key) of local
device has
not been
registered in
Resolving List,
public address
is used.

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t primary_advertising_phy Primary advertising PHY.
In this parameter, only 1M PHY
and Coded PHY can be
specified, and 2M PHY cannot
be specified.
macro description

BLE_ABS_ADV
ERTISING_PHY
_LEGACY(0x0
0)

Use 1M PHY
as Primary
Advertising
PHY for Non-
Connectable
Legacy
Advertising.
If Periodic
Advertising is
performed,
this value
shall not set
to the
adv_phy
parameter.

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

PHY.
When the
adv_prop_typ
e field is
Legacy
Advertising
PDU type, this
field shall be
set to BLE_GA
P_ADV_PHY_1
M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY as
Primary
Advertising
PHY.
Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t secondary_advertising_phy Secondary advertising Phy.
Select one of the following.

.

uint8_t padding[2] Reserved.

◆ ble_abs_periodic_advertising_parameter_t

struct ble_abs_periodic_advertising_parameter_t

st_ble_abs_periodic_advertising_parameter_t is the parameters for periodic advertising.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

ble_abs_non_connectable_adver
tising_parameter_t

advertising_parameter Advertising parameters.

uint8_t * p_periodic_advertising_data Periodic advertising data. If
p_perd_adv_data is specified as
NULL, periodic advertising data
is not set.

uint16_t periodic_advertising_interval Periodic advertising interval.
Time(ms) =
periodic_advertising_interval *
1.25.
Valid range is 0x0006 - 0xFFFF.

uint16_t periodic_advertising_data_lengt
h

Periodic advertising data length
(in bytes).
Valid range is 0 - 1650.
If the
periodic_advertising_data_lengt
h is 0, Periodic Advertising Data
is not included in the
advertising PDU.

◆ ble_abs_scan_phy_parameter_t

struct ble_abs_scan_phy_parameter_t

st_ble_abs_scan_phy_parameter_t is the phy parameters for scan.

Data Fields

uint16_t fast_scan_interval Fast scan interval.
Interval(ms) =
fast_scan_interval * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t slow_scan_interval Slow Scan interval.
Slow Scan interval(ms) =
slow_scan_interval * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t fast_scan_window Fast Scan window.
Fast Scan window(ms) =
fast_scan_window * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t slow_scan_window Slow Scan window.
Slow Scan window(ms) =
slow_scan_window * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint8_t scan_type Scan type. macro descripti
on

BLE_GAP
_SCAN_P
ASSIVE(
0x00)

Passive
Scan.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

BLE_GAP
_SCAN_A
CTIVE(0
x01)

Active
Scan.

uint8_t padding[3] Reserved.

◆ ble_abs_scan_parameter_t

struct ble_abs_scan_parameter_t

st_ble_abs_scan_parameter_t is the parameters for scan.

Data Fields

ble_abs_scan_phy_parameter_t
*

p_phy_parameter_1M Scan parameters for receiving
the advertising packets in 1M
PHY.
In case of not receiving the
advertising packets in 1M PHY,
this field is specified as NULL.
p_phy_parameter_1M or
p_phy_parameter_coded field
shall be set to scan parameters.

ble_abs_scan_phy_parameter_t
*

p_phy_parameter_coded Scan parameters for receiving
the advertising packets in
Coded PHY.
In case of not receiving the
advertising packets in Coded
PHY, this field is specified as
NULL.
p_phy_parameter_1M or
p_phy_parameter_coded field
shall be set to scan parameters.

uint8_t * p_filter_data Data for Advertising Data
filtering.
The p_filter_data parameter is
used for the advertising data in
single advertising report.
The advertising data composed
of multiple advertising reports
is not filtered by this
parameter.
If the p_filter_data parameter is
specified as NULL, the filtering
is not done.

uint16_t fast_scan_period The period which scan with the
fast scan interval/fast scan
window continues for.
Time(ms) = fast_scan_period *
10.
Valid range is 0x0000 - 0xFFFF.
If the fast_scan_period
parameter is 0x0000, scan with

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

the fast scan interval/fast scan
window is not performed.
After the elapse of the
fast_scan_period,
BLE_GAP_EVENT_SCAN_TO
event notifies that the scan has
stopped.

uint16_t slow_scan_period The period which scan with the
slow scan interval/slow scan
window continues for.
Time = slow_scan_period *
10ms.
Valid range is 0x0000 - 0xFFFF.
If the slow_scan_period
parameter is 0x0000, the scan
continues.
After the elapse of the
slow_scan_period,
BLE_GAP_EVENT_SCAN_TO
event notifies that the scan has
stopped.

uint16_t filter_data_length The length of the data specified
by the p_filter_data parameter.
Valid range is 0x0000-0x0010.
If the filter_data_length
parameter is 0, the filtering is
not done.

uint8_t device_scan_filter_policy Scan Filter Policy. Select one of
the following.
.

Address type setting
(Field [7:4])
macro descriptio

n

BLE_GAP_
ADDR_PU
BLIC(0x00
)

Use Public
Address.

BLE_GAP_
ADDR_RA
ND(0x01)

Use
Random
Address.

BLE_GAP_
ADDR_RP
A_ID_PUBL
IC(0x02)

If the IRK
(Identity
Resolving
Key) of
local
device has
been
registered
in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

Resolving
list, use
RPA. If
not, use
Public
Address.

BLE_GAP_
ADDR_RP
A_ID_RAN
DOM(0x03
)

If the IRK
(Identity
Resolving
Key) of
local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Random
Address.

White list setting (Field
[3:0])
macro descriptio

n

BLE_GAP_
SCAN_ALL
OW_ADV_
ALL(0x00)

Accept all
advertisin
g and
scan
response
PDUs
except
directed
advertisin
g PDUs
not
addressed
to local
device.

BLE_GAP_
SCAN_ALL
OW_ADV_
WLST(0x0
1)

Accept
only
advertisin
g and
scan
response
PDUs from
remote
devices
whose
address is
registered

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

in the
White List.
Directed
advertisin
g PDUs
which are
not
addressed
to local
device is
ignored.

BLE_GAP_
SCAN_ALL
OW_ADV_
EXCEPT_D
IRECTED(0
x02)

Accept all
advertisin
g and
scan
response
PDUs
except
directed
advertisin
g PDUs
whose the
target
address is
identity
address
but
doesn't
address
local
device.
However
directed
advertisin
g PDUs
whose the
target
address is
the local
resolvable
private
address
are
accepted.

BLE_GAP_
SCAN_ALL
OW_ADV_
EXCEPT_D
IRECTED_
WLST(0x0
3)

Accept all
advertisin
g and
scan
response
PDUs. The
following
are
excluded.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

Ad
ve
rti
sin
g
an
d s
ca
n r
es
po
ns
e P
DU
s
wh
er
e
th
e a
dv
ert
ise
r's
ide
nti
ty
ad
dr
es
s
is
no
t
in
th
e
W
hit
e L
ist.

Dir
ect
ed
ad
ve
rti
sin
g P
DU
s
wh
os
e

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

th
e t
ar
ge
t a
dd
res
s
is i
de
nti
ty
ad
dr
es
s
bu
t d
oe
sn'
t a
dd
res
s l
oc
al
de
vic
e.
Ho
we
ve
r d
ire
cte
d a
dv
ert
isi
ng
PD
Us
wh
os
e
th
e t
ar
ge
t a
dd
res
s
is
th

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

e l
oc
al
res
olv
abl
e p
riv
at
e a
dd
res
s
ar
e a
cc
ep
te
d.

uint8_t filter_duplicate Filter duplicates.
Maximum number of filtered
devices is 8.
The 9th and subsequent
devices are not filtered by this
parameter.
macro description

BLE_GAP_SCA
N_FILT_DUPLI
C_DISABLE(0x
00)

Duplicate
filter disabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE(0x
01)

Duplicate
filter enabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE_FO
R_PERIOD(0x0
2))

Duplicate
filtering
enabled, reset
for each scan
period.

uint8_t filter_ad_type The AD type of the data
specified by the p_filter_data
parameter.
The AD type identifier values
are defined in Bluetooth SIG
Assigned Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers).

uint8_t padding[3] Padding.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,501 / 5,560

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ ble_abs_connection_phy_parameter_t

struct ble_abs_connection_phy_parameter_t

st_ble_abs_connection_phy_parameter_t is the phy parameters for create connection.

Data Fields

uint16_t connection_interval Connection interval.
Time(ms) = connection_interval
* 1.25.
Valid range is 0x0006 - 0x0C80.

uint16_t connection_slave_latency Slave latency.
Valid range is 0x0000 - 0x01F3.

uint16_t supervision_timeout Supervision timeout.
Time(ms) =
supervision_timeout * 10.
Valid range is 0x000A - 0x0C80.

uint8_t padding[2] Padding.

◆ ble_abs_connection_parameter_t

struct ble_abs_connection_parameter_t

st_ble_abs_connection_parameter_t is the parameters for create connection.

Data Fields

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_1
M

Connection interval, slave
latency, supervision timeout for
1M PHY.
The p_connection_phy_paramet
er_1M is specified as NULL, a
connection request is not sent
with 1M PHY.

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_2
M

Connection interval, slave
latency, supervision timeout for
2M PHY.
The p_connection_phy_paramet
er_2M is specified as NULL, a
connection request is not sent
with 2M PHY.

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_c
oded

Connection interval, slave
latency, supervision timeout for
Coded PHY.
The p_connection_phy_paramet
er_coded is specified as NULL, a
connection request is not sent
with Coded PHY.

ble_device_address_t * p_device_address Address of the device to be
connected.
If the filter field is
BLE_GAP_INIT_FILT_USE_WLST(
0x01), this parameter is ignored

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

and please fill
p_device_address.addr with
0x00.

uint8_t filter_parameter The filter field specifies whether
the White List is used or not,
when connecting with a remote
device.
.

Address type setting
(Field [7:4])
macro descriptio

n

BLE_GAP_
ADDR_PU
BLIC(0x00
)

Use Public
Address.

BLE_GAP_
ADDR_RA
ND(0x01)

Use
Random
Address.

BLE_GAP_
ADDR_RP
A_ID_PUBL
IC(0x02)

If the IRK
(Identity
Resolving
Key) of
local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Public
Address.

BLE_GAP_
ADDR_RP
A_ID_RAN
DOM(0x03
)

If the IRK
(Identity
Resolving
Key) of
local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Random
Address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

White list setting (Field
[3:0])
macro descriptio

n

BLE_GAP_I
NIT_FILT_
USE_ADD
R(0x00)

White List
is not
used.
The
remote
device to
be
connected
is
specified
by the
p_addr
field is
used.

BLE_GAP_I
NIT_FILT_
USE_WLST
(0x01)

White List
is used.
The
remote
device
registered
in White
List is
connected
with local
device.
The
p_addr
field is
ignored.

uint8_t connection_timeout The time(sec) to cancel the
create connection request.
Valid range is 0 <=
connection_timeout <= 10.
If the connection_timeout field
is 0, the create connection
request is not canceled.
.

uint8_t padding[2] Padding.

◆ ble_abs_cfg_t

struct ble_abs_cfg_t

BLE ABS configuration parameters.

Data Fields

uint32_t channel

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,504 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

 Select a channel corresponding to the channel number of the
hardware. More...

ble_gap_application_callbac
k_t

gap_callback

 GAP callback function.

ble_vendor_specific_applicat
ion_callback_t

vendor_specific_callback

 Vendor Specific callback function.

ble_abs_gatt_server_callbac
k_set_t *

p_gatt_server_callback_list

 GATT Server callback set.

uint8_t gatt_server_callback_list_number

 The number of GATT Server callback functions.

ble_abs_gatt_client_callback
_set_t *

p_gatt_client_callback_list

 GATT Client callback set.

uint8_t gatt_client_callback_list_number

 The number of GATT Client callback functions.

ble_abs_pairing_parameter_t
*

p_pairing_parameter

 Pairing parameters.

flash_instance_t const * p_flash_instance

 Pointer to flash instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

timer_instance_t const * p_timer_instance

 Pointer to timer instance.

void(* p_callback)(ble_abs_callback_args_t *p_args)

 Callback provided when a BLE ISR occurs.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ channel

uint32_t ble_abs_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ ble_abs_api_t

struct ble_abs_api_t

BLE ABS functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

fsp_err_t(* close)(ble_abs_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

fsp_err_t(* startLegacyAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

p_advertising_parameter)

fsp_err_t(* startExtendedAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startNonConnectableAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_non_connectable_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startPeriodicAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startScanning)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_scan_parameter_t const *const p_scan_parameter)

fsp_err_t(* createConnection)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const
p_connection_parameter)

fsp_err_t(* setLocalPrivacy)(ble_abs_ctrl_t *const p_ctrl, uint8_t const *const
p_lc_irk, uint8_t privacy_mode)

fsp_err_t(* startAuthentication)(ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

fsp_err_t(* deleteBondInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const
p_bond_information_parameter)

fsp_err_t(* importKeyInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

fsp_err_t(* exportKeyInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ open

fsp_err_t(* ble_abs_api_t::open) (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

Initialize the BLE ABS in register start mode.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ble_abs_api_t::close) (ble_abs_ctrl_t *const p_ctrl)

Close the BLE ABS.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* ble_abs_api_t::reset) (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

Close the BLE ABS.

Parameters
[in] p_ctrl Pointer to control structure.

[in] init_callback callback function to initialize
Host Stack.

◆ startLegacyAdvertising

fsp_err_t(* ble_abs_api_t::startLegacyAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const p_advertising_parameter)

Start Legacy Connectable Advertising.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for Legacy
Advertising.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ startExtendedAdvertising

fsp_err_t(* ble_abs_api_t::startExtendedAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const p_advertising_parameter)

Start Extended Connectable Advertising.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for extend
Advertising.

◆ startNonConnectableAdvertising

fsp_err_t(* ble_abs_api_t::startNonConnectableAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_non_connectable_advertising_parameter_t const *const p_advertising_parameter)

Start Non-Connectable Advertising.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for non-
connectable Advertising.

◆ startPeriodicAdvertising

fsp_err_t(* ble_abs_api_t::startPeriodicAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const p_advertising_parameter)

Start Periodic Advertising.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for periodic
Advertising.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ startScanning

fsp_err_t(* ble_abs_api_t::startScanning) (ble_abs_ctrl_t *const p_ctrl, ble_abs_scan_parameter_t
const *const p_scan_parameter)

Start scanning.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_scan_parameter Pointer to scan parameter.

◆ createConnection

fsp_err_t(* ble_abs_api_t::createConnection) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const p_connection_parameter)

Request create connection.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_connection_parameter Pointer to connection
parameter.

◆ setLocalPrivacy

fsp_err_t(* ble_abs_api_t::setLocalPrivacy) (ble_abs_ctrl_t *const p_ctrl, uint8_t const *const
p_lc_irk, uint8_t privacy_mode)

Configure local device privacy.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_lc_irk Pointer to IRK (Identity
Resolving Key) to be
registered in the resolving
list.

[in] privacy_mode privacy_mode privacy mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ startAuthentication

fsp_err_t(* ble_abs_api_t::startAuthentication) (ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

Start pairing or encryption.

Parameters
[in] p_ctrl Pointer to control structure.

[in] connection_handle Connection handle
identifying the remote
device.

◆ deleteBondInformation

fsp_err_t(* ble_abs_api_t::deleteBondInformation) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const p_bond_information_parameter)

Delete bond information.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_bond_information_parame
ter

Pointer to bond information
parameter.

◆ importKeyInformation

fsp_err_t(* ble_abs_api_t::importKeyInformation) (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t
*p_local_identity_address, uint8_t *p_local_irk, uint8_t *p_local_csrk)

Import local identity address, keys information to local storage.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_local_identity_address Pointer to local identiry
address.

[in] uint8_t p_local_irk Pointer to local
IRK (Identity Resolving Key)

[in] uint8_t p_local_csrk Pointer to local
CSRK

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ exportKeyInformation

fsp_err_t(* ble_abs_api_t::exportKeyInformation) (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t
*p_local_identity_address, uint8_t *p_local_irk, uint8_t *p_local_csrk)

Export local identity address, keys information from local storage.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_local_identity_address Pointer to local identiry
address.

[out] uint8_t p_local_irk Pointer to local
IRK (Identity Resolving Key)

[out] uint8_t p_local_csrk Pointer to local
CSRK

◆ ble_abs_instance_t

struct ble_abs_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ble_abs_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ble_abs_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ble_abs_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ble_gap_application_callback_t

typedef void(* ble_gap_application_callback_t) (uint16_t event_type, ble_status_t event_result,
st_ble_evt_data_t *p_event_data)

ble_gap_application_callback_t is the GAP Event callback function type.

◆ ble_vendor_specific_application_callback_t

typedef void(* ble_vendor_specific_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_vs_evt_data_t *p_event_data)

ble_vendor_specific_application_callback_t is the Vendor Specific Event callback function type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ ble_gatt_server_application_callback_t

typedef void(* ble_gatt_server_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_gatts_evt_data_t *p_event_data)

ble_gatt_server_application_callback_t is the GATT Server Event callback function type.

◆ ble_gatt_client_application_callback_t

typedef void(* ble_gatt_client_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_gattc_evt_data_t *p_event_data)

ble_gatt_client_application_callback_t is the GATT Server Event callback function type.

◆ ble_abs_delete_bond_application_callback_t

typedef void(* ble_abs_delete_bond_application_callback_t) (st_ble_dev_addr_t *p_addr)

ble_abs_delete_bond_application_callback_t is the delete bond information Event callback function
type.

◆ ble_abs_ctrl_t

typedef void ble_abs_ctrl_t

BLE ABS control block. Allocate an instance specific control block to pass into the BLE ABS API
calls.

Enumeration Type Documentation

◆ ble_abs_advertising_filter_t

enum ble_abs_advertising_filter_t

Advertising Filter Policy

Enumerator

BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY Receive a connect request from all devices.

BLE_ABS_ADVERTISING_FILTER_ALLOW_WHITE_L
IST

Receive a connect request from only the
devices registered in White List.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE ABS Interface

◆ ble_abs_local_bond_information_t

enum ble_abs_local_bond_information_t

Local keys delete policy

Enumerator

BLE_ABS_LOCAL_BOND_INFORMATION_NONE Delete no local keys.

BLE_ABS_LOCAL_BOND_INFORMATION_ALL Delete all local keys.

◆ ble_abs_remote_bond_information_t

enum ble_abs_remote_bond_information_t

Remote keys delete policy

Enumerator

BLE_ABS_REMOTE_BOND_INFORMATION_NONE Delete no remote device keys.

BLE_ABS_REMOTE_BOND_INFORMATION_SPECIFI
ED

Delete the keys specified by the device
address.

BLE_ABS_REMOTE_BOND_INFORMATION_ALL Delete all remote device keys.

◆ ble_abs_delete_non_volatile_area_t

enum ble_abs_delete_non_volatile_area_t

Deletion policy for non-volatile memory

Enumerator

BLE_ABS_DELETE_NON_VOLATILE_AREA_DISABL
E

Delete no keys stored in storage.

BLE_ABS_DELETE_NON_VOLATILE_AREA_ENABLE

Delete the keys stored in storage.

5.3.11.2 BLE Interface
Interfaces » Networking

Functions

ble_status_t R_BLE_Open (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface

 Open the BLE protocol stack. More...

ble_status_t R_BLE_Close (void)

 Close the BLE protocol stack. More...

ble_status_t R_BLE_Execute (void)

 Execute the BLE task. More...

uint32_t R_BLE_IsTaskFree (void)

 Check the BLE task queue is free or not. More...

ble_status_t R_BLE_SetEvent (ble_event_cb_t cb)

 Set event. More...

uint32_t R_BLE_GetVersion (void)

 Get the BLE FIT module version. More...

uint32_t R_BLE_GetLibType (void)

 Get the type of BLE protocol stack library. More...

Detailed Description

Interface for Bluetooth Low Energy (BLE) functions.

Summary
The BLE interface for the Bluetooth Low Energy (BLE) peripheral provides BLE functionality.

Modules

GAP

ISO

GATT_COMMON

GATT_SERVER

GATT_CLIENT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface

L2CAP

VS

Macros

#define BLE_VERSION_MAJOR

#define BLE_VERSION_MINOR

#define BLE_LIB_EXTENDED

#define BLE_LIB_BALANCE

#define BLE_LIB_COMPACT

Typedefs

typedef void(* ble_event_cb_t) (void)

 ble_event_cb_t is the callback function type for R_BLE_SetEvent().
More...

Macro Definition Documentation

◆ BLE_VERSION_MAJOR

#define BLE_VERSION_MAJOR

BLE Module Major Version.

◆ BLE_VERSION_MINOR

#define BLE_VERSION_MINOR

BLE Module Minor Version.

◆ BLE_LIB_EXTENDED

#define BLE_LIB_EXTENDED

BLE Protocol Stack Library Extended type.

◆ BLE_LIB_BALANCE

#define BLE_LIB_BALANCE

BLE Protocol Stack Library Balance type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface

◆ BLE_LIB_COMPACT

#define BLE_LIB_COMPACT

BLE Protocol Stack Library Compacy type.

Typedef Documentation

◆ ble_event_cb_t

ble_event_cb_t

ble_event_cb_t is the callback function type for R_BLE_SetEvent().

Returns
none

Function Documentation

◆ R_BLE_Open()

ble_status_t R_BLE_Open (void)

Open the BLE protocol stack.

This function should be called once before using the BLE protocol stack.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_Close()

ble_status_t R_BLE_Close (void)

Close the BLE protocol stack.

This function should be called once to close the BLE protocol stack.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface

◆ R_BLE_Execute()

ble_status_t R_BLE_Execute (void)

Execute the BLE task.

This handles all the task queued in the BLE protocol stack internal task queue and return. This
function should be called repeatedly in the main loop.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_IsTaskFree()

uint32_t R_BLE_IsTaskFree (void)

Check the BLE task queue is free or not.

This function returns the BLE task queue free status. When this function returns 0x0, call
R_BLE_Execute() to execute the BLE task.

Return values
0x0 BLE task queue is not free

0x1 BLE task queue is free

◆ R_BLE_SetEvent()

ble_status_t R_BLE_SetEvent (ble_event_cb_t cb)

Set event.

This function add an event in the BLE protocol stack internal queue. The event is handled in
R_BLE_Execute just like Bluetooth event. This function is intended to be called in hardware
interrupt context. Even if calling this function with the same cb before the cb is invoked, only one
event is registered. The maximum number of the events can be registered at a time is eight.

Parameters
cb The callback for the event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) The event already registered with the
callback.

BLE_ERR_CONTEXT_FULL(0x000B) No free slot for the event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface

◆ R_BLE_GetVersion()

uint32_t R_BLE_GetVersion (void)

Get the BLE FIT module version.

This function returns the BLE FIT module version.
The major version(BLE_VERSION_MAJOR) is contained in the two most significant bytes, and the
minor version(BLE_VERSION_MINOR) occupies the remaining two bytes.

Return values
BLE_VERSION_MAJOR | BLE_VERSION_MINOR

◆ R_BLE_GetLibType()

uint32_t R_BLE_GetLibType (void)

Get the type of BLE protocol stack library.

This function returns the type of BLE protocol stack library.

Return values
BLE_LIB_EXTENDED(0x00) Extended

BLE_LIB_BALANCE(0x01) Balance

BLE_LIB_COMPACT(0x02) Compact

 GAP
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_GAP_Init (ble_gap_app_cb_t gap_cb)

 Initialize the Host Stack. More...

ble_status_t R_BLE_GAP_Terminate (void)

 Terminate the Host Stack. More...

ble_status_t R_BLE_GAP_UpdConn (uint16_t conn_hdl, uint8_t mode, uint16_t
accept, st_ble_gap_conn_param_t *p_conn_updt_param)

 Update the connection parameters. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_SetDataLen (uint16_t conn_hdl, uint16_t tx_octets,
uint16_t tx_time)

 Update the packet size and the packet transmit time. More...

ble_status_t R_BLE_GAP_Disconnect (uint16_t conn_hdl, uint8_t reason)

 Disconnect the link. More...

ble_status_t R_BLE_GAP_SetPhy (uint16_t conn_hdl, st_ble_gap_set_phy_param_t
*p_phy_param)

 Set the phy for connection. More...

ble_status_t R_BLE_GAP_SetDefPhy (st_ble_gap_set_def_phy_param_t
*p_def_phy_param)

 Set the default phy which allows remote device to change. More...

ble_status_t R_BLE_GAP_SetPrivMode (st_ble_dev_addr_t *p_addr, uint8_t
*p_privacy_mode, uint8_t device_num)

 Set the privacy mode. More...

ble_status_t R_BLE_GAP_ConfWhiteList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, uint8_t device_num)

 Set White List. More...

ble_status_t R_BLE_GAP_GetVerInfo (void)

 Get the version number of the Controller and the host stack. More...

ble_status_t R_BLE_GAP_ReadPhy (uint16_t conn_hdl)

 Get the phy settings. More...

ble_status_t R_BLE_GAP_ConfRslvList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, st_ble_gap_rslv_list_key_set_t *p_peer_irk, uint8_t
device_num)

 Set Resolving List. More...

ble_status_t R_BLE_GAP_EnableRpa (uint8_t enable)

 Enable/Disable address resolution and generation of a resolvable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,520 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

private address. More...

ble_status_t R_BLE_GAP_SetRpaTo (uint16_t rpa_timeout)

 Set the update time of resolvable private address. More...

ble_status_t R_BLE_GAP_ReadRpa (st_ble_dev_addr_t *p_addr)

 Get the resolvable private address of local device. More...

ble_status_t R_BLE_GAP_ReadRssi (uint16_t conn_hdl)

 Get RSSI. More...

ble_status_t R_BLE_GAP_ReadChMap (uint16_t conn_hdl)

 Get the Channel Map. More...

ble_status_t R_BLE_GAP_SetRandAddr (uint8_t *p_random_addr)

 Set a random address. More...

ble_status_t R_BLE_GAP_SetAdvParam (st_ble_gap_adv_param_t *p_adv_param)

 Set advertising parameters. More...

ble_status_t R_BLE_GAP_SetAdvSresData (st_ble_gap_adv_data_t
*p_adv_srsp_data)

 Set advertising data/scan response data/periodic advertising data.
More...

ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl, uint16_t duration, uint8_t
max_extd_adv_evts)

 Start advertising. More...

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

 Stop advertising. More...

ble_status_t R_BLE_GAP_SetPerdAdvParam (st_ble_gap_perd_adv_param_t
*p_perd_adv_param)

 Set periodic advertising parameters. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

 Start periodic advertising. More...

ble_status_t R_BLE_GAP_StopPerdAdv (uint8_t adv_hdl)

 Stop periodic advertising. More...

ble_status_t R_BLE_GAP_GetRemainAdvBufSize (uint16_t
*p_remain_adv_data_size, uint16_t *p_remain_perd_adv_data_size)

 Get buffer size for advertising data/scan response data/periodic
advertising data in the Controller. More...

ble_status_t R_BLE_GAP_RemoveAdvSet (uint8_t op_code, uint8_t adv_hdl)

 Delete advertising set. More...

ble_status_t R_BLE_GAP_CreateConn (st_ble_gap_create_conn_param_t
*p_param)

 Request for a link establishment. More...

ble_status_t R_BLE_GAP_CancelCreateConn (void)

 Cancel the request for a link establishment. More...

ble_status_t R_BLE_GAP_SetChMap (uint8_t *p_channel_map)

 Set the Channel Map. More...

ble_status_t R_BLE_GAP_StartScan (st_ble_gap_scan_param_t *p_scan_param,
st_ble_gap_scan_on_t *p_scan_enable)

 Set scan parameter and start scan. More...

ble_status_t R_BLE_GAP_StopScan (void)

 Stop scan. More...

ble_status_t R_BLE_GAP_CreateSync (st_ble_dev_addr_t *p_addr, uint8_t adv_sid,
uint16_t skip, uint16_t sync_to)

 Request for a periodic sync establishment. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_CancelCreateSync (void)

 Cancel the request for a periodic sync establishment. More...

ble_status_t R_BLE_GAP_TerminateSync (uint16_t sync_hdl)

 Terminate the periodic sync. More...

ble_status_t R_BLE_GAP_ConfPerdAdvList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, uint8_t *p_adv_sid_set, uint8_t device_num)

 Set Periodic Advertiser List. More...

ble_status_t R_BLE_GAP_AuthorizeDev (uint16_t conn_hdl, uint8_t author_flag)

 Authorize a remote device. More...

ble_status_t R_BLE_GAP_GetRemDevInfo (uint16_t conn_hdl)

 Get the information about remote device. More...

ble_status_t R_BLE_GAP_SetPairingParams (st_ble_gap_pairing_param_t
*p_pair_param)

 Set the parameters using pairing. More...

ble_status_t R_BLE_GAP_SetLocIdInfo (st_ble_dev_addr_t *p_lc_id_addr, uint8_t
*p_lc_irk)

 Set the IRK and the identity address distributed to a remote device.
More...

ble_status_t R_BLE_GAP_SetLocCsrk (uint8_t *p_local_csrk)

 Set the CSRK distributed to a remote device. More...

ble_status_t R_BLE_GAP_StartPairing (uint16_t conn_hdl)

 Start pairing. More...

ble_status_t R_BLE_GAP_ReplyPairing (uint16_t conn_hdl, uint8_t response)

 Reply the pairing request from a remote device. More...

ble_status_t R_BLE_GAP_StartEnc (uint16_t conn_hdl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 Encryption the link. More...

ble_status_t R_BLE_GAP_ReplyPasskeyEntry (uint16_t conn_hdl, uint32_t passkey,
uint8_t response)

 Reply the passkey entry request. More...

ble_status_t R_BLE_GAP_ReplyNumComp (uint16_t conn_hdl, uint8_t response)

 Reply the numeric comparison request. More...

ble_status_t R_BLE_GAP_NotifyKeyPress (uint16_t conn_hdl, uint8_t key_press)

 Notify the input key type which a remote device inputs in the
passkey entry. More...

ble_status_t R_BLE_GAP_GetDevSecInfo (uint16_t conn_hdl,
st_ble_gap_auth_info_t *p_sec_info)

 Get the security information about the remote device. More...

ble_status_t R_BLE_GAP_ReplyExKeyInfoReq (uint16_t conn_hdl)

 Distribute the keys of local device. More...

ble_status_t R_BLE_GAP_SetRemOobData (st_ble_dev_addr_t *p_addr, uint8_t
oob_data_flag, st_ble_gap_oob_data_t *p_oob)

 Set the oob data from a remote device. More...

ble_status_t R_BLE_GAP_CreateScOobData (void)

 Create data for oob in secure connection. More...

ble_status_t R_BLE_GAP_SetBondInfo (st_ble_gap_bond_info_t *p_bond_info,
uint8_t device_num, uint8_t *p_set_num)

 Set the bonding information stored in non-volatile memory to the
host stack. More...

void R_BLE_GAP_DeleteBondInfo (int32_t local, int32_t remote,
st_ble_dev_addr_t *p_addr, ble_gap_del_bond_cb_t gap_del_bond_cb)

 This function deletes the bonding information in Host Stack.
When a function for deleting the bonding information stored in non-
volatile area is registered by the gap_del_bond_cb parameter, it is
deleted as well as the bonding information in Host Stack. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_ReplyLtkReq (uint16_t conn_hdl, uint16_t ediv, uint8_t
*p_peer_rand, uint8_t response)

 Reply the LTK request from a remote device. More...

ble_status_t R_BLE_GAP_SetCteConnlessParam (st_ble_gap_cte_connless_t
*p_cte_param)

 Set the parameters for the transmission of Constant Tone Extensions
in any periodic advertising. More...

ble_status_t R_BLE_GAP_EnableCteConnless (uint16_t adv_hdl, uint8_t enable)

 Enable or disable Constant Tone Extensions in periodic advertising
identified by the adv_hdl. More...

ble_status_t R_BLE_GAP_StartCteConnlessRecv (st_ble_gap_cte_connless_recv_t
*p_cte_recv)

 Enable sampling received Constant Tone Extension fields. More...

ble_status_t R_BLE_GAP_StopCteConnlessRecv (uint16_t sync_hdl)

 Disable sampling received Constant Tone Extension fields. More...

ble_status_t R_BLE_GAP_SetCteConnParam (st_ble_gap_cte_conn_t *p_cte_param)

 Set the parameters for the transmission of Constant Tone Extensions
in ACL link. More...

ble_status_t R_BLE_GAP_EnableCteConnRsp (uint16_t conn_hdl, uint8_t enable)

 Enable or disable Constant Tone Extensions Transmission in ACL link
by conn_hdl. More...

ble_status_t R_BLE_GAP_SetCteConnRecvParam (st_ble_gap_cte_conn_rx_param_t
*p_cte_param)

 Set the parameters for the receiving of Constant Tone Extensions in
ACL link. and start sampling. More...

ble_status_t R_BLE_GAP_StopCteConnRecvSampling (uint16_t conn_hdl)

 Stop sampling of Constant Tone Extensions on the specified
connection. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_StartCteConnReq (st_ble_gap_cte_conn_req_t *p_req)

 Set the parameters and start sending request of Constant Tone
Extensions in ACL link to peer. More...

ble_status_t R_BLE_GAP_StopCteConnReq (uint16_t handle)

 Stop sending request of Constant Tone Extensions in ACL link to
peer. More...

ble_status_t R_BLE_GAP_SetDefaultSubrate (st_ble_gap_subrate_param_t
*p_subrate_param)

 Set the initial values for the acceptable parameters for subrating
requests,. More...

ble_status_t R_BLE_GAP_RequestSubrate (uint16_t conn_hdl,
st_ble_gap_subrate_param_t *p_subrate_param)

 Request a change to the subrating factor other parameters applied
to an existing connection using the Connection Subrate Update
procedure. More...

ble_status_t R_BLE_GAP_StartPerdAdvSetInfoTransfer (uint16_t adv_hdl, uint16_t
conn_hdl, uint16_t service_data)

 This function starts Periodic advertising adv set info transfer to the
connection. More...

ble_status_t R_BLE_GAP_StartPerdAdvSyncTransfer (uint16_t sync_hdl, uint16_t
conn_hdl, uint16_t service_data)

 This function starts Periodic advertising sync transfer. More...

ble_status_t R_BLE_GAP_SetPerdAdvSyncTransferParam (uint16_t conn_hdl,
st_ble_gap_past_param_t *p_past_param)

 This function starts to accept Periodic advertising sync transfer from
the connection. More...

ble_status_t R_BLE_GAP_SetDefPerdAdvSyncTransferParam
(st_ble_gap_past_param_t *p_past_param)

 This function set the default parameter of Periodic advertising sync
transfer for all subsequent connection. It does not affect any existing
connection. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

ble_status_t R_BLE_GAP_ReadAntennaInfo (void)

 This function read the switching rates, the sampling rates, the
number of antennae, and the maximum length of a transmitted
Constant Tone Extension. More...

ble_status_t R_BLE_GAP_ReceiverTest (st_ble_gap_recv_test_param_t
*p_rx_test_param)

 Start a test where the DUT receives test reference packets at a fixed
interval. The tester generates the test reference packets. More...

ble_status_t R_BLE_GAP_TransmitterTest (st_ble_gap_trans_test_param_t
*p_tx_test_param)

 Start a test where the DUT generates test reference packets at a
fixed interval. The Controller shall transmit at the power level
indicated by the TX_Power_Level parameter. More...

ble_status_t R_BLE_GAP_ModifySleepClockAccuracy (uint8_t act)

 request that the Controller changes its sleep clock accuracy for
testing purposes. It should not be used under other circumstances.
More...

ble_status_t R_BLE_GAP_ReadRemoteTransmitPowerLevel (uint16_t conn_hdl,
uint8_t phy)

 Read the transmit power level used by the remote device. More...

ble_status_t R_BLE_GAP_SetPathLossReportingParam
(st_ble_gap_set_path_loss_rpt_param_t *p_loss_rpt_param)

 Set the path loss threshold reporting parameters for the ACL
connection identified. More...

ble_status_t R_BLE_GAP_SetPathLossReportingEnable (uint16_t conn_hdl, uint8_t
enable)

 Enable or disable path loss reporting for the ACL connection. More...

ble_status_t R_BLE_GAP_SetTransmitPowerReportingEnable (uint16_t conn_hdl,
uint8_t local_enable, uint8_t remote_enable)

 Enable or disable the transmit power level changing report. More...

ble_status_t R_BLE_GAP_SetDataRelatedAddrChanges (uint8_t adv_hdl, uint8_t
change_reason)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 Specifies circumstances when the Controller shall refresh any
Resolvable Private Address. More...

ble_status_t R_BLE_GAP_TestEnd (void)

 Stop any test which is in progress. The Num_Packets for a
transmitter test shall be reported as 0x0000. The Num_Packets is an
unsigned number and contains the number of received packets.
More...

ble_status_t R_BLE_GAP_ReqPeerSCA (uint16_t conn_hdl)

 Read the Sleep Clock Accuracy (SCA) of the peer device. More...

ble_status_t R_BLE_GAP_EnhancedReadTxPowerLevel (uint16_t conn_hdl, uint8_t
phy)

 Read the current and maximum transmit power levels of the local
Controller on the ACL connection identified by the
Connection_Handle parameter and the PHY indicated by the PHY
parameter. More...

ble_status_t R_BLE_GAP_SetHostFeat (uint8_t bit_number, uint8_t bit_value)

 Set or clear a bit controlled by the Host in the Link Layer FeatureSet
stored in the Controller. More...

Detailed Description

(end addtogroup BLE_API)

Data Structures

struct st_ble_evt_data_t

 st_ble_evt_data_t is the type of the data notified in a GAP Event.
More...

struct st_ble_dev_addr_t

 st_ble_dev_addr_t is the type of bluetooth device address(BD_ADDR).
More...

struct st_ble_gap_ext_adv_param_t

 Advertising parameters. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_adv_data_t

 Advertising data/scan response data/periodic advertising data.
More...

struct st_ble_gap_perd_adv_param_t

 Periodic advertising parameter. More...

struct st_ble_gap_scan_phy_param_t

 Scan parameters per scan PHY. More...

struct st_ble_gap_ext_scan_param_t

 Scan parameters. More...

struct st_ble_gap_scan_on_t

 Parameters configured when scanning starts. More...

struct st_ble_gap_conn_param_t

 Connection parameters included in connection interval, slave
latency, supervision timeout, ce length. More...

struct st_ble_gap_conn_phy_param_t

 Connection parameters per PHY. More...

struct st_ble_gap_create_conn_param_t

 Connection parameters used in R_BLE_GAP_CreateConn(). More...

struct st_ble_gap_rslv_list_key_set_t

 IRK of a remote device and IRK type of local device used in
R_BLE_GAP_ConfRslvList(). More...

struct st_ble_gap_set_phy_param_t

 PHY configuration parameters used in R_BLE_GAP_SetPhy(). More...

struct st_ble_gap_set_def_phy_param_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 PHY preferences which allows a remote device to set used in
R_BLE_GAP_SetDefPhy(). More...

struct st_ble_gap_auth_info_t

 Pairing parameters required from a remote device or information
about keys distributed from a remote device. More...

struct st_ble_gap_key_dist_t

 Keys distributed from a remote device. More...

struct st_ble_gap_key_ex_param_t

 This structure includes the distributed keys and negotiated LTK size.
More...

struct st_ble_gap_pairing_param_t

 Pairing parameters used in R_BLE_GAP_SetPairingParams(). More...

struct st_ble_gap_oob_data_t

 Oob data received from the remote device. This is used in
R_BLE_GAP_SetRemOobData(). More...

struct st_ble_gap_cte_antenna_info_t

 This is the parameters used in R_BLE_GAP_GetAntennaInfo(). More...

struct st_ble_gap_recv_test_param_t

 This is the parameters used in R_BLE_GAP_ReceiverTest() More...

struct st_ble_gap_trans_test_param_t

 This is the parameters used in R_BLE_GAP_TransmitterTest(). More...

struct st_ble_gap_set_path_loss_rpt_param_t

 This is the parameters used in
R_BLE_GAP_SetPathLossReportingParam(). More...

struct st_ble_gap_cte_connless_t

 connectionless CTE param More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_cte_conn_t

 connection CTE param More...

struct st_ble_gap_cte_connless_recv_t

 connectionless CTE receive param More...

struct st_ble_gap_cte_conn_rx_param_t

 connection CTE receive param More...

struct st_ble_gap_cte_conn_req_t

 connection CTE request More...

struct st_ble_gap_subrate_param_t

 subrating param More...

struct st_ble_gap_ver_num_t

 Version number of host stack. More...

struct st_ble_gap_loc_ver_info_t

 Version number of Controller. More...

struct st_ble_gap_loc_dev_info_evt_t

 Version information of local device. More...

struct st_ble_gap_hw_err_evt_t

 Hardware error that is notified from Controller. More...

struct st_ble_gap_cmd_err_evt_t

 HCI Command error. More...

struct st_ble_gap_adv_rept_t

 Advertising Report. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_ext_adv_rept_t

 Extended Advertising Report. More...

struct st_ble_gap_perd_adv_rept_t

 Periodic Advertising Report. More...

struct st_ble_gap_adv_rept_evt_t

 Advertising report. More...

union st_ble_gap_adv_rept_evt_t.param

 Advertising Report. More...

struct st_ble_gap_adv_set_evt_t

 Advertising handle. More...

struct st_ble_gap_adv_off_evt_t

 Information about the advertising set which stops advertising.
More...

struct st_ble_gap_adv_data_evt_t

 This structure notifies that advertising data has been set to
Controller by R_BLE_GAP_SetAdvSresData(). More...

struct st_ble_gap_rem_adv_set_evt_t

 This structure notifies that an advertising set has been removed.
More...

struct st_ble_gap_conn_evt_t

 This structure notifies that a link has been established. More...

struct st_ble_gap_disconn_evt_t

 This structure notifies that a link has been disconnected. More...

struct st_ble_gap_rd_ch_map_evt_t

 This structure notifies that Channel Map has been retrieved by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

R_BLE_GAP_ReadChMap(). More...

struct st_ble_gap_rd_rssi_evt_t

 This structure notifies that RSSI has been retrieved by
R_BLE_GAP_ReadRssi(). More...

struct st_ble_gap_dev_info_evt_t

 This structure notifies that information about remote device has
been retrieved by R_BLE_GAP_GetRemDevInfo(). More...

struct st_ble_gap_conn_upd_evt_t

 This structure notifies that connection parameters has been updated.
More...

struct st_ble_gap_conn_upd_req_evt_t

 This structure notifies that a request for connection parameters
update has been received. More...

struct st_ble_gap_conn_hdl_evt_t

 This structure notifies that a GAP Event that includes only connection
handle has occurred. More...

struct st_ble_gap_data_len_chg_evt_t

 This structure notifies that the packet data length has been updated.
More...

struct st_ble_gap_rd_rpa_evt_t

 This structure notifies that the local resolvable private address has
been retrieved by R_BLE_GAP_ReadRpa(). More...

struct st_ble_gap_phy_upd_evt_t

 This structure notifies that PHY for a connection has been updated.
More...

struct st_ble_gap_phy_rd_evt_t

 This structure notifies that the PHY settings has been retrieved by
R_BLE_GAP_ReadPhy(). More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_scan_req_recv_evt_t

 This structure notifies that a Scan Request packet has been received
from a Scanner. More...

struct st_ble_gap_sync_est_evt_t

 This structure notifies that a Periodic sync has been established.
More...

struct st_ble_gap_sync_hdl_evt_t

 This structure notifies that a GAP Event that includes only sync
handle has occurred. More...

struct st_ble_gap_white_list_conf_evt_t

 This structure notifies that White List has been configured. More...

struct st_ble_gap_rslv_list_conf_evt_t

 This structure notifies that Resolving List has been configured.
More...

struct st_ble_gap_perd_list_conf_evt_t

 This structure notifies that Periodic Advertiser List has been
configured. More...

struct st_ble_gap_set_priv_mode_evt_t

 This structure notifies that Privacy Mode has been configured.
More...

struct st_ble_gap_pairing_req_evt_t

 This structure notifies that a pairing request from a remote device
has been received. More...

struct st_ble_gap_passkey_display_evt_t

 This structure notifies that a request for Passkey display in pairing
has been received. More...

struct st_ble_gap_num_comp_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 This structure notifies that a request for Numeric Comparison in
pairing has been received. More...

struct st_ble_gap_key_press_ntf_evt_t

 This structure notifies that the remote device has input a key in
Passkey Entry. More...

struct st_ble_gap_pairing_info_evt_t

 This structure notifies that the pairing has completed. More...

struct st_ble_gap_enc_chg_evt_t

 This structure notifies that the encryption status of a link has been
changed. More...

struct st_ble_gap_peer_key_info_evt_t

 This structure notifies that the remote device has distributed the
keys. More...

struct st_ble_gap_ltk_req_evt_t

 This structure notifies that a LTK request from a remote device has
been received. More...

struct st_ble_gap_ltk_rsp_evt_t

 This structure notifies that local device has replied to the LTK
request from the remote device. More...

struct st_ble_gap_sc_oob_data_evt_t

 This structure notifies that OOB data for Secure Connections has
been generated by R_BLE_GAP_CreateScOobData(). More...

struct st_ble_gap_bond_info_t

 Bonding information used in R_BLE_GAP_SetBondInfo(). More...

struct st_cte_iq_sample_t

 CTE IQ sample data. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_cte_connless_rept_t

 connectionless CTE data report More...

struct st_ble_gap_cte_conn_rept_t

 connection CTE data report More...

struct st_ble_subrate_upd_t

 subrating update event More...

struct st_ble_gap_past_est_evt_t

 This structure notifies that. More...

struct st_ble_gap_tx_power_reporting_evt_t

 This structure notifies that. More...

struct st_ble_gap_pass_loss_thr_evt_t

 This structure notifies that a path loss report has been received.
More...

struct st_ble_gap_req_peer_sca_evt_t

 This structure notifies that a SCA request to a remote device has
been completed. More...

struct st_ble_gap_dtm_test_end_evt_t

 report of dtm transmit/receive test end More...

struct st_ble_gap_enhanced_read_tx_power_level_evt_t

 Power level report of remove device. More...

Macros

#define BLE_BD_ADDR_LEN

#define BLE_MASTER

#define BLE_SLAVE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_ADDR_PUBLIC

#define BLE_GAP_ADDR_RAND

#define BLE_GAP_ADDR_RPA_ID_PUBLIC

 Resolvable Private Address. More...

#define BLE_GAP_ADDR_RPA_ID_RANDOM

 Resolvable Private Address. More...

#define BLE_GAP_AD_FLAGS_LE_LIM_DISC_MODE

 LE Limited Discoverable Mode flag used in AD type.

#define BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE

 LE General Discoverable Mode flag used in AD type.

#define BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED

 BR/EDR Not Supported flag used in AD type.

#define BLE_GAP_ADV_DATA_MODE

 Advertising data.

#define BLE_GAP_SCAN_RSP_DATA_MODE

 Scan response data.

#define BLE_GAP_PERD_ADV_DATA_MODE

 Periodic advertising data.

#define BLE_GAP_ADV_CH_37

 Use 37 CH.

#define BLE_GAP_ADV_CH_38

 Use 38 CH.

#define BLE_GAP_ADV_CH_39

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 Use 39 CH.

#define BLE_GAP_ADV_CH_ALL

 Use 37 - 39 CH.

#define BLE_GAP_SCAN_PASSIVE

 Passive Scan.

#define BLE_GAP_SCAN_ACTIVE

 Active Scan.

#define BLE_GAP_SCAN_INTV_MIN

 Active Scan.

#define BLE_GAP_SCAN_FILT_DUPLIC_DISABLE

 Duplicate filter disabled.

#define BLE_GAP_SCAN_FILT_DUPLIC_ENABLE

 Duplicate filter enabled.

#define BLE_GAP_SCAN_FILT_DUPLIC_ENABLE_FOR_PERIOD

 Duplicate filtering enabled, reset for each scan period.

#define BLE_GAP_SCAN_ALLOW_ADV_ALL

 Accept all advertising and scan response PDUs except directed
advertising PDUs not addressed to local device.

#define BLE_GAP_SCAN_ALLOW_ADV_WLST

 Accept only advertising and scan response PDUs from remote
devices whose address is registered in the White List. Directed
advertising PDUs which are not addressed to local device is ignored.

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED

 Accept all advertising and scan response PDUs except directed
advertising PDUs whose the target address is identity address but
doesn't address local device. However directed advertising PDUs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,538 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

whose the target address is the local resolvable private address are
accepted.

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

 Accept all advertising and scan response PDUs.
The following are excluded. More...

#define BLE_GAP_INIT_FILT_USE_ADDR

 White List is not used.

#define BLE_GAP_INIT_FILT_USE_WLST

 White List is used.

#define BLE_GAP_DATA_0_CLEAR

 Clear the advertising data/scan response data/periodic advertising
data in the advertising set.

#define BLE_GAP_DATA_0_DID_UPD

 Update Advertising DID without changing advertising data.

#define BLE_GAP_NET_PRIV_MODE

 Network Privacy Mode.

#define BLE_GAP_DEV_PRIV_MODE

 Device Privacy Mode.

#define BLE_GAP_REM_FEATURE_SIZE

 The length of the features supported by a remote device.

#define BLE_GAP_NOT_AUTHORIZED

 Not authorize the remote device.

#define BLE_GAP_AUTHORIZED

 Authorize the remote device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_RMV_ADV_SET_REM_OP

 Delete an advertising set.

#define BLE_GAP_RMV_ADV_SET_CLR_OP

 Delete all the advertising sets.

#define BLE_GAP_SC_PROC_GEN

 General Discovery Procedure.

#define BLE_GAP_SC_PROC_LIM

 Limited Discovery Procedure.

#define BLE_GAP_SC_PROC_OBS

 Observation Procedure.

#define BLE_GAP_LIST_ADD_DEV

 Add the device to the list.

#define BLE_GAP_LIST_REM_DEV

 Delete the device from the list.

#define BLE_GAP_LIST_CLR

 Clear the list.

#define BLE_GAP_WHITE_LIST_MAX_ENTRY

 The maximum entry number of White List.

#define BLE_GAP_RSLV_LIST_MAX_ENTRY

 The maximum entry number of Resolving List.

#define BLE_GAP_PERD_LIST_MAX_ENTRY

 The maximum entry number of Periodic Advertiser List.

#define BLE_GAP_RPA_DISABLED

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 Disable RPA generation/resolution.

#define BLE_GAP_RPA_ENABLED

 Enable RPA generation/resolution.

#define BLE_GAP_RL_LOC_KEY_ALL_ZERO

 All-zero IRK.

#define BLE_GAP_RL_LOC_KEY_REGISTERED

 The IRK registered by R_BLE_GAP_SetLocIdInfo().

#define BLE_MAX_NO_OF_ADV_SETS_SUPPORTED

 The maximum number of advertising set for the Abstraction API.

#define BLE_GAP_LEGACY_PROP_ADV_IND

 Connectable and scannable undirected Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_DIRECT_IND

 Connectable directed (low duty cycle) Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_HDC_DIRECT_IND

 Connectable directed (high duty cycle) Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_SCAN_IND

 Scannable undirected Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_NONCONN_IND

 Non-connectable and non-scannable undirected Legacy Advertising
Packet.

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_UNDIRECT

 Connectable and non-scannable undirected Extended Advertising
Packet.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_DIRECT

 Connectable and non-scannable directed (low duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_HDC_DIRECT

 Connectable and non-scannable directed (high duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT

 Non-connectable and scannable undirected Extended Advertising
Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT

 Non-connectable and scannable directed (low duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

 Non-connectable and scannable directed (high duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT

 Non-connectable and non-scannable undirected Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT

 Non-connectable and non-scannable directed (low duty cycle)
Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

 Non-connectable and non-scannable directed (high duty cycle)
Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_ANONYMOUS

 Omit the advertiser address from Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER

 Indicate that the advertising data includes TX Power.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY

 Process scan and connection requests from all devices.

#define BLE_GAP_ADV_ALLOW_SCAN_WLST_CONN_ANY

 Process connection requests from all devices and scan requests from
only devices that are in the White List.

#define BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_WLST

 Process scan requests from all devices and connection requests from
only devices that are in the White List.

#define BLE_GAP_ADV_ALLOW_SCAN_WLST_CONN_WLST

 Process scan and connection requests from only devices in the White
List.

#define BLE_GAP_ADV_PHY_1M

 Use 1M PHY.

#define BLE_GAP_ADV_PHY_2M

 Use 2M PHY.

#define BLE_GAP_ADV_PHY_CD

 Use Coded PHY.

#define BLE_GAP_SCAN_REQ_NTF_DISABLE

 Disable Scan Request Notification.

#define BLE_GAP_SCAN_REQ_NTF_ENABLE

 Enable Scan Request Notification.

#define BLE_GAP_PERD_PROP_TX_POWER

 Indicate that periodic advertising data includes Tx Power.

#define BLE_GAP_INVALID_ADV_HDL

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 Invalid advertising handle.

#define BLE_GAP_SET_PHYS_HOST_PREF_1M

 Use 1M PHY.

#define BLE_GAP_SET_PHYS_HOST_PREF_2M

 Use 2M PHY.

#define BLE_GAP_SET_PHYS_HOST_PREF_CD

 Use Coded PHY.

#define BLE_GAP_SET_PHYS_OP_HOST_NO_PREF

 No preferred coding.

#define BLE_GAP_SET_PHYS_OP_HOST_PREF_S_2

 Use S=2 coding.

#define BLE_GAP_SET_PHYS_OP_HOST_PREF_S_8

 Use S=8 coding.

#define BLE_GAP_CONN_UPD_MODE_REQ

 Request for updating the connection parameters.

#define BLE_GAP_CONN_UPD_MODE_RSP

 Reply a connection parameter update request.

#define BLE_GAP_CONN_UPD_ACCEPT

 Accept the update request.

#define BLE_GAP_CONN_UPD_REJECT

 Reject the update request.

#define BLE_GAP_CH_MAP_SIZE

 The size of channel map.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_INVALID_CONN_HDL

 Invalid Connection handle.

#define BLE_GAP_NOT_USE_CONN_HDL

 This macro indicates that connection handle is not used.

#define BLE_GAP_INIT_CONN_HDL

 Initial Connection handle.

#define BLE_GAP_PAIRING_ACCEPT

 Accept a request regarding pairing.

#define BLE_GAP_PAIRING_REJECT

 Reject a request regarding pairing.

#define BLE_GAP_LTK_REQ_ACCEPT

 Reply for the LTK request.

#define BLE_GAP_LTK_REQ_DENY

 Reject the LTK request.

#define BLE_GAP_LESC_PASSKEY_ENTRY_STARTED

 Notify that passkey entry started.

#define BLE_GAP_LESC_PASSKEY_DIGIT_ENTERED

 Notify that passkey digit entered.

#define BLE_GAP_LESC_PASSKEY_DIGIT_ERASED

 Notify that passkey digit erased.

#define BLE_GAP_LESC_PASSKEY_CLEARED

 Notify that passkey cleared.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_LESC_PASSKEY_ENTRY_COMPLETED

 Notify that passkey entry completed.

#define BLE_GAP_SEC_MITM_BEST_EFFORT

 MITM Protection not required.

#define BLE_GAP_SEC_MITM_STRICT

 MITM Protection required.

#define BLE_GAP_KEY_DIST_ENCKEY

 LTK.

#define BLE_GAP_KEY_DIST_IDKEY

 IRK and Identity Address.

#define BLE_GAP_KEY_DIST_SIGNKEY

 CSRK.

#define BLE_GAP_ID_ADDR_SIZE

 The size of identity address.

#define BLE_GAP_IRK_SIZE

 The size of IRK.

#define BLE_GAP_CSRK_SIZE

 The size of CSRK.

#define BLE_GAP_LTK_SIZE

 The size of LTK.

#define BLE_GAP_EDIV_SIZE

 The size of EDIV.

#define BLE_GAP_RAND_64_BIT_SIZE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 The size of Rand.

#define BLE_GAP_UNAUTH_PAIRING

 Unauthenticated pairing.

#define BLE_GAP_AUTH_PAIRING

 Authenticated pairing.

#define BLE_GAP_LEGACY_PAIRING

 Legacy pairing.

#define BLE_GAP_LESC_PAIRING

 Secure Connections.

#define BLE_GAP_BONDING_NONE

 The device doesn't support Bonding.

#define BLE_GAP_BONDING

 The device supports Bonding.

#define BLE_GAP_IOCAP_DISPLAY_ONLY

 Display Only iocapability. More...

#define BLE_GAP_IOCAP_DISPLAY_YESNO

 Display Yes/No iocapability. More...

#define BLE_GAP_IOCAP_KEYBOARD_ONLY

 Keyboard Only iocapability. More...

#define BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

 No Input No Output iocapability. More...

#define BLE_GAP_IOCAP_KEYBOARD_DISPLAY

 Keyboard Display iocapability. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_OOB_DATA_NOT_PRESENT

 Reply that No OOB data has been received when pairing.

#define BLE_GAP_OOB_DATA_PRESENT

 Reply that the OOB data has been received when pairing.

#define BLE_GAP_SC_BEST_EFFORT

 Accept Legacy pairing and Secure Connections.

#define BLE_GAP_SC_STRICT

 Accept only Secure Connections.

#define BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT

 Not support for Key Press Notification.

#define BLE_GAP_SC_KEY_PRESS_NTF_SPRT

 Support for Key Press Notification.

#define BLE_GAP_LEGACY_OOB_SIZE

 The size of Temporary Key for OOB in legacy pairing.

#define BLE_GAP_OOB_CONFIRM_VAL_SIZE

 The size of Confirmation Value for OOB in Secure Connections.

#define BLE_GAP_OOB_RANDOM_VAL_SIZE

 The size of Rand for OOB in Secure Connections.

#define BLE_GAP_SEC_DEL_LOC_NONE

 Delete no local keys.

#define BLE_GAP_SEC_DEL_LOC_IRK

 Delete local IRK.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

#define BLE_GAP_SEC_DEL_LOC_CSRK

 Delete local CSRK.

#define BLE_GAP_SEC_DEL_LOC_ALL

 Delete all local keys.

#define BLE_GAP_SEC_DEL_REM_NONE

 Delete no remote device keys.

#define BLE_GAP_SEC_DEL_REM_SA

 Delete a key specified by the p_addr parameter.

#define BLE_GAP_SEC_DEL_REM_NOT_CONN

 Delete keys of not connected remote devices.

#define BLE_GAP_SEC_DEL_REM_ALL

 Delete all remote device keys.

#define BLE_GAP_CTE_DISABLED

 Disable CTE transmission or receive.

#define BLE_GAP_CTE_ENABLED

 Enable CTE transmission or receive.

#define BLE_GAP_CTE_MAX_ANTENNA

 Max antenna number.

#define BLE_GAP_CTE_TYPE_AOA

 CTE type AoA.

#define BLE_GAP_CTE_TYPE_AOD_1US

 CTE type AoD with slot of 1 us.

#define BLE_GAP_CTE_TYPE_AOD_2US

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

 CTE type AoD with slot of 2 us.

Typedefs

typedef void(* ble_gap_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_evt_data_t *p_event_data)

 ble_gap_app_cb_t is the GAP Event callback function type. More...

typedef void(* ble_gap_del_bond_cb_t) (st_ble_dev_addr_t *p_addr)

 ble_gap_del_bond_cb_t is the type of the callback function for delete
bonding information stored in non-volatile area.
This type is used in R_BLE_GAP_DeleteBondInfo(). More...

typedef
st_ble_gap_ext_adv_param_t

st_ble_gap_adv_param_t

 Advertising parameters. More...

typedef
st_ble_gap_ext_scan_param_

t

st_ble_gap_scan_param_t

 Scan parameters. More...

Enumerations

enum e_ble_gap_evt_t

 GAP Event Identifier. More...

Data Structure Documentation

◆ st_ble_evt_data_t

struct st_ble_evt_data_t

st_ble_evt_data_t is the type of the data notified in a GAP Event.

Data Fields

uint16_t param_len The size of GAP Event
parameters.

void * p_param GAP Event parameters. This
parameter differs in each GAP
Event.

◆ st_ble_dev_addr_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_dev_addr_t

st_ble_dev_addr_t is the type of bluetooth device address(BD_ADDR).

Note
The BD address setting format is little endian.
If the address is "AA:BB:CC:DD:EE:FF", set the byte array in the order {0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA}.

Data Fields

uint8_t addr[BLE_BD_ADDR_LEN] BD_ADDR.

uint8_t type Bluetooth address type.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address.

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address.

◆ st_ble_gap_ext_adv_param_t

struct st_ble_gap_ext_adv_param_t

Advertising parameters.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set the
advertising parameters.

Valid range is 0x00 - 0x03.
In the first advertising
parameters setting, the
advertising set specified by
adv_hdl is generated.
The Advertising Set
ID(Advertising SID) of the
advertising set is same as
adv_hdl.

uint16_t adv_prop_type Advertising packet type.

Legacy advertising PDU type, or
bitwise or of Extended
advertising PDU type and
Extended advertising option.

category macro descripti
on

Legacy A
dvertisin
g PDU

BLE_GAP
_LEGACY
_PROP_A

Connect
able and
scannabl

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

type DV_IND(
0x0013)

e undire
cted
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_DIRE
CT_IND(
0x0015)

Connect
able
directed
(low
duty
cycle)
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_HDC
_DIRECT
_IND(0x0
01D)

Connect
able
directed
(high
duty
cycle)
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_SCA
N_IND(0
x0012)

Scannabl
e undire
cted
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_NON
CONN_IN
D(0x001
0)

Non-con
nectable
and non-
scannabl
e undire
cted
Legacy A
dvertisin
g Packet

Extende
d Adverti
sing PDU
type

BLE_GAP
_EXT_PR
OP_ADV_
CONN_N
OSCAN_
UNDIREC
T(0x000
1)

Connect
able and
non-scan
nable un
directed
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
CONN_N

Connect
able and
non-scan
nable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

OSCAN_
DIRECT(
0x0005)

directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
CONN_N
OSCAN_
HDC_DIR
ECT(0x0
00D)

Connect
able and
non-scan
nable
directed
(high
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_U
NDIRECT
(0x0002)

Non-con
nectable
and scan
nable un
directed
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_D
IRECT(0x
0006)

Non-con
nectable
and scan
nable
directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_H
DC_DIRE
CT(0x00
0E)

Non-con
nectable
and scan
nable
directed
(high
duty
cycle)
Extende
d Adverti
sing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_UNDIR
ECT(0x0
000)

Non-con
nectable
and non-
scannabl
e undire
cted
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_DIREC
T(0x000
4)

Non-con
nectable
and non-
scannabl
e
directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_HDC_
DIRECT(
0x000C)

Non-con
nectable
and non-
scannabl
e
directed
(high
duty
cycle)
Extende
d Adverti
sing
Packet

Extende
d Adverti
sing
Option

BLE_GAP
_EXT_PR
OP_ADV_
ANONYM
OUS(0x0
020)

Omit the
advertis
er
address
from
Extende
d Adverti
sing
Packet.

BLE_GAP
_EXT_PR
OP_ADV_
INCLUDE
_TX_PO
WER(0x0

Indicate
that the
advertisi
ng data
includes
TX

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

040) Power.

uint32_t adv_intv_min Minimum advertising interval.

Time(ms) = adv_intv_min *
0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t adv_intv_max Maximum Advertising interval.

Time(ms) = adv_intv_max *
0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint8_t adv_ch_map The adv_ch_map is channels
used in advertising with
primary advertising channels.

It is a bitwise OR of the
following values.

macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 39 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t o_addr_type Own BD Address Type.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random
address
specified by
the o_addr
field is used.

uint8_t o_addr[BLE_BD_ADDR_LEN] Random address set to the
advertising set, when the
o_addr_type field is
BLE_GAP_ADDR_RAND.

When the o_addr_type field is
other than
BLE_GAP_ADDR_RAND, this field
is ignored.

Note
The BD address setting format
is little endian.
If the address is
"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t p_addr_type Peer address type.

When the Advertising PDU type
is other than directed or the
o_addr_type is
BLE_GAP_ADDR_PUBLIC or
BLE_GAP_ADDR_RAND,this field
is ignored.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

uint8_t p_addr[BLE_BD_ADDR_LEN] Peer address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,556 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

When the Advertising PDU type
is other than directed or the
o_addr_type is
BLE_GAP_ADDR_PUBLIC or
BLE_GAP_ADDR_RAND,this field
is ignored.

Note
The BD address setting format
is little endian.
If the address is
"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t filter_policy Advertising Filter Policy.
macro description

BLE_GAP_ADV
_ALLOW_SCA
N_ANY_CONN_
ANY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_GAP_ADV
_ALLOW_SCA
N_WLST_CON
N_ANY(0x01)

Process
connection
requests from
all devices
and scan
requests from
only devices
that are in the
White List.

BLE_GAP_ADV
_ALLOW_SCA
N_ANY_CONN_
WLST(0x02)

Process scan
requests from
all devices
and
connection
requests from
only devices
that are in the
White List.

BLE_GAP_ADV
_ALLOW_SCA
N_WLST_CON
N_WLST(0x03
)

Process scan
and
connection
requests from
only devices
in the White
List.

uint8_t adv_phy Primary ADV PHY.

In this parameter, only 1M PHY
and Coded PHY can be

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,557 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

specified, and 2M PHY cannot
be specified.

macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising
PHY.
When the
adv_prop_typ
e field is
Legacy
Advertising
PDU type,
this field shall
be set to BLE_
GAP_ADV_PHY
_1M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Primary
Advertising
PHY. Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t sec_adv_max_skip Secondary ADV Max Skip.

Valid range is 0x00 - 0xFF.
When this field is 0x00,
AUX_ADV_IND is sent before the
next advertising event.
When the adv_prop_type field is
Legacy Advertising PDU, this
field is ignored.

uint8_t sec_adv_phy Secondary ADV Phy.

When the adv_prop_type is
Legacy Advertising PDU, this
field is ignored.

macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_2M(0x0

Use 2M PHY
as Secondary

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,558 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

2) Advertising
PHY.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Secondary
Advertising
PHY.

Coding scheme is configured by
R_BLE_VS_SetCodingScheme().

uint8_t scan_req_ntf_flag Scan Request Notifications Flag.

When the adv_prop_type field is
non-scannable Advertising PDU,
this field is ignored.

macro description

BLE_GAP_SCA
N_REQ_NTF_D
ISABLE(0x00)

Disable Scan
Request
Notification.

BLE_GAP_SCA
N_REQ_NTF_E
NABLE(0x01)

Enable Scan
Request
Notification.
When a Scan
Request
Packet from
Scanner has
been
received, the
BLE_GAP_EVE
NT_SCAN_REQ
_RECV event
is notified.

◆ st_ble_gap_adv_data_t

struct st_ble_gap_adv_data_t

Advertising data/scan response data/periodic advertising data.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set
advertising data/scan
response/periodic advertising
data.

Valid range is 0x00 - 0x03.

uint8_t data_type Data type.
macro description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,559 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_ADV
_DATA_MODE
(0x00)

Advertising
data.

BLE_GAP_SCA
N_RSP_DATA_
MODE(0x01)

Scan
response
data.

BLE_GAP_PER
D_ADV_DATA_
MODE(0x02)

Periodic
advertising
data.

uint16_t data_length The length of advertising
data/scan response
data/periodic advertising data
(in bytes).

In case of Legacy Advertising
PDU, the length is 0 - 31 bytes.
In case of Extended Advertising
PDU, the length is 0 - 1650
bytes.
Note that the length of the
advertising data/scan response
data in the BLE_MAX_NO_OF_A
DV_SETS_SUPPORTED number
of the advertising sets may not
exceed the buffer size(4250
bytes) in Controller.

In case of periodic advertising
data, the length is 0 - 1650
bytes.
Note that the length of the
periodic advertising data in the
BLE_MAX_NO_OF_ADV_SETS_SU
PPORTED number of the
advertising sets may not
exceed the buffer size(4306
bytes) in Controller.

When this field is 0, the
operations specified by the
zero_length_flag is executed.

uint8_t * p_data Advertising data/scan response
data/periodic advertising data.

When the data_length field is 0,
this field is ignored.

uint8_t zero_length_flag Operation when the
data_length field is 0.

If the data_length is other than
0, this field is ignored.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,560 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

macro description

BLE_GAP_DAT
A_0_CLEAR(0x
01)

Clear the
advertising
data/scan
response
data/periodic
advertising
data in the
advertising
set.

BLE_GAP_DAT
A_0_DID_UPD(
0x02)

Update
Advertising
DID without
changing
advertising
data. If the
data_type
field is BLE_G
AP_ADV_DATA
_MODE, this
value is
allowed.

◆ st_ble_gap_perd_adv_param_t

struct st_ble_gap_perd_adv_param_t

Periodic advertising parameter.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set
periodic advertising parameter.

Valid range is 0x00 - 0x03.

uint16_t prop_type Periodic ADV Properties.

The prop_type field is set to the
following values.
If the type of the periodic
advertising data cannot be
applied from the following, set
0x0000.

macro description

BLE_GAP_PER
D_PROP_TX_P
OWER(0x0040
)

Indicate that
periodic
advertising
data includes
Tx Power.

uint16_t perd_intv_min Minimum Periodic Advertising

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,561 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Interval.

Time(ms) = perd_intv_min *
1.25.
Valid range is 0x0006 - 0xFFFF.

uint16_t perd_intv_max Maximum Periodic Advertising
Interval.

Time(ms) = perd_intv_max *
1.25.
Valid range is 0x0006 - 0xFFFF.

◆ st_ble_gap_scan_phy_param_t

struct st_ble_gap_scan_phy_param_t

Scan parameters per scan PHY.

In case of start scanning with both 1M PHY and Coded PHY, adjust scan windows and scan intervals
according to the following.
p_phy_param_1M->scan_window / p_phy_param_1M->scan_intv +
p_phy_param_coded->scan_window / p_phy_param_coded->scan_intv <= 1

Data Fields

uint8_t scan_type Scan type.
macro description

BLE_GAP_SCA
N_PASSIVE(0x
00)

Passive Scan.

BLE_GAP_SCA
N_ACTIVE(0x0
1)

Active Scan.

uint16_t scan_intv Scan interval.

interval(ms) = scan_intv *
0.625.
Valid range is 0x0000 and
0x0004 - 0xFFFF.

uint16_t scan_window Scan window.

window(ms) = scan_window *
0.625.
Valid range is 0x0000 and
0x0004 - 0xFFFF.

◆ st_ble_gap_ext_scan_param_t

struct st_ble_gap_ext_scan_param_t

Scan parameters.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,562 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t o_addr_type Own BD Address Type.

In case of passive scan, this
field is ignored.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random
address set
by
R_BLE_GAP_S
etRandAddr()
is used.

uint8_t filter_policy Scan Filter Policy.
macro description

BLE_GAP_SCA
N_ALLOW_AD
V_ALL(0x00)

Accept all
advertising
and scan
response
PDUs except
directed
advertising
PDUs not
addressed to
local device.

BLE_GAP_SCA
N_ALLOW_AD

Accept only
advertising

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,563 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

V_WLST(0x01) and scan
response
PDUs from
remote
devices
whose
address is
registered in
the White List.
Directed
advertising
PDUs which
are not
addressed to
local device is
ignored.

BLE_GAP_SCA
N_ALLOW_AD
V_EXCEPT_DI
RECTED(0x02
)

Accept all
advertising
and scan
response
PDUs except
directed
advertising
PDUs whose
the target
address is
identity
address but
doesn't
address local
device.
However
directed
advertising
PDUs whose
the target
address is the
local
resolvable
private
address are
accepted.

BLE_GAP_SCA
N_ALLOW_AD
V_EXCEPT_DI
RECTED_WLS
T(0x03)

Accept all
advertising
and scan
response
PDUs.
The following
are excluded.

Advert
ising
and

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,564 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

scan r
espon
se
PDUs
where
the ad
vertise
r's
identit
y addr
ess is
not in
the
White
List.
Direct
ed adv
ertisin
g
PDUs
whose
the
target
addres
s is
identit
y addr
ess
but
doesn'
t addr
ess
local
device
. Howe
ver dir
ected
advert
ising
PDUs
whose
the
target
addres
s is
the
local r
esolva
ble
privat
e addr
ess
are ac
cepted
.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,565 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

st_ble_gap_scan_phy_param_t * p_phy_param_1M Scan parameters 1M PHY.

When this field is NULL,
Controller doesn't set the scan
parameters for 1M PHY.

st_ble_gap_scan_phy_param_t * p_phy_param_coded Scan parameters Coded PHY.

When this field is NULL,
Controller doesn't set the scan
parameters for Coded PHY.

◆ st_ble_gap_scan_on_t

struct st_ble_gap_scan_on_t

Parameters configured when scanning starts.

Data Fields

uint8_t proc_type Procedure type.
macro description

BLE_GAP_SC_
PROC_OBS(0x
00)

Observation
Procedure.
Notify all
advertising
PDUs.

BLE_GAP_SC_
PROC_LIM(0x0
1)

Limited
Discovery
Procedure.
Notify
advertising
PDUs from
only devices
in the limited
discoverable
mode.

BLE_GAP_SC_
PROC_GEN(0x
02)

General
Discovery
Procedure.
Notify
advertising
PDUs from
devices in the
limited
discoverable
mode and the
general
discoverable
mode.

uint8_t filter_dups Filter duplicates.
macro description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,566 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_SCA
N_FILT_DUPLI
C_DISABLE(0x
00)

Duplicate
filter disabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE(0x
01)

Duplicate
filter enabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE_FO
R_PERIOD(0x0
2)

Duplicate
filtering
enabled, reset
for each scan
period

uint16_t duration Scan duration.

Time(ms) = duration * 10.
Valid range is 0x0000 - 0xFFFF.
If this field is set to 0x0000,
scanning is continued until
R_BLE_GAP_StopScan() is
called.
When the period field is zero
and the time specified the
duration field expires,
BLE_GAP_EVENT_SCAN_TO
event notifies the application
layer that scanning stops.

uint16_t period Scan period.

Time(s) = N * 1.28.
Valid range is 0x0000 - 0xFFFF.
If the duration field is set to
0x0000, this field is ignored.

◆ st_ble_gap_conn_param_t

struct st_ble_gap_conn_param_t

Connection parameters included in connection interval, slave latency, supervision timeout, ce
length.

This structure is used in R_BLE_GAP_CreateConn() and R_BLE_GAP_UpdConn().

Set the fields in this structure to match the following condition.

Supervision_timeout(ms) >= (1 + conn_latency) * conn_intv_max_Time(ms)

conn_intv_max_Time(ms) = conn_intv_max * 1.25 Supervision_timeout(ms) = sup_to * 10

Data Fields

uint16_t conn_intv_min Minimum connection interval.

Time(ms) = conn_intv_min *
1.25.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,567 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Valid range is 0x0006 -
0x0C80.

uint16_t conn_intv_max Maximum connection interval.

Time(ms) = conn_intv_max *
1.25.
Valid range is 0x0006 -
0x0C80.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

Time(ms) = sup_to * 10.
Valid range is 0x000A -
0x0C80.

uint16_t min_ce_length Minimum CE Length.

Valid range is 0x0000 - 0xFFFF.

uint16_t max_ce_length Maximum CE Length.

Valid range is 0x0000 - 0xFFFF.

◆ st_ble_gap_conn_phy_param_t

struct st_ble_gap_conn_phy_param_t

Connection parameters per PHY.

Data Fields

uint16_t scan_intv Scan interval.

Time(ms) = scan_intv * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t scan_window Scan window.

Time(ms) = scan_window *
0.625.
Valid range is 0x0004 - 0xFFFF.

st_ble_gap_conn_param_t * p_conn_param Connection interval, slave
latency, supervision timeout,
and CE length.

◆ st_ble_gap_create_conn_param_t

struct st_ble_gap_create_conn_param_t

Connection parameters used in R_BLE_GAP_CreateConn().

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,568 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t init_filter_policy This field specifies whether the
White List is used or not, when
connecting with a remote
device.

macro description

BLE_GAP_INIT
_FILT_USE_AD
DR(0x00)

White List is
not used.
The remote
device to be
connected is
specified by
the
remote_bd_ad
dr field and
the
remote_bd_ad
dr_type field
is used.

BLE_GAP_INIT
_FILT_USE_WL
ST(0x01)

White List is
used.
The remote
device
registered in
White List is
connected
with local
device.
The
remote_bd_ad
dr field and
the
remote_bd_ad
dr_type field
are ignored.

uint8_t remote_bd_ad
dr[BLE_BD_ADDR_LEN]

Address of the device to be
connected.

Note
The BD address setting format
is little endian.
If the address is
"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t remote_bd_addr_type Address type of the device to
be connected.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address or
Public Identity

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,569 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address or
Random
(Static)
Identity
Address

uint8_t own_addr_type Address type which local device
uses in creating a link with the
remote device.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random
address set
by
R_BLE_GAP_S
etRandAddr().

st_ble_gap_conn_phy_param_t * p_conn_param_1M Connection parameters for 1M
PHY.

If this field is set to NULL, 1M
PHY is not used in connecting.

st_ble_gap_conn_phy_param_t * p_conn_param_2M Connection parameters for 2M
PHY.

If this field is set to NULL, 2M

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,570 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

PHY is not used in connecting.

st_ble_gap_conn_phy_param_t * p_conn_param_coded Connection parameters for
Coded PHY.

If this field is set to NULL,
Coded PHY is not used in
connecting.

◆ st_ble_gap_rslv_list_key_set_t

struct st_ble_gap_rslv_list_key_set_t

IRK of a remote device and IRK type of local device used in R_BLE_GAP_ConfRslvList().

Data Fields

uint8_t remote_irk[BLE_GAP_IRK_SIZE] IRK of a remote device to be
registered in the Resolving List.

uint8_t local_irk_type IRK type of the local device to
be registered in the Resolving
List.
macro description

BLE_GAP_RL_L
OC_KEY_ALL_
ZERO(0x00)

All-zero IRK.

BLE_GAP_RL_L
OC_KEY_REGI
STERED(0x01)

The IRK
registered by
R_BLE_GAP_S
etLocIdInfo().

◆ st_ble_gap_set_phy_param_t

struct st_ble_gap_set_phy_param_t

PHY configuration parameters used in R_BLE_GAP_SetPhy().

Data Fields

uint8_t tx_phys Transmitter PHY preference.

The tx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Use 1M PHY
for
Transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0

Use 2M PHY
for
Transmitter

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,571 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

2) PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Use Coded
PHY for
Transmitter
PHY.

uint8_t rx_phys Receiver PHY preference.

The rx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Use 1M PHY
for Receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Use 2M PHY
for Receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Use Coded
PHY for
Receiver PHY.

uint16_t phy_options Coding scheme used in Coded
PHY.

Select one of the following.

macro description

BLE_GAP_SET
_PHYS_OP_HO
ST_NO_PREF(
0x00)

No preferred
coding.

BLE_GAP_SET
_PHYS_OP_HO
ST_PREF_S_2(
0x01)

Use S=2
coding.

BLE_GAP_SET
_PHYS_OP_HO
ST_PREF_S_8(
0x02)

Use S=8
coding.

◆ st_ble_gap_set_def_phy_param_t

struct st_ble_gap_set_def_phy_param_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,572 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

PHY preferences which allows a remote device to set used in R_BLE_GAP_SetDefPhy().

Data Fields

uint8_t tx_phys Transmitter PHY preferences
which a remote device may
change.

The tx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Allow a
remote device
to set 1M PHY
for
transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Allow a
remote device
to set 2M PHY
for
transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Allow a
remote device
to set Coded
PHY for
transmitter
PHY.

uint8_t rx_phys Receiver PHY preferences which
a remote device may change.

The rx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Allow a
remote device
to set 1M PHY
for receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Allow a
remote device
to set 2M PHY
for receiver
PHY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,573 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Allow a
remote device
to set Coded
PHY for
receiver PHY.

◆ st_ble_gap_auth_info_t

struct st_ble_gap_auth_info_t

Pairing parameters required from a remote device or information about keys distributed from a
remote device.

Data Fields

uint8_t security Security level.
value description

0x01 The remote
device
requests Unau
thenticated
pairing.

0x02 The remote
device
requests
Authenticated
pairing.

uint8_t pair_mode Pairing mode.
value description

0x01 The remote
device
requests
Legacy
pairing.

0x02 The remote
device
requests
Secure
Connections.

uint8_t bonding Bonding policy.
value description

0x00 The remote
device does
not store the
Bonding
information.

0x01 The remote
device stores
the Bonding

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,574 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

information.

uint8_t ekey_size Encryption key size.

◆ st_ble_gap_key_dist_t

struct st_ble_gap_key_dist_t

Keys distributed from a remote device.

Data Fields

uint8_t enc_info[BLE_GAP_LTK_SIZE] LTK.

uint8_t mid_info[BLE_GAP_EDIV_SIZE
+BLE_GAP_RAND_64_BIT_SIZE]

Ediv and rand. The first two
bytes is ediv, the remaining
bytes are rand.

uint8_t id_info[BLE_GAP_IRK_SIZE] IRK.

uint8_t id_addr_info[
BLE_GAP_ID_ADDR_SIZE]

Identity address. The first byte
is address type. The remaining
bytes are device address.

uint8_t sign_info[BLE_GAP_CSRK_SIZE] CSRK.

◆ st_ble_gap_key_ex_param_t

struct st_ble_gap_key_ex_param_t

This structure includes the distributed keys and negotiated LTK size.

Data Fields

st_ble_gap_key_dist_t * p_keys_info Key information.

uint8_t keys Type of the distributed keys.

This field is a bitwise OR of the
following values.

Bit Number description

0 LTK and
Master
Identification.
LTK is
distributed in
Secure
Connections,
even if the bit
is 1.

1 IRK and
Identity
Address
Information.

2 CSRK

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,575 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t ekey_size The negotiated LTK size.

◆ st_ble_gap_pairing_param_t

struct st_ble_gap_pairing_param_t

Pairing parameters used in R_BLE_GAP_SetPairingParams().

Data Fields

uint8_t iocap IO capabilities of local device.

Select one of the following.

macro description

BLE_GAP_IOC
AP_DISPLAY_O
NLY(0x00)

Output
function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: None

BLE_GAP_IOC
AP_DISPLAY_Y
ESNO(0x01)

Output
function :
Output
function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: Local device
has the ability
to indicate
'yes' or 'no'

BLE_GAP_IOC
AP_KEYBOAR
D_ONLY(0x02)

Output
function :
None
Input function
: Local device
has the ability
to input the
number '0' -
'9'.

BLE_GAP_IOC
AP_NOINPUT_
NOOUTPUT(0x
03)

Output
function :
None
Input function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,576 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

: None

BLE_GAP_IOC
AP_KEYBOAR
D_DISPLAY(0x
04)

Output
function :
Output
function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: Local device
has the ability
to input the
number '0' -
'9'.

uint8_t mitm MITM protection policy.

Select one of the following.

macro description

BLE_GAP_SEC
_MITM_BEST_
EFFORT(0x00)

MITM
Protection not
required.

BLE_GAP_SEC
_MITM_STRICT
(0x01)

MITM
Protection
required.

uint8_t bonding Bonding policy.
macro description

BLE_GAP_BON
DING_NONE(0
x00)

Local device
doesn't stores
Bonding
information.

BLE_GAP_BON
DING (0x01)

Local device
stores
Bonding
information.

uint8_t max_key_size Maximum LTK size(in bytes).

Valid range is 7 - 16.
This field shall be set to a value
not less than the min_key_size
field.

uint8_t min_key_size Minimum LTK size(in bytes).

Valid range is 7 - 16.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,577 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

This field shall be set to a value
not more than the
max_key_size field.

uint8_t loc_key_dist Type of keys to be distributed
from local device.

The loc_key_dist field is set to a
bitwise OR of the following
values.

macro description

BLE_GAP_KEY
_DIST_ENCKEY
(0x01)

LTK

BLE_GAP_KEY
_DIST_IDKEY(0
x02)

IRK and
Identity
Address.

BLE_GAP_KEY
_DIST_SIGNKE
Y(0x04)

CSRK

uint8_t rem_key_dist Type of keys which local device
requests a remote device to
distribute.

The rem_key_dist field is set to
a bitwise OR of the following
values.

macro description

BLE_GAP_KEY
_DIST_ENCKEY
(0x01)

LTK. In case of
Secure
Connections,
LTK is notified
even if this bit
is not set.

BLE_GAP_KEY
_DIST_IDKEY(0
x02)

IRK and
Identity
Address.

BLE_GAP_KEY
_DIST_SIGNKE
Y(0x04)

CSRK

uint8_t key_notf Support for Key Press
Notification in Passkey Entry.
macro description

BLE_GAP_SC_
KEY_PRESS_N
TF_NOT_SPRT(

Not support
for Key Press
Notification.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,578 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

0x00)

BLE_GAP_SC_
KEY_PRESS_N
TF_SPRT(0x01
)

Support for
Key Press
Notification.

uint8_t sec_conn_only Determine whether to accept
only Secure Connections or not.
macro description

BLE_GAP_SC_
BEST_EFFORT
(0x00)

Accept
Legacy
pairing and
Secure
Connections.

BLE_GAP_SC_
STRICT(0x01)

Accept only
Secure
Connections.

◆ st_ble_gap_oob_data_t

struct st_ble_gap_oob_data_t

Oob data received from the remote device. This is used in R_BLE_GAP_SetRemOobData().

Data Fields

uint8_t legacy_oob[
BLE_GAP_LEGACY_OOB_SIZE]

OOB data used in Legacy
Pairing.

uint8_t sc_cnf_val[
BLE_GAP_OOB_CONFIRM_VAL_S
IZE]

OOB confirmation value used in
Secure Connections.

uint8_t sc_rand[
BLE_GAP_OOB_RANDOM_VAL_SI
ZE]

OOB rand used in Secure
Connections.

◆ st_ble_gap_cte_antenna_info_t

struct st_ble_gap_cte_antenna_info_t

This is the parameters used in R_BLE_GAP_GetAntennaInfo().

◆ st_ble_gap_recv_test_param_t

struct st_ble_gap_recv_test_param_t

This is the parameters used in R_BLE_GAP_ReceiverTest()

Data Fields

uint8_t rx_ch RF channel.

uint8_t phy The transmitter PHY of packets.

uint8_t mod_idx Whether or not the Controller

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,579 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

should assume the receiver has
a stable modulation index.

uint8_t expect_cte_len Expected length of the
Constant Tone Extensions in
received test reference
packets.

uint8_t expect_cte_type Expected type of the Constant
Tone Extensions in received
test reference packets.

uint8_t slot_duration Switching and sampling slots
durations.

uint8_t switch_pattern_len The number of Antenna IDs in
the pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

Antenna ID in the pattern.

◆ st_ble_gap_trans_test_param_t

struct st_ble_gap_trans_test_param_t

This is the parameters used in R_BLE_GAP_TransmitterTest().

Data Fields

uint8_t tx_ch RF channel.

uint8_t test_data_len Length of the Payload of the
test reference packets.

uint8_t packet_payload Contents of the Payload of the
test reference packets.

uint8_t phy The transmitter PHY of packets.

uint8_t cte_len Length of the Constant Tone
Extension in the test reference
packets.

uint8_t cte_type Type of the Constant Tone
Extension in the test reference
packets.

uint8_t switch_pattern_len The number of Antenna IDs in
the pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

Antenna ID in the pattern.

int8_t tx_power_level Transmit power level to be used
by the transmitter.

◆ st_ble_gap_set_path_loss_rpt_param_t

struct st_ble_gap_set_path_loss_rpt_param_t

This is the parameters used in R_BLE_GAP_SetPathLossReportingParam().

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,580 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Data Fields

uint16_t conn_hdl Connection handle.

uint8_t high_thr High threshold for the path loss.

uint8_t high_hys Hysteresis value for the high
threshold.

uint8_t low_thr Low threshold for the path loss.

uint8_t low_hys Hysteresis value for the low
threshold.

uint16_t min_time_spent Minimum time in number of
connection events to be
observed once the path loss
crosses the threshold before an
event is generated.

◆ st_ble_gap_cte_connless_t

struct st_ble_gap_cte_connless_t

connectionless CTE param

Data Fields

uint16_t adv_hdl For connectionless CTE handle
is the Sync handle identifying
the Periodic Sync that has been
established.

uint8_t cte_len Length of CTE in 8us units.
Range: 0x02 to 0x14

uint8_t cte_type CTE type.

Allowed values are:
BLE_GAP_CTE_TYPE_AOA
BLE_GAP_CTE_TYPE_AOD_1US
BLE_GAP_CTE_TYPE_AOD_2US

uint8_t cte_count Number of CTE to transmit in
each periodic adv interval.
Range: 0x01 to 0x10

uint8_t pattern_len Number of Antenna IDs in the
switch pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

List of antenna IDs in the
pattern.

◆ st_ble_gap_cte_conn_t

struct st_ble_gap_cte_conn_t

connection CTE param

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,581 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint16_t conn_hdl The ACL connection handle.

uint8_t allow_cte_types bitfield of CTE types that are
allowed

bit should be one or compose
of: BLE_GAP_CTE_TYPE_AOA (bit
0)
BLE_GAP_CTE_TYPE_AOD_1US
(bit 1)
BLE_GAP_CTE_TYPE_AOD_2US
(bit 2)

uint8_t pattern_len Number of Antenna IDs in the
switch pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

List of antenna IDs in the
pattern.

◆ st_ble_gap_cte_connless_recv_t

struct st_ble_gap_cte_connless_recv_t

connectionless CTE receive param

Data Fields

uint16_t sync_hdl Periodic Sync that has been
established for CTE.

uint8_t cte_type CTE type.

CTE type should be get from
st_ble_gap_perd_adv_rept_t of
BLE_GAP_EVENT_ADV_REPT_IN
D event in connectionless CTE,
or get from ACL connection in
connection CTE. The
slot_durations, pattern_len, and
ant_ids parameters are only
used when receiving an AoA
Constant Tone Extension and
do not affect the reception of
an AoD Constant Tone
Extension.

uint8_t max_cte_count Max number of CTEs to receive.
Min is 1, max is 10, 0 means
receive continuously.

uint8_t slot_durations Antenna switching slots. 1 for
1us or 2 for 2us

uint8_t pattern_len Length of antenna switch
pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

Antenna switch pattern.

◆ st_ble_gap_cte_conn_rx_param_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,582 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_cte_conn_rx_param_t

connection CTE receive param

Data Fields

uint16_t conn_hdl For connection CTE handle is
the ACL connection handle.

uint8_t slot_durations Antenna switching slots. 1 for
1us or 2 for 2us

uint8_t pattern_len Length of antenna switch
pattern.

uint8_t ant_ids[
BLE_GAP_CTE_MAX_ANTENNA]

Antenna switch pattern.

◆ st_ble_gap_cte_conn_req_t

struct st_ble_gap_cte_conn_req_t

connection CTE request

Data Fields

uint16_t conn_hdl For connection CTE handle is
the ACL connection handle.

uint16_t interval Requested interval for initiating
the CTE Request procedure.

Value 0x0 means, run the
procedure once. Other values
are intervals in number of
connection events, to run the
command periodically.

uint8_t cte_length Requested length of the CTE in
8 us units.

uint8_t cte_type Requested type of the CTE.

Allowed values are
BLE_GAP_CTE_TYPE_AOA,
BLE_GAP_CTE_TYPE_AOD_1US
and
BLE_GAP_CTE_TYPE_AOD_2US

◆ st_ble_gap_subrate_param_t

struct st_ble_gap_subrate_param_t

subrating param

◆ st_ble_gap_ver_num_t

struct st_ble_gap_ver_num_t

Version number of host stack.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,583 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Data Fields

uint8_t major Major version number.

uint8_t minor Minor version number.

uint8_t subminor Subminor version number.

◆ st_ble_gap_loc_ver_info_t

struct st_ble_gap_loc_ver_info_t

Version number of Controller.

Refer Bluetooth SIG Assigned
Number(https://www.bluetooth.com/specifications/assigned-numbers).

Data Fields

uint8_t hci_ver Bluetooth HCI version.

uint16_t hci_rev Bluetooth HCI revision.

uint8_t lmp_ver Link Layer revision.

uint16_t mnf_name Manufacturer ID.

uint16_t lmp_sub_ver Link Layer subversion.

◆ st_ble_gap_loc_dev_info_evt_t

struct st_ble_gap_loc_dev_info_evt_t

Version information of local device.

Data Fields

st_ble_dev_addr_t l_dev_addr Bluetooth Device Address.

st_ble_gap_ver_num_t l_ver_num Version number of host stack in
local device.

st_ble_gap_loc_ver_info_t l_bt_info Version number of Controller in
local device.

◆ st_ble_gap_hw_err_evt_t

struct st_ble_gap_hw_err_evt_t

Hardware error that is notified from Controller.

Data Fields

uint8_t hw_code The hw_code field indicates the
cause of the hardware error.

◆ st_ble_gap_cmd_err_evt_t

struct st_ble_gap_cmd_err_evt_t

HCI Command error.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,584 / 5,560

https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint16_t op_code The opcode of HCI Command
which caused the error.

uint32_t module_id Module ID which caused the
error.

◆ st_ble_gap_adv_rept_t

struct st_ble_gap_adv_rept_t

Advertising Report.

Data Fields

uint8_t num The number of Advertising
Reports received.

uint8_t adv_type Type of Advertising Packet.
valuer description

0x00 Connectable
and scannable
undirected ad
vertising(ADV
_IND).

0x01 Connectable
directed adve
rtising(ADV_DI
RECT_IND).

0x02 Scannable
undirected ad
vertising(ADV
_SCAN_IND).

0x03 Non-
connectable
undirected ad
vertising(ADV
_NONCONN_I
ND).

0x04 Scan respons
e(SCAN_RSP).

uint8_t addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,585 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

uint8_t * p_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

uint8_t len Length of Advertising data(in
bytes).

Valid range is 0 - 31.

int8_t rssi RSSI(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that RSSI could not be
retrieved.

uint8_t * p_data Advertising data/Scan Response
Data.

◆ st_ble_gap_ext_adv_rept_t

struct st_ble_gap_ext_adv_rept_t

Extended Advertising Report.

Data Fields

uint8_t num The number of Advertising
Reports received.

uint16_t adv_type Type of Advertising Packet.
Bit Number description

0 Connectable
advertising.

1 Scannable
advertising.

2 Directed
advertising.

3 Scan
response.

4 Legacy
advertising
PDU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,586 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

5-6 The status of
Advertising
Data/Scan
Response
Data.
Data Status:
00b =
Complete
01b =
Incomplete,
more data
come
10b =
Incomplete,
data
truncated, no
more to come

All other bits Reserved for
future use

uint8_t addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

0xFF Anonymous
advertisement
.

uint8_t * p_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

uint8_t adv_phy The primary PHY configuration
of the advertiser.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,587 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

The primary PHY configuration
of the advertiser.

value description

0x01 1M PHY

0x03 Coded PHY

uint8_t sec_adv_phy The secondary PHY
configuration of the advertiser.
value description

0x00 Nothing has
been received
with
Secondary
Advertising
Channel.

0x01 The
Secondary
Advertising
PHY
configuration
was 1M PHY.

0x02 The
Secondary
Advertising
PHY
configuration
was 2M PHY.

0x03 The
Secondary
Advertising
PHY
configuration
was Coded
PHY.

uint8_t adv_sid Advertising SID included in the
received Advertising Report.

Valid range is 0 <= adv_sid <=
0x0F and 0xFF.
If the adv_sid is 0xFF, there is
no field which includes SID.

int8_t tx_pwr TX power(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that Tx power could not be
retrieved.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,588 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

int8_t rssi RSSI(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that RSSI could not be
retrieved.

uint16_t perd_adv_intv Periodic Advertising interval.

If the perd_adv_intv is 0x0000,
it means that this advertising is
not periodic advertising.
If the perd_adv_intv is 0x0006 -
0xFFFF, it means that this field
is the Periodic Advertising
interval.
Periodic Advertising interval =
per_adv_intr * 1.25ms.

uint8_t dir_addr_type The address type of Direct
Advertising PDU.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

0xFE Resolvable
Privacy
Address which
could not be
resolved in
Controller.

uint8_t * p_dir_addr Address of Direct Advertising
PDU.

Note
The BD address setting format
is little endian.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,589 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t len Length of Advertising data(in
bytes).

Valid range is 0 - 229.

uint8_t * p_data Advertising data/Scan Response
Data.

◆ st_ble_gap_perd_adv_rept_t

struct st_ble_gap_perd_adv_rept_t

Periodic Advertising Report.

Data Fields

uint16_t sync_hdl Sync handle.

Valid range is 0x0000 - 0x0EFF.

int8_t tx_pwr TX power(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If tx_pwr is 127, it means that
Tx power could not be
retrieved.

int8_t rssi RSSI(in dBm).

Valid range is -127 <= rssi <=
20 and 127.
If rssi is 127, it means that RSSI
could not be retrieved.

uint8_t cte_type Type of Constant Tone
Extension in the periodic
advertising packets.
value description

0x00 AoA Constant
Tone
Extension.

0x01 AoD Constant
Tone
Extension
with 1 μs
slots.

0x02 AoD Constant
Tone
Extension
with 2 μs
slots.

0xFF No Constant
Tone
Extension.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,590 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t data_status Reserved for future use.
value description

0x00 Data
Complete.

0x01 Data
incomplete,
more data to
come.

0x02 Data
incomplete,
data
truncated, no
more to
come.

uint8_t len Length of Periodic Advertising
data(in bytes).

Valid range is 0 - 247.

uint8_t * p_data Periodic Advertising data.

◆ st_ble_gap_adv_rept_evt_t

struct st_ble_gap_adv_rept_evt_t

Advertising report.

Data Fields

uint8_t adv_rpt_type Data type.
value description

0x00 Advertising
Report.

0x01 Extended
Advertising
Report.

0x02 Periodic
Advertising
Report.

If the BLE Protocol Stack library
type is "extended", the
adv_rpt_type field in a Legacy
Advertising Report event is
0x01.

union
st_ble_gap_adv_rept_evt_t

param Advertising Report.

◆ st_ble_gap_adv_rept_evt_t.param

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,591 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

union st_ble_gap_adv_rept_evt_t.param

Advertising Report.

Data Fields

st_ble_gap_adv_rept_t * p_adv_rpt Advertising Report.

st_ble_gap_ext_adv_rept_t * p_ext_adv_rpt Extended Advertising Report.

st_ble_gap_perd_adv_rept_t * p_per_adv_rpt Periodic Advertising Report.

◆ st_ble_gap_adv_set_evt_t

struct st_ble_gap_adv_set_evt_t

Advertising handle.

Data Fields

uint8_t adv_hdl Advertising handle specifying
the advertising set configured
advertising parameters.

◆ st_ble_gap_adv_off_evt_t

struct st_ble_gap_adv_off_evt_t

Information about the advertising set which stops advertising.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set which has
stopped advertising.

Valid range is 0x00 - 0x03.

uint8_t reason The reason for stopping
advertising.

value description

0x01 Advertising
has been
stopped by
R_BLE_GAP_St
opAdv().

0x02 Because the
duration
specified by
R_BLE_GAP_St
artAdv() was
expired,
advertising
has
terminated.

0x03 Because the
max_extd_adv
_evts

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,592 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

parameter
specified by
R_BLE_GAP_St
artAdv() was
reached,
advertising
has
terminated.

0x04 Because the
connection
was
established
with the
remote
device,
advertising
has
terminated.

uint16_t conn_hdl Connection handle.

If the reason field is 0x04, this
field indicates connection
handle identifying the remote
device connected with local
device. If other reasons, ignore
this field.

uint8_t num_comp_ext_adv_evts The number of the advertising
event that has been received
until advertising has
terminated.

If max_extd_adv_evts by
R_BLE_GAP_StartAdv() is not 0,
this parameter is valid.

◆ st_ble_gap_adv_data_evt_t

struct st_ble_gap_adv_data_evt_t

This structure notifies that advertising data has been set to Controller by
R_BLE_GAP_SetAdvSresData().

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to which
advertising data/scan response
data/periodic advertising data
is set.

uint8_t data_type Type of the data set to the
advertising set.
value description

BLE_GAP_ADV Advertising

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,593 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

_DATA_MODE(
0x00)

data

BLE_GAP_SCA
N_RSP_DATA_
MODE(0x01)

Scan
response data

BLE_GAP_PER
D_ADV_DATA_
MODE(0x02)

Periodic
advertising
data

◆ st_ble_gap_rem_adv_set_evt_t

struct st_ble_gap_rem_adv_set_evt_t

This structure notifies that an advertising set has been removed.

Data Fields

uint8_t remove_op This field indicates that the
advertising set has been
removed or cleared.
value description

0x01 The
advertising
set has been
removed.

0x02 The
advertising
set has been
cleared.

uint8_t adv_hdl Advertising handle identifying
the advertising set which has
been removed.

If the advertising set has been
cleared, this field is ignored.

◆ st_ble_gap_conn_evt_t

struct st_ble_gap_conn_evt_t

This structure notifies that a link has been established.

Data Fields

uint16_t conn_hdl Connection handle identifying
the created link.

uint8_t role The role of the link.
value description

0x00 Master

0x01 Slave

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,594 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint8_t remote_addr_type Address type of the remote
device.

value description

0x00 Public
Address

0x01 Random
Address

0x02 Public Identity
Address.
It indicates
that the
Controller
could resolve
the resolvable
private
address of the
remote
device.

0x03 Random
Identity
Address.
It indicates
that the
Controller
could resolve
the resolvable
private
address of the
remote
device.

uint8_t remote_addr[
BLE_BD_ADDR_LEN]

Address of the remote device.

Note
The BD address setting format
is little endian.

uint8_t local_rpa[BLE_BD_ADDR_LEN] Resolvable private address that
local device used in connection
procedure.

The local device address used
in creating the link when the
address type was set to
BLE_GAP_ADDR_RPA_ID_PUBLIC
or BLE_GAP_ADDR_RPA_ID_RAN
DOM by
R_BLE_GAP_SetAdvParam() or
R_BLE_GAP_CreateConn(). If the
address type was set to other
than
BLE_GAP_ADDR_RPA_ID_PUBLIC
and BLE_GAP_ADDR_RPA_ID_RA

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,595 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

NDOM, this field is set to all-
zero.

Note
The BD address setting format
is little endian.

uint8_t remote_rpa[BLE_BD_ADDR_LEN
]

Resolvable private address that
the remote device used in
connection procedure.

This field indicates the remote
resolvable private address
when remote_addr_type is 0x02
or 0x03. If remote_addr_type is
other than 0x02 and 0x03, this
field is set to all-zero.

Note
The BD address setting format
is little endian.

uint16_t conn_intv Connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv * 1.25.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

Valid range is 0x000A -
0x0C80.Time(ms) = sup_to *
10.

uint8_t clk_acc Master_Clock_Accuracy.
value description

0x00 500ppm

0x01 250ppm

0x02 150ppm

0x03 100ppm

0x04 75ppm

0x05 50ppm

0x06 30ppm

0x07 20ppm

◆ st_ble_gap_disconn_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,596 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_disconn_evt_t

This structure notifies that a link has been disconnected.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link disconnected.

uint8_t reason The reason for disconnection.

Refer Core Specification Vol.2
Part D ,"2 Error Code
Descriptions".

◆ st_ble_gap_rd_ch_map_evt_t

struct st_ble_gap_rd_ch_map_evt_t

This structure notifies that Channel Map has been retrieved by R_BLE_GAP_ReadChMap().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link whose Channel Map
was retrieved.

uint8_t ch_map[BLE_GAP_CH_MAP_SIZE
]

Channel Map.

◆ st_ble_gap_rd_rssi_evt_t

struct st_ble_gap_rd_rssi_evt_t

This structure notifies that RSSI has been retrieved by R_BLE_GAP_ReadRssi().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link whose RSSI was
retrieved.

int8_t rssi RSSI(in dBm).

Valid range is -127 < rssi < 20
and 127.
If this field is 127, it indicates
that RSSI could not be
retrieved.

◆ st_ble_gap_dev_info_evt_t

struct st_ble_gap_dev_info_evt_t

This structure notifies that information about remote device has been retrieved by
R_BLE_GAP_GetRemDevInfo().

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device whose

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,597 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

information has been retrieved.

uint8_t get_status Information about the remote
device. This field is a bitwise OR
of the following values.
Bit Number description

bit0 Address

bit1 Version,
company_id,
subversion

bit2 Feature

All other bits Reserved for
future use

st_ble_dev_addr_t addr Address of the remote device.

uint8_t version The version of Link Layer of the
remote device.

Refer to Bluetooth SIG Assigned
Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers)
regarding defined number.

uint16_t company_id The manufacturer ID of the
remote device.

Refer to Bluetooth SIG Assigned
Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers)
regarding defined number.

uint16_t subversion The subversion of Link Layer.

uint8_t features[
BLE_GAP_REM_FEATURE_SIZE]

LE feature supported in the
remote device.

Refer to Core Spec Vol 6, Part B
4.6 FEATURE SUPPORT.

◆ st_ble_gap_conn_upd_evt_t

struct st_ble_gap_conn_upd_evt_t

This structure notifies that connection parameters has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying
the connection whose
parameters has been updated.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,598 / 5,560

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

uint16_t conn_intv Updated Connection Interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv * 1.25.

uint16_t conn_latency Updated slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Updated supervision timeout.

Valid range is 0x000A - 0x0C80.
Time(ms) = sup_to * 10.

◆ st_ble_gap_conn_upd_req_evt_t

struct st_ble_gap_conn_upd_req_evt_t

This structure notifies that a request for connection parameters update has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that was requested to
update connection parameters.

uint16_t conn_intv_min Minimum connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv_min *
1.25.

uint16_t conn_intv_max Maximum connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv_max *
1.25.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

Valid range is 0x000A - 0x0C80.
Time(ms) = sup_to * 10

◆ st_ble_gap_conn_hdl_evt_t

struct st_ble_gap_conn_hdl_evt_t

This structure notifies that a GAP Event that includes only connection handle has occurred.

Data Fields

uint16_t conn_hdl Connection handle.

◆ st_ble_gap_data_len_chg_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,599 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

struct st_ble_gap_data_len_chg_evt_t

This structure notifies that the packet data length has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that updated Data
Length.

uint16_t tx_octets Updated transmission packet
size(in bytes).

Valid range is 0x001B -
0x00FB.

uint16_t tx_time Updated transmission time(us).

Valid range is 0x0148 -
0x4290.

uint16_t rx_octets Updated receive packet size(in
bytes).

Valid range is 0x001B -
0x00FB.

uint16_t rx_time Updated receive time(us).

Valid range is 0x0148 -
0x4290.

◆ st_ble_gap_rd_rpa_evt_t

struct st_ble_gap_rd_rpa_evt_t

This structure notifies that the local resolvable private address has been retrieved by
R_BLE_GAP_ReadRpa().

Data Fields

st_ble_dev_addr_t addr The resolvable private address
of local device.

◆ st_ble_gap_phy_upd_evt_t

struct st_ble_gap_phy_upd_evt_t

This structure notifies that PHY for a connection has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that has been updated.

uint8_t tx_phy Transmitter PHY.
value description

0x01 The
transmitter

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,600 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

PHY has been
updated to 1M
PHY.

0x02 The
transmitter
PHY has been
updated to 2M
PHY.

0x03 The
transmitter
PHY has been
updated to
Coded PHY.

uint8_t rx_phy Receiver PHY.
value description

0x01 The receiver
PHY has been
updated to 1M
PHY.

0x02 The receiver
PHY has been
updated to 2M
PHY.

0x03 The receiver
PHY has been
updated to
Coded PHY.

◆ st_ble_gap_phy_rd_evt_t

struct st_ble_gap_phy_rd_evt_t

This structure notifies that the PHY settings has been retrieved by R_BLE_GAP_ReadPhy().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that has been retrieved
the PHY settings.

uint8_t tx_phy Transmitter PHY.
value description

0x01 The
transmitter
PHY has been
updated to 1M
PHY.

0x02 The
transmitter
PHY has been

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,601 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

updated to 2M
PHY.

0x03 The
transmitter
PHY has been
updated to
Coded PHY.

uint8_t rx_phy Receiver PHY.
value description

0x01 The receiver
PHY has been
updated to 1M
PHY.

0x02 The receiver
PHY has been
updated to 2M
PHY.

0x03 The receiver
PHY has been
updated to
Coded PHY.

◆ st_ble_gap_scan_req_recv_evt_t

struct st_ble_gap_scan_req_recv_evt_t

This structure notifies that a Scan Request packet has been received from a Scanner.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set that has
received the Scan Request.

uint8_t scanner_addr_type Address type of the Scanner.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,602 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Controller.

uint8_t scanner_addr[
BLE_BD_ADDR_LEN]

Address of the Scanner.

Note
The BD address setting format
is little endian.

◆ st_ble_gap_sync_est_evt_t

struct st_ble_gap_sync_est_evt_t

This structure notifies that a Periodic sync has been established.

Data Fields

uint16_t sync_hdl Sync handle identifying the
Periodic Sync that has been
established.

uint8_t adv_sid Advertising SID identifying the
advertising set that has
established the Periodic Sync.

uint8_t adv_addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

uint8_t * p_adv_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

uint8_t adv_phy Advertising PHY.
value description

0x01 Advertiser
PHY is 1M
PHY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,603 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

0x02 Advertiser
PHY is 2M
PHY.

0x03 Advertiser
PHY is Coded
PHY.

uint16_t perd_adv_intv Periodic Advertising Interval.

Valid range is 0x0006 - 0xFFFF.
Time(ms) = perd_adv_intv *
1.25.

uint8_t adv_clk_acc Advertiser Clock Accuracy.
value description

0x00 500ppm

0x01 250ppm

0x02 150ppm

0x03 100ppm

0x04 75ppm

0x05 50ppm

0x06 30ppm

0x07 20ppm

◆ st_ble_gap_sync_hdl_evt_t

struct st_ble_gap_sync_hdl_evt_t

This structure notifies that a GAP Event that includes only sync handle has occurred.

Data Fields

uint16_t sync_hdl Sync handle.

◆ st_ble_gap_white_list_conf_evt_t

struct st_ble_gap_white_list_conf_evt_t

This structure notifies that White List has been configured.

Data Fields

uint8_t op_code The operation for White List.
value description

0x01 A device was
added to
White List.

0x02 A device was
deleted from
White List.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,604 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

0x03 White List was
cleared.

uint8_t num The number or devices which
have been added to or deleted
from White List.

◆ st_ble_gap_rslv_list_conf_evt_t

struct st_ble_gap_rslv_list_conf_evt_t

This structure notifies that Resolving List has been configured.

Data Fields

uint8_t op_code The operation for Resolving
List.
value description

0x01 A device was
added to
Resolving List.

0x02 A device was
deleted from
Resolving List.

0x03 Resolving List
was cleared.

uint8_t num The number or devices which
have been added to or deleted
from Resolving List.

◆ st_ble_gap_perd_list_conf_evt_t

struct st_ble_gap_perd_list_conf_evt_t

This structure notifies that Periodic Advertiser List has been configured.

Data Fields

uint8_t op_code The operation for Periodic
Advertiser List.
value description

0x01 A device was
added to
Periodic
Advertiser
List.

0x02 A device was
deleted from
Periodic
Advertiser
List.

0x03 Periodic

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,605 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Advertiser List
was cleared.

uint8_t num The number or devices which
have been added to or deleted
from Periodic Advertiser List.

◆ st_ble_gap_set_priv_mode_evt_t

struct st_ble_gap_set_priv_mode_evt_t

This structure notifies that Privacy Mode has been configured.

Data Fields

uint8_t num The number or devices which
have been set privacy mode.

◆ st_ble_gap_pairing_req_evt_t

struct st_ble_gap_pairing_req_evt_t

This structure notifies that a pairing request from a remote device has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that sent the
pairing request.

st_ble_dev_addr_t bd_addr The address of the remote
device.

st_ble_gap_auth_info_t auth_info The Pairing parameters of the
remote device.

◆ st_ble_gap_passkey_display_evt_t

struct st_ble_gap_passkey_display_evt_t

This structure notifies that a request for Passkey display in pairing has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that
requested Passkey display.

uint32_t passkey Passkey.

This field is a 6 digit decimal
number(000000-999999).

◆ st_ble_gap_num_comp_evt_t

struct st_ble_gap_num_comp_evt_t

This structure notifies that a request for Numeric Comparison in pairing has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,606 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

the remote device that
requested Numeric
Comparison.

uint32_t numeric The number to be confirmed in
Numeric Comparison.

This field is a 6 digit decimal
number(000000-999999).

◆ st_ble_gap_key_press_ntf_evt_t

struct st_ble_gap_key_press_ntf_evt_t

This structure notifies that the remote device has input a key in Passkey Entry.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that input a
key.

uint8_t key_type Type of the key that the remote
device input.
value description

0x00 Passkey entry
started.

0x01 Passkey digit
entered.

0x02 Passkey digit
erased.

0x03 Passkey
cleared.

0x04 Passkey entry
completed.

◆ st_ble_gap_pairing_info_evt_t

struct st_ble_gap_pairing_info_evt_t

This structure notifies that the pairing has completed.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that the
pairing has been done with.

st_ble_dev_addr_t bd_addr Address of the remote device.

st_ble_gap_auth_info_t auth_info Key information exchanged in
pairing.

If local device supports
bonding, store the information

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,607 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

in non-volatile memory in order
to set it to host stack after
power re-supply.

◆ st_ble_gap_enc_chg_evt_t

struct st_ble_gap_enc_chg_evt_t

This structure notifies that the encryption status of a link has been changed.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that has been changed.

uint8_t enc_status Encryption Status.
value description

0x00 Encryption
OFF.

0x01 Encryption
ON.

0x03 Encryption
updated by
Encryption
Key Refresh
Completed.

◆ st_ble_gap_peer_key_info_evt_t

struct st_ble_gap_peer_key_info_evt_t

This structure notifies that the remote device has distributed the keys.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that has
distributed the keys.

st_ble_dev_addr_t bd_addr Address of the remote device.

st_ble_gap_key_ex_param_t key_ex_param Distributed keys.

If local device supports
bonding, store the keys in non-
volatile memory and at power
re-supply set to the host stack
by R_BLE_GAP_SetBondInfo().

◆ st_ble_gap_ltk_req_evt_t

struct st_ble_gap_ltk_req_evt_t

This structure notifies that a LTK request from a remote device has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,608 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

the remote device which
requests for the LTK.

uint16_t ediv Ediv.

uint8_t * p_peer_rand Rand.

◆ st_ble_gap_ltk_rsp_evt_t

struct st_ble_gap_ltk_rsp_evt_t

This structure notifies that local device has replied to the LTK request from the remote device.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device to be sent
the response to the LTK
request.

uint8_t response The response to the LTK
request.
value description

0x00 Local device
replied with
the stored
LTK.

0x01 Local device
rejected the
LTK request,
because the
LTK was not
found.

◆ st_ble_gap_sc_oob_data_evt_t

struct st_ble_gap_sc_oob_data_evt_t

This structure notifies that OOB data for Secure Connections has been generated by
R_BLE_GAP_CreateScOobData().

Data Fields

uint8_t * p_sc_oob_conf Confirmation value(16 bytes) of
OOB Data.

uint8_t * p_sc_oob_rand Rand(16bytes) of OOB Data.

◆ st_ble_gap_bond_info_t

struct st_ble_gap_bond_info_t

Bonding information used in R_BLE_GAP_SetBondInfo().

Data Fields

st_ble_dev_addr_t * p_addr Address of the device which
exchanged the keys.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,609 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

st_ble_gap_auth_info_t * p_auth_info Information about the keys.

st_ble_gap_key_ex_param_t * p_keys Keys distributed from the
remote device in paring.

◆ st_cte_iq_sample_t

struct st_cte_iq_sample_t

CTE IQ sample data.

◆ st_ble_gap_cte_connless_rept_t

struct st_ble_gap_cte_connless_rept_t

connectionless CTE data report

◆ st_ble_gap_cte_conn_rept_t

struct st_ble_gap_cte_conn_rept_t

connection CTE data report

◆ st_ble_subrate_upd_t

struct st_ble_subrate_upd_t

subrating update event

◆ st_ble_gap_past_est_evt_t

struct st_ble_gap_past_est_evt_t

This structure notifies that.

Data Fields

uint16_t conn_hdl Periodic Advertising Sync
Transfer options

uint16_t service_data

st_ble_gap_sync_est_evt_t sync

◆ st_ble_gap_tx_power_reporting_evt_t

struct st_ble_gap_tx_power_reporting_evt_t

This structure notifies that.

◆ st_ble_gap_pass_loss_thr_evt_t

struct st_ble_gap_pass_loss_thr_evt_t

This structure notifies that a path loss report has been received.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,610 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ st_ble_gap_req_peer_sca_evt_t

struct st_ble_gap_req_peer_sca_evt_t

This structure notifies that a SCA request to a remote device has been completed.

◆ st_ble_gap_dtm_test_end_evt_t

struct st_ble_gap_dtm_test_end_evt_t

report of dtm transmit/receive test end

Data Fields

uint16_t recv_cnt the number of received packets

◆ st_ble_gap_enhanced_read_tx_power_level_evt_t

struct st_ble_gap_enhanced_read_tx_power_level_evt_t

Power level report of remove device.

Data Fields

uint16_t handle Indicate an ACL connection.

uint8_t phy PHY.

int8_t crt_tx_power_level Current transmit power level.

int8_t max_tx_power_level Maximum transmit power level.

Macro Definition Documentation

◆ BLE_BD_ADDR_LEN

#define BLE_BD_ADDR_LEN

Bluetooth Device Address Size

◆ BLE_MASTER

#define BLE_MASTER

Master Role.

◆ BLE_SLAVE

#define BLE_SLAVE

Slave Role.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,611 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ BLE_GAP_ADDR_PUBLIC

#define BLE_GAP_ADDR_PUBLIC

Public Address.

◆ BLE_GAP_ADDR_RAND

#define BLE_GAP_ADDR_RAND

Random Address.

◆ BLE_GAP_ADDR_RPA_ID_PUBLIC

#define BLE_GAP_ADDR_RPA_ID_PUBLIC

Resolvable Private Address.

If the IRK of local device has not been registered in Resolving List, public address is used.

◆ BLE_GAP_ADDR_RPA_ID_RANDOM

#define BLE_GAP_ADDR_RPA_ID_RANDOM

Resolvable Private Address.

If the IRK of local device has not been registered in Resolving List, random address is used.

◆ BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

Accept all advertising and scan response PDUs.
The following are excluded.

Advertising and scan response PDUs where the advertiser's identity address is not in the
White List.
Directed advertising PDUs whose the target address is identity address but doesn't address
local device. However directed advertising PDUs whose the target address is the local
resolvable private address are accepted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,612 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ BLE_GAP_IOCAP_DISPLAY_ONLY

#define BLE_GAP_IOCAP_DISPLAY_ONLY

Display Only iocapability.

Output function : Local device has the ability to display a 6 digit decimal number.
Input function : None

◆ BLE_GAP_IOCAP_DISPLAY_YESNO

#define BLE_GAP_IOCAP_DISPLAY_YESNO

Display Yes/No iocapability.

Output function : Output function : Local device has the ability to display a 6 digit decimal number.
Input function : Local device has the ability to indicate 'yes' or 'no'

◆ BLE_GAP_IOCAP_KEYBOARD_ONLY

#define BLE_GAP_IOCAP_KEYBOARD_ONLY

Keyboard Only iocapability.

Output function : None
Input function : Local device has the ability to input the number '0' - '9'.

◆ BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

#define BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

No Input No Output iocapability.

Output function : None
Input function : None

◆ BLE_GAP_IOCAP_KEYBOARD_DISPLAY

#define BLE_GAP_IOCAP_KEYBOARD_DISPLAY

Keyboard Display iocapability.

Output function : Output function : Local device has the ability to display a 6 digit decimal number.
Input function : Local device has the ability to input the number '0' - '9'.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,613 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ ble_gap_app_cb_t

ble_gap_app_cb_t

ble_gap_app_cb_t is the GAP Event callback function type.

Parameters
[in] event_type The type of GAP Event.

[in] event_result The result of API call which
generates the GAP Event.

[in] p_event_data Data notified in the GAP
Event.

Returns
none

◆ ble_gap_del_bond_cb_t

ble_gap_del_bond_cb_t

ble_gap_del_bond_cb_t is the type of the callback function for delete bonding information stored in
non-volatile area.
This type is used in R_BLE_GAP_DeleteBondInfo().

Parameters
[in] p_addr The parameter returns the

address of the remote
device whose keys are
deleted by
R_BLE_GAP_DeleteBondInfo()
.
If
R_BLE_GAP_DeleteBondInfo()
deletes the keys of all
remote devices, the
parameter returns NULL.

Returns
none

◆ st_ble_gap_adv_param_t

typedef st_ble_gap_ext_adv_param_t st_ble_gap_adv_param_t

Advertising parameters.

See also
st_ble_gap_ext_adv_param_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,614 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ st_ble_gap_scan_param_t

typedef st_ble_gap_ext_scan_param_t st_ble_gap_scan_param_t

Scan parameters.

See also
st_ble_gap_ext_scan_param_t

Enumeration Type Documentation

◆ e_ble_gap_evt_t

enum e_ble_gap_evt_t

GAP Event Identifier.

Enumerator

BLE_GAP_EVENT_INVALID Invalid GAP Event.

Event Code: 0x1001

Event Data:

none

BLE_GAP_EVENT_STACK_ON Host Stack has been initialized.

When initializing host stack by
R_BLE_GAP_Init() has been completed,
BLE_GAP_EVENT_STACK_ON event is notified.

Event Code: 0x1002

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_STACK_OFF Host Stack has been terminated.

When terminating host stack by
R_BLE_GAP_Terminate() has been completed,
BLE_GAP_EVENT_STACK_OFF event is notified.

Event Code: 0x1003

result:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,615 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

When function was
called, host stack
has not yet been
initialized.

Event Data:

none

BLE_GAP_EVENT_LOC_VER_INFO Version information of local device.

When version information of local device has
been retrieved by R_BLE_GAP_GetVerInfo(),
BLE_GAP_EVENT_LOC_VER_INFO event is
notified.

Event Code: 0x1004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_loc_dev_info_evt_t

BLE_GAP_EVENT_HW_ERR Hardware Error.

When hardware error has been received from
Controller, BLE_GAP_EVENT_HW_ERR event is
notified.

Event Code: 0x1005

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_hw_err_evt_t

BLE_GAP_EVENT_CMD_ERR Command Status Error.

When the error of HCI Command has occurred
after a R_BLE GAP API call,
BLE_GAP_EVENT_CMD_ERR event is notified.

Event Code: 0x1101

result:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,616 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_cmd_err_evt_t

BLE_GAP_EVENT_ADV_REPT_IND Advertising Report.

When advertising PDUs has been received
after scanning was started by
R_BLE_GAP_StartScan().

Event Code: 0x1102

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_adv_rept_evt_t

BLE_GAP_EVENT_ADV_PARAM_SET_COMP Advertising parameters have been set.

Advertising parameters have been configured
by R_BLE_GAP_SetAdvParam().

Event Code: 0x1103

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertising
type that doesn't
support
advertising
data/scan
response data was
specified to the
advertising set
which has already
set advertising
data/scan
response data.

BLE_ERR_INVALID_
OPERATION(0x000
9)

The reason for this
error is as follows.

Advertising
parameters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,617 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

were
configured
to the
advertising
set in
advertising
.

The sec_ad
v_phy field
in
adv_paran
was not
specified
when
Periodic
Advertising
was
started.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_DATA_UPD_COMP Advertising data has been set.

This event notifies that Advertising Data/Scan
Response Data/Periodic Advertising Data has
been set to the advertising set by
R_BLE_GAP_SetAdvSresData().

Event Code: 0x1104

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

The reason for this
error is as follows.

The
advertising
set that
doesn't
support
advertising
data/scan
response
data was
set to the
data.

The

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,618 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

advertising
set that
supports
legacy
advertising
was set to
advertising
data/scan
response
data larger
than 31
bytes.

The
advertising
set that
has
advertising
data/scan
response
data
greater
than or
equal to
252 bytes
was set the
data in
advertising
.

The
advertising
set that
has
periodic
advertising
data
greater
than or
equal to
253 bytes
was set the
data in
advertising
.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Length exceeded
the length that the
advertising set
could be set.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_SetAd
vSresData() has
not been created.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,619 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Data:

st_ble_gap_adv_data_evt_t

BLE_GAP_EVENT_ADV_ON Advertising has started.

When advertising has been started by
R_BLE_GAP_StartAdv(), this event is notified to
the application layer.

Event Code: 0x1105

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows.

The
advertising
data length
set to the
advertising
set for
connectabl
e extended
advertising
was
invalid.

If
o_addr_typ
e field in
adv_param
used in
R_BLE_GAP
_SetAdvPar
am() is
0x03, the
address
which is
set in
o_addr
field of
adv_param
has not
been
registered
in
Resolving
List.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,620 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_INVALID_
OPERATION(0x000
9)

Setting of
advertising
data/scan
response data has
not been
completed.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StartA
dv() has not been
created.

BLE_ERR_LIMIT_EX
CEEDED(0x0010)

When the
maximum
connections are
established, a new
connectable
advertising tried
starting.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_OFF Advertising has stopped.

This event notifies the application layer that
advertising has stopped.

Event Code: 0x1106

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StopA
dv() has not been
created.

Event Data:

st_ble_gap_adv_off_evt_t

BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP Periodic advertising parameters have been
set.

This event notifies the application layer that
Periodic Advertising Parameters has been
configured by R_BLE_GAP_SetPerdAdvParam().

Event Code: 0x1107

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,621 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertising set
was the setting for
anonymous
advertising.

BLE_ERR_INVALID_
OPERATION(0x000
9)

The advertising set
was configured to
the parameters in
periodic
advertising.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_SetPer
dAdvParam() has
not been created.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_PERD_ADV_ON Periodic advertising has started.

When Periodic Advertising has been started by
R_BLE_GAP_StartPerdAdv(), this event is
notified to the application layer.

Event Code: 0x1108

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

The periodic
advertising data
set in the
advertising set has
not been
completed.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StartP
erdAdv() has not
been created.

Event Data:

st_ble_gap_adv_set_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,622 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_EVENT_PERD_ADV_OFF Periodic advertising has stopped.

When Periodic Advertising has terminated by
R_BLE_GAP_StopPerdAdv(), this event is
notified to the application layer.

Event Code: 0x1109

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StopPe
rdAdv() has not
been created.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_SET_REMOVE_COMP Advertising set has been deleted.

When the advertising set has been removed by
R_BLE_GAP_RemoveAdvSet(), this event is
notified to the application layer.

Event Code: 0x110A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When the
advertising set
was in advertising,
R_BLE_GAP_Remov
eAdvSet() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_Remov
eAdvSet() has not
been created.

Event Data:

st_ble_gap_rem_adv_set_evt_t

BLE_GAP_EVENT_SCAN_ON Scanning has started.

When scanning has started by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,623 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

R_BLE_GAP_StartScan(), this event is notified
to the application layer.

Event Code: 0x110B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows:

Scan
interval or
scan
window
was
invalid.
When
filter_dup
field in
scan_enabl
e was
BLE_GAP_S
CAN_FILT_
DUPLIC_EN
ABLE_FOR_
PERIOD(0x
02), period
field in
scan_enabl
e was 0.
duration
field in
scan_enabl
e was
larger than
period in sc
an_enable.

BLE_ERR_INVALID_
OPERATION(0x000
9)

In scanning,
R_BLE_GAP_StartS
can() was called.

Event Data:

none

BLE_GAP_EVENT_SCAN_OFF Scanning has stopped.

When scanning has been stopped by
R_BLE_GAP_StopScan(), this event is notified to
the application layer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,624 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Code: 0x110C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_SCAN_TO Scanning has stopped, because duration
specified by API expired.

When the scan duration specified by
R_BLE_GAP_StartScan() has expired, this event
notifies scanning has stopped.

Event Code: 0x110D

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_CREATE_CONN_COMP Connection Request has been sent to
Controller.

This event notifies a request for a connection
has been sent to Controller.

Event Code: 0x110E

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows:

Scan
interval or
scan
windows
specified
by
R_BLE_GAP
_CreateCon
n() is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,625 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

invalid.
Although
the own_ad
dr_type
field in
p_param
was set to
0x03,
random
address
had not
been
registered
in
Resolving
List.

BLE_ERR_INVALID_
OPERATION(0x000
9)

R_BLE_GAP_Create
Conn() was called
while creating a
link by previous
R_BLE_GAP_Create
Conn() call .

BLE_ERR_LIMIT_EX
CEEDED(0x0010)

When the
maximum
connections are
established,
R_BLE_GAP_Create
Conn() was called.

Event Data:

none

BLE_GAP_EVENT_CONN_IND Link has been established.

This event notifies a link has been established.

Event Code: 0x110F

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The request for a
connection has
been cancelled by
R_BLE_GAP_Cancel
CreateConn().

Event Data:

st_ble_gap_conn_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,626 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_EVENT_DISCONN_IND Link has been disconnected.

This event notifies a link has been
disconnected.

Event Code: 0x1110

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_disconn_evt_t

BLE_GAP_EVENT_CONN_CANCEL_COMP Connection Cancel Request has been sent to
Controller.

This event notifies the request for a connection
has been cancelled by
R_BLE_GAP_CancelCreateConn().

Event Code: 0x1111

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When a request for
a connection has
not been sent to
Controller,
R_BLE_GAP_Cancel
CreateConn() was
called.

Event Data:

none

BLE_GAP_EVENT_WHITE_LIST_CONF_COMP The White List has been configured.

When White List has been configured, this
event is notified to the application layer.

Event Code: 0x1112

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,627 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While doing
advertising or
scanning or
creating a link with
the White List,
R_BLE_GAP_ConfW
hiteList() was
called.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

White List has
already registered
the maximum
number of devices.

Event Data:

st_ble_gap_white_list_conf_evt_t

BLE_GAP_EVENT_RAND_ADDR_SET_COMP Random address has been set to Controller.

This event notifies Controller has been set the
random address by R_BLE_GAP_SetRandAddr().

Event Code: 0x1113

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When local device
was in legacy
advertising,
R_BLE_GAP_SetRa
ndAddr() was
called.

Event Data:

none

BLE_GAP_EVENT_CH_MAP_RD_COMP Channel Map has been retrieved.

This event notifies Channel Map has been
retrieved by R_BLE_GAP_ReadChMap().

Event Code: 0x1114

result:

BLE_SUCCESS(0x0 Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,628 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

000)

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by
R_BLE_GAP_ReadC
hMap() was not
found.

Event Data:

st_ble_gap_rd_ch_map_evt_t

BLE_GAP_EVENT_CH_MAP_SET_COMP Channel Map has set.

This event notifies Channel Map has been
configured by R_BLE_GAP_SetChMap().

Event Code: 0x1115

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The channel map
specified by
R_BLE_GAP_SetCh
Map() was all-zero.

Event Data:

none

BLE_GAP_EVENT_RSSI_RD_COMP RSSl has been retrieved.

This event notifies RSSI has been retrieved by
R_BLE_GAP_ReadRssi().

Event Code: 0x1116

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by
R_BLE_GAP_ReadR
ssi() was not
found.

Event Data:

st_ble_gap_rd_rssi_evt_t

BLE_GAP_EVENT_GET_REM_DEV_INFO Information about the remote device has been

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,629 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

retrieved.

This event notifies information about the
remote device has been retrieved by
R_BLE_GAP_GetRemDevInfo().

Event Code: 0x1117

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_dev_info_evt_t

BLE_GAP_EVENT_CONN_PARAM_UPD_COMP Connection parameters has been configured.

This event notifies the connection parameters
has been updated.

Event Code: 0x1118

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
DATA(0x0002)

Local device
rejected the
request for
updating
connection
parameters.

BLE_ERR_INVALID_
ARG(0x0003)

The remote device
rejected the
connection
parameters
suggested from
local device.

BLE_ERR_UNSUPP
ORTED(0x0007)

The remote device
doesn't support
connection
parameters update
feature.

Event Data:

st_ble_gap_conn_upd_evt_t

BLE_GAP_EVENT_CONN_PARAM_UPD_REQ Local device has received the request for
configuration of connection parameters.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,630 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

This event notifies the request for connection
parameters update has been received.

Event Code: 0x1119

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_upd_req_evt_t

BLE_GAP_EVENT_AUTH_PL_TO_EXPIRED Authenticated Payload Timeout.

This event notifies Authenticated Payload
Timeout has occurred.

Event Code: 0x111A

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_SET_DATA_LEN_COMP The request for update transmission packet
size and transmission time have been sent to
Controller.

This event notifies a request for updating
packet data length and transmission timer has
been sent to Controller.

Event Code: 0x111B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The tx_octets or
tx_time parameter
specified by
R_BLE_GAP_SetDat
aLen() is invalid.

BLE_ERR_UNSUPP
ORTED(0x0007)

The remote device
does not support
updating packet
data length and
transmission time.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,631 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_INVALID_
HDL(0x000E)

When
R_BLE_GAP_SetDat
aLen() was called,
the connection
was not
established.

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_DATA_LEN_CHG Transmission packet size and transmission
time have been changed.

This event notifies packet data length and
transmission time have been updated.

Event Code: 0x111C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_data_len_chg_evt_t

BLE_GAP_EVENT_RSLV_LIST_CONF_COMP The Resolving List has been configured.

When Resolving List has been configured by
R_BLE_GAP_ConfRslvList(), this event is notified
to the application layer.

Event Code: 0x111D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was
called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While doing
advertising or
scanning or
creating a link with
resolvable private
address,
R_BLE_GAP_ConfRs
lvList() was called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,632 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Resolving List has
already registered
the maximum
number of devices.

BLE_ERR_INVALID_
HDL(0x000E)

The specified
Identity Address
was not found in
Resolving List.

Event Data:

st_ble_gap_rslv_list_conf_evt_t

BLE_GAP_EVENT_RPA_EN_COMP Resolvable private address function has been
enabled or disabled.

When Resolvable Private Address function in
Controller has been enabled by
R_BLE_GAP_EnableRpa(), this event is notified
to the application layer.

Event Code: 0x111E

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

While advertising,
scanning, or
establishing a link
with resolvable
private address,
R_BLE_GAP_Enable
Rpa() was called.

Event Data:

none

BLE_GAP_EVENT_SET_RPA_TO_COMP The update time of resolvable private address
has been changed.

When Resolvable Private Address Timeout in
Controller has been updated by
R_BLE_GAP_SetRpaTo(), this event is notified to
the application layer.

Event Code: 0x111F

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,633 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_INVALID_
ARG(0x0003)

The rpa_timeout
parameter
specified by
R_BLE_GAP_SetRp
aTo() is out of
range.

Event Data:

none

BLE_GAP_EVENT_RD_RPA_COMP The resolvable private address of local device
has been retrieved.

When the resolvable private address of local
device has been retrieved by
R_BLE_GAP_ReadRpa(), this event is notified to
the application layer.

Event Code: 0x1120

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The identity
address specified
by
R_BLE_GAP_ReadR
pa() was not
registered in
Resolving List.

Event Data:

st_ble_gap_rd_rpa_evt_t

BLE_GAP_EVENT_PHY_UPD PHY for connection has been changed.

This event notifies the application layer that
PHY for a connection has been updated.

Event Code: 0x1121

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_phy_upd_evt_t

BLE_GAP_EVENT_PHY_SET_COMP The request for updating PHY for connection

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,634 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

has been sent to Controller.

When Controller has received a request for
updating PHY for a connection by
R_BLE_GAP_SetPhy(), this event is notified to
the application layer.

Event Code: 0x1122

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by
R_BLE_GAP_SetPhy
() was not found.

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_DEF_PHY_SET_COMP The request for setting default PHY has been
sent to Controller.

When the PHY preferences which a remote
device may change has been configured by
R_BLE_GAP_SetDefPhy(), this event is notified
to the application layer.

Event Code: 0x1123

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_PHY_RD_COMP PHY configuration has been retrieved.

When the PHY settings has been retrieved by
R_BLE_GAP_ReadPhy(), this event is notified to
the application layer.

Event Code: 0x1124

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_ The link specified

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,635 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

HDL(0x000E) by
R_BLE_GAP_ReadP
hy() was not
found.

Event Data:

st_ble_gap_phy_rd_evt_t

BLE_GAP_EVENT_SCAN_REQ_RECV Scan Request has been received.

This event notifies the application layer that a
Scan Request packet has been received from a
Scanner.

Event Code: 0x1125

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_scan_req_recv_evt_t

BLE_GAP_EVENT_CREATE_SYNC_COMP The request for establishing a periodic sync
has been sent to Controller.

This event notifies the application layer that
Controller has received a request for a Periodic
Sync establishment.

Event Code: 0x1126

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When
R_BLE_GAP_Create
Sync() was called,
this event for
previous the API
call has not been
received.

BLE_ERR_ALREADY
_IN_PROGRESS(0x
000A)

The advertising set
specified by
R_BLE_GAP_Create
Sync() has already
established a
periodic sync.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,636 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Data:

none

BLE_GAP_EVENT_SYNC_EST The periodic advertising sync has been
established.

This event notifies the application layer that a
Periodic sync has been established.

Event Code: 0x1127

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_NOT_YET
_READY(0x0012)

The request for a
Periodic Sync
establishment was
cancelled by
R_BLE_GAP_Cancel
CreateSync().

Event Data:

st_ble_gap_sync_est_evt_t

BLE_GAP_EVENT_SYNC_TERM The periodic advertising sync has been
terminated.

This event notifies the application layer that
the Periodic Sync has been terminated by
R_BLE_GAP_TerminateSync().

Event Code: 0x1128

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

While establishing
a Periodic Sync by
R_BLE_GAP_Create
Sync(),
R_BLE_GAP_Termi
nateSync() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The sync handle
specified by
R_BLE_GAP_Termi
nateSync() was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,637 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_SYNC_LOST The periodic advertising sync has been lost.

This event notifies the application layer that
the Periodic Sync has been lost.

Event Code: 0x1129

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP The request for cancel of establishing a
periodic advertising sync has been sent to
Controller.

This event notifies the request for a Periodic
Sync establishment has been cancelled by
R_BLE_GAP_CancelCreateSync().

Event Code: 0x112A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When
R_BLE_GAP_Cancel
CreateSync() was
called, a request
for a Periodic Sync
establishment by
R_BLE_GAP_Create
Sync() has not
been sent to
Controller.

Event Data:

none

BLE_GAP_EVENT_PERD_LIST_CONF_COMP The Periodic Advertiser list has been
configured.

When Periodic Advertiser List has been
configured by R_BLE_GAP_ConfPerdAdvList(),
this event is notified to the application layer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,638 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Code: 0x112B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertiser has
already been
registered in
Periodic Advertiser
List.

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was
called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

When establishing
a periodic sync by
R_BLE_GAP_Create
Sync(),
R_BLE_GAP_ConfPe
rdAdvList() was
called.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Periodic Advertiser
List has already
registered the
maximum number
of devices.

BLE_ERR_INVALID_
HDL(0x000E)

The device
specified by
R_BLE_GAP_ConfPe
rdAdvList() was
not found.

Event Data:

st_ble_gap_perd_list_conf_evt_t

BLE_GAP_EVENT_PRIV_MODE_SET_COMP Privacy Mode has been configured.

This event notifies the application layer that
the Privacy Mode has been configured by
R_BLE_GAP_SetPrivMode().

Event Code: 0x112B

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,639 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_INVALID_
ARG(0x0003)

Address type or
privacy mode is
out of range.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While advertising,
scanning, or
establishing a link
with resolvable
private address,
R_BLE_GAP_SetPri
vMode() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The address
specified by
R_BLE_GAP_SetPri
vMode() has not
been registered in
Resolving List.

Event Data:

none

BLE_GAP_EVENT_PAIRING_REQ The pairing request from a remote device has
been received.

This event notifies the application layer that a
pairing request from a remote device has been
received.

Event Code: 0x1401

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_pairing_info_evt_t

BLE_GAP_EVENT_PASSKEY_ENTRY_REQ The request for input passkey has been
received.

This event notifies that a request for Passkey
input in pairing has been received.

Event Code: 0x1402

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,640 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ The request for displaying a passkey has been
received.

This event notifies that a request for Passkey
display in pairing has been received.

Event Code: 0x1403

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_passkey_display_evt_t

BLE_GAP_EVENT_NUM_COMP_REQ The request for confirmation with Numeric
Comparison has received.

This event notifies that a request for Numeric
Comparison in pairing has been received.

Event Code: 0x1404

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_num_comp_evt_t

BLE_GAP_EVENT_KEY_PRESS_NTF Key Notification from a remote device has
been received.

This event notifies the application layer that
the remote device has input a key in Passkey
Entry.

Event Code: 0x1405

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_key_press_ntf_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,641 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_EVENT_PAIRING_COMP Pairing has been completed.

This event notifies the application layer that
the pairing has completed.

Event Code: 0x1406

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_SMP_LE_
PASSKEY_ENTRY_F
AIL(0x2001)

PassKey Entry is
failed.

BLE_ERR_SMP_LE_
OOB_DATA_NOT_A
VAILABLE(0x2002)

OOB Data is not
available.

BLE_ERR_SMP_LE_
AUTH_REQ_NOT_M
ET(0x2003)

The requested
pairing can not be
performed
because of IO
Capability.

BLE_ERR_SMP_LE_
CONFIRM_VAL_NO
T_MATCH(0x2004)

Confirmation value
does not match.

BLE_ERR_SMP_LE_
PAIRING_NOT_SPR
T(0x2005)

Pairing is not
supported.

BLE_ERR_SMP_LE_I
NSUFFICIENT_ENC_
KEY_SIZE(0x2006)

Encryption Key
Size is insufficient.

BLE_ERR_SMP_LE_
CMD_NOT_SPRT(0x
2007)

The pairing
command received
is not supported.

BLE_ERR_SMP_LE_
UNSPECIFIED_REA
SON(0x2008)

Pairing failed with
an unspecified
reason.

BLE_ERR_SMP_LE_
REPEATED_ATTEM
PTS(0x2009)

The number of
repetition
exceeded the
upper limit.

BLE_ERR_SMP_LE_I
NVALID_PARAM(0x
200A)

Invalid parameter
is set.

BLE_ERR_SMP_LE_
DHKEY_CHECK_FAI
L(0x200B)

DHKey Check
error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,642 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_SMP_LE_
NUM_COMP_FAIL(0
x200C)

Numeric
Comparison
failure.

BLE_ERR_SMP_LE_
DISCONNECTED(0x
200F)

Disconnection in
pairing.

BLE_ERR_SMP_LE_
TO(0x2011)

Failure due to
timeout.

BLE_ERR_SMP_LE_
LOC_KEY_MISSING(
0x2014)

Pairing/Encryption
failure because
local device lost
the LTK.

Event Data:

st_ble_gap_pairing_info_evt_t

BLE_GAP_EVENT_ENC_CHG Key Notification from a remote device has
been received.

This event notifies the application layer that
the encryption status of a link has been
changed.

Event Code: 0x1407

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_enc_chg_evt_t

BLE_GAP_EVENT_PEER_KEY_INFO Keys has been received from a remote device.

This event notifies the application layer that
the remote device has distributed the keys.

Event Code: 0x1408

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_peer_key_info_evt_t

BLE_GAP_EVENT_EX_KEY_REQ The request for key distribution has been
received.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,643 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

When local device has been received a request
for key distribution to remote device, this
event is notified to the application layer.

Event Code: 0x1409

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_LTK_REQ LTK has been request from a remote device.

When local device has been received a LTK
request from a remote device, this event is
notified to the application layer.

Event Code: 0x140A

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_ltk_req_evt_t

BLE_GAP_EVENT_LTK_RSP_COMP LTK reply has been sent to Controller.

When local device has replied to the LTK
request from the remote device, this event is
notified to the application layer.

Event Code: 0x140B

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_ltk_rsp_evt_t

BLE_GAP_EVENT_SC_OOB_CREATE_COMP The authentication data to be used in Secure
Connections OOB has been created.

This event notifies OOB data for Secure
Connections has been generated by
R_BLE_GAP_CreateScOobData().

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,644 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Event Code: 0x140C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_sc_oob_data_evt_t

BLE_GAP_EVENT_CTE_CONN_REQ_FAILED An connectionless CTE IQ sample is reported.

result

0x0000 Response without CTE info other
Rejected by remote peer

Event Data:

None

BLE_GAP_EVENT_CTE_CONNLESS_REPT An connectionless CTE IQ sample is reported.

Event Data:

st_ble_gap_cte_connless_rept_t

BLE_GAP_EVENT_CTE_CONN_REPT An connection CTE IQ sample is reported.

Event Data:

st_ble_gap_cte_conn_rept_t

BLE_GAP_EVENT_SUBRATE_CHANGE a Connection Subrate Update procedure has
completed and some parameters of the
specified connection have changed.

Event Data:

st_ble_subrate_upd_t

BLE_GAP_EVENT_PAST_RECV This event notifies that it has received periodic
advertising synchronization information from
the device referred to by the
Connection_Handle parameter

Event Data:

st_ble_gap_past_est_evt_t.

BLE_GAP_EVENT_TX_POWER_REPT Transmit power level report.

This event is a report of the transmit power
level on the ACL connection identified by the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,645 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

conn_hdl

Event Data:

st_ble_gap_tx_power_reporting_evt_t

BLE_GAP_EVENT_PATH_LOSS_THR Report a path loss threshold crossing on the
ACL connection identified by the
Connection_Handle parameter.

Event Data:

st_ble_gap_pass_loss_thr_evt_t

BLE_GAP_EVENT_REQ_PEER_SCA_COMP Indicates that the HCI_LE_Request_Peer_SCA
command has been completed.

Event Data:

st_ble_gap_req_peer_sca_evt_t.

BLE_GAP_EVENT_CTE_SET_CONNLESS_PARAM_C
OMP

Event Data:

None

BLE_GAP_EVENT_CTE_CONNLESS_TX_ON Event Data:

None

BLE_GAP_EVENT_CTE_CONNLESS_TX_OFF Event Data:

None

BLE_GAP_EVENT_CTE_CONNLESS_RX_ON Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_CTE_CONNLESS_RX_OFF Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_CTE_SET_CONN_PARAM_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_CTE_SET_CONN_RSP_ON Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_CTE_SET_CONN_RSP_OFF Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_CTE_SET_CONN_RECV_PARAM_
COMP

Event Data:

st_ble_gap_conn_hdl_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,646 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_EVENT_CTE_CONN_REQ_ON Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_CTE_CONN_REQ_OFF Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_SET_DEF_SUBRATE_COMP Event Data:

None

BLE_GAP_EVENT_REQ_SUBRATE_COMP Event Data:

None

BLE_GAP_EVENT_PAST_START_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PAST_SET_PARAM_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PAST_SET_DEF_PARAM_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_UPD_SCA_COMP Event Data:

None

BLE_GAP_EVENT_READ_REMOTE_TX_POWER_CO
MP

Event Data:

None

BLE_GAP_EVENT_SET_PATHLOSS_REPT_PARAM_C
OMP

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PATHLOSS_REPT_ON Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PATHLOSS_REPT_OFF Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_LOCAL_TX_POWER_REPT_ON Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_LOCAL_TX_POWER_REPT_OFF Event Data:

st_ble_gap_conn_hdl_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,647 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_EVENT_REMOTE_TX_POWER_REPT_ON Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_REMOTE_TX_POWER_REPT_OFF

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_SET_RPA_UPD_REASON_COMP Event Data:

None

BLE_GAP_EVENT_DTM_RX_TEST_COMP Event Data:

None

BLE_GAP_EVENT_DTM_TX_TEST_COMP Event Data:

None

BLE_GAP_EVENT_DTM_TEST_END_COMP Event Data:

st_ble_gap_dtm_test_end_evt_t

BLE_GAP_EVENT_ENHANCED_READ_TX_POWER_
LEVEL_COMP

Event Data:

st_ble_gap_enhanced_read_tx_power_level_evt
_t

BLE_GAP_EVENT_SET_HOST_FEAT_COMP Event Data:

None

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,648 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_Init()

ble_status_t R_BLE_GAP_Init (ble_gap_app_cb_t gap_cb)

Initialize the Host Stack.

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback function is registered with this function. In order to receive the GAP event, it's
necessary to register a callback function. The result of this API call is notified in
BLE_GAP_EVENT_STACK_ON event.

Parameters
[in] gap_cb A callback function

registered with this function.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) gap_cb is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

Host Stack was already initialized.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_Terminate()

ble_status_t R_BLE_GAP_Terminate (void)

Terminate the Host Stack.

Host stack is terminated with this function. In order to reset all the Bluetooth functions, it's
necessary to call this function. The result of this API call is notified in BLE_GAP_EVENT_STACK_OFF
event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) Host stack hasn't been initialized.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,649 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_UpdConn()

ble_status_t R_BLE_GAP_UpdConn (uint16_t conn_hdl, uint8_t mode, uint16_t accept,
st_ble_gap_conn_param_t * p_conn_updt_param)

Update the connection parameters.

This function updates the connection parameters or replies a request for updating connection
parameters notified by BLE_GAP_EVENT_CONN_PARAM_UPD_REQ event. When the connection
parameters has been updated, BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event is notified to the
application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link to be
updated.

[in] mode Connection parameter
update request or response.
macro description

BLE_GAP_CO
NN_UPD_MO
DE_REQ
(0x01)

Request for
updating the
connection
parameters.

BLE_GAP_CO
NN_UPD_MO
DE_RSP
(0x02)

Reply a
connection
parameter
update
request.

[in] accept When mode is BLE_GAP_CON
N_UPD_MODE_RSP, accept or
reject the connection
parameters update request.
If mode is BLE_GAP_CONN_U
PD_MODE_REQ, accept is
ignored.
macro description

BLE_GAP_CO
NN_UPD_AC
CEPT
(0x0000)

Accept the
update
request.

BLE_GAP_CO
NN_UPD_REJ
ECT
(0x0001)

Reject the
update
request.

[in] p_conn_updt_param Connection parameters to be
updated. When mode is BLE_
GAP_CONN_UPD_MODE_RSP
and accept is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,650 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_GAP_CONN_UPD_REJECT
, p_conn_updt_param is
ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) When accept is
BLE_GAP_CONN_UPD_ACCEPT,
p_conn_updt_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following is out of range.

mode
accept
conn_intv_min field in
p_conn_updt_param
conn_intv_max field in
p_conn_updt_param
conn_latency in p_conn_updt_param
sup_to in p_conn_updt_param
conn_hdl

BLE_ERR_INVALID_STATE(0x0008) Not connected with the remote device.

BLE_ERR_CONTEXT_FULL(0x000B) Sending a L2CAP command, an error
occurred.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,651 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetDataLen()

ble_status_t R_BLE_GAP_SetDataLen (uint16_t conn_hdl, uint16_t tx_octets, uint16_t tx_time)

Update the packet size and the packet transmit time.

This function requests for changing the maximum transmission packet size and the maximum
packet transmission time. When Controller has received the request from host stack,
BLE_GAP_EVENT_SET_DATA_LEN_COMP event is notified to the application layer. When the
transmission packet size or the transmission time has been changed,
BLE_GAP_EVENT_DATA_LEN_CHG event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
the transmission packet size
or the transmission time to
be changed.

[in] tx_octets Maximum transmission
packet size. Valid range is
0x001B - 0x00FB.

[in] tx_time Maximum transmission
time(us). Valid range is
0x0148 - 0x4290.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,652 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_Disconnect()

ble_status_t R_BLE_GAP_Disconnect (uint16_t conn_hdl, uint8_t reason)

Disconnect the link.

This function disconnects a link. When the link has disconnected, BLE_GAP_EVENT_DISCONN_IND
event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link to be
disconnected.

[in] reason The reason for
disconnection. Usually, set
0x13 which indicates that a
user disconnects the link. If
setting other than 0x13,
refer the error code
described in Core
Specification Vol.2 Part D ,"2
Error Code Descriptions".

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,653 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetPhy()

ble_status_t R_BLE_GAP_SetPhy (uint16_t conn_hdl, st_ble_gap_set_phy_param_t * p_phy_param
)

Set the phy for connection.

This function sets the PHY preferences for the connection. The result of this API call is notified in
BLE_GAP_EVENT_PHY_SET_COMP event. When the PHY has been updated,
BLE_GAP_EVENT_PHY_UPD event is notified to the application layer.

After PHY update, the PHY accept configuration of local device is the same as the values in
BLE_GAP_EVENT_PHY_UPD event.
For example, after calling R_BLE_GAP_SetPhy(), if tx_phy, rx_phy by BLE_GAP_EVENT_PHY_UPD
event are updated to 2M PHY, the PHY accept configuration is 2M PHY only.
Therefore after receiving BLE_GAP_EVENT_PHY_UPD event, if local device wants to accept the other
PHY configuration, it needs to call R_BLE_GAP_SetPhy() with the desired PHY accept configuration.

Because the maximum transmission packet size or the maximum transmission time might be
updated by PHY update, if the same packet size or transmission time as the previous one is
desired, change the maximum transmission packet size or the maximum transmission time by
R_BLE_GAP_SetDataLen().

Parameters
[in] conn_hdl Connection handle

identifying the link whose
PHY to be updated.

[in] p_phy_param PHY preferences.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_phy_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) conn_hdl or option field in p_phy_param is
out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,654 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetDefPhy()

ble_status_t R_BLE_GAP_SetDefPhy (st_ble_gap_set_def_phy_param_t * p_def_phy_param)

Set the default phy which allows remote device to change.

This function sets the PHY preferences which a remote device may change. The result of this API
call is notified in BLE_GAP_EVENT_DEF_PHY_SET_COMP event.

Parameters
[in] p_def_phy_param The PHY preference which a

remote device may change.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_def_phy_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) tx_phys or tx_phys field in p_def_phy_param
is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetPrivMode()

ble_status_t R_BLE_GAP_SetPrivMode (st_ble_dev_addr_t * p_addr, uint8_t * p_privacy_mode,
uint8_t device_num)

Set the privacy mode.

This function sets privacy mode for the remote device registered in Resolving List. By default,
Network Privacy Mode is set.
The result of this API call is notified in BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

Parameters
[in] p_addr An array of identity address

of the remote device to set
privacy mode. The number
of elements is specified by
device_num.

[in] p_privacy_mode An array of privacy mode to
set to remote device. The
number of elements is
specified by device_num.
The following value is set as

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,655 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

the privacy mode.
macro description

BLE_GAP_NE
T_PRIV_MOD
E (0x00)

Network
Privacy
Mode.

BLE_GAP_DE
V_PRIV_MOD
E (0x01)

Device
Privacy
Mode.

[in] device_num The number of devices to set
privacy mode. Valid range is
1-BLE_GAP_RSLV_LIST_MAX_
ENTRY.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr or p_privacy_mode is specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) The following parameter is out of range.

The address type in p_addr.
The privacy mode specified by
p_privacy_mode.
device_num

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While configuring privacy mode, this
function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,656 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ConfWhiteList()

ble_status_t R_BLE_GAP_ConfWhiteList (uint8_t op_code, st_ble_dev_addr_t * p_addr, uint8_t
device_num)

Set White List.

This function supports the following operations regarding White List.

Add the device to White List.
Delete the device from White List.

Clear White List.

The total number of White List entries is defined as BLE_GAP_WHITE_LIST_MAX_ENTRY. The
result of this API call is notified in BLE_GAP_EVENT_WHITE_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for White

List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of device
address to add / delete to
the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] device_num The number of devices
add / delete to the list.
Valid range is 1-BLE_GAP_
WHITE_LIST_MAX_ENTRY.
If op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,657 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

BLE_ERR_INVALID_PTR(0x0001) When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV, p_addr is
specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) op_code or address type field in p_addr
is out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating White List, this
function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
the White List.

◆ R_BLE_GAP_GetVerInfo()

ble_status_t R_BLE_GAP_GetVerInfo (void)

Get the version number of the Controller and the host stack.

This function retrieves the version information of local device. The result of this API call is notified
in BLE_GAP_EVENT_LOC_VER_INFO event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,658 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReadPhy()

ble_status_t R_BLE_GAP_ReadPhy (uint16_t conn_hdl)

Get the phy settings.

This function gets the PHY settings for the connection. The result of this API call is notified in
BLE_GAP_EVENT_PHY_RD_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
PHY settings to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,659 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ConfRslvList()

ble_status_t R_BLE_GAP_ConfRslvList (uint8_t op_code, st_ble_dev_addr_t * p_addr,
st_ble_gap_rslv_list_key_set_t * p_peer_irk, uint8_t device_num)

Set Resolving List.

This function supports the following operations regarding Resolving List.

Add the device to Resolving List.
Delete the device from Resolving List.

Clear Resolving List.

In order to generate a resolvable private address, a local IRK needs to be registered by
R_BLE_GAP_SetLocIdInfo(). If communicating with the identity address, register all-zero IRK
as local IRK. In order to resolve resolvable private address of the remote device, the IRK
distributed from the remote device needs to be added to Resolving List. The total number of
Resolving List entries is defined as BLE_GAP_RESOLV_LIST_MAX_ENTRY. The result of this
API call is notified in BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for

Resolving List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of Identity
Addresses to add / delete
to the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] p_peer_irk The remote IRK and the
type of local IRK added to
Resolving List. If op_code
is other than
BLE_GAP_LIST_ADD_DEV,
p_peer_irk is ignored. The
number of elements is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,660 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

specified by device_num.

[in] device_num The number of devices
add / delete to the list.
Valid range is 1-BLE_GAP_
RSLV_LIST_MAX_ENTRY. If
op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

When added to or deleted from
the list, p_addr is specified as
NULL.
When added to the list,
p_peer_irk is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

op_code is out of range.
When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV,
device_num is out of range.
When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV,
address type field in p_addr is
out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating Resolving List,
this function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
the Resolving List.

BLE_ERR_INVALID_HDL(0x000E) The specified Identity Address was not
found in Resolving List.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,661 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_EnableRpa()

ble_status_t R_BLE_GAP_EnableRpa (uint8_t enable)

Enable/Disable address resolution and generation of a resolvable private address.

This function enables or disables RPA functionality. The RPA functionality includes the following.

Generation of local resolvable private address
Resolution of remote resolvable private address

In order to do advertising, scanning or creating a link with local resolvable private address, the RPA
functionality needs to be enabled. After enabling the RPA functionality and the identity address of
remote device and the IRKs of local/remote device is registered, local device can generate own
resolvable private address in the time interval set by R_BLE_GAP_SetRpaTo(), and can resolve a
resolvable private address of a remote device. It is recommended that the RPA functionality is
called immediately after the initialization by R_BLE_GAP_Init(). The result of this API call is notified
in BLE_GAP_EVENT_RPA_EN_COMP event.

Parameters
[in] enable Enable or disable address

resolution function.
macro description

BLE_GAP_RP
A_DISABLED
(0x00)

Disable RPA
generation/r
esolution.

BLE_GAP_RP
A_ENABLED(
0x01)

Enable RPA
generation/r
esolution.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) enable is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,662 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetRpaTo()

ble_status_t R_BLE_GAP_SetRpaTo (uint16_t rpa_timeout)

Set the update time of resolvable private address.

This function sets the time interval to update the resolvable private address. The result of this API
call is notified in BLE_GAP_EVENT_SET_RPA_TO_COMP event.

Parameters
[in] rpa_timeout Time interval to update

resolvable private address in
seconds. Valid range is
0x003C - 0xA1B8. Default is
900s.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,663 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReadRpa()

ble_status_t R_BLE_GAP_ReadRpa (st_ble_dev_addr_t * p_addr)

Get the resolvable private address of local device.

This function retrieves the local resolvable private address. Before getting the address, enable the
resolvable private address function by R_BLE_GAP_EnableRpa(). The result of this API call is notified
in BLE_GAP_EVENT_RD_RPA_COMP event.

Parameters
[in] p_addr Identity address registered

in Resolving List.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) Address type in p_addr is out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows.

When retrieving the local resolvable
private address, this function was
called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,664 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReadRssi()

ble_status_t R_BLE_GAP_ReadRssi (uint16_t conn_hdl)

Get RSSI.

This function retrieves RSSI. The result of this API call is notified in BLE_GAP_EVENT_RSSI_RD_COMP
event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
RSSI to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_ReadChMap()

ble_status_t R_BLE_GAP_ReadChMap (uint16_t conn_hdl)

Get the Channel Map.

This function retrieves the channel map. The result of this API call is notified in
BLE_GAP_EVENT_CH_MAP_RD_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
channel map to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,665 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetRandAddr()

ble_status_t R_BLE_GAP_SetRandAddr (uint8_t * p_random_addr)

Set a random address.

This function sets static address or non-resolvable private address to Controller. Refer to Core
Specification Vol 6, PartB, "1.3.2 Random Device Address" regarding the format of the random
address. Resolvable private address cannot set by this API. The result of this API call is notified in
BLE_GAP_EVENT_RAND_ADDR_SET_COMP event.

Parameters
[in] p_random_addr Static address or non-

resolvable private address.
The BD address setting
format is little endian.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_random_addr is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,666 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetAdvParam()

ble_status_t R_BLE_GAP_SetAdvParam (st_ble_gap_adv_param_t * p_adv_param)

Set advertising parameters.

This function sets advertising parameters. It's possible to do advertising where the advertising
parameters are different every each advertising set. The number of advertising set in the Controller
is defined as BLE_MAX_NO_OF_ADV_SETS_SUPPORTED. Each advertising set is identified with
advertising handle (0x00-0x03). Create an advertising set with this function before start
advertising, setting periodic advertising parameters, start periodic advertising, setting advertising
data/scan response data/periodic advertising data. The result of this API call is notified in
BLE_GAP_EVENT_ADV_PARAM_SET_COMP event.

Parameters
[in] p_adv_param Advertising parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_adv_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The below p_adv_param field value is out of
range.

adv_handle
adv_intv_min/adv_intv_max
adv_ch_map
o_addr_type
p_addr_type
adv_phy
sec_adv_phy
scan_req_ntf_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetAdvSresData()

ble_status_t R_BLE_GAP_SetAdvSresData (st_ble_gap_adv_data_t * p_adv_srsp_data)

Set advertising data/scan response data/periodic advertising data.

This function sets advertising data/scan response data/periodic advertising data to the advertising
set. It is necessary to create an advertising set by R_BLE_GAP_SetAdvParam(), before calling this
function. Set advertising data/scan response data/periodic advertising data, after allocating the
memory for the data. The following shall be applied regarding the adv_prop_type field and the
data_type field in st_ble_gap_adv_param_t parameter specified in R_BLE_GAP_SetAdvParam().

The following shall be applied regarding the adv_prop_type field and the data_type field in
st_ble_gap_adv_param_t parameter specified in R_BLE_GAP_SetAdvParam().

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,667 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

When adv_prop_type is Legacy Advertising PDU type,
it's possible to set advertising data/scan response data up to 31 bytes.
advertising data/scan response data can be updated by this function in
advertising.

When adv_prop_type is Extended Advertising PDU type,
it's possible to set at most 1650 bytes of data as advertising data/scan response
data per 1 advertising set.
the total buffer size in Controller for advertising data/scan response data is 4250
bytes. Therefore please note that more than 4250 bytes of advertising data/scan
response data can not be set to all the advertising sets. Please refer to Figure 1.1
and Figure 1.2 about examples of setting advertising data/scan response data.
it's possible to update advertising data/scan response data in advertising, if the
data_length field in st_ble_gap_adv_data_t parameter is up to 251 bytes.

Figure 309: Figure 1.1

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,668 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Figure 310: Figure 1.2

When periodic advertising data is set,
At most 1650 bytes of data can be set to 1 advertising set.
The total buffer size in Controller for periodic advertising data is 4306 bytes.
Therefore please note that more than 4306 bytes of periodic advertising data can
not be set to all the advertising sets.
it's possible to update periodic advertising data in advertising, if the data_length
field in st_ble_gap_adv_data_t parameter is up to 252 bytes.

The result of this API call is notified in BLE_GAP_EVENT_ADV_DATA_UPD_COMP event.

Parameters
[in] p_adv_srsp_data Advertising data/scan

response data/periodic
advertising data.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_adv_srsp_data is specified as
NULL.
data_length field in p_adv_srsp_data
parameter is not 0 and p_data field
is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following field in p_adv_srsp_data
parameter is out of range.

adv_hdl
data_type
data_length
zero_length_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,669 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartAdv()

ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl, uint16_t duration, uint8_t
max_extd_adv_evts)

Start advertising.

This function starts advertising. Create the advertising set specified with adv_hdl by
R_BLE_GAP_SetAdvParam(), before calling this function. The result of this API call is notified in
BLE_GAP_EVENT_ADV_ON event.

Parameters
[in] adv_hdl The advertising handle

pointing to the advertising
set which starts advertising.
The valid range is 0x00 -
0x03.

[in] duration The duration for which the
advertising set identified by
adv_hdl is enabled. Time =
duration * 10ms. When the
duration expires,
BLE_GAP_EVENT_ADV_OFF
event notifies that
advertising is stopped. The
valid range is 0x0000 -
0xFFFF. The duration
parameter is ignored when
the value is set to 0x0000.

[in] max_extd_adv_evts The maximum number of
advertising events that be
sent during advertising.
When all the advertising
events(max_extd_adv_evts)
have been sent,
BLE_GAP_EVENT_ADV_OFF
event notifies that
advertising is stopped. The
max_extd_adv_evts
parameter is ignored when
the value is set to 0x00.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,670 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StopAdv()

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

Stop advertising.

This function stops advertising. The result of this API call is notified in BLE_GAP_EVENT_ADV_OFF
event.

Parameters
[in] adv_hdl The advertising handle

pointing to the advertising
set which stops advertising.
The valid range is 0x00 -
0x03.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,671 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetPerdAdvParam()

ble_status_t R_BLE_GAP_SetPerdAdvParam (st_ble_gap_perd_adv_param_t * p_perd_adv_param)

Set periodic advertising parameters.

This function sets periodic advertising parameters. Create the advertising set which supports Non-
Connectable, Non-Scannable advertising by R_BLE_GAP_SetAdvParam() before setting periodic
advertising parameters. The result of this API call is notified in
BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP event.

Parameters
[in] p_perd_adv_param Periodic advertising

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_perd_adv_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following field in the p_perd_adv_param
parameter is out of range.

adv_hdl
perd_intv_min or perd_intv_max
prop_type is neither 0x0000 nor 0x0
040(BLE_GAP_PERD_PROP_TX_POWE
R)

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,672 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartPerdAdv()

ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

Start periodic advertising.

This function starts periodic advertising. Set periodic advertising parameters to the advertising set,
before starting periodic advertising. The result of this API call is notified in
BLE_GAP_EVENT_PERD_ADV_ON event.

Parameters
[in] adv_hdl Advertising handle

identifying the advertising
set which starts periodic
advertising.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,673 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StopPerdAdv()

ble_status_t R_BLE_GAP_StopPerdAdv (uint8_t adv_hdl)

Stop periodic advertising.

This function stops periodic advertising. If the return value of this API is BLE_SUCCESS, the result is
notified in BLE_GAP_EVENT_PERD_ADV_OFF event.

Parameters
[in] adv_hdl Specify the handle of

Advertising Set to stop
Periodic Advertising.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,674 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_GetRemainAdvBufSize()

ble_status_t R_BLE_GAP_GetRemainAdvBufSize (uint16_t * p_remain_adv_data_size, uint16_t *
p_remain_perd_adv_data_size)

Get buffer size for advertising data/scan response data/periodic advertising data in the Controller.

This function gets the total size of advertising data/scan response data/periodic advertising data
which can be currently set to Controller(all of the advertising sets). The application layer gets the
data sizes via the parameters. By this API function call, no events occur.

Parameters
[out] p_remain_adv_data_size The free buffer size of

Controller to which
advertising data/scan
response data can be
currently set.

[out] p_remain_perd_adv_data_siz
e

The free buffer size of
Controller to which periodic
advertising data can be
currently set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_remain_adv_data_size or
p_remain_perd_adv_data_size is specified as
NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,675 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_RemoveAdvSet()

ble_status_t R_BLE_GAP_RemoveAdvSet (uint8_t op_code, uint8_t adv_hdl)

Delete advertising set.

This function deletes an advertising set or deletes all the advertising sets. The result of this API call
is notified in BLE_GAP_EVENT_ADV_SET_REMOVE_COMP event.

Parameters
[in] op_code The operation for delete or

clear.
macro description

BLE_GAP_RM
V_ADV_SET_
REM_OP(0x0
1)

Delete an
advertising
set.

BLE_GAP_RM
V_ADV_SET_
CLR_OP(0x0
2)

Delete all
the
advertising
sets.

[in] adv_hdl Advertising handle
identifying the advertising
set deleted. If op_code is BL
E_GAP_RMV_ADV_SET_CLR_
OP, adv_hdl is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

op_code is out of range.
When op_code is
BLE_GAP_RMV_ADV_SET_REM_OP(0x
01), adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,676 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_CreateConn()

ble_status_t R_BLE_GAP_CreateConn (st_ble_gap_create_conn_param_t * p_param)

Request for a link establishment.

This function sends a connection request to a remote device to create a link. When Controller has
received a request for establishment of a link from host stack,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified to the application layer. When the link is
established, BLE_GAP_EVENT_CONN_IND event is notified to the application layer.

Parameters
[in] p_param Connection parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_param is specified as NULL.
p_conn_param_1M field and
p_conn_param_2M and
p_conn_param_coded field in
p_param are specified as NULL.
When creating a link with 1M PHY,
p_conn_param in p_conn_param_1M
field in p_param is specified as
NULL.
When creating a link with 2M PHY,
p_conn_param in p_conn_param_2M
field in p_param is specified as
NULL.
When creating a link with coded
MPHY, p_conn_param in
p_conn_param_coded field in
p_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

init_filter_policy in p_param is out of
range.
remote_bd_addr_type field or
own_addr_type address field in
p_param is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,677 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_CancelCreateConn()

ble_status_t R_BLE_GAP_CancelCreateConn (void)

Cancel the request for a link establishment.

This function cancels a request for establishing a link. When Controller has received the cancel
request from host stack, BLE_GAP_EVENT_CONN_CANCEL_COMP event is notified to the application
layer. When the cancel procedure has completed, BLE_GAP_EVENT_CONN_IND event is notified to
the application layer.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetChMap()

ble_status_t R_BLE_GAP_SetChMap (uint8_t * p_channel_map)

Set the Channel Map.

This function sets the channel map. The result of this API call is notified in
BLE_GAP_EVENT_CH_MAP_SET_COMP event.

Parameters
[in] p_channel_map Channel map.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_channel_map is specified as NULL.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_StartScan()

ble_status_t R_BLE_GAP_StartScan (st_ble_gap_scan_param_t * p_scan_param,
st_ble_gap_scan_on_t * p_scan_enable)

Set scan parameter and start scan.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,678 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

This function starts scanning. When scanning for the first time, set the p_scan_param. Setting scan
parameters can be omitted by specifying p_scan_param as NULL after next time. The result of this
API call is notified in BLE_GAP_EVENT_SCAN_ON event. Advertising report is notified in
BLE_GAP_EVENT_ADV_REPT_IND event. Figure 1.3 shows the relationship between scan period,
scan duration, scan interval and scan window.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,679 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Figure 311: Figure 1.3

 When scan duration is non-zero, scan period is zero and scan duration expires,
BLE_GAP_EVENT_SCAN_TO event is notified to the application layer.

Parameters
[in] p_scan_param Scan parameter. When

p_scan_param is specified as
NULL, host stack doesn't set
scan parameters and start
scanning with the previous
parameters.

[in] p_scan_enable Scan period, scan duration,
duplicate filter and
procedure type.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_scan_enable is specified as NULL.
p_phy_param_1M field and
p_phy_param_coded field in
p_scan_param are specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

proc_type field in p_scan_enable is
out of range.
filter_dups in p_scan_enable is out of
range.
o_addr_type in p_scan_param is out
of range.
filter_policy in p_scan_param is out
of range.
scan_type of p_scan_param's
p_phy_param_1M or
p_phy_param_coded is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,680 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StopScan()

ble_status_t R_BLE_GAP_StopScan (void)

Stop scan.

This function stops scanning. The result of this API call is notified in BLE_GAP_EVENT_SCAN_OFF
event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_CreateSync()

ble_status_t R_BLE_GAP_CreateSync (st_ble_dev_addr_t * p_addr, uint8_t adv_sid, uint16_t skip,
uint16_t sync_to)

Request for a periodic sync establishment.

This function sends a request for establishment of a periodic sync to a advertiser. In order to create
a periodic sync, scan needs to be starting by R_BLE_GAP_StartScan(). When Controller has received
the request from host stack, BLE_GAP_EVENT_CREATE_SYNC_COMP event is notified to the
application layer. When the periodic sync is established, BLE_GAP_EVENT_SYNC_EST event is
notified to the application layer.

Parameters
[in] p_addr The address of periodic

advertiser.When p_addr is
specified as NULL, local
device creates a periodic
sync with the advertiser
registered in Periodic
Advertiser List.

[in] adv_sid Advertising SID. When
p_addr is specified as NULL,
adv_sid is ignored. Valid
range is 0x00 - 0x0F.

[in] skip The number of consecutive
periodic advertising packets
that local device may skip
after receiving a periodic
advertising packet. Valid
range is 0x0000 - 0x01F3.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,681 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

[in] sync_to The maximum permitted
time between successful
receives.When sync_to
expires, the periodic sync is
lost. Time(ms) = sync_to *
10. Valid range is 0x000A -
0x4000.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following parameter is out of range.

address type in p_addr
adv_sid
skip
sync_to

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_CancelCreateSync()

ble_status_t R_BLE_GAP_CancelCreateSync (void)

Cancel the request for a periodic sync establishment.

This function cancels a request for establishing a periodic sync. The result of this API call is notified
in BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,682 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_TerminateSync()

ble_status_t R_BLE_GAP_TerminateSync (uint16_t sync_hdl)

Terminate the periodic sync.

This function terminates a periodic sync. The result of this API call is notified in
BLE_GAP_EVENT_SYNC_TERM event.

Parameters
[in] sync_hdl Sync handle identifying the

periodic sync to be
terminated.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) sync_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,683 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ConfPerdAdvList()

ble_status_t R_BLE_GAP_ConfPerdAdvList (uint8_t op_code, st_ble_dev_addr_t * p_addr, uint8_t *
p_adv_sid_set, uint8_t device_num)

Set Periodic Advertiser List.

This function supports the following operations regarding Periodic Advertiser List.

Add the device to Periodic Advertiser List.
Delete the device from Periodic Advertiser List.

Clear Periodic Advertiser List.

The total number of Periodic Advertiser List entries is defined as
BLE_GAP_PERD_LIST_MAX_ENTRY. The result of this API call is notified in
BLE_GAP_EVENT_PERD_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for Periodic

Advertiser List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of device
address to add / delete to
the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] p_adv_sid_set An array of SID of the
advertiser to add / delete
to the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_adv_sid_set is ignored.

[in] device_num The number of devices
add / delete to the list.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,684 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

Valid range is 1-BLE_GAP_
PERD_LIST_MAX_ENTRY. If
op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV, p_addr or
p_adv_sid_set is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) op_code or address type field in p_addr
or p_adv_sid_set or device_num is out
of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating Periodic
Advertiser List, this function
was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
periodic advertiser.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,685 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_AuthorizeDev()

ble_status_t R_BLE_GAP_AuthorizeDev (uint16_t conn_hdl, uint8_t author_flag)

Authorize a remote device.

User authorizes a remote device by this function. This function is used when a remote device
accesses a GATT Characteristic in local device which requests user authorization. The result of this
API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be authorized or
not by user.

[in] author_flag Authorize or not the remote
device.
macro description

BLE_GAP_NO
T_AUTHORIZ
ED(0x00)

Not
authorize
the remote
device.

BLE_GAP_AU
THORIZED(0
x01)

Authorize
the remote
device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) author_flag is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,686 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_GetRemDevInfo()

ble_status_t R_BLE_GAP_GetRemDevInfo (uint16_t conn_hdl)

Get the information about remote device.

This function retrieves information about the remote device. The information includes BD_ADDR,
the version number and LE features. The result of this API call is notified in
BLE_GAP_EVENT_GET_REM_DEV_INFO event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device whose information to
be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetPairingParams()

ble_status_t R_BLE_GAP_SetPairingParams (st_ble_gap_pairing_param_t * p_pair_param)

Set the parameters using pairing.

This function sets the parameters used in pairing. The parameters set by this API are sent to the
remote device when pairing occurred. The result of this API call is returned by a return value.

Parameters
[in] p_pair_param Pairing parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The following field in p_pair_param is out of
range.

iocap
max_key_size
mitm
bonding
key_notf
sec_conn_only

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,687 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetLocIdInfo()

ble_status_t R_BLE_GAP_SetLocIdInfo (st_ble_dev_addr_t * p_lc_id_addr, uint8_t * p_lc_irk)

Set the IRK and the identity address distributed to a remote device.

This function registers local IRK and identity address of local device in host stack. The IRK and the
identity address are distributed to a remote device in pairing. The result of this API call is returned
by a return value.

Parameters
[in] p_lc_id_addr Identity address to be

registered in host stack.

[in] p_lc_irk IRK to be registered in host
stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_lc_id_addr or p_lc_irk is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) Address type field in p_lc_id_addr is out of
range.

◆ R_BLE_GAP_SetLocCsrk()

ble_status_t R_BLE_GAP_SetLocCsrk (uint8_t * p_local_csrk)

Set the CSRK distributed to a remote device.

This function registers local CSRK in host stack. The CSRK is distributed to a remote device in
pairing. The result of this API call is returned by a return value.

Parameters
[in] p_local_csrk CSRK to be registered in

host stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_local_csrk is specified as NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,688 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartPairing()

ble_status_t R_BLE_GAP_StartPairing (uint16_t conn_hdl)

Start pairing.

This function starts pairing with a remote device. The result of this API call is returned by a return
value. The result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which local device
starts pairing with.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function
was called.

BLE_ERR_CONTEXT_FULL(0x000B) While pairing, this function was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,689 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReplyPairing()

ble_status_t R_BLE_GAP_ReplyPairing (uint16_t conn_hdl, uint8_t response)

Reply the pairing request from a remote device.

This function replies to the pairing request from the remote device. The pairing request from the
remote device is notified in BLE_GAP_EVENT_PAIRING_REQ event. The result of this API call is
returned by a return value. The result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP
event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which local device
starts pairing with.

[in] response Accept or reject the pairing
request from the remote
device.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

Accept the
pairing
request.

BLE_GAP_PAI
RING_REJEC
T(0x01)

Reject the
pairing
request.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function
was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, host stack
has not yet received
BLE_GAP_EVENT_PAIRING_REQ event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,690 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartEnc()

ble_status_t R_BLE_GAP_StartEnc (uint16_t conn_hdl)

Encryption the link.

This function starts encryption of the link. In case of master device, the local device requests for
the encryption to a remote device. In case of slave device, the local device sends a Security
Request to a remote device. After receiving the Security Request, the remote device requests for
the encryption to the local device. The result of the encryption is returned in
BLE_GAP_EVENT_ENC_CHG event.

Parameters
[in] conn_hdl Connection handle

identifying the link which is
encrypted.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

Pairing has not been completed.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,691 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReplyPasskeyEntry()

ble_status_t R_BLE_GAP_ReplyPasskeyEntry (uint16_t conn_hdl, uint32_t passkey, uint8_t
response)

Reply the passkey entry request.

When BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event is notified, the response to passkey entry is
sent by this function. The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which the reply to
passkey entry is sent.

[in] passkey Passkey. The valid range is
000000 - 999999 in decimal.

[in] response Active or negative reply to
passkey entry.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

Accept the
passkey
entry
pairing.

BLE_GAP_PAI
RING_REJEC
T(0x01)

Reject the
passkey
entry
pairing.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) passkey or response is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,692 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReplyNumComp()

ble_status_t R_BLE_GAP_ReplyNumComp (uint16_t conn_hdl, uint8_t response)

Reply the numeric comparison request.

When BLE_GAP_EVENT_NUM_COMP_REQ event is notified, the response to Numeric Comparison is
sent by this function. The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which the reply to
Numeric Comparison is sent.

[in] response Active or negative reply in
Numeric Comparison.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

The number
displayed in
the local is
the same as
the one of
the remote.

BLE_GAP_PAI
RING_REJEC
T(0x01)

The number
displayed in
the local is
differs from
the one of
the remote.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) When this function was called, host stack
has not yet received
BLE_GAP_EVENT_NUM_COMP_REQ event.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,693 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_NotifyKeyPress()

ble_status_t R_BLE_GAP_NotifyKeyPress (uint16_t conn_hdl, uint8_t key_press)

Notify the input key type which a remote device inputs in the passkey entry.

This function notifies the input key type to the remote device in passkey entry. The result is
returned from this API.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to which the key
notification is sent.

[in] key_press Input key type.
macro description

BLE_GAP_LE
SC_PASSKEY
_ENTRY_STA
RTED(0x00)

Notify that
passkey
entry
started.

BLE_GAP_LE
SC_PASSKEY
_DIGIT_ENTE
RED(0x01)

Notify that
passkey
digit
entered.

BLE_GAP_LE
SC_PASSKEY
_DIGIT_ERAS
ED(0x02)

Notify that
passkey
digit erased.

BLE_GAP_LE
SC_PASSKEY
_CLEARED(0
x03)

Notify that
passkey
cleared.

BLE_GAP_LE
SC_PASSKEY
_ENTRY_CO
MPLETED(0x
04)

Notify that
passkey
entry
completed.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) key_press parameter is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,694 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_GetDevSecInfo()

ble_status_t R_BLE_GAP_GetDevSecInfo (uint16_t conn_hdl, st_ble_gap_auth_info_t * p_sec_info)

Get the security information about the remote device.

This function gets the parameters which has been negotiated with the remote device in pairing.
The parameters can be retrieved after pairing. The result is returned by p_sec_info.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device whose bonding
information is retrieved.

[in] p_sec_info Return the security
information which has been
negotiated in pairing.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_sec_info is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The remote device bonding information has
not been set to host stack.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,695 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReplyExKeyInfoReq()

ble_status_t R_BLE_GAP_ReplyExKeyInfoReq (uint16_t conn_hdl)

Distribute the keys of local device.

When key exchange request is notified by BLE_GAP_EVENT_EX_KEY_REQ event at pairing, keys of
the local device are distributed. The result is returned from this API.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to which the key is
distributed.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,696 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetRemOobData()

ble_status_t R_BLE_GAP_SetRemOobData (st_ble_dev_addr_t * p_addr, uint8_t oob_data_flag,
st_ble_gap_oob_data_t * p_oob)

Set the oob data from a remote device.

This function registers the OOB data received from a remote device. When oob_data_flag indicates
that the OOB data has been received, the setting regarding OOB data is reflected in pairing. In
order to do OOB pairing, set the OOB data received from the remote device before pairing. The
result is returned from this API.

Parameters
[in] p_addr The remote device address.

[in] oob_data_flag This parameter indicates
whether the local device has
received the OOB data from
the remote device or not.
macro description

BLE_GAP_OO
B_DATA_NO
T_PRESENT(
0x00)

Reply that
No OOB data
has been
received
when
pairing.

BLE_GAP_OO
B_DATA_PRE
SENT(0x01)

Reply that
the OOB
data has
been
received
when
pairing.

[in] p_oob The OOB data received from
the remote device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows.

p_addr is specified as NULL.
oob_data_flag is
BLE_GAP_OOB_DATA_PRESENT and
p_oob is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) oob_data_flag is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) There is no room to register the OOB data
received from a remote device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,697 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_CreateScOobData()

ble_status_t R_BLE_GAP_CreateScOobData (void)

Create data for oob in secure connection.

This function generates the OOB data distributed to a remote device in Secure Connections. The
result of this API call is notified in BLE_GAP_EVENT_SC_OOB_CREATE_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

This function was called in pairing.
The task for host stack is not
running.

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) This function was called in creating OOB
data.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,698 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetBondInfo()

ble_status_t R_BLE_GAP_SetBondInfo (st_ble_gap_bond_info_t * p_bond_info, uint8_t device_num,
uint8_t * p_set_num)

Set the bonding information stored in non-volatile memory to the host stack.

Set the bonding information of the remote device in the host stack. After power re-supply, when
the remote device bonding information stored in non-volatile memory is set to host stack, this
function is used. Host stack can be set the number specified by the device_num parameter of
bonding information.

Parameters
[in] p_bond_info An array of bonding

information. The number of
elements is specified by
device_num.

[in] device_num The number of the devices
of which host stack registers
bonding information.

[in] p_set_num The number of the devices
whose bonding information
was registered in host stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_bond_info or p_set_num is specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) device_num is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack already has the maximum
number of bonding information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,699 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_DeleteBondInfo()

void R_BLE_GAP_DeleteBondInfo (int32_t local, int32_t remote, st_ble_dev_addr_t * p_addr,
ble_gap_del_bond_cb_t gap_del_bond_cb)

This function deletes the bonding information in Host Stack.
When a function for deleting the bonding information stored in non-volatile area is registered by
the gap_del_bond_cb parameter, it is deleted as well as the bonding information in Host Stack.

Parameters
[in] local The type of the local

bonding information to be
deleted.
macro description

BLE_GAP_SE
C_DEL_LOC_
NONE(0x00)

Delete no
local keys.

BLE_GAP_SE
C_DEL_LOC_I
RK(0x01)

Delete local
IRK and
identity
address.

BLE_GAP_SE
C_DEL_LOC_
CSRK(0x02)

Delete local
CSRK.

BLE_GAP_SE
C_DEL_LOC_
ALL(0x03)

Delete all
local keys.

[in] remote The type of the remote
bonding information to be
deleted.
macro description

BLE_GAP_SE
C_DEL_REM_
NONE(0x00)

Delete no
remote
device keys.

BLE_GAP_SE
C_DEL_REM_
SA(0x01)

Delete the
keys
specified by
the p_addr
parameter.

BLE_GAP_SE
C_DEL_REM_
NOT_CONN(
0x02)

Delete keys
of not
connected
remote
devices.

BLE_GAP_SE
C_DEL_REM_
ALL(0x03)

Delete all
remote
device keys.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,700 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

[in] p_addr p_addr is specified as the
address of the remote
device whose keys are
deleted when the rem_info
parameter is set to
BLE_GAP_SEC_DEL_REM_SA(
0x01).

[in] gap_del_bond_cb This parameter is a callback
function which deletes the
bonding information stored
in non-volatile area.
After deleting the bonding
information stored in Host
Stack, the callback function
is called. If no bonding
information is stored in non-
volatile area, specify the
parameter as NULL.

Return values
none

◆ R_BLE_GAP_ReplyLtkReq()

ble_status_t R_BLE_GAP_ReplyLtkReq (uint16_t conn_hdl, uint16_t ediv, uint8_t * p_peer_rand,
uint8_t response)

Reply the LTK request from a remote device.

This function replies to the LTK request in BLE_GAP_EVENT_LTK_REQ event from a remote device.
The result of the LTK reply is returned in BLE_GAP_EVENT_LTK_RSP_COMP event. When the link
encryption has completed, BLE_GAP_EVENT_ENC_CHG event is notified.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which sent the LTK
request.

[in] ediv Ediv notified in
BLE_GAP_EVENT_LTK_REQ
event.

[in] p_peer_rand Rand notified in
BLE_GAP_EVENT_LTK_REQ
event.

[in] response Response to the LTK
request. If

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,701 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

"BLE_GAP_LTK_REQ_ACCEPT
" is specified, when no LTK
has been exchanged in
pairing, reject the LTK
request.
macro description

BLE_GAP_LT
K_REQ_ACCE
PT(0x00)

Reply for the
LTK request.

BLE_GAP_LT
K_REQ_DENY
(0x01)

Reject the
LTK request.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_peer_rand is specified as NULL in case of
legacy pairing.

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

◆ R_BLE_GAP_SetCteConnlessParam()

ble_status_t R_BLE_GAP_SetCteConnlessParam (st_ble_gap_cte_connless_t * p_cte_param)

Set the parameters for the transmission of Constant Tone Extensions in any periodic advertising.

Parameters
[in] p_cte_param parameters of type, length,

and antenna switching
pattern.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,702 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_EnableCteConnless()

ble_status_t R_BLE_GAP_EnableCteConnless (uint16_t adv_hdl, uint8_t enable)

Enable or disable Constant Tone Extensions in periodic advertising identified by the adv_hdl.

Parameters
[in] adv_hdl handle of the periodic

advertising which carries the
CTE info.

[in] enable Enable or disable address
resolution function.
macro description

BLE_GAP_CT
E_DISABLED
(0x00)

Disable conn
ectionless
CTE
transmission

BLE_GAP_CT
E_ENABLED(
0x01)

Enable conn
ectionless
CTE
transmission

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_StartCteConnlessRecv()

ble_status_t R_BLE_GAP_StartCteConnlessRecv (st_ble_gap_cte_connless_recv_t * p_cte_recv)

Enable sampling received Constant Tone Extension fields.

Application should receive BLE_GAP_EVENT_CTE_CONNLESS_REPT event.

Parameters
[in] p_cte_recv antenna switching pattern

and switching and sampling
slot durations to be used.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,703 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StopCteConnlessRecv()

ble_status_t R_BLE_GAP_StopCteConnlessRecv (uint16_t sync_hdl)

Disable sampling received Constant Tone Extension fields.

Parameters
[in] sync_hdl handle of the periodic

advertising sync which
carries the CTE info.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_SetCteConnParam()

ble_status_t R_BLE_GAP_SetCteConnParam (st_ble_gap_cte_conn_t * p_cte_param)

Set the parameters for the transmission of Constant Tone Extensions in ACL link.

Parameters
[in] p_cte_param parameters of type, length,

and antenna switching
pattern.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,704 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_EnableCteConnRsp()

ble_status_t R_BLE_GAP_EnableCteConnRsp (uint16_t conn_hdl, uint8_t enable)

Enable or disable Constant Tone Extensions Transmission in ACL link by conn_hdl.

Parameters
[in] conn_hdl handle of the ACL link which

carries the CTE info.

[in] enable Enable or disable address
resolution function.
macro description

BLE_GAP_CT
E_DISABLED
(0x00)

Disable conn
ectionless
CTE
transmission

BLE_GAP_CT
E_ENABLED(
0x01)

Enable conn
ectionless
CTE
transmission

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_SetCteConnRecvParam()

ble_status_t R_BLE_GAP_SetCteConnRecvParam (st_ble_gap_cte_conn_rx_param_t * p_cte_param)

Set the parameters for the receiving of Constant Tone Extensions in ACL link. and start sampling.

Parameters
[in] p_cte_param parameters of type, length,

and antenna switching
pattern.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,705 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StopCteConnRecvSampling()

ble_status_t R_BLE_GAP_StopCteConnRecvSampling (uint16_t conn_hdl)

Stop sampling of Constant Tone Extensions on the specified connection.

Parameters
[in] conn_hdl handle of the ACL link which

carries the CTE info.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_StartCteConnReq()

ble_status_t R_BLE_GAP_StartCteConnReq (st_ble_gap_cte_conn_req_t * p_req)

Set the parameters and start sending request of Constant Tone Extensions in ACL link to peer.

If the request does not receive a CTE Response PDU with CTE info,
BLE_GAP_EVENT_CTE_CONN_REQ_FAILED event is sent to application. Otherwise application should
receive BLE_GAP_EVENT_CTE_CONN_REPT event.

Parameters
[in] p_req parameters connection CTE

request.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_StopCteConnReq()

ble_status_t R_BLE_GAP_StopCteConnReq (uint16_t handle)

Stop sending request of Constant Tone Extensions in ACL link to peer.

Parameters
[in] handle handle of the ACL link which

carries the CTE info.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,706 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetDefaultSubrate()

ble_status_t R_BLE_GAP_SetDefaultSubrate (st_ble_gap_subrate_param_t * p_subrate_param)

Set the initial values for the acceptable parameters for subrating requests,.

Parameters
[in] p_subrate_param default parameters of

subrate.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_RequestSubrate()

ble_status_t R_BLE_GAP_RequestSubrate (uint16_t conn_hdl, st_ble_gap_subrate_param_t *
p_subrate_param)

Request a change to the subrating factor other parameters applied to an existing connection using
the Connection Subrate Update procedure.

Parameters
[in] conn_hdl handle of the ACL link which

carries the CTE info.

[in] p_subrate_param request parameters of
subrate.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,707 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartPerdAdvSetInfoTransfer()

ble_status_t R_BLE_GAP_StartPerdAdvSetInfoTransfer (uint16_t adv_hdl, uint16_t conn_hdl,
uint16_t service_data)

This function starts Periodic advertising adv set info transfer to the connection.

Send synchronization information about the periodic advertising in an advertising set to a
connected device.

Parameters
[in] adv_hdl Identifies the advertising set.

[in] conn_hdl Connection handle
identifying the remote
device.

[in] service_data A value provided by the
application for use by the
application of the peer
device.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,708 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_StartPerdAdvSyncTransfer()

ble_status_t R_BLE_GAP_StartPerdAdvSyncTransfer (uint16_t sync_hdl, uint16_t conn_hdl,
uint16_t service_data)

This function starts Periodic advertising sync transfer.

send synchronization information about the periodic advertising train identified by the Sync_Handle
parameter to a connected device.

Parameters
[in] sync_hdl Sync handle identifying the

Periodic Sync that has been
established.

[in] conn_hdl Connection handle
identifying the remote
device.

[in] service_data A value provided by the
application for use by the
application of the peer
device.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_SetPerdAdvSyncTransferParam()

ble_status_t R_BLE_GAP_SetPerdAdvSyncTransferParam (uint16_t conn_hdl,
st_ble_gap_past_param_t * p_past_param)

This function starts to accept Periodic advertising sync transfer from the connection.

This API call enables BLE_GAP_EVENT_PAST_RECV event.n

Parameters
[in] conn_hdl Connection handle

identifying the remote
device.

[in] p_past_param Periodic advertising sync
transfer parameters.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,709 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetDefPerdAdvSyncTransferParam()

ble_status_t R_BLE_GAP_SetDefPerdAdvSyncTransferParam (st_ble_gap_past_param_t *
p_past_param)

This function set the default parameter of Periodic advertising sync transfer for all subsequent
connection. It does not affect any existing connection.

This API call enables BLE_GAP_EVENT_PAST_RECV event.

Parameters
[in] p_past_param Periodic advertising sync

transfer parameters.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_ReadAntennaInfo()

ble_status_t R_BLE_GAP_ReadAntennaInfo (void)

This function read the switching rates, the sampling rates, the number of antennae, and the
maximum length of a transmitted Constant Tone Extension.

Return values
BLE_SUCCESS(0x0000) Success

BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in
enum RBLE_STATUS_enum.

BLE_ERR_UNSPECIFIED(0x0013) Unspecified error.

◆ R_BLE_GAP_ReceiverTest()

ble_status_t R_BLE_GAP_ReceiverTest (st_ble_gap_recv_test_param_t * p_rx_test_param)

Start a test where the DUT receives test reference packets at a fixed interval. The tester generates
the test reference packets.

Parameters
[in] p_rx_test_param receiver test parameter

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,710 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_TransmitterTest()

ble_status_t R_BLE_GAP_TransmitterTest (st_ble_gap_trans_test_param_t * p_tx_test_param)

Start a test where the DUT generates test reference packets at a fixed interval. The Controller shall
transmit at the power level indicated by the TX_Power_Level parameter.

Parameters
[in] p_tx_test_param transmitter test parameter

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_GAP_ModifySleepClockAccuracy()

ble_status_t R_BLE_GAP_ModifySleepClockAccuracy (uint8_t act)

request that the Controller changes its sleep clock accuracy for testing purposes. It should not be
used under other circumstances.

Parameters
[in] act Switch to a more/less

accurate clock.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,711 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_ReadRemoteTransmitPowerLevel()

ble_status_t R_BLE_GAP_ReadRemoteTransmitPowerLevel (uint16_t conn_hdl, uint8_t phy)

Read the transmit power level used by the remote device.

BLE_GAP_EVENT_TX_POWER_REPT is received as a result when
R_BLE_GAP_SetTransmitPowerReportingEnable is enabled.

Parameters
[in] conn_hdl Connection handle.

[in] phy The transmitter PHY of
packets.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_GAP_SetPathLossReportingParam()

ble_status_t R_BLE_GAP_SetPathLossReportingParam (st_ble_gap_set_path_loss_rpt_param_t *
p_loss_rpt_param)

Set the path loss threshold reporting parameters for the ACL connection identified.

Parameters
[in] p_loss_rpt_param parameter for path loss

report.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,712 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetPathLossReportingEnable()

ble_status_t R_BLE_GAP_SetPathLossReportingEnable (uint16_t conn_hdl, uint8_t enable)

Enable or disable path loss reporting for the ACL connection.

Parameters
[in] conn_hdl Connection handle.

[in] enable Reporting enable/disable.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_GAP_SetTransmitPowerReportingEnable()

ble_status_t R_BLE_GAP_SetTransmitPowerReportingEnable (uint16_t conn_hdl, uint8_t
local_enable, uint8_t remote_enable)

Enable or disable the transmit power level changing report.

Enable or disable the reporting to the local Host of transmit power level changes in the local and
remote Controllers for the ACL connection identified by the Connection_Handle parameter.

Parameters
[in] conn_hdl Connection handle.

[in] local_enable Local transmit power reports
enable/disable.

[in] remote_enable Remote transmit power
reports enable/disable.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,713 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_SetDataRelatedAddrChanges()

ble_status_t R_BLE_GAP_SetDataRelatedAddrChanges (uint8_t adv_hdl, uint8_t change_reason)

Specifies circumstances when the Controller shall refresh any Resolvable Private Address.

Specifies circumstances when the Controller shall refresh any Resolvable Private Addresss used by
the advertising set identified by the Advertising_Handle parameter, whether or not the address
timeout period has been reached. This function may be used while advertising is enabled.

Parameters
[in] adv_hdl Used to identify an

advertising set.

[in] change_reason reason(s) for refreshing
addresses.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_GAP_TestEnd()

ble_status_t R_BLE_GAP_TestEnd (void)

Stop any test which is in progress. The Num_Packets for a transmitter test shall be reported as
0x0000. The Num_Packets is an unsigned number and contains the number of received packets.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_GAP_ReqPeerSCA()

ble_status_t R_BLE_GAP_ReqPeerSCA (uint16_t conn_hdl)

Read the Sleep Clock Accuracy (SCA) of the peer device.

Parameters
[in] conn_hdl Indicate an ACL connection.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,714 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GAP

◆ R_BLE_GAP_EnhancedReadTxPowerLevel()

ble_status_t R_BLE_GAP_EnhancedReadTxPowerLevel (uint16_t conn_hdl, uint8_t phy)

Read the current and maximum transmit power levels of the local Controller on the ACL connection
identified by the Connection_Handle parameter and the PHY indicated by the PHY parameter.

Parameters
[in] conn_hdl Indicate an ACL connection.

[in] phy Indicate PHY.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_GAP_SetHostFeat()

ble_status_t R_BLE_GAP_SetHostFeat (uint8_t bit_number, uint8_t bit_value)

Set or clear a bit controlled by the Host in the Link Layer FeatureSet stored in the Controller.

Parameters
[in] bit_number Bit position in the FeatureSet

[in] bit_value Value of the bit

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

 ISO
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_ISO_CreateBig (uint8_t *p_big_hdl, uint8_t adv_hdl,
st_ble_iso_big_param_t *p_big_param)

 Create a BIG. More...

ble_status_t R_BLE_ISO_StopBig (uint8_t big_hdl, uint8_t reason)

 Stop a BIG of the big_handle. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,715 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

ble_status_t R_BLE_ISO_CreateBigSync (uint8_t *p_big_hdl, uint16_t sync_hdl,
st_ble_iso_big_sync_param_t *p_big_sync_param)

 Create a BIG sync. More...

ble_status_t R_BLE_ISO_TerminateBigSync (uint8_t big_hdl)

 Terminate a BIG sync. More...

ble_status_t R_BLE_ISO_SetCigParam (uint8_t *p_cig_id, st_ble_iso_cig_param_t
*p_cig_param)

 Create a CIG with param. More...

ble_status_t R_BLE_ISO_CreateCis (st_ble_iso_cis_conn_t *p_cis_conn)

 Create one or more CISes using the CIS param. More...

ble_status_t R_BLE_ISO_RemoveCig (uint8_t cig_id)

 remove a CIG of id and all of CIS streams in this CIG. More...

ble_status_t R_BLE_ISO_ReplyCisRequest (uint8_t cig_id, uint8_t cis_id, uint8_t
response, uint8_t reason)

 Reply the CIS request from a remote device. More...

ble_status_t R_BLE_ISO_SetupDataPath (uint16_t conn_hdl, st_ble_iso_chan_path
*p_path)

 Create the ISO data path between the Host and the Controller for a
CIS. More...

ble_status_t R_BLE_ISO_SendData (st_ble_iso_sdu_t *p_sdu_info)

 Send a SDU payload to a ISO channel of conn_hdl. More...

ble_status_t R_BLE_ISO_SendDataNoCopy (st_ble_iso_sdu_t *p_sdu_info)

 Send SDU payload to a ISO channel of conn_hdl without copying
data. More...

ble_status_t R_BLE_ISO_CreateBigTest (uint8_t *p_big_hdl, uint8_t adv_hdl,
st_ble_iso_create_big_test_param_t *p_create_big_test_param)

 Create one or more BISes of a BIG (see [Vol 6] Part B, Section 4.4.6).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,716 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

All BISes in the BIG have the same values for all parameters. More...

ble_status_t R_BLE_ISO_SetCigParamTest (uint8_t *p_cig_id,
st_ble_iso_set_cig_param_test_param_t
*p_set_cig_param_test_param)

 Create a CIG and set the parameters of one or more CISes that are
associated with a CIG in the Controller. More...

ble_status_t R_BLE_ISO_TransmitTest (uint16_t conn_hdl, uint8_t payload_type)

 Configure an established CIS or BIS and transmit test payloads which
are generated by the Controller. More...

ble_status_t R_BLE_ISO_ReceiveTest (uint16_t conn_hdl, uint8_t payload_type)

 Configure an established CIS or a synchronized BIG to receive
payloads. More...

ble_status_t R_BLE_ISO_ReadTestCounters (uint16_t conn_hdl)

 Read the test counters (see [Vol 6] Part B, Section 7) in the
Controller which is configured in ISO Receive Test mode for a CIS or
BIS specified by the Connection_Handle. Reading the test counters
does not reset the test counters. More...

ble_status_t R_BLE_ISO_TestEnd (uint16_t conn_hdl)

 Terminate the ISO Transmit and/or Receive Test mode for a CIS or
BIS specified by the Connection_Handle parameter but does not
terminate the CIS or BIS. More...

ble_status_t R_BLE_ISO_ReadLinkQuality (uint16_t conn_hdl)

 Returns the values of various counters related to link quality that are
associated with the isochronous stream specified by the
Connection_Handle parameter. More...

ble_status_t R_BLE_ISO_RemoveDataPath (uint16_t conn_hdl, uint8_t dir)

 Remove the input and/or output data path(s) associated with a CIS,
CIS configuration, or BIS identified by the Connection_Handle
parameter. More...

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,717 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

Data Structures

struct st_ble_iso_big_param_t

 big param More...

struct st_ble_iso_big_sync_param_t

 big sync param More...

struct st_ble_cis_qos

 CIS channel QoS. More...

struct st_ble_iso_cig_param_t

 CIG group param. More...

struct st_ble_iso_cis_conn_t

 CIS stream param. More...

struct st_ble_iso_chan_path

 ISO channel path param. More...

struct st_ble_iso_sdu_t

 SDU data structure in SDU input/output flow. More...

struct st_ble_iso_bis_qos_t

 BIS channel QoS data. More...

struct st_ble_iso_create_big_test_param_t

 This is the parameters used in R_BLE_ISO_CreateBigTest(). More...

struct st_ble_cis_qos_test_t

 CIS channel QoS. This is the member variables of
st_ble_iso_set_cig_param_test_param_t. More...

struct st_ble_iso_set_cig_param_test_param_t

 Parameters used in R_BLE_ISO_SetCigParamTest(). More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,718 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

struct st_ble_iso_big_comp_evt_t

 BIG info of a created BIG. More...

struct st_ble_iso_biginfo_rept_evt_t

 BIG info report in a periodic adv. More...

struct st_ble_iso_cig_set_evt_t

 CIS. More...

struct st_ble_iso_cis_req_evt_t

 CIS reqest from remote device. More...

struct st_ble_iso_cis_qos_t

 CIS channel QoS data. More...

struct st_ble_iso_cis_est_evt_t

 Information of CIS that was estabilished. More...

struct st_ble_iso_tx_comp_evt_t

 Information of ISO SDU that was sent. More...

struct st_ble_iso_test_cnt_info_t

 ISO test count. More...

struct st_ble_iso_test_end_rept_t

 ISO test report. More...

struct st_ble_iso_link_quality_info_t

 ISO link qulity information. More...

struct st_ble_iso_tx_sync_info_t

 iso TX sync information More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,719 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

struct st_ble_iso_group_hdl_evt_t

 ISO gourp handle. More...

Macros

#define BLE_ISO_PACKING_SEQUENTIAL

 sequential method of arranging subevents of multiple ISO stream

#define BLE_ISO_PACKING_INTERLEAVED

 interleaved method of arranging subevents of multiple ISO stream

#define BLE_ISO_FRAMING_UNFRAMED

 Unframed format for sending ISO PDUs.

#define BLE_ISO_FRAMING_FRAMED

 Framed format for sending ISO PDUs.

#define BLE_ISO_BROADCAST_CODE_SIZE

 Broadcast code size in BIG.

#define BLE_ISO_TIMESTAMP_NONE

 timestamp value when ts_valid is 0

#define BLE_ISO_SYNC_MSE_AUTO

 Let controller choose the max subevent.

#define BLE_ISO_CIS_ACCEPT

 Accept a CIS request.

#define BLE_ISO_CIS_REJECT

 Reject a CIS request.

#define BLE_ISO_DATA_PATH_HCI

 Value to set the ISO data path over HCI.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,720 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

#define BLE_ISO_DATA_PATH_DIR_INPUT

 audio datapath directions: App to BLE

#define BLE_ISO_DATA_PATH_DIR_OUTPUT

 audio datapath directions: BLE to App

#define BLE_ISO_DATA_MAX_PDU

 maximum number of data octets of ISO Data PDU

#define BLE_ISO_DATA_MAX_SDU

 maximum number of data octets of ISO Data SDU

Enumerations

enum e_ble_iso_evt_t

 ISO Event Identifier. More...

Data Structure Documentation

◆ st_ble_iso_big_param_t

struct st_ble_iso_big_param_t

big param

Data Fields

uint8_t num_bis Number channels.

Maximum number of channels
in a single group is BLE_ISO_MA
X_GROUP_ISO_COUNT

uint32_t sdu_intv Channel interval in us.

Value range
BT_ISO_SDU_INTERVAL_MIN -
BT_ISO_SDU_INTERVAL_MAX.

uint16_t max_sdu Maximum size of an SDU.

Value range 0x0001 to 0x0FFF

uint16_t max_latency Channel Latency in ms.

Value range 0x0005 to 0x0FA0

uint8_t rtn The number of times that every

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,721 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

BIS Data PDU should be
retransmitted.

Value range 0x00 to 0x1E

uint8_t phy Advertising PHY.
value description

0x01 Advertiser
PHY is 1M
PHY.

0x02 Advertiser
PHY is 2M
PHY.

0x03 Advertiser
PHY is Coded
PHY.

uint8_t packing Channel packing mode.

the preferred method of
arranging subevents of multiple
BISes.
BLE_ISO_PACKING_SEQUENTIAL
for Sequential or
BLE_ISO_PACKING_INTERLEAVE
D for Interleaved

uint8_t framing Channel framing mode.

the format of the BIS Data
PDUs.
BLE_ISO_FRAMING_UNFRAMED
for unframed or
BLE_ISO_FRAMING_FRAMED for
framed.

uint8_t encryption Whether or not to encrypt the
streams.

uint8_t bcode[
BLE_ISO_BROADCAST_CODE_SI
ZE]

Broadcast code.

The code used to derive the
session key that is used to
encrypt and decrypt BIS
payloads.

◆ st_ble_iso_big_sync_param_t

struct st_ble_iso_big_sync_param_t

big sync param

Data Fields

uint8_t num_bis Number channels in bis_bitfield.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,722 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

Maximum number of channels
in a single group is BLE_ISO_MA
X_GROUP_ISO_COUNT

uint32_t bis_bitfield Bitfield of the BISes to sync to

The BIS indexes start from
0x01, so the lowest allowed bit
is bit0 that represents index
0x01. To synchronize to e.g. BIS
indexes bit1 and bit2, the
bitfield value should be bit0 |
bit1.

uint8_t max_subevents maximum number of subevents
that a Controller should use to
receive data payloads in each
interval for a BIS.
BLE_ISO_SYNC_MSE_AUTO to let
controller choose.

uint16_t sync_timeout

uint8_t encryption Whether or not to encrypt the
streams.

uint8_t bcode[
BLE_ISO_BROADCAST_CODE_SI
ZE]

Broadcast code.

The code used to derive the
session key that is used to
encrypt and decrypt BIS
payloads.

◆ st_ble_cis_qos

struct st_ble_cis_qos

CIS channel QoS.

Data Fields

uint16_t max_sdu_c2p max sdu size of input and
output

uint16_t max_sdu_p2c

uint8_t rtn_c2p number of times that a CIS
Data PDU should be
retransmitted.

uint8_t rtn_p2c

uint8_t phy_c2p Transmitter PHY preference.

The phy_c2p and phy_p2c field
is set to a bitwise OR of the
following values. All other
values are ignored.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,723 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Use 1M PHY
for
Transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Use 2M PHY
for
Transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Use Coded
PHY for
Transmitter
PHY.

uint8_t phy_p2c

◆ st_ble_iso_cig_param_t

struct st_ble_iso_cig_param_t

CIG group param.

Data Fields

uint8_t num_cis Number channels of CIG.

Maximum number of channels
in a single group is BLE_ISO_MA
X_GROUP_ISO_COUNT

uint32_t sdu_intv_c2p Center to Peripheral Channel
interval in us.

uint32_t sdu_intv_p2c Peripheral to Center Channel
interval in us.

uint16_t max_latency_c2p Center to Peripheral Channel
Latency in ms.

Value range 0x0005 - 0x0FA0

uint16_t max_latency_p2c Peripheral to CenterCenter to
Peripheral Channel Latency in
ms.

Value range 0x0005 - 0x0FA0

uint8_t packing Channel packing mode.

The preferred method of
arranging subevents of multiple
CISes.
BLE_ISO_PACKING_SEQUENTIAL
for Sequential or
BLE_ISO_PACKING_INTERLEAVE
D for Interleaved

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,724 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

uint8_t framing Channel framing mode.

The format of the CIS Data
PDUs.
BLE_ISO_FRAMING_UNFRAMED
for unframed or
BLE_ISO_FRAMING_FRAMED for
framed.

st_ble_cis_qos cis_qos[BLE_ISO_MAX_GROUP_I
SO_COUNT]

qos param.

◆ st_ble_iso_cis_conn_t

struct st_ble_iso_cis_conn_t

CIS stream param.

Data Fields

uint8_t cig_id CIG id of this group.

uint8_t num_cis Number channels of CIG.

Maximum number of channels
in a single group is BLE_ISO_MA
X_GROUP_ISO_COUNT

uint16_t cis_hdl[BLE_ISO_MAX_GROUP_IS
O_COUNT]

handles for every CIS.

CIS handles are got from event
BLE_ISO_EVENT_CIG_PARAM_SE
T_COMP.

uint16_t acl_hdl[BLE_ISO_MAX_GROUP_I
SO_COUNT]

handles of ACL for every CIS.

◆ st_ble_iso_chan_path

struct st_ble_iso_chan_path

ISO channel path param.

Data Fields

uint8_t path_dir path direction.

Select value from
BLE_ISO_DATAPATH_DIR_INPUT
or BLE_ISO_DATAPATH_DIR_OU
TPUT

uint8_t path_id path ID

Only BLE_ISO_DATA_PATH_HCI
is accepted.

uint8_t coding_format Coding Format.

Refer Bluetooth SIG Assigned

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,725 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

Number(
https://www.bluetooth.com/spe
cifications/assigned-numbers).

uint16_t company_id Company ID.

uint16_t vcodec_id Vendor-defined Codec ID.

Shall be ignored if
coding_format is not 0xFF

uint32_t delay Controller Delay.

uint8_t codec_conf_len Codec Configuration length.
Reserved for future use.

uint8_t * p_codec_conf Pointer to an array containing
the Codec Configuration.
Reserved for future use.

◆ st_ble_iso_sdu_t

struct st_ble_iso_sdu_t

SDU data structure in SDU input/output flow.

Event Code : BLE_ISO_EVENT_ISO_RX_DATA_IND. Also the param of R_BLE_ISO_SendData and
R_BLE_ISO_SendDataNoCopy.

ISO SDU structure

Data Fields

uint16_t conn_hdl Identifier of the logical channel.
Should use BIS or CIS handle for
this field.

uint16_t ts_valid if 0 then timestamp value is
invalid.

uint32_t timestamp timestamp of SDU. Valid when
ts_valid is not 0.

uint16_t seq_num sequence number

uint16_t sdu_len Length of SDU.

uint8_t * p_sdu_data SDU data.

◆ st_ble_iso_bis_qos_t

struct st_ble_iso_bis_qos_t

BIS channel QoS data.

Data Fields

uint8_t nse Maximum number of subevents
in each isochronous event.

uint8_t bn The number of new payloads in
each BIS event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,726 / 5,560

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

uint8_t pto Offset used for pre-
transmissions.

uint8_t irc The number of times a payload
is transmitted in a BIS event.

uint16_t max_pdu Maximum size, in octets, of the
payload.

uint16_t iso_interval The interval, in microseconds,
of periodic SDUs.

◆ st_ble_iso_create_big_test_param_t

struct st_ble_iso_create_big_test_param_t

This is the parameters used in R_BLE_ISO_CreateBigTest().

Data Fields

uint8_t num_bis Total number of BISes in the
BIG.

uint8_t sdu_interval[3] The interval, in microseconds,
of periodic SDUs.

uint16_t iso_interval The time between consecutive
BIG anchor points.

uint8_t nse The total number of subevents
in each interval of each BIS in
the BIG.

uint16_t max_sdu Maximum size, in octets, of an
SDU.

uint16_t max_pdu Maximum size, in octets, of
payload.

uint8_t phy The transmitter PHY of packets.

uint8_t packing The preferred method of
arranging subevents of multiple
BISes.

uint8_t framing The format for sending BIS Data
PDUs.

uint8_t bn Number of new payloads for
each BIS in a BIS event.

uint8_t irc Number of times the scheduled
data packet is transmitted.

uint8_t pto Offset in number of
ISO_Intervals for pre
transmissions of data packets.

uint8_t encryption Encryption mode of the BISes in
the BIG.

uint8_t bcode[Used to generate the session

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,727 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

BLE_ISO_BROADCAST_CODE_SI
ZE]

key to encrypt payloads of all
BISes in the BIG.

◆ st_ble_cis_qos_test_t

struct st_ble_cis_qos_test_t

CIS channel QoS. This is the member variables of st_ble_iso_set_cig_param_test_param_t.

Data Fields

uint8_t cis_id Used to identify the CIS.

uint8_t nse Maximum number of subevents
for each CIS in a CIG event.

uint16_t c_sdu Maximum size, in octets, of the
payload from the Central Host.

uint16_t p_sdu Maximum size, in octets, of the
payload from the Peripheral
Host.

uint16_t c_pdu Maximum size, in octets, of the
payload from the Central Link
Layer to the Peripheral Link
Layer.

uint16_t p_pdu Maximum size, in octets, of the
payload from the Peripheral
Link Layer to the Central Link
Layer.

uint8_t c_phy The transmitter PHY of packets
from the Central.

uint8_t p_phy The transmitter PHY of packets
from the Peripheral.

uint8_t c_bn Burst number for Central to
Peripheral.

uint8_t p_bn Burst number for Peripheral to
Central.

◆ st_ble_iso_set_cig_param_test_param_t

struct st_ble_iso_set_cig_param_test_param_t

Parameters used in R_BLE_ISO_SetCigParamTest().

Data Fields

uint8_t c_interval[3] Time interval of periodic SDUs
from the Central Host.

uint8_t p_interval[3] Time interval of periodic SDUs
from the Peripheral Host.

uint8_t c_ft Maximum time for a payload
from the Central to Peripheral
to be transmitted and re-

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,728 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

transmitted, after which it is
flushed.

uint8_t p_ft Maximum time for a payload
from the Peripheral to Central
to be transmitted and re-
transmitted, after which it is
flushed.

uint16_t iso_interval Time between two consecutive
CIS anchor points.

uint8_t sca Worst-case sleep clock
accuracy of all the Peripherals
that will participate in the CIG.

uint8_t packing Preferred method of arranging
subevents of multiple CISes.

uint8_t framing Format of the CIS Data PDUs of
all the CISes.

uint8_t num_cis Total number of CIS
configurations in the CIG being
added or modified.

st_ble_cis_qos_test_t cis[BLE_ISO_MAX_GROUP_ISO_C
OUNT]

CIS QoS configurations.

◆ st_ble_iso_big_comp_evt_t

struct st_ble_iso_big_comp_evt_t

BIG info of a created BIG.

Event Code : BLE_ISO_EVENT_CREATE_BIG_COMP BLE_ISO_EVENT_CREATE_BIG_SYNC_COMP:
st_ble_iso_big_comp_evt_t

Data Fields

uint8_t status status of BIG creation

uint8_t big_hdl BIG handle.

uint32_t sync_delay BIG sync delay.

uint32_t latency Actual latency returned by
controller.

uint8_t phy PHY.

st_ble_iso_bis_qos_t bis_qos qos parameters

uint8_t num_bis number of streams in the group

uint16_t bis_hdl[BLE_ISO_MAX_GROUP_I
SO_COUNT]

handles of all streams

◆ st_ble_iso_biginfo_rept_evt_t

struct st_ble_iso_biginfo_rept_evt_t

BIG info report in a periodic adv.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,729 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

Data Fields

uint8_t sid Advertiser SID.

uint8_t num_bis Number of BISes in the BIG.

uint8_t sub_evt_count Maximum number of subevents
in each isochronous event.

uint16_t iso_interval Interval between two BIG
anchor point (N * 1.25 ms)

uint8_t burst_number The number of new payloads in
each BIS event.

uint8_t pto Offset used for pre-
transmissions.

uint8_t rep_count The number of times a payload
is transmitted in a BIS event.

uint16_t max_pdu Maximum size, in octets, of the
payload.

uint32_t sdu_interval The interval, in microseconds,
of periodic SDUs.

uint16_t max_sdu Maximum size of an SDU, in
octets.

uint8_t phy Channel PHY.

uint8_t framing Channel framing mode.

uint8_t encryption Whether or not the BIG is
encrypted.

◆ st_ble_iso_cig_set_evt_t

struct st_ble_iso_cig_set_evt_t

CIS.

Data Fields

uint8_t cig_id number of CIG streams

uint8_t num_cis number of CIS streams

uint8_t cis_id[BLE_ISO_MAX_GROUP_IS
O_COUNT]

cis_id over peers. Application
should store cis_id for profile's
usage

uint16_t cis_hdl[BLE_ISO_MAX_GROUP_IS
O_COUNT]

CIS conn handle.

◆ st_ble_iso_cis_req_evt_t

struct st_ble_iso_cis_req_evt_t

CIS reqest from remote device.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,730 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

uint8_t cig_id cig_id over peers. Application
should check the request by
cig_id and cis_id

uint8_t cis_id cis_id over peers. Application
should check the request by
cig_id and cis_id

uint16_t acl_hdl The ACL handle over which this
cis is created.

◆ st_ble_iso_cis_qos_t

struct st_ble_iso_cis_qos_t

CIS channel QoS data.

Data Fields

uint8_t nse Maximum number of subevents
in each isochronous event.

uint8_t bn_c2p The number of new payloads in
each CIS event.

uint8_t bn_p2c

uint8_t flush_to_c2p The flush timeout, in multiples
of the ISO_Interval for the CIS.

uint8_t flush_to_p2c

uint16_t max_pdu_c2p Maximum size, in octets, of the
payload.

uint16_t max_pdu_p2c

uint16_t iso_interval The time between two
consecutive CIS anchor points.

◆ st_ble_iso_cis_est_evt_t

struct st_ble_iso_cis_est_evt_t

Information of CIS that was estabilished.

Data Fields

uint16_t cis_hdl CIS handler.

uint32_t cig_sync_delay CIG sync delay.

uint32_t cis_sync_delay CIS sync delay.

uint32_t latency_c2p latency of each direction

uint32_t latency_p2c

uint8_t phy_c2p PHY of each direction.

uint8_t phy_p2c

st_ble_iso_cis_qos_t cis_qos qos parameters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,731 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ st_ble_iso_tx_comp_evt_t

struct st_ble_iso_tx_comp_evt_t

Information of ISO SDU that was sent.

Data Fields

uint16_t conn_hdl connection handle of the ISO
packet that was sent

uint32_t seq_num sequence number of ISO packet
that was sent

◆ st_ble_iso_test_cnt_info_t

struct st_ble_iso_test_cnt_info_t

ISO test count.

Data Fields

uint16_t conn_hdl Indicate an BIS or CIS.

uint32_t received_cnt Number in the
Received_SDU_Count.

uint32_t missed_cnt Number in the
Missed_SDU_Count.

uint32_t failed_cnt Number in the
Failed_SDU_Count.

◆ st_ble_iso_test_end_rept_t

struct st_ble_iso_test_end_rept_t

ISO test report.

Data Fields

uint16_t conn_hdl Indicate an BIS or CIS.

uint32_t received_cnt Number in the
Received_SDU_Count.

uint32_t missed_cnt Number in the
Missed_SDU_Count.

uint32_t failed_cnt Number in the
Failed_SDU_Count.

◆ st_ble_iso_link_quality_info_t

struct st_ble_iso_link_quality_info_t

ISO link qulity information.

Data Fields

uint16_t conn_hdl Indicate an BIS or CIS.

uint32_t tx_unacked_packets Value of the
Tx_UnACKed_Packets counter.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,732 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

uint32_t tx_flushed_packets Value of the
Tx_Flushed_Packets counter.

uint32_t tx_last_subevent_packets Value of the
Tx_Last_Subevent_Packets
counter.

uint32_t retransmitted_packets Value of the
Retransmitted_Packets counter.

uint32_t crc_error_packets Value of the CRC_Error_Packets
counter.

uint32_t rx_unreceived_packets Value of the
Rx_Unreceived_Packets
counter.

uint32_t duplicate_packets Value of the Duplicate_Packets
counter.

◆ st_ble_iso_tx_sync_info_t

struct st_ble_iso_tx_sync_info_t

iso TX sync information

Data Fields

uint16_t conn_hdl Indicate an BIS or CIS.

uint32_t ts CIG reference point or BIG
anchor point of a transmitted
SDU, in microseconds.

uint32_t offset Time offset, in microseconds

uint16_t seq_num Packet sequence number

◆ st_ble_iso_group_hdl_evt_t

struct st_ble_iso_group_hdl_evt_t

ISO gourp handle.

Data Fields

uint8_t group_hdl BIG handle or CIG id.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,733 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ e_ble_iso_evt_t

enum e_ble_iso_evt_t

ISO Event Identifier.

Enumerator

BLE_ISO_EVENT_CREATE_BIG_COMP R_BLE_ISO_CreateBig() created a big
successfully.

Event Data:

st_ble_iso_big_comp_evt_t

BLE_ISO_EVENT_BIGINFO_REPT Big Info is detected in a periodic adv data.

Event Data:

st_ble_iso_biginfo_rept_evt_t

BLE_ISO_EVENT_CREATE_BIG_SYNC_COMP The sync-id specified by
R_BLE_ISO_CreateBigSync() has already
established a big sync.

st_ble_iso_big_comp_evt_t

BLE_ISO_EVENT_ISO_RX_DATA_IND An ISO SDU is received.

Event Data:

st_ble_iso_sdu_t

BLE_ISO_EVENT_ISO_TX_COMP An ISO SDU is sent.

Event Data:

st_ble_iso_tx_comp_evt_t

BLE_ISO_EVENT_SYNC_LOST This event notifies the application layer that
the ISO sync has failed.

Event Data:

st_ble_iso_group_hdl_evt_t

BLE_ISO_EVENT_SYNC_TERM This event notifies the application layer that
the BIG sync has been terminated.

Event Data:

st_ble_iso_group_hdl_evt_t

BLE_ISO_EVENT_CIG_PARAM_SET_COMP The request for CIG setting parameter has
been sent to Controller.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,734 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

Event Data:

st_ble_iso_cig_set_evt_t

BLE_ISO_EVENT_CIS_REQ The CIS request has been received from to
remote device.

Event Data:

st_ble_iso_cis_req_evt_t

BLE_ISO_EVENT_CIS_EST An CIS connection is estabilished.

Event Data:

st_ble_iso_cis_est_evt_t

BLE_ISO_EVENT_SETUP_DATA_PATH_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_ISO_EVENT_CIG_REMOVE_COMP Event Data:

st_ble_iso_group_hdl_evt_t

BLE_ISO_EVENT_BIG_REMOVE_COMP Event Data:

st_ble_iso_group_hdl_evt_t

BLE_ISO_EVENT_REPLY_CIS_REQ_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_ISO_EVENT_GET_TX_SYNC_COMP Event Data:

st_ble_iso_tx_sync_info_t

BLE_GAP_EVENT_READ_ANT_INFO_COMP Event Data:

st_ble_gap_cte_antenna_info_t

BLE_ISO_EVENT_TX_TEST_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_ISO_EVENT_RX_TEST_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_ISO_EVENT_READ_TEST_CNT_COMP Event Data:

st_ble_iso_test_cnt_info_t

BLE_ISO_EVENT_TEST_ENDED Event Data:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,735 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

st_ble_iso_test_end_rept_t

BLE_ISO_EVENT_READ_LINK_QUALITY_COMP Event Data:

st_ble_iso_link_quality_info_t

BLE_ISO_EVENT_REMOVE_DATAPATH_COMP Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PER_ADV_RECV_ON Event Data:

None

BLE_GAP_EVENT_PER_ADV_RECV_OFF Event Data:

None

Function Documentation

◆ R_BLE_ISO_CreateBig()

ble_status_t R_BLE_ISO_CreateBig (uint8_t * p_big_hdl, uint8_t adv_hdl, st_ble_iso_big_param_t *
p_big_param)

Create a BIG.

Parameters
[out] p_big_hdl BIG handle is assigned by

host stack, and value is
passed out.

[in] adv_hdl Periodic adv handle which
carries the biginfo.

[in] p_big_param BIG param

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,736 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_StopBig()

ble_status_t R_BLE_ISO_StopBig (uint8_t big_hdl, uint8_t reason)

Stop a BIG of the big_handle.

Parameters
[in] big_hdl handle of the BIG to be

stopped.

[in] reason reason of termination.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_ISO_CreateBigSync()

ble_status_t R_BLE_ISO_CreateBigSync (uint8_t * p_big_hdl, uint16_t sync_hdl,
st_ble_iso_big_sync_param_t * p_big_sync_param)

Create a BIG sync.

Parameters
[out] p_big_hdl BIG handle is assigned by

host stack, and value is
passed out.

[in] sync_hdl Periodic adv sid which
carries the biginfo.

[in] p_big_sync_param BIG param which is got from
biginfo.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,737 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_TerminateBigSync()

ble_status_t R_BLE_ISO_TerminateBigSync (uint8_t big_hdl)

Terminate a BIG sync.

Parameters
[in] big_hdl handle of the BIG sync to be

terminated.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_ISO_SetCigParam()

ble_status_t R_BLE_ISO_SetCigParam (uint8_t * p_cig_id, st_ble_iso_cig_param_t * p_cig_param)

Create a CIG with param.

This function requests BLE system to create a CIG. The result of this API call is notified in
BLE_ISO_EVENT_CIG_PARAM_SET_COMP event.

Parameters
[out] p_cig_id CIG is assigned by host

stack, and value is passed
out.

[in] p_cig_param CIG param

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,738 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_CreateCis()

ble_status_t R_BLE_ISO_CreateCis (st_ble_iso_cis_conn_t * p_cis_conn)

Create one or more CISes using the CIS param.

This function send the CIS requests to the remote devices. The result of this API call is returned by
a return value. Remote device receives BLE_ISO_EVENT_CIS_REQ event. The response from remote
device is notified in BLE_ISO_EVENT_CIS_EST event. Once CIS connectionis estabilished
successfully, they can be disconnected by R_BLE_GAP_Disconnect.

Parameters
[in] p_cis_conn CIS param

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_ISO_RemoveCig()

ble_status_t R_BLE_ISO_RemoveCig (uint8_t cig_id)

remove a CIG of id and all of CIS streams in this CIG.

Parameters
[out] cig_id CIG id to be removed.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,739 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_ReplyCisRequest()

ble_status_t R_BLE_ISO_ReplyCisRequest (uint8_t cig_id, uint8_t cis_id, uint8_t response, uint8_t
reason)

Reply the CIS request from a remote device.

This function replies to the CIS request from the remote device. The CIS request from the remote
device is notified in BLE_ISO_EVENT_CIS_REQ event. The result of this API call is returned by a
return value. The result is notified in BLE_ISO_EVENT_CIS_EST event.

Parameters
[in] cig_id CIG ID

[in] cis_id CIS ID

[in] response Accept or reject the pairing
request from the remote
device.
macro description

BLE_ISO_CIS
_ACCEPT(0x
00)

Accept the
CIS request.

BLE_ISO_CIS
_REJECT(0x0
1)

Reject the
CIS request.

[in] reason The reason for rejecting CIS
request. This parameter is
ignored when response is
BLE_ISO_CIS_ACCEPT. Refer
the error code described in
Core Specification Vol.2 Part
D ,"2 Error Code
Descriptions".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,740 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_SetupDataPath()

ble_status_t R_BLE_ISO_SetupDataPath (uint16_t conn_hdl, st_ble_iso_chan_path * p_path)

Create the ISO data path between the Host and the Controller for a CIS.

This function behaviors depending on the platform. For SoC without Bluetooth Audio support, only
the following value are valid in param path:

field value

path_id BLE_ISO_DATA_PATH_HCI

coding_format 0xFF (Vendor specific coding format)

Parameters
[in] conn_hdl CIS handle

[in] p_path data path configuration

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_ISO_SendData()

ble_status_t R_BLE_ISO_SendData (st_ble_iso_sdu_t * p_sdu_info)

Send a SDU payload to a ISO channel of conn_hdl.

This function copies SDU payload into host's buffer and push the buffer into host's TX queue. Once
the payload is accepted by controller scheduler, BLE_ISO_EVENT_ISO_TX_COMP event is sent back
to application. Due to limitation of host buffer capacity, the maximum size of SDU payload is 251
bytes (BLE_ISO_DATA_MAX_PDU).

Parameters
[in] p_sdu_info SDU info and data

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,741 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_SendDataNoCopy()

ble_status_t R_BLE_ISO_SendDataNoCopy (st_ble_iso_sdu_t * p_sdu_info)

Send SDU payload to a ISO channel of conn_hdl without copying data.

This function behaviors similar to R_BLE_ISO_SendData, but without copying SDU payload to the
buffer in host. For this reason application should hold the buffer until a
BLE_ISO_EVENT_ISO_TX_COMP event with the same conn_hdl and seq_number of p_sdu_info is
received. The maximum size of SDU payload defined by BLE_ISO_DATA_MAX_SDU.

Parameters
[in] p_sdu_info SDU info and data

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_ISO_CreateBigTest()

ble_status_t R_BLE_ISO_CreateBigTest (uint8_t * p_big_hdl, uint8_t adv_hdl,
st_ble_iso_create_big_test_param_t * p_create_big_test_param)

Create one or more BISes of a BIG (see [Vol 6] Part B, Section 4.4.6). All BISes in the BIG have the
same values for all parameters.

Parameters
[out] p_big_hdl Used to identify a BIG.

[in] adv_hdl Used to identify an
advertising set.

[in] p_create_big_test_param specified parameter of BIG
param test

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,742 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_SetCigParamTest()

ble_status_t R_BLE_ISO_SetCigParamTest (uint8_t * p_cig_id,
st_ble_iso_set_cig_param_test_param_t * p_set_cig_param_test_param)

Create a CIG and set the parameters of one or more CISes that are associated with a CIG in the
Controller.

Parameters
[in] p_set_cig_param_test_param specified parameter of CIG

param_test

[out] p_cig_id cig ID is assigned by host
stack, and value is passed
out.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_ISO_TransmitTest()

ble_status_t R_BLE_ISO_TransmitTest (uint16_t conn_hdl, uint8_t payload_type)

Configure an established CIS or BIS and transmit test payloads which are generated by the
Controller.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS.

[in] payload_type Configuration of SDUs in the
payload.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,743 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_ReceiveTest()

ble_status_t R_BLE_ISO_ReceiveTest (uint16_t conn_hdl, uint8_t payload_type)

Configure an established CIS or a synchronized BIG to receive payloads.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS.

[in] payload_type Configuration of SDUs in the
payload.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_ISO_ReadTestCounters()

ble_status_t R_BLE_ISO_ReadTestCounters (uint16_t conn_hdl)

Read the test counters (see [Vol 6] Part B, Section 7) in the Controller which is configured in ISO
Receive Test mode for a CIS or BIS specified by the Connection_Handle. Reading the test counters
does not reset the test counters.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,744 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_TestEnd()

ble_status_t R_BLE_ISO_TestEnd (uint16_t conn_hdl)

Terminate the ISO Transmit and/or Receive Test mode for a CIS or BIS specified by the
Connection_Handle parameter but does not terminate the CIS or BIS.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

◆ R_BLE_ISO_ReadLinkQuality()

ble_status_t R_BLE_ISO_ReadLinkQuality (uint16_t conn_hdl)

Returns the values of various counters related to link quality that are associated with the
isochronous stream specified by the Connection_Handle parameter.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS.

Return values
BLE_SUCCESS(0x0000) Success, otherwise "HCI Spec Error" in

enum RBLE_STATUS_enum.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,745 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > ISO

◆ R_BLE_ISO_RemoveDataPath()

ble_status_t R_BLE_ISO_RemoveDataPath (uint16_t conn_hdl, uint8_t dir)

Remove the input and/or output data path(s) associated with a CIS, CIS configuration, or BIS
identified by the Connection_Handle parameter.

Parameters
[in] conn_hdl Connection handle of the CIS

or BIS

[in] dir Data path direction.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_CHAN(0x0005) The handle does not indicate a CIS or BIS
channel.

BLE_ERR_UNSPECIFIED(0x0013) Unspecified error.

 GATT_COMMON
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_GATT_GetMtu (uint16_t conn_hdl, uint16_t *p_mtu)

 This function gets the current MTU used in GATT communication.
More...

Detailed Description

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,746 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_COMMON

◆ R_BLE_GATT_GetMtu()

ble_status_t R_BLE_GATT_GetMtu (uint16_t conn_hdl, uint16_t * p_mtu)

This function gets the current MTU used in GATT communication.

Both GATT server and GATT Client can use this function.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
or the GATT Client.

[in] p_mtu The Current MTU. Before
MTU exchange, this
parameter is 23 bytes.
After MTU exchange, this
parameter is the negotiated
MTU.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The mtu parameter is NULL.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server or the GATT Client
specified by conn_hdl was not found.

 GATT_SERVER
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_GATTS_Init (uint8_t cb_num)

 This function initializes the GATT Server and registers the number of
the callbacks for GATT Server event. More...

ble_status_t R_BLE_GATTS_SetDbInst (st_ble_gatts_db_cfg_t *p_db_inst)

 This function sets GATT Database to host stack. More...

ble_status_t R_BLE_GATTS_RegisterCb (ble_gatts_app_cb_t cb, uint8_t priority)

 This function registers a callback for GATT Server event. More...

ble_status_t R_BLE_GATTS_DeregisterCb (ble_gatts_app_cb_t cb)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,747 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

 This function deregisters the callback function for GATT Server
event. More...

ble_status_t R_BLE_GATTS_Notification (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_ntf_data)

 This function sends a notification of an attribute's value. More...

ble_status_t R_BLE_GATTS_Indication (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_ind_data)

 This function sends a indication of an attribute's value. More...

ble_status_t R_BLE_GATTS_GetAttr (uint16_t conn_hdl, uint16_t attr_hdl,
st_ble_gatt_value_t *p_value)

 This function gets a attribute value from the GATT Database. More...

ble_status_t R_BLE_GATTS_SetAttr (uint16_t conn_hdl, uint16_t attr_hdl,
st_ble_gatt_value_t *p_value)

 This function sets an attribute value to the GATT Database. More...

ble_status_t R_BLE_GATTS_SendErrRsp (uint16_t error_code)

 This function sends an error response to a remote device. More...

ble_status_t R_BLE_GATTS_RspExMtu (uint16_t conn_hdl, uint16_t mtu)

 This function replies to a MTU Exchange Request from a remote
device. More...

ble_status_t R_BLE_GATTS_SetPrepareQueue (st_ble_gatt_pre_queue_t
*p_pre_queues, uint8_t queue_num)

 Register prepare queue and buffer in Host Stack. More...

Detailed Description

Data Structures

struct st_ble_gatt_value_t

 Attribute Value. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,748 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

struct st_ble_gatt_hdl_value_pair_t

 Attribute handle and attribute Value. More...

struct st_ble_gatt_queue_att_val_t

 Queued writes Attribute Value. More...

struct st_ble_gatt_queue_pair_t

 Queued writes Attribute Value. More...

struct st_ble_gatt_queue_elm_t

 Prepare Write Queue element for long chracteristic. More...

struct st_ble_gatt_pre_queue_t

 Prepare Write Queue for long chracteristic. More...

struct st_ble_gatts_db_params_t

 Attribute value to be set to or retrieved from the GATT Database and
the access type from the GATT Client. More...

struct st_ble_gatts_db_conn_hdl_t

 Information about the service or the characteristic that the attribute
belongs to. More...

struct st_ble_gatts_db_access_evt_t

 This structure notifies that the GATT Database has been accessed
from a GATT Client. More...

struct st_ble_gatts_conn_evt_t

 This structure notifies that the link with the GATT Client has been
established. More...

struct st_ble_gatts_disconn_evt_t

 This structure notifies that the link with the GATT Client has been
disconnected. More...

struct st_ble_gatts_ex_mtu_req_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,749 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

 This structure notifies that a MTU Exchange Request PDU has been
received from a GATT Client. More...

struct st_ble_gatts_cfm_evt_t

 This structure notifies that a Confirmation PDU has been received
from a GATT Client. More...

struct st_ble_gatts_read_by_type_rsp_evt_t

 This structure notifies that a Read By Type Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_read_rsp_evt_t

 This structure notifies that a Read Response PDU has been sent from
GATT Server. More...

struct st_ble_gatts_read_blob_rsp_evt_t

 This structure notifies that a Read Blob Response PDU has been sent
from GATT Server. More...

struct st_ble_gatts_read_multi_rsp_evt_t

 This structure notifies that a Read Multiple Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_write_rsp_evt_t

 This structure notifies that a Write Response PDU has been sent from
GATT Server. More...

struct st_ble_gatts_prepare_write_rsp_evt_t

 This structure notifies that a Prepare Write Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_exe_write_rsp_evt_t

 This structure notifies that a Execute Write Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_db_uuid_cfg_t

 A structure that defines the information on the position where UUIDs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,750 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

are used. More...

struct st_ble_gatts_db_attr_cfg_t

 A structure that defines the detailed information of the attributes.
More...

struct st_ble_gatts_db_attr_list_t

 The number of attributes are stored. More...

struct st_ble_gatts_db_char_cfg_t

 A structure that defines the detailed information of the
characteristics. More...

struct st_ble_gatts_db_serv_cfg_t

 A structure that defines the detailed information of the
characteristics. More...

struct st_ble_gatts_db_cfg_t

 This is the structure of GATT Database that is specified in
R_BLE_GATTS_SetDbInst(). More...

struct st_ble_gatts_evt_data_t

 st_ble_gatts_evt_data_t is the type of the data notified in a GATT
Server Event. More...

Macros

#define BLE_GATT_DEFAULT_MTU

 GATT Default MTU.

#define BLE_GATT_16_BIT_UUID_FORMAT

 GATT Identification for 16-bit UUID Format.

#define BLE_GATT_128_BIT_UUID_FORMAT

 GATT Identification for 128-bit UUID Format.

#define BLE_GATT_16_BIT_UUID_SIZE

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,751 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

 GATT 16-bit UUID Size.

#define BLE_GATT_128_BIT_UUID_SIZE

 GATT 128-bit UUID Size.

#define BLE_GATT_INVALID_ATTR_HDL_VAL

 GATT Invalid Attribute Handle Value.

#define BLE_GATT_ATTR_HDL_START_RANGE

 GATT Attribute Handle Start Range.

#define BLE_GATT_ATTR_HDL_END_RANGE

 GATT Attribute Handle End Range.

#define BLE_GATTS_CLI_CNFG_NOTIFICATION

 GATT Client Configuration values. Enable Notification.

#define BLE_GATTS_CLI_CNFG_INDICATION

 GATT Client Configuration values. Enable Indication.

#define BLE_GATTS_CLI_CNFG_DEFAULT

 GATT Client Configuration values. Default value or disable
notification/indication.

#define BLE_GATTS_SER_CNFG_BROADCAST

 GATT Server Configuration values. Enable broadcast.

#define BLE_GATTS_SER_CNFG_DEFAULT

 GATT Server Configuration values. Default value.

#define BLE_GATTS_MAX_CB

 GATT Server Callback Number.

#define BLE_GATTS_OP_CHAR_VALUE_READ_REQ

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,752 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

 Characteristic Value Local Read Operation.

#define BLE_GATTS_OP_CHAR_VALUE_WRITE_REQ

 Characteristic Value Local Write Operation.

#define BLE_GATTS_OP_CHAR_VALUE_WRITE_WITHOUT_REQ

 Characteristic Value Local Write Without Response Operation.

#define BLE_GATTS_OP_CHAR_CLI_CNFG_READ_REQ

 Characteristic Client Configuration Local Read Operation.

#define BLE_GATTS_OP_CHAR_CLI_CNFG_WRITE_REQ

 Characteristic Client Configuration Local Write Operation.

#define BLE_GATTS_OP_CHAR_SER_CNFG_READ_REQ

 Characteristic Server Configuration Local Read Operation.

#define BLE_GATTS_OP_CHAR_SER_CNFG_WRITE_REQ

 Characteristic Server Configuration Local Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_READ_REQ

 Characteristic Value Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_WRITE_REQ

 Characteristic Value Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_WRITE_CMD

 Characteristic Value Peer Write Command.

#define BLE_GATTS_OP_CHAR_PEER_CLI_CNFG_READ_REQ

 Characteristic Client Configuration Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_CLI_CNFG_WRITE_REQ

 Characteristic Client Configuration Peer Write Operation.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,753 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

#define BLE_GATTS_OP_CHAR_PEER_SER_CNFG_READ_REQ

 Characteristic Server Configuration Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_SER_CNFG_WRITE_REQ

 Characteristic Server Configuration Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_USR_DESC_READ_REQ

 Characteristic User Description Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_USR_DESC_WRITE_REQ

 Characteristic User Description Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_HLD_DESC_READ_REQ

 Characteristic Higher Layer Defined Descriptor Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_HLD_DESC_WRITE_REQ

 Characteristic Higher Layer Defined Descriptor Peer Write Operation.

#define BLE_GATTS_OP_CHAR_REQ_AUTHOR

 Operation Required Authorization.

#define BLE_GATT_DB_READ

 Allow clients to read.

#define BLE_GATT_DB_WRITE

 Allow clients to write.

#define BLE_GATT_DB_WRITE_WITHOUT_RSP

 Allow clients to write without response.

#define BLE_GATT_DB_READ_WRITE

 Allow clients to access of all.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,754 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

#define BLE_GATT_DB_NO_AUXILIARY_PROPERTY

 No auxiliary properties.

#define BLE_GATT_DB_FIXED_LENGTH_PROPERTY

 Fixed length attribute value.

#define BLE_GATT_DB_AUTHORIZATION_PROPERTY

 Attributes requiring authorization.

#define BLE_GATT_DB_ATTR_DISABLED

 The attribute is disabled. If this value is set, the attribute cannot be
found and accessed by a GATT Client.

#define BLE_GATT_DB_128_BIT_UUID_FORMAT

 Attribute with 128 bit UUID.

#define BLE_GATT_DB_PEER_SPECIFIC_VAL_PROPERTY

 Attribute managed by each GATT Client.

#define BLE_GATT_DB_CONST_ATTR_VAL_PROPERTY

 Fixed attribute value.

#define BLE_GATT_DB_SER_SECURITY_UNAUTH

 Unauthenticated pairing(Security Mode1 Security Level 2, Security
Mode 2 Security Level 1). Unauthenticated pairing is required to
access the service.

#define BLE_GATT_DB_SER_SECURITY_AUTH

 Authenticated pairing(Security Mode1 Security Level 3, Security
Mode 2 Security Level 2). Authenticated pairing is required to access
the service.

#define BLE_GATT_DB_SER_SECURITY_SECONN

 Authenticated LE secure connections that generates 16bytes
LTK(Security Mode1 Security Level 4). Authenticated LE secure
connections pairing that generates 16bytes LTK is required to access
the service. If this bit is set, bit24-27 are ignored.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,755 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

#define BLE_GATT_DB_SER_SECURITY_ENC

 Encryption. Encryption by the LTK exchanged in pairing is required to
access.

#define BLE_GATT_DB_SER_NO_SECURITY_PROPERTY

 No Security(Security Mode1 Security Level 1).

#define BLE_GATT_DB_SER_ENC_KEY_SIZE_DONT_CARE

 7-byte or larger encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_7

 7-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_8

 8-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_9

 9-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_10

 10-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_11

 11-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_12

 12-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_13

 13-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_14

 14-byte encryption key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,756 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_15

 15-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_16

 16-byte encryption key.

Typedefs

typedef void(* ble_gatts_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_gatts_evt_data_t *p_event_data)

 ble_gatts_app_cb_t is the GATT Server Event callback function type.
More...

Enumerations

enum e_r_ble_gatts_evt_t

 GATT Server Event Identifier. More...

Data Structure Documentation

◆ st_ble_gatt_value_t

struct st_ble_gatt_value_t

Attribute Value.

Data Fields

uint16_t value_len Length of the attribute value.

uint8_t * p_value Attribute Value.

◆ st_ble_gatt_hdl_value_pair_t

struct st_ble_gatt_hdl_value_pair_t

Attribute handle and attribute Value.

Data Fields

uint16_t attr_hdl Attribute Handle.

st_ble_gatt_value_t value Attribute Value.

◆ st_ble_gatt_queue_att_val_t

struct st_ble_gatt_queue_att_val_t

Queued writes Attribute Value.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,757 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

uint8_t * p_value Attribute Value for Queued
Write .

uint16_t value_len Length of the attribute value.

uint16_t padding padding.

◆ st_ble_gatt_queue_pair_t

struct st_ble_gatt_queue_pair_t

Queued writes Attribute Value.

Data Fields

st_ble_gatt_queue_att_val_t queue_value Attribute Value for Queued
Write.

uint16_t attr_hdl Attribute Handle.

◆ st_ble_gatt_queue_elm_t

struct st_ble_gatt_queue_elm_t

Prepare Write Queue element for long chracteristic.

Data Fields

st_ble_gatt_queue_pair_t queue_value_pair Part of Long Characteristic
Value and Characteristic Value
Handle.

uint16_t offset Offset that indicates the
location to be written.

◆ st_ble_gatt_pre_queue_t

struct st_ble_gatt_pre_queue_t

Prepare Write Queue for long chracteristic.

Data Fields

uint8_t * p_buf_start Buffer start address for Write
Long Characteristic Request.

st_ble_gatt_queue_elm_t * p_queue Prepare Write Queue for Long
Characteristic Value.

uint16_t buffer_len Buffer length.

uint16_t conn_hdl Connection Handle.

uint16_t buf_offset Current buffer offset.

uint8_t queue_size Number of elements in the
prepare write queue.

uint8_t queue_idx Index of Prepare Write Queue.

◆ st_ble_gatts_db_params_t

struct st_ble_gatts_db_params_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,758 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

Attribute value to be set to or retrieved from the GATT Database and the access type from the
GATT Client.

Data Fields

st_ble_gatt_value_t value Attribute value to be set to or
retrieved from the GATT
Database. Note that the
address of the value field in the
value field is invalid in case of
read access.

uint16_t attr_hdl Attribute handle identifying the
attribute to be set or retrieved.

uint8_t db_op Type of the access to GATT
Database from the GATT Client.

See also
access_type_to_gatt_dat
abase

◆ st_ble_gatts_db_conn_hdl_t

struct st_ble_gatts_db_conn_hdl_t

Information about the service or the characteristic that the attribute belongs to.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Client that accesses
to the GATT DataBase.

uint8_t service_id ID of the service that the
attribute belongs to.

uint8_t char_id ID of the Characteristic that the
attribute belongs to.

◆ st_ble_gatts_db_access_evt_t

struct st_ble_gatts_db_access_evt_t

This structure notifies that the GATT Database has been accessed from a GATT Client.

Data Fields

st_ble_gatts_db_conn_hdl_t * p_handle Information about the service
or the characteristic that the
attribute belongs to.

st_ble_gatts_db_params_t * p_params Attribute value to be set to or
retrieved from the GATT
Database and the access type
from the GATT Client.

◆ st_ble_gatts_conn_evt_t

struct st_ble_gatts_conn_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,759 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

This structure notifies that the link with the GATT Client has been established.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Client.

◆ st_ble_gatts_disconn_evt_t

struct st_ble_gatts_disconn_evt_t

This structure notifies that the link with the GATT Client has been disconnected.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Client.

◆ st_ble_gatts_ex_mtu_req_evt_t

struct st_ble_gatts_ex_mtu_req_evt_t

This structure notifies that a MTU Exchange Request PDU has been received from a GATT Client.

Data Fields

uint16_t mtu Maximum receive MTU size by
GATT Client.

◆ st_ble_gatts_cfm_evt_t

struct st_ble_gatts_cfm_evt_t

This structure notifies that a Confirmation PDU has been received from a GATT Client.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic sent by the
Indication PDU.

◆ st_ble_gatts_read_by_type_rsp_evt_t

struct st_ble_gatts_read_by_type_rsp_evt_t

This structure notifies that a Read By Type Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
By Type Request PDU.

◆ st_ble_gatts_read_rsp_evt_t

struct st_ble_gatts_read_rsp_evt_t

This structure notifies that a Read Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
Request PDU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,760 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ st_ble_gatts_read_blob_rsp_evt_t

struct st_ble_gatts_read_blob_rsp_evt_t

This structure notifies that a Read Blob Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
Blob Request PDU.

◆ st_ble_gatts_read_multi_rsp_evt_t

struct st_ble_gatts_read_multi_rsp_evt_t

This structure notifies that a Read Multiple Response PDU has been sent from GATT Server.

Data Fields

uint8_t count The number of attribute read by
the Read Multiple Request PDU.

uint16_t * p_attr_hdl_list The list of attribute read by the
Read Multiple Request PDU.

◆ st_ble_gatts_write_rsp_evt_t

struct st_ble_gatts_write_rsp_evt_t

This structure notifies that a Write Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic written by the
Write Request PDU.

◆ st_ble_gatts_prepare_write_rsp_evt_t

struct st_ble_gatts_prepare_write_rsp_evt_t

This structure notifies that a Prepare Write Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic written by the
Prepare Write Request PDU.

uint16_t length The length of written bytes by
the Prepare Write Request PDU.

uint16_t offset The offset of the first octet to
be written.

◆ st_ble_gatts_exe_write_rsp_evt_t

struct st_ble_gatts_exe_write_rsp_evt_t

This structure notifies that a Execute Write Response PDU has been sent from GATT Server.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,761 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

uint8_t exe_flag The flag that indicates whether
execution or cancellation.
value description

0x00 Cancellation.

0x01 Execution.

◆ st_ble_gatts_db_uuid_cfg_t

struct st_ble_gatts_db_uuid_cfg_t

A structure that defines the information on the position where UUIDs are used.

Data Fields

uint16_t offset The position of the defined
UUID is specified by offset value
in uuid_table of
st_ble_gatts_db_cfg_t.

uint16_t first The attribute handle that
indicates the first position in
st_ble_gatts_db_attr_cfg_t for
the defined UUID is specified.

uint16_t last The attribute handle that
indicates the last position in
st_ble_gatts_db_attr_cfg_t for
the defined UUID is specified.

◆ st_ble_gatts_db_attr_cfg_t

struct st_ble_gatts_db_attr_cfg_t

A structure that defines the detailed information of the attributes.

Data Fields

uint8_t desc_prop The properties of attribute are
specified.

Set the following properties by
a bitwise OR.

macro description

BLE_GATT_DB
_READ(0x01)

Allow clients
to read.

BLE_GATT_DB
_WRITE(0x02)

Allow clients
to write.

BLE_GATT_DB
_WRITE_WITH
OUT_RSP(0x0
4)

Allow clients
to write.

BLE_GATT_DB Allow clients

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,762 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

_READ_WRITE
(0x07)

to access of
all.

uint8_t aux_prop The auxiliary properties of
attribute are specified.

Set the following properties by
a bitwise OR.

macro description

BLE_GATT_DB
_NO_AUXILIAR
Y_PROPERTY(
0x00)

No auxiliary
properties.
It is invalid
when used
with other
properties at
the same
time.

BLE_GATT_DB
_FIXED_LENGT
H_PROPERTY(
0x01)

Fixed length
attribute
value.

BLE_GATT_DB
_AUTHORIZAT
ION_PROPERT
Y(0x02)

Attributes
requiring
authorization.

BLE_GATT_DB
_ATTR_DISABL
ED(0x10)

The attribute
is disabled. If
this value is
set, the
attribute
cannot be
found and
accessed by a
GATT Client. It
is invalid
when used
with other
properties at
the same
time.

BLE_GATT_DB
_128_BIT_UUI
D_FORMAT(0x
20)

Attribute with
128 bit UUID.
If this macro
is not set, the
attribute
value is
16-bits UUID.

BLE_GATT_DB
_PEER_SPECIFI
C_VAL_PROPE

Attribute
managed by
each GATT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,763 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

RTY(0x40) Client.

BLE_GATT_DB
_CONST_ATTR
_VAL_PROPER
TY(0x80)

Fixed
attribute
value.
Writing from
Client and
setting from
Server are
prohibited.

uint16_t length The length of the attribute
value is specified.

uint16_t next The position of the next
attribute with the same UUID as
the defined attribute is
specified by an attribute
handle.

uint16_t uuid_offset The storage area of attribute
value.

UUID of the defined attribute is
set by specifying the position of
the UUID registered in
uuid_table of
st_ble_gatts_db_cfg_t with the
array offset value.

uint8_t * p_data_offset Storage area of attribute value.

The address in the array
registered in No.1-No.4 is
specified to set the attribute
value storage area of the
defined attribute.

◆ st_ble_gatts_db_attr_list_t

struct st_ble_gatts_db_attr_list_t

The number of attributes are stored.

Data Fields

uint8_t count The number of the services or
the characteristics.

◆ st_ble_gatts_db_char_cfg_t

struct st_ble_gatts_db_char_cfg_t

A structure that defines the detailed information of the characteristics.

Data Fields

st_ble_gatts_db_attr_list_t list The total number of attributes
in the defined characteristic is

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,764 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

specified.

uint16_t start_hdl The first attribute handle of the
characteristic is specified.

uint8_t service_id The index of service to which
the characteristic belongs is
specified.

◆ st_ble_gatts_db_serv_cfg_t

struct st_ble_gatts_db_serv_cfg_t

A structure that defines the detailed information of the characteristics.

Data Fields

st_ble_gatts_db_attr_list_t list The total number of service
declarations in the defined
service is specified.

uint32_t desc The properties of the defined
service are specified.

Set the security level, the
security mode and the key size
with a bitwise OR. The bit0-bit3
are specified as the security
level. Select one of the
following.

macro description

BLE_GATT_DB
_SER_SECURIT
Y_UNAUTH(0x
00000001)

Unauthenticat
ed pairing(Sec
urity Mode1
Security Level
2, Security
Mode 2
Security Level
1)
Unauthenticat
ed pairing is
required to
access the
service.

BLE_GATT_DB
_SER_SECURIT
Y_AUTH(0x00
000002)

Authenticated
pairing(Securi
ty Mode1
Security Level
3, Security
Mode 2
Security Level
2)
Authenticated
pairing is
required to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,765 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

access the
service.

BLE_GATT_DB
_SER_SECURIT
Y_SECONN(0x
00000004)

Authenticated
LE secure
connections
that
generates
16bytes
LTK(Security
Mode1
Security Level
4)
Authenticated
LE secure
connections
pairing that
generates
16bytes LTK is
required to
access the
service. If this
bit is set,
bit24-27 are
ignored.

The bit4 is specified as the
security mode.

macro description

BLE_GATT_DB
_SER_SECURIT
Y_ENC(0x000
00010)

Encryption
Encryption by
the LTK
exchanged in
pairing is
required to
access.

If the security requirement of
the service is not needed,
specify the bit0-bit4 to
BLE_GATT_DB_SER_NO_SECURI
TY_PROPERTY(0x00000000)
.(Security Mode1 Security Level
1)
The bit24-bit27 are specified as
the key size required by the
defined service.
Select one of the following.

macro description

BLE_GATT_DB
_SER_ENCRYP

7-byte
encryption

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,766 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

T_KEY_SIZE_7(
0x01000000)

key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_8(
0x02000000)

8-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_9(
0x03000000)

9-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
0(0x0400000
0)

10-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
1(0x0500000
0)

11-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
2(0x0600000
0)

12-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
3(0x0700000
0)

13-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
4(0x0800000
0)

14-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
5(0x0900000
0)

15-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
6(0x0A00000
0)

16-byte
encryption
key.

BLE_GATT_DB
_SER_ENC_KE
Y_SIZE_DONT_
CARE(0x0000

7-byte or
larger
encryption
key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,767 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

0000)
Other bits are reserved.

uint16_t start_hdl The start attribute handle of the
defined service is specified.

uint16_t end_hdl The end attribute handle of the
defined service is specified.

uint8_t char_start_idx The start index of the
characteristic that belongs to
the defined service is specified.

uint8_t char_end_idx The end index of the
characteristic that belongs to
the defined service is specified.

◆ st_ble_gatts_db_cfg_t

struct st_ble_gatts_db_cfg_t

This is the structure of GATT Database that is specified in R_BLE_GATTS_SetDbInst().

Data Fields

const uint8_t * p_uuid_table The array to register the UUID
to be used.

uint8_t * p_attr_val_table The array to register variable
attribute values.

const uint8_t * p_const_attr_val_table The array to register fixed
attribute values.

uint8_t * p_rem_spec_val_table The array to manage the
attribute values handled for
each GATT client.

const uint8_t * p_const_rem_spec_val_table The array to register the default
of the attribute value handled
by each GATT client.

const
st_ble_gatts_db_uuid_cfg_t *

p_uuid_cfg The array to register
information on the position
where UUIDs are used.

const st_ble_gatts_db_attr_cfg_t
*

p_attr_cfg The array to register the
detailed information of
attributes.

const
st_ble_gatts_db_char_cfg_t *

p_char_cfg The array to register the
detailed information of
characteristics.

const
st_ble_gatts_db_serv_cfg_t *

p_serv_cfg The array to register the
detailed information of services.

uint8_t serv_cnt The number of services
included in the GATT Database.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,768 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

uint8_t char_cnt The number of characteristics
included in the GATT Database.

uint8_t uuid_type_cnt The number of UUIDs included
in the GATT Database.

uint8_t peer_spec_val_cnt The total size of attribute value
that needs to be managed for
each GATT client.

◆ st_ble_gatts_evt_data_t

struct st_ble_gatts_evt_data_t

st_ble_gatts_evt_data_t is the type of the data notified in a GATT Server Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Client.

uint16_t param_len The size of GATT Server Event
parameters.

void * p_param GATT Server Event parameters.
This parameter differs in each
GATT Server Event.

Typedef Documentation

◆ ble_gatts_app_cb_t

ble_gatts_app_cb_t

ble_gatts_app_cb_t is the GATT Server Event callback function type.

Parameters
[in] event_type The type of GATT Server

Event.

[in] event_result The result of GATT Server
Event

[in] p_event_data Data notified by GATT Server
Event.

Returns
none

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,769 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ e_r_ble_gatts_evt_t

enum e_r_ble_gatts_evt_t

GATT Server Event Identifier.

Enumerator

BLE_GATTS_EVENT_EX_MTU_REQ MTU Exchange Request has been received.

This event notifies the application layer that a
MTU Exchange Request PDU has been received
from a GATT Client. Need to reply to the
request by R_BLE_GATTS_RspExMtu().

Event Code: 0x3002

Event Data:

st_ble_gatts_ex_mtu_req_evt_tBLE_GATTS_EVE
NT_EX_MTU_REQ

BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP Read By Type Response has been sent.

This event notifies the application layer that a
Read By Type Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3009

Event Data:

st_ble_gatts_read_by_type_rsp_evt_tBLE_GATT
S_EVENT_READ_BY_TYPE_RSP_COMP

BLE_GATTS_EVENT_READ_RSP_COMP Read Response has been sent.

This event notifies the application layer that a
Read Response PDU has been sent from GATT
Server to the GATT Client.

Event Code: 0x300B

Event Data:

st_ble_gatts_read_rsp_evt_tBLE_GATTS_EVENT_
READ_RSP_COMP

BLE_GATTS_EVENT_READ_BLOB_RSP_COMP Read Blob Response has been sent.

This event notifies the application layer that a
Read Blob Response PDU has been sent from
GATT Server to the GATT Client.

Event Code: 0x300D

Event Data:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,770 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

st_ble_gatts_read_blob_rsp_evt_tBLE_GATTS_E
VENT_READ_BLOB_RSP_COMP

BLE_GATTS_EVENT_READ_MULTI_RSP_COMP Read Multiple Response has been sent.

This event notifies the application layer that a
Read Multiple Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x300F

Event Data:

st_ble_gatts_read_multi_rsp_evt_tBLE_GATTS_E
VENT_READ_MULTI_RSP_COMP

BLE_GATTS_EVENT_WRITE_RSP_COMP Write Response has been sent.

This event notifies the application layer that a
Write Response PDU has been sent from GATT
Server to the GATT Client.

Event Code: 0x3013

Event Data:

st_ble_gatts_write_rsp_evt_tBLE_GATTS_EVENT
_WRITE_RSP_COMP

BLE_GATTS_EVENT_PREPARE_WRITE_RSP_COMP Prepare Write Response has been sent.

This event notifies the application layer that a
Prepare Write Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3017

Event Data:

st_ble_gatts_prepare_write_rsp_evt_tBLE_GATT
S_EVENT_PREPARE_WRITE_RSP_COMP

BLE_GATTS_EVENT_EXE_WRITE_RSP_COMP Execute Write Response has been sent.

This event notifies the application layer that a
Execute Write Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3019

Event Data:

st_ble_gatts_exe_write_rsp_evt_tBLE_GATTS_EV
ENT_EXE_WRITE_RSP_COMP

BLE_GATTS_EVENT_HDL_VAL_CNF Confirmation has been received.

This event notifies the application layer that a

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,771 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

Confirmation PDU has been received from a
GATT Client.

Event Code: 0x301E

Event Data:

st_ble_gatts_cfm_evt_tBLE_GATTS_EVENT_HDL
_VAL_CNF

BLE_GATTS_EVENT_DB_ACCESS_IND The GATT Database has been accessed from a
GATT Client.

This event notifies the application layer that
the GATT Database has been accessed from a
GATT Client.

Event Code: 0x3040

Event Data:

st_ble_gatts_db_access_evt_tBLE_GATTS_EVEN
T_DB_ACCESS_IND

BLE_GATTS_EVENT_CONN_IND A connection has been established.

This event notifies the application layer that
the link with the GATT Client has been
established.

Event Code: 0x3081

Event Data:

st_ble_gatts_conn_evt_tBLE_GATTS_EVENT_CO
NN_IND

BLE_GATTS_EVENT_DISCONN_IND A connection has been disconnected.

This event notifies the application layer that
the link with the GATT Client has been
disconnected.

Event Code: 0x3082

Event Data:

st_ble_gatts_disconn_evt_tBLE_GATTS_EVENT_
DISCONN_IND

BLE_GATTS_EVENT_INVALID Invalid GATT Server Event.

Event Code: 0x30FF

Event Data:

noneBLE_GATTS_EVENT_INVALID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,772 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

Function Documentation

◆ R_BLE_GATTS_Init()

ble_status_t R_BLE_GATTS_Init (uint8_t cb_num)

This function initializes the GATT Server and registers the number of the callbacks for GATT Server
event.

Specify the cb_num parameter to a value between 1 and BLE_GATTS_MAX_CB.
R_BLE_GATTS_RegisterCb() registers the callback.
The result of this API call is returned by a return value.

Parameters
[in] cb_num The number of callbacks to

be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The cb_num parameter is out of range.

◆ R_BLE_GATTS_SetDbInst()

ble_status_t R_BLE_GATTS_SetDbInst (st_ble_gatts_db_cfg_t * p_db_inst)

This function sets GATT Database to host stack.

The result of this API call is returned by a return value.

Parameters
[in] p_db_inst GATT Database to be set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows.

The db_inst parameter is specified
as NULL.
The array in the db_inst is specified
as NULL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,773 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_RegisterCb()

ble_status_t R_BLE_GATTS_RegisterCb (ble_gatts_app_cb_t cb, uint8_t priority)

This function registers a callback for GATT Server event.

The number of the callback that may be registered by this function is the value specified by
R_BLE_GATTS_Init().
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for GATT

Server event.

[in] priority The priority of the callback
function.
Valid range is 1 <= priority
<= BLE_GATTS_MAX_CB.
A lower priority number
means a higher priority
level.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the
maximum number of callbacks.

◆ R_BLE_GATTS_DeregisterCb()

ble_status_t R_BLE_GATTS_DeregisterCb (ble_gatts_app_cb_t cb)

This function deregisters the callback function for GATT Server event.

The result of this API call is returned by a return value.

Parameters
[in] cb The callback function to be

deregistered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,774 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_Notification()

ble_status_t R_BLE_GATTS_Notification (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_ntf_data)

This function sends a notification of an attribute's value.

The maximum length of the attribute value that can be sent with notification is MTU-3.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the
notification.

[in] p_ntf_data The attribute value to send.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ntf_data parameter or the value field
in the value field in the p_ntf_data
parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the
p_ntf_data parameter is 0 or the attr_hdl
field in the p_ntf_data parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,775 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_Indication()

ble_status_t R_BLE_GATTS_Indication (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_ind_data)

This function sends a indication of an attribute's value.

The maximum length of the attribute value that can be sent with indication is MTU-3.
The result of this API call is returned by a return value.
The remote device that receives a indication sends a confirmation.
BLE_GATTS_EVENT_HDL_VAL_CNF event notifies the application layer that the confirmation has
been received.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the
indication.

[in] p_ind_data The attribute value to send.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ind_data parameter or the value field
in the value field in the p_ind_data
parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the
p_ind_data parameter is 0 or the attr_hdl
field in the p_ind_data parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,776 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_GetAttr()

ble_status_t R_BLE_GATTS_GetAttr (uint16_t conn_hdl, uint16_t attr_hdl, st_ble_gatt_value_t *
p_value)

This function gets a attribute value from the GATT Database.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl If the attribute value that

has information about the
remote device is retrieved,
specify the remote device
with the conn_hdl
parameter. When
information about the
remote device is not
required, set the conn_hdl
parameter to BLE_GAP_INVA
LID_CONN_HDL.

[in] attr_hdl The attribute handle of the
attribute value to be
retrieved.

[out] p_value The attribute value to be
retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than
the last attribute handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be read.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be read.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl
parameter is not belonging to any services
or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter was not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,777 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_SetAttr()

ble_status_t R_BLE_GATTS_SetAttr (uint16_t conn_hdl, uint16_t attr_hdl, st_ble_gatt_value_t *
p_value)

This function sets an attribute value to the GATT Database.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl If the attribute value that

has information about the
remote device is retrieved,
specify the remote device
with the conn_hdl
parameter. When
information about the
remote device is not
required, set the conn_hdl
parameter to BLE_GAP_INVA
LID_CONN_HDL.

[in] attr_hdl The attribute handle of the
attribute value to be set.

[in] p_value The attribute value to be set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_DATA(0x0002) The write size is larger than the length of
the attribute value.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than
the last attribute handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be written.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be written.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl
parameter is not belonging to any services
or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter was not found.

◆ R_BLE_GATTS_SendErrRsp()

ble_status_t R_BLE_GATTS_SendErrRsp (uint16_t error_code)

This function sends an error response to a remote device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,778 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

The result is returned from the API.
The error code specified in the callback is notified as Error Response to the remote device.
The result of this API call is returned by a return value.

Parameters
[in] error_code The error codes to be

notified the client.
It is a bitwise OR of GATT
Error Group ID : 0x3000 and
the following error codes
defined in Core Spec and
Core Spec Supplement.

Error Code description

BLE_ERR_GA
TT_INVALID_
HANDLE(0x3
001)

Invalid
attribute
handle

BLE_ERR_GA
TT_READ_NO
T_PERMITTE
D(0x3002)

The attribute
cannot be
read.

BLE_ERR_GA
TT_WRITE_N
OT_PERMITT
ED(0x3003)

The attribute
cannot be
written.

BLE_ERR_GA
TT_INVALID_
PDU(0x3004
)

Invalid PDU.

BLE_ERR_GA
TT_INSUFFIC
IENT_AUTHE
NTICATION(0
x3005)

The authenti
cation to
access the
attribute is
insufficient.

BLE_ERR_GA
TT_REQUEST
_NOT_SUPPO
RTED(0x300
6)

The request
is not
supported.

BLE_ERR_GA
TT_INVALID_
OFFSET(0x3
007)

The
specified
offset is
larger than
the length of
the attribute
value.

BLE_ERR_GA
TT_INSUFFIC
IENT_AUTHO

Authorizatio
n is required
to access

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,779 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

RIZATION(0x
3008)

the
attribute.

BLE_ERR_GA
TT_PREPARE
_WRITE_QUE
UE_FULL(0x3
009)

The Write
Queue in the
GATT Server
is full.

BLE_ERR_GA
TT_ATTRIBU
TE_NOT_FOU
ND(0x300A)

The
specified
attribute is
not found.

BLE_ERR_GA
TT_ATTRIBU
TE_NOT_LON
G(0x300B)

The attribute
cannot be
read by
Read Blob
Request.

BLE_ERR_GA
TT_INSUFFIC
IENT_ENC_K
EY_SIZE(0x3
00C)

The
Encryption
Key Size is
insufficient.

BLE_ERR_GA
TT_INVALID_
ATTRIBUTE_
LEN(0x300D
)

The length
of the
specified
attribute is
invalid.

BLE_ERR_GA
TT_UNLIKELY
_ERROR(0x3
00E)

Because an
error has
occurred,
the process
cannot be
advanced.

BLE_ERR_GA
TT_INSUFFIC
IENT_ENCRY
PTION(0x30
0F)

Encryption is
required to
access the
attribute.

BLE_ERR_GA
TT_UNSUPP
ORTED_GRO
UP_TYPE(0x
3010)

The type of
the specified
attribute is
not
supported.

BLE_ERR_GA
TT_INSUFFIC
IENT_RESOU
RCES(0x301
1)

The
resource to
complete
the request
is
insufficient.

0x3080 - Application

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,780 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

0x309F Error. The
upper layer
defines the
error codes.

0x30E0 -
0x30FF

The error
code defined
in Common
Profile and
Service Error
Core
Specification
Supplement(
CSS).
CSS ver.7
defines the
error codes
from 0x30FC
to 0x30FF.

BLE_ERR_GA
TT_WRITE_R
EQ_REJECTE
D(0x30FC)

The Write
Request has
not been
completed
due to the
reason other
than
Permission.

BLE_ERR_GA
TT_CCCD_IM
PROPERLY_C
FG(0x30FD)

The CCCD is
set to be
invalid.

BLE_ERR_GA
TT_PROC_AL
READY_IN_P
ROGRESS(0x
30FE)

The request
is now in
progress.

BLE_ERR_GA
TT_OUT_OF_
RANGE(0x30
FF)

The attribute
value is out
of range.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The Group ID of the error_code parameter is
not 0x3000, or it is 0x3000.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other error response,this
function was called.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,781 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_RspExMtu()

ble_status_t R_BLE_GATTS_RspExMtu (uint16_t conn_hdl, uint16_t mtu)

This function replies to a MTU Exchange Request from a remote device.

BLE_GATTS_EVENT_EX_MTU_REQ event notifies the application layer that a MTU Exchange Request
has been received. Therefore when the callback has received the event, call this function.
The new MTU is the minimum of the mtu parameter specified by this function and the mtu field in
BLE_GATTS_EVENT_EX_MTU_REQ event.
Default MTU size is 23 bytes.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent MTU
Exchange Response.

[in] mtu The maximum size(in bytes)
of the GATT PDU that GATT
Server can receive.
Valid range is 23 <= mtu
<= 247.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,782 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_SERVER

◆ R_BLE_GATTS_SetPrepareQueue()

ble_status_t R_BLE_GATTS_SetPrepareQueue (st_ble_gatt_pre_queue_t * p_pre_queues, uint8_t
queue_num)

Register prepare queue and buffer in Host Stack.

This function registers the prepare queue and buffer for long chracteristic write and reliable writes.
The result of this API call is returned by a return value.

Parameters
[in] p_pre_queues The prepare write queues to

be registered.

[in] queue_num The number of prepare write
queues to be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_pre_queue parameter is specified as
NULL.

 GATT_CLIENT
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_GATTC_Init (uint8_t cb_num)

 This function initializes the GATT Client and registers the number of
the callbacks for GATT Client event. More...

ble_status_t R_BLE_GATTC_RegisterCb (ble_gattc_app_cb_t cb, uint8_t priority)

 This function registers a callback function for GATT Client event.
More...

ble_status_t R_BLE_GATTC_DeregisterCb (ble_gattc_app_cb_t cb)

 This function deregisters the callback function for GATT Client event.
More...

ble_status_t R_BLE_GATTC_ReqExMtu (uint16_t conn_hdl, uint16_t mtu)

 This function sends a MTU Exchange Request PDU to a GATT Server

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,783 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

in order to change the current MTU. More...

ble_status_t R_BLE_GATTC_DiscAllPrimServ (uint16_t conn_hdl)

 This function discovers all Primary Services in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscPrimServ (uint16_t conn_hdl, uint8_t *p_uuid,
uint8_t uuid_type)

 This function discovers Primary Service specified by p_uuid in a GATT
Server. More...

ble_status_t R_BLE_GATTC_DiscAllSecondServ (uint16_t conn_hdl)

 This function discovers all Secondary Services in a GATT Server.
More...

ble_status_t R_BLE_GATTC_DiscIncServ (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Included Services within the specified
attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscAllChar (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic within the specified attribute
handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscCharByUuid (uint16_t conn_hdl, uint8_t *p_uuid,
uint8_t uuid_type, st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic specified by uuid within the
specified attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscAllCharDesc (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic Descriptor within the specified
attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReadChar (uint16_t conn_hdl, uint16_t value_hdl)

 This function reads a Characteristic/Characteristic Descriptor in a
GATT Server. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,784 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

ble_status_t R_BLE_GATTC_ReadCharUsingUuid (uint16_t conn_hdl, uint8_t
*p_uuid, uint8_t uuid_type, st_ble_gatt_hdl_range_t *p_range)

 This function reads a Characteristic in a GATT Server using a
specified UUID. More...

ble_status_t R_BLE_GATTC_ReadLongChar (uint16_t conn_hdl, uint16_t value_hdl,
uint16_t offset)

 This function reads a Long Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReadMultiChar (uint16_t conn_hdl,
st_ble_gattc_rd_multi_req_param_t *p_list)

 This function reads multiple Characteristics in a GATT Server. More...

ble_status_t R_BLE_GATTC_WriteCharWithoutRsp (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes a Characteristic in a GATT Server without
response. More...

ble_status_t R_BLE_GATTC_SignedWriteChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes Signed Data to a Characteristic in a GATT Server
without response. More...

ble_status_t R_BLE_GATTC_WriteChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes a Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_WriteLongChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data, uint16_t offset)

 This function writes a Long Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReliableWrites (uint16_t conn_hdl,
st_ble_gattc_reliable_writes_char_pair_t *p_char_pair, uint8_t
pair_num, uint8_t auto_flag)

 This function performs the Reliable Writes procedure described in
GATT Specification. More...

ble_status_t R_BLE_GATTC_ExecWrite (uint16_t conn_hdl, uint8_t exe_flag)

 If the auto execute of Reliable Writes is not specified by

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,785 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

R_BLE_GATTC_ReliableWrites(), this function is used to execute a
write to Characteristic. More...

Detailed Description

Data Structures

struct st_ble_gatt_hdl_range_t

 Attribute handle range. More...

struct st_ble_gattc_reliable_writes_char_pair_t

 This is used in R_BLE_GATTC_ReliableWrites() to specify the pair of
Characteristic Value and Characteristic Value Handle. More...

struct st_ble_gattc_conn_evt_t

 This structure notifies that the link with the GATT Server has been
established. More...

struct st_ble_gattc_disconn_evt_t

 This structure notifies that the link with the GATT Server has been
disconnected. More...

struct st_ble_gattc_ex_mtu_rsp_evt_t

 This structure notifies that a MTU Exchange Response PDU has been
received from a GATT Server. More...

struct st_ble_gattc_serv_16_evt_t

 This structure notifies that a 16-bit UUID Service has been
discovered. More...

struct st_ble_gattc_serv_128_evt_t

 This structure notifies that a 128-bit UUID Service has been
discovered. More...

struct st_ble_gattc_inc_serv_16_evt_t

 This structure notifies that a 16-bit UUID Included Service has been
discovered. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,786 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

struct st_ble_gattc_inc_serv_128_evt_t

 This structure notifies that a 128-bit UUID Included Service has been
discovered. More...

struct st_ble_gattc_char_16_evt_t

 This structure notifies that a 16-bit UUID Characteristic has been
discovered. More...

struct st_ble_gattc_char_128_evt_t

 This structure notifies that a 128-bit UUID Characteristic has been
discovered. More...

struct st_ble_gattc_char_desc_16_evt_t

 This structure notifies that a 16-bit UUID Characteristic Descriptor
has been discovered. More...

struct st_ble_gattc_char_desc_128_evt_t

 This structure notifies that a 128-bit UUID Characteristic Descriptor
has been discovered. More...

struct st_ble_gattc_err_rsp_evt_t

 This structure notifies that a Error Response PDU has been received
from a GATT Server. More...

struct st_ble_gattc_ntf_evt_t

 This structure notifies that a Notification PDU has been received from
a GATT Server. More...

struct st_ble_gattc_ind_evt_t

 This structure notifies that a Indication PDU has been received from
a GATT Server. More...

struct st_ble_gattc_rd_char_evt_t

 This structure notifies that read response to
R_BLE_GATTC_ReadChar() or R_BLE_GATTC_ReadCharUsingUuid()
has been received from a GATT Server. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,787 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

struct st_ble_gattc_wr_char_evt_t

 This structure notifies that write response to
R_BLE_GATTC_WriteChar() has been received from a GATT Server.
More...

struct st_ble_gattc_rd_multi_char_evt_t

 This structure notifies that read response to
R_BLE_GATTC_ReadMultiChar() has been received from a GATT
Server. More...

struct st_ble_gattc_char_part_wr_evt_t

 This structure notifies that write response to
R_BLE_GATTC_WriteLongChar() or R_BLE_GATTC_ReliableWrites() has
been received from a GATT Server. More...

struct st_ble_gattc_reliable_writes_comp_evt_t

 This structure notifies that a response to R_BLE_GATTC_ExecWrite()
has been received from a GATT Server. More...

struct st_ble_gattc_rd_multi_req_param_t

 This is used in R_BLE_GATTC_ReadMultiChar() to specify multiple
Characteristics to be read. More...

struct st_ble_gattc_evt_data_t

 st_ble_gattc_evt_data_t is the type of the data notified in a GATT
Client Event. More...

struct st_ble_gatt_value_t

 Attribute Value. More...

struct st_ble_gatt_hdl_value_pair_t

 Attribute handle and attribute Value. More...

Macros

#define BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

#define BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

#define BLE_GATTC_MAX_CB

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,788 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

 GATT Client Callback Number.

#define BLE_GATTC_EXEC_AUTO

 Auto execution.

#define BLE_GATTC_EXEC_NOT_AUTO

 Not auto execution.

#define BLE_GATTC_RELIABLE_WRITES_MAX_CHAR_PAIR

 Length of the Queue used with Prepare Write procedure to write a
characteristic whose size is larger than MTU.

Typedefs

typedef void(* ble_gattc_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_gattc_evt_data_t *p_event_data)

 ble_gattc_app_cb_t is the GATT Client Event callback function type.
More...

Enumerations

enum e_r_ble_gattc_evt_t

 GATT Client Event Identifier. More...

Data Structure Documentation

◆ st_ble_gatt_hdl_range_t

struct st_ble_gatt_hdl_range_t

Attribute handle range.

Data Fields

uint16_t start_hdl Start Attribute Handle.

uint16_t end_hdl End Attribute Handle.

◆ st_ble_gattc_reliable_writes_char_pair_t

struct st_ble_gattc_reliable_writes_char_pair_t

This is used in R_BLE_GATTC_ReliableWrites() to specify the pair of Characteristic Value and
Characteristic Value Handle.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,789 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

st_ble_gatt_hdl_value_pair_t write_data Pair of Characteristic Value and
Characteristic Value Handle.

uint16_t offset Offset that indicates the
location to be written.

Normally, set 0 to this
parameter.
If this parameter sets to a value
other than 0,Adjust the offset
parameter and the length of the
value to be written not to
exceed the length of the
Characteristic.

◆ st_ble_gattc_conn_evt_t

struct st_ble_gattc_conn_evt_t

This structure notifies that the link with the GATT Server has been established.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Server.

◆ st_ble_gattc_disconn_evt_t

struct st_ble_gattc_disconn_evt_t

This structure notifies that the link with the GATT Server has been disconnected.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Server.

◆ st_ble_gattc_ex_mtu_rsp_evt_t

struct st_ble_gattc_ex_mtu_rsp_evt_t

This structure notifies that a MTU Exchange Response PDU has been received from a GATT Server.

Data Fields

uint16_t mtu MTU size(in bytes) that GATT
Server can receive.

◆ st_ble_gattc_serv_16_evt_t

struct st_ble_gattc_serv_16_evt_t

This structure notifies that a 16-bit UUID Service has been discovered.

Data Fields

st_ble_gatt_hdl_range_t range Attribute handle range of the
16-bit UUID service.

uint16_t uuid_16 Service UUID.

◆ st_ble_gattc_serv_128_evt_t

struct st_ble_gattc_serv_128_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,790 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

This structure notifies that a 128-bit UUID Service has been discovered.

Data Fields

st_ble_gatt_hdl_range_t range Attribute handle range of the
128-bit UUID service.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Service UUID.

◆ st_ble_gattc_inc_serv_16_evt_t

struct st_ble_gattc_inc_serv_16_evt_t

This structure notifies that a 16-bit UUID Included Service has been discovered.

Data Fields

uint16_t decl_hdl Service Declaration handle of
the 16-bit UUID Included
Service.

st_ble_gattc_serv_16_evt_t service The contents of the Included
Service.

◆ st_ble_gattc_inc_serv_128_evt_t

struct st_ble_gattc_inc_serv_128_evt_t

This structure notifies that a 128-bit UUID Included Service has been discovered.

Data Fields

uint16_t decl_hdl Service Declaration handle of
the 128-bit UUID Included
Service.

st_ble_gattc_serv_128_evt_t service The contents of the Included
Service.

◆ st_ble_gattc_char_16_evt_t

struct st_ble_gattc_char_16_evt_t

This structure notifies that a 16-bit UUID Characteristic has been discovered.

Data Fields

uint16_t decl_hdl Attribute handle of
Characteristic Declaration.

uint8_t cproperty Characteristic Properties.

It is a bitwise OR of the
following values.
Refer to Core Spec [Vol.3]
Generic Attribute Profile(GATT)
"3.3.1.1 Characteristic
Properties" regarding the
details of the Characteristic
Properties.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,791 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

value description

0x01 Broadcast
property

0x02 Read property

0x04 Write Without
Response
property

0x08 Write
property

0x10 Notify
property

0x20 Indicate
property

0x40 Authenticated
Signed Writes
property

0x80 Extended
Properties
property

uint16_t value_hdl Value Handle of the
Characteristic.

uint16_t uuid_16 Characteristic UUID.

◆ st_ble_gattc_char_128_evt_t

struct st_ble_gattc_char_128_evt_t

This structure notifies that a 128-bit UUID Characteristic has been discovered.

Data Fields

uint16_t decl_hdl Attribute Handle of
Characteristic Declaration.

uint8_t cproperty Characteristic Properties.

It is a bitwise OR of the
following values.
Refer to Core Spec [Vol.3]
Generic Attribute Profile(GATT)
"3.3.1.1 Characteristic
Properties" regarding the
details of the Characteristic
Properties.

value description

0x01 Broadcast
property

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,792 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

0x02 Read property

0x04 Write Without
Response
property

0x08 Write
property

0x10 Notify
property

0x20 Indicate
property

0x40 Authenticated
Signed Writes
property

0x80 Extended
Properties
property

uint16_t value_hdl Value Handle of the
Characteristic.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Characteristic UUID.

◆ st_ble_gattc_char_desc_16_evt_t

struct st_ble_gattc_char_desc_16_evt_t

This structure notifies that a 16-bit UUID Characteristic Descriptor has been discovered.

Data Fields

uint16_t desc_hdl Attribute Handle of
Characteristic Descriptor.

uint16_t uuid_16 Characteristic Descriptor UUID.

◆ st_ble_gattc_char_desc_128_evt_t

struct st_ble_gattc_char_desc_128_evt_t

This structure notifies that a 128-bit UUID Characteristic Descriptor has been discovered.

Data Fields

uint16_t desc_hdl Attribute Handle of
Characteristic Descriptor.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Characteristic Descriptor UUID.

◆ st_ble_gattc_err_rsp_evt_t

struct st_ble_gattc_err_rsp_evt_t

This structure notifies that a Error Response PDU has been received from a GATT Server.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,793 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Data Fields

uint8_t op_code The op code of the ATT Request
that causes the Error Response.
op_code

Exchange MTU Request(0x02)

Find Information
Request(0x04)

Find By Type Value
Request(0x06)

Read By Type Request(0x08)

Read Request(0x0A)

Read Blob Request(0x0C)

Read Multiple Request(0x0E)

Read by Group Type
Request(0x10)

Write Request(0x12)

Prepare Write Request(0x16)

Execute Write Request(0x18)

uint16_t attr_hdl Attribute handle that is target
for the request.

uint16_t rsp_code The error codes notified from
the GATT Server.

It is a bitwise OR of GATT Error
Group ID : 0x3000 and the
following error codes defined in
Core Spec and Core Spec
Supplement.

Error Code description

BLE_ERR_GAT
T_INVALID_HA
NDLE(0x3001)

Invalid
attribute
handle

BLE_ERR_GAT
T_READ_NOT_
PERMITTED(0
x3002)

The attribute
cannot be
read.

BLE_ERR_GAT
T_WRITE_NOT
_PERMITTED(0
x3003)

The attribute
cannot be
written.

BLE_ERR_GAT Invalid PDU.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,794 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

T_INVALID_PD
U(0x3004)

BLE_ERR_GAT
T_INSUFFICIE
NT_AUTHENTI
CATION(0x30
05)

The
authentication
to access the
attribute is
insufficient.

BLE_ERR_GAT
T_REQUEST_N
OT_SUPPORTE
D(0x3006)

The request is
not
supported.

BLE_ERR_GAT
T_INVALID_OF
FSET(0x3007)

The specified
offset is larger
than the
length of the
attribute
value.

BLE_ERR_GAT
T_INSUFFICIE
NT_AUTHORIZ
ATION(0x3008
)

Authorization
is required to
access the
attribute.

BLE_ERR_GAT
T_PREPARE_W
RITE_QUEUE_
FULL(0x3009)

The Write
Queue in the
GATT Server
is full.

BLE_ERR_GAT
T_ATTRIBUTE_
NOT_FOUND(0
x300A)

The specified
attribute is
not found.

BLE_ERR_GAT
T_ATTRIBUTE_
NOT_LONG(0x
300B)

The attribute
cannot be
read by Read
Blob Request.

BLE_ERR_GAT
T_INSUFFICIE
NT_ENC_KEY_
SIZE(0x300C)

The
Encryption
Key Size is
insufficient.

BLE_ERR_GAT
T_INVALID_AT
TRIBUTE_LEN(
0x300D)

The length of
the specified
attribute is
invalid.

BLE_ERR_GAT
T_UNLIKELY_E
RROR(0x300E
)

Because an
error has
occurred, the
process
cannot be
advanced.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,795 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

BLE_ERR_GAT
T_INSUFFICIE
NT_ENCRYPTI
ON(0x300F)

Encryption is
required to
access the
attribute.

BLE_ERR_GAT
T_UNSUPPORT
ED_GROUP_TY
PE(0x3010)

The type of
the specified
attribute is
not
supported.

BLE_ERR_GAT
T_INSUFFICIE
NT_RESOURC
ES(0x3011)

The resource
to complete
the request is
insufficient.

0x3080 -
0x309F

Application
Error. The
upper layer
defines the
error codes.

0x30E0 -
0x30FF

The error
code defined
in Common
Profile and
Service Error
Core
Specification
Supplement(C
SS).
CSS ver.7
defines the
error codes
from 0x30FC
to 0x30FF.

BLE_ERR_GAT
T_WRITE_REQ
_REJECTED(0x
30FC)

The Write
Request has
not been
completed
due to the
reason other
than
Permission.

BLE_ERR_GAT
T_CCCD_IMPR
OPERLY_CFG(
0x30FD)

The CCCD is
set to be
invalid.

BLE_ERR_GAT
T_PROC_ALRE
ADY_IN_PROG
RESS(0x30FE)

The request is
now in
progress.

BLE_ERR_GAT
T_OUT_OF_RA

The attribute
value is out of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,796 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

NGE(0x30FF) range.

◆ st_ble_gattc_ntf_evt_t

struct st_ble_gattc_ntf_evt_t

This structure notifies that a Notification PDU has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t data Characteristic that causes the
Notification.

◆ st_ble_gattc_ind_evt_t

struct st_ble_gattc_ind_evt_t

This structure notifies that a Indication PDU has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t data Characteristic that causes the
Indication.

◆ st_ble_gattc_rd_char_evt_t

struct st_ble_gattc_rd_char_evt_t

This structure notifies that read response to R_BLE_GATTC_ReadChar() or
R_BLE_GATTC_ReadCharUsingUuid() has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t read_data The contents of the
Characteristic that has been
read.

◆ st_ble_gattc_wr_char_evt_t

struct st_ble_gattc_wr_char_evt_t

This structure notifies that write response to R_BLE_GATTC_WriteChar() has been received from a
GATT Server.

Data Fields

uint16_t value_hdl Value Handle of the
Characteristic/Characteristic
Descriptor that has been
written.

◆ st_ble_gattc_rd_multi_char_evt_t

struct st_ble_gattc_rd_multi_char_evt_t

This structure notifies that read response to R_BLE_GATTC_ReadMultiChar() has been received from
a GATT Server.

Data Fields

uint16_t value_hdl_num The number of Value Handles of
the Characteristics that has

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,797 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

been read.

st_ble_gatt_value_t multi_char_val The contents of multiple
Characteristics that have been
read.

◆ st_ble_gattc_char_part_wr_evt_t

struct st_ble_gattc_char_part_wr_evt_t

This structure notifies that write response to R_BLE_GATTC_WriteLongChar() or
R_BLE_GATTC_ReliableWrites() has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t write_data The data to be written to the
Characteristic/Long
Characteristic/Long
Characteristic Descriptor.

uint16_t offset Offset that indicates the
location to be written.

◆ st_ble_gattc_reliable_writes_comp_evt_t

struct st_ble_gattc_reliable_writes_comp_evt_t

This structure notifies that a response to R_BLE_GATTC_ExecWrite() has been received from a GATT
Server.

Data Fields

uint8_t exe_flag This field indicates the
command of the Execute Write
that has been done.
value description

0x00 Cancel the
write.

0x01 Execute the
write.

◆ st_ble_gattc_rd_multi_req_param_t

struct st_ble_gattc_rd_multi_req_param_t

This is used in R_BLE_GATTC_ReadMultiChar() to specify multiple Characteristics to be read.

Data Fields

uint16_t * p_hdl_list List of Value Handles that point
the Characteristics to be read.

uint16_t list_count The number of Value Handles
included in the hdl_list
parameter.

◆ st_ble_gattc_evt_data_t

struct st_ble_gattc_evt_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,798 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

st_ble_gattc_evt_data_t is the type of the data notified in a GATT Client Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Server.

uint16_t param_len The size of GATT Client Event
parameters.

void * p_param GATT Client Event parameters.
This parameter differs in each
GATT Client Event.

◆ st_ble_gatt_value_t

struct st_ble_gatt_value_t

Attribute Value.

Data Fields

uint16_t value_len Length of the attribute value.

uint8_t * p_value Attribute Value.

◆ st_ble_gatt_hdl_value_pair_t

struct st_ble_gatt_hdl_value_pair_t

Attribute handle and attribute Value.

Data Fields

uint16_t attr_hdl Attribute Handle.

st_ble_gatt_value_t value Attribute Value.

Macro Definition Documentation

◆ BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

#define BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

GATT Execute Write Cancel Flag.

◆ BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

#define BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

GATT Execute Write Execute Flag.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,799 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ ble_gattc_app_cb_t

ble_gattc_app_cb_t

ble_gattc_app_cb_t is the GATT Client Event callback function type.

Parameters
[in] event_type The type of GATT Client

Event.

[in] event_result The result of GATT Client
Event

[in] p_event_data Data notified by GATT Client
Event.

Returns
none

Enumeration Type Documentation

◆ e_r_ble_gattc_evt_t

enum e_r_ble_gattc_evt_t

GATT Client Event Identifier.

Enumerator

BLE_GATTC_EVENT_ERROR_RSP This event notifies the application layer that a
problem has occurred in the GATT Server while
processing a request from GATT Client.

When GATT Client has received a Error
Response PDU from a GATT Server,
BLE_GATTC_EVENT_ERROR_RSP event is
notified the application layer.

Event Code: 0x4001

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_err_rsp_evt_tBLE_GATTC_EVENT_E
RROR_RSP

BLE_GATTC_EVENT_EX_MTU_RSP This event notifies the application layer that a
MTU Exchange Response PDU has been
received from a GATT Server.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,800 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Event Code: 0x4003

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
Exchange MTU
Response since
GATT Client sent a
Exchange MTU
Request PDU to
the GATT Server.

Event Data:

st_ble_gattc_ex_mtu_rsp_evt_tBLE_GATTC_EVE
NT_EX_MTU_RSP

BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP When the read of Characteristic specified by
UUID has been completed, this event is
notified to the application layer.

Event Code: 0x4009

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
Exchange MTU
Response since
GATT Client sent a
Exchange MTU
Request PDU to
the GATT Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_READ_BY_UUID_RSP

BLE_GATTC_EVENT_CHAR_READ_RSP When the read of Characteristic/Characteristic
Descriptor has been completed, this event is
notified to the application layer.

Event Code: 0x400B

result:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,801 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dCharUsingUuid()
to the GATT
Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_READ_RSP

BLE_GATTC_EVENT_CHAR_PART_READ_RSP After calling R_BLE_GATTC_ReadLongChar(),
this event notifies the application layer that
the partial contents of Long
Characteristic/Long Characteristic Descriptor
has been received from the GATT Server.

Event Code: 0x400D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dLongChar() to the
GATT Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_PART_READ_RSP

BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP This event notifies the application layer that
the read of multiple Characteristics has been
completed.

Event Code: 0x400F

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,802 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dMultiChar() to the
GATT Server.

Event Data:

st_ble_gattc_rd_multi_char_evt_tBLE_GATTC_EV
ENT_MULTI_CHAR_READ_RSP

BLE_GATTC_EVENT_CHAR_WRITE_RSP This event notifies the application layer that
the write of Characteristic/Characteristic
Descriptor has been completed.

Event Code: 0x4013

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
write response
since GATT Client
sent a request for
write by
R_BLE_GATTC_Writ
eChar() to the
GATT Server.

Event Data:

st_ble_gattc_wr_char_evt_tBLE_GATTC_EVENT_
CHAR_WRITE_RSP

BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP This event notifies the application layer of the
one of the following.

A segmentation to be written to Long
Characteristic/Long Characteristic
Descriptor has been sent to the GATT

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,803 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Server.
The data written to one Characteristic by
Reliable Writes has been sent to the
GATT Server.

Event Code: 0x4017

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for
segmentation
write by
R_BLE_GATTC_Writ
eLongChar(), or 1
Characteristic
write by
R_BLE_GATTC_Reli
ableWrites() to the
GATT Server.

Event Data:

st_ble_gattc_char_part_wr_evt_tBLE_GATTC_EV
ENT_CHAR_PART_WRITE_RSP

BLE_GATTC_EVENT_HDL_VAL_NTF This event notifies the application layer that a
Notification has been received from a GATT
Server.

Event Code: 0x401B

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_ntf_evt_tBLE_GATTC_EVENT_HDL_
VAL_NTF

BLE_GATTC_EVENT_HDL_VAL_IND This event notifies the application layer that a
Indication has been received from a GATT
Server.

When the GATT Client has received a
Indication, host stack automatically sends a

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,804 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Confirmation to the GATT Server.

Event Code: 0x401D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Insufficient
resource is needed
to generate the
confirmation
packet.

Event Data:

st_ble_gattc_ind_evt_tBLE_GATTC_EVENT_HDL_
VAL_IND

BLE_GATTC_EVENT_CONN_IND This event notifies the application layer that
the link with the GATT Server has been
established.

Event Code: 0x4081

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_conn_evt_tBLE_GATTC_EVENT_CO
NN_IND

BLE_GATTC_EVENT_DISCONN_IND This event notifies the application layer that
the link with the GATT Server has been
disconnected.

Event Code: 0x4082

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_disconn_evt_tBLE_GATTC_EVENT_
DISCONN_IND

BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND This event notifies the application layer that
16-bit UUID Primary Service has been

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,805 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

discovered.

Event Code: 0x40E0

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_16_evt_tBLE_GATTC_EVENT_
PRIM_SERV_16_DISC_IND

BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND This event notifies the application layer that
128-bit UUID Primary Service has been
discovered.

Event Code: 0x40E1

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_128_evt_tBLE_GATTC_EVENT
_PRIM_SERV_128_DISC_IND

BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP When the Primary Service discovery by
R_BLE_GATTC_DiscAllPrimServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E2

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_
COMP

BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP When the Primary Service discovery by
R_BLE_GATTC_DiscPrimServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E3

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,806 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_PRIM_SERV_DISC_COM
P

BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND

This event notifies the application layer that
16-bit UUID Secondary Service has been
discovered.

Event Code: 0x40E4

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_16_evt_tBLE_GATTC_EVENT_
SECOND_SERV_16_DISC_IND

BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IN
D

This event notifies the application layer that
128-bit UUID Secondary Service has been
discovered.

Event Code: 0x40E5

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_128_evt_tBLE_GATTC_EVENT
_SECOND_SERV_128_DISC_IND

BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_CO
MP

When the Primary Service discovery by
R_BLE_GATTC_DiscAllSecondServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E6

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,807 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Event Data:

noneBLE_GATTC_EVENT_ALL_SECOND_SERV_DI
SC_COMP

BLE_GATTC_EVENT_INC_SERV_16_DISC_IND This event notifies the application layer that
Included Service that includes 16-bit UUID
Service has been discovered.

Event Code: 0x40E7

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_inc_serv_16_evt_tBLE_GATTC_EVE
NT_INC_SERV_16_DISC_IND

BLE_GATTC_EVENT_INC_SERV_128_DISC_IND This event notifies the application layer that
Included Service that includes 128-bit UUID
Service has been discovered.

Event Code: 0x40E8

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_inc_serv_128_evt_tBLE_GATTC_EV
ENT_INC_SERV_128_DISC_IND

BLE_GATTC_EVENT_INC_SERV_DISC_COMP When the Included Service discovery by
R_BLE_GATTC_DiscIncServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E9

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_INC_SERV_DISC_COMP

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,808 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

BLE_GATTC_EVENT_CHAR_16_DISC_IND This event notifies the application layer that
16-bit UUID Characteristic has been
discovered.

Event Code: 0x40EA

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_16_evt_tBLE_GATTC_EVENT_
CHAR_16_DISC_IND

BLE_GATTC_EVENT_CHAR_128_DISC_IND This event notifies the application layer that
128-bit UUID Characteristic has been
discovered.

Event Code: 0x40EB

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_128_evt_tBLE_GATTC_EVENT
_CHAR_128_DISC_IND

BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP When the Characteristic discovery by
R_BLE_GATTC_DiscAllChar() has been
completed, this event is notified to the
application layer.

Event Code: 0x40EC

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_ALL_CHAR_DISC_COM
P

BLE_GATTC_EVENT_CHAR_DISC_COMP When the Characteristic discovery by
R_BLE_GATTC_DiscCharByUuid() has been
completed, this event is notified to the
application layer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,809 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Event Code: 0x40ED

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_CHAR_DISC_COMP

BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND This event notifies the application layer that
16-bit UUID Characteristic Descriptor has been
discovered.

Event Code: 0x40EE

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_desc_16_evt_tBLE_GATTC_EV
ENT_CHAR_DESC_16_DISC_IND

BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND This event notifies the application layer that
128-bit UUID Characteristic Descriptor has
been discovered.

Event Code: 0x40EF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_desc_128_evt_tBLE_GATTC_E
VENT_CHAR_DESC_128_DISC_IND

BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COM
P

When the Characteristic Descriptor discovery
by R_BLE_GATTC_DiscAllCharDesc() has been
completed, this event is notified to the
application layer.

Event Code: 0x40F0

result:

BLE_SUCCESS(0x0 Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,810 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

000)

Event Data:

noneBLE_GATTC_EVENT_ALL_CHAR_DESC_DISC
_COMP

BLE_GATTC_EVENT_LONG_CHAR_READ_COMP After calling R_BLE_GATTC_ReadLongChar(),
this event notifies the application layer that all
of the contents of the Characteristic/Long
Characteristic Descriptor has been received
from the GATT Server.

Event Code: 0x40F1

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_LONG_CHAR_READ_C
OMP

BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP This event notifies that the application layer
that the write of Long Characteristic/Long
Characteristic Descriptor has been completed.

Event Code: 0x40F2

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for write
by
R_BLE_GATTC_Writ
eLongChar() to the
GATT Server.

Event Data:

noneBLE_GATTC_EVENT_LONG_CHAR_WRITE_C
OMP

BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP

This event notifies that the application layer
that the GATT Server has received the data to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,811 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

be written to the Characteristics.

Event Code: 0x40F3

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_RELIABLE_WRITES_TX
_COMP

BLE_GATTC_EVENT_RELIABLE_WRITES_COMP This event notifies the application layer that
the Reliable Writes has been completed.

Event Code: 0x40F4

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for
execute write by
R_BLE_GATTC_Reli
ableWrites() or
R_BLE_GATTC_Exe
cWrite() to the
GATT Server.

Event Data:

st_ble_gattc_reliable_writes_comp_evt_tBLE_GA
TTC_EVENT_RELIABLE_WRITES_COMP

BLE_GATTC_EVENT_INVALID Invalid GATT Client Event.

Event Code: 0x40FF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_INVALID

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,812 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Function Documentation

◆ R_BLE_GATTC_Init()

ble_status_t R_BLE_GATTC_Init (uint8_t cb_num)

This function initializes the GATT Client and registers the number of the callbacks for GATT Client
event.

Specify the cb_num parameter to a value between 1 and BLE_GATTC_MAX_CB.
R_BLE_GATTC_RegisterCb() registers the callback.
The result of this API call is returned by a return value.

Parameters
[in] cb_num The number of callbacks to

be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The cb_num parameter is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,813 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_RegisterCb()

ble_status_t R_BLE_GATTC_RegisterCb (ble_gattc_app_cb_t cb, uint8_t priority)

This function registers a callback function for GATT Client event.

The number of the callback that may be registered by this function is the value specified by
R_BLE_GATTC_Init().
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for GATT

Client event.

[in] priority The priority of the callback
function.
Valid range is 1 <= priority
<= BLE_GATTC_MAX_CB.
A lower priority number
means a higher priority
level.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the
maximum number of callbacks.

◆ R_BLE_GATTC_DeregisterCb()

ble_status_t R_BLE_GATTC_DeregisterCb (ble_gattc_app_cb_t cb)

This function deregisters the callback function for GATT Client event.

The result of this API call is returned by a return value.

Parameters
[in] cb The callback function to be

deregistered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,814 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReqExMtu()

ble_status_t R_BLE_GATTC_ReqExMtu (uint16_t conn_hdl, uint16_t mtu)

This function sends a MTU Exchange Request PDU to a GATT Server in order to change the current
MTU.

MTU Exchange Response is notified by BLE_GATTC_EVENT_EX_MTU_RSP event.
The new MTU is the minimum value of the mtu parameter specified by this function and the mtu
field in BLE_GATTC_EVENT_EX_MTU_RSP event. Default MTU size is 23 bytes.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be sent.

[in] mtu The maximum size(in bytes)
of the GATT PDU that GATT
Client can receive.
Valid range is 23 <= mtu
<= 247.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,815 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllPrimServ()

ble_status_t R_BLE_GATTC_DiscAllPrimServ (uint16_t conn_hdl)

This function discovers all Primary Services in a GATT Server.

When 16-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event is notified to the application layer.
When 128-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.
When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,816 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscPrimServ()

ble_status_t R_BLE_GATTC_DiscPrimServ (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t uuid_type)

This function discovers Primary Service specified by p_uuid in a GATT Server.

When Primary Service whose uuid is the same as the specified uuid has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event or
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.
When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_uuid UUID of Primary Service to
be discovered.

[in] uuid_type UUID type(16-bit or 128-bit).
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

16-bit UUID

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

128-bit UUID

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,817 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllSecondServ()

ble_status_t R_BLE_GATTC_DiscAllSecondServ (uint16_t conn_hdl)

This function discovers all Secondary Services in a GATT Server.

When a 16-bit UUID Secondary Service has been discovered,
BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND event is notified to the application layer.
When a 128-bit UUID Secondary Service has been discovered,
BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IND event is notified to the application layer.
When the Secondary Service discovery has been completed,
BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,818 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscIncServ()

ble_status_t R_BLE_GATTC_DiscIncServ (uint16_t conn_hdl, st_ble_gatt_hdl_range_t * p_range)

This function discovers Included Services within the specified attribute handle range in a GATT
Server.

When Included Service that includes 16-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_16_DISC_IND event is notified to the application layer.
When Included Service that includes 128-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_128_DISC_IND event is notified to the application layer.
When the Included Service discovery has been completed,
BLE_GATTC_EVENT_INC_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of Included
Service.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,819 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllChar()

ble_status_t R_BLE_GATTC_DiscAllChar (uint16_t conn_hdl, st_ble_gatt_hdl_range_t * p_range)

This function discovers Characteristic within the specified attribute handle range in a GATT Server.

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND
event is notified to the application layer.
When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.
When the Characteristic discovery has been completed, BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP
event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

◆ R_BLE_GATTC_DiscCharByUuid()

ble_status_t R_BLE_GATTC_DiscCharByUuid (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t
uuid_type, st_ble_gatt_hdl_range_t * p_range)

This function discovers Characteristic specified by uuid within the specified attribute handle range
in a GATT Server.

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND
event is notified to the application layer.
When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.
When the Characteristic discovery has been completed, BLE_GATTC_EVENT_CHAR_DISC_COMP
event is notified to the application layer.

Parameters

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,820 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

[in] conn_hdl Connection handle
identifying the GATT Server
to be discovered.

[in] p_uuid UUID of Characteristic to be
discovered.

[in] uuid_type UUID type of Characteristic
to be discovered.
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

The p_uuid
parameter is
16-bit UUID.

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

The p_uuid
parameter is
128-bit
UUID.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,821 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllCharDesc()

ble_status_t R_BLE_GATTC_DiscAllCharDesc (uint16_t conn_hdl, st_ble_gatt_hdl_range_t *
p_range)

This function discovers Characteristic Descriptor within the specified attribute handle range in a
GATT Server.

When 16-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND event is notified to the application layer. When
128-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND event is notified to the application layer. When the
Characteristic Descriptor discovery has been completed,
BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of
Characteristic Descriptor.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,822 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReadChar()

ble_status_t R_BLE_GATTC_ReadChar (uint16_t conn_hdl, uint16_t value_hdl)

This function reads a Characteristic/Characteristic Descriptor in a GATT Server.

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_RSP event.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be read.

[in] value_hdl Value handle of the
Characteristic/Characteristic
Descriptor to be read.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,823 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReadCharUsingUuid()

ble_status_t R_BLE_GATTC_ReadCharUsingUuid (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t
uuid_type, st_ble_gatt_hdl_range_t * p_range)

This function reads a Characteristic in a GATT Server using a specified UUID.

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP event.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_uuid UUID of the Characteristic to
be read.

[in] uuid_type UUID type of the
Characteristic to be read.
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

The p_uuid
parameter is
16-bit UUID.

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

The p_uuid
parameter is
128-bit
UUID.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,824 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReadLongChar()

ble_status_t R_BLE_GATTC_ReadLongChar (uint16_t conn_hdl, uint16_t value_hdl, uint16_t offset
)

This function reads a Long Characteristic in a GATT Server.

The contents of the Long Characteristic that has been read is notified every MTU-1 bytes to the
application layer by BLE_GATTC_EVENT_CHAR_READ_RSP event.
When all of the contents has been received in GATT Client,
BLE_GATTC_EVENT_LONG_CHAR_READ_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be read.

[in] value_hdl Value handle of the Long
Characteristic to be read.

[in] offset Offset that indicates the
location to be read.
Normally, set 0 to this
parameter.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,825 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReadMultiChar()

ble_status_t R_BLE_GATTC_ReadMultiChar (uint16_t conn_hdl, st_ble_gattc_rd_multi_req_param_t
* p_list)

This function reads multiple Characteristics in a GATT Server.

The contents of the multiple Characteristics that has been read is notified to the application layer
by BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP event.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_list List of Value Handles that
point the Characteristics to
be read.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_list parameter or the p_hdl_list field in
the p_list parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the list_count field in the
p_list parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,826 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_WriteCharWithoutRsp()

ble_status_t R_BLE_GATTC_WriteCharWithoutRsp (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t
* p_write_data)

This function writes a Characteristic in a GATT Server without response.

The result is returned from the API.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_write_data Value to be written to the
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the p_value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,827 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_SignedWriteChar()

ble_status_t R_BLE_GATTC_SignedWriteChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data)

This function writes Signed Data to a Characteristic in a GATT Server without response.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Signed Data to be written to
the Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function or Signed Data.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,828 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_WriteChar()

ble_status_t R_BLE_GATTC_WriteChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data)

This function writes a Characteristic in a GATT Server.

The result of the write is notified in BLE_GATTC_EVENT_CHAR_WRITE_RSP event.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Value to be written to the
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

◆ R_BLE_GATTC_WriteLongChar()

ble_status_t R_BLE_GATTC_WriteLongChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data, uint16_t offset)

This function writes a Long Characteristic in a GATT Server.

The result of a write that has been done every segmentation is notified to the application layer in
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event.
The maximum writable size to a Long Characteristic with this function is 512 bytes.
When all of the contents has been written to the Long Characteristic,
BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP event is notified to the application layer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,829 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Value to be written to the
Long Characteristic.

[in] offset Offset that indicates the
location to be written.
Normally, set 0 to this
parameter.
If this parameter sets to a
value other than 0, adjust
the offset parameter and the
length of the value to be
written not to exceed the
length of the Long
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

The value_len field in the value field
in the p_write_data parameter is 0.
The sum of the value_len field in the
value field in the p_write_data
parameter and the offset parameter
larger than 512.
The attr_hdl field in the p_write_data
parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,830 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ReliableWrites()

ble_status_t R_BLE_GATTC_ReliableWrites (uint16_t conn_hdl,
st_ble_gattc_reliable_writes_char_pair_t * p_char_pair, uint8_t pair_num, uint8_t auto_flag)

This function performs the Reliable Writes procedure described in GATT Specification.

When the data written to the Characteristic has been transmitted,
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event is notified to the application layer.
If the data included in the event is different from the data that GATT Client has sent, host stack
automatically cancels the Reliable Writes.
After all of the contents has been sent to the GATT Server, if the auto_flag parameter has been set
to BLE_GATTC_EXEC_AUTO, the GATT Server automatically writes the data to the Characteristic.
If the auto_flag parameter has been set to BLE_GATTC_EXEC_NOT_AUTO,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer in GATT Client
that all of the contents has been sent to the GATT Server. Then GATT Client requests for writing the
data to the Characteristic to the GATT Server with R_BLE_GATTC_ExecWrite().
When the write has been done, BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event is notified to
the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_char_pair Pair of Characteristic Value
and Characteristic Value
Handle identifying the
Characteristic to be written
by Reliable Writes.

[in] pair_num The number of the pairs
specified by the p_char_pair
parameter.
Valid range is 0 < pair_num
<= BLE_GATTC_RELIABLE_W
RITES_MAX_CHAR_PAIR.

[in] auto_flag The flag that indicates
whether auto execution or
not.
macro description

BLE_GATTC_
EXEC_AUTO(
0x01)

Auto
execution.

BLE_GATTC_
EXEC_NOT_A
UTO (0x02)

Not auto
execution.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,831 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

The p_char_pair parameter is
specified as NULL.
The p_value field in the value field in
the write_data field in the
p_char_pair parameter is specified
as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

The pair_num parameter or the
auto_flag parameter is out of range.
The value_len field in the value field
in the write_data field in the
p_char_pair parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function or to store the temporary write
data.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,832 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

◆ R_BLE_GATTC_ExecWrite()

ble_status_t R_BLE_GATTC_ExecWrite (uint16_t conn_hdl, uint8_t exe_flag)

If the auto execute of Reliable Writes is not specified by R_BLE_GATTC_ReliableWrites(), this
function is used to execute a write to Characteristic.

When all of the contents has been sent to the GATT Server,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer.
After this event has been received, execute the write by this function.
The result of the write is notified by BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the target GATT
Server.

[in] exe_flag The flag that indicates
whether execution or
cancellation.
macro description

BLE_GATTC_
EXECUTE_W
RITE_CANCE
L_FLAG(0x00
)

Execute the
write.

BLE_GATTC_
EXECUTE_W
RITE_EXEC_F
LAG(0x01)

Cancel the
write.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The exe_flag parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) The reason for this error is as follows:

GATT Client has not requested for
Reliable Writes by
R_BLE_GATTC_ReliableWrites().
Although auto execution has been
specified by
R_BLE_GATTC_ReliableWrites(), this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,833 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > GATT_CLIENT

 L2CAP
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_L2CAP_RegisterCfPsm (ble_l2cap_cf_app_cb_t cb, uint16_t
psm, uint16_t lwm)

 This function registers PSM that uses L2CAP CBFC Channel and a
callback for L2CAP event. More...

ble_status_t R_BLE_L2CAP_DeregisterCfPsm (uint16_t psm)

 This function stops the use of the L2CAP CBFC Channel specified by
the psm parameter and deregisters the callback function for L2CAP
event. More...

ble_status_t R_BLE_L2CAP_ReqCfConn (uint16_t conn_hdl,
st_ble_l2cap_conn_req_param_t *p_conn_req_param)

 This function sends a connection request for L2CAP CBFC Channel.
More...

ble_status_t R_BLE_L2CAP_RspCfConn (st_ble_l2cap_conn_rsp_param_t
*p_conn_rsp_param)

 This function replies to the connection request for L2CAP CBFC
Channel from the remote device. More...

ble_status_t R_BLE_L2CAP_DisconnectCf (uint16_t lcid)

 This function sends a disconnection request for L2CAP CBFC
Channel. More...

ble_status_t R_BLE_L2CAP_SendCfCredit (uint16_t lcid, uint16_t credit)

 This function sends credit to a remote device. More...

ble_status_t R_BLE_L2CAP_SendCfData (uint16_t conn_hdl, uint16_t lcid, uint16_t
data_len, uint8_t *p_sdu)

 This function sends the data to a remote device via L2CAP CBFC
Channel. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,834 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

Detailed Description

Data Structures

struct st_ble_l2cap_conn_req_param_t

 L2CAP CBFC Channel connection request parameters. More...

struct st_ble_l2cap_conn_rsp_param_t

 L2CAP CBFC Channel connection response parameters. More...

struct st_ble_l2cap_cf_conn_evt_t

 L2CAP CBFC Channel connection parameters. More...

struct st_ble_l2cap_cf_data_evt_t

 Sent/Received Data parameters. More...

struct st_ble_l2cap_cf_credit_evt_t

 Credit parameters of local or remote device. More...

struct st_ble_l2cap_cf_disconn_evt_t

 Disconnection parameters. More...

struct st_ble_l2cap_rej_evt_t

 Command Reject parameters. More...

struct st_ble_l2cap_cf_evt_data_t

 st_ble_l2cap_cf_evt_data_t is the type of the data notified in a L2CAP
Event. More...

Macros

#define BLE_L2CAP_MAX_CBFC_PSM

 The maximum number of callbacks that host stack can register.

#define BLE_L2CAP_CF_RSP_SUCCESS

 Notify the remote device that the connection can be established.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,835 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

#define BLE_L2CAP_CF_RSP_RFSD_INSF_AUTH

 Notify the remote device that the connection can not be established
because of insufficient authentication.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_AUTRZ

 Notify the remote device that the connection can not be established
because of insufficient Authorization.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_ENC_KEY

 Notify the remote device that the connection can not be established
because of Encryption Key Size.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_ENC

 Notify the remote device that the connection can not be established
because of Encryption.

#define BLE_L2CAP_CF_RSP_RFSD_UNAC_PARAM

 Notify the remote device that the connection can not be established
because the parameters is unacceptable to local device.

Typedefs

typedef void(* ble_l2cap_cf_app_cb_t) (uint16_t event_type, ble_status_t
event_result, st_ble_l2cap_cf_evt_data_t *p_event_data)

 ble_l2cap_cf_app_cb_t is the L2CAP Event callback function type.
More...

Enumerations

enum e_r_ble_l2cap_cf_evt_t

 L2CAP Event Identifier. More...

Data Structure Documentation

◆ st_ble_l2cap_conn_req_param_t

struct st_ble_l2cap_conn_req_param_t

L2CAP CBFC Channel connection request parameters.

Data Fields

uint16_t local_psm Identifier indicating the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,836 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

protocol/profile that uses L2CAP
CBFC Channel on local device.

uint16_t remote_psm Identifier indicating the
protocol/profile that uses L2CAP
CBFC Channel on remote
device.

uint16_t mtu MTU size(byte) receivable on
L2CAP CBFC Channel.

uint16_t mps MPS size(byte) receivable on
L2CAP CBFC Channel.

uint16_t credit The number of LE-Frame that
local device can receive.

◆ st_ble_l2cap_conn_rsp_param_t

struct st_ble_l2cap_conn_rsp_param_t

L2CAP CBFC Channel connection response parameters.

Data Fields

uint16_t lcid CID identifying the L2CAP CBFC
Channel on local device. The
valid range is 0x40-0x40 +
BLE_L2CAP_MAX_CBFC_PSM - 1.

uint16_t response The response to the connection
request. Select one of the
following.

macro description

BLE_L2CAP_C
F_RSP_SUCCE
SS(0x0000)

Notify the
remote device
that the
connection
can be
established.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_AUTH(0x
0005)

Notify the
remote device
that the
connection
can not be
established
because of
insufficient
authentication
.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_AUTRZ(0
x0006)

Notify the
remote device
that the
connection
can not be
established

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,837 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

because of
insufficient
Authorization.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_ENC_KEY
(0x0007)

Notify the
remote device
that the
connection
can not be
established
because of
Encryption
Key Size.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_ENC(0x0
008)

Notify the
remote device
that the
connection
can not be
established
because of
Encryption.

BLE_L2CAP_C
F_RSP_RFSD_
UNAC_PARAM(
0x000B)

Notify the
remote device
that the
connection
can not be
established
because the
parameters is
unacceptable
to local
device.

uint16_t mtu MTU(byte) of packet that L2CAP
CBFC Channel on local device
can receive.

uint16_t mps MPS(byte) of packet that L2CAP
CBFC Channel on local device
can receive.

uint16_t credit The number of LE-Frame that
L2CAP CBFC Channel on local
device can receive.

◆ st_ble_l2cap_cf_conn_evt_t

struct st_ble_l2cap_cf_conn_evt_t

L2CAP CBFC Channel connection parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel.

uint16_t psm PSM allocated by the cid field.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,838 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

uint16_t mtu MTU of local (specified in
BLE_L2CAP_EVENT_CF_CONN_IN
D) / remote (notified in
BLE_L2CAP_EVENT_CF_CONN_C
NF) device.

uint16_t mps MPS of local (specified in
BLE_L2CAP_EVENT_CF_CONN_IN
D) / remote (notified in
BLE_L2CAP_EVENT_CF_CONN_C
NF) device.

uint16_t credit Credit of local (specified in
BLE_L2CAP_EVENT_CF_CONN_IN
D) / remote (notified in
BLE_L2CAP_EVENT_CF_CONN_C
NF) device.

◆ st_ble_l2cap_cf_data_evt_t

struct st_ble_l2cap_cf_data_evt_t

Sent/Received Data parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel that has sent or
received the data .

uint16_t psm PSM allocated by the cid field.

uint16_t data_len Data length.

uint8_t * p_data Sent/Received data.

◆ st_ble_l2cap_cf_credit_evt_t

struct st_ble_l2cap_cf_credit_evt_t

Credit parameters of local or remote device.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel.

uint16_t psm PSM allocated by the cid field.

uint16_t credit Current credit of local/remote
device.

◆ st_ble_l2cap_cf_disconn_evt_t

struct st_ble_l2cap_cf_disconn_evt_t

Disconnection parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,839 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

Channel that has been
disconnected.

◆ st_ble_l2cap_rej_evt_t

struct st_ble_l2cap_rej_evt_t

Command Reject parameters.

Data Fields

uint16_t reason The reason that the remote
device has sent Command
Reject.

uint16_t data_1 Optional information about the
reason that the remote device
has sent Command Reject.

uint16_t data_2 Optional information about the
reason that the remote device
has sent Command Reject.

◆ st_ble_l2cap_cf_evt_data_t

struct st_ble_l2cap_cf_evt_data_t

st_ble_l2cap_cf_evt_data_t is the type of the data notified in a L2CAP Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device.

uint16_t param_len The size of L2CAP Event
parameters.

void * p_param L2CAP Event parameters. This
parameter differs in each
L2CAP Event.

Typedef Documentation

◆ ble_l2cap_cf_app_cb_t

ble_l2cap_cf_app_cb_t

ble_l2cap_cf_app_cb_t is the L2CAP Event callback function type.

Parameters
[in] event_type The type of L2CAP Event.

[in] event_result The result of L2CAP Event

[in] p_event_data Data notified by L2CAP
Event.

Returns
none

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,840 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

Enumeration Type Documentation

◆ e_r_ble_l2cap_cf_evt_t

enum e_r_ble_l2cap_cf_evt_t

L2CAP Event Identifier.

Enumerator

BLE_L2CAP_EVENT_CF_CONN_CNF After the connection request for L2CAP CBFC
Channel has been sent with
R_BLE_L2CAP_ReqCfConn(), when the L2CAP
CBFC Channel connection response has been
received, BLE_L2CAP_EVENT_CF_CONN_CNF
event occurs.

Event Code: 0x5001

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

L2CAP Command
timeout.

BLE_ERR_L2CAP_P
SM_NOT_SUPPORT
ED(0x4002)

PSM specified by
R_BLE_L2CAP_Req
CfConn() is not
supported.

BLE_ERR_L2CAP_N
O_RESOURCE(0x4
004)

No resource for
connection.

BLE_ERR_L2CAP_IN
SUF_AUTHEN(0x40
05)

Insufficient
authentication.

BLE_ERR_L2CAP_IN
SUF_AUTHOR(0x40
06)

Insufficient
authorization.

BLE_ERR_L2CAP_IN
SUF_ENC_KEY_SIZ
E(0x4007)

Insufficient
encryption key
size.

BLE_ERR_L2CAP_R
EFUSE_INSUF_ENC
(0x4008)

Insufficient
encryption.

BLE_ERR_L2CAP_R
EFUSE_INVALID_SC
ID(0x4009)

Invalid Source CID.

BLE_ERR_L2CAP_R
EFUSE_SCID_ALRE

Source CID already
allocated.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,841 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

ADY_ALLOC(0x400
A)

BLE_ERR_L2CAP_R
EFUSE_UNACCEPT
ABLE_PARAM(0x40
0B)

Unacceptable
parameters.

Event Data:

st_ble_l2cap_cf_conn_evt_t

BLE_L2CAP_EVENT_CF_CONN_IND When a connection request for L2CPA CBFC
Channel has been received from a remote
device, BLE_L2CAP_EVENT_CF_CONN_IND
event occurs.

Event Code: 0x5002

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_NOT_FOU
ND(0x000D)

CF connection
request has not
been received or
lcid not found.

BLE_ERR_L2CAP_P
SM_NOT_SUPPORT
ED(0x4002)

PSM specified by
R_BLE_L2CAP_Req
CfConn() is not
supported.

Event Data:

st_ble_l2cap_cf_conn_evt_t

BLE_L2CAP_EVENT_CF_DISCONN_CNF After local device has sent a disconnection
request for L2CAP CBFC Channel by
R_BLE_L2CAP_DisconnectCf(), when the local
device has received the response,
BLE_L2CAP_EVENT_CF_DISCONN_CNF event
occurs.

Event Code: 0x5003

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_disconn_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,842 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

BLE_L2CAP_EVENT_CF_DISCONN_IND When local device has received a
disconnection request for L2CAP CBFC Channel
from the remote device,
BLE_L2CAP_EVENT_CF_DISCONN_IND event
occurs.
Host stack automatically replies the to the
disconnection request.

Event Code: 0x5004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_disconn_evt_t

BLE_L2CAP_EVENT_CF_RX_DATA_IND When local device has received data on L2CAP
CBFC Channel,
BLE_L2CAP_EVENT_CF_RX_DATA_IND event
occurs.

Event Code: 0x5005

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_data_evt_t

BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND When the credit of the L2CAP CBFC Channel
has reached the Low Water Mark,
BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND
event occurs.

Event Code: 0x5006

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_credit_evt_t

BLE_L2CAP_EVENT_CF_TX_CRD_IND When local device has received credit from a
remote device,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,843 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

BLE_L2CAP_EVENT_CF_TX_CRD_IND event
occurs.

Event Code: 0x5007

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_credit_evt_t

BLE_L2CAP_EVENT_CF_TX_DATA_CNF When the data transmission has been
completed from host stack to Controller,
BLE_L2CAP_EVENT_CF_TX_DATA_CNF event
occurs.

Event Code: 0x5008

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_DISCONN
ECTED(0x000F)

While transmitting
data, L2CAP CBFC
Channel has been
disconnected.

Event Data:

st_ble_l2cap_cf_data_evt_t

BLE_L2CAP_EVENT_CMD_REJ When local device has received Command
Reject PDU, BLE_L2CAP_EVENT_CMD_REJ event
occurs.

Event Code: 0x5009

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_rej_evt_t

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,844 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_RegisterCfPsm()

ble_status_t R_BLE_L2CAP_RegisterCfPsm (ble_l2cap_cf_app_cb_t cb, uint16_t psm, uint16_t lwm
)

This function registers PSM that uses L2CAP CBFC Channel and a callback for L2CAP event.

Only one callback is available per PSM. Configure in each PSM the Low Water Mark of the LE-
Frames that the local device can receive.
When the number of the credit reaches the Low Water Mark,
BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND event is notified to the application layer.
The number of PSM is defined as BLE_L2CAP_MAX_CBFC_PSM.
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for L2CAP

event.

[in] psm Identifier indicating the
protocol/profile that uses
L2CAP CBFC Channel.

type range descript
ion

Fixed,
SIG
assigne
d

0x0001
-
0x007F

PSM
defined
by SIG.
For
more in
formati
on on
PSM,
refer Bl
uetooth
SIG Assi
gned
Number
(
https://
www.bl
uetooth
.com/sp
ecificati
ons/assi
gned-n
umbers
).

Dynami
c

0x0080
-
0x00FF

Staticall
y alloca
ted PSM
by
custom
protoco
l or dyn
amicall

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,845 / 5,560

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

y alloca
ted PSM
by
GATT
Service.

[in] lwm Low Water Mark that
indicates the LE-Frame
numbers that the local
device can receive.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The psm parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) More than BLE_L2CAP_MAX_CBFC_PSM+1
PSMs, callbacks has been registered.

◆ R_BLE_L2CAP_DeregisterCfPsm()

ble_status_t R_BLE_L2CAP_DeregisterCfPsm (uint16_t psm)

This function stops the use of the L2CAP CBFC Channel specified by the psm parameter and
deregisters the callback function for L2CAP event.

The result of this API call is returned by a return value.

Parameters
[in] psm PSM that is to be stopped to

use the L2CAP CBFC
Channel.
Set the PSM registered by
R_BLE_L2CAP_RegisterCfPsm
().

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_NOT_FOUND(0x000D) The callback function allocated by the psm
parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,846 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_ReqCfConn()

ble_status_t R_BLE_L2CAP_ReqCfConn (uint16_t conn_hdl, st_ble_l2cap_conn_req_param_t *
p_conn_req_param)

This function sends a connection request for L2CAP CBFC Channel.

The connection response is notified by BLE_L2CAP_EVENT_CF_CONN_CNF event.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device that the connection
request is sent to.

[in] p_conn_req_param Connection request
parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_conn_req_param parameter is
specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter or the mps parameter is
out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been
established.

BLE_ERR_CONTEXT_FULL(0x000B) New CF Channel can not be registered or
other L2CAP Command is processing.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) The psm parameter is not registered.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,847 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_RspCfConn()

ble_status_t R_BLE_L2CAP_RspCfConn (st_ble_l2cap_conn_rsp_param_t * p_conn_rsp_param)

This function replies to the connection request for L2CAP CBFC Channel from the remote device.

The connection request is notified by BLE_L2CAP_EVENT_CF_CONN_IND event. The result of this API
call is returned by a return value.

Parameters
[in] p_conn_rsp_param Connection response

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_conn_rsp_param parameter is
specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) A connection request for L2CAP CBFC
Channel has not been received, or CID
specified by the lcid field in the
p_conn_rsp_param parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,848 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_DisconnectCf()

ble_status_t R_BLE_L2CAP_DisconnectCf (uint16_t lcid)

This function sends a disconnection request for L2CAP CBFC Channel.

When L2CAP CBFC Channel has been disconnected, BLE_L2CAP_EVENT_CF_DISCONN_CNF event is
notified to the application layer.

Parameters
[in] lcid CID identifying the L2CAP

CBFC Channel that has been
disconnected.
The valid range is 0x40 -
(0x40 +
BLE_L2CAP_MAX_CBFC_PSM
- 1).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) CF Channel connection has not been
established.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing
other L2CAP command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not
found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,849 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_SendCfCredit()

ble_status_t R_BLE_L2CAP_SendCfCredit (uint16_t lcid, uint16_t credit)

This function sends credit to a remote device.

In L2CAP CBFC communication, if credit is 0, the remote device stops data transmission.
Therefore when processing the received data has been completed and local device affords to
receive data, the remote device is notified of the number of LE-Frame that local device can receive
by this function and local device can continue to receive data from the remote device.
The result of this API call is returned by a return value.

Parameters
[in] lcid CID identifying the L2CAP

CBFC Channel on local
device that sends credit.

[in] credit Credit to be sent to the
remote device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The credit parameter is set to 0.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing
other L2CAP command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,850 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > L2CAP

◆ R_BLE_L2CAP_SendCfData()

ble_status_t R_BLE_L2CAP_SendCfData (uint16_t conn_hdl, uint16_t lcid, uint16_t data_len,
uint8_t * p_sdu)

This function sends the data to a remote device via L2CAP CBFC Channel.

When the data transmission to Controller has been completed,
BLE_L2CAP_EVENT_CF_TX_DATA_CNF event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the data.

[in] lcid CID identifying the L2CAP
CBFC Channel on local
device used in the data
transmission.

[in] data_len Length of the data.

[in] p_sdu Service Data Unit.
Input the data length
specified by the data_len
parameter to the first 2
bytes (Little Endian).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The length parameter is out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been
established or the data whose length
exceeds the MTU has been sent.

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) Data transmission has been already started.

BLE_ERR_CONTEXT_FULL(0x000B) L2CAP task queue is full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not
found.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter is not found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,851 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

 VS
Interfaces » Networking » BLE Interface

Functions

ble_status_t R_BLE_VS_Init (ble_vs_app_cb_t vs_cb)

 This function initializes Vendor Specific API and registers a callback
function for Vendor Specific Event. More...

ble_status_t R_BLE_VS_StartTxTest (st_ble_vs_tx_test_param_t *p_tx_test_param)

 This function starts extended Transmitter Test. More...

ble_status_t R_BLE_VS_StartRxTest (st_ble_vs_rx_test_param_t *p_rx_test_param)

 This function starts extended Receiver Test. More...

ble_status_t R_BLE_VS_EndTest (void)

 This function terminates the extended transmitter or receiver test.
More...

ble_status_t R_BLE_VS_SetTxPower (uint16_t conn_hdl, uint8_t tx_power)

 This function configures transmit power. More...

ble_status_t R_BLE_VS_GetTxPower (uint16_t conn_hdl)

 This function gets transmit power. More...

ble_status_t R_BLE_VS_SetCodingScheme (uint8_t coding_scheme)

 This function configure default Coding scheme(S=8 or S=2) that is
used in the case of selecting Coded PHY in Primary advertising PHY
or Secondary advertising PHY advertising or request for link
establishment. More...

ble_status_t R_BLE_VS_SetRfControl (st_ble_vs_set_rf_ctrl_param_t *p_rf_ctrl)

 This function performs power control on RF. More...

ble_status_t R_BLE_VS_SetBdAddr (uint8_t area, st_ble_dev_addr_t *p_addr)

 This function sets public/random address of local device to the area
specified by the parameter. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,852 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

ble_status_t R_BLE_VS_GetBdAddr (uint8_t area, uint8_t addr_type)

 This function gets currently configured public/random address.
More...

ble_status_t R_BLE_VS_GetRand (uint8_t rand_size)

 This function generates 4-16 bytes of random number used in
creating keys. More...

ble_status_t R_BLE_VS_StartTxFlowEvtNtf (void)

 This function starts the
notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow. More...

ble_status_t R_BLE_VS_StopTxFlowEvtNtf (void)

 This function stops the
notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow. More...

ble_status_t R_BLE_VS_GetTxBufferNum (uint32_t *p_buffer_num)

 This function retrieves the number of the available transmission
packet buffers. More...

ble_status_t R_BLE_VS_SetTxLimit (uint32_t tx_queue_lwm, uint32_t
tx_queue_hwm)

 This function sets the threshold for notifying the application layer of
the TxFlow state. More...

ble_status_t R_BLE_VS_SetScanChMap (uint16_t ch_map)

 This function sets the scan channel map. More...

ble_status_t R_BLE_VS_GetScanChMap (void)

 This function gets currently scan channel map. More...

ble_status_t R_BLE_VS_StartFirmwareUpdate (void)

 This function starts the firmware update procedure. More...

ble_status_t R_BLE_VS_SendFirmwareData (uint16_t index, uint16_t length,
uint8_t const *const p_data)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,853 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

 This function sends a firmware update data frame. More...

ble_status_t R_BLE_VS_EndFirmwareUpdate (uint16_t end_index)

 This function ends the firmware update procedure. More...

ble_status_t R_BLE_VS_GetFirmwareVersion (void)

 This function requests the BLE module firmware version. More...

ble_status_t R_BLE_VS_RestartModule (void)

 This function restarts the module. More...

Detailed Description

Data Structures

struct st_ble_vs_tx_test_param_t

 This is the extended transmitter test parameters used in
R_BLE_VS_StartTxTest(). More...

struct st_ble_vs_rx_test_param_t

 This is the extended receiver test parameters used in
R_BLE_VS_StartRxTest(). More...

struct st_ble_vs_set_rf_ctrl_param_t

 This is the RF parameters used in R_BLE_VS_SetRfControl(). More...

struct st_ble_vs_test_end_evt_t

 This structure notifies that the extended test has been terminated.
More...

struct st_ble_vs_set_tx_pwr_comp_evt_t

 This structure notifies that tx power has been set. More...

struct st_ble_vs_get_tx_pwr_comp_evt_t

 This structure notifies that tx power has been retrieved. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,854 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

struct st_ble_vs_set_rf_ctrl_comp_evt_t

 This structure notifies that RF has been configured. More...

struct st_ble_vs_get_bd_addr_comp_evt_t

 This structure notifies that BD_ADDR has been retrieved. More...

struct st_ble_vs_get_rand_comp_evt_t

 This structure notifies that random number has been generated.
More...

struct st_ble_vs_tx_flow_chg_evt_t

 This structure notifies that the state transition of TxFlow has been
changed. More...

struct st_ble_vs_evt_data_t

 st_ble_vs_evt_data_t is the type of the data notified in a Vendor
Specific Event. More...

struct st_ble_vs_get_scan_ch_map_comp_evt_t

 This structure notifies that current scan channel map. More...

struct st_ble_vs_get_fw_version_comp_evt_t

 This structure notifies the current firmware version. More...

Macros

#define BLE_VS_TX_POWER_HIGH

 High power level.

#define BLE_VS_TX_POWER_MID

 Middle power level.

#define BLE_VS_TX_POWER_LOW

 Low power level.

#define BLE_VS_ADDR_AREA_REG

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,855 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

 Address in register is written or read.

#define BLE_VS_ADDR_AREA_DATA_FLASH

 Address in DataFlash is written or read.

#define BLE_VS_EH_TX_PL_PRBS9

 PRBS9 sequence '11111111100000111101..'.

#define BLE_VS_EH_TX_PL_11110000

 Repeated '11110000'.

#define BLE_VS_EH_TX_PL_10101010

 Repeated '10101010'.

#define BLE_VS_EH_TX_PL_PRBS15

 PRBS15 sequence.

#define BLE_VS_EH_TX_PL_11111111

 Repeated '11111111'.

#define BLE_VS_EH_TX_PL_00000000

 Repeated '00000000'.

#define BLE_VS_EH_TX_PL_00001111

 Repeated '00001111'.

#define BLE_VS_EH_TX_PL_01010101

 Repeated '01010101'.

#define BLE_VS_EH_TEST_PHY_1M

 1M PHY used in Transmitter/Receiver test.

#define BLE_VS_EH_TEST_PHY_2M

 2M PHY used in Transmitter/Receiver test.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,856 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

#define BLE_VS_EH_TEST_PHY_CODED

 Coded PHY used in Receiver test.

#define BLE_VS_EH_TEST_PHY_CODED_S_8

 Coded PHY(S=8) used in Transmitter test.

#define BLE_VS_EH_TEST_PHY_CODED_S_2

 Coded PHY(S=2) used in Transmitter test.

#define BLE_VS_RF_OFF

 RF power off.

#define BLE_VS_RF_ON

 RF power on.

#define BLE_VS_RF_INIT_PARAM_NOT_CHG

 The parameters are not changed in RF power on.

#define BLE_VS_RF_INIT_PARAM_CHG

 The parameters are changed in RF power on.

#define BLE_VS_CS_PRIM_ADV_S_8

 Coding scheme for Primary Advertising PHY(S=8).

#define BLE_VS_CS_PRIM_ADV_S_2

 Coding scheme for Primary Advertising PHY(S=2).

#define BLE_VS_CS_SECOND_ADV_S_8

 Coding scheme for Secondary Advertising PHY(S=8).

#define BLE_VS_CS_SECOND_ADV_S_2

 Coding scheme for Secondary Advertising PHY(S=2).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,857 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

#define BLE_VS_CS_CONN_S_8

 Coding scheme for request for link establishment(S=8).

#define BLE_VS_CS_CONN_S_2

 Coding scheme for request for link establishment(S=2).

#define BLE_VS_TX_FLOW_CTL_ON

 It means that the number of buffer has reached the High Water Mark
from flow off state.

#define BLE_VS_TX_FLOW_CTL_OFF

 It means that the number of buffer has reached the Low Water Mark
from flow on state.

Typedefs

typedef void(* ble_vs_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_vs_evt_data_t *p_event_data)

 ble_vs_app_cb_t is the Vendor Specific Event callback function type.
More...

Enumerations

enum e_r_ble_vs_evt_t

 Vendor Specific Event Identifier. More...

Data Structure Documentation

◆ st_ble_vs_tx_test_param_t

struct st_ble_vs_tx_test_param_t

This is the extended transmitter test parameters used in R_BLE_VS_StartTxTest().

Data Fields

uint8_t ch Channel used in Tx test.

uint8_t test_data_len Length(in bytes) of the packet
used in Tx Test.

uint8_t packet_payload Packet Payload.

uint8_t phy Transmitter PHY used in test.

uint8_t tx_power Tx Power Level used in DTM Tx
Test.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,858 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

uint8_t option Option.

uint16_t num_of_packet The number of packet to be
sent.

◆ st_ble_vs_rx_test_param_t

struct st_ble_vs_rx_test_param_t

This is the extended receiver test parameters used in R_BLE_VS_StartRxTest().

Data Fields

uint8_t ch Channel used in Rx test.

uint8_t phy Receiver PHY used in the test.

◆ st_ble_vs_set_rf_ctrl_param_t

struct st_ble_vs_set_rf_ctrl_param_t

This is the RF parameters used in R_BLE_VS_SetRfControl().

Data Fields

uint8_t power RF power on/off.

uint8_t option This field indicates whether the
parameters change in RF power
on.

uint8_t clval RF rapid clock frequency adjust
value(OSC internal CL adjust).

uint8_t slow_clock RF slow clock configurations.

uint8_t tx_power Set tx power in power on.

uint8_t rf_option Set RF option.

◆ st_ble_vs_test_end_evt_t

struct st_ble_vs_test_end_evt_t

This structure notifies that the extended test has been terminated.

Data Fields

uint16_t num_of_packet The number of packet
successfully received in the
receiver test.

uint16_t num_of_crc_err_packet The number of CRC error
packets in the receiver test.

int8_t ave_rssi Average RSSI(dBm) in the
receiver test.

int8_t max_rssi Maximum RSSI(dBm) in the
receiver test.

int8_t min_rssi Minimum RSSI(dBm) in the
receiver test.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,859 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ st_ble_vs_set_tx_pwr_comp_evt_t

struct st_ble_vs_set_tx_pwr_comp_evt_t

This structure notifies that tx power has been set.

Data Fields

uint16_t conn_hdl Connection handle that
identifying the link whose tx
power has been set.

int8_t curr_tx_pwr Tx power that has been
set(dBm).

◆ st_ble_vs_get_tx_pwr_comp_evt_t

struct st_ble_vs_get_tx_pwr_comp_evt_t

This structure notifies that tx power has been retrieved.

Data Fields

uint16_t conn_hdl Connection handle that
identifying the link whose tx
power has been retrieved.

int8_t curr_tx_pwr Current tx power(dBm).

int8_t max_tx_pwr Maximum tx power(dBm).

◆ st_ble_vs_set_rf_ctrl_comp_evt_t

struct st_ble_vs_set_rf_ctrl_comp_evt_t

This structure notifies that RF has been configured.

Data Fields

uint8_t ctrl The result of RF power control.

◆ st_ble_vs_get_bd_addr_comp_evt_t

struct st_ble_vs_get_bd_addr_comp_evt_t

This structure notifies that BD_ADDR has been retrieved.

Data Fields

uint8_t area The area that public/random
address has been retrieved.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,860 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

st_ble_dev_addr_t addr The address that has been
retrieved.

◆ st_ble_vs_get_rand_comp_evt_t

struct st_ble_vs_get_rand_comp_evt_t

This structure notifies that random number has been generated.

Data Fields

uint8_t rand_size Length of random number.

uint8_t * p_rand Random number.

◆ st_ble_vs_tx_flow_chg_evt_t

struct st_ble_vs_tx_flow_chg_evt_t

This structure notifies that the state transition of TxFlow has been changed.

Data Fields

uint8_t state The state of the flow control.

uint32_t buffer_num The number of the current
transmission buffers.

◆ st_ble_vs_evt_data_t

struct st_ble_vs_evt_data_t

st_ble_vs_evt_data_t is the type of the data notified in a Vendor Specific Event.

Data Fields

uint16_t param_len The size of Vendor Specific
Event parameters.

void * p_param Vendor Specific Event
parameters. This parameter
differs in each Vendor Specific
Event.

◆ st_ble_vs_get_scan_ch_map_comp_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,861 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

struct st_ble_vs_get_scan_ch_map_comp_evt_t

This structure notifies that current scan channel map.

Data Fields

uint8_t ch_map The result of current scan
channel map.

◆ st_ble_vs_get_fw_version_comp_evt_t

struct st_ble_vs_get_fw_version_comp_evt_t

This structure notifies the current firmware version.

Data Fields

uint8_t major The result of get firmware
version.

uint8_t minor

uint8_t special

Typedef Documentation

◆ ble_vs_app_cb_t

ble_vs_app_cb_t

ble_vs_app_cb_t is the Vendor Specific Event callback function type.

Parameters
[in] event_type The type of Vendor Specific

Event.

[in] event_result The result of API call which
generates the Vendor
Specific Event.

[in] p_event_data Data notified in the Vendor
Specific Event.

Returns
none

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,862 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ e_r_ble_vs_evt_t

enum e_r_ble_vs_evt_t

Vendor Specific Event Identifier.

Enumerator

BLE_VS_EVENT_SET_TX_POWER This event notifies that the tx power has been
set by R_BLE_VS_SetTxPower().

Event Code: 0x8001

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The tx_power
parameter
specified by
R_BLE_VS_SetTxPo
wer() is out of
range.

BLE_ERR_INVALID_
HDL(0x000E)

The link identified
with the conn_hdl
specified by
R_BLE_VS_SetTxPo
wer() is not found.

Event Data:

st_ble_vs_set_tx_pwr_comp_evt_t

BLE_VS_EVENT_GET_TX_POWER This event notifies that the tx power has been
retrieved by R_BLE_VS_GetTxPower().

Event Code: 0x8002

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The link identified
with the conn_hdl
specified by
R_BLE_VS_GetTxPo
wer() is not found.

Event Data:

st_ble_vs_get_tx_pwr_comp_evt_t

BLE_VS_EVENT_TX_TEST_START This event notifies that the extended

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,863 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

transmitter test has been started by
R_BLE_VS_StartTxTest().

Event Code: 0x8003

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_StartTxT
est() is out of
range.

Event Data:

none

BLE_VS_EVENT_TX_TEST_TERM This event notifies that the number specified
by R_BLE_VS_StartTxTest() of packets has been
sent.

Event Code: 0x8004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_RX_TEST_START This event notifies that the extended receiver
test has been started by
R_BLE_VS_StartRxTest().

Event Code: 0x8005

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_StartRx
Test() is out of
range.

Event Data:

none

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,864 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

BLE_VS_EVENT_TEST_END This event notifies that the extended test has
been terminated by R_BLE_VS_EndTest().

Event Code: 0x8006

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_test_end_evt_t

BLE_VS_EVENT_SET_CODING_SCHEME_COMP This event notifies that the coding scheme has
been configured by
R_BLE_VS_SetCodingScheme().

Event Code: 0x8007

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The
coding_scheme
parameter
specified by
R_BLE_VS_SetCodi
ngScheme() is out
of range.

Event Data:

none

BLE_VS_EVENT_RF_CONTROL_COMP This event notifies that the RF has been
configured by R_BLE_VS_SetRfControl().

Event Code: 0x8008

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_SetRfCo
ntrol() is out of
range.

BLE_ERR_INVALID_
OPERATION(0x000

During the power
on or the power

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,865 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

9) off, the same
power state is
specified by
R_BLE_VS_SetRfCo
ntrol().

Event Data:

st_ble_vs_set_rf_ctrl_comp_evt_t

BLE_VS_EVENT_SET_ADDR_COMP This event notifies that public/random address
has been set by R_BLE_VS_SetBdAddr().

Event Code: 0x8009

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The area
parameter or the
type field in the
p_addr parameter
specified by
R_BLE_VS_SetBdA
ddr() is out of
range.

Event Data:

none

BLE_VS_EVENT_GET_ADDR_COMP This event notifies that public/random address
has been retrieved by R_BLE_VS_GetBdAddr().

Event Code: 0x800A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The area
parameter or the
type field in the
p_addr parameter
specified by
R_BLE_VS_GetBdA
ddr() is out of
range.

Event Data:

st_ble_vs_get_bd_addr_comp_evt_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,866 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

BLE_VS_EVENT_GET_RAND This event notifies the application layer that
random number has been generated by
R_BLE_VS_GetRand().

Event Code: 0x800B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The rand_size
parameter
specified by
R_BLE_VS_GetRan
d() is out of range.

Event Data:

st_ble_vs_get_rand_comp_evt_t

BLE_VS_EVENT_TX_FLOW_STATE_CHG This event notifies the application layer of the
state transition of TxFlow.

Event Code: 0x800C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_tx_flow_chg_evt_t

BLE_VS_EVENT_FAIL_DETECT This event notifies a failure occurs in RF. After
receiving the event, reset MCU or RF.

Event Code: 0x800D

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

None

BLE_VS_EVENT_SET_SCAN_CH_MAP This event notifies that scan channel map has
been set by R_BLE_VS_SetScanChMap().

Event Code: 0x800E

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,867 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The ch_map
parameter
specified by
R_BLE_VS_SetScan
ChMap() is out of
range.

Event Data:

none

BLE_VS_EVENT_GET_SCAN_CH_MAP This event notifies that scan channel map has
been retrieved by R_BLE_VS_GetScanChMap().

Event Code: 0x800F

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_get_scan_ch_map_comp_evt_t

BLE_VS_EVENT_START_FW_UPDATE_COMP This event notifies that START_FW_UPDATE
command has completed.

Event Code: 0x072C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_SEND_FW_DATA_COMP This event notifies that SEND_FW_DATA
command has completed.

Event Code: 0x072D

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,868 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

Event Data:

none

BLE_VS_EVENT_END_FW_UPDATE_COMP This event notifies that END_FW_UPDATE
command has completed.

Event Code: 0x072E

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_GET_FW_VERSION_COMP This event notifies that END_FW_UPDATE
command has completed.

Event Code: 0x0772

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_get_fw_version_comp_evt_t

BLE_VS_EVENT_MODULE_READY_COMP This event notifies that module is ready.

Event Code: 0x0746

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_OTA_START_NOTIFY This event notifies that OTA firmware update
has been started.

Event Code: 0x09B0

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,869 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

Event Data:

none

BLE_VS_EVENT_OTA_END_NOTIFY This event notifies that OTA firmware update
has been completed successfully.

Event Code: 0x09C0

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_OTA_ERROR_NOTIFY This event notifies that OTA firmware update
has failed.

Event Code: 0x09D0

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_INVALID Invalid VS Event.

Event Code: 0x80FF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,870 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_Init()

ble_status_t R_BLE_VS_Init (ble_vs_app_cb_t vs_cb)

This function initializes Vendor Specific API and registers a callback function for Vendor Specific
Event.

The result of this API call is returned by a return value.

Parameters
[in] vs_cb Callback function to be

registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The vs_cb parameter is specified as NULL.

BLE_ERR_CONTEXT_FULL(0x000B) Callback function has already been
registered.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,871 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_StartTxTest()

ble_status_t R_BLE_VS_StartTxTest (st_ble_vs_tx_test_param_t * p_tx_test_param)

This function starts extended Transmitter Test.

The following extended transmitter test functions of DTM Tx are supported by this function.

Tx Power
Tx Modulation Enable/Modulation Disable
Tx packet transmission/continuous transmission
Tx packets count

The result of this API call is notified in BLE_VS_EVENT_TX_TEST_START event.
If the num_of_packet field in the p_tx_test_param parameter is other than 0x0000,
BLE_VS_EVENT_TX_TEST_TERM event notifies the application layer that the number of packet has
been sent.
If R_BLE_VS_EndTest() is called before the specified number of packets completions,
BLE_VS_EVENT_TX_TEST_TERM event is not notified to the application layer.

The condition that phy field in the p_tx_test_param parameter is
BLE_VS_EH_TEST_PHY_CODED_S_8(0x03) and option field is modulation(bit0:0) & continuous
transmission(bit1:1) is not supported.

Parameters
[in] p_tx_test_param Tx Test parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_tx_test_param parameter is specified
as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,872 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_StartRxTest()

ble_status_t R_BLE_VS_StartRxTest (st_ble_vs_rx_test_param_t * p_rx_test_param)

This function starts extended Receiver Test.

The result of this API call is notified in BLE_VS_EVENT_RX_TEST_START event. The following
extended receiver test functions of DTM Rx are supported by this function.

Calculating the maximum, the minimum and the average of RSSI in the receiver test.
The number of CRC error packets in the receiver test.

The transmitter is configured to one of the following, the receiver can't receive the packets by this
function.

Tx Non-Modulation Enable
Tx continuous transmission
After R_BLE_VS_EndTest() has been called, the receiver test result value are notified in
BLE_VS_EVENT_TEST_END event.

Parameters
[in] p_rx_test_param The extended receiver test

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_rx_test_param parameter is specified
as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

◆ R_BLE_VS_EndTest()

ble_status_t R_BLE_VS_EndTest (void)

This function terminates the extended transmitter or receiver test.

The result of this API call is notified in BLE_VS_EVENT_TEST_END event. In case of extended
receiver test, this event notifies the application layer of the result of the extended receiver test.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,873 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SetTxPower()

ble_status_t R_BLE_VS_SetTxPower (uint16_t conn_hdl, uint8_t tx_power)

This function configures transmit power.

This function configures the following transmit power.

The transmit power used in sending advertising PDU, scan request PDU, connection request
PDU (in not connected state)
The transmit power used in sending PDU in connected state. When configuring the transmit
power used in not connected state, set the conn_hdl parameter to
BLE_GAP_INIT_CONN_HDL(0xFFFF).
When the transmit power used in connected state is configured, set the conn_hdl parameter
to the connection handle of the link.
Select one of the following transmit power levels.
High
Middle
Low

Max transmit power of "High" is dependent on the configuration of the firmware. The result of this
API call is notified in BLE_VS_EVENT_SET_TX_POWER event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
transmit power to be
configured. If non connected
state, set
BLE_GAP_INIT_CONN_HDL(0x
FFFF).

[in] tx_power Transmission power. Select
one of the following.

BLE_VS_TX_POWER_
HIGH(0x00)
BLE_VS_TX_POWER_
MID(0x01)
BLE_VS_TX_POWER_L
OW(0x02)

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,874 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_GetTxPower()

ble_status_t R_BLE_VS_GetTxPower (uint16_t conn_hdl)

This function gets transmit power.

This function gets the following transmit power.

The transmit power used in sending advertising PDU, scan request PDU, connection request
PDU (in not connected state)
The transmit power used in sending PDU in connected state. When getting the transmit
power used in not connected state, set the conn_hdl parameter to
BLE_GAP_INIT_CONN_HDL(0xFFFF).
When the transmit power used in connected state is retrieved, set the conn_hdl parameter
to the connection handle of the link. The result of this API call is notified in
BLE_VS_EVENT_GET_TX_POWER event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
transmit power to be
retrieved. If non connected
state, set
BLE_GAP_INIT_CONN_HDL(0x
FFFF).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,875 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SetCodingScheme()

ble_status_t R_BLE_VS_SetCodingScheme (uint8_t coding_scheme)

This function configure default Coding scheme(S=8 or S=2) that is used in the case of selecting
Coded PHY in Primary advertising PHY or Secondary advertising PHY advertising or request for link
establishment.

After setting the default Coding scheme by this function, configure the advertising parameters by
R_BLE_GAP_SetAdvParam() or send a request for link establishment.
The result of this API call is notified in BLE_VS_EVENT_SET_CODING_SCHEME_COMP event.

Parameters
[in] coding_scheme Coding scheme for Primary

advertising PHY, Secondary
advertising PHY, request for
link establishment.The
coding_scheme field is set to
a bitwise OR of the following
values.
bit description

bit0 Coding
scheme for
Primary
Advertising
PHY(0:S=8/1
:S=2).

bit1 Coding
scheme for
Secondary
Advertising
PHY(0:S=8/1
:S=2).

bit2 Coding
scheme for
request for
link establis
hment(0:S=
8/1:S=2).

All other bits Reserved for
future use.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,876 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SetRfControl()

ble_status_t R_BLE_VS_SetRfControl (st_ble_vs_set_rf_ctrl_param_t * p_rf_ctrl)

This function performs power control on RF.

If BLE communication is not used for a long time, RF reduces the power consumption by moving to
the RF Power-Down Mode.
When RF power on, RF initialization processing is executed.
After RF power off by this function, API functions other than this are not available until RF power on
again.
The result of this API call is notified in BLE_VS_EVENT_RF_CONTROL_COMP event. After RF power on
again with this function, call R_BLE_GAP_Terminate(), R_BLE_GAP_Init() in order to restart the host
stack.

Parameters
[in] p_rf_ctrl RF parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_rf_ctrl parameter is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,877 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SetBdAddr()

ble_status_t R_BLE_VS_SetBdAddr (uint8_t area, st_ble_dev_addr_t * p_addr)

This function sets public/random address of local device to the area specified by the parameter.

If the address is written in non-volatile area, the address is used as default address on the next
MCU reset.
For more information on the random address, refer to Core Specification Vol 6, PartB, "1.3.2
Random Device Address".
The result of this API call is notified in BLE_VS_EVENT_SET_ADDR_COMP event.

Parameters
[in] area The area that the address is

to be written in.
Select one of the following.

macro description

BLE_VS_ADD
R_AREA_REG
(0x00)

Address
writing to
non-volatile
area is not
performed.
Only the
address in
register is
written.

BLE_VS_ADD
R_AREA_DAT
A_FLASH(0x
01)

Address
wiring to
DataFlash
area is
performed.

[in] p_addr The address to be set to the
area. Set
BLE_GAP_ADDR_PUBLIC(0x0
0) or
BLE_GAP_ADDR_RAND(0x01)
to the type field in the
p_addr parameter.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_addr parameter is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,878 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_GetBdAddr()

ble_status_t R_BLE_VS_GetBdAddr (uint8_t area, uint8_t addr_type)

This function gets currently configured public/random address.

The area parameter specifies the place where this function retrieves public/random address.
The result of this API call is notified in BLE_VS_EVENT_GET_ADDR_COMP event.

Parameters
[in] area The area that the address is

to be retrieved.
Select one of the following.

macro description

BLE_VS_ADD
R_AREA_REG
(0x00)

Retrieve the
address in
register.

BLE_VS_ADD
R_AREA_DAT
A_FLASH(0x
01)

Retrieve the
address in
DataFlash
area.

[in] addr_type The address type that is
type of the address to be
retrieved.
macro description

BLE_GAP_AD
DR_PUBLIC(
0x00)

Public
address.

BLE_GAP_AD
DR_RAND(0x
01)

Random
address.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,879 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_GetRand()

ble_status_t R_BLE_VS_GetRand (uint8_t rand_size)

This function generates 4-16 bytes of random number used in creating keys.

The result of this API call is notified in BLE_VS_EVENT_GET_RAND event.

Parameters
[in] rand_size Length of the random

number (byte).
The valid range is
4<=rand_size<=16.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

◆ R_BLE_VS_StartTxFlowEvtNtf()

ble_status_t R_BLE_VS_StartTxFlowEvtNtf (void)

This function starts the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow.

If the number of the available transmission packet buffers is the following,
BLE_VS_EVENT_TX_FLOW_STATE_CHG event notifies the application layer of the state of the
TxFlow.

The number of the available transmission packet buffers is less than Low Water Mark.
The number of the available transmission packet buffers is more than High Water Mark. The
result of this API call is returned by a return value.
Return values

BLE_SUCCESS(0x0000) Success

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,880 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_StopTxFlowEvtNtf()

ble_status_t R_BLE_VS_StopTxFlowEvtNtf (void)

This function stops the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow.

The result of this API call is returned by a return value.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_VS_GetTxBufferNum()

ble_status_t R_BLE_VS_GetTxBufferNum (uint32_t * p_buffer_num)

This function retrieves the number of the available transmission packet buffers.

The maximum number of the available buffers is 10.
The result of this API call is returned by a return value.

Parameters
[out] p_buffer_num The number of the available

transmission packet buffers.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_buffer_num parameter is specified as
NULL.

◆ R_BLE_VS_SetTxLimit()

ble_status_t R_BLE_VS_SetTxLimit (uint32_t tx_queue_lwm, uint32_t tx_queue_hwm)

This function sets the threshold for notifying the application layer of the TxFlow state.

Call this function before the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) has been
started by R_BLE_VS_StartTxFlowEvtNtf().
The result is returned from this API.
Vendor Specific API supports the flow control function(TxFlow) for the transmission on L2CAP fixed
channel in Basic Mode such as GATT.
Host stack has 10 transmission packet buffers for the transmission.
When the number of the available transmission packet buffers has been less than Low Water Mark,
the state of TxFlow transmits into the TxFlow OFF state from the TxFlow ON state that is the initial
state and host stack notifies the application layer of timing to stop packet transmission.
When host stack has sent the transmission packets to Controller and the number of the available
transmission packet buffers has been more than High Water Mark, the state of TxFlow transmits
into the TxFlow ON state from the TxFlow OFF state and host stack notifies the application layer of

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,881 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

timing to restart packet transmission.
It is possible to perform flow control on a fixed channel by using the event notification.

Parameters
[in] tx_queue_lwm Low Water Mark. Set 0-9 less

than tx_queue_hwm to the
parameter. When the
number of the available
transmission packet buffers
has been less than the value
specified by the
tx_queue_lwm parameter,
host stack notifies the
application layer of the
timing to stop packet
transmission.

[in] tx_queue_hwm High Water Mark. Set 1-10
more than tx_queue_lwm to
the parameter. When the
number of the available
transmission packet buffers
has been more than the
value specified by the
tx_queue_hwm parameter,
host stack notifies the
application layer of the
timing to restart packet
transmission.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The tx_queue_lwm parameter or the
tx_queue_hwm parameter is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,882 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SetScanChMap()

ble_status_t R_BLE_VS_SetScanChMap (uint16_t ch_map)

This function sets the scan channel map.

Set specify the scan channel for use.
At least one channel must be enabled.

Note
Calling this API while Scan is already running will not change the channel map.

Parameters
[in] ch_map Specify the channel map for

use.
bit description

bit0 Enable
channel 37
for use
(0:disable,
1:enable)

bit1 Enable
channel 38
for use
(0:disable,
1:enable)

bit2 Enable
channel 39
for use
(0:disable,
1:enable)

All other bits Reserved for
future use.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The ch_map parameter is out of range.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,883 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_GetScanChMap()

ble_status_t R_BLE_VS_GetScanChMap (void)

This function gets currently scan channel map.

The result of this API call is notified in BLE_VS_EVENT_GET_SCAN_CH_MAP event.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_VS_StartFirmwareUpdate()

ble_status_t R_BLE_VS_StartFirmwareUpdate (void)

This function starts the firmware update procedure.

The result of this API call is notified in BLE_VS_EVENT_START_FW_UPDATE_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_MODE A command was sent from an invalid mode

BLE_ERR_UNSUPPORTED This API does not support

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,884 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_SendFirmwareData()

ble_status_t R_BLE_VS_SendFirmwareData (uint16_t index, uint16_t length, uint8_t const *const
p_data)

This function sends a firmware update data frame.

Parameters
[in] index The index of the current

data frame.

[in] length The length of the current
data frame.

[in] p_data A pointer to the data frame.

The result of this API call is notified in BLE_VS_EVENT_SEND_FW_DATA_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG An input parameter was invalid

BLE_ERR_INVALID_MODE A command was sent from an invalid mode

BLE_ERR_UNSUPPORTED This API does not support

◆ R_BLE_VS_EndFirmwareUpdate()

ble_status_t R_BLE_VS_EndFirmwareUpdate (uint16_t end_index)

This function ends the firmware update procedure.

Parameters
[in] end_index The index of the last data

frame.

The result of this API call is notified in BLE_VS_EVENT_END_FW_UPDATE_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_MODE A command was sent from an invalid mode

BLE_ERR_UNSUPPORTED This API does not support

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,885 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Interface > VS

◆ R_BLE_VS_GetFirmwareVersion()

ble_status_t R_BLE_VS_GetFirmwareVersion (void)

This function requests the BLE module firmware version.

The result of this API call is notified in BLE_VS_EVENT_GET_FW_VERSION_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_MODE A command was sent from an invalid mode

BLE_ERR_UNSUPPORTED This API does not support

◆ R_BLE_VS_RestartModule()

ble_status_t R_BLE_VS_RestartModule (void)

This function restarts the module.

The result of this API call is notified in BLE_VS_EVENT_MODULE_READY_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_RSP_TIMEOUT A command did not receive a response

BLE_ERR_INVALID_MODE A command was sent from an invalid mode

BLE_ERR_UNSUPPORTED This API does not support

5.3.11.3 BLE Mesh Network Interfaces
Interfaces » Networking

Detailed Description

BLE Mesh Network Interfaces.

Modules

BLE Mesh Access Interface

 Interface for BLE Mesh Access functions.

BLE Mesh Bearer Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,886 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces

 Interface for BLE Mesh Bearer functions.

BLE Mesh Bearer Platform Interface

 Interface for BLE Mesh Bearer Platform functions.

BLE Mesh Health Server Interface

 Interface for BLE Mesh Model Health Server functions.

BLE Mesh Interface

 Interface for BLE Mesh functions.

BLE Mesh Lower Trans Interface

 Interface for BLE Mesh Lower Trans functions.

BLE Mesh Model Client Interface

 Interface for BLE Mesh Model Client functions.

BLE Mesh Model Configuration Client Interface

 Interface for BLE Mesh Model Configuration Client functions.

BLE Mesh Model Server Interface

 Interface for BLE Mesh Model Server functions.

BLE Mesh Network Interface

 Interface for BLE Mesh Network functions.

BLE Mesh Provision Interface

 Interface for BLE Mesh Provision functions.

BLE Mesh Scene Server Interface

 Interface for BLE Mesh Model Scene Server functions.

BLE Mesh Upper Trans Interface

 Interface for BLE Mesh Upper Trans functions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,887 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces

 BLE Mesh Access Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Access functions.

Summary
The BLE Mesh Access interface for the BLE Mesh Network Access (BLE MESH ACCESS) peripheral
provides BLE Mesh Network Access functionality.

Modules

Application Callback

Data Structures

struct rm_ble_mesh_access_model_id_t

union rm_ble_mesh_access_model_id_t.__unnamed__

struct rm_ble_mesh_access_element_descriptor_t

struct rm_ble_mesh_access_address_t

struct rm_ble_mesh_access_publish_info_t

struct rm_ble_mesh_access_model_req_msg_context_t

struct rm_ble_mesh_access_req_msg_raw_t

struct rm_ble_mesh_access_model_req_msg_t

struct rm_ble_mesh_access_publish_setting_t

struct rm_ble_mesh_access_pdu_t

struct rm_ble_mesh_access_model_state_parameter_t

struct rm_ble_mesh_access_extended_parameter_t

struct rm_ble_mesh_access_device_entry_t

struct rm_ble_mesh_access_model_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,888 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

struct rm_ble_mesh_access_server_state_t

struct rm_ble_mesh_access_provisioned_device_entry_t

struct rm_ble_mesh_access_associated_keys_t

struct rm_ble_mesh_access_friend_security_credential_info_t

struct rm_ble_mesh_access_cfg_t

struct rm_ble_mesh_access_api_t

struct rm_ble_mesh_access_instance_t

Macros

#define RM_BLE_MESH_ACCESS_VADDR_LABEL_UUID_SIZE

#define RM_BLE_MESH_ACCESS_NETKEY_SIZE

#define RM_BLE_MESH_ACCESS_APPKEY_SIZE

#define RM_BLE_MESH_ACCESS_KEY_SIZE

Typedefs

typedef uint8_t rm_ble_mesh_access_node_id_t

typedef uint8_t rm_ble_mesh_access_element_handle_t

typedef uint16_t rm_ble_mesh_access_model_handle_t

typedef uint16_t rm_ble_mesh_access_model_id_sig_t

typedef uint32_t rm_ble_mesh_access_model_id_vendor_t

typedef uint32_t rm_ble_mesh_access_address_handle_t

typedef uint32_t rm_ble_mesh_access_device_key_handle_t

typedef void rm_ble_mesh_access_ctrl_t

Enumerations

enum rm_ble_mesh_access_model_req_msg_type_t

enum rm_ble_mesh_access_iv_update_test_mode_t

enum rm_ble_mesh_access_message_opcode_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,889 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

enum rm_ble_mesh_access_model_type_info_t

enum rm_ble_mesh_access_model_id_info_t

Data Structure Documentation

◆ rm_ble_mesh_access_model_id_t

struct rm_ble_mesh_access_model_id_t

Model ID datatype

Data Fields

union
rm_ble_mesh_access_model_id_
t

__unnamed__ Vendor/SIG ID

rm_ble_mesh_access_model_ty
pe_info_t

type Model type - SIG or Vendor

◆ rm_ble_mesh_access_model_id_t.__unnamed__

union rm_ble_mesh_access_model_id_t.__unnamed__

Vendor/SIG ID

◆ rm_ble_mesh_access_element_descriptor_t

struct rm_ble_mesh_access_element_descriptor_t

Element description format.

Data Fields

uint16_t loc Location descriptor

◆ rm_ble_mesh_access_address_t

struct rm_ble_mesh_access_address_t

Unicast/Virtual/Group Address.

Data Fields

uint8_t use_label Flag - which field to be used

rm_ble_mesh_network_address_
t

addr Address

uint8_t label[RM_BLE_MESH_ACCESS_L
ABEL_UUID_LENGTH]

Label UUID

◆ rm_ble_mesh_access_publish_info_t

struct rm_ble_mesh_access_publish_info_t

Access Publication related information

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,890 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

rm_ble_mesh_access_address_t addr PublishAddress
(Unicast/Virtual/Group)

uint16_t appkey_index AppKey Index (when set
from remote).
AppKey Handle (when
set from locally for
Configuration Client).

uint8_t crden_flag CredentialFlag

uint8_t ttl PublishTTL

uint8_t period PublishPeriod

uint8_t rtx_count PublishRetransmitCount

uint8_t rtx_interval_steps PublishRetransmitIntervalSteps

uint8_t remote Flag - if called from local or
remote

◆ rm_ble_mesh_access_model_req_msg_context_t

struct rm_ble_mesh_access_model_req_msg_context_t

Context of message received for a specific model instance. This is required to send response
appropriately.

Data Fields

rm_ble_mesh_access_model_ha
ndle_t

handle Model Handle - for which
request is received

rm_ble_mesh_network_address_
t

saddr Source Address - originator of
request

rm_ble_mesh_network_address_
t

daddr Destination Address - of the
request

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Associated Subnet Identifier

rm_ble_mesh_network_appkey_
handle_t

appkey_handle Associated AppKey Identifier

◆ rm_ble_mesh_access_req_msg_raw_t

struct rm_ble_mesh_access_req_msg_raw_t

Uninterpreted/raw received message for a specific model instance.

Data Fields

uint32_t opcode Request Opcode

uint8_t * data_param Raw received message

uint16_t data_len Raw received message length

◆ rm_ble_mesh_access_model_req_msg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,891 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

struct rm_ble_mesh_access_model_req_msg_t

Requested message type for a specific model instance.

Data Fields

rm_ble_mesh_access_model_re
q_msg_type_t

type Flag: GET, SET or Others

uint8_t to_be_acked Flag: True or False

◆ rm_ble_mesh_access_publish_setting_t

struct rm_ble_mesh_access_publish_setting_t

Publish setting

Data Fields

uint8_t ttl Time to Live

uint8_t to_publish Flag to indicate if the message
also to be published

◆ rm_ble_mesh_access_pdu_t

struct rm_ble_mesh_access_pdu_t

PDU setting

Data Fields

rm_ble_mesh_network_address_
t

src_addr 16 bit Source Address

rm_ble_mesh_network_address_
t

dst_addr 16 bit Destination Address

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Subnet Handle

rm_ble_mesh_network_appkey_
handle_t

appkey_handle AppKey Handle

uint8_t ttl Time to Live

uint32_t opcode Request Opcode

uint8_t * data_param Raw received message

uint16_t data_len Raw received message length

◆ rm_ble_mesh_access_model_state_parameter_t

struct rm_ble_mesh_access_model_state_parameter_t

Model specific state parameters in a request or response message

Data Fields

uint8_t state_type State Type

void * state State pointer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,892 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ rm_ble_mesh_access_extended_parameter_t

struct rm_ble_mesh_access_extended_parameter_t

Additional parameters in a Model specific request or response message

Data Fields

uint8_t ext_type State/Extended Type

void * ext State/Extended data structure
pointer

◆ rm_ble_mesh_access_device_entry_t

struct rm_ble_mesh_access_device_entry_t

Provisioned Device List Data Structure, containing Primary Element Address and number of
elements.

Data Fields

rm_ble_mesh_network_address_
t

uaddr Unicast address of the first
element

uint8_t num_elements Number of Elements

◆ rm_ble_mesh_access_model_t

struct rm_ble_mesh_access_model_t

Data structure for model.

Models could be bluetooth SIG defined or vendor defined.

Data Fields

rm_ble_mesh_access_model_id_
t

model_id Model ID

rm_ble_mesh_access_model_cal
lback_t

model_callback Callback function pointer to
receive packets from the
underlying protocol layers

rm_ble_mesh_access_timeout_c
allback_t

timeout_callback Callback function called when
Publication Timer expires. Set
to NULL if model does not
support periodic publication.

uint16_t num_opcodes Number of Opcodes

const uint32_t * opcodes List of Opcodes

◆ rm_ble_mesh_access_server_state_t

struct rm_ble_mesh_access_server_state_t

API to send reply or to update state change

Data Fields

rm_ble_mesh_access_model_re
q_msg_context_t *

p_context Context of the message.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,893 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

rm_ble_mesh_access_model_sta
te_parameter_t *

p_current_state_parameter Model specific current state
parameters.

rm_ble_mesh_access_model_sta
te_parameter_t *

p_target_state_parameter Model specific target state
parameters (NULL: to be
ignored).

uint16_t remaining_time Time from current state to
target state (0: to be ignored).

rm_ble_mesh_access_extended
_parameter_t *

p_extended_parameter Additional parameters (NULL: to
be ignored).

uint8_t reply If unicast response to be sent.

uint8_t publish If state to be published.

◆ rm_ble_mesh_access_provisioned_device_entry_t

struct rm_ble_mesh_access_provisioned_device_entry_t

Provisioned Device List Data Structure, containing Primary Element Address and number of
elements.

Data Fields

rm_ble_mesh_network_address_
t

uaddr Unicast address of the first
element

uint8_t num_elements Number of Elements

◆ rm_ble_mesh_access_associated_keys_t

struct rm_ble_mesh_access_associated_keys_t

Associated key

Data Fields

uint8_t privacy_key[
RM_BLE_MESH_ACCESS_KEY_SI
ZE]

Privacy key

uint8_t encrypt_key[
RM_BLE_MESH_ACCESS_KEY_SI
ZE]

Encryption key

uint8_t beacon_key[
RM_BLE_MESH_ACCESS_KEY_SI
ZE]

Beacon key

uint8_t is_new_key Whether new key or not

◆ rm_ble_mesh_access_friend_security_credential_info_t

struct rm_ble_mesh_access_friend_security_credential_info_t

To add Security Credential of a LPN or the Friend.

Data Fields

rm_ble_mesh_network_address_ lpn_addr Address of the LPN.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,894 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

t

rm_ble_mesh_network_address_
t

friend_addr Address of the Friend.

uint16_t lpn_counter Number of Friend Request
messages the LPN has sent.

uint16_t friend_counter Number of Friend Offer
messages the Friend has sent.

◆ rm_ble_mesh_access_cfg_t

struct rm_ble_mesh_access_cfg_t

BLE MESH ACCESS configuration parameters.

Data Fields

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

the parameters for
initialization.

rm_ble_mesh_access_element_
descriptor_t *

p_element_descriptor Element description format.

rm_ble_mesh_upper_trans_insta
nce_t
const *

p_mesh_upper_trans_instance Instance structure of upper
trans.

rm_ble_mesh_access_element_
handle_t

element_number Element number.

void const * p_context Placeholder for user data.
Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ rm_ble_mesh_access_api_t

struct rm_ble_mesh_access_api_t

BLE MESH ACCESS functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_access_ctrl_t *const p_ctrl)

fsp_err_t(* registerModel)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_t const *const p_model,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,895 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

fsp_err_t(* getElementHandle)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t elem_addr,
rm_ble_mesh_access_element_handle_t *const p_handle)

fsp_err_t(* getElementHandleForModelHandle)(rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_element_handle_t *const p_elem_handle)

fsp_err_t(* getModelHandle)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_element_handle_t elem_handle,
rm_ble_mesh_access_model_id_t model_id,
rm_ble_mesh_access_model_handle_t *const p_handle)

fsp_err_t(* publish)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle,
rm_ble_mesh_access_req_msg_raw_t const *const
p_publish_message, uint8_t reliable)

fsp_err_t(* reliablePublish)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle,
rm_ble_mesh_access_req_msg_raw_t const *const
p_publish_message, uint32_t rsp_opcode)

fsp_err_t(* reply)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const
p_req_msg_context, uint8_t ttl, rm_ble_mesh_access_req_msg_raw_t
const *const p_req_msg_raw)

fsp_err_t(* replyAndPublish)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const
p_req_msg_context, rm_ble_mesh_access_req_msg_raw_t const
*const p_req_msg_raw, rm_ble_mesh_access_publish_setting_t const
*const p_publish_setting)

fsp_err_t(* sendPdu)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_pdu_t const *const p_pdu, uint8_t reliable)

fsp_err_t(* getCompositionData)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_buffer_t *const p_buffer)

fsp_err_t(* reset)(rm_ble_mesh_access_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,896 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

fsp_err_t(* getElementCount)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
*const p_count)

fsp_err_t(* setPrimaryUnicastAddress)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t(* getPrimaryUnicastAddress)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t *const p_addr)

fsp_err_t(* setDefaultTtl)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t ttl)

fsp_err_t(* getDefaultTtl)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
const *const p_ttl)

fsp_err_t(* setIvIndex)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint32_t
iv_index, uint8_t iv_update_flag)

fsp_err_t(* getIvIndex)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint32_t *const
p_iv_index, uint8_t *const p_iv_update_flag)

fsp_err_t(* getIvIndexByIvi)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t ivi,
uint32_t *const p_iv_index)

fsp_err_t(* setFeaturesField)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
enable, uint8_t feature)

fsp_err_t(* getFeaturesField)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
*const p_enable, uint8_t feature)

fsp_err_t(* getFeatures)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t *const
p_features)

fsp_err_t(* getFriendshipRole)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
*const p_friend_role)

fsp_err_t(* setFriendshipRole)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
friend_role)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,897 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

fsp_err_t(* addDeviceKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
const *const p_dev_key, rm_ble_mesh_network_address_t uaddr,
uint8_t num_elements)

fsp_err_t(* getDeviceKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
dev_key_index, uint8_t **const p_dev_key)

fsp_err_t(* removeAllDeviceKeys)(rm_ble_mesh_access_ctrl_t *const p_ctrl)

fsp_err_t(* getProvisionedDeviceList)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_provisioned_device_entry_t const *const
p_prov_dev_list, uint16_t *const p_num_entries)

fsp_err_t(* getDeviceKeyHandle)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t prim_elem_uaddr,
rm_ble_mesh_access_device_key_handle_t *const p_handle)

fsp_err_t(* getAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_appkey_handle_t appkey_handle, uint8_t
**const p_app_key, uint8_t *const p_aid)

fsp_err_t(* addUpdateNetkey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint16_t netkey_index, uint32_t opcode, uint8_t const *const
p_net_key)

fsp_err_t(* addFriendSecurityCredential)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint16_t friend_index,
rm_ble_mesh_access_friend_security_credential_info_t info)

fsp_err_t(* deleteFriendSecurityCredential)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint16_t friend_index)

fsp_err_t(* findSubnet)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint16_t
netkey_index, rm_ble_mesh_network_subnet_handle_t *const
p_subnet_handle)

fsp_err_t(* findMasterSubnet)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t friend_subnet_handle,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,898 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

rm_ble_mesh_network_subnet_handle_t *const
p_master_subnet_handle)

fsp_err_t(* deleteNetKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

fsp_err_t(* getNetKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t
*const p_net_key)

fsp_err_t(* getNetKeyIndexList)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint16_t *const p_netkey_count, uint16_t *const p_netkey_index_list)

fsp_err_t(* lookUpNid)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t nid,
rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle,
rm_ble_mesh_access_associated_keys_t *const p_key_set)

fsp_err_t(* lookUpNetworkId)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
const *const p_network_id, rm_ble_mesh_network_subnet_handle_t
*const p_subnet_handle, rm_ble_mesh_access_associated_keys_t
*const p_key_set)

fsp_err_t(* lookUpAid)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t aid,
rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle,
uint8_t *const p_app_key)

fsp_err_t(* setProvisioningData)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_data_t const *const p_prov_data)

fsp_err_t(* getSubnetNid)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_nid)

fsp_err_t(* getSubnetPrivacyKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_privacy_key)

fsp_err_t(* getSubnetNetworkId)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_network_id)

fsp_err_t(* getSubnetBeaconKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,899 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_beacon_key)

fsp_err_t(* getSubnetIdentityKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_identity_key)

fsp_err_t(* getSubnetEncryptionKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const
p_encrypt_key)

fsp_err_t(* getNodeIdentity)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t
*const p_id_state)

fsp_err_t(* setNodeIdentity)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t
*const p_id_state)

fsp_err_t(* getKeyRefreshPhase)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t
*const p_key_refresh_state)

fsp_err_t(* setKeyRefreshPhase)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t const
*const p_key_refresh_state)

fsp_err_t(* setTransmitState)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
tx_state_type, uint8_t tx_state)

fsp_err_t(* getTransmitState)(rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
tx_state_type, uint8_t *const p_tx_state)

fsp_err_t(* addAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
appkey_index, uint8_t const *const p_app_key)

fsp_err_t(* updateAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
appkey_index, uint8_t const *const p_app_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,900 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

fsp_err_t(* deleteAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
appkey_index, uint8_t const *const p_app_key)

fsp_err_t(* getAppKeyHandle)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
appkey_index, uint8_t const *const p_app_key,
rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle)

fsp_err_t(* getAppKeyIndexList)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t
*const p_appkey_count, uint16_t *const p_appkey_index_list)

fsp_err_t(* bindModelWithAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t
appkey_index)

fsp_err_t(* unbindModelWithAppKey)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t
appkey_index)

fsp_err_t(* getModelAppKeyList)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const
p_appkey_count, uint16_t *const p_appkey_index_list)

fsp_err_t(* setModelPublication)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_publish_info_t *const p_publish_info)

fsp_err_t(* setModelPublicationPeriodDivisor)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint8_t
period_divisor)

fsp_err_t(* getModelPublication)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_publish_info_t *const p_publish_info)

fsp_err_t(* addModelSubscription)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_address_t const *const p_sub_addr)

fsp_err_t(* deleteModelSubscription)(rm_ble_mesh_access_ctrl_t *const p_ctrl,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,901 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_address_t const *const p_sub_addr)

fsp_err_t(* deleteAllModelSubscription)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle)

fsp_err_t(* getModelSubscriptionList)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const
p_sub_addr_count, uint16_t *const p_sub_addr_list)

fsp_err_t(* getAllModelSubscriptionList)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, uint16_t *const p_sub_addr_count, uint16_t *const
p_sub_addr_list)

fsp_err_t(* isValidElementAddress)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr)

fsp_err_t(* isFixedGroupAddressToBeProcessed)(rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t addr)

fsp_err_t(* isValidSubscriptionAddress)(rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr)

fsp_err_t(* enableIvUpdateTestMode)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_iv_update_test_mode_t mode)

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_access_api_t::open) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_cfg_t const *const p_cfg)

Open access middleware.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,902 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ close

fsp_err_t(* rm_ble_mesh_access_api_t::close) (rm_ble_mesh_access_ctrl_t *const p_ctrl)

Close access middleware.

Parameters
[in] p_ctrl Pointer to control structure.

◆ registerModel

fsp_err_t(* rm_ble_mesh_access_api_t::registerModel) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_t const *const p_model, rm_ble_mesh_access_model_handle_t *const
p_model_handle)

Register a model with the access layer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_model Pointer to model structure.

[out] p_model_handle Pointer to model handle.

◆ getElementHandle

fsp_err_t(* rm_ble_mesh_access_api_t::getElementHandle) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t elem_addr, rm_ble_mesh_access_element_handle_t *const
p_handle)

Get element handle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] elem_addr Address of the
corresponding element.

[out] p_handle Pointer to model handle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,903 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getElementHandleForModelHandle

fsp_err_t(* rm_ble_mesh_access_api_t::getElementHandleForModelHandle)
(rm_ble_mesh_access_ctrl_t *const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle,
rm_ble_mesh_access_element_handle_t *const p_elem_handle)

Get element handle for a given model handle

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Model handle.

[out] p_elem_handle Pointer to element handle.

◆ getModelHandle

fsp_err_t(* rm_ble_mesh_access_api_t::getModelHandle) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_element_handle_t elem_handle, rm_ble_mesh_access_model_id_t model_id,
rm_ble_mesh_access_model_handle_t *const p_handle)

Get model handle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] elem_handle Element identifier associated
with the Model.

[in] model_id Model identifier for which
the model handle to be
searched.

[out] p_handle Pointer to model handle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,904 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ publish

fsp_err_t(* rm_ble_mesh_access_api_t::publish) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle, rm_ble_mesh_access_req_msg_raw_t
const *const p_publish_message, uint8_t reliable)

API to publish access layer message.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_handl Pointer to model handle.

[in] p_publish_message Pointer to received message
structure.

[in] reliable MS_TRUE for reliable
message. MS_FALSE
otherwise.

◆ reliablePublish

fsp_err_t(* rm_ble_mesh_access_api_t::reliablePublish) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t const *const p_handle, rm_ble_mesh_access_req_msg_raw_t
const *const p_publish_message, uint32_t rsp_opcode)

API to reliably publish access layer message.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_handl Pointer to model handle.

[in] p_publish_message Pointer to raw received
message structure.

[in] rsp_opcode Response opcode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,905 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ reply

fsp_err_t(* rm_ble_mesh_access_api_t::reply) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const p_req_msg_context, uint8_t ttl,
rm_ble_mesh_access_req_msg_raw_t const *const p_req_msg_raw)

API to reply to access layer message.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_req_msg_context Pointer to context of
received message structure.

[in] ttl Time to live.

[in] p_req_msg_raw Pointer to received message
structure.

◆ replyAndPublish

fsp_err_t(* rm_ble_mesh_access_api_t::replyAndPublish) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_req_msg_context_t const *const p_req_msg_context,
rm_ble_mesh_access_req_msg_raw_t const *const p_req_msg_raw,
rm_ble_mesh_access_publish_setting_t const *const p_publish_setting)

API to reply to access layer message and optionally also to publish.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_req_msg_context Pointer to context of
received message structure.

[in] p_req_msg_raw Pointer to received message
structure.

[in] p_publish_setting Pointer to publish setting
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,906 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ sendPdu

fsp_err_t(* rm_ble_mesh_access_api_t::sendPdu) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_pdu_t const *const p_pdu, uint8_t reliable)

API to send access PDUs.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_pdu Pointer to PDU structure.

[in] reliable If requires lower transport
ACK, set reliable as TRUE.

◆ getCompositionData

fsp_err_t(* rm_ble_mesh_access_api_t::getCompositionData) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_buffer_t *const p_buffer)

Get composition data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_buffer Pointer to buffer structure.

◆ reset

fsp_err_t(* rm_ble_mesh_access_api_t::reset) (rm_ble_mesh_access_ctrl_t *const p_ctrl)

To reset a node.

Parameters
[in] p_ctrl Pointer to control structure.

◆ getElementCount

fsp_err_t(* rm_ble_mesh_access_api_t::getElementCount) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_count)

To get the number of elements in local node.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_count Pointer to number of
elements.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,907 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setPrimaryUnicastAddress

fsp_err_t(* rm_ble_mesh_access_api_t::setPrimaryUnicastAddress) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t addr)

To set primary unicast address.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr Primary Unicast address to
be set.

◆ getPrimaryUnicastAddress

fsp_err_t(* rm_ble_mesh_access_api_t::getPrimaryUnicastAddress) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t *const p_addr)

To get primary unicast address.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_addr Pointer to address.

◆ setDefaultTtl

fsp_err_t(* rm_ble_mesh_access_api_t::setDefaultTtl) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t ttl)

To set default TTL.

Parameters
[in] p_ctrl Pointer to control structure.

[in] ttl Default TTL to be set.

◆ getDefaultTtl

fsp_err_t(* rm_ble_mesh_access_api_t::getDefaultTtl) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t const *const p_ttl)

To get default TTL.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_ttl Pointer to TTL.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,908 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setIvIndex

fsp_err_t(* rm_ble_mesh_access_api_t::setIvIndex) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint32_t iv_index, uint8_t iv_update_flag)

To set IV Index.

Parameters
[in] p_ctrl Pointer to control structure.

[in] iv_index IV index to be set.

[in] iv_update_flag IV update flag.

◆ getIvIndex

fsp_err_t(* rm_ble_mesh_access_api_t::getIvIndex) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint32_t *const p_iv_index, uint8_t *const p_iv_update_flag)

To get IV Index.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_iv_index Pointer to index.

[out] p_iv_update_flag Pointer to update flag.

◆ getIvIndexByIvi

fsp_err_t(* rm_ble_mesh_access_api_t::getIvIndexByIvi) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t ivi, uint32_t *const p_iv_index)

To get IV Index by IVI.

Parameters
[in] p_ctrl Pointer to control structure.

[in] ivi Least significant bit of the IV
index used in the once to
authenticate and encrypt the
network PDU.

[out] p_iv_index Pointer to index.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,909 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setFeaturesField

fsp_err_t(* rm_ble_mesh_access_api_t::setFeaturesField) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t enable, uint8_t feature)

To enable/disable a feature.

Parameters
[in] p_ctrl Pointer to control structure.

[in] enable Enable or Disable.

[in] feature Relay, proxy, friend or low
power.

◆ getFeaturesField

fsp_err_t(* rm_ble_mesh_access_api_t::getFeaturesField) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_enable, uint8_t feature)

To get state of a feature.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_enable Pointer to enable.

[in] feature Relay, proxy, friend or low
power.

◆ getFeatures

fsp_err_t(* rm_ble_mesh_access_api_t::getFeatures) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t *const p_features)

To get state of all features.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_features Pointer to features.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,910 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getFriendshipRole

fsp_err_t(* rm_ble_mesh_access_api_t::getFriendshipRole) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, uint8_t *const p_friend_role)

To get friendship role of the node.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_friend_role Pointer to friend role.

◆ setFriendshipRole

fsp_err_t(* rm_ble_mesh_access_api_t::setFriendshipRole) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t friend_role)

To set friendship role of the node.

Parameters
[in] p_ctrl Pointer to control structure.

[out] friend_role Friend role.

◆ addDeviceKey

fsp_err_t(* rm_ble_mesh_access_api_t::addDeviceKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t const *const p_dev_key, rm_ble_mesh_network_address_t uaddr, uint8_t num_elements)

To add Device Key.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_dev_key Pointer to device Key.

[in] uaddr Unicast address of the first
element.

[in] num_elements Number of elements.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,911 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getDeviceKey

fsp_err_t(* rm_ble_mesh_access_api_t::getDeviceKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t dev_key_index, uint8_t **const p_dev_key)

To get Device Key.

Parameters
[in] p_ctrl Pointer to control structure.

[in] dev_key_index Device key index.

[out] p_dev_key Pointer to device key to be
returned.

◆ removeAllDeviceKeys

fsp_err_t(* rm_ble_mesh_access_api_t::removeAllDeviceKeys) (rm_ble_mesh_access_ctrl_t *const
p_ctrl)

To remove all Device Keys.

Parameters
[in] p_ctrl Pointer to control structure.

◆ getProvisionedDeviceList

fsp_err_t(* rm_ble_mesh_access_api_t::getProvisionedDeviceList) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_provisioned_device_entry_t const *const p_prov_dev_list,
uint16_t *const p_num_entries)

To get list of Provisioned Device List.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_prov_dev_list Pointer to provisioned device
list structure.

[in] p_num_entries Pointer to number of entries.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,912 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getDeviceKeyHandle

fsp_err_t(* rm_ble_mesh_access_api_t::getDeviceKeyHandle) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t prim_elem_uaddr,
rm_ble_mesh_access_device_key_handle_t *const p_handle)

To get Device Key Handle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] prim_elem_uaddr Primary element address to
be searched.

[in] p_handle Pointer to handle.

◆ getAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::getAppKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_appkey_handle_t appkey_handle, uint8_t **const p_app_key, uint8_t *const
p_aid)

To get AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] appkey_handle AppKey Handle.

[out] p_app_key Pointer to AppKey to be
returned.

[out] p_aid Pointer to AID to be
returned.

◆ addUpdateNetkey

fsp_err_t(* rm_ble_mesh_access_api_t::addUpdateNetkey) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, uint16_t netkey_index, uint32_t opcode, uint8_t const *const p_net_key)

To add/update NetKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] netkey_index Identifies global index of
NetKey. A 12bits value.

[in] opcode To identify Add or Update
NetKey.

[out] p_net_key Pointer to NetKey.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,913 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ addFriendSecurityCredential

fsp_err_t(* rm_ble_mesh_access_api_t::addFriendSecurityCredential) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t friend_index,
rm_ble_mesh_access_friend_security_credential_info_t info)

To add Security Credential of a LPN or the Friend.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Identifies associated subnet.

[in] friend_index Friend Index.

[in] info Security credential of a LPN
or the friend.

◆ deleteFriendSecurityCredential

fsp_err_t(* rm_ble_mesh_access_api_t::deleteFriendSecurityCredential) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t friend_index)

To delete the Security Credential of a LPN or the Friend.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Identifies associated subnet.

[in] friend_index Friend index.

◆ findSubnet

fsp_err_t(* rm_ble_mesh_access_api_t::findSubnet) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint16_t netkey_index, rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle)

To find a Subnet associated with the NetKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] netkey_index Identifies global Index of
NetKey, corresponding
Subnet to be returned.

[out] p_subnet_handle Pointer to subnet handle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,914 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ findMasterSubnet

fsp_err_t(* rm_ble_mesh_access_api_t::findMasterSubnet) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t friend_subnet_handle,
rm_ble_mesh_network_subnet_handle_t *const p_master_subnet_handle)

To find the Master Subnet associated with the friend security credential, identified by Friend Subnet
Handle.

Parameters
[in] p_ctrl Pointer to control structure.

[in] friend_subnet_handle Identifies the friend subnet
handle, corresponding to
friend subnet handle.

[out] p_master_subnet_handle Pointer to master subnet
handle.

◆ deleteNetKey

fsp_err_t(* rm_ble_mesh_access_api_t::deleteNetKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

To delete NetKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the subnet for
which NetKey to be deleted.

◆ getNetKey

fsp_err_t(* rm_ble_mesh_access_api_t::getNetKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_net_key)

To get NetKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Target subnet handle to get
net key.

[in] p_net_key Pointer to NetKey.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,915 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getNetKeyIndexList

fsp_err_t(* rm_ble_mesh_access_api_t::getNetKeyIndexList) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, uint16_t *const p_netkey_count, uint16_t *const p_netkey_index_list)

To get list of all known NetKeys.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_netkey_count Pointer to NetKey count.

[in] p_netkey_index_list Pointer to NetKey index list.

◆ lookUpNid

fsp_err_t(* rm_ble_mesh_access_api_t::lookUpNid) (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
nid, rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle,
rm_ble_mesh_access_associated_keys_t *const p_key_set)

To search for NID.

Parameters
[in] p_ctrl Pointer to control structure.

[in] nid NID to be searched in all
known subnets for match.

[out] p_subnet_handle Pointer to subnet handle.

[out] p_key_set Pointer to key set.

◆ lookUpNetworkId

fsp_err_t(* rm_ble_mesh_access_api_t::lookUpNetworkId) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t const *const p_network_id, rm_ble_mesh_network_subnet_handle_t *const p_subnet_handle,
rm_ble_mesh_access_associated_keys_t *const p_key_set)

To search for Network ID.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_network_id Pointer to network ID to be
searched in all known
subnets for match.

[out] p_subnet_handle Pointer to subnet handle.

[out] p_key_set Pointer to key settings.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,916 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ lookUpAid

fsp_err_t(* rm_ble_mesh_access_api_t::lookUpAid) (rm_ble_mesh_access_ctrl_t *const p_ctrl, uint8_t
aid, rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle, uint8_t *const p_app_key)

To search for AID.

Parameters
[in] p_ctrl Pointer to control structure.

[in] aid AID to be searched in all
known AppKeys for match.

[out] p_appkey_handle Pointer to AppKey handle.

[out] p_app_key Pointer to AppKey.

◆ setProvisioningData

fsp_err_t(* rm_ble_mesh_access_api_t::setProvisioningData) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_provision_data_t const *const p_prov_data)

Set Provisioning Data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_prov_data Pointer to provisioning data
structure.

◆ getSubnetNid

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetNid) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_nid)

To get NID associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_nid Pointer to NID.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,917 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getSubnetPrivacyKey

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetPrivacyKey) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_privacy_key)

To get privacy Key associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_privacy_key Pointer to Privacy Key.

◆ getSubnetNetworkId

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetNetworkId) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_network_id)

To get Network ID associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_network_id Pointer to Network ID.

◆ getSubnetBeaconKey

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetBeaconKey) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_beacon_key)

To get Beacon Key associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_beacon_key Pointer to Beacon Key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,918 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getSubnetIdentityKey

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetIdentityKey) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_identity_key)

To get Identity Key associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_identity_key Pointer to Identity Key.

◆ getSubnetEncryptionKey

fsp_err_t(* rm_ble_mesh_access_api_t::getSubnetEncryptionKey) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t handle, uint8_t *const p_encrypt_key)

To get Encryption Key associated with a subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Handle identifying the
subnet.

[out] p_encrypt_key Pointer to Encryption Key.

◆ getNodeIdentity

fsp_err_t(* rm_ble_mesh_access_api_t::getNodeIdentity) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_id_state)

To get Node Identity.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle identifying the
subnet.

[out] p_id_state Pointer to node identity
state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,919 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setNodeIdentity

fsp_err_t(* rm_ble_mesh_access_api_t::setNodeIdentity) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_id_state)

To set Node Identity.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle identifying the
subnet.

[out] p_id_state Pointer to node identity
state.

◆ getKeyRefreshPhase

fsp_err_t(* rm_ble_mesh_access_api_t::getKeyRefreshPhase) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t *const p_key_refresh_state)

To get Key refresh phase.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle identifying the
subnet.

[out] p_key_refresh_state Pointer to key refresh phase
state.

◆ setKeyRefreshPhase

fsp_err_t(* rm_ble_mesh_access_api_t::setKeyRefreshPhase) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint8_t const *const
p_key_refresh_state)

To set Key refresh phase.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle identifying the
subnet.

[in] p_key_refresh_state Pointer to key refresh phase
state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,920 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setTransmitState

fsp_err_t(* rm_ble_mesh_access_api_t::setTransmitState) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t tx_state_type, uint8_t tx_state)

To set Network/Relay Transmit state.

Parameters
[in] p_ctrl Pointer to control structure.

[in] tx_state_type Transmit state type
(Network or Relay).

[in] tx_state Composite state (3bits of TX
count and 5bits of TX
interval steps).

◆ getTransmitState

fsp_err_t(* rm_ble_mesh_access_api_t::getTransmitState) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
uint8_t tx_state_type, uint8_t *const p_tx_state)

To get Network/Relay Transmit state.

Parameters
[in] p_ctrl Pointer to control structure.

[in] tx_state_type Transmit State Type
(Network or Relay).

[out] p_tx_state Pointer to TX state.

◆ addAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::addAppKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To add AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the subnet for
which AppKey to be added.

[in] appkey_index Identifies global Index of
AppKey. A 12bits value.

[in] p_app_key Pointer to AppKey.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,921 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ updateAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::updateAppKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To update/delete AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the Subnet for
which AppKey to be
updated/deleted.

[in] appkey_index Identifies global Index of
AppKey. A 12bits value.

[in] p_app_key Pointer to AppKey.

◆ deleteAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::deleteAppKey) (rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key)

To update/delete AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the Subnet for
which AppKey to be
updated/deleted.

[in] appkey_index Identifies global index of
AppKey. A 12bits value.

[in] p_app_key Pointer to AppKey.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,922 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getAppKeyHandle

fsp_err_t(* rm_ble_mesh_access_api_t::getAppKeyHandle) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t appkey_index, uint8_t const
*const p_app_key, rm_ble_mesh_network_appkey_handle_t *const p_appkey_handle)

To get AppKey Handle for a given AppKey Index.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the Subnet for
which AppKey to be gotten.

[in] appkey_index Identifies global Index of
AppKey. A 12bits value.

[in] p_app_key Pointer to AppKey.

[out] p_app_key_handle Pointer to AppKey handle.

◆ getAppKeyIndexList

fsp_err_t(* rm_ble_mesh_access_api_t::getAppKeyIndexList) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle, uint16_t *const p_appkey_count,
uint16_t *const p_appkey_index_list)

To get list of all known AppKeys.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle of the Subnet for
which AppKey to be
returned.

[out] p_appkey_count Pointer to AppKey count.

[out] p_appkey_index_list Pointer to AppKey index list.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,923 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ bindModelWithAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::bindModelWithAppKey) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t appkey_index)

To bind a model with an AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Model handle identifying the
model.

[in] appkey_index Identifies global index of
AppKey. A 12bits value.

◆ unbindModelWithAppKey

fsp_err_t(* rm_ble_mesh_access_api_t::unbindModelWithAppKey) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t appkey_index)

To unbind a model with an AppKey.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Model handle identifying the
model.

[in] appkey_index Identifies global index of
AppKey. A 12bits value.

◆ getModelAppKeyList

fsp_err_t(* rm_ble_mesh_access_api_t::getModelAppKeyList) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const p_appkey_count,
uint16_t *const p_appkey_index_list)

To get list of all AppKeys associated with a model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which AppKey to be
returned.

[out] p_appkey_count pointer to AppKey count.

[out] p_appkey_index_list Pointer to AppKey index list.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,924 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ setModelPublication

fsp_err_t(* rm_ble_mesh_access_api_t::setModelPublication) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_publish_info_t
*const p_publish_info)

To set Publication information associated with a model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which Publication info to be
set.

[in] p_publish_info Pointer to publication
information structure.

◆ setModelPublicationPeriodDivisor

fsp_err_t(* rm_ble_mesh_access_api_t::setModelPublicationPeriodDivisor)
(rm_ble_mesh_access_ctrl_t *const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle,
uint8_t period_divisor)

To set Publication Fast Period Divisor information associated with a model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which Publication info to be
set.

[in] period_divisor The value range for the
Health Fast Period Divisor
state is 0 through 15, all
other values are prohibited.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,925 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ getModelPublication

fsp_err_t(* rm_ble_mesh_access_api_t::getModelPublication) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_publish_info_t
*const p_publish_info)

To get Publication information associated with a model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which Publication info to be
returned.

[out] p_publish_info Pointer to publication
information structure.

◆ addModelSubscription

fsp_err_t(* rm_ble_mesh_access_api_t::addModelSubscription) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_address_t const
*const p_sub_addr)

To add an address to a model subscription list.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which address to be added
in the subscription list.

[in] p_sub_addr Pointer to address structure.

◆ deleteModelSubscription

fsp_err_t(* rm_ble_mesh_access_api_t::deleteModelSubscription) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, rm_ble_mesh_access_address_t const
*const p_sub_addr)

To delete an address to a model subscription list.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which address to be deleted
in the subscription list.

[in] p_sub_addr Pointer to address structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,926 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ deleteAllModelSubscription

fsp_err_t(* rm_ble_mesh_access_api_t::deleteAllModelSubscription) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle)

To discard a model subscription list.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which the subscription list to
be discarded.

◆ getModelSubscriptionList

fsp_err_t(* rm_ble_mesh_access_api_t::getModelSubscriptionList) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t model_handle, uint16_t *const
p_sub_addr_count, uint16_t *const p_sub_addr_list)

To get list of subscription addresses of a model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] model_handle Handle of the Model for
which the subscription
addresses to be returned.

[in] p_sub_addr_count Pointer to maximum number
of subscription address.

[out] p_sub_addr_list Pointer to subscription
addresses.

◆ getAllModelSubscriptionList

fsp_err_t(* rm_ble_mesh_access_api_t::getAllModelSubscriptionList) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, uint16_t *const p_sub_addr_count, uint16_t *const p_sub_addr_list)

To get list of subscription addresses of all the models.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_sub_addr_count Pointer to maximum number
of subscription address.

[out] p_sub_addr_list Pointer to subscription
addresses.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,927 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ isValidElementAddress

fsp_err_t(* rm_ble_mesh_access_api_t::isValidElementAddress) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr)

To check if valid element address to receive a packet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr A valid element address, to
be checked.

◆ isFixedGroupAddressToBeProcessed

fsp_err_t(* rm_ble_mesh_access_api_t::isFixedGroupAddressToBeProcessed)
(rm_ble_mesh_access_ctrl_t *const p_ctrl, rm_ble_mesh_network_address_t addr)

To check if Fixed Group Address in receive packet to be processed.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr A valid fixed group address,
to be checked.

◆ isValidSubscriptionAddress

fsp_err_t(* rm_ble_mesh_access_api_t::isValidSubscriptionAddress) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t addr)

To check if valid subscription address to receive a packet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr A valid subscription address,
to be checked.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,928 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ enableIvUpdateTestMode

fsp_err_t(* rm_ble_mesh_access_api_t::enableIvUpdateTestMode) (rm_ble_mesh_access_ctrl_t
*const p_ctrl, rm_ble_mesh_access_iv_update_test_mode_t mode)

To set the IV Update Test Mode feature.

Parameters
[in] p_ctrl Pointer to control structure.

[in] mode This flag is used to either
enable or disable the IV
update test mode feature.

◆ rm_ble_mesh_access_instance_t

struct rm_ble_mesh_access_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_access_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_access_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_access_api_t
const *

p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ RM_BLE_MESH_ACCESS_VADDR_LABEL_UUID_SIZE

#define RM_BLE_MESH_ACCESS_VADDR_LABEL_UUID_SIZE

Array sizes for use in the Access layer Size of Virtual Address (Label UUID)

◆ RM_BLE_MESH_ACCESS_NETKEY_SIZE

#define RM_BLE_MESH_ACCESS_NETKEY_SIZE

Size of NetKey

◆ RM_BLE_MESH_ACCESS_APPKEY_SIZE

#define RM_BLE_MESH_ACCESS_APPKEY_SIZE

Size of AppKey

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,929 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ RM_BLE_MESH_ACCESS_KEY_SIZE

#define RM_BLE_MESH_ACCESS_KEY_SIZE

Size of Key

Typedef Documentation

◆ rm_ble_mesh_access_node_id_t

typedef uint8_t rm_ble_mesh_access_node_id_t

Access Node ID

◆ rm_ble_mesh_access_element_handle_t

typedef uint8_t rm_ble_mesh_access_element_handle_t

Access Element Handle

◆ rm_ble_mesh_access_model_handle_t

typedef uint16_t rm_ble_mesh_access_model_handle_t

Access Model Handle

◆ rm_ble_mesh_access_model_id_sig_t

typedef uint16_t rm_ble_mesh_access_model_id_sig_t

SIG Model ID

◆ rm_ble_mesh_access_model_id_vendor_t

typedef uint32_t rm_ble_mesh_access_model_id_vendor_t

Vendor Model ID

◆ rm_ble_mesh_access_address_handle_t

typedef uint32_t rm_ble_mesh_access_address_handle_t

Access Address Handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,930 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ rm_ble_mesh_access_device_key_handle_t

typedef uint32_t rm_ble_mesh_access_device_key_handle_t

Device Key Handle

◆ rm_ble_mesh_access_ctrl_t

typedef void rm_ble_mesh_access_ctrl_t

BLE MESH ACCESS control block. Allocate an instance specific control block to pass into the BLE
MESH ACCESS API calls.

Enumeration Type Documentation

◆ rm_ble_mesh_access_model_req_msg_type_t

enum rm_ble_mesh_access_model_req_msg_type_t

Model Specific Request Message Type: Get, Set or Others

Enumerator

RM_BLE_MESH_ACCESS_MODEL_REQ_MSG_TYPE
_GET

Model Specific Request Message Type: Get

RM_BLE_MESH_ACCESS_MODEL_REQ_MSG_TYPE
_SET

Model Specific Request Message Type: Set

RM_BLE_MESH_ACCESS_MODEL_REQ_MSG_TYPE
_OTHERS

Model Specific Request Message Type: Others

◆ rm_ble_mesh_access_iv_update_test_mode_t

enum rm_ble_mesh_access_iv_update_test_mode_t

Test modes

Enumerator

RM_BLE_MESH_ACCESS_IV_UPDATE_TEST_MODE
_DISABLE

Test mode disable.

RM_BLE_MESH_ACCESS_IV_UPDATE_TEST_MODE
_ENABLE

Test mode enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,931 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ rm_ble_mesh_access_message_opcode_t

enum rm_ble_mesh_access_message_opcode_t

Opcodes of Model specific messages

Enumerator

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_APPKEY_DELETE

Config AppKey Delete Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_APPKEY_GET

Config AppKey Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_APPKEY_LIST

Config AppKey List Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_APPKEY_STATUS

Config AppKey Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_ATTENTION_GET

Health Attention Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_ATTENTION_SET

Health Attention Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_ATTENTION_SET_UNACKNOWLEDGED

Health Attention Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_ATTENTION_STATUS

Health Attention Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_COMPOSITION_DATA_GET

Config Composition Data Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_BEACON_GET

Config Beacon Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_BEACON_SET

Config Beacon Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_BEACON_STATUS

Config Beacon Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_DEFAULT_TTL_GET

Config Deafault TTL Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_DEFAULT_TTL_SET

Config Deafault TTL Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_DEFAULT_TTL_STATUS

Config Deafault TTL Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_FRIEND_GET

Config Friend Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_FRIEND_SET

Config Friend Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_FRIEND_STATUS

Config Friend Status Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,932 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_GATT_PROXY_GET

Config GATT Proxy Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_GATT_PROXY_SET

Config GATT Proxy Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_GATT_PROXY_STATUS

Config GATT Proxy Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_KEY_REFRESH_PHASE_GET

Config Key Refresh Phase Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_KEY_REFRESH_PHASE_SET

Config Key Refresh Phase Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_KEY_REFRESH_PHASE_STATUS

Config Key Refresh Phase Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_PUBLICATION_GET

Config Model Publication Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_PUBLICATION_STATUS

Config Model Publication Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_PUBLICATION_VIRTUAL_ADDRESS_S
ET

Config Model Publication Virtual Address Set
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_ADD

Config Model Subscription Add Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_DELETE

Config Model Subscription Delete Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_DELETE_ALL

Config Model Subscription Delete All Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_OVERWRITE

Config Model Subscription Overwrite Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_STATUS

Config Model Subscription Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_VIRTUAL_ADDRESS_
ADD

Config Model Subscription Virtual Address Add
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_VIRTUAL_ADDRESS_
DELETE

Config Model Subscription Virtual Address
Delete Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_SUBSCRIPTION_VIRTUAL_ADDRESS_
OVERWRITE

Config Model Subscription Virtual Address
Overwrite Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETWORK_TRANSMIT_GET

Config Network Transmit Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETWORK_TRANSMIT_SET

Config Network Transmit Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,933 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

FIG_NETWORK_TRANSMIT_STATUS Config Network Transmit Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_RELAY_GET

Config Relay Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_RELAY_SET

Config Relay Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_RELAY_STATUS

Config Relay Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_SIG_MODEL_SUBSCRIPTION_GET

Config SIG Model Subscription Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_SIG_MODEL_SUBSCRIPTION_LIST

Config SIG Model Subscription List Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_VENDOR_MODEL_SUBSCRIPTION_GET

Config Vendor Model Subscription Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_VENDOR_MODEL_SUBSCRIPTION_LIST

Config Vendor Model Subscription List Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_LOW_POWER_NODE_POLLTIMEOUT_GET

Config Low Power Node PollTimeout Get
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_LOW_POWER_NODE_POLLTIMEOUT_STATUS

Config Low Power Node PollTimeout Status
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_FAULT_CLEAR

Health Fault Clear Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_FAULT_CLEAR_UNACKNOWLEDGED

Health Fault Clear Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_FAULT_GET

Health Fault Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_FAULT_TEST

Health Fault Test Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_FAULT_TEST_UNACKNOWLEDGED

Health Fault Test Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_PERIOD_GET

Health Period Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_PERIOD_SET

Health Period Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_PERIOD_SET_UNACKNOWLEDGED

Health Period Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_HEA
LTH_PERIOD_STATUS

Health Period Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_HEARTBEAT_PUBLICATION_GET

Config Heartbeat Publication Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_HEARTBEAT_PUBLICATION_SET

Config Heartbeat Publication Set Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,934 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_HEARTBEAT_SUBSCRIPTION_GET

Config Heartbeat Subscription Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_HEARTBEAT_SUBSCRIPTION_SET

Config Heartbeat Subscription Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_HEARTBEAT_SUBSCRIPTION_STATUS

Config Heartbeat Subscription Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_APP_BIND

Config Model App Bind Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_APP_STATUS

Config Model App Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_MODEL_APP_UNBIND

Config Model App Unbind Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_ADD

Config NetKey Add Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_DELETE

Config NetKey Delete Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_GET

Config NetKey Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_LIST

Config NetKey List Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_STATUS

Config NetKey Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NETKEY_UPDATE

Config NetKey Update Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NODE_IDENTITY_GET

Config Node Identity Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NODE_IDENTITY_SET

Config Node Identity Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NODE_IDENTITY_STATUS

Config Node Identity Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NODE_RESET

Config Node Reset Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_NODE_RESET_STATUS

Config Node Reset Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_SIG_MODEL_APP_GET

Config SIG Model App Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_SIG_MODEL_APP_LIST

Config SIG Model App List Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_VENDOR_MODEL_APP_GET

Config Vendor Model App Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_CON
FIG_VENDOR_MODEL_APP_LIST

Config Vendor Model App List Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,935 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONOFF_GET

Generic OnOff Generic OnOff Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONOFF_SET

Generic OnOff Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONOFF_SET_UNACKNOWLEDGED

Generic OnOff Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONOFF_STATUS

Generic OnOff Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LEVEL_GET

Generic Level Generic Level Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LEVEL_SET

Generic Level Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LEVEL_SET_UNACKNOWLEDGED

Generic Level Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LEVEL_STATUS

Generic Level Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DELTA_SET

Generic Delta Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DELTA_SET_UNACKNOWLEDGED

Generic Delta Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MOVE_SET

Generic Move Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MOVE_SET_UNACKNOWLEDGED

Generic Move Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DEFAULT_TRANSITION_TIME_GET

Generic Default Transition Time Generic
Default Transition Time Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DEFAULT_TRANSITION_TIME_SET

Generic Default Transition Time Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DEFAULT_TRANSITION_TIME_SET_UNACKN
OWLEDGED

Generic Default Transition Time Set
Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_DEFAULT_TRANSITION_TIME_STATUS

Generic Default Transition Time Status
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONPOWERUP_GET

Generic Power OnOff Generic Power OnOff Get
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONPOWERUP_STATUS

Generic Power OnOff Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ONPOWERUP_SET

Generic Power OnOff Setup Generic Power
OnOff Setup Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN Generic Power OnOff Setup Set

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,936 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

ERIC_ONPOWERUP_SET_UNACKNOWLEDGED Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LEVEL_GET

Generic Power Level Generic Power Level Get
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LEVEL_SET

Generic Power Level Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LEVEL_SET_UNACKNOWLEDGED

Generic Power Level Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LEVEL_STATUS

Generic Power Level Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LAST_GET

Generic Power Last Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_LAST_STATUS

Generic Power Last Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_DEFAULT_GET

Generic Power Default Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_DEFAULT_STATUS

Generic Power Default Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_RANGE_GET

Generic Power Range Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_RANGE_STATUS

Generic Power Range Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_DEFAULT_SET

Generic Power Level Setup Generic Power
Default Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_DEFAULT_SET_UNACKNOWLEDGED

Generic Power Default Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_RANGE_SET

Generic Power Range Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_POWER_RANGE_SET_UNACKNOWLEDGED

Generic Power Range Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_BATTERY_GET

Generic Battery Generic Battery Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_BATTERY_STATUS

Generic Battery Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_GLOBAL_GET

Generic Location Generic Location Global Get
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_GLOBAL_STATUS

Generic Location Global Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN Generic Location Local Get Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,937 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

ERIC_LOCATION_LOCAL_GET

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_LOCAL_STATUS

Generic Location Local Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_GLOBAL_SET

Generic Location Setup Generic Location
Global Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_GLOBAL_SET_UNACKNOWLEDG
ED

Generic Location Global Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_LOCAL_SET

Generic Location Local Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_LOCATION_LOCAL_SET_UNACKNOWLEDGE
D

Generic Location Local Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTIES_GET

Generic Manufacturer Property Generic
Manufacturer Properties Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTIES_STATUS

Generic Manufacturer Properties Status
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTY_GET

Generic Manufacturer Property Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTY_SET

Generic Manufacturer Property Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTY_SET_UNACKN
OWLEDGED

Generic Manufacturer Property Set
Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_MANUFACTURER_PROPERTY_STATUS

Generic Manufacturer Property Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTIES_GET

Generic Admin Property Generic Admin
Properties Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTIES_STATUS

Generic Admin Properties Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTY_GET

Generic Admin Property Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTY_SET

Generic Admin Property Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTY_SET_UNACKNOWLEDGE
D

Generic Admin Property Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_ADMIN_PROPERTY_STATUS

Generic Admin Property Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTIES_GET

Generic User Property Generic User Properties
Get Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,938 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTIES_STATUS

Generic User Properties Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTY_GET

Generic User Property Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTY_SET

Generic User Property Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTY_SET_UNACKNOWLEDGED

Generic User Property Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_USER_PROPERTY_STATUS

Generic User Property Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_CLIENT_PROPERTIES_GET

Generic Client Property Generic Client
Properties Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GEN
ERIC_CLIENT_PROPERTIES_STATUS

Generic Client Properties Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_DESCRIPTOR_GET

Sensor Sensor Descriptor Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_DESCRIPTOR_STATUS

Sensor Descriptor Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_GET

Sensor Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_STATUS

Sensor Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_COLUMN_GET

Sensor Column Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_COLUMN_STATUS

Sensor Column Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SERIES_GET

Sensor Series Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SERIES_STATUS

Sensor Series Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_CADENCE_GET

Sensor Setup Sensor Cadence Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_CADENCE_SET

Sensor Cadence Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_CADENCE_SET_UNACKNOWLEDGED

Sensor Cadence Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_CADENCE_STATUS

Sensor Cadence Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SETTINGS_GET

Sensor Settings Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,939 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

SOR_SETTINGS_STATUS Sensor Settings Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SETTING_GET

Sensor Setting Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SETTING_SET

Sensor Setting Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SETTING_SET_UNACKNOWLEDGED

Sensor Setting Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SEN
SOR_SETTING_STATUS

Sensor Setting Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_GET

Time Time Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_SET

Time Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_STATUS

Time Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ROLE_GET

Time Role Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ROLE_SET

Time Role Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ROLE_STATUS

Time Role Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ZONE_GET

Time Zone Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ZONE_SET

Time Zone Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TIM
E_ZONE_STATUS

Time Zone Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TAI_
UTC_DELTA_GET

Time - TAI UTC Delta Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TAI_
UTC_DELTA_SET

Time - TAI UTC Delta Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_TAI_
UTC_DELTA_STATUS

Time - TAI UTC Delta Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_GET

Scene Scene Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_RECALL

Scene Recall Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_RECALL_UNACKNOWLEDGED

Scene Recall Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_STATUS

Scene Status Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,940 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_REGISTER_GET

Scene Register Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_REGISTER_STATUS

Scene Register Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_STORE

Scene Setup Scene Store Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_STORE_UNACKNOWLEDGED

Scene Store Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_DELETE

Scene Delete Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCE
NE_DELETE_UNACKNOWLEDGED

Scene Delete Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_ACTION_GET

Scheduler Scheduler Action Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_ACTION_STATUS

Scheduler Action Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_GET

Scheduler Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_STATUS

Scheduler Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_ACTION_SET

Scheduler Setup Scheduler Action Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_SCH
EDULER_ACTION_SET_UNACKNOWLEDGED

Scheduler Action Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_GET

Light Lightness Light Lightness Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_SET

Light Lightness Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_SET_UNACKNOWLEDGED

Light Lightness Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_STATUS

Light Lightness Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_LINEAR_GET

Light Lightness Linear Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_LINEAR_SET

Light Lightness Linear Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_LINEAR_SET_UNACKNOWLEDGED

Light Lightness Linear Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_LINEAR_STATUS

Light Lightness Linear Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG Light Lightness Last Get Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,941 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

HT_LIGHTNESS_LAST_GET

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_LAST_STATUS

Light Lightness Last Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_DEFAULT_GET

Light Lightness Default Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_DEFAULT_STATUS

Light Lightness Default Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_RANGE_GET

Light Lightness Range Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_RANGE_STATUS

Light Lightness Range Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_DEFAULT_SET

Light Lightness Setup Light Lightness Range
Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_DEFAULT_SET_UNACKNOWLEDG
ED

Light Lightness Range Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_RANGE_SET

Light Lightness Range Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LIGHTNESS_RANGE_SET_UNACKNOWLEDGED

Light Lightness Range Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_GET

Light CTL Light CTL Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_SET

Light CTL Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_SET_UNACKNOWLEDGED

Light CTL Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_STATUS

Light CTL Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_GET

Light CTL Temperature Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_RANGE_GET

Light CTL Temperature Range Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_RANGE_STATUS

Light CTL Temperature Range Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_SET

Light CTL Temperature Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_SET_UNACKNOWLEDGED

Light CTL Temperature Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_STATUS

Light CTL Temperature Status Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,942 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_DEFAULT_GET

Light CTL Default Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_DEFAULT_STATUS

Light CTL Default Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_DEFAULT_SET

Light CTL Setup Light CTL Default Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_DEFAULT_SET_UNACKNOWLEDGED

Light CTL Default Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_RANGE_SET

Light CTL Default Range Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_CTL_TEMPERATURE_RANGE_SET_UNACKNOW
LEDGED

Light CTL Default Range Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_GET

Light HSL Light HSL Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_HUE_GET

Light HSL HUE Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_HUE_SET

Light HSL HUE Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_HUE_SET_UNACKNOWLEDGED

Light HSL HUE Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_HUE_STATUS

Light HSL HUE Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SATURATION_GET

Light HSL Saturation Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SATURATION_SET

Light HSL Saturation Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SATURATION_SET_UNACKNOWLEDGED

Light HSL Saturation Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SATURATION_STATUS

Light HSL Saturation Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SET

Light HSL Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_SET_UNACKNOWLEDGED

Light HSL Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_STATUS

Light HSL Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_TARGET_GET

Light HSL Target Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_TARGET_STATUS

Light HSL Target Status Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,943 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_DEFAULT_GET

Light HSL Default Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_DEFAULT_STATUS

Light HSL Default Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_RANGE_GET

Light HSL Range Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_RANGE_STATUS

Light HSL Range Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_DEFAULT_SET

Light HSL Setup Light HSL Default Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_DEFAULT_SET_UNACKNOWLEDGED

Light HSL Default Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_RANGE_SET

Light HSL Range Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_HSL_RANGE_SET_UNACKNOWLEDGED

Light HSL Range Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_GET

Light xyL Light xyL Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_SET

Light xyL Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_SET_UNACKNOWLEDGED

Light xyL Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_STATUS

Light xyL Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_TARGET_GET

Light xyL Target Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_TARGET_STATUS

Light xyL Target Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_DEFAULT_GET

Light xyL Default Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_DEFAULT_STATUS

Light xyL Default Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_RANGE_GET

Light xyL Range Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_RANGE_STATUS

Light xyL Range Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_DEFAULT_SET

Light xyL Setup Light xyL Default Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_DEFAULT_SET_UNACKNOWLEDGED

Light xyL Default Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG Light xyL Range Set Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,944 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

HT_XYL_RANGE_SET

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_XYL_RANGE_SET_UNACKNOWLEDGED

Light xyL Range Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_MODE_GET

Light Control Light LC Mode Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_MODE_SET

Light LC Mode Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_MODE_SET_UNACKNOWLEDGED

Light LC Mode Set Unacknowledged Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_MODE_STATUS

Light LC Mode Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_OM_GET

Light LC Occupancy Mode Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_OM_SET

Light LC Occupancy Mode Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_OM_SET_UNACKNOWLEDGED

Light LC Occupancy Mode Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_OM_STATUS

Light LC Occupancy Mode Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_LIGHT_ONOFF_GET

Light LC Light OnOff Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_LIGHT_ONOFF_SET

Light LC Light OnOff Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_LIGHT_ONOFF_SET_UNACKNOWLEDGED

Light LC Light OnOff Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_LIGHT_ONOFF_STATUS

Light LC Light OnOff Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_PROPERTY_GET

Light LC Property Get Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_PROPERTY_SET

Light LC Property Set Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_PROPERTY_SET_UNACKNOWLEDGED

Light LC Property Set Unacknowledged
Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_LIG
HT_LC_PROPERTY_STATUS

Light LC Property Status Opcode

RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_INV
ALID

Invalid Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,945 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ rm_ble_mesh_access_model_type_info_t

enum rm_ble_mesh_access_model_type_info_t

Model type information

Enumerator

RM_BLE_MESH_ACCESS_MODEL_TYPE_INFO_SIG Model type - SIG

RM_BLE_MESH_ACCESS_MODEL_TYPE_INFO_VEN
DOR

Model type - VENDOR

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,946 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

◆ rm_ble_mesh_access_model_id_info_t

enum rm_ble_mesh_access_model_id_info_t

Model ID information

Enumerator

RM_BLE_MESH_ACCESS_MODEL_INFO_CONFIG_S
ERVER

Model ID - Config Server

RM_BLE_MESH_ACCESS_MODEL_INFO_CONFIG_C
LIENT

Model ID - Config Client

RM_BLE_MESH_ACCESS_MODEL_INFO_HEALTH_S
ERVER

Model ID - Health Server

RM_BLE_MESH_ACCESS_MODEL_INFO_HEALTH_C
LIENT

Model ID - Health Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
ONOFF_SERVER

Generic Model ID - Generic OnOff Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
ONOFF_CLIENT

Model ID - Generic OnOff Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
LEVEL_SERVER

Model ID - Generic Level Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
LEVEL_CLIENT

Model ID - Generic Level Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
DEFAULT_TRANSITION_TIME_SERVER

Model ID - Generic Default Transition Time
Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
DEFAULT_TRANSITION_TIME_CLIENT

Model ID - Generic Default Transition Time
Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_ONOFF_SERVER

Model ID - Generic Power OnOff Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_ONOFF_SETUP_SERVER

Model ID - Generic Power OnOff Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_ONOFF_CLIENT

Model ID - Generic Power OnOff Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_LEVEL_SERVER

Model ID - Generic Power Level Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_LEVEL_SETUP_SERVER

Model ID - Generic Power Level Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
POWER_LEVEL_CLIENT

Model ID - Generic Power Level Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
BATTERY_SERVER

Model ID - Generic Battery Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,947 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

BATTERY_CLIENT Model ID - Generic Battery Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
LOCATION_SERVER

Model ID - Generic Location Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
LOCATION_SETUP_SERVER

Model ID - Generic Location Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
LOCATION_CLIENT

Model ID - Generic Location Client

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
ADMIN_PROPERTY_SERVER

Model ID - Generic Admin Property Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
MANUFACTURER_PROPERTY_SERVER

Model ID - Generic Manufacturer Property
Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
USER_PROPERTY_SERVER

Model ID - Generic User Property Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
CLIENT_PROPERTY_SERVER

Model ID - Generic Client Property Server

RM_BLE_MESH_ACCESS_MODEL_INFO_GENERIC_
PROPERTY_CLIENT

Model ID - Generic Property Client

RM_BLE_MESH_ACCESS_MODEL_INFO_SENSOR_S
ERVER

Sensors Model ID - Sensor Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SENSOR_S
ETUP_SERVER

Model ID - Sensor Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SENSOR_C
LIENT

Model ID - Sensor Client

RM_BLE_MESH_ACCESS_MODEL_INFO_TIME_SER
VER

Time and Scenes Model ID - Time Server

RM_BLE_MESH_ACCESS_MODEL_INFO_TIME_SET
UP_SERVER

Model ID - Time Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_TIME_CLIE
NT

Model ID - Time Client

RM_BLE_MESH_ACCESS_MODEL_INFO_SCENE_SE
RVER

Model ID - Scene Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SCENE_SE
TUP_SERVER

Model ID - Scene Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SCENE_CLI
ENT

Model ID - Scene Client

RM_BLE_MESH_ACCESS_MODEL_INFO_SCHEDUL
ER_SERVER

Model ID - Scheduler Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SCHEDUL
ER_SETUP_SERVER

Model ID - Scheduler Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_SCHEDUL
ER_CLIENT

Model ID - Scheduler Client

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,948 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LIG
HTNESS_SERVER

Lighting Model ID - Light Lightness Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LIG
HTNESS_SETUP_SERVER

Model ID - Light Lightness Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LIG
HTNESS_CLIENT

Model ID - Light Lightness Client

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_CTL
_SERVER

Model ID - Light CTL Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_CTL
_SETUP_SERVER

Model ID - Light CTL Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_CTL
_CLIENT

Model ID - Light CTL Client

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_CTL
_TEMPERATURE_SERVER

Model ID - Light CTL Temperature Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_HS
L_SERVER

Model ID - Light HSL Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_HS
L_SETUP_SERVER

Model ID - Light HSL Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_HS
L_CLIENT

Model ID - Light HSL Client

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_HS
L_HUE_SERVER

Model ID - Light HSL HUE Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_HS
L_SATURATION_SERVER

Model ID - Light HSL Saturation Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_XYL
_SERVER

Model ID - Light xyL Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_XYL
_SETUP_SERVER

Model ID - Light xyL Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_XYL
_CLIENT

Model ID - Light xyL Client

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LC_
SERVER

Model ID - Light LC Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LC_
SETUP_SERVER

Model ID - Light LC Setup Server

RM_BLE_MESH_ACCESS_MODEL_INFO_LIGHT_LC_
CLIENT

Model ID - Light LC Client

 Application Callback
Interfaces » Networking » BLE Mesh Network Interfaces » BLE Mesh Access Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,949 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface > Application Callback

Detailed Description

This Section Describes the module Notification Callback interface offered to the application

Data Structures

struct rm_ble_mesh_access_model_callback_args_t

struct rm_ble_mesh_access_timeout_callback_args_t

Typedefs

typedef void(* rm_ble_mesh_access_model_callback_t)
(rm_ble_mesh_access_model_callback_args_t *p_args)

typedef void(* rm_ble_mesh_access_timeout_callback_t)
(rm_ble_mesh_access_timeout_callback_args_t *p_args)

Data Structure Documentation

◆ rm_ble_mesh_access_model_callback_args_t

struct rm_ble_mesh_access_model_callback_args_t

Access Layer Application Asynchronous Notification Callback Arguments.

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_re
q_msg_context_t *

p_msg_context Context of message received
for a specific model instance.

rm_ble_mesh_access_req_msg_
raw_t *

p_msg_raw Uninterpreted/raw received
message for a specific model
instance.

◆ rm_ble_mesh_access_timeout_callback_args_t

struct rm_ble_mesh_access_timeout_callback_args_t

Access Layer Model Publication Timeout Callback Arguments.

Access Layer calls the registered callback to indicate Publication Timeout for the associated model.

Parameters
p_context Placeholder for user data.

handle Model Handle.

blob Blob if any or NULL.

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_ha handle Model handle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,950 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Access Interface > Application Callback

ndle_t

void * p_blob Blob if any or NULL.

Typedef Documentation

◆ rm_ble_mesh_access_model_callback_t

typedef void(* rm_ble_mesh_access_model_callback_t)
(rm_ble_mesh_access_model_callback_args_t *p_args)

Access Layer Application Asynchronous Notification Callback.

Access Layer calls the registered callback to indicate events occurred to the application.

Parameters
p_args Access Layer application asynchronous

notification callback arguments.

◆ rm_ble_mesh_access_timeout_callback_t

typedef void(* rm_ble_mesh_access_timeout_callback_t)
(rm_ble_mesh_access_timeout_callback_args_t *p_args)

Access Layer Model Publication Timeout Callback.

Access Layer calls the registered callback to indicate Publication Timeout for the associated model.

Parameters
p_args Access Layer Model publication timeout

callback arguments.

 BLE Mesh Bearer Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Bearer functions.

Summary
The BLE Mesh Bearer interface for the BLE Mesh Bearer (BLE MESH BEARER) peripheral provides BLE
Mesh Bearer functionality.

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,951 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

struct rm_ble_mesh_bearer_info_t

struct rm_ble_mesh_bearer_beacon_info_t

struct rm_ble_mesh_bearer_ch_info_t

struct rm_ble_mesh_bearer_ntf_callback_args_t

struct rm_ble_mesh_bearer_beacon_callback_args_t

struct rm_ble_mesh_bearer_cfg_t

struct rm_ble_mesh_bearer_api_t

struct rm_ble_mesh_bearer_instance_t

Macros

#define RM_BLE_MESH_BEARER_HANDLE_INVALID

#define RM_BLE_MESH_BEARER_MAX_PDU_SIZE

#define RM_BLE_MESH_BEARER_SUBTYPE_GATT_T_MASK_BIT_OFFSET

Typedefs

typedef uint8_t rm_ble_mesh_bearer_handle_t

typedef void rm_ble_mesh_bearer_ctrl_t

Enumerations

enum rm_ble_mesh_bearer_interface_event_t

enum rm_ble_mesh_bearer_beacon_operation_t

enum rm_ble_mesh_bearer_beacon_action_t

enum rm_ble_mesh_bearer_role_t

enum rm_ble_mesh_bearer_operation_mode_t

enum rm_ble_mesh_bearer_ntf_callback_result_t

enum rm_ble_mesh_bearer_type_t

enum rm_ble_mesh_bearer_beacon_type_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,952 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ rm_ble_mesh_bearer_info_t

struct rm_ble_mesh_bearer_info_t

Bearer information to register

Data Fields

rm_ble_mesh_buffer_t * binfo

fsp_err_t(* bearer_send)(rm_ble_mesh_bearer_handle_t *, uint8_t, void *,
uint16_t)

void(* bearer_recv)(rm_ble_mesh_bearer_handle_t *, uint8_t *, uint16_t,
rm_ble_mesh_buffer_t *info)

void(* bearer_sleep)(rm_ble_mesh_bearer_handle_t *)

void(* bearer_wakeup)(rm_ble_mesh_bearer_handle_t *, uint8_t mode)

Field Documentation

◆ binfo

rm_ble_mesh_buffer_t* rm_ble_mesh_bearer_info_t::binfo

Bearer Information

◆ bearer_send

fsp_err_t(* rm_ble_mesh_bearer_info_t::bearer_send) (rm_ble_mesh_bearer_handle_t *, uint8_t, void
*, uint16_t)

Data Send routine

◆ bearer_recv

void(* rm_ble_mesh_bearer_info_t::bearer_recv) (rm_ble_mesh_bearer_handle_t *, uint8_t *,
uint16_t, rm_ble_mesh_buffer_t *info)

Data Receive routine

◆ bearer_sleep

void(* rm_ble_mesh_bearer_info_t::bearer_sleep) (rm_ble_mesh_bearer_handle_t *)

Bearer Sleep Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,953 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ bearer_wakeup

void(* rm_ble_mesh_bearer_info_t::bearer_wakeup) (rm_ble_mesh_bearer_handle_t *, uint8_t
mode)

Bearer Wakeup Interface

◆ rm_ble_mesh_bearer_beacon_info_t

struct rm_ble_mesh_bearer_beacon_info_t

Bearer Beacon type data structure

Data Fields

uint8_t action Beacon Action

Lower Nibble:

BRR_OBSERVE B
RR_BROADCAST

Higher Nibble:

BRR_ENABLE
BRR_DISABLE

uint8_t type Beacon type

Lower Nibble:

BRR_BCON_PASS
IVE - Non
Connectable
beacon BRR_BC
ON_ACTIVE -
Connectable
beacon

Higher Nibble (Valid
only when Passive)

BRR_BCON_TYPE
_UNPROV_DEVIC
E BRR_BCON_TY
PE_SECURE_NET

uint8_t * bcon_data Beacon Broadcast Data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,954 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

uint16_t bcon_datalen Beacon Broadcast Data length

rm_ble_mesh_buffer_t * uri URI information in case of
Unprovisioned Beacons

◆ rm_ble_mesh_bearer_ch_info_t

struct rm_ble_mesh_bearer_ch_info_t

Bearer GATT Channel information related data structure

Data Fields

uint16_t mtu Identifies the MTU for the
Bearer Channel

uint8_t role Identifies the role for the Bearer
channel

◆ rm_ble_mesh_bearer_ntf_callback_args_t

struct rm_ble_mesh_bearer_ntf_callback_args_t

BEARER Application Asynchronous Notification Callback.

BEARER calls the registered callback to indicate events occurred to the application.

Data Fields

rm_ble_mesh_bearer_handle_t * p_handle Bearer handle identifier.

rm_ble_mesh_bearer_interface_
event_t

event Bearer interface event.

uint8_t * p_data Data associated with the event
if any or NULL.

uint16_t data_length Size of the event data. 0 if
event data is NULL.

◆ rm_ble_mesh_bearer_beacon_callback_args_t

struct rm_ble_mesh_bearer_beacon_callback_args_t

BEARER Application Asynchronous Notification Callback for Beacons.

Application registers callback for beacon notification with bearer.

Data Fields

uint8_t * p_data Data associated with the event
if any or NULL.

uint16_t data_length Size of the event data. 0 if
event data is NULL.

◆ rm_ble_mesh_bearer_cfg_t

struct rm_ble_mesh_bearer_cfg_t

BLE MESH BEARER configuration parameters.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,955 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

the parameters for
initialization.

rm_ble_mesh_instance_t const * p_mesh_instance Instance structure of BLE Mesh.

void const * p_context Placeholder for user data.
Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ rm_ble_mesh_bearer_api_t

struct rm_ble_mesh_bearer_api_t

BLE MESH BEARER functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

fsp_err_t(* registerInterface)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_bearer_ntf_callback_result_t
(*p_callback)(rm_ble_mesh_bearer_ntf_callback_args_t *p_args))

fsp_err_t(* registerBeaconHandler)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_beacon_type_t bcon_type,
void(*p_handler)(rm_ble_mesh_bearer_beacon_callback_args_t
*p_args))

fsp_err_t(* addBearer)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_info_t
const *const p_brr_info, rm_ble_mesh_bearer_handle_t *const
p_brr_handle)

fsp_err_t(* removeBearer)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_handle_t
const *const p_brr_handle)

fsp_err_t(* observeBeacon)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
bcon_type, uint8_t enable)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,956 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

fsp_err_t(* bcastUnprovisionedBeacon)(rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, uint8_t type, uint8_t const *const p_dev_uuid, uint16_t
oob_info, rm_ble_mesh_buffer_t const *const p_uri)

fsp_err_t(* broadcastBeacon)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
type, uint8_t const *const p_packet, uint16_t length)

fsp_err_t(* startProxyAdv)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
type, uint8_t const *const p_data, uint16_t datalen)

fsp_err_t(* sendPdu)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_handle_t const *const p_brr_handle,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_buffer_t const
*const p_buffer)

fsp_err_t(* getPacketRssi)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
*p_rssi_value)

fsp_err_t(* sleep)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

fsp_err_t(* wakeup)(rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t mode)

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_bearer_api_t::open) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_cfg_t const *const p_cfg)

Open bearer middleware.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,957 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ close

fsp_err_t(* rm_ble_mesh_bearer_api_t::close) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

Close bearer middleware.

Parameters
[in] p_ctrl Pointer to control structure.

◆ registerInterface

fsp_err_t(* rm_ble_mesh_bearer_api_t::registerInterface) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_ntf_callback_result_t(*p_callback)(
rm_ble_mesh_bearer_ntf_callback_args_t *p_args))

Register Interface with Bearer Layer

Parameters
[in] p_ctrl Pointer to control structure.

[in] brr_type Bearer Type.

[in] p_callback Pointer to details describing
application notification
callback.

◆ registerBeaconHandler

fsp_err_t(* rm_ble_mesh_bearer_api_t::registerBeaconHandler) (rm_ble_mesh_bearer_ctrl_t *const
p_ctrl, rm_ble_mesh_bearer_beacon_type_t bcon_type, void(*p_handler)(
rm_ble_mesh_bearer_beacon_callback_args_t *p_args))

Register Beacon Interface with Bearer Layer

Parameters
[in] p_ctrl Pointer to control structure.

[in] bcon_type Beacon type - Unprovisioned
Device or Secure Network.

[in] p_handler Pointer to callback handler
to be registered for the
given beacon type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,958 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ addBearer

fsp_err_t(* rm_ble_mesh_bearer_api_t::addBearer) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_info_t const *const p_brr_info,
rm_ble_mesh_bearer_handle_t *const p_brr_handle)

Add a bearer to Bearer Layer

Parameters
[in] p_ctrl Pointer to control structure.

[in] brr_type Bearer Type.

[in] p_brr_info Pointer to details describing
the Bearer being added.

[out] p_brr_handle Pointer to handle to the
bearer that is added. Used in
data APIs.

◆ removeBearer

fsp_err_t(* rm_ble_mesh_bearer_api_t::removeBearer) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_type_t brr_type, rm_ble_mesh_bearer_handle_t const *const p_brr_handle)

Remove a bearer from Bearer Layer

Parameters
[in] p_ctrl Pointer to control structure.

[in] brr_type Bearer Type.

[in] p_brr_handle Pointer to handle to the
bearer is removed. Used in
data APIs.

◆ observeBeacon

fsp_err_t(* rm_ble_mesh_bearer_api_t::observeBeacon) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t bcon_type, uint8_t enable)

Observe ON/OFF for the beacon type

Parameters
[in] p_ctrl Pointer to control structure.

[in] bcon_type Type of beacon to observe -
Active/Passive.

[in] enable Enable or Disable the
observation procedure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,959 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ bcastUnprovisionedBeacon

fsp_err_t(* rm_ble_mesh_bearer_api_t::bcastUnprovisionedBeacon) (rm_ble_mesh_bearer_ctrl_t
*const p_ctrl, uint8_t type, uint8_t const *const p_dev_uuid, uint16_t oob_info,
rm_ble_mesh_buffer_t const *const p_uri)

API to send Unprovisioned Device Beacon

Parameters
[in] p_ctrl Pointer to control structure.

[in] type Active or Passive Broadcast
type.

[in] p_dev_uuid Pointer to device UUID
uniquely identifying this
device.

[in] oob_info OOB Information.

[in] p_uri Pointer to optional
Parameter. NULL if not
present. Points to the length
and payload pointer of the
URI string to be advertised
interleaving with the
unprovisioned beacon.

◆ broadcastBeacon

fsp_err_t(* rm_ble_mesh_bearer_api_t::broadcastBeacon) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t type, uint8_t const *const p_packet, uint16_t length)

API to broadcast a beacon

Parameters
[in] p_ctrl Pointer to control structure.

[in] type The type of beacon.

[in] p_packet Pointer to beacon data.

[in] length Beacon data length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,960 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ startProxyAdv

fsp_err_t(* rm_ble_mesh_bearer_api_t::startProxyAdv) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t type, uint8_t const *const p_data, uint16_t datalen)

API to send Proxy Device ADV

Parameters
[in] p_ctrl Pointer to control structure.

[in] type Proxy ADV Type: 0x00 -
Network ID 0x01 - Node
Identity

[in] p_data Pointer to data to be
advertised by Proxy. If the
"type" is: 0x00 - Network ID -
8 Bytes of Network ID 0x01 -
Node Identity - 8 Bytes Hash,
8 Bytes Random number

[in] datalen Length of the data to be
advertised by Proxy. If the
"type" is: 0x00 - Network ID -
8 Bytes of Network ID 0x01 -
Node Identity - 8 Bytes Hash,
8 Bytes Random number

◆ sendPdu

fsp_err_t(* rm_ble_mesh_bearer_api_t::sendPdu) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
rm_ble_mesh_bearer_handle_t const *const p_brr_handle, rm_ble_mesh_bearer_type_t brr_type,
rm_ble_mesh_buffer_t const *const p_buffer)

Send a bearer PDU

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_brr_handle Pointer to bearer handle on
which PDU is to be sent.

[in] brr_type Bearer Type.

[in] p_buffer Pointer to PDU data to be
sent.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,961 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ getPacketRssi

fsp_err_t(* rm_ble_mesh_bearer_api_t::getPacketRssi) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl,
uint8_t *p_rssi_value)

Get the RSSI of current received packet being processed.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_rssi_value Pointer to RSSI value.

Note
This applies only when the packet is received over ADV bearer.

◆ sleep

fsp_err_t(* rm_ble_mesh_bearer_api_t::sleep) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl)

Put the bearer to sleep.

Parameters
[in] p_ctrl Pointer to control structure.

◆ wakeup

fsp_err_t(* rm_ble_mesh_bearer_api_t::wakeup) (rm_ble_mesh_bearer_ctrl_t *const p_ctrl, uint8_t
mode)

Wakeup the bearer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] mode Identifies the mode
(BRR_TX/BRR_RX) for which
bearer is requested for
wakeup.

◆ rm_ble_mesh_bearer_instance_t

struct rm_ble_mesh_bearer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_bearer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_bearer_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_bearer_api_t
const *

p_api Pointer to the API structure for
this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,962 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

Macro Definition Documentation

◆ RM_BLE_MESH_BEARER_HANDLE_INVALID

#define RM_BLE_MESH_BEARER_HANDLE_INVALID

Invalid Bearer handle identifier

◆ RM_BLE_MESH_BEARER_MAX_PDU_SIZE

#define RM_BLE_MESH_BEARER_MAX_PDU_SIZE

Maximum PDU size for data received over bearer

◆ RM_BLE_MESH_BEARER_SUBTYPE_GATT_T_MASK_BIT_OFFSET

#define RM_BLE_MESH_BEARER_SUBTYPE_GATT_T_MASK_BIT_OFFSET

GATT Bearer Message Type Masks

Typedef Documentation

◆ rm_ble_mesh_bearer_handle_t

typedef uint8_t rm_ble_mesh_bearer_handle_t

Bearer handle identifier

◆ rm_ble_mesh_bearer_ctrl_t

typedef void rm_ble_mesh_bearer_ctrl_t

BLE MESH BEARER control block. Allocate an instance specific control block to pass into the BLE
MESH API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,963 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ rm_ble_mesh_bearer_interface_event_t

enum rm_ble_mesh_bearer_interface_event_t

Bearer Interface Event

Enumerator

RM_BLE_MESH_BEARER_INTERFACE_EVENT_DO
WN

Bearer Interface Event - Down

RM_BLE_MESH_BEARER_INTERFACE_EVENT_UP Bearer Interface Event - Up

RM_BLE_MESH_BEARER_INTERFACE_EVENT_DAT
A

Bearer Interface Event - Data

RM_BLE_MESH_BEARER_INTERFACE_EVENT_PRO
XY_DATA

Bearer Interface Event - Proxy Data

◆ rm_ble_mesh_bearer_beacon_operation_t

enum rm_ble_mesh_bearer_beacon_operation_t

Bearer Beacon Operations

Enumerator

RM_BLE_MESH_BEARER_BEACON_OPERATION_B
ROADCAST

Bearer Beacon Operations - Broadcast

RM_BLE_MESH_BEARER_BEACON_OPERATION_O
BSERVE

Bearer Beacon Operations - Observe

◆ rm_ble_mesh_bearer_beacon_action_t

enum rm_ble_mesh_bearer_beacon_action_t

Bearer Beacon Actions

Enumerator

RM_BLE_MESH_BEARER_BEACON_ACTION_DISAB
LE

Bearer Beacon Actions - Disable

RM_BLE_MESH_BEARER_BEACON_ACTION_ENABL
E

Bearer Beacon Actions - Enable

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,964 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ rm_ble_mesh_bearer_role_t

enum rm_ble_mesh_bearer_role_t

Bearer Server Client Roles

Enumerator

RM_BLE_MESH_BEARER_ROLE_CLIENT Bearer Client Role

RM_BLE_MESH_BEARER_ROLE_SERVER Bearer Server Role

RM_BLE_MESH_BEARER_ROLE_INVALID Bearer Role - Invalid

◆ rm_ble_mesh_bearer_operation_mode_t

enum rm_ble_mesh_bearer_operation_mode_t

Bearer Transmit and Receive operation modes

Enumerator

RM_BLE_MESH_BEARER_OPERATION_MODE_TX Bearer transmit operation mode

RM_BLE_MESH_BEARER_OPERATION_MODE_RX Bearer receive operation mode

◆ rm_ble_mesh_bearer_ntf_callback_result_t

enum rm_ble_mesh_bearer_ntf_callback_result_t

Bearer Transmit and Receive operation modes

Enumerator

RM_BLE_MESH_BEARER_NTF_CALLBACK_RESULT
_SUCCESS

Callback success

RM_BLE_MESH_BEARER_NTF_CALLBACK_RESULT
_FAILURE

Callback failure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,965 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Interface

◆ rm_ble_mesh_bearer_type_t

enum rm_ble_mesh_bearer_type_t

Bearer Type definitions

Enumerator

RM_BLE_MESH_BEARER_TYPE_BCON Beacon Bearer

RM_BLE_MESH_BEARER_TYPE_ADV Advertising Bearer

RM_BLE_MESH_BEARER_TYPE_PB_ADV Provisioning Advertising Bearer

RM_BLE_MESH_BEARER_TYPE_GATT GATT Bearer

RM_BLE_MESH_BEARER_TYPE_PB_GATT Provisioning GATT Bearer

RM_BLE_MESH_BEARER_COUNT Number of bearers supported

◆ rm_ble_mesh_bearer_beacon_type_t

enum rm_ble_mesh_bearer_beacon_type_t

Bearer Beacon type definitions

Enumerator

RM_BLE_MESH_BEARER_BEACON_TYPE_UNPROV
_DEVICE

Unprovisioned Device Beacon

RM_BLE_MESH_BEARER_BEACON_TYPE_SECURE_
NET

Secure Network Beacon

RM_BLE_MESH_BEARER_BEACON_TYPE_GATT_UN
PROV_DEVICE

Unprovisioned Device Beacon over GATT
bearer

RM_BLE_MESH_BEARER_BEACON_TYPE_PROXY_N
ETID

Proxy beacon with Network ID

RM_BLE_MESH_BEARER_BEACON_TYPE_PROXY_N
ODEID

Proxy beacon with Node Identity

RM_BLE_MESH_BEARER_BEACON_COUNT Number of Beacon types

 BLE Mesh Bearer Platform Interface
Interfaces » Networking » BLE Mesh Network Interfaces

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,966 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

Detailed Description

Interface for BLE Mesh Bearer Platform functions.

Summary
The BLE Mesh interface for the BLE Mesh Bearer Platform (BLE MESH BEARER PLATFORM) peripheral
provides BLE Mesh Bearer Platform functionality.

Data Structures

struct rm_mesh_bearer_platform_cfg_t

struct rm_mesh_bearer_platform_api_t

struct rm_mesh_bearer_platform_instance_t

Typedefs

typedef void rm_mesh_bearer_platform_ctrl_t

Enumerations

enum rm_mesh_bearer_platform_device_address_type_t

enum rm_mesh_bearer_platform_state_t

enum rm_mesh_bearer_platform_gatt_mode_t

Data Structure Documentation

◆ rm_mesh_bearer_platform_cfg_t

struct rm_mesh_bearer_platform_cfg_t

MESH BEARER PLATFORM configuration parameters.

Data Fields

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

the parameters for
initialization.

rm_mesh_bearer_platform_devi
ce_address_type_t

device_address_type Device address type.

rm_ble_mesh_bearer_instance_t
const *

p_bearer_instance Instance structure of BLE Mesh
Bearer.

void const * p_context Placeholder for user data.
Passed to the user callback in
ble_abs_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,967 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

void const * p_extend Placeholder for user extension.

◆ rm_mesh_bearer_platform_api_t

struct rm_mesh_bearer_platform_api_t

MESH BEARER PLATFORM functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

fsp_err_t(* setScanResponseData)(rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, uint8_t *p_data, uint8_t len)

fsp_err_t(* connect)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint8_t
*p_remote_address, uint8_t address_type,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t(* discoverService)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
uint16_t handle, rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t(* configureNotification)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
uint16_t handle, rm_mesh_bearer_platform_state_t state,
rm_mesh_bearer_platform_gatt_mode_t mode)

fsp_err_t(* disconnect)(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint16_t
handle)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,968 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

◆ open

fsp_err_t(* rm_mesh_bearer_platform_api_t::open) (rm_mesh_bearer_platform_ctrl_t *const p_ctrl,
rm_mesh_bearer_platform_cfg_t const *const p_cfg)

Open Bearer Platform middleware.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_mesh_bearer_platform_api_t::close) (rm_mesh_bearer_platform_ctrl_t *const p_ctrl)

Close Bearer Platform middleware.

Parameters
[in] p_ctrl Pointer to control structure.

◆ setScanResponseData

fsp_err_t(* rm_mesh_bearer_platform_api_t::setScanResponseData)
(rm_mesh_bearer_platform_ctrl_t *const p_ctrl, uint8_t *p_data, uint8_t len)

Set scan response data in connectable and scannable undirected advertising event.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_data Pointer to scan response
data.

[in] len Data length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,969 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

◆ connect

fsp_err_t(* rm_mesh_bearer_platform_api_t::connect) (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, uint8_t *p_remote_address, uint8_t address_type, rm_mesh_bearer_platform_gatt_mode_t
mode)

Request to create connection.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_remote_address Pointer to remote device
address.

[in] address_type Address type.

[in] mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROXY.

◆ discoverService

fsp_err_t(* rm_mesh_bearer_platform_api_t::discoverService) (rm_mesh_bearer_platform_ctrl_t
*const p_ctrl, uint16_t handle, rm_mesh_bearer_platform_gatt_mode_t mode)

Start service discovery for Mesh GATT service.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Connection handle to
identify device.

[in] mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or RM_MESH_BEARER_PLATF
ORM_GATT_MODE_PROXY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,970 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

◆ configureNotification

fsp_err_t(* rm_mesh_bearer_platform_api_t::configureNotification) (rm_mesh_bearer_platform_ctrl_t
*const p_ctrl, uint16_t handle, rm_mesh_bearer_platform_state_t state,
rm_mesh_bearer_platform_gatt_mode_t mode)

Configure GATT notification of Mesh GATT service.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Connection handle to
identify device.

[in] state Notification configuration
flag; enable if RM_MESH_BEA
RER_PLATFORM_STATE_ENA
BLE, or disable if RM_MESH_
BEARER_PLATFORM_STATE_
DISABLE.

[in] mode GATT interface mode, either
RM_MESH_BEARER_PLATFOR
M_GATT_MODE_PROVISION
or RM_MESH_BEARER_PLATF
ORM_GATT_MODE_PROXY.

◆ disconnect

fsp_err_t(* rm_mesh_bearer_platform_api_t::disconnect) (rm_mesh_bearer_platform_ctrl_t *const
p_ctrl, uint16_t handle)

Terminate Connection.

Parameters
[in] p_ctrl Pointer to control structure.

[in] handle Connection handle to
identify device.

◆ rm_mesh_bearer_platform_instance_t

struct rm_mesh_bearer_platform_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_mesh_bearer_platform_ctrl_
t *

p_ctrl Pointer to the control structure
for this instance.

rm_mesh_bearer_platform_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_mesh_bearer_platform_api_t
const *

p_api Pointer to the API structure for
this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,971 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

Typedef Documentation

◆ rm_mesh_bearer_platform_ctrl_t

typedef void rm_mesh_bearer_platform_ctrl_t

MESH BEARER PLATFORM control block. Allocate an instance specific control block to pass into the
BLE MESH API calls.

Enumeration Type Documentation

◆ rm_mesh_bearer_platform_device_address_type_t

enum rm_mesh_bearer_platform_device_address_type_t

Device address type

Enumerator

RM_MESH_BEARER_PLATFORM_DEVICE_ADDRES
S_TYPE_PUBLIC

Public device address type

RM_MESH_BEARER_PLATFORM_DEVICE_ADDRES
S_TYPE_RANDOM

Random device address type

◆ rm_mesh_bearer_platform_state_t

enum rm_mesh_bearer_platform_state_t

State

Enumerator

RM_MESH_BEARER_PLATFORM_STATE_ENABLE State enable

RM_MESH_BEARER_PLATFORM_STATE_DISABLE state Disable

◆ rm_mesh_bearer_platform_gatt_mode_t

enum rm_mesh_bearer_platform_gatt_mode_t

GATT mode

Enumerator

RM_MESH_BEARER_PLATFORM_GATT_MODE_PRO
VISION

Provision GATT mode

RM_MESH_BEARER_PLATFORM_GATT_MODE_PRO
XY

Proxy GATT mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,972 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Bearer Platform Interface

 BLE Mesh Health Server Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Model Health Server functions.

Summary
The BLE Mesh interface for the BLE Mesh Model Health Server (BLE MESH HEALTH SERVER)
middleware provides BLE Mesh Model Health Server functionality.

Data Structures

struct rm_ble_mesh_model_health_callback_args_t

struct rm_ble_mesh_health_server_self_test_t

struct rm_ble_mesh_health_server_cfg_t

struct rm_ble_mesh_health_server_api_t

struct rm_ble_mesh_health_server_instance_t

Typedefs

typedef void(* rm_ble_mesh_health_server_self_test_function) (uint8_t test_id,
uint16_t company_id)

typedef void rm_ble_mesh_health_server_ctrl_t

Enumerations

enum rm_ble_mesh_health_server_events_t

Data Structure Documentation

◆ rm_ble_mesh_model_health_callback_args_t

struct rm_ble_mesh_model_health_callback_args_t

Mesh model health server callback parameter definition

Data Fields

void const * p_context

rm_ble_mesh_access_model_ha
ndle_t *

p_handle Access model handle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,973 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Health Server Interface

rm_ble_mesh_health_server_ev
ents_t

event_type Application events defined for
Health Server Model.

uint8_t * p_event_data Event data.

uint16_t event_data_length Event data length.

◆ rm_ble_mesh_health_server_self_test_t

struct rm_ble_mesh_health_server_self_test_t

Health Server Self Test Function Structure.

Data Fields

uint8_t test_id Test ID

rm_ble_mesh_health_server_sel
f_test_function

self_test_fn Self Test Function

◆ rm_ble_mesh_health_server_cfg_t

struct rm_ble_mesh_health_server_cfg_t

BLE mesh model health server configuration parameters.

Data Fields

rm_ble_mesh_access_instan
ce_t const *

p_access_instance

 Access Layer instance structure. More...

rm_ble_mesh_health_server_
self_test_t *

p_self_tests

 Health Server self test function structure.

uint16_t company_id

 Company ID.

uint32_t num_self_tests

 Number of self test.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,974 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Health Server Interface

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_access_instance

rm_ble_mesh_access_instance_t const* rm_ble_mesh_health_server_cfg_t::p_access_instance

Access Layer instance structure.

the parameters for initialization.

◆ rm_ble_mesh_health_server_api_t

struct rm_ble_mesh_health_server_api_t

Shared Interface definition for BLE MESH

Data Fields

fsp_err_t(* open)(rm_ble_mesh_health_server_ctrl_t *const p_ctrl,
rm_ble_mesh_health_server_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_health_server_ctrl_t *const p_ctrl)

fsp_err_t(* reportFault)(rm_ble_mesh_health_server_ctrl_t *const p_ctrl, const
rm_ble_mesh_access_model_handle_t *const p_model_handle,
uint8_t test_id, uint16_t company_id, uint8_t fault_code)

fsp_err_t(* publishCurrentStatus)(rm_ble_mesh_health_server_ctrl_t *const
p_ctrl, uint8_t *p_status, uint16_t length)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,975 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Health Server Interface

◆ open

fsp_err_t(* rm_ble_mesh_health_server_api_t::open) (rm_ble_mesh_health_server_ctrl_t *const
p_ctrl, rm_ble_mesh_health_server_cfg_t const *const p_cfg)

API to open health server model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_health_server_api_t::close) (rm_ble_mesh_health_server_ctrl_t *const
p_ctrl)

API to close health server model.

Parameters
[in] p_ctrl Pointer to control structure.

◆ reportFault

fsp_err_t(* rm_ble_mesh_health_server_api_t::reportFault) (rm_ble_mesh_health_server_ctrl_t
*const p_ctrl, const rm_ble_mesh_access_model_handle_t *const p_model_handle, uint8_t test_id,
uint16_t company_id, uint8_t fault_code)

API to report self-test fault.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_model_handle Pointer to model handle
identifying the health server
model instance.

[in] test_id Identifier of the self-test.

[in] company_id Company identifier.

[in] fault_code Fault value indicating the
error.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,976 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Health Server Interface

◆ publishCurrentStatus

fsp_err_t(* rm_ble_mesh_health_server_api_t::publishCurrentStatus)
(rm_ble_mesh_health_server_ctrl_t *const p_ctrl, uint8_t *p_status, uint16_t length)

API to publish current status.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_status Pointer to current status.

[in] length Status data length.

◆ rm_ble_mesh_health_server_instance_t

struct rm_ble_mesh_health_server_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_health_server_ctrl
_t *

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_health_server_cfg
_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_health_server_api
_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_health_server_self_test_function

typedef void(* rm_ble_mesh_health_server_self_test_function) (uint8_t test_id, uint16_t
company_id)

Health Server Self Test Function.

◆ rm_ble_mesh_health_server_ctrl_t

typedef void rm_ble_mesh_health_server_ctrl_t

BLE MESH HEALTH SERVER control block. Allocate an instance specific control block to pass into
the BLE mesh model health server API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,977 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Health Server Interface

◆ rm_ble_mesh_health_server_events_t

enum rm_ble_mesh_health_server_events_t

This section lists the Application Events defined for Health Server Model

Enumerator

RM_BLE_MESH_HEALTH_SERVER_SERVER_ATTEN
TION_START

Attention Start

RM_BLE_MESH_HEALTH_SERVER_SERVER_ATTEN
TION_RESTART

Attention Restart

RM_BLE_MESH_HEALTH_SERVER_SERVER_ATTEN
TION_STOP

Attention Stop

 BLE Mesh Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh functions.

Summary
The BLE Mesh interface for the BLE Mesh (BLE MESH) peripheral provides BLE Mesh functionality.

Data Structures

struct rm_ble_mesh_buffer_t

struct rm_ble_mesh_access_state_transition_t

struct rm_ble_mesh_cfg_t

struct rm_ble_mesh_api_t

struct rm_ble_mesh_instance_t

Macros

#define RM_BLE_MESH_DEVICE_UUID_SIZE

#define RM_BLE_MESH_ERROR_GROUP_MASK

#define RM_BLE_MESH_ERROR_GROUP_MASK_COMMON

#define RM_BLE_MESH_ERROR_GROUP_MASK_BEARER

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,978 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

#define RM_BLE_MESH_ERROR_GROUP_MASK_NETWORK

#define RM_BLE_MESH_ERROR_GROUP_MASK_LOWER_TRANS

#define RM_BLE_MESH_ERROR_GROUP_MASK_UPPER_TRANS

#define RM_BLE_MESH_ERROR_GROUP_MASK_ACCESS

#define RM_BLE_MESH_ERROR_GROUP_MASK_PROVISION

#define RM_BLE_MESH_ERROR_GROUP_MASK_GENERIC_MODEL

#define RM_BLE_MESH_ERROR_GROUP_MASK_CONFIG_MODEL

#define RM_BLE_MESH_ERROR_GROUP_MASK_HEALTH_MODEL

Typedefs

typedef void * rm_ble_mesh_timer_handle_t

typedef void rm_ble_mesh_ctrl_t

Enumerations

enum rm_ble_mesh_error_code_t

enum rm_ble_mesh_feature_select_t

enum rm_ble_mesh_feature_state_t

Data Structure Documentation

◆ rm_ble_mesh_buffer_t

struct rm_ble_mesh_buffer_t

Payload type

Data Fields

uint8_t * payload Payload Pointer

uint16_t length Payload Length

◆ rm_ble_mesh_access_state_transition_t

struct rm_ble_mesh_access_state_transition_t

Access Status Transition Type

Data Fields

rm_ble_mesh_timer_handle_
t

transition_timer_handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,979 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

uint8_t transition_state

uint8_t delay

uint8_t transition_time

void(* transition_start_callback)(void *)

void(* transition_complete_callback)(void *)

void * p_context

Field Documentation

◆ transition_timer_handle

rm_ble_mesh_timer_handle_t rm_ble_mesh_access_state_transition_t::transition_timer_handle

Transition Timer

◆ transition_state

uint8_t rm_ble_mesh_access_state_transition_t::transition_state

Transition State. Initial/delay/transition

◆ delay

uint8_t rm_ble_mesh_access_state_transition_t::delay

Delay

◆ transition_time

uint8_t rm_ble_mesh_access_state_transition_t::transition_time

Transition Time

◆ transition_start_callback

void(* rm_ble_mesh_access_state_transition_t::transition_start_callback) (void *)

Transition Start Callback

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,980 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ transition_complete_callback

void(* rm_ble_mesh_access_state_transition_t::transition_complete_callback) (void *)

Transition Complete Callback

◆ p_context

void* rm_ble_mesh_access_state_transition_t::p_context

Blob/Context

◆ rm_ble_mesh_cfg_t

struct rm_ble_mesh_cfg_t

BLE MESH configuration parameters.

Data Fields

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

the parameters for
initialization.

uint32_t network_interfaces_num Number of Network Interfaces

uint32_t provisioning_interfaces_num Number of Provisioning
Interfaces

uint32_t network_cache_size Network Cache Size

uint32_t network_sequence_num_cache_
size

Network Sequence Number
Cache Size

uint32_t maximum_subnets Maximum number of subnets
the device can store
information about.

uint32_t maximum_device_keys Maximum number of device
keys the device can store
information about.

uint32_t proxy_filter_list_size Maximum number of addresses
present in each proxy filter list.

uint32_t maximum_lpn Maximum number of LPNs.

uint32_t reassembled_cache_size The size of Reassembled
Cache.

uint32_t maximum_ltrn_sar_context Number of Segmentation and
Reassembly contexts.

uint32_t maximum_friend_message_que
ue

Maximum number of messages
that the friend is capable to
queue for a single Low Power
Node.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,981 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

uint32_t maximum_friend_subscription_li
st

Maximum number of
subscription addresses that the
friend is capable to store for a
single Low Power Node.

uint32_t maximum_access_element_nu
m

Maximum number of elements.

uint32_t maximum_access_model_num Maximum number of models.

uint32_t maximum_application Maximum number of
Applications (keys) the device
can store information about.

uint32_t maximum_virtual_address Maximum number of Virtual
Addresses the device can store
information about.

uint32_t maximum_non_virtual_address Maximum number of Non-
Virtual Addresses the device
can store information about.

uint32_t net_sequence_number_block_si
ze

The distance between the
network sequence numbers, for
every persistent storage write.
If the device is powered cycled,
it will resume transmission
using the sequence number
from start of next block.

uint32_t net_tx_count Network Transmit Count for
network packets

uint32_t net_tx_interval_steps Network Interval Steps for
network packets

uint32_t net_relay_tx_count Network Transmit Count for
relayed packets

uint32_t net_relay_tx_interval_steps Network Interval Steps for
relayed packets

uint32_t config_server_snb_timeout Secure Network Beacon
Interval

uint32_t proxy_subnet_netid_adv_timeou
t

Poxy ADV Network ID timeout
for each Subnet in
milliseconds.

uint32_t proxy_subnet_nodeid_adv_time
out

Poxy ADV Node Identity timeout
for each Subnet in
milliseconds.

uint32_t proxy_nodeid_adv_timeout Poxy ADV Node Identity overall
time period in milliseconds.

uint32_t frnd_poll_retry_count Friend Poll Retry Count - default
value

uint32_t ltrn_rtx_timeout Lower Transport Segment

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,982 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

Transmission Timeout in
milliseconds

uint32_t ltrn_rtx_count Lower Transport Segment
Transmission Count - default
value

uint32_t ltrn_ack_timeout Lower Transport
Acknowledgment Timeout in
milliseconds

uint32_t ltrn_incomplete_timeout Lower Transport Incomplete
Timeout in milliseconds

uint32_t frnd_receive_window Friendship Receive Window -
default value

uint32_t lpn_clear_retry_timeout_initial Friend Clear Confirmation
Timeout in milliseconds

uint32_t lpn_clear_retry_count LPN Friend Clear Retry Count

uint32_t trn_frndreq_retry_timeout Friendship Retry Timeout in
milliseconds

uint32_t unprov_device_beacon_timeout Unprovisioned Device Beacon
Interleaved Beacon Timeout

uint32_t net_tx_queue_size Maximum number of messages
that can be queued in Network
layer for Transmission.

uint32_t max_num_transition_timers Maximum number of Transition
Timers

uint32_t max_num_periodic_step_timers Maximum number of Periodic
Step Timers

uint32_t maximum_health_server_num Maximum number of Health
Server Instances.

uint32_t maximum_light_lc_server_num Maximum number of Light
Lightness Controller Server
Instances.

uint32_t replay_cache_size The size of the Replay
Protection cache.

uint32_t default_company_id Company ID

uint32_t default_product_id Product ID

uint32_t default_vendor_id Vendor ID

void const * p_context Placeholder for user data.

void const * p_extend Placeholder for user extension.

◆ rm_ble_mesh_api_t

struct rm_ble_mesh_api_t

BLE MESH functions implemented at the HAL layer will follow this API.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,983 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

Data Fields

fsp_err_t(* open)(rm_ble_mesh_ctrl_t *const p_ctrl, rm_ble_mesh_cfg_t const
*const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_ctrl_t *const p_ctrl)

fsp_err_t(* startTransitionTimer)(rm_ble_mesh_ctrl_t *const p_ctrl,
rm_ble_mesh_access_state_transition_t const *const p_transition,
uint16_t *const p_transition_time_handle)

fsp_err_t(* stopTransitionTimer)(rm_ble_mesh_ctrl_t *const p_ctrl, uint16_t
transition_time_handle)

fsp_err_t(* getRemainingTransitionTime)(rm_ble_mesh_ctrl_t *const p_ctrl,
uint16_t transition_time_handle, uint8_t *const
p_remaining_transition_time)

fsp_err_t(* getRemainingTransitionTimeWithOffset)(rm_ble_mesh_ctrl_t *const
p_ctrl, uint16_t transition_time_handle, uint32_t offset_in_ms, uint8_t
*const p_remaining_transition_time)

fsp_err_t(* convertTransitionTimeFromMs)(rm_ble_mesh_ctrl_t *const p_ctrl,
uint32_t transition_time_in_ms, uint8_t *const p_transition_time)

fsp_err_t(* convertTransitionTimeToMs)(rm_ble_mesh_ctrl_t *const p_ctrl,
uint8_t transition_time, uint32_t *const p_transition_time_in_ms)

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_api_t::open) (rm_ble_mesh_ctrl_t *const p_ctrl, rm_ble_mesh_cfg_t const
*const p_cfg)

Open BLE mesh middleware.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,984 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ close

fsp_err_t(* rm_ble_mesh_api_t::close) (rm_ble_mesh_ctrl_t *const p_ctrl)

Close BLE mesh middleware.

Parameters
[in] p_ctrl Pointer to control structure.

◆ startTransitionTimer

fsp_err_t(* rm_ble_mesh_api_t::startTransitionTimer) (rm_ble_mesh_ctrl_t *const p_ctrl,
rm_ble_mesh_access_state_transition_t const *const p_transition, uint16_t *const
p_transition_time_handle)

To start transition timer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_transition Pointer to state transition
data structure, which
includes the timeout,
transition start and complete
callback etc.

[out] p_transition_time_handle Pointer to transition time
handle, which can be used
to stop the transition timer if
required.

◆ stopTransitionTimer

fsp_err_t(* rm_ble_mesh_api_t::stopTransitionTimer) (rm_ble_mesh_ctrl_t *const p_ctrl, uint16_t
transition_time_handle)

To stop transition timer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] transition_time_handle Transition time handle,
returned by the Start
Transition Timer interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,985 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ getRemainingTransitionTime

fsp_err_t(* rm_ble_mesh_api_t::getRemainingTransitionTime) (rm_ble_mesh_ctrl_t *const p_ctrl,
uint16_t transition_time_handle, uint8_t *const p_remaining_transition_time)

To get remaining Transition Time.

Parameters
[in] p_ctrl Pointer to control structure.

[in] transition_time_handle Transition time handle,
returned by the Start
Transition Timer interface.

[out] p_remaining_transition_time Pointer to remaining
transition time.

◆ getRemainingTransitionTimeWithOffset

fsp_err_t(* rm_ble_mesh_api_t::getRemainingTransitionTimeWithOffset) (rm_ble_mesh_ctrl_t *const
p_ctrl, uint16_t transition_time_handle, uint32_t offset_in_ms, uint8_t *const
p_remaining_transition_time)

To get remaining Transition Time, with offset.

Parameters
[in] p_ctrl Pointer to control structure.

[in] transition_time_handle Transition time handle,
returned by the Start
Transition Timer interface.

[in] offset_in_ms Offset in millisecond.

[out] p_remaining_transition_time Pointer to remaining
transition time.

◆ convertTransitionTimeFromMs

fsp_err_t(* rm_ble_mesh_api_t::convertTransitionTimeFromMs) (rm_ble_mesh_ctrl_t *const p_ctrl,
uint32_t transition_time_in_ms, uint8_t *const p_transition_time)

To convert transition time from millisecond.

Parameters
[in] p_ctrl Pointer to control structure.

[in] transition_time_in_ms Transition time in
millisecond.

[out] p_transition_time Pointer to converted value in
Generic Default Transition
Time state format.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,986 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ convertTransitionTimeToMs

fsp_err_t(* rm_ble_mesh_api_t::convertTransitionTimeToMs) (rm_ble_mesh_ctrl_t *const p_ctrl,
uint8_t transition_time, uint32_t *const p_transition_time_in_ms)

To convert transition time to millisecond.

Parameters
[in] p_ctrl Pointer to control structure.

[in] transition_time Transition time in Generic
Default Transition Time state
format.

[out] p_transition_time_in_ms Pointer to converted value of
transition time in
millisecond.

◆ rm_ble_mesh_instance_t

struct rm_ble_mesh_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_api_t const * p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ RM_BLE_MESH_DEVICE_UUID_SIZE

#define RM_BLE_MESH_DEVICE_UUID_SIZE

Device UUID Size

◆ RM_BLE_MESH_ERROR_GROUP_MASK

#define RM_BLE_MESH_ERROR_GROUP_MASK

Error group mask for BLE MESH Module

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,987 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ RM_BLE_MESH_ERROR_GROUP_MASK_COMMON

#define RM_BLE_MESH_ERROR_GROUP_MASK_COMMON

Error group mask for Common

◆ RM_BLE_MESH_ERROR_GROUP_MASK_BEARER

#define RM_BLE_MESH_ERROR_GROUP_MASK_BEARER

Error group mask for Bearer

◆ RM_BLE_MESH_ERROR_GROUP_MASK_NETWORK

#define RM_BLE_MESH_ERROR_GROUP_MASK_NETWORK

Error group mask for Network

◆ RM_BLE_MESH_ERROR_GROUP_MASK_LOWER_TRANS

#define RM_BLE_MESH_ERROR_GROUP_MASK_LOWER_TRANS

Error group mask for Lower Transport

◆ RM_BLE_MESH_ERROR_GROUP_MASK_UPPER_TRANS

#define RM_BLE_MESH_ERROR_GROUP_MASK_UPPER_TRANS

Error group mask for Upper Transport

◆ RM_BLE_MESH_ERROR_GROUP_MASK_ACCESS

#define RM_BLE_MESH_ERROR_GROUP_MASK_ACCESS

Error group mask for Access

◆ RM_BLE_MESH_ERROR_GROUP_MASK_PROVISION

#define RM_BLE_MESH_ERROR_GROUP_MASK_PROVISION

Error group mask for Provisioning

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,988 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ RM_BLE_MESH_ERROR_GROUP_MASK_GENERIC_MODEL

#define RM_BLE_MESH_ERROR_GROUP_MASK_GENERIC_MODEL

Error group mask for Generic Models

◆ RM_BLE_MESH_ERROR_GROUP_MASK_CONFIG_MODEL

#define RM_BLE_MESH_ERROR_GROUP_MASK_CONFIG_MODEL

Error group mask for Config Model

◆ RM_BLE_MESH_ERROR_GROUP_MASK_HEALTH_MODEL

#define RM_BLE_MESH_ERROR_GROUP_MASK_HEALTH_MODEL

Error group mask for Health Model

Typedef Documentation

◆ rm_ble_mesh_timer_handle_t

typedef void* rm_ble_mesh_timer_handle_t

Timer handle

◆ rm_ble_mesh_ctrl_t

typedef void rm_ble_mesh_ctrl_t

BLE MESH control block. Allocate an instance specific control block to pass into the BLE MESH API
calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,989 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ rm_ble_mesh_error_code_t

enum rm_ble_mesh_error_code_t

BLE MESH error code.

Enumerator

RM_BLE_MESH_ERROR_CODE_SUCCESS Success

RM_BLE_MESH_ERROR_CODE_INVALID_ADDRESS

Invalid Address

RM_BLE_MESH_ERROR_CODE_INVALID_MODEL Invalid Model

RM_BLE_MESH_ERROR_CODE_INVALID_APPKEY_I
NDEX

Invalid AppKey Index

RM_BLE_MESH_ERROR_CODE_INVALID_NETKEY_I
NDEX

Invalid NetKey Index

RM_BLE_MESH_ERROR_CODE_INSUFFICIENT_RES
OURCES

Insufficient Resources

RM_BLE_MESH_ERROR_CODE_KEY_INDEX_ALREA
DY_STORED

Key Index Already Stored

RM_BLE_MESH_ERROR_CODE_INVALID_PUBLISH_
PARAMETER

Invalid Publish Parameters

RM_BLE_MESH_ERROR_CODE_NOT_A_SUBSCRIB
E_MODEL

Not a Subscribe Model

RM_BLE_MESH_ERROR_CODE_STORAGE_FAILURE

Storage Failure

RM_BLE_MESH_ERROR_CODE_FEATURE_NOT_SU
PPORTED

Feature Not Supported

RM_BLE_MESH_ERROR_CODE_CANNOT_UPDATE Cannot Update

RM_BLE_MESH_ERROR_CODE_CANNOT_REMOVE Cannot Remove

RM_BLE_MESH_ERROR_CODE_CANNOT_BIND Cannot Bind

RM_BLE_MESH_ERROR_CODE_TEMP_UNABLE_TO
_CHANGE_STATE

Temporarily Unable to Change State

RM_BLE_MESH_ERROR_CODE_CANNOT_SET Cannot Set

RM_BLE_MESH_ERROR_CODE_UNSPECIFIED_ERR
OR

Unspecified Error

RM_BLE_MESH_ERROR_CODE_INVALID_BINDING Invalid Binding

RM_BLE_MESH_ERROR_CODE_BEARER_MUTEX_I
NIT_FAILED

Bearer Error Code for MUTEX Initialization
Failure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,990 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

RM_BLE_MESH_ERROR_CODE_BEARER_COND_INI
T_FAILED

Bearer Error Code for Conditional Variable
Initialization Failure

RM_BLE_MESH_ERROR_CODE_BEARER_MUTEX_L
OCK_FAILED

Bearer Error Code for MUTEX Lock Failure

RM_BLE_MESH_ERROR_CODE_BEARER_MUTEX_U
NLOCK_FAILED

Bearer Error Code for MUTEX Unlock Failure

RM_BLE_MESH_ERROR_CODE_BEARER_MEMORY_
ALLOCATION_FAILED

Bearer Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_BEARER_INVALID_
PARAMETER_VALUE

Bearer Error Code for Invalid Parameter Value

RM_BLE_MESH_ERROR_CODE_BEARER_PARAMET
ER_OUTSIDE_RANGE

Bearer Error Code for Parameter Outside
Range

RM_BLE_MESH_ERROR_CODE_BEARER_NULL_PA
RAMETER_NOT_ALLOWED

Bearer Error Code for NULL Parameter Not
Allowed

RM_BLE_MESH_ERROR_CODE_BEARER_INTERFAC
E_NOT_READY

Bearer Error Code for Interface Not Read

RM_BLE_MESH_ERROR_CODE_BEARER_API_NOT_
SUPPORTED

Bearer Error Code for API Not Supported

RM_BLE_MESH_ERROR_CODE_NETWORK_MUTEX
_INIT_FAILED

Network Error Code for MUTEX Initialization
Failure

RM_BLE_MESH_ERROR_CODE_NETWORK_COND_I
NIT_FAILED

Network Error Code for Conditional Variable
Initialization Failure

RM_BLE_MESH_ERROR_CODE_NETWORK_MUTEX
_LOCK_FAILED

Network Error Code for MUTEX Lock Failure

RM_BLE_MESH_ERROR_CODE_NETWORK_MUTEX
_UNLOCK_FAILED

Network Error Code for MUTEX Unlock Failure

RM_BLE_MESH_ERROR_CODE_NETWORK_MEMOR
Y_ALLOCATION_FAILED

Network Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_NETWORK_INVALI
D_PARAMETER_VALUE

Network Error Code for Invalid Parameter
Value

RM_BLE_MESH_ERROR_CODE_NETWORK_PARAM
ETER_OUTSIDE_RANGE

Network Error Code for Parameter Outside
Range

RM_BLE_MESH_ERROR_CODE_NETWORK_NULL_P
ARAMETER_NOT_ALLOWED

Network Error Code for NULL Parameter Not
Allowed

RM_BLE_MESH_ERROR_CODE_NETWORK_TX_QU
EUE_FULL

Network Error Code for Transmit Queue Full

RM_BLE_MESH_ERROR_CODE_NETWORK_TX_QU

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,991 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

EUE_EMPTY Network Error Code for Transmit Queue Empty

RM_BLE_MESH_ERROR_CODE_NETWORK_INVALI
D_RX_PACKET_FORMAT

Network Error Code returned by Network
Callback, indicating if it detected an invalid
packet format or if the packet to be further
processed, by the network layer like to be
relayed or proxied etc.

RM_BLE_MESH_ERROR_CODE_NETWORK_RX_LO
CAL_SRC_ADDR_PACKET

Network Error Code for reception of locally
sourced packet

RM_BLE_MESH_ERROR_CODE_NETWORK_POST_P
ROCESS_RX_PACKET

Network Error Code returned by Network
Callback, indicating if the received packet
needs further processing by the network layer
like to be relayed or proxied etc. after the
control being returned by the callback.

RM_BLE_MESH_ERROR_CODE_NETWORK_RX_ALR
EADY_RELAYED_PACKET

Network Error Code for Already Relayed
Packet

RM_BLE_MESH_ERROR_CODE_NETWORK_RX_LPN
_SRC_ADDR_TO_RELAY_PACKET

Network Error Code returned by Network
Callback, indicating if the received packet is for
a known LPN with an ongoing Friendship which
needs further processing by the network layer
like to be relayed or proxied etc. after the
control being returned by the callback.

RM_BLE_MESH_ERROR_CODE_NETWORK_CRYPT
O_UNLIKELY_ERR

Network Error code to tag all errors returned
by the Crypto Interface to the Network layer.

RM_BLE_MESH_ERROR_CODE_NETWORK_API_NO
T_SUPPORTED

Network Error Code for API Not Supported

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_M
UTEX_INIT_FAILED

Lower Transport Error Code for MUTEX
Initialization Failure

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_C
OND_INIT_FAILED

Lower Transport Error Code for Conditional
Variable Initialization Failure

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_M
UTEX_LOCK_FAILED

Lower Transport Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_M
UTEX_UNLOCK_FAILED

Lower Transport Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_M
EMORY_ALLOCATION_FAILED

Lower Transport Error Code for Memory
Allocation Failure

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_IN
VALID_PARAMETER_VALUE

Lower Transport Error Code for Invalid
Parameter Value

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_PA Lower Transport Error Code for Parameter

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,992 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

RAMETER_OUTSIDE_RANGE Outside Range

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_N
ULL_PARAMETER_NOT_ALLOWED

Lower Transport Error Code for NULL
Parameter Not Allowed

RM_BLE_MESH_ERROR_CODE_LOWER_TRANS_SA
R_CTX_ALLOCATION_FAILED

Lower Transport Error Code for SAR Context
Allocation Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_MU
TEX_INIT_FAILED

Upper Transport Error Code for MUTEX
Initialization Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_CO
ND_INIT_FAILED

Upper Transport Error Code for Conditional
Variable Initialization Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_MU
TEX_LOCK_FAILED

Upper Transport Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_MU
TEX_UNLOCK_FAILED

Upper Transport Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_ME
MORY_ALLOCATION_FAILED

Upper Transport Error Code for Memory
Allocation Failure

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_INV
ALID_PARAMETER_VALUE

Upper Transport Error Code for Invalid
Parameter Value

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_PA
RAMETER_OUTSIDE_RANGE

Upper Transport Error Code for Parameter
Outside Range

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_NU
LL_PARAMETER_NOT_ALLOWED

Upper Transport Error Code for NULL
Parameter Not Allowed

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_QU
EUE_FULL

Upper Transport Error Code for Queue Full

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_QU
EUE_EMPTY

Upper Transport Error Code for Queue Empty

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_INC
OMPLETE_PACKET_RECEIVED

Upper Transport Error Code for Incomplete
Packet Reception

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_INV
ALID_FRNDSHIP_STATE

Upper Transport Error Code for Invalid
Friendship State

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_FR
NDSHIP_CLEARED_ON_TIMEOUT

Upper Transport Error Code for Friendship
Cleared on Timeout

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_CR
YPTO_UNLIKELY_ERR

Upper Transport Error code to tag all errors
returned by the Crypto Interface to the
Transport layer.

RM_BLE_MESH_ERROR_CODE_UPPER_TRANS_API Upper Transport Error Code for API Not

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,993 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

_NOT_SUPPORTED Supported

RM_BLE_MESH_ERROR_CODE_ACCESS_MUTEX_I
NIT_FAILED

Access Error Code for MUTEX Initialization
Failure

RM_BLE_MESH_ERROR_CODE_ACCESS_COND_INI
T_FAILED

Access Error Code for Conditional Variable
Initialization Failure

RM_BLE_MESH_ERROR_CODE_ACCESS_MUTEX_L
OCK_FAILED

Access Error Code for MUTEX Lock Failure

RM_BLE_MESH_ERROR_CODE_ACCESS_MUTEX_U
NLOCK_FAILED

Access Error Code for MUTEX Unlock Failure

RM_BLE_MESH_ERROR_CODE_ACCESS_MEMORY_
ALLOCATION_FAILED

Access Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_ACCESS_INVALID_
PARAMETER_VALUE

Access Error Code for Invalid Parameter Value

RM_BLE_MESH_ERROR_CODE_ACCESS_PARAMET
ER_OUTSIDE_RANGE

Access Error Code for Parameter Outside
Range

RM_BLE_MESH_ERROR_CODE_ACCESS_NULL_PA
RAMETER_NOT_ALLOWED

Access Error Code for NULL Parameter Not
Allowed

RM_BLE_MESH_ERROR_CODE_ACCESS_NO_RESO
URCE

Access Error Code for No Resources

RM_BLE_MESH_ERROR_CODE_ACCESS_NO_MATC
H

Access Error Code for No Match

RM_BLE_MESH_ERROR_CODE_ACCESS_INVALID_
HANDLE

Access Error Code for Invalid Handle

RM_BLE_MESH_ERROR_CODE_ACCESS_MODEL_A
LREADY_REGISTERED

Access Error Code for Model Already
Registered

RM_BLE_MESH_ERROR_CODE_ACCESS_INVALID_
SRC_ADDR

Access Error Code for Invalid Source Address

RM_BLE_MESH_ERROR_CODE_ACCESS_DEV_KEY_
TABLE_FULL

Access Error Code for Device Key Table Full

RM_BLE_MESH_ERROR_CODE_ACCESS_MASTER_
NID_ON_LPN

Access Error Code when detecting Packets with
Master Network Credentials from a known
address with ongoing Friendship

RM_BLE_MESH_ERROR_CODE_ACCESS_INVALID_
PUBLICATION_STATE

Access Error Code for Invalid Publication State

RM_BLE_MESH_ERROR_CODE_ACCESS_INVALID_
PUBLICATION_TTL

Access Error Code for Invalid Publication TTL

RM_BLE_MESH_ERROR_CODE_ACCESS_IV_VAL_N
OT_PERMITTED

Access Error Code for not permitted IV Index
Value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,994 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

RM_BLE_MESH_ERROR_CODE_ACCESS_IV_UPDAT
E_TOO_SOON

Access Error Code for IV Update occurring too
soon within the stipulated/specified Time Limit

RM_BLE_MESH_ERROR_CODE_ACCESS_IV_INCOR
RECT_STATE

Access Error Code for IV Update in Incorrect
State

RM_BLE_MESH_ERROR_CODE_ACCESS_IV_UPDAT
E_DEFERRED_IN_BUSY

Access Error Code for IV Update deferred due
to currently Busy State

RM_BLE_MESH_ERROR_CODE_ACCESS_API_NOT_
SUPPORTED

Access Error Code for API Not Supported

RM_BLE_MESH_ERROR_CODE_PROVISION_MUTE
X_INIT_FAILED

Provisioning Error Code for MUTEX Initialization
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_COND
_INIT_FAILED

Provisioning Error Code for Conditional Variable
Initialization Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_MUTE
X_LOCK_FAILED

Provisioning Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_MUTE
X_UNLOCK_FAILED

Provisioning Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_MEMO
RY_ALLOCATION_FAILED

Provisioning Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_INVALI
D_STATE

Provisioning Error Code for Invalid State

RM_BLE_MESH_ERROR_CODE_PROVISION_INVALI
D_PARAMETER

Bearer Error Code for Invalid Parameter Value

RM_BLE_MESH_ERROR_CODE_PROVISION_CONTE
XT_ALLOC_FAILED

Provisioning Error Code for Context Allocation
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_CONTE
XT_ASSERT_FAILED

Provisioning Error Code for Context Assertion
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_CONTE
XT_LINK_OPEN

Provisioning Error Code for Context Link Open

RM_BLE_MESH_ERROR_CODE_PROVISION_BEARE
R_ASSERT_FAILED

Provisioning Error Code for Bearer Assertion
Failure

RM_BLE_MESH_ERROR_CODE_PROVISION_PROCE
DURE_TIMEOUT

Provisioning Error Code for Procedure Timeout

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
MUTEX_INIT_FAILED

Generic Model Error Code for MUTEX
Initialization Failure

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
COND_INIT_FAILED

Generic Model Error Code for Conditional
Variable Initialization Failure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,995 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
MUTEX_LOCK_FAILED

Generic Model Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
MUTEX_UNLOCK_FAILED

Generic Model Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
MEMORY_ALLOCATION_FAILED

Generic Model Error Code for Memory
Allocation Failure

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_I
NVALID_STATE

Generic Model Error Code for Invalid State

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_I
NVALID_PARAMETER

Generic Model Error Code for Invalid Parameter
Value

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
PARAMETER_OUTSIDE_RANGE

Generic Model Error Code for Parameter
Outside Range

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
NULL_PARAMETER_NOT_ALLOWED

Generic Model Error Code for NULL Parameter
Not Allowed

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_I
NVALID_MODEL_HANDLE

Generic Model Error Code for Invalid Model
Handle

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_I
NVALID_ELEMENT_HANDLE

Generic Model Error Code for Invalid Element
Handle

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
NOT_PRIMARY_ELEMENT

Generic Model Error Code when Operation is
detected on a Node element which is not
Primary Element

RM_BLE_MESH_ERROR_CODE_GENERIC_MODEL_
API_NOT_SUPPORTED

Generic Model Error Code for API Not
Supported

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_M
UTEX_INIT_FAILED

Config Model Error Code for MUTEX
Initialization Failure

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_C
OND_INIT_FAILED

Config Model Error Code for Conditional
Variable Initialization Failure

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_M
UTEX_LOCK_FAILED

Config Model Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_M
UTEX_UNLOCK_FAILED

Config Model Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_M
EMORY_ALLOCATION_FAILED

Config Model Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_I
NVALID_STATE

Config Model Error Code for Invalid State

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,996 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_I
NVALID_PARAMETER

Config Model Error Code for Invalid Parameter
Value

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_P
ARAMETER_OUTSIDE_RANGE

Config Model Error Code for Parameter Outside
Range

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_N
ULL_PARAMETER_NOT_ALLOWED

Config Model Error Code for NULL Parameter
Not Allowed

RM_BLE_MESH_ERROR_CODE_CONFIG_MODEL_A
PI_NOT_SUPPORTED

Config Model Error Code for API Not Supported

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_M
UTEX_INIT_FAILED

Health Model Error Code for MUTEX
Initialization Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_C
OND_INIT_FAILED

Health Model Error Code for Conditional
Variable Initialization Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_M
UTEX_LOCK_FAILED

Health Model Error Code for MUTEX Lock
Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_M
UTEX_UNLOCK_FAILED

Health Model Error Code for MUTEX Unlock
Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_M
EMORY_ALLOCATION_FAILED

Health Model Error Code for Memory Allocation
Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_I
NVALID_STATE

Health Model Error Code for Invalid State

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_I
NVALID_PARAMETER

Health Model Error Code for Invalid Parameter
Value

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_C
ONTEXT_ALLOC_FAILED

Health Model Error Code for Context Allocation
Failure

RM_BLE_MESH_ERROR_CODE_HEALTH_MODEL_C
ONTEXT_ASSERT_FAILED

Health Model Error Code for Context Assertion
Failure

RM_BLE_MESH_ERROR_CODE_FAILURE A failure that does not match any other error
code

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,997 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Interface

◆ rm_ble_mesh_feature_select_t

enum rm_ble_mesh_feature_select_t

Node Feature

Enumerator

RM_BLE_MESH_FEATURE_SELECT_RELAY Relay Feature

RM_BLE_MESH_FEATURE_SELECT_PROXY Proxy Feature

RM_BLE_MESH_FEATURE_SELECT_FRIEND Friend Feature

RM_BLE_MESH_FEATURE_SELECT_LPN Low Power Feature

◆ rm_ble_mesh_feature_state_t

enum rm_ble_mesh_feature_state_t

Enumerator

RM_BLE_MESH_FEATURE_STATE_DISABLE BLE Mesh featre status - Disable

RM_BLE_MESH_FEATURE_STATE_ENABLE BLE Mesh featre status - Enable

 BLE Mesh Lower Trans Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Lower Trans functions.

Summary
The BLE Mesh Lower Trans middleware provides a lower-level transfer interface for BLE Mesh
services.

Data Structures

struct rm_ble_mesh_lower_trans_transmit_setting_t

struct rm_ble_mesh_lower_trans_callback_args_t

struct rm_ble_mesh_lower_trans_cfg_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,998 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

struct rm_ble_mesh_lower_trans_api_t

struct rm_ble_mesh_lower_trans_instance_t

Typedefs

typedef uint8_t rm_ble_mesh_lower_trans_lpn_handle_t

typedef void rm_ble_mesh_lower_trans_ctrl_t

Enumerations

enum rm_ble_mesh_lower_trans_message_type_t

enum rm_ble_mesh_lower_trans_reliable_t

enum rm_ble_mesh_lower_trans_event_t

enum rm_ble_mesh_lower_trans_notification_t

Data Structure Documentation

◆ rm_ble_mesh_lower_trans_transmit_setting_t

struct rm_ble_mesh_lower_trans_transmit_setting_t

transport PDUs setting to peer device.

Data Fields

rm_ble_mesh_network_address_
t

src_addr Source address.

rm_ble_mesh_network_address_
t

dst_addr Destination address.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Handle identifying the subnet.

rm_ble_mesh_lower_trans_mess
age_type_t

msg_type Transport message type.

uint8_t ttl Time to Live.

uint8_t akf Application key flag.

uint8_t aid Application key identifier.

uint8_t seq_num Sequence number.

◆ rm_ble_mesh_lower_trans_callback_args_t

struct rm_ble_mesh_lower_trans_callback_args_t

BLE Mesh lower trans callback parameter definition

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 4,999 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

rm_ble_mesh_lower_trans_even
t_t

event Event code.

rm_ble_mesh_network_header_t
*

p_header Network header.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Subnet handle.

uint8_t trans_mic_size TransMIC size.

rm_ble_mesh_lower_trans_lpn_h
andle_t

lpn_handle LPM Size.

uint8_t packet_type packet type

rm_ble_mesh_buffer_t event_data Event data.

void const * p_context Context provided to user during
callback.

◆ rm_ble_mesh_lower_trans_cfg_t

struct rm_ble_mesh_lower_trans_cfg_t

BLE MESH configuration parameters.

Data Fields

uint32_t channel

 Select a channel corresponding to the channel number of the
hardware. More...

rm_ble_mesh_network_insta
nce_t const *

p_mesh_network_instance

 Instance structure of BLE Mesh network.

void(* p_callback)(rm_ble_mesh_lower_trans_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Placeholder for extension data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,000 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

Field Documentation

◆ channel

uint32_t rm_ble_mesh_lower_trans_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ rm_ble_mesh_lower_trans_api_t

struct rm_ble_mesh_lower_trans_api_t

BLE MESH functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

fsp_err_t(* sendPdu)(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_transmit_setting_t const *const
p_transmit_setting, rm_ble_mesh_buffer_t const *const p_buffer,
rm_ble_mesh_lower_trans_reliable_t reliable)

fsp_err_t(* clearSarContexts)(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

fsp_err_t(* clearSubnetSarContexts)(rm_ble_mesh_lower_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle)

fsp_err_t(* reinitReplayCache)(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

fsp_err_t(* triggerPendingTransmits)(rm_ble_mesh_lower_trans_ctrl_t *const
p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,001 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

◆ open

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::open) (rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_lower_trans_cfg_t const *const p_cfg)

Register Interface with Lower Transport Layer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::close) (rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

Unregister Interface with Lower Transport Layer.

Parameters
[in] p_ctrl Pointer to control structure.

◆ sendPdu

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::sendPdu) (rm_ble_mesh_lower_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_lower_trans_transmit_setting_t const *const p_transmit_setting,
rm_ble_mesh_buffer_t const *const p_buffer, rm_ble_mesh_lower_trans_reliable_t reliable)

API to send transport PDUs.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_transmit_setting Pointer to transmit setting
structure.

[in] p_buffer Pointer to payload and
payload length structure.

[in] reliable If requires lower transport
ACK, set reliable as RM_BLE_
MESH_LOWER_TRANS_RELIA
BLE_ENABLE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,002 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

◆ clearSarContexts

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::clearSarContexts) (rm_ble_mesh_lower_trans_ctrl_t
*const p_ctrl)

To clear all segmentation and reassembly contexts.

Parameters
[in] p_ctrl Pointer to control structure.

◆ clearSubnetSarContexts

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::clearSubnetSarContexts)
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_subnet_handle_t
subnet_handle)

To clear all segmentation and reassembly contexts for a given subnet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Subnet Handle whose
respective SAR Contexts are
to be cleared.

◆ reinitReplayCache

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::reinitReplayCache) (rm_ble_mesh_lower_trans_ctrl_t
*const p_ctrl)

To reinitialize all Lower Transport replay cache entries.

Parameters
[in] p_ctrl Pointer to control structure.

◆ triggerPendingTransmits

fsp_err_t(* rm_ble_mesh_lower_trans_api_t::triggerPendingTransmits)
(rm_ble_mesh_lower_trans_ctrl_t *const p_ctrl)

To trigger any Lower Transport pending transmissions.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_ble_mesh_lower_trans_instance_t

struct rm_ble_mesh_lower_trans_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,003 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

Data Fields

rm_ble_mesh_lower_trans_ctrl_t
*

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_lower_trans_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_lower_trans_api_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_lower_trans_lpn_handle_t

typedef uint8_t rm_ble_mesh_lower_trans_lpn_handle_t

LPN handle

◆ rm_ble_mesh_lower_trans_ctrl_t

typedef void rm_ble_mesh_lower_trans_ctrl_t

BLE MESH control block. Allocate an instance specific control block to pass into the BLE MESH API
calls.

Enumeration Type Documentation

◆ rm_ble_mesh_lower_trans_message_type_t

enum rm_ble_mesh_lower_trans_message_type_t

Transport Message Type

Enumerator

RM_BLE_MESH_LOWER_TRANS_MESSAGE_TYPE_
ACCESS

Access Layer Packet

RM_BLE_MESH_LOWER_TRANS_MESSAGE_TYPE_
CTRL

Transport Layer Control Packet

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,004 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Lower Trans Interface

◆ rm_ble_mesh_lower_trans_reliable_t

enum rm_ble_mesh_lower_trans_reliable_t

If requires lower transport ACK

Enumerator

RM_BLE_MESH_LOWER_TRANS_RELIABLE_DISAB
LE

ACK enable.

RM_BLE_MESH_LOWER_TRANS_RELIABLE_ENABL
E

ACK disable.

◆ rm_ble_mesh_lower_trans_event_t

enum rm_ble_mesh_lower_trans_event_t

Callback event

Enumerator

RM_BLE_MESH_LOWER_TRANS_EVENT_RX_COMP
LETED

BLE Mesh Lower Trans event - RX completed.

RM_BLE_MESH_LOWER_TRANS_EVENT_RX_FROM
_FRIEND

BLE Mesh Lower Trans event - RX from friend.

RM_BLE_MESH_LOWER_TRANS_EVENT_ADD_UPP
ER_TRANS_COMPLETED

BLE Mesh Lower Trans event - Add Upper Trans
completed.

RM_BLE_MESH_LOWER_TRANS_EVENT_SEG_TX_C
ANCELED

BLE Mesh Lower Trans event - TX canceled.

RM_BLE_MESH_LOWER_TRANS_EVENT_SEG_TX_C
OMPLETED

BLE Mesh Lower Trans event - TX completed.

◆ rm_ble_mesh_lower_trans_notification_t

enum rm_ble_mesh_lower_trans_notification_t

Whether to enable the event or not.

Enumerator

RM_BLE_MESH_LOWER_TRANS_NOTIFICATION_DI
SABLE

Callback disable.

RM_BLE_MESH_LOWER_TRANS_NOTIFICATION_E
NABLE

Callback enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,005 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Client Interface

 BLE Mesh Model Client Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Model Client functions.

Summary
The BLE Mesh interface for the BLE Mesh Model Client (BLE MESH MODEL CLIENT) middleware
provides BLE Mesh Model Client functionality.

Data Structures

struct rm_ble_mesh_model_client_callback_args_t

struct rm_ble_mesh_model_client_cfg_t

struct rm_ble_mesh_model_client_api_t

struct rm_ble_mesh_model_client_instance_t

Typedefs

typedef void rm_ble_mesh_model_client_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_model_client_callback_args_t

struct rm_ble_mesh_model_client_callback_args_t

Mesh model client callback parameter definition

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_re
q_msg_context_t *

p_msg_context Context of message received
for a specific model instance.

rm_ble_mesh_access_req_msg_
raw_t *

p_msg_raw Uninterpreted/raw received
message for a specific model
instance.

◆ rm_ble_mesh_model_client_cfg_t

struct rm_ble_mesh_model_client_cfg_t

BLE mesh model health client configuration parameters.

Data Fields

rm_ble_mesh_access_instan
ce_t const *

p_access_instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,006 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Client Interface

 Access Layer instance structure. More...

void(* p_callback)(rm_ble_mesh_model_client_callback_args_t *p_args)

 Mesh model client callback.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_access_instance

rm_ble_mesh_access_instance_t const* rm_ble_mesh_model_client_cfg_t::p_access_instance

Access Layer instance structure.

the parameters for initialization.

◆ rm_ble_mesh_model_client_api_t

struct rm_ble_mesh_model_client_api_t

Shared Interface definition for BLE MESH

Data Fields

fsp_err_t(* open)(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

fsp_err_t(* getModelHandle)(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_access_model_handle_t *const p_model_handle)

fsp_err_t(* sendReliablePdu)(rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
uint32_t req_opcode, void const *const p_parameter, uint32_t
rsp_opcode)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,007 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Client Interface

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_model_client_api_t::open) (rm_ble_mesh_model_client_ctrl_t *const p_ctrl,
rm_ble_mesh_model_client_cfg_t const *const p_cfg)

API to open client model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_model_client_api_t::close) (rm_ble_mesh_model_client_ctrl_t *const p_ctrl)

API to close client model.

Parameters
[in] p_ctrl Pointer to control structure.

◆ getModelHandle

fsp_err_t(* rm_ble_mesh_model_client_api_t::getModelHandle) (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, rm_ble_mesh_access_model_handle_t *const p_model_handle)

API to get Model client model handle.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_model_handle Pointer to model handle to
be filled/returned.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,008 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Client Interface

◆ sendReliablePdu

fsp_err_t(* rm_ble_mesh_model_client_api_t::sendReliablePdu) (rm_ble_mesh_model_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

API to send acknowledged commands.

Parameters
[in] p_ctrl Pointer to control structure.

[in] req_opcode Request Opcode.

[in] p_parameter Pointer to Parameter
associated with Request
Opcode.

[in] rsp_opcode Response Opcode.

◆ rm_ble_mesh_model_client_instance_t

struct rm_ble_mesh_model_client_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_model_client_ctrl_
t *

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_model_client_cfg_
t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_model_client_api_
t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_model_client_ctrl_t

typedef void rm_ble_mesh_model_client_ctrl_t

BLE MESH MODEL CLIENT control block. Allocate an instance specific control block to pass into the
BLE mesh model health client API calls.

 BLE Mesh Model Configuration Client Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,009 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Configuration Client Interface

Interface for BLE Mesh Model Configuration Client functions.

Summary
The BLE Mesh interface for the BLE Mesh Model Configuration Client (BLE MESH MODEL CONFIG
CLIENT) middleware provides BLE Mesh Model Configuration Client functionality.

Data Structures

struct rm_ble_mesh_config_client_callback_args_t

struct rm_ble_mesh_config_client_cfg_t

struct rm_ble_mesh_config_client_api_t

struct rm_ble_mesh_config_client_instance_t

Typedefs

typedef void rm_ble_mesh_config_client_ctrl_t

Data Structure Documentation

◆ rm_ble_mesh_config_client_callback_args_t

struct rm_ble_mesh_config_client_callback_args_t

Mesh model client callback parameter definition

Data Fields

void const * p_context

rm_ble_mesh_access_model_re
q_msg_context_t *

p_msg_context Context of message received
for a specific model instance.

rm_ble_mesh_access_req_msg_
raw_t *

p_msg_raw Uninterpreted/raw received
message for a specific model
instance.

◆ rm_ble_mesh_config_client_cfg_t

struct rm_ble_mesh_config_client_cfg_t

BLE mesh model health client configuration parameters.

Data Fields

rm_ble_mesh_access_instan
ce_t const *

p_access_instance

void(* p_callback)(rm_ble_mesh_config_client_callback_args_t *p_args)

 Callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,010 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Configuration Client Interface

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_access_instance

rm_ble_mesh_access_instance_t const* rm_ble_mesh_config_client_cfg_t::p_access_instance

the parameters for initialization.

◆ rm_ble_mesh_config_client_api_t

struct rm_ble_mesh_config_client_api_t

Shared Interface definition for BLE MESH

Data Fields

fsp_err_t(* open)(rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
rm_ble_mesh_config_client_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

fsp_err_t(* setServer)(rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t server_addr, uint8_t *p_dev_key)

fsp_err_t(* sendReliablePdu)(rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
uint32_t req_opcode, void const *const p_parameter, uint32_t
rsp_opcode)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,011 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Configuration Client Interface

◆ open

fsp_err_t(* rm_ble_mesh_config_client_api_t::open) (rm_ble_mesh_config_client_ctrl_t *const p_ctrl,
rm_ble_mesh_config_client_cfg_t const *const p_cfg)

API to open configuration client model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_config_client_api_t::close) (rm_ble_mesh_config_client_ctrl_t *const p_ctrl)

API to close configuration client model.

Parameters
[in] p_ctrl Pointer to control structure.

◆ setServer

fsp_err_t(* rm_ble_mesh_config_client_api_t::setServer) (rm_ble_mesh_config_client_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t server_addr, uint8_t *p_dev_key)

API to set configuration server.

Parameters
[in] p_ctrl Pointer to control structure.

[in] server_addr Address of Configuration
Server.

[in] p_dev_key Pointer to device Key of
Configuration Server.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,012 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Configuration Client Interface

◆ sendReliablePdu

fsp_err_t(* rm_ble_mesh_config_client_api_t::sendReliablePdu) (rm_ble_mesh_config_client_ctrl_t
*const p_ctrl, uint32_t req_opcode, void const *const p_parameter, uint32_t rsp_opcode)

API to send acknowledged commands.

Parameters
[in] p_ctrl Pointer to control structure.

[in] req_opcode Request Opcode.

[in] p_parameter Pointer to parameter
associated with Request
Opcode.

[in] rsp_opcode Response Opcode.

◆ rm_ble_mesh_config_client_instance_t

struct rm_ble_mesh_config_client_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_config_client_ctrl_
t *

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_config_client_cfg_
t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_config_client_api_
t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_config_client_ctrl_t

typedef void rm_ble_mesh_config_client_ctrl_t

BLE MESH CONFIG CLIENT control block. Allocate an instance specific control block to pass into the
BLE mesh model health client API calls.

 BLE Mesh Model Server Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,013 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

Interface for BLE Mesh Model Server functions.

Summary
The BLE Mesh interface for the BLE Mesh Model Server (BLE MESH MODEL SERVER) middleware
provides BLE Mesh Model Server functionality.

Data Structures

struct rm_ble_mesh_model_server_generic_prop_srv_state_info_t

struct rm_ble_mesh_model_server_generic_prop_srv_id_info_t

struct rm_ble_mesh_model_server_generic_prop_srv_ids_info_t

struct rm_ble_mesh_model_server_callback_args_t

struct rm_ble_mesh_model_server_timeout_callback_args_t

struct rm_ble_mesh_model_server_cfg_t

struct rm_ble_mesh_model_server_api_t

struct rm_ble_mesh_model_server_instance_t

Typedefs

typedef void rm_ble_mesh_model_server_ctrl_t

Enumerations

enum rm_ble_mesh_model_server_generic_server_property_t

enum rm_ble_mesh_model_server_user_access_t

enum rm_ble_mesh_model_server_device_property_t

Data Structure Documentation

◆ rm_ble_mesh_model_server_generic_prop_srv_state_info_t

struct rm_ble_mesh_model_server_generic_prop_srv_state_info_t

Generic Property is a state representing a device property of an element. The properties can be
one of the following

Manufacturer Properties
Admin Properties
User Properties

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,014 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

uint16_t property_id User Property ID field is a
2-octet Assigned Number value
referencing a property

uint8_t property_type Property Type -
Manufacturer/Admin/User

uint8_t access User Access field is an
enumeration indicating whether
the device property can be read
or written as a Generic
Admin/User Property

uint8_t * property_value User Property Value field is a
conditional field

uint16_t property_value_len

◆ rm_ble_mesh_model_server_generic_prop_srv_id_info_t

struct rm_ble_mesh_model_server_generic_prop_srv_id_info_t

Generic Property ID a read-only state representing a device property that an element supports

Data Fields

uint16_t property_id Property ID field is a 2-octet
Assigned Number value that
references a device property

◆ rm_ble_mesh_model_server_generic_prop_srv_ids_info_t

struct rm_ble_mesh_model_server_generic_prop_srv_ids_info_t

Generic Property IDs a state representing a set of device properties that an element supports

Data Fields

uint16_t * property_ids Property IDs field is a set of
2-octet Assigned Number value
that references a set of device
properties

uint16_t property_ids_count Count of property_ids

◆ rm_ble_mesh_model_server_callback_args_t

struct rm_ble_mesh_model_server_callback_args_t

Mesh model server callback parameter definition

Data Fields

void const * p_context

rm_ble_mesh_access_model_re
q_msg_context_t *

p_msg_context Context of the message.

rm_ble_mesh_access_req_msg_
raw_t *

p_msg_raw Uninterpreted/raw received
message for a specific model
instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,015 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

rm_ble_mesh_access_model_re
q_msg_t *

p_req_type Requested message type for a
specific model instance.

rm_ble_mesh_access_model_sta
te_parameter_t *

p_state_parameter Model specific state parameters
in a request or response
message.

rm_ble_mesh_access_extended
_parameter_t *

p_extended_parameter Additional parameters in a
Model specific request or
response message.

◆ rm_ble_mesh_model_server_timeout_callback_args_t

struct rm_ble_mesh_model_server_timeout_callback_args_t

Access Layer Model Publication Timeout Callback.

Access Layer calls the registered callback to indicate Publication Timeout for the associated model.

Parameters
handle Model Handle.

blob Blob if any or NULL.

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_ha
ndle_t *

p_handle Access Model handle.

void * p_blob

◆ rm_ble_mesh_model_server_cfg_t

struct rm_ble_mesh_model_server_cfg_t

BLE mesh model health server configuration parameters.

Data Fields

rm_ble_mesh_access_instan
ce_t const *

p_access_instance

void(* p_callback)(rm_ble_mesh_model_server_callback_args_t *p_args)

 Mesh model server callback.

void(* p_timeout_callback
)(rm_ble_mesh_model_server_timeout_callback_args_t *p_args)

 Access Layer Model publication timeout callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,016 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

void const * p_context

 Placeholder for user data.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_access_instance

rm_ble_mesh_access_instance_t const* rm_ble_mesh_model_server_cfg_t::p_access_instance

the parameters for initialization.

◆ rm_ble_mesh_model_server_api_t

struct rm_ble_mesh_model_server_api_t

Shared Interface definition for BLE MESH

Data Fields

fsp_err_t(* open)(rm_ble_mesh_model_server_ctrl_t *const p_ctrl,
rm_ble_mesh_model_server_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_model_server_ctrl_t *const p_ctrl)

fsp_err_t(* stateUpdate)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_model_server_api_t::open) (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl, rm_ble_mesh_model_server_cfg_t const *const p_cfg)

API to open server model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,017 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

◆ close

fsp_err_t(* rm_ble_mesh_model_server_api_t::close) (rm_ble_mesh_model_server_ctrl_t *const
p_ctrl)

API to close server model.

Parameters
[in] p_ctrl Pointer to control structure.

◆ stateUpdate

fsp_err_t(* rm_ble_mesh_model_server_api_t::stateUpdate) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_state Pointer to model specific
current/target state
parameters.

◆ rm_ble_mesh_model_server_instance_t

struct rm_ble_mesh_model_server_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_model_server_ctrl
_t *

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_model_server_cfg
_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_model_server_api
_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_model_server_ctrl_t

typedef void rm_ble_mesh_model_server_ctrl_t

BLE MESH MODEL SERVER control block. Allocate an instance specific control block to pass into the
BLE mesh model server API calls.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,018 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

Enumeration Type Documentation

◆ rm_ble_mesh_model_server_generic_server_property_t

enum rm_ble_mesh_model_server_generic_server_property_t

Enumerator

RM_BLE_MESH_MODEL_SERVER_GENERIC_SERVE
R_PROPERTY_MANUFACTURER

Generic Manufacturer Properties

RM_BLE_MESH_MODEL_SERVER_GENERIC_SERVE
R_PROPERTY_ADMIN

Generic Admin Properties

RM_BLE_MESH_MODEL_SERVER_GENERIC_SERVE
R_PROPERTY_USER

Generic User Properties

◆ rm_ble_mesh_model_server_user_access_t

enum rm_ble_mesh_model_server_user_access_t

User Access field values

Enumerator

RM_BLE_MESH_MODEL_SERVER_USER_ACCESS_P
ROHIBITED

User Access - Prohibited

RM_BLE_MESH_MODEL_SERVER_USER_ACCESS_
READ

User Access - the device property can be read

RM_BLE_MESH_MODEL_SERVER_USER_ACCESS_
WRITE

User Access - the device property can be
written

RM_BLE_MESH_MODEL_SERVER_USER_ACCESS_
READ_WRITE

User Access - the device property can be read
and written

RM_BLE_MESH_MODEL_SERVER_USER_ACCESS_I
NVALID_PROPERTY_ID

User Access - the invalid device property id

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,019 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

◆ rm_ble_mesh_model_server_device_property_t

enum rm_ble_mesh_model_server_device_property_t

Enumerator

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_OCCUPANCY_DELAY

Device Property - Light Control Time
Occupancy Delay

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_FADE_ON

Device Property - Light Control Time Fade On

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_RUN_ON

Device Property - Light Control Time Run On

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_FADE

Device Property - Light Control Time Fade

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_PROLONG

Device Property - Light Control Time Prolong

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_FADE_STANDBY_AUT
O

Device Property - Light Control Time Fade
Standby Auto

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_TIME_FADE_STANDBY_MAN
UAL

Device Property - Light Control Time Fade
Standby Manual

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_LIGHTNESS_ON

Device Property - Light Control Lightness On

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_LIGHTNESS_PROLONG

Device Property - Light Control Lightness
Prolong

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_LIGHTNESS_STANDBY

Device Property - Light Control Lightness
Standby

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_AMBIENT_LUXLEVEL_ON

Device Property - Light Control Ambient
LuxLevel On

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_AMBIENT_LUXLEVEL_PROLO
NG

Device Property - Light Control Ambient
LuxLevel Prolong

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_AMBIENT_LUXLEVEL_STAND
BY

Device Property - Light Control Ambient
LuxLevel Standby

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_REGULATOR_KIU

Device Property - Light Control Regulator Kiu

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_REGULATOR_KID

Device Property - Light Control Regulator Kid

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_REGULATOR_KPU

Device Property - Light Control Regulator Kpu

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,020 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Model Server Interface

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_REGULATOR_KPD

Device Property - Light Control Regulator Kpd

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_LIGHT_CONTROL_REGULATOR_ACCURACY

Device Property - Light Control Regulator
Accuracy

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_MOTION_SENSED

Device Property - Motion Sensed

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_TIME_SINCE_MOTION_SENSED

Device Property - Time Since Motion Sensed

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_PEOPLE_COUNT

Device Property - People Count

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_PRESENCE_DETECTED

Device Property - Presence Detected

RM_BLE_MESH_MODEL_SERVER_DEVICE_PROPER
TY_PRESENT_AMBIENT_LIGHT_LEVEL

Device Property - Present Ambient Light Level

 BLE Mesh Network Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Network functions.

Summary
The BLE Mesh Network interface for the BLE Mesh Network (BLE MESH NETWORK) peripheral
provides BLE Mesh Network functionality.

Data Structures

struct rm_ble_mesh_network_header_t

struct rm_ble_mesh_network_seq_number_state_t

struct rm_ble_mesh_network_route_info_t

struct rm_ble_mesh_network_proxy_address_list_t

struct rm_ble_mesh_network_callback_args_t

struct rm_ble_mesh_network_cfg_t

struct rm_ble_mesh_network_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,021 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

struct rm_ble_mesh_network_instance_t

Macros

#define RM_BLE_MESH_NETWORK_UNASSIGNED_ADDRESS

#define RM_BLE_MESH_NETWORK_PRIMARY_SUBNET

#define RM_BLE_MESH_NETWORK_INVALID_SUBNET_HANDLE

#define RM_BLE_MESH_NETWORK_INVALID_APPKEY_HANDLE

#define RM_BLE_MESH_NETWORK_INVALID_NID

Typedefs

typedef uint16_t rm_ble_mesh_network_address_t

typedef uint16_t rm_ble_mesh_network_subnet_handle_t

typedef uint16_t rm_ble_mesh_network_appkey_handle_t

typedef uint16_t rm_ble_mesh_network_proxy_address_t

typedef uint8_t rm_ble_mesh_network_interface_handle_t

typedef void rm_ble_mesh_network_ctrl_t

Enumerations

enum rm_ble_mesh_network_old_packet_treatment_t

enum rm_ble_mesh_network_rx_state_event_t

enum rm_ble_mesh_network_tx_state_event_t

enum rm_ble_mesh_network_address_type_t

enum rm_ble_mesh_proxy_filter_type_t

enum rm_ble_mesh_proxy_config_opcode_t

enum rm_ble_mesh_network_gatt_proxy_state_t

enum rm_ble_mesh_network_gatt_proxy_adv_mode_t

enum rm_ble_mesh_network_event_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,022 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_network_header_t

struct rm_ble_mesh_network_header_t

Network Header Type

Data Fields

uint8_t ivi Least significant bit of IV Index -
1 bit

uint8_t nid Value derived from the NetKey
used to identify the Encrytion
Key and Privacy Key used to
secure this PDU - 7 bits

uint8_t new_key Indicates use of a new NetKey
to which the network is being
updated to.

uint8_t ctl Network Control - 1 bit

uint8_t ttl Time To Live - 7 bits

rm_ble_mesh_network_address_
t

src_addr 16 Bit Source Address

rm_ble_mesh_network_address_
t

dst_addr 16 Bit Destination Address

uint32_t seq_num 24 bit sequence number -
currently filled only in reception
path

◆ rm_ble_mesh_network_seq_number_state_t

struct rm_ble_mesh_network_seq_number_state_t

Current Sequence Number and Block State

Data Fields

uint32_t seq_num Current Sequence Number

uint32_t block_seq_num_max Block Sequence number -
maximum available

◆ rm_ble_mesh_network_route_info_t

struct rm_ble_mesh_network_route_info_t

Network configuration information

Data Fields

rm_ble_mesh_network_interface
_handle_t *

interface_handle Pointer to list of address to be
added/deleted

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Count of addresses present in
the provided list

◆ rm_ble_mesh_network_proxy_address_list_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,023 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

struct rm_ble_mesh_network_proxy_address_list_t

Proxy Server's filter List

Data Fields

rm_ble_mesh_network_proxy_a
ddress_t *

address Pointer to list of address to be
added/deleted

uint16_t count Count of addresses present in
the provided list

◆ rm_ble_mesh_network_callback_args_t

struct rm_ble_mesh_network_callback_args_t

BLE Mesh Network callback parameter definition

Data Fields

rm_ble_mesh_network_event_t event Event code.

rm_ble_mesh_network_header_t
*

p_header Network header type.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Subnet handle.

rm_ble_mesh_network_interface
_handle_t *

p_network_interface Network interface handle.

rm_ble_mesh_buffer_t event_data Event data.

void const * p_context Context provided to user during
callback.

◆ rm_ble_mesh_network_cfg_t

struct rm_ble_mesh_network_cfg_t

BLE MESH NETWORK configuration parameters.

Data Fields

uint32_t channel

 Select a channel corresponding to the channel number of the
hardware. More...

rm_ble_mesh_bearer_instan
ce_t const *

p_mesh_bearer_instance

 Instance structure of BLE Mesh Bearer.

rm_ble_mesh_provision_inst
ance_t const *

p_mesh_provision_instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,024 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

 Instance structure of BLE Mesh Provision.

void(* p_callback)(rm_ble_mesh_network_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ channel

uint32_t rm_ble_mesh_network_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ rm_ble_mesh_network_api_t

struct rm_ble_mesh_network_api_t

BLE MESH NETWORK functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_network_ctrl_t *const p_ctrl)

fsp_err_t(* broadcastSecureBeacon)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle)

fsp_err_t(* sendPduOnInterface)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_network_header_t const *const p_header,
rm_ble_mesh_buffer_t const *const p_buffer)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,025 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

fsp_err_t(* getAddressType)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t addr,
rm_ble_mesh_network_address_type_t *const p_type)

fsp_err_t(* fetchProxyState)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_gatt_proxy_state_t *const p_proxy_state)

fsp_err_t(* setProxyFilter)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_filter_type_t type)

fsp_err_t(* configProxyFilter)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_config_opcode_t opcode,
rm_ble_mesh_network_proxy_address_list_t *const p_addr_list)

fsp_err_t(* startProxyServerAdv)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_subnet_handle_t subnet_handle,
rm_ble_mesh_network_gatt_proxy_adv_mode_t proxy_adv_mode)

fsp_err_t(* stopProxyServerAdv)(rm_ble_mesh_network_ctrl_t *const p_ctrl)

fsp_err_t(* allocateSeqNumber)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
uint32_t *const p_seq_num)

fsp_err_t(* getSeqNumberState)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_seq_number_state_t *const p_seq_num_state)

fsp_err_t(* setSeqNumberState)(rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_seq_number_state_t const *const
p_seq_num_state)

fsp_err_t(* resetNetCache)(rm_ble_mesh_network_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,026 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ open

fsp_err_t(* rm_ble_mesh_network_api_t::open) (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_cfg_t const *const p_cfg)

Register Interface with Network Layer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_network_api_t::close) (rm_ble_mesh_network_ctrl_t *const p_ctrl)

Unregister Interface with Network Layer.

Parameters
[in] p_ctrl Pointer to control structure.

◆ broadcastSecureBeacon

fsp_err_t(* rm_ble_mesh_network_api_t::broadcastSecureBeacon) (rm_ble_mesh_network_ctrl_t
*const p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle)

API to send Secure Network Beacon.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Subnet handle of the
network to be broadcasted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,027 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ sendPduOnInterface

fsp_err_t(* rm_ble_mesh_network_api_t::sendPduOnInterface) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_network_header_t const *const p_header, rm_ble_mesh_buffer_t const *const
p_buffer)

Extension API to send network PDUs on selected network interfaces.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_route_info Pointer to network
configuration information.

[in] p_header Pointer to network Header.

[in] p_buffer Pointer to Lower Transport
Payload.

◆ getAddressType

fsp_err_t(* rm_ble_mesh_network_api_t::getAddressType) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr, rm_ble_mesh_network_address_type_t *const p_type)

To get address type.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr Input network address.

[in] p_type One of the following address
type
RM_BLE_MESH_NETWORK_A
DDRESS_TYPE_INVALID
RM_BLE_MESH_NETWORK_A
DDRESS_TYPE_UNICAST
RM_BLE_MESH_NETWORK_A
DDRESS_TYPE_GROUP

◆ fetchProxyState

fsp_err_t(* rm_ble_mesh_network_api_t::fetchProxyState) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_gatt_proxy_state_t *const p_proxy_state)

Check if the proxy module is ready to handle proxy messages/events.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_proxy_state Returns the current state of
the proxy.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,028 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ setProxyFilter

fsp_err_t(* rm_ble_mesh_network_api_t::setProxyFilter) (rm_ble_mesh_network_ctrl_t *const p_ctrl,
rm_ble_mesh_network_route_info_t const *const p_route_info, rm_ble_mesh_proxy_filter_type_t
type)

Set proxy server's filter type.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_route_info Pointer to network
configuration information.

[in] type Type of the proxy filter to be
set. Either
RM_BLE_MESH_NETWORK_P
ROXY_FILTER_TYPE_WHITELI
ST or
RM_BLE_MESH_NETWORK_P
ROXY_FILTER_TYPE_BLACKLI
ST

◆ configProxyFilter

fsp_err_t(* rm_ble_mesh_network_api_t::configProxyFilter) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_route_info_t const *const p_route_info,
rm_ble_mesh_proxy_config_opcode_t opcode, rm_ble_mesh_network_proxy_address_list_t *const
p_addr_list)

Add or Delete/Remove addresses to/from proxy filter list.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_route_info Pointer to network
configuration information.

[in] opcode Operation to be performed.
Either
RM_BLE_MESH_NETWORK_P
ROXY_CONFIG_OPECODE_AD
D_TO_FILTER or
RM_BLE_MESH_NETWORK_P
ROXY_CONFIG_OPECODE_RE
M_FROM_FILTER

[in] p_addr_list Pointer to list of address to
be added/deleted. And count
of addresses present in the
provided List.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,029 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ startProxyServerAdv

fsp_err_t(* rm_ble_mesh_network_api_t::startProxyServerAdv) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
rm_ble_mesh_network_gatt_proxy_adv_mode_t proxy_adv_mode)

Start connectable advertisements for a proxy server.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Subnet handle which the
proxy server is part of
network.

[in] proxy_adv_mode Mode of proxy
advertisements. This could
be of two types
RM_BLE_MESH_NETWORK_G
ATT_PROXY_ADV_MODE_NET
_ID or
RM_BLE_MESH_NETWORK_G
ATT_PROXY_ADV_MODE_NO
DE_ID

◆ stopProxyServerAdv

fsp_err_t(* rm_ble_mesh_network_api_t::stopProxyServerAdv) (rm_ble_mesh_network_ctrl_t *const
p_ctrl)

Stop connectable advertisements for a proxy server.

Parameters
[in] p_ctrl Pointer to control structure.

◆ allocateSeqNumber

fsp_err_t(* rm_ble_mesh_network_api_t::allocateSeqNumber) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, uint32_t *const p_seq_num)

To allocate sequence number.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_seq_num Location where sequence
number to be filled.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,030 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ getSeqNumberState

fsp_err_t(* rm_ble_mesh_network_api_t::getSeqNumberState) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_seq_number_state_t *const p_seq_num_state)

To get current sequence number state.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_seq_num_state Location where sequence
number state to be filled.

◆ setSeqNumberState

fsp_err_t(* rm_ble_mesh_network_api_t::setSeqNumberState) (rm_ble_mesh_network_ctrl_t *const
p_ctrl, rm_ble_mesh_network_seq_number_state_t const *const p_seq_num_state)

To set current sequence number state.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_seq_num_state Location from where
sequence number state to
be taken.

◆ resetNetCache

fsp_err_t(* rm_ble_mesh_network_api_t::resetNetCache) (rm_ble_mesh_network_ctrl_t *const p_ctrl)

To reinitialize all Network Layer cache entries.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_ble_mesh_network_instance_t

struct rm_ble_mesh_network_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_network_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_network_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_network_api_t
const *

p_api Pointer to the API structure for
this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,031 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

Macro Definition Documentation

◆ RM_BLE_MESH_NETWORK_UNASSIGNED_ADDRESS

#define RM_BLE_MESH_NETWORK_UNASSIGNED_ADDRESS

Unassigned Address.

◆ RM_BLE_MESH_NETWORK_PRIMARY_SUBNET

#define RM_BLE_MESH_NETWORK_PRIMARY_SUBNET

Primary Subnet - NetKey Index is 0x000

◆ RM_BLE_MESH_NETWORK_INVALID_SUBNET_HANDLE

#define RM_BLE_MESH_NETWORK_INVALID_SUBNET_HANDLE

Invalid Subnet Handle

◆ RM_BLE_MESH_NETWORK_INVALID_APPKEY_HANDLE

#define RM_BLE_MESH_NETWORK_INVALID_APPKEY_HANDLE

Invalid AppKey Handle

◆ RM_BLE_MESH_NETWORK_INVALID_NID

#define RM_BLE_MESH_NETWORK_INVALID_NID

Invalid NID Identifier. The NID is a 7-bit value that identifies the security material that is used to
secure Network PDUs. Treating 0xFF as Invalid NID value.

Typedef Documentation

◆ rm_ble_mesh_network_address_t

typedef uint16_t rm_ble_mesh_network_address_t

Network Address Type

◆ rm_ble_mesh_network_subnet_handle_t

typedef uint16_t rm_ble_mesh_network_subnet_handle_t

Subnet Handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,032 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_network_appkey_handle_t

typedef uint16_t rm_ble_mesh_network_appkey_handle_t

AppKey Handle

◆ rm_ble_mesh_network_proxy_address_t

typedef uint16_t rm_ble_mesh_network_proxy_address_t

Proxy Address

◆ rm_ble_mesh_network_interface_handle_t

typedef uint8_t rm_ble_mesh_network_interface_handle_t

Network Interface Handle

◆ rm_ble_mesh_network_ctrl_t

typedef void rm_ble_mesh_network_ctrl_t

BLE MESH NETWORK control block. Allocate an instance specific control block to pass into the BLE
MESH API calls.

Enumeration Type Documentation

◆ rm_ble_mesh_network_old_packet_treatment_t

enum rm_ble_mesh_network_old_packet_treatment_t

Ignore network cache wrapping.

Enumerator

RM_BLE_MESH_NETWORK_OLD_PACKET_TREATM
ENT_DROPPED

Old packets will be dropped.

RM_BLE_MESH_NETWORK_OLD_PACKET_TREATM
ENT_PROCESSED

Ignores cache wrapping. Old packets will be
processed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,033 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_network_rx_state_event_t

enum rm_ble_mesh_network_rx_state_event_t

Whether to enable the RX callback event or not.

Enumerator

RM_BLE_MESH_NETWORK_RX_STATE_EVENT_DIS
ABLE

RX state callback disable.

RM_BLE_MESH_NETWORK_RX_STATE_EVENT_EN
ABLE

RX state callback enable.

◆ rm_ble_mesh_network_tx_state_event_t

enum rm_ble_mesh_network_tx_state_event_t

Whether to enable the TX callback event or not.

Enumerator

RM_BLE_MESH_NETWORK_TX_STATE_EVENT_DIS
ABLE

TX state callback disable.

RM_BLE_MESH_NETWORK_TX_STATE_EVENT_EN
ABLE

TX state callback enable.

◆ rm_ble_mesh_network_address_type_t

enum rm_ble_mesh_network_address_type_t

Address Type

Enumerator

RM_BLE_MESH_NETWORK_ADDRESS_TYPE_INVAL
ID

Invalid address type

RM_BLE_MESH_NETWORK_ADDRESS_TYPE_UNIC
AST

Unicast address type

RM_BLE_MESH_NETWORK_ADDRESS_TYPE_VIRT
UAL

Virtual address type

RM_BLE_MESH_NETWORK_ADDRESS_TYPE_GROU
P

Group address type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,034 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_proxy_filter_type_t

enum rm_ble_mesh_proxy_filter_type_t

Data structures for filter type and address list

Enumerator

RM_BLE_MESH_NETWORK_PROXY_FILTER_TYPE_
WHITELIST

GATT Proxy Filter Types - Whitelist

RM_BLE_MESH_NETWORK_PROXY_FILTER_TYPE_
BLACKLIST

GATT Proxy Filter Type - Blacklist

◆ rm_ble_mesh_proxy_config_opcode_t

enum rm_ble_mesh_proxy_config_opcode_t

GATT Proxy Configuration Opcodes

Enumerator

RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPEC
ODE_SET_FILTER

GATT Proxy Configuration - Set Filter Opcode

RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPEC
ODE_ADD_TO_FILTER

GATT Proxy Configuration - Add to Filter
Opcode

RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPEC
ODE_REM_FROM_FILTER

GATT Proxy Configuration - Remove From Filter
Opcode

RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPEC
ODE_FILTER_STATUS

GATT Proxy Configuration - Filter Status
Opcode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,035 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_network_gatt_proxy_state_t

enum rm_ble_mesh_network_gatt_proxy_state_t

GATT Proxy States.

Proxy Callback Proxy Iface Error Code

NULL Down MS_PROXY_NULL

NULL Up MS_PROXY_NULL

!NULL Down MS_PROXY_READY

!NULL UP MS_PROXY_CONNECTED

Enumerator

RM_BLE_MESH_NETWORK_GATT_PROXY_STATE_
NULL

GATT Proxy State - Invalid/Not Initialized

RM_BLE_MESH_NEgTWORK_GATT_PROXY_STATE
_READY

GATT Proxy State - Ready/Initialized

RM_BLE_MESH_NETWORK_GATT_PROXY_STATE_
CONNECTED

GATT Proxy State - Connected

◆ rm_ble_mesh_network_gatt_proxy_adv_mode_t

enum rm_ble_mesh_network_gatt_proxy_adv_mode_t

GATT Proxy ADV Modes

Enumerator

RM_BLE_MESH_NETWORK_GATT_PROXY_ADV_M
ODE_NET_ID

Network ID Type

RM_BLE_MESH_NETWORK_GATT_PROXY_ADV_M
ODE_NODE_ID

Node Identity Type

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,036 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Network Interface

◆ rm_ble_mesh_network_event_t

enum rm_ble_mesh_network_event_t

GATT Proxy Events

Enumerator

RM_BLE_MESH_NETWORK_EVENT_PROXY_UP GATT Proxy Event - Interface Up

RM_BLE_MESH_NETWORK_EVENT_PROXY_DOWN

GATT Proxy Event - Interface Down

RM_BLE_MESH_NETWORK_EVENT_PROXY_STATU
S

GATT Proxy Event - Status

RM_BLE_MESH_NETWORK_EVENT_RECIEVE GATT Proxy Event - Receive

RM_BLE_MESH_NETWORK_EVENT_TX_QUEUE_EM
PTY

GATT Proxy Event - TX queue empty

 BLE Mesh Provision Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Provision functions.

Summary
The BLE Mesh Provision interface for the BLE Mesh Provision (BLE MESH PROVISION) peripheral
provides BLE Mesh Provision functionality.

Data Structures

struct rm_ble_mesh_provision_device_t

struct rm_ble_mesh_provision_oob_info_t

struct rm_ble_mesh_provision_capabilities_t

struct rm_ble_mesh_provision_method_t

struct rm_ble_mesh_provision_data_t

struct rm_ble_mesh_provision_device_info_t

struct rm_ble_mesh_provision_callback_args_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,037 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

struct rm_ble_mesh_provision_cfg_t

struct rm_ble_mesh_provision_api_t

struct rm_ble_mesh_provision_instance_t

Macros

#define RM_BLE_MESH_PROVISION_KEY_NETKEY_SIZE

#define RM_BLE_MESH_PROVISION_ECDH_KEY_SIZE

#define RM_BLE_MESH_PROVISION_OOB_VALUE_SIZE

#define RM_BLE_MESH_PROVISION_URI_HASH_SIZE

#define RM_BLE_MESH_PROVISION_HANDLE_INVALID

Typedefs

typedef uint8_t rm_ble_mesh_provision_handle_t

typedef void rm_ble_mesh_provision_ctrl_t

Enumerations

enum rm_ble_mesh_provision_role_t

enum rm_ble_mesh_provision_bearer_type_t

enum rm_ble_mesh_provision_pdu_type_t

enum rm_ble_mesh_provision_pub_key_value_t

enum rm_ble_mesh_provision_auth_method_t

enum rm_ble_mesh_provision_output_oob_action_t

enum rm_ble_mesh_provision_input_oob_action_t

enum rm_ble_mesh_provision_adv_transport_opcode_t

enum rm_ble_mesh_provision_gatt_transport_opcode_t

enum rm_ble_mesh_provision_error_code_t

enum rm_ble_mesh_provision_link_close_reason_t

enum rm_ble_mesh_provision_oob_type_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,038 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

enum rm_ble_mesh_provision_event_type_t

Data Structure Documentation

◆ rm_ble_mesh_provision_device_t

struct rm_ble_mesh_provision_device_t

Device Information used for Provisioning

Data Fields

uint8_t uuid[
RM_BLE_MESH_DEVICE_UUID_SI
ZE]

Device UUID - Used in
unprovisioned device beacon
and Provisioning Invite

uint16_t oob OOB Information

rm_ble_mesh_buffer_t * uri URI if any, to be given in
encoded form

◆ rm_ble_mesh_provision_oob_info_t

struct rm_ble_mesh_provision_oob_info_t

OOB type for provisioning

Data Fields

uint16_t action OOB Action information

uint8_t size OOB Size information

◆ rm_ble_mesh_provision_capabilities_t

struct rm_ble_mesh_provision_capabilities_t

Device capabilities used for Provisioning

Data Fields

uint8_t num_elements Number of Elements

uint16_t supported_algorithms Supported algorithms

uint8_t supported_pubkey Public key type

uint8_t supported_soob Static OOB type

rm_ble_mesh_provision_oob_inf
o_t

output_oob Output OOB information

rm_ble_mesh_provision_oob_inf
o_t

input_oob Input OOB information

◆ rm_ble_mesh_provision_method_t

struct rm_ble_mesh_provision_method_t

Provisioning method information

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,039 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

Data Fields

uint8_t algorithm Algorithm selected

uint8_t pubkey Public key usage

uint8_t auth Authentication type

rm_ble_mesh_provision_oob_inf
o_t

oob OOB type

◆ rm_ble_mesh_provision_data_t

struct rm_ble_mesh_provision_data_t

Data exchanged during Provisioning procedure

Data Fields

uint8_t netkey[
RM_BLE_MESH_PROVISION_KEY
_NETKEY_SIZE]

NetKey

uint16_t keyid Index of the NetKey

uint8_t flags Flags bit-mask bit 0: Key
Refresh Flag. 0: Not-In-Phase2
1: In-Phase2 bit 1: IV Update
Flag 0: Normal operation 1: IV
Update active

bits 2-7: RFU

uint32_t iv_index Current value of the IV index

uint16_t unicast_addr Unicast address of the primary
element

◆ rm_ble_mesh_provision_device_info_t

struct rm_ble_mesh_provision_device_info_t

Provisioning device information

Data Fields

rm_ble_mesh_provision_bearer_
type_t

type Provisioning Bearer Types.

rm_ble_mesh_provision_device_
t *

p_device Device Information used for
Provisioning.

◆ rm_ble_mesh_provision_callback_args_t

struct rm_ble_mesh_provision_callback_args_t

Mesh model client callback parameter definition

Data Fields

rm_ble_mesh_provision_handle_
t *

p_handle Handle to reference the active
provisioning context.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,040 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

rm_ble_mesh_provision_event_t
ype_t

event_type Provisioning event type.

rm_ble_mesh_error_code_t event_result BLE MESH error code.

rm_ble_mesh_buffer_t event_data Payload type.

void const * p_context

◆ rm_ble_mesh_provision_cfg_t

struct rm_ble_mesh_provision_cfg_t

BLE MESH PROVISION configuration parameters.

Data Fields

uint32_t channel

 Select a channel corresponding to the channel number of the
hardware. More...

rm_ble_mesh_provision_cap
abilities_t *

p_capabilities

 Device capabilities used for Provisioning.

rm_ble_mesh_instance_t
const *

p_mesh_instance

 Instance structure of BLE Mesh.

void(* p_callback)(rm_ble_mesh_provision_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,041 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

Field Documentation

◆ channel

uint32_t rm_ble_mesh_provision_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ rm_ble_mesh_provision_api_t

struct rm_ble_mesh_provision_api_t

BLE MESH PROVISION functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_provision_ctrl_t *const p_ctrl)

fsp_err_t(* setup)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_role_t role,
rm_ble_mesh_provision_device_info_t info, uint16_t timeout)

fsp_err_t(* bind)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_device_info_t info, uint8_t attention,
rm_ble_mesh_provision_handle_t *const p_handle)

fsp_err_t(* sendPdu)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle,
rm_ble_mesh_provision_pdu_type_t type, rm_ble_mesh_buffer_t
pdu_data)

fsp_err_t(* setAuthVal)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle,
rm_ble_mesh_buffer_t auth_value)

fsp_err_t(* abort)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle,
rm_ble_mesh_provision_link_close_reason_t reason)

fsp_err_t(* getLocalPublicKey)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t *const public_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,042 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

fsp_err_t(* setLocalPublicKey)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t const *const public_key)

fsp_err_t(* generateRandomizedNumber)(rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t *const p_key)

fsp_err_t(* setOobPublicKey)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t const *const p_key, uint8_t size)

fsp_err_t(* setOobAuthInfo)(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t
const *const p_auth_info, uint8_t size)

fsp_err_t(* generateEcdhKey)(rm_ble_mesh_provision_ctrl_t *const p_ctrl,
uint8_t *const p_public_key)

Field Documentation

◆ open

fsp_err_t(* rm_ble_mesh_provision_api_t::open) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_cfg_t const *const p_cfg)

Open access middleware.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_provision_api_t::close) (rm_ble_mesh_provision_ctrl_t *const p_ctrl)

Close access middleware.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,043 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ setup

fsp_err_t(* rm_ble_mesh_provision_api_t::setup) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_role_t role, rm_ble_mesh_provision_device_info_t info, uint16_t timeout)

Setup the device for provisioning.

Parameters
[in] p_ctrl Pointer to control structure.

[in] role Provisioning role to be setup
- Device or Provisioner.

[in] info Device information.

[in] timeout The time period for which
the setup shall be active.

◆ bind

fsp_err_t(* rm_ble_mesh_provision_api_t::bind) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_device_info_t info, uint8_t attention, rm_ble_mesh_provision_handle_t
*const p_handle)

Bind to the peer device for provisioning

Parameters
[in] p_ctrl Pointer to control structure.

[in] info Device information.

[in] attention Attention duration.

[out] p_handle Pointer to handle.

Note
This API is for use by the Provisioner application only upon reception of an Unprovisioned Device Beacon.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,044 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ sendPdu

fsp_err_t(* rm_ble_mesh_provision_api_t::sendPdu) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle, rm_ble_mesh_provision_pdu_type_t type,
rm_ble_mesh_buffer_t pdu_data)

Send provisioning PDUs to the peer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_handle Pointer to provisioning
context to be used.

[in] type Following PDU types are
handled -
RM_BLE_MESH_PROVISION_P
DU_TYPE_START
RM_BLE_MESH_PROVISION_P
DU_TYPE_INPUT_COMPLETE
RM_BLE_MESH_PROVISION_P
DU_TYPE_DATA

[in] pdu_data Pointer to the data
corresponding to the above
PDUs.

◆ setAuthVal

fsp_err_t(* rm_ble_mesh_provision_api_t::setAuthVal) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle, rm_ble_mesh_buffer_t auth_value)

Set the display Auth-Value.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_handle Pointer to provisioning
context to be used.

[in] auth_value Pointer to the Authval
(UINT32 *) or (uint8_t *).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,045 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ abort

fsp_err_t(* rm_ble_mesh_provision_api_t::abort) (rm_ble_mesh_provision_ctrl_t *const p_ctrl,
rm_ble_mesh_provision_handle_t const *const p_handle,
rm_ble_mesh_provision_link_close_reason_t reason)

Abort the provisioning procedure

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_handle Pointer to provisioning
context to be used.

[in] reason Reason for termination.

◆ getLocalPublicKey

fsp_err_t(* rm_ble_mesh_provision_api_t::getLocalPublicKey) (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t *const public_key)

Utility API to get current ECDH Public Key to be used for Provisioning

Parameters
[in] p_ctrl Pointer to control structure.

[out] public_key To a pointer of uint8_t array
of length
RM_BLE_MESH_PROVISION_K
EY_NETKEY_SIZE.

◆ setLocalPublicKey

fsp_err_t(* rm_ble_mesh_provision_api_t::setLocalPublicKey) (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t const *const public_key)

Utility API to set current ECDH Public Key to be used for Provisioning

Parameters
[in] p_ctrl Pointer to control structure.

[out] public_key To a pointer of uint8_t array
of length
RM_BLE_MESH_PROVISION_K
EY_NETKEY_SIZE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,046 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ generateRandomizedNumber

fsp_err_t(* rm_ble_mesh_provision_api_t::generateRandomizedNumber)
(rm_ble_mesh_provision_ctrl_t *const p_ctrl, uint8_t *const p_key)

Utility API to generate 128bits (16 bytes) randomized number to be used for provisioning.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_key Pointer to buffer to store
random number.

◆ setOobPublicKey

fsp_err_t(* rm_ble_mesh_provision_api_t::setOobPublicKey) (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t const *const p_key, uint8_t size)

Utility API to set device out of band public key for provisioning.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_key Pointer to public key.

[in] size Size of public key.

◆ setOobAuthInfo

fsp_err_t(* rm_ble_mesh_provision_api_t::setOobAuthInfo) (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t const *const p_auth_info, uint8_t size)

Utility API to set device out of band authentication information for provisioning.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_auth_info Pointer to authentication
information.

[in] size Size of authentication
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,047 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ generateEcdhKey

fsp_err_t(* rm_ble_mesh_provision_api_t::generateEcdhKey) (rm_ble_mesh_provision_ctrl_t *const
p_ctrl, uint8_t *const p_public_key)

Utility API to generate ECDH Public Key to be used for Provisioning

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_public_key Pointer to public key. Size of
public key is
RM_BLE_MESH_PROVISION_E
CDH_KEY_SIZE.

◆ rm_ble_mesh_provision_instance_t

struct rm_ble_mesh_provision_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_provision_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_provision_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_provision_api_t
const *

p_api Pointer to the API structure for
this instance.

Macro Definition Documentation

◆ RM_BLE_MESH_PROVISION_KEY_NETKEY_SIZE

#define RM_BLE_MESH_PROVISION_KEY_NETKEY_SIZE

Provisioning array size requirements Provisioning key NetKey size

◆ RM_BLE_MESH_PROVISION_ECDH_KEY_SIZE

#define RM_BLE_MESH_PROVISION_ECDH_KEY_SIZE

Provisioning ECDH Key size

◆ RM_BLE_MESH_PROVISION_OOB_VALUE_SIZE

#define RM_BLE_MESH_PROVISION_OOB_VALUE_SIZE

Provisioning OOB value size

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,048 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ RM_BLE_MESH_PROVISION_URI_HASH_SIZE

#define RM_BLE_MESH_PROVISION_URI_HASH_SIZE

Provisioning URI hash size

◆ RM_BLE_MESH_PROVISION_HANDLE_INVALID

#define RM_BLE_MESH_PROVISION_HANDLE_INVALID

Invalid Provisioning Handle

Typedef Documentation

◆ rm_ble_mesh_provision_handle_t

typedef uint8_t rm_ble_mesh_provision_handle_t

Handle to reference the active provisioning context

◆ rm_ble_mesh_provision_ctrl_t

typedef void rm_ble_mesh_provision_ctrl_t

BLE MESH PROVISION control block. Allocate an instance specific control block to pass into the BLE
MESH API calls.

Enumeration Type Documentation

◆ rm_ble_mesh_provision_role_t

enum rm_ble_mesh_provision_role_t

Provisioning Roles

Enumerator

RM_BLE_MESH_PROVISION_ROLE_DEVICE Device role.

RM_BLE_MESH_PROVISION_ROLE_PROVISIONER Provisioner role.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,049 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ rm_ble_mesh_provision_bearer_type_t

enum rm_ble_mesh_provision_bearer_type_t

Provisioning Bearer Types

Enumerator

RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV Advertising bearer type.

RM_BLE_MESH_PROVISION_BEARER_TYPE_GATT GATT bearer type.

◆ rm_ble_mesh_provision_pdu_type_t

enum rm_ble_mesh_provision_pdu_type_t

Provisioning PDU Types

Enumerator

RM_BLE_MESH_PROVISION_PDU_TYPE_INVITE Invite PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_CAPAB Capable PDu type.

RM_BLE_MESH_PROVISION_PDU_TYPE_START Start PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_PUBKEY Public key PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_INPUT_CO
MPLETE

Input complete PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_CONF Configuration PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_RAND Random PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_DATA Data PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_COMPLET
E

Complete PDU type.

RM_BLE_MESH_PROVISION_PDU_TYPE_FAILED Failed PDU type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,050 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ rm_ble_mesh_provision_pub_key_value_t

enum rm_ble_mesh_provision_pub_key_value_t

Provisioning public key values

Enumerator

RM_BLE_MESH_PROVISION_PUBKEY_NO_OOB Public key no OOB.

RM_BLE_MESH_PROVISION_PUBKEY_OOB Public key OOB.

◆ rm_ble_mesh_provision_auth_method_t

enum rm_ble_mesh_provision_auth_method_t

Provisioning authentication method values

Enumerator

RM_BLE_MESH_PROVISION_AUTH_METHOD_OOB
_NONE

Authentication method none.

RM_BLE_MESH_PROVISION_AUTH_METHOD_OOB
_STATIC

Authentication method static.

RM_BLE_MESH_PROVISION_AUTH_METHOD_OOB
_OUTPUT

Authentication method output.

RM_BLE_MESH_PROVISION_AUTH_METHOD_OOB
_INPUT

Authentication method input.

◆ rm_ble_mesh_provision_output_oob_action_t

enum rm_ble_mesh_provision_output_oob_action_t

Provisioning Output OOB action values

Enumerator

RM_BLE_MESH_PROVISION_OUTPUT_OOB_ACTIO
N_BLINK

Output OOB action blink.

RM_BLE_MESH_PROVISION_OUTPUT_OOB_ACTIO
N_BEEP

Output OOB action beep.

RM_BLE_MESH_PROVISION_OUTPUT_OOB_ACTIO
N_VIBRATE

Output OOB action vibrate.

RM_BLE_MESH_PROVISION_OUTPUT_OOB_ACTIO
N_NUMERIC

Output OOB action numeric.

RM_BLE_MESH_PROVISION_OUTPUT_OOB_ACTIO
N_ALPHANUMERIC

Output OOB action alphanumeric.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,051 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ rm_ble_mesh_provision_input_oob_action_t

enum rm_ble_mesh_provision_input_oob_action_t

Provisioning Input OOB action values

Enumerator

RM_BLE_MESH_PROVISION_INPUT_OOB_ACTION_
PUSH

Input OOB action push.

RM_BLE_MESH_PROVISION_INPUT_OOB_ACTION_
TWIST

Input OOB action twist.

RM_BLE_MESH_PROVISION_INPUT_OOB_ACTION_
NUMERIC

Input OOB action numeric.

RM_BLE_MESH_PROVISION_INPUT_OOB_ACTION_
ALPHANUMERIC

Input OOB action alphanumeric.

◆ rm_ble_mesh_provision_adv_transport_opcode_t

enum rm_ble_mesh_provision_adv_transport_opcode_t

Specification defined transport Opcodes for PB-ADV bearer

Enumerator

RM_BLE_MESH_PROVISION_ADV_TRANSPORT_OP
ECODE_OPEN_REQ

Link Open Request

RM_BLE_MESH_PROVISION_ADV_TRANSPORT_OP
ECODE_OPEN_CNF

Link Open Confirm

RM_BLE_MESH_PROVISION_ADV_TRANSPORT_OP
ECODE_CLOSE_IND

Link Close Indication

◆ rm_ble_mesh_provision_gatt_transport_opcode_t

enum rm_ble_mesh_provision_gatt_transport_opcode_t

Implementation specific transport Opcodes for PB-GATT bearer

Enumerator

RM_BLE_MESH_PROVISION_GATT_TRANSPORT_O
PECODE_OPEN_IND

Link Open Indication

RM_BLE_MESH_PROVISION_GATT_TRANSPORT_O
PECODE_CLOSE_IND

Link Close Indication

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,052 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ rm_ble_mesh_provision_error_code_t

enum rm_ble_mesh_provision_error_code_t

Provisioning Failure Error Codes

Enumerator

RM_BLE_MESH_PROVISION_ERROR_CODE_PROHI
BITED

Failure error code prohibited.

RM_BLE_MESH_PROVISION_ERROR_CODE_INVALI
D_PDU

Failure error code invalid PDU.

RM_BLE_MESH_PROVISION_ERROR_CODE_INVALI
D_FORMAT

Failure error code invalid format.

RM_BLE_MESH_PROVISION_ERROR_CODE_UNEXP
ECTED_PDU

Failure error code unexpected PDU.

RM_BLE_MESH_PROVISION_ERROR_CODE_CONFI
RMATION_FAILED

Failure error code confirmation failed.

RM_BLE_MESH_PROVISION_ERROR_CODE_OUT_O
F_RESOURCES

Failure error code out of resources.

RM_BLE_MESH_PROVISION_ERROR_CODE_DECRY
PTION_FAILED

Failure error code decryption failed.

RM_BLE_MESH_PROVISION_ERROR_CODE_UNEXP
ECTED_ERROR

Failure error code unexpected error.

RM_BLE_MESH_PROVISION_ERROR_CODE_CANN
OT_ASSIGN_ADDRESS

Failure error code cannot assign address.

◆ rm_ble_mesh_provision_link_close_reason_t

enum rm_ble_mesh_provision_link_close_reason_t

Provisioning LinkClose Error codes

Enumerator

RM_BLE_MESH_PROVISION_LINK_CLOSE_REASON
_SUCCESS

Link close error code reason success.

RM_BLE_MESH_PROVISION_LINK_CLOSE_REASON
_TIMEOUT

Link close error code reason timeout.

RM_BLE_MESH_PROVISION_LINK_CLOSE_REASON
_FAIL

Link close error code reason fail.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,053 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

◆ rm_ble_mesh_provision_oob_type_t

enum rm_ble_mesh_provision_oob_type_t

Provisioning OOB type masks for ADV data

Enumerator

RM_BLE_MESH_PROVISION_OOB_TYPE_OTHER Other OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_URI URI OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_2DMRC 2DMRC OOB type mask

RM_BLE_MESH_PROVISION_OOB_TYPE_BARCODE

Bar code OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_NFC NFC OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_NUMBER Number OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_STRING String OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_ONBOX On box OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_INSIDEBO
X

Inside box OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_ONPIECE
OFPAPER

On piece of paper OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_INSIDEMA
NUAL

Inside manual OOB type mask.

RM_BLE_MESH_PROVISION_OOB_TYPE_ONDEVIC
E

On device OOB type mask.

◆ rm_ble_mesh_provision_event_type_t

enum rm_ble_mesh_provision_event_type_t

Provision Events The Asynchronous Events notified to Application by the Module.

Enumerator

RM_BLE_MESH_PROVISION_EVENT_TYPE_UNPRO
VISIONED_BEACON

This event indicates the availability of an
unprovisioned device beacon, with the
following values as parameters in the
rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,054 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_UNPR
OVISIONED_
BEACON.

[in] event_resul
t

[in] event_data Pointer to
the array
with the
UUID of the
device.

[in] event_datal
en

RM_BLE_ME
SH_DEVICE_
UUID_SIZE

Note
This event is received by the Provisioner
application. On reception of this event, the
application shall make use of the
RM_BLE_MESH_PROVISION_Bind() to initiate
the provisioning procedure.

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISI
ONING_SETUP

This event indicates that the provisioning
procedure capability exchange is complete,
with the following values as parameters in the
rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_PROVI
SIONING_SE
TUP.

[in] event_resul
t

FSP_SUCCE
SS on
successful

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,055 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

procedure
completion,
else an
Error Code.

[in] event_data When local
provisioner,
this
contains
peer device
capabilities
and when
local
device, this
contains
the
attention
timeout
value.

[in] event_datal
en

When local
provisioner,
sizeo
f(
rm_ble_mes
h_provision
_capabilitie
s_t) and
when local
device, size
of(uint32_t).

Note
When local provisioner, the appliation shall select
the required capability from the received
capabilities and choose to start the procedure by
calling RM_BLE_MESH_PROVISION_SendPdu()
put RM_BLE_MESH_PROVISION_EVENT_TYPE
_PROVISIONING_SETUP as the third argument.

RM_BLE_MESH_PROVISION_EVENT_TYPE_OOB_DI
SPLAY

This event indicates to the application the OOB
random data that is to be displayed on the UI
via the rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,056 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

ON_EVENT_
TYPE_OOB_
DISPLAY.

[in] event_resul
t

FSP_SUCCE
SS on
successful
procedure
completion,
else an
Error Code.

[in] event_data Pointer to
OOB
information
as in
rm_ble_mes
h_provision
_oob_info_t.

[in] event_datal
en

sizeof
(
rm_ble_mes
h_provision
_oob_info_t
).

RM_BLE_MESH_PROVISION_EVENT_TYPE_OOB_E
NTRY

This event indicates to the application
requesting for OOB random data that is to be
used in the procedure via the
rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_OOB_
ENTRY.

[in] event_resul
t

FSP_SUCCE
SS on
successful
procedure
completion,
else an
Error Code.

[in] event_data Pointer to

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,057 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

OOB
information
as in
rm_ble_mes
h_provision
_oob_info_t.

[in] event_datal
en

sizeof
(
rm_ble_mes
h_provision
_oob_info_t
).

RM_BLE_MESH_PROVISION_EVENT_TYPE_DEVINP
UT_COMPLETE

This event indicates to the application that the
peer device has completed the Input of OOB
when this capability is negotiated via the
rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_DEVIN
PUT_COMPL
ETE.

[in] event_resul
t

FSP_SUCCE
SS on
successful
procedure
completion,
else an
Error Code.

[in] event_data NULL.

[in] event_datal
en

0.

Note
This event is generated only for the provisioner
application.

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVD
ATA_INFO_REQ

This event indicates to the application
requesting for Provisional data to be sent to
the peer device via the

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,058 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_PROV
DATA_INFO_
REQ.

[in] event_resul
t

FSP_SUCCE
SS on
successful
procedure
completion,
else an
Error Code.

[in] event_data NULL.

[in] event_datal
en

0.

Note
This event is generated only for the provisioner
application.

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVD
ATA_INFO

This event indicates to the application the
Provisional data received from the Provisioner
via the rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_PROV
DATA_INFO.

[in] event_resul
t

FSP_SUCCE
SS on
successful

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,059 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

procedure
completion,
else an
Error Code.

[in] event_data Pointer to
the
provisioning
data
rm_ble_mes
h_provision
_data_t.

[in] event_datal
en

sizeo
f(
rm_ble_mes
h_provision
_data_t).

Note
This event is generated only for the device
application.

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISI
ONING_COMPLETE

This event indicates to the application that the
provisioning procedure is complete via the
rm_ble_mesh_provision_callback_args_t
callback.

Parameters
[in] phandle Pointer to

the
Provisioning
context
handle

[in] event_type RM_BLE_ME
SH_PROVISI
ON_EVENT_
TYPE_PROVI
SIONING_C
OMPLETE.

[in] event_resul
t

FSP_SUCCE
SS on
successful
procedure
completion,
else an
Error Code.

[in] event_data NULL.

[in] event_datal
en

0.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,060 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Provision Interface

 BLE Mesh Scene Server Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Model Scene Server functions.

Summary
The BLE Mesh interface for the BLE Mesh Model Scene Server (BLE MESH HEALTH SERVER)
middleware provides BLE Mesh Model Scene Server functionality.

Data Structures

struct rm_ble_mesh_scene_server_callback_args_t

struct rm_ble_mesh_scene_server_timeout_callback_args_t

struct rm_ble_mesh_scene_server_cfg_t

struct rm_ble_mesh_scene_server_api_t

struct rm_ble_mesh_scene_server_instance_t

Typedefs

typedef void rm_ble_mesh_scene_server_ctrl_t

Enumerations

enum rm_ble_mesh_scene_srv_event_t

Data Structure Documentation

◆ rm_ble_mesh_scene_server_callback_args_t

struct rm_ble_mesh_scene_server_callback_args_t

Mesh model scene server callback parameter definition

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_ha
ndle_t *

p_handle Access Model handle.

rm_ble_mesh_scene_srv_event_
t

event_type Scene event types.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,061 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Scene Server Interface

uint8_t * p_event_data Pointer to event data.

uint16_t event_data_length Event data length.

◆ rm_ble_mesh_scene_server_timeout_callback_args_t

struct rm_ble_mesh_scene_server_timeout_callback_args_t

Mesh model scene server publication timeout callback.

Access Layer calls the registered callback to indicate Publication Timeout for the associated model.

Parameters
p_context User data.

p_handle Model Handle.

p_blob Blob if any or NULL.

Data Fields

void const * p_context Placeholder for user data.

rm_ble_mesh_access_model_ha
ndle_t *

p_handle Access Model handle.

void * p_blob Binary Large Object.

◆ rm_ble_mesh_scene_server_cfg_t

struct rm_ble_mesh_scene_server_cfg_t

BLE mesh model scene server configuration parameters.

Data Fields

rm_ble_mesh_access_instan
ce_t const *

p_access_instance

 Access Layer instance structure. More...

rm_ble_mesh_access_model
_handle_t

model_handle

 Access Model handle.

rm_ble_mesh_access_model
_handle_t

setup_server_handle

 Access Model handle for setup server.

void(* p_callback)(rm_ble_mesh_scene_server_callback_args_t *p_args)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,062 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Scene Server Interface

 Mesh model scene server callback.

void(* p_timeout_callback
)(rm_ble_mesh_scene_server_timeout_callback_args_t *p_args)

 Mesh model scene server publication timeout callback.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_access_instance

rm_ble_mesh_access_instance_t const* rm_ble_mesh_scene_server_cfg_t::p_access_instance

Access Layer instance structure.

the parameters for initialization.

◆ rm_ble_mesh_scene_server_api_t

struct rm_ble_mesh_scene_server_api_t

Shared Interface definition for BLE MESH

Data Fields

fsp_err_t(* open)(rm_ble_mesh_scene_server_ctrl_t *const p_ctrl,
rm_ble_mesh_scene_server_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_scene_server_ctrl_t *const p_ctrl)

fsp_err_t(* stateUpdate)(rm_ble_mesh_access_ctrl_t *const p_ctrl,
rm_ble_mesh_access_server_state_t const *const p_state)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,063 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Scene Server Interface

◆ open

fsp_err_t(* rm_ble_mesh_scene_server_api_t::open) (rm_ble_mesh_scene_server_ctrl_t *const p_ctrl,
rm_ble_mesh_scene_server_cfg_t const *const p_cfg)

API to open scene server model.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_scene_server_api_t::close) (rm_ble_mesh_scene_server_ctrl_t *const
p_ctrl)

API to close scene server model.

Parameters
[in] p_ctrl Pointer to control structure.

◆ stateUpdate

fsp_err_t(* rm_ble_mesh_scene_server_api_t::stateUpdate) (rm_ble_mesh_access_ctrl_t *const
p_ctrl, rm_ble_mesh_access_server_state_t const *const p_state)

API to send reply or to update state change.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_state Pointer to model specific
current/target state
parameters.

◆ rm_ble_mesh_scene_server_instance_t

struct rm_ble_mesh_scene_server_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_scene_server_ctrl
_t *

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_scene_server_cfg
_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_scene_server_api
_t

p_api Pointer to the API structure for
this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,064 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Scene Server Interface

const *

Typedef Documentation

◆ rm_ble_mesh_scene_server_ctrl_t

typedef void rm_ble_mesh_scene_server_ctrl_t

BLE MESH SCENE SERVER control block. Allocate an instance specific control block to pass into the
BLE mesh model scene server API calls.

Enumeration Type Documentation

◆ rm_ble_mesh_scene_srv_event_t

enum rm_ble_mesh_scene_srv_event_t

Scene Event Types

Enumerator

RM_BLE_MESH_SCENE_SRV_EVENT_STORE Scene Event - Store

RM_BLE_MESH_SCENE_SRV_EVENT_DELETE Scene Event - Delete

RM_BLE_MESH_SCENE_SRV_EVENT_RECALL_STA
RT

Scene Event - Recall Start

RM_BLE_MESH_SCENE_SRV_EVENT_RECALL_COM
PLETE

Scene Event - Recall Complete

RM_BLE_MESH_SCENE_SRV_EVENT_RECALL_IMM
EDIATE

Scene Event - Recall Immediate

 BLE Mesh Upper Trans Interface
Interfaces » Networking » BLE Mesh Network Interfaces

Detailed Description

Interface for BLE Mesh Upper Trans functions.

Summary
The BLE Mesh Upper Trans middleware provides a high-level transfer interface for BLE Mesh
services.

Data Structures

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,065 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

struct rm_ble_mesh_upper_trans_access_layer_pdu_t

struct rm_ble_mesh_upper_trans_control_pdu_t

struct rm_ble_mesh_upper_trans_friendship_setting_t

struct rm_ble_mesh_upper_trans_friendship_info_t

struct rm_ble_mesh_upper_trans_heartbeat_publication_info_t

struct rm_ble_mesh_upper_trans_heartbeat_subscription_info_t

struct rm_ble_mesh_upper_trans_callback_args_t

struct rm_ble_mesh_upper_trans_cfg_t

struct rm_ble_mesh_upper_trans_api_t

struct rm_ble_mesh_upper_trans_instance_t

Typedefs

typedef void rm_ble_mesh_upper_trans_ctrl_t

Enumerations

enum rm_ble_mesh_upper_trans_access_message_evnet_t

enum rm_ble_mesh_upper_trans_control_message_evnet_t

enum rm_ble_mesh_upper_trans_control_opcode_t

enum rm_ble_mesh_upper_trans_friend_role_t

enum rm_ble_mesh_upper_trans_event_t

Data Structure Documentation

◆ rm_ble_mesh_upper_trans_access_layer_pdu_t

struct rm_ble_mesh_upper_trans_access_layer_pdu_t

Access PDU

Data Fields

rm_ble_mesh_network_address_
t

src_addr Source address.

rm_ble_mesh_network_address_
t

dst_addr Destination address.

uint8_t * p_label Label UUID, representing Virtual

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,066 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

Address of Destination.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Handle identifying the subnet.

rm_ble_mesh_network_appkey_
handle_t

appkey_handle Handle identifying the AppKey
to be used for Transport Layer
encryption.

uint8_t ttl Time to Live.

void * p_parameter Transport parameter, based on
the type and header.

◆ rm_ble_mesh_upper_trans_control_pdu_t

struct rm_ble_mesh_upper_trans_control_pdu_t

Control PDU

Data Fields

rm_ble_mesh_network_address_
t

src_addr Source address.

rm_ble_mesh_network_address_
t

dst_addr Destination address.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Handle identifying the subnet.

uint8_t ttl Time to Live.

rm_ble_mesh_upper_trans_cont
rol_opcode_t

opcode Control Packet Opcode.

void * p_parameter Transport parameter, based on
the type and header.

◆ rm_ble_mesh_upper_trans_friendship_setting_t

struct rm_ble_mesh_upper_trans_friendship_setting_t

Low Power Node setting

Data Fields

rm_ble_mesh_network_subnet_
handle_t

subnet_handle The subnet to initiate the
friendship procedure

uint8_t criteria Friend criteria that is required.
RSSI, Receive Window,
MessageQueue size
requirements can be
established.

uint8_t rx_delay Receive delay in milliseconds
that the LPN will wait before
listening to response for any
request.

uint32_t poll_timeout Timeout in milliseconds after

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,067 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

which the LPN will send Poll
PDU to check for data from the
friend.

uint32_t setup_timeout Timeout in milliseconds for
which the Friend Establishment
procedure is to be tried.

◆ rm_ble_mesh_upper_trans_friendship_info_t

struct rm_ble_mesh_upper_trans_friendship_info_t

Low Power Node element information

Data Fields

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Main subnet handle of the
element

rm_ble_mesh_network_address_
t

addr Peer LPN/Friend Address

uint16_t lpn_counter Low Power Node Counter

uint16_t friend_counter Friend Counter

◆ rm_ble_mesh_upper_trans_heartbeat_publication_info_t

struct rm_ble_mesh_upper_trans_heartbeat_publication_info_t

Hearbeat Publication state

Data Fields

rm_ble_mesh_network_address_
t

daddr Destination address for
heartbeat messages

uint8_t count_log Count to control the number of
periodic heartbeat transport
messages to be sent

uint8_t period_log Period to control the cadence of
periodic heartbeat transport
messages

uint8_t ttl TTL value to be used when
sending heartbeat messages

uint16_t features Features that trigger sending
heartbeat messages when
changed

uint16_t netkey_index Global NetKey index of the
NetKey to be used to send
heartbeat messages

◆ rm_ble_mesh_upper_trans_heartbeat_subscription_info_t

struct rm_ble_mesh_upper_trans_heartbeat_subscription_info_t

Hearbeat Subscription state

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,068 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

Data Fields

rm_ble_mesh_network_address_
t

saddr Source address for heartbeat
messages that a node shall
process

rm_ble_mesh_network_address_
t

daddr Destination address for
heartbeat messages

uint8_t count_log Counter that tracks the number
of periodic heartbeat transport
message received since
receiving the most recent
configure heartbeat
Subscription Set message

uint8_t period_log Period that controls the period
for processing periodical
heartbeat transport control
messages

uint16_t min_hops Minimum hops value registered
when receiving heartbeat
messages since receiving the
most recent configure
heartbeat Subscription Set
message

uint16_t max_hops Maximum hops value registered
when receiving heartbeat
messages since receiving the
most recent configure
heartbeat Subscription Set
message

◆ rm_ble_mesh_upper_trans_callback_args_t

struct rm_ble_mesh_upper_trans_callback_args_t

BLE Mesh Network callback parameter definition

Data Fields

rm_ble_mesh_upper_trans_even
t_t

event Event code.

rm_ble_mesh_network_header_t
*

p_header Event code.

rm_ble_mesh_network_subnet_
handle_t

subnet_handle Associated Subnet Handle.

rm_ble_mesh_network_appkey_
handle_t

appkey_handle Associated AppKey Handle.

rm_ble_mesh_error_code_t result Event result.

rm_ble_mesh_buffer_t event_data

void const * p_context Context provided to user during

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,069 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

callback.

◆ rm_ble_mesh_upper_trans_cfg_t

struct rm_ble_mesh_upper_trans_cfg_t

BLE MESH configuration parameters.

Data Fields

uint32_t channel

 Select a channel corresponding to the channel number of the
hardware. More...

rm_ble_mesh_upper_trans_c
ontrol_message_evnet_t

control_message_evnet

 Whether to enable the control message event or not.

rm_ble_mesh_upper_trans_a
ccess_message_evnet_t

access_message_evnet

 Whether to enable the access message event or not.

rm_ble_mesh_lower_trans_in
stance_t const *

p_mesh_lower_trans_instance

 Instance structure of BLE Mesh Bearer.

void(* p_callback)(rm_ble_mesh_upper_trans_callback_args_t *p_args)

 Callback.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,070 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

Field Documentation

◆ channel

uint32_t rm_ble_mesh_upper_trans_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ rm_ble_mesh_upper_trans_api_t

struct rm_ble_mesh_upper_trans_api_t

BLE MESH functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t(* sendAccessPdu)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_access_layer_pdu_t const *const
p_access_layer_pdu, rm_ble_mesh_lower_trans_reliable_t reliable)

fsp_err_t(* sendControlPdu)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_control_pdu_t const *const p_control_pdu)

fsp_err_t(* lpnSetupFriendship)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_friendship_setting_t const *const
p_setting)

fsp_err_t(* lpnClearFriendship)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t(* lpnManageSubscription)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_control_opcode_t action, uint16_t
const *const p_addr_list, uint16_t count)

fsp_err_t(* lpnPoll)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t(* isValidLpnElementAddress)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,071 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

fsp_err_t(* isValidLpnSubscriptionAddress)(rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

fsp_err_t(* getLpnPolltimeout)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_network_address_t lpn_addr, uint32_t *const
p_poll_timeout)

fsp_err_t(* getFriendshipInfo)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_friend_role_t role, uint16_t lpn_index,
rm_ble_mesh_upper_trans_friendship_info_t *const p_node)

fsp_err_t(* lpnRegisterSecurityUpdate)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_network_subnet_handle_t subnet_handle,
uint8_t flag, uint32_t ivindex)

fsp_err_t(* clearAllLpn)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

fsp_err_t(* setHeartbeatPublication)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const
p_info)

fsp_err_t(* getHeartbeatPublication)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const
p_info)

fsp_err_t(* setHeartbeatSubscription)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_heartbeat_subscription_info_t
*const p_info)

fsp_err_t(* getHeartbeatSubscription)(rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl, rm_ble_mesh_upper_trans_heartbeat_subscription_info_t
*const p_info)

fsp_err_t(* triggerHeartbeat)(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
uint8_t change_in_feature_bit)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,072 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ open

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::open) (rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_cfg_t const *const p_cfg)

Register interface with Transport Layer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::close) (rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

Unregister interface with Transport Layer.

Parameters
[in] p_ctrl Pointer to control structure.

◆ sendAccessPdu

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::sendAccessPdu) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_access_layer_pdu_t const *const p_access_layer_pdu,
rm_ble_mesh_lower_trans_reliable_t reliable)

API to send Access Layer PDUs.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_access_layer_pdu Pointer to Access Layer
PDUs.

[in] reliable If requires lower transport
ACK, set reliable as
RM_BLE_MESH_LOWER_TRA
NS_RELIABLE_ENABLE.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,073 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ sendControlPdu

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::sendControlPdu) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_control_pdu_t const *const p_control_pdu)

API to send transport Control PDUs.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_control_pdu Pointer to control PDUs.

◆ lpnSetupFriendship

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::lpnSetupFriendship) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_friendship_setting_t const *const p_setting)

API to setup Friendship.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_setting Pointer to friendship
settings.

◆ lpnClearFriendship

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::lpnClearFriendship) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl)

API to terminate friendship.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,074 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ lpnManageSubscription

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::lpnManageSubscription)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_upper_trans_control_opcode_t action,
uint16_t const *const p_addr_list, uint16_t count)

API to manage friend subscription list.

Parameters
[in] p_ctrl Pointer to control structure.

[in] action Will be one of
RM_BLE_MESH_UPPER_TRAN
S_CONTROL_OPCODE_FRIEN
D_SUBSCRN_LIST_ADD or
RM_BLE_MESH_UPPER_TRAN
S_CONTROL_OPCODE_FRIEN
D_SUBSCRN_LIST_REMOVE.

[in] p_addr_list Pointer to the packed list of
addresses to be managed.

[in] count Number of addresses given.

◆ lpnPoll

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::lpnPoll) (rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl)

To trigger Friend Poll from application.

Parameters
[in] p_ctrl Pointer to control structure.

◆ isValidLpnElementAddress

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::isValidLpnElementAddress)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

To check if address matches with any of the LPN.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr Unicast address to search.

[out] p_lpn_handle Pointer to an LPN Handle,
which will be filled if match
found.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,075 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ isValidLpnSubscriptionAddress

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::isValidLpnSubscriptionAddress)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_address_t addr,
rm_ble_mesh_lower_trans_lpn_handle_t *const p_lpn_handle)

To check if valid subscription address of an LPN to receive a packet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] addr Address to search.

[out] p_lpn_handle Pointer to an LPN Handle,
which will be filled if match
found.

◆ getLpnPolltimeout

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::getLpnPolltimeout) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_network_address_t lpn_addr, uint32_t *const p_poll_timeout)

To get Poll Timeout of an LPN.

Parameters
[in] p_ctrl Pointer to control structure.

[in] lpn_addr LPN address to search.

[out] p_poll_timeout Pointer to a memory where
poll timeout of the LPN to be
filled (if match found).

◆ getFriendshipInfo

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::getFriendshipInfo) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, rm_ble_mesh_upper_trans_friend_role_t role, uint16_t lpn_index,
rm_ble_mesh_upper_trans_friendship_info_t *const p_node)

To get the LPN node information.

Parameters
[in] p_ctrl Pointer to control structure.

[in] role Local friendship role.

[in] lpn_index Index of the LPN element.

[out] p_node Pointer to copy the
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,076 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ lpnRegisterSecurityUpdate

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::lpnRegisterSecurityUpdate)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl, rm_ble_mesh_network_subnet_handle_t
subnet_handle, uint8_t flag, uint32_t ivindex)

To add the security update information.

Parameters
[in] p_ctrl Pointer to control structure.

[in] subnet_handle Handle to identify the
network.

[in] flag Flag indicating the Key
Refresh and IV Update state.

[in] ivindex Current IV index of the
network.

◆ clearAllLpn

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::clearAllLpn) (rm_ble_mesh_upper_trans_ctrl_t *const
p_ctrl)

To clear information related to all LPNs.

Parameters
[in] p_ctrl Pointer to control structure.

◆ setHeartbeatPublication

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::setHeartbeatPublication)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const p_info)

To set the heartbeat publication data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Heartbeat Publication
information data as in
rm_ble_mesh_upper_trans_h
eartbeat_publication_info_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,077 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ getHeartbeatPublication

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::getHeartbeatPublication)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_publication_info_t *const p_info)

To get the heartbeat publication data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Heartbeat Publication
information data as in
rm_ble_mesh_upper_trans_h
eartbeat_publication_info_t.

◆ setHeartbeatSubscription

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::setHeartbeatSubscription)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const p_info)

To set the heartbeat subscription data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Heartbeat Publication
information data as in
rm_ble_mesh_upper_trans_h
eartbeat_subscription_info_t.

◆ getHeartbeatSubscription

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::getHeartbeatSubscription)
(rm_ble_mesh_upper_trans_ctrl_t *const p_ctrl,
rm_ble_mesh_upper_trans_heartbeat_subscription_info_t *const p_info)

To get the heartbeat subscription data.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Heartbeat Publication
information data as in
rm_ble_mesh_upper_trans_h
eartbeat_subscription_info_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,078 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ triggerHeartbeat

fsp_err_t(* rm_ble_mesh_upper_trans_api_t::triggerHeartbeat) (rm_ble_mesh_upper_trans_ctrl_t
*const p_ctrl, uint8_t change_in_feature_bit)

To trigger heartbeat send on change in feature.

Parameters
[in] p_ctrl Pointer to control structure.

[in] change_in_feature_bit Bit mask of the changed
feature field.

◆ rm_ble_mesh_upper_trans_instance_t

struct rm_ble_mesh_upper_trans_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_ble_mesh_upper_trans_ctrl_t
*

p_ctrl Pointer to the control structure
for this instance.

rm_ble_mesh_upper_trans_cfg_t
const *

p_cfg Pointer to the configuration
structure for this instance.

rm_ble_mesh_upper_trans_api_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_ble_mesh_upper_trans_ctrl_t

typedef void rm_ble_mesh_upper_trans_ctrl_t

BLE MESH control block. Allocate an instance specific control block to pass into the BLE MESH API
calls.

Enumeration Type Documentation

◆ rm_ble_mesh_upper_trans_access_message_evnet_t

enum rm_ble_mesh_upper_trans_access_message_evnet_t

Whether to enable the access message event or not.

Enumerator

RM_BLE_MESH_UPPER_TRANS_ACCESS_MESSAG
E_EVENT_DISABLE

Access state callback disable.

RM_BLE_MESH_UPPER_TRANS_ACCESS_MESSAG
E_EVENT_ENABLE

Access state callback enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,079 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ rm_ble_mesh_upper_trans_control_message_evnet_t

enum rm_ble_mesh_upper_trans_control_message_evnet_t

Whether to enable the control message event or not.

Enumerator

RM_BLE_MESH_UPPER_TRANS_CONTROL_MESSA
GE_EVENT_DISABLE

Control state callback disable.

RM_BLE_MESH_UPPER_TRANS_CONTROL_MESSA
GE_EVENT_ENABLE

Control state callback enable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,080 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ rm_ble_mesh_upper_trans_control_opcode_t

enum rm_ble_mesh_upper_trans_control_opcode_t

Tranport Layer Control Packet Opcodes

RFU: 0x02 - 0x0F

Enumerator

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_POLL

Sent by a Low Power node to its Friend node to
request any messages that it has cached for
the Low Power node

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_UPDATE

Sent by a Friend node to a Low Power node to
inform it about cache and/or security updates

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_REQ

Broadcast by a Low Power node to start to find
a friend

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_OFFER

Sent by a Friend node to a Low Power node to
offer to become its friend

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_CLEAR

Sent to a Friend node to inform a previous
friend of a Low Power node about the removal
of a friendship

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_CLEAR_CNF

Sent from a previous friend to Friend node to
confirm that a prior friend relationship has
been removed

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_SUBSCRN_LIST_ADD

Sent to a Friend node to add one or more
addresses to the Friend Subscription List

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_SUBSCRN_LIST_REMOVE

Sent to a Friend node to remove one or more
addresses from the Friend Subscription List

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_FRIEND_SUBSCRN_LIST_CNF

Sent by a Friend node to confirm Friend
Subscription List updates

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCOD
E_HEARTBEAT

Sent by a node to let other nodes determine
topology of a Subnet

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,081 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > BLE Mesh Network Interfaces > BLE Mesh Upper Trans Interface

◆ rm_ble_mesh_upper_trans_friend_role_t

enum rm_ble_mesh_upper_trans_friend_role_t

Friend role

Enumerator

RM_BLE_MESH_UPPER_TRANS_FRIEND_ROLE_FRI
END

Friend role.

RM_BLE_MESH_UPPER_TRANS_FRIEND_ROLE_LP
N

LPN role.

◆ rm_ble_mesh_upper_trans_event_t

enum rm_ble_mesh_upper_trans_event_t

Callback Event

Enumerator

RM_BLE_MESH_UPPER_TRANS_EVENT_ACCESS BLE Mesh Upper Trans Event - Access.

RM_BLE_MESH_UPPER_TRANS_EVENT_CONTROL BLE Mesh Upper Trans Event - Control.

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHI
P_SETUP

BLE Mesh Upper Trans Event - Friendship
setup.

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHI
P_SUBSCRIPTION_LIST

BLE Mesh Upper Trans Event - Friendship
subscription list.

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHI
P_CLEAR

BLE Mesh Upper Trans Event - Friendship
clear.

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHI
P_TERMINATE

BLE Mesh Upper Trans Event - Friendship
terminate.

5.3.11.4 DA16XXX AT Command Transport Layer
Interfaces » Networking

Detailed Description

Abstraction interface for DA16XXX AT Command functions.

Summary

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,082 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

The DA16XXX AT Command Transport Layer interface provides functions for data communication
and buffer handling over multiple communications interfaces.

Data Structures

struct at_transport_da16xxx_callback_args_t

struct at_transport_da16xxx_cfg_t

struct at_transport_da16xxx_data_t

struct at_transport_da16xxx_status_t

struct at_transport_da16xxx_api_t

struct at_transport_da16xxx_instance_t

Typedefs

typedef void at_transport_da16xxx_ctrl_t

Enumerations

enum at_transport_da16xxx_event_t

Data Structure Documentation

◆ at_transport_da16xxx_callback_args_t

struct at_transport_da16xxx_callback_args_t

DA16xxx middleware callback parameter definition

◆ at_transport_da16xxx_cfg_t

struct at_transport_da16xxx_cfg_t

DA16xxx middleware configuration block

Data Fields

void const * p_extend

 Pointer to extended configuration by instance of interface.

void const * p_context

 Pointer to the user-provided context.

bool(* p_callback)(at_transport_da16xxx_callback_args_t *p_args)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,083 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

 Pointer to callback function.

◆ at_transport_da16xxx_data_t

struct at_transport_da16xxx_data_t

DA16xxx data structure

Data Fields

uint8_t * p_at_cmd_string Pointer to ATCMD string.

uint32_t at_cmd_string_length ATCMD string length.

uint8_t * p_response_buffer Pointer to ATCMD response
buffer.

uint32_t response_buffer_size ATCMD response buffer string
length.

uint32_t timeout_ms ATCMD timeout in ms.

const char * p_expect_code Expected string in the ATCMD
response.

uint32_t comm_ch_id Communication channel ID.

◆ at_transport_da16xxx_status_t

struct at_transport_da16xxx_status_t

DA16xxx status indicators

Data Fields

bool open True if driver is open.

◆ at_transport_da16xxx_api_t

struct at_transport_da16xxx_api_t

AT Command APIs

Data Fields

fsp_err_t(* open)(at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_cfg_t const *const p_cfg)

fsp_err_t(* close)(at_transport_da16xxx_ctrl_t *const p_ctrl)

fsp_err_t(* atCommandSendThreadSafe)(at_transport_da16xxx_ctrl_t *const
p_ctrl, at_transport_da16xxx_data_t *p_at_cmd)

fsp_err_t(* atCommandSend)(at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_data_t *p_at_cmd)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,084 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

fsp_err_t(* giveMutex)(at_transport_da16xxx_ctrl_t *const p_ctrl, uint32_t
mutex_flag)

fsp_err_t(* takeMutex)(at_transport_da16xxx_ctrl_t *const p_ctrl, uint32_t
mutex_flag)

fsp_err_t(* statusGet)(at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_status_t *p_status)

size_t(* bufferRecv)(at_transport_da16xxx_ctrl_t *const p_ctrl, const char
*p_data, uint32_t length, uint32_t rx_timeout)

Field Documentation

◆ open

fsp_err_t(* at_transport_da16xxx_api_t::open) (at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_cfg_t const *const p_cfg)

Open at cmd instance.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* at_transport_da16xxx_api_t::close) (at_transport_da16xxx_ctrl_t *const p_ctrl)

Close at cmd instance.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,085 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

◆ atCommandSendThreadSafe

fsp_err_t(* at_transport_da16xxx_api_t::atCommandSendThreadSafe) (at_transport_da16xxx_ctrl_t
*const p_ctrl, at_transport_da16xxx_data_t *p_at_cmd)

at cmd send thread safe.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_at_cmd Pointer to AT command data
structure.

◆ atCommandSend

fsp_err_t(* at_transport_da16xxx_api_t::atCommandSend) (at_transport_da16xxx_ctrl_t *const
p_ctrl, at_transport_da16xxx_data_t *p_at_cmd)

at cmd send.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_at_cmd Pointer to AT command data
structure.

◆ giveMutex

fsp_err_t(* at_transport_da16xxx_api_t::giveMutex) (at_transport_da16xxx_ctrl_t *const p_ctrl,
uint32_t mutex_flag)

Give the mutex.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] mutex_flag TX/RX Flags for the mutex.

◆ takeMutex

fsp_err_t(* at_transport_da16xxx_api_t::takeMutex) (at_transport_da16xxx_ctrl_t *const p_ctrl,
uint32_t mutex_flag)

Take the mutex .

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] mutex_flag TX/RX Flags for the mutex.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,086 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

◆ statusGet

fsp_err_t(* at_transport_da16xxx_api_t::statusGet) (at_transport_da16xxx_ctrl_t *const p_ctrl,
at_transport_da16xxx_status_t *p_status)

Gets the status of the configured DA16xxx transport.

Parameters
[in] p_ctrl Pointer to the to Transport

layer instance control
structure.

[out] p_status Pointer to store current
status.

◆ bufferRecv

size_t(* at_transport_da16xxx_api_t::bufferRecv) (at_transport_da16xxx_ctrl_t *const p_ctrl, const
char *p_data, uint32_t length, uint32_t rx_timeout)

Receive data from stream buffer.

Parameters
[in] p_ctrl Pointer to Transport layer

instance control structure.

[in] p_data Pointer to data.

[in] length Data length.

[in] rx_timeout Timeout for receiving data
on the buffer.

[in] trigger_level Trigger level for stream
buffer.

◆ at_transport_da16xxx_instance_t

struct at_transport_da16xxx_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Typedef Documentation

◆ at_transport_da16xxx_ctrl_t

typedef void at_transport_da16xxx_ctrl_t

At transport control block. Allocate an instance specific control block to pass into the
Communications API calls.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,087 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > DA16XXX AT Command Transport Layer

Enumeration Type Documentation

◆ at_transport_da16xxx_event_t

enum at_transport_da16xxx_event_t

Event in the callback function

5.3.11.5 Ethernet Interface
Interfaces » Networking

Detailed Description

Interface for Ethernet functions.

Summary
The Ethernet interface provides Ethernet functionality. The Ethernet interface supports the following
features:

Transmit/receive processing (Blocking and Non-Blocking)
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support

Data Structures

struct ether_callback_args_t

struct ether_cfg_t

struct ether_api_t

struct ether_instance_t

Typedefs

typedef void ether_ctrl_t

Enumerations

enum ether_wake_on_lan_t

enum ether_flow_control_t

enum ether_multicast_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,088 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

enum ether_promiscuous_t

enum ether_zerocopy_t

enum ether_event_t

Data Structure Documentation

◆ ether_callback_args_t

struct ether_callback_args_t

Callback function parameter data

Data Fields

uint32_t channel Device channel number.

ether_event_t event Event code.

uint32_t status_ecsr ETHERC status register for
interrupt handler.

uint32_t status_eesr ETHERC/EDMAC status register
for interrupt handler.

void const * p_context Placeholder for user data. Set in
ether_api_t::open function in
ether_cfg_t.

◆ ether_cfg_t

struct ether_cfg_t

Configuration parameters.

Data Fields

uint8_t channel

 Channel.

ether_zerocopy_t zerocopy

 Zero copy enable or disable in Read/Write function.

ether_multicast_t multicast

 Multicast enable or disable.

ether_promiscuous_t promiscuous

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,089 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

 Promiscuous mode enable or disable.

ether_flow_control_t flow_control

 Flow control functionally enable or disable.

ether_padding_t padding

 Padding length inserted into the received Ethernet frame.

uint32_t padding_offset

 Offset of the padding inserted into the received Ethernet frame.

uint32_t broadcast_filter

 Limit of the number of broadcast frames received continuously.

uint8_t * p_mac_address

 Pointer of MAC address.

uint8_t num_tx_descriptors

 Number of transmission descriptor.

uint8_t num_rx_descriptors

 Number of receive descriptor.

uint8_t ** pp_ether_buffers

 Transmit and receive buffer.

uint32_t ether_buffer_size

 Size of transmit and receive buffer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,090 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

IRQn_Type irq

 Interrupt number.

uint32_t interrupt_priority

 Interrupt priority.

void(* p_callback)(ether_callback_args_t *p_args)

 Callback provided when an ISR occurs.

ether_phy_instance_t const
*

p_ether_phy_instance

 Pointer to ETHER_PHY instance.

void const * p_context

 Placeholder for user data. More...

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_context

void const* ether_cfg_t::p_context

Placeholder for user data.

Placeholder for user data. Passed to the user callback in ether_callback_args_t.

◆ ether_api_t

struct ether_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,091 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

fsp_err_t(* open)(ether_ctrl_t *const p_ctrl, ether_cfg_t const *const p_cfg)

fsp_err_t(* close)(ether_ctrl_t *const p_ctrl)

fsp_err_t(* read)(ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t *const
length_bytes)

fsp_err_t(* bufferRelease)(ether_ctrl_t *const p_ctrl)

fsp_err_t(* rxBufferUpdate)(ether_ctrl_t *const p_ctrl, void *const p_buffer)

fsp_err_t(* write)(ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t const
frame_length)

fsp_err_t(* linkProcess)(ether_ctrl_t *const p_ctrl)

fsp_err_t(* wakeOnLANEnable)(ether_ctrl_t *const p_ctrl)

fsp_err_t(* txStatusGet)(ether_ctrl_t *const p_ctrl, void *const
p_buffer_address)

fsp_err_t(* callbackSet)(ether_ctrl_t *const p_ctrl,
void(*p_callback)(ether_callback_args_t *), void const *const
p_context, ether_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* ether_api_t::open) (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,092 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

◆ close

fsp_err_t(* ether_api_t::close) (ether_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* ether_api_t::read) (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t *const
length_bytes)

Read packet if data is available.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buffer Pointer to where to store
read data.

[in] length_bytes Number of bytes in buffer

◆ bufferRelease

fsp_err_t(* ether_api_t::bufferRelease) (ether_ctrl_t *const p_ctrl)

Release rx buffer from buffer pool process in zero-copy read operation.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rxBufferUpdate

fsp_err_t(* ether_api_t::rxBufferUpdate) (ether_ctrl_t *const p_ctrl, void *const p_buffer)

Update the buffer pointer in the current receive descriptor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buffer New address to write into
the rx buffer descriptor.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,093 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

◆ write

fsp_err_t(* ether_api_t::write) (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t const
frame_length)

Write packet.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_buffer Pointer to data to write.

[in] frame_length Send ethernet frame size
(without 4 bytes of CRC data
size).

◆ linkProcess

fsp_err_t(* ether_api_t::linkProcess) (ether_ctrl_t *const p_ctrl)

Process link.

Parameters
[in] p_ctrl Pointer to control structure.

◆ wakeOnLANEnable

fsp_err_t(* ether_api_t::wakeOnLANEnable) (ether_ctrl_t *const p_ctrl)

Enable magic packet detection.

Parameters
[in] p_ctrl Pointer to control structure.

◆ txStatusGet

fsp_err_t(* ether_api_t::txStatusGet) (ether_ctrl_t *const p_ctrl, void *const p_buffer_address)

Get the address of the most recently sent buffer.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_buffer_address Pointer to the address of the
most recently sent buffer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,094 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

◆ callbackSet

fsp_err_t(* ether_api_t::callbackSet) (ether_ctrl_t *const p_ctrl,
void(*p_callback)(ether_callback_args_t *), void const *const p_context, ether_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the ETHER control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ ether_instance_t

struct ether_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ether_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ether_ctrl_t

typedef void ether_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,095 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

◆ ether_wake_on_lan_t

enum ether_wake_on_lan_t

Wake on LAN

Enumerator

ETHER_WAKE_ON_LAN_DISABLE Disable Wake on LAN.

ETHER_WAKE_ON_LAN_ENABLE Enable Wake on LAN.

◆ ether_flow_control_t

enum ether_flow_control_t

Flow control functionality

Enumerator

ETHER_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

◆ ether_multicast_t

enum ether_multicast_t

Multicast Filter

Enumerator

ETHER_MULTICAST_DISABLE Disable reception of multicast frames.

ETHER_MULTICAST_ENABLE Enable reception of multicast frames.

◆ ether_promiscuous_t

enum ether_promiscuous_t

Promiscuous Mode

Enumerator

ETHER_PROMISCUOUS_DISABLE Only receive packets with current MAC
address, multicast, and broadcast.

ETHER_PROMISCUOUS_ENABLE Receive all packets.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,096 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet Interface

◆ ether_zerocopy_t

enum ether_zerocopy_t

Zero copy

Enumerator

ETHER_ZEROCOPY_DISABLE Disable zero copy in Read/Write function.

ETHER_ZEROCOPY_ENABLE Enable zero copy in Read/Write function.

◆ ether_event_t

enum ether_event_t

Event code of callback function

Enumerator

ETHER_EVENT_WAKEON_LAN Magic packet detection event.

ETHER_EVENT_LINK_ON Link up detection event.

ETHER_EVENT_LINK_OFF Link down detection event.

ETHER_EVENT_INTERRUPT DEPRECATED Interrupt event.

ETHER_EVENT_RX_COMPLETE Receive complete event.

ETHER_EVENT_RX_MESSAGE_LOST Receive FIFO overflow or Receive descriptor is
full.

ETHER_EVENT_TX_COMPLETE Transmit complete event.

ETHER_EVENT_TX_BUFFER_EMPTY Transmit descriptor or FIFO is empty.

ETHER_EVENT_TX_ABORTED Transmit abort event.

ETHER_EVENT_ERR_GLOBAL Global error has occurred.

5.3.11.6 Ethernet PHY Interface
Interfaces » Networking

Detailed Description

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,097 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

Interface for Ethernet PHY functions.

Summary
The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications that use the ETHERC peripheral.

The Ethernet PHY interface supports the following features:

Auto negotiation support
Flow control support
Link status check support

Data Structures

struct ether_phy_cfg_t

struct ether_phy_api_t

struct ether_phy_instance_t

Typedefs

typedef void ether_phy_ctrl_t

Enumerations

enum ether_phy_lsi_type_t

enum ether_phy_flow_control_t

enum ether_phy_link_speed_t

enum ether_phy_mii_type_t

Data Structure Documentation

◆ ether_phy_cfg_t

struct ether_phy_cfg_t

Configuration parameters.

Data Fields

uint8_t channel Channel.

uint8_t phy_lsi_address Address of PHY-LSI.

uint32_t phy_reset_wait_time Wait time for PHY-LSI reboot.

int32_t mii_bit_access_wait_time Wait time for MII/RMII access.

ether_phy_lsi_type_t phy_lsi_type Phy LSI type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,098 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

ether_phy_flow_control_t flow_control Flow control functionally enable
or disable.

ether_phy_mii_type_t mii_type Interface type is MII or RMII.

void const * p_context Placeholder for user data.
Passed to the user callback in
ether_phy_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ ether_phy_api_t

struct ether_phy_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const
p_cfg)

fsp_err_t(* close)(ether_phy_ctrl_t *const p_ctrl)

fsp_err_t(* chipInit)(ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const
p_cfg)

fsp_err_t(* read)(ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t
*const p_data)

fsp_err_t(* write)(ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t
data)

fsp_err_t(* startAutoNegotiate)(ether_phy_ctrl_t *const p_ctrl)

fsp_err_t(* linkPartnerAbilityGet)(ether_phy_ctrl_t *const p_ctrl, uint32_t *const
p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const
p_partner_pause)

fsp_err_t(* linkStatusGet)(ether_phy_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,099 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

◆ open

fsp_err_t(* ether_phy_api_t::open) (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const
p_cfg)

Open driver.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ether_phy_api_t::close) (ether_phy_ctrl_t *const p_ctrl)

Close driver.

Parameters
[in] p_ctrl Pointer to control structure.

◆ chipInit

fsp_err_t(* ether_phy_api_t::chipInit) (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const
p_cfg)

Initialize PHY-LSI.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ read

fsp_err_t(* ether_phy_api_t::read) (ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t *const
p_data)

Read register value of PHY-LSI.

Parameters
[in] p_ctrl Pointer to control structure.

[in] reg_addr Register address.

[out] p_data Pointer to the location to
store read data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,100 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

◆ write

fsp_err_t(* ether_phy_api_t::write) (ether_phy_ctrl_t *const p_ctrl, uint32_t reg_addr, uint32_t data)

Write data to register of PHY-LSI.

Parameters
[in] p_ctrl Pointer to control structure.

[in] reg_addr Register address.

[in] data Data written to register.

◆ startAutoNegotiate

fsp_err_t(* ether_phy_api_t::startAutoNegotiate) (ether_phy_ctrl_t *const p_ctrl)

Start auto negotiation.

Parameters
[in] p_ctrl Pointer to control structure.

◆ linkPartnerAbilityGet

fsp_err_t(* ether_phy_api_t::linkPartnerAbilityGet) (ether_phy_ctrl_t *const p_ctrl, uint32_t *const
p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const p_partner_pause)

Get the partner ability.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_line_speed_duplex Pointer to the location of
both the line speed and the
duplex.

[out] p_local_pause Pointer to the location to
store the local pause bits.

[out] p_partner_pause Pointer to the location to
store the partner pause bits.

◆ linkStatusGet

fsp_err_t(* ether_phy_api_t::linkStatusGet) (ether_phy_ctrl_t *const p_ctrl)

Get Link status from PHY-LSI interface.

Parameters
[in] p_ctrl Pointer to control structure.

◆ ether_phy_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,101 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

struct ether_phy_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ether_phy_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_phy_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_phy_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ether_phy_ctrl_t

typedef void ether_phy_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

◆ ether_phy_lsi_type_t

enum ether_phy_lsi_type_t

Phy LSI

Enumerator

ETHER_PHY_LSI_TYPE_DEFAULT Select default configuration. This type dose not
change Phy LSI default setting by strapping
option.

ETHER_PHY_LSI_TYPE_KSZ8091RNB Select configuration for KSZ8091RNB.

ETHER_PHY_LSI_TYPE_KSZ8041 Select configuration for KSZ8041.

ETHER_PHY_LSI_TYPE_DP83620 Select configuration for DP83620.

ETHER_PHY_LSI_TYPE_ICS1894 Select configuration for ICS1894.

ETHER_PHY_LSI_TYPE_CUSTOM Select configuration for User custom.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,102 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

◆ ether_phy_flow_control_t

enum ether_phy_flow_control_t

Flow control functionality

Enumerator

ETHER_PHY_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_PHY_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

◆ ether_phy_link_speed_t

enum ether_phy_link_speed_t

Link speed

Enumerator

ETHER_PHY_LINK_SPEED_NO_LINK Link is not established.

ETHER_PHY_LINK_SPEED_10H Link status is 10Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_10F Link status is 10Mbit/s and full duplex.

ETHER_PHY_LINK_SPEED_100H Link status is 100Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_100F Link status is 100Mbit/s and full duplex.

ETHER_PHY_LINK_SPEED_1000H Link status is 1000Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_1000F Link status is 1000Mbit/s and full duplex.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,103 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > Ethernet PHY Interface

◆ ether_phy_mii_type_t

enum ether_phy_mii_type_t

Media-independent interface

Enumerator

ETHER_PHY_MII_TYPE_MII MII.

ETHER_PHY_MII_TYPE_RMII RMII.

ETHER_PHY_MII_TYPE_GMII GMII.

ETHER_PHY_MII_TYPE_RGMII RGMII.

5.3.11.7 PTP Interface
Interfaces » Networking

Detailed Description

Interface for PTP functions.

Summary
The PTP interface provides the functionality for using PTP.

Data Structures

struct ptp_clock_properties_t

struct ptp_time_t

struct ptp_message_flags_t

struct ptp_message_header_t

struct ptp_message_sync_t

struct ptp_message_pdelay_req_t

struct ptp_message_pdelay_resp_t

struct ptp_message_announce_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,104 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

struct ptp_message_signaling_t

struct ptp_message_management_t

struct ptp_message_t

struct ptp_callback_args_t

struct ptp_pulse_timer_common_cfg_t

struct ptp_pulse_timer_cfg_t

struct ptp_sync_state_cfg_t

struct ptp_synfp_cfg_t

struct ptp_synfp_cfg_t.ether

struct ptp_synfp_cfg_t.ipv4

struct ptp_stca_cfg_t

struct ptp_cfg_t

struct ptp_api_t

struct ptp_instance_t

Typedefs

typedef enum PTP_PACKED
e_ptp_ctrl_field

ptp_ctrl_field_t

typedef ptp_message_sync_t ptp_message_delay_req_t

typedef ptp_message_sync_t ptp_message_follow_up_t

typedef
ptp_message_pdelay_resp_t

ptp_message_delay_resp_t

typedef
ptp_message_delay_resp_t

ptp_message_pdelay_resp_follow_up_t

Enumerations

enum ptp_message_type_t

enum ptp_port_state_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,105 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

enum ptp_clock_delay_mechanism_t

enum ptp_frame_format_t

enum ptp_frame_filter_mode_t

enum ptp_stca_clock_freq_t

enum ptp_stca_clock_sel_t

enum ptp_message_interval_t

enum ptp_clock_correction_mode_t

enum ptp_event_t

enum ptp_ethernet_phy_interface_t

Variables

enum PTP_PACKED e_ptp_ctrl_field

Data Structure Documentation

◆ ptp_clock_properties_t

struct ptp_clock_properties_t

Clock properties used in the best master clock algorithm (BMCA) in order to determine the
grandmaster clock.

In master mode, these properties will be advertised in announce messages.

Note: The final property used in BMCA is the clock ID. This is usually configured at runtime because
it is often based on the hardware address.

Data Fields

uint8_t priority1 Priority1 value used in best
master calculation.

uint8_t cclass Class value.

uint8_t accuracy Accuracy of the clock.

uint16_t variance Variance of the clock.

uint8_t priority2 Priority2 value used as
secondary priority in best
master calculation.

◆ ptp_time_t

struct ptp_time_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,106 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

Structure for storing time with nanosecond precision .

Data Fields

uint16_t seconds_upper Upper 16 bits of the seconds.

uint32_t seconds_lower Lower 32 bits of the seconds.

uint32_t nanoseconds Nanoseconds.

◆ ptp_message_flags_t

struct ptp_message_flags_t

Flags field in PTP message header.

◆ ptp_message_header_t

struct ptp_message_header_t

Commom PTP Message Header.

Data Fields

uint8_t message_type: 4 The message type.

uint8_t sdoid_major: 4 Standard Organization ID Major.

uint8_t version: 4 PTP Version.

uint8_t minor_version: 4 PTP Minor Version.

uint16_t message_length The total message length
(Including the header).

uint8_t domain The clock domain.

uint8_t sdoid_minor: 8 Standard Organization ID
minor.

ptp_message_flags_t flags Flags set in the message.

uint64_t correction_field Correction Field that is updated
when a message passes
through a transparent clock.

uint32_t reserved

uint8_t clock_id[8] Clock ID that the message was
sent from.

uint16_t source_port_id Port ID that the message was
sent from.

uint16_t sequence_id Sequence ID of the message.

ptp_ctrl_field_t control_field Control field (Message specifc).

uint8_t log_message_interval Logbase2 of the message
period.

◆ ptp_message_sync_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,107 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

struct ptp_message_sync_t

Sync Message Type (0x00).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

◆ ptp_message_pdelay_req_t

struct ptp_message_pdelay_req_t

PDelay_req Message Type (0x02).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint8_t reserved[10]

◆ ptp_message_pdelay_resp_t

struct ptp_message_pdelay_resp_t

PDelay_resp Message Type (0x03).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint8_t source_port_identity[10] Clock ID + sourcePortId.

◆ ptp_message_announce_t

struct ptp_message_announce_t

Announce Message Type (0x0B).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint16_t current_utc_offset Offset from UTC in seconds.

uint8_t reserved

ptp_clock_properties_t clock_properties Clock properties used in Best
Master Clock Algorithm.

uint8_t clock_id[8] Clock ID that the message was
sent from.

uint16_t steps_removed The number of boundary clocks
between the clock and the
grand master clock.

uint8_t time_source The source of time (Eg.
INTERNAL_OSC).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,108 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_message_signaling_t

struct ptp_message_signaling_t

Signaling Message Type (0x0C).

Data Fields

uint8_t target_clock_id[8] ID of the target PTP instance.

uint16_t target_port_id Port of the target PTP instance.

◆ ptp_message_management_t

struct ptp_message_management_t

Management Message Type (0x0D).

Data Fields

uint8_t target_clock_id[8] ID of the target PTP instance.

uint16_t target_port_id Port of the target PTP instance.

uint8_t starting_boundary_hops The starting number of times
the message is retransmitted
by boundary clocks.

uint8_t boundary_hops The remaining number of
retransmissions.

uint8_t action The action that will be taken on
reception of the message.

uint8_t reserved

◆ ptp_message_t

struct ptp_message_t

Complete PTP Message.

Data Fields

ptp_message_header_t header Header of the message.

union ptp_message_t __unnamed__

◆ ptp_callback_args_t

struct ptp_callback_args_t

Arguments passed to p_ptp_callback.

Data Fields

ptp_event_t event Event that caused the callback.

ptp_message_t const * p_message The message received (PTP
message fields will be little
endian).

uint8_t const * p_tlv_data Start of TLV data (TLV data will
be big endian).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,109 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

uint16_t tlv_data_size Total bytes of TLV data.

uint32_t pulse_timer_channel Channel of the pulse timer that
caused
ptp_event_t::PTP_EVENT_PULSE
_TIMER_MINT_RISING_EDGE.

void const * p_context Context value set in the
configuration.

◆ ptp_pulse_timer_common_cfg_t

struct ptp_pulse_timer_common_cfg_t

Structure for configuring the IPLS IRQ settings that are common to all pulse timer channels.

Data Fields

ptp_enable_t ipls_rising_irq Enable the IPLS IRQ when a
rising edge is detected.

ptp_enable_t ipls_falling_irq Enable the IPLS IRQ when a
falling edge is detected.

ptp_enable_t ipls_rising_irq_auto_clear Auto disable the rising edge IRQ
after the first rising edge is
detected.

ptp_enable_t ipls_falling_irq_auto_clear Auto disable the falling edge
IRQ after the first falling edge is
detected.

◆ ptp_pulse_timer_cfg_t

struct ptp_pulse_timer_cfg_t

Structure for configuring a pulse timer channel.

Data Fields

ptp_time_t start_time The exact time when the timer
will start.

uint32_t period The period of the timer in
nanoseconds.

uint32_t pulse The pulse width of the timer in
nanoseconds.

ptp_enable_t mint_rising_irq Enable MINT rising edge IRQ.

ptp_enable_t ipls_rising_event Enable IPLS rising edge ELC
event.

ptp_enable_t ipls_falling_event Enable IPLS falling edge ELC
event.

ptp_enable_t ipls_rising_event_auto_clear Enable IPLS rising edge ELC
event.

ptp_enable_t ipls_falling_event_auto_clear Enable IPLS falling edge ELC
event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,110 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

ptp_enable_t ipls_irq_source Enable using this channel as a
source for the IPLS IRQ.

◆ ptp_sync_state_cfg_t

struct ptp_sync_state_cfg_t

Configuration settings for determining when the PTP clock is synchronized.

Data Fields

uint64_t threshold The maximum clock offset
required to transition between
synchronization states.

uint8_t count The number of times the clock
must be above the threshold in
order to transition between
synchronization states.

◆ ptp_synfp_cfg_t

struct ptp_synfp_cfg_t

Configuration settings for the SYNFP.

Data Fields

ptp_ethernet_phy_interface_t ethernet_phy_interface The type of interface used to
communicate with the PHY.

ptp_frame_format_t frame_format Frame format used to transport
PTP messages.

ptp_frame_filter_mode_t frame_filter Frame filter mode.

uint8_t clock_domain Clock domain that the clock
operates in.

ptp_enable_t clock_domain_filter Filter out messages from other
clock domains.

ptp_message_interval_t announce_interval Interval for transmitting
announce messages.

ptp_message_interval_t sync_interval Interval for transmitting sync
messages.

ptp_message_interval_t delay_req_interval Interval for transmitting
delay_req messages.

uint32_t message_timeout Timeout in milliseconds for
receiving PTP messages.

ptp_clock_properties_t clock_properties Clock properties used in
annonce messages.

uint8_t timesource TimeSource field used in
announce messages.

uint8_t * p_multicast_addr_filter Filter for multicast packets.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,111 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

struct ptp_synfp_cfg_t ether Valid if frame_format is set to
Ethernet II or IEEE 802.3.

struct ptp_synfp_cfg_t ipv4 Valid if frame_format is set to
IPV4_UDP.

◆ ptp_synfp_cfg_t.ether

struct ptp_synfp_cfg_t.ether

Valid if frame_format is set to Ethernet II or IEEE 802.3.

Data Fields

uint8_t * p_primary_mac_addr The MAC address to send
primary messages.

uint8_t * p_pdelay_mac_addr The MAC address to send p2p
messages.

◆ ptp_synfp_cfg_t.ipv4

struct ptp_synfp_cfg_t.ipv4

Valid if frame_format is set to IPV4_UDP.

Data Fields

uint32_t primary_ip_addr The IP address to send primary
messages.

uint32_t pdelay_ip_addr The IP address to send pdelay
messages.

uint8_t event_tos Type of service for event
messages.

uint8_t general_tos Type of service for general
messages.

uint8_t primary_ttl Time to live for primary
messages.

uint8_t pdelay_ttl Time to live for pdelay
messages.

uint16_t event_udp_port The port to send event
messages.

uint16_t general_udp_port The port to send general
messages.

◆ ptp_stca_cfg_t

struct ptp_stca_cfg_t

Configuration settings for the STCA.

Data Fields

ptp_stca_clock_freq_t clock_freq Select the clock frequency of
the STCA.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,112 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

ptp_stca_clock_sel_t clock_sel Select the input clock to the
STCA.

ptp_clock_correction_mode_t clock_correction_mode Select the clock correction
mode.

uint8_t gradient_worst10_interval Select the interval for the
gradient worst10 acquisition.

ptp_sync_state_cfg_t sync_threshold Configure the synchronization
threshold.

ptp_sync_state_cfg_t sync_loss_threshold Configure the SYnchronization
lost threshold.

◆ ptp_cfg_t

struct ptp_cfg_t

User configuration structure, used in open function

Data Fields

ptp_synfp_cfg_t synfp

 Configuration settings for the SYNFP.

ptp_stca_cfg_t stca

 Configuration settings for the STCA.

edmac_instance_t * p_edmac_instance

 Pointer to PTP edmac instance.

uint16_t buffer_size

 The maximum Ethernet packet size that can be transmitted or
received.

uint8_t ** p_rx_buffers

 Pointer to list of buffers used to receive PTP packets.

uint8_t ** p_tx_buffers

 Pointer to list of buffers used to transmit PTP packets.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,113 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

IRQn_Type mint_irq

 Interrupt number for PTP event IRQ.

IRQn_Type ipls_irq

 Interrupt number for PTP timer IRQ.

uint8_t mint_ipl

 Interrupt priority of the PTP event IRQ.

uint8_t ipls_ipl

 Interrupt priority of the PTP timer IRQ.

void(* p_callback)(ptp_callback_args_t *p_args)

Field Documentation

◆ p_callback

void(* ptp_cfg_t::p_callback) (ptp_callback_args_t *p_args)

Callback for handling received PTP events.

◆ ptp_api_t

struct ptp_api_t

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

fsp_err_t(* macAddrSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

fsp_err_t(* ipAddrSet)(ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

fsp_err_t(* localClockIdSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,114 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

p_clock_id)

fsp_err_t(* masterClockIdSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id, uint16_t port_id)

fsp_err_t(* messageFlagsSet)(ptp_ctrl_t *const p_ctrl, ptp_message_type_t
message_type, ptp_message_flags_t flags)

fsp_err_t(* currentUtcOffsetSet)(ptp_ctrl_t *const p_ctrl, uint16_t offset)

fsp_err_t(* portStateSet)(ptp_ctrl_t *const p_ctrl, uint32_t state)

fsp_err_t(* messageSend)(ptp_ctrl_t *const p_ctrl, ptp_message_t const *const
p_message, uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

fsp_err_t(* localClockValueSet)(ptp_ctrl_t *const p_ctrl, ptp_time_t const *const
p_time)

fsp_err_t(* localClockValueGet)(ptp_ctrl_t *const p_ctrl, ptp_time_t *const
p_time)

fsp_err_t(* pulseTimerCommonConfig)(ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *p_timer_cfg)

fsp_err_t(* pulseTimerEnable)(ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

fsp_err_t(* pulseTimerDisable)(ptp_ctrl_t *const p_ctrl, uint32_t channel)

fsp_err_t(* close)(ptp_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,115 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ open

fsp_err_t(* ptp_api_t::open) (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

Initial configuration.

Note
To reconfigure after calling this function, call ptp_api_t::close first.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ macAddrSet

fsp_err_t(* ptp_api_t::macAddrSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_mac_addr)

Set the MAC address for the PTP.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_hw_addr Pointer to the 6 byte MAC
address.

◆ ipAddrSet

fsp_err_t(* ptp_api_t::ipAddrSet) (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

Set the IP address for the PTP.

Parameters
[in] p_ctrl Pointer to control structure.

[in] ip_addr 32 bit IPv4 address of the
PTP.

◆ localClockIdSet

fsp_err_t(* ptp_api_t::localClockIdSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id)

Set the local clock ID (Usually based off of the PTP MAC address).

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_clock_id Pointer to 8 byte clock ID.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,116 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ masterClockIdSet

fsp_err_t(* ptp_api_t::masterClockIdSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id,
uint16_t port_id)

Set the master clock ID (Usually obtained from previously received announce message).

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_clock_id Pointer to 8 byte clock ID.

[in] port_id The port on the master
clock.

◆ messageFlagsSet

fsp_err_t(* ptp_api_t::messageFlagsSet) (ptp_ctrl_t *const p_ctrl, ptp_message_type_t
message_type, ptp_message_flags_t flags)

Set the flags field for the given message type.

Parameters
[in] p_ctrl Pointer to control structure.

[in] message_type The message type.

[in] flags Flags to set.

◆ currentUtcOffsetSet

fsp_err_t(* ptp_api_t::currentUtcOffsetSet) (ptp_ctrl_t *const p_ctrl, uint16_t offset)

Sets the offsetFromMaster field in announce messages.

Parameters
[in] p_ctrl Pointer to control structure.

[in] offset New currentUtcOffset value.

◆ portStateSet

fsp_err_t(* ptp_api_t::portStateSet) (ptp_ctrl_t *const p_ctrl, uint32_t state)

Transition to a new clock state.

Parameters
[in] p_ctrl Pointer to control structure.

[in] state The state to transition into.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,117 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ messageSend

fsp_err_t(* ptp_api_t::messageSend) (ptp_ctrl_t *const p_ctrl, ptp_message_t const *const
p_message, uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

Send a PTP message. Appropriate fields in the PTP message will be endian swapped. The
application must ensure that the TLV data is in big endian format.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_message Pointer to a PTP message.

[in] p_tlv_data Pointer to TLV data that is
appended to the end of the
PTP message.

[in] tlv_data_size Size of the TLV data in bytes.

◆ localClockValueSet

fsp_err_t(* ptp_api_t::localClockValueSet) (ptp_ctrl_t *const p_ctrl, ptp_time_t const *const p_time)

Set the local clock value.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_time Pointer to the new time
setting.

◆ localClockValueGet

fsp_err_t(* ptp_api_t::localClockValueGet) (ptp_ctrl_t *const p_ctrl, ptp_time_t *const p_time)

Get the local clock value.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_time Pointer to store the current
time setting.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,118 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ pulseTimerCommonConfig

fsp_err_t(* ptp_api_t::pulseTimerCommonConfig) (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *p_timer_cfg)

Configuration that is common to all of the pulse timers.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_timer_cfg Pointer to the pulse timer
common configuration.

◆ pulseTimerEnable

fsp_err_t(* ptp_api_t::pulseTimerEnable) (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

Setup a pulse timer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] channel The pulse timer channel to
setup.

[in] p_timer_cfg Pointer to the pulse timer
configuration.

◆ pulseTimerDisable

fsp_err_t(* ptp_api_t::pulseTimerDisable) (ptp_ctrl_t *const p_ctrl, uint32_t channel)

Stop a pulse timer.

Parameters
[in] p_ctrl Pointer to control structure.

[in] channel The pulse timer channel to
stop.

◆ close

fsp_err_t(* ptp_api_t::close) (ptp_ctrl_t *const p_ctrl)

Stop PTP operation.

Parameters
[in] p_ctrl Pointer to control structure.

◆ ptp_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,119 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

struct ptp_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ptp_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ptp_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ptp_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ptp_ctrl_field_t

typedef enum PTP_PACKED e_ptp_ctrl_field ptp_ctrl_field_t

The control field for PTP message header.

◆ ptp_message_delay_req_t

typedef ptp_message_sync_t ptp_message_delay_req_t

Delay_req Message Type (0x01).

◆ ptp_message_follow_up_t

typedef ptp_message_sync_t ptp_message_follow_up_t

Follow_up Message Type (0x08).

◆ ptp_message_delay_resp_t

typedef ptp_message_pdelay_resp_t ptp_message_delay_resp_t

Delay_resp Message Type (0x09).

◆ ptp_message_pdelay_resp_follow_up_t

typedef ptp_message_delay_resp_t ptp_message_pdelay_resp_follow_up_t

PDelay_resp_follow_up Message Type (0x0A).

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,120 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_message_type_t

enum ptp_message_type_t

Standard PTP message types.

Enumerator

PTP_MESSAGE_TYPE_SYNC Sync Message Type.

PTP_MESSAGE_TYPE_DELAY_REQ Delay_req Message Type.

PTP_MESSAGE_TYPE_PDELAY_REQ PDelay_req Message Type.

PTP_MESSAGE_TYPE_PDELAY_RESP PDelay_resp Message Type.

PTP_MESSAGE_TYPE_FOLLOW_UP Follow_up Message Type.

PTP_MESSAGE_TYPE_DELAY_RESP Delay_resp Message Type.

PTP_MESSAGE_TYPE_PDELAY_RESP_FOLLOW_UP PDelay_resp_follow_up Message Type.

PTP_MESSAGE_TYPE_ANNOUNCE Announce Message Type.

PTP_MESSAGE_TYPE_SIGNALING Signaling Message Type.

PTP_MESSAGE_TYPE_MANAGEMENT Management Message Type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,121 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_port_state_t

enum ptp_port_state_t

Possible states that the PTP instance can be in.

Enumerator

PTP_PORT_STATE_GENERATE_ANNOUNCE Generate Announce Messages.

PTP_PORT_STATE_GENERATE_SYNC Generate Sync Messages.

PTP_PORT_STATE_GENERATE_DELAY_REQ Generate Delay_req Messages.

PTP_PORT_STATE_GENERATE_PDELAY_REQ Generate PDelay_req Messages.

PTP_PORT_STATE_RECEIVE_ANNOUNCE Receive Announce Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_SYNC Receive Sync Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_FOLLOW_UP Receive Follow_up Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_DELAY_REQ Receive Delay_req Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_DELAY_RESP Receive Delay_resp Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_REQ Receive PDelay_req Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_RESP Receive PDelay_resp Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_RESP_FOLLO
W_UP

Receive PDelay_resp_follow_up Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_MANAGEMENT Receive Management Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_SIGNALING Receive Signaling Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_PROCESS_SYNC Enable Sync Message processing.

PTP_PORT_STATE_PROCESS_FOLLOW_UP Enable Follow_up Message processing.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,122 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

PTP_PORT_STATE_PROCESS_DELAY_REQ Enable Delay_req Message processing.

PTP_PORT_STATE_PROCESS_DELAY_RESP Enable Delay_resp Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_REQ Enable PDelay_req Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_RESP Enable PDelay_resp Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_RESP_FOLL
OW_UP

Enable PDelay_resp_follow_up Message
processing.

PTP_PORT_STATE_PASSIVE Configure the PTP instance to only receive
Announce, Management, and Signaling
Messages.

PTP_PORT_STATE_E2E_MASTER Configure the PTP instance to operate as a E2E
Master.

PTP_PORT_STATE_E2E_SLAVE Configure the PTP instance to operate as a E2E
Slave.

PTP_PORT_STATE_P2P_MASTER Configure the PTP instance to operate as a P2P
Master.

PTP_PORT_STATE_P2P_SLAVE Configure the PTP instance to operate as a P2P
Slave.

PTP_PORT_STATE_RECEIVE_ALL Configure the PTP instance to receive all
messages.

PTP_PORT_STATE_DISABLE Disable all PTP message generation,
processing, and reception.

◆ ptp_clock_delay_mechanism_t

enum ptp_clock_delay_mechanism_t

The mechanism used for delay messages.

Enumerator

PTP_CLOCK_DELAY_MECHANISM_E2E End to end delay mechanism.

PTP_CLOCK_DELAY_MECHANISM_P2P Peer to peer delay mechanism.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,123 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_frame_format_t

enum ptp_frame_format_t

Frame formats that PTP messages can be encapsulated in.

Enumerator

PTP_FRAME_FORMAT_ETHERII Send PTP messages using Ethernet II frames.

PTP_FRAME_FORMAT_IEEE802_3 Send PTP messages using IEEE802_3 frames.

PTP_FRAME_FORMAT_ETHERII_IPV4_UDP Send PTP messages using Ethernet II frames
with an IP and UDP header.

PTP_FRAME_FORMAT_IEEE802_3_IPV4_UDP Send PTP messages using IEEE802.3 frames
with an IP and UDP header.

◆ ptp_frame_filter_mode_t

enum ptp_frame_filter_mode_t

Filter PTP messages based on destination MAC address. Messages that pass the filter will be
transferred to the ETHERC EDMAC.

Enumerator

PTP_FRAME_FILTER_MODE_EXT_PROMISCUOUS_
MODE

Receive all packets.

PTP_FRAME_FILTER_MODE_UNICAST_MULTICAST Receive all unicast packets destined for the
PTP and all multicast packets.

PTP_FRAME_FILTER_MODE_UNICAST_MULTICAST
_FILTERED

Receive Unicast packets destined for the PTP
and filter configured multicast packets.

PTP_FRAME_FILTER_MODE_UNICAST Receive unicast packets destined for the PTP.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,124 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_stca_clock_freq_t

enum ptp_stca_clock_freq_t

STCA input clock frequency.

Enumerator

PTP_STCA_CLOCK_FREQ_20MHZ 20 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_25MHZ 25 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_50MHZ 50 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_100MHZ 100 Mhz Input Clock

◆ ptp_stca_clock_sel_t

enum ptp_stca_clock_sel_t

STCA input clock selection.

Enumerator

PTP_STCA_CLOCK_SEL_PCLKA_DIV_1 PCLKA.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_2 PCLKA Divided by 2.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_3 PCLKA Divided by 3.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_4 PCLKA Divided by 4.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_5 PCLKA Divided by 5.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_6 PCLKA Divided by 6.

PTP_STCA_CLOCK_SEL_REF50CK0 50-MHz Reference Signal for timing in RMII
mode (STCA clock frequency is 25 Mhz when
REF50CK0 is used).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,125 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_message_interval_t

enum ptp_message_interval_t

Message interval for transmitting PTP messages.

Enumerator

PTP_MESSAGE_INTERVAL_1_128 1 / 128 seconds

PTP_MESSAGE_INTERVAL_1_64 1 / 64 seconds

PTP_MESSAGE_INTERVAL_1_32 1 / 32 seconds

PTP_MESSAGE_INTERVAL_1_16 1 / 16 seconds

PTP_MESSAGE_INTERVAL_1_8 1 / 8 seconds

PTP_MESSAGE_INTERVAL_1_4 1 / 4 seconds

PTP_MESSAGE_INTERVAL_1_2 1 / 2 seconds

PTP_MESSAGE_INTERVAL_1 1 seconds

PTP_MESSAGE_INTERVAL_2 2 seconds

PTP_MESSAGE_INTERVAL_4 4 seconds

PTP_MESSAGE_INTERVAL_8 8 seconds

PTP_MESSAGE_INTERVAL_16 16 seconds

PTP_MESSAGE_INTERVAL_32 32 seconds

PTP_MESSAGE_INTERVAL_64 64 seconds

◆ ptp_clock_correction_mode_t

enum ptp_clock_correction_mode_t

Clock correction mode.

Enumerator

PTP_CLOCK_CORRECTION_MODE1 Correct the local clock using the current
offsetFromMaster value.

PTP_CLOCK_CORRECTION_MODE2 Correct the local clock using the calculated
clock gradient.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,126 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

◆ ptp_event_t

enum ptp_event_t

PTP events provided by ptp_cfg_t::p_callback.

Enumerator

PTP_EVENT_SYNC_ACQUIRED The local clock is synchronized to the master
clock.

PTP_EVENT_SYNC_LOST The local clock is not synchronized to the
master clcok.

PTP_EVENT_SYNC_MESSAGE_TIMEOUT A sync message has not been received for the
configured time.

PTP_EVENT_WORST10_ACQUIRED Gradient worst10 values has been calcualted.

PTP_EVENT_OFFSET_FROM_MASTER_UPDATED The offset from the master clock has been
updated.

PTP_EVENT_LOG_MESSAGE_INT_CHANGED The message interval was changed.

PTP_EVENT_MEAN_PATH_DELAY_UPDATED The mean path delay has been updated.

PTP_EVENT_DELAY_RESP_TIMEOUT A delay_resp has not been received for the
configured time.

PTP_EVENT_LOG_MESSAGE_INT_OUT_OF_RANGE The updated message interval is out of range.

PTP_EVENT_DELAY_REQ_FIFO_OVERFLOW The FIFO buffer for storing information from
received Delay_Req messages holds 32 or
more entries.

PTP_EVENT_LOOP_RECEPTION_DETECTED A packet with the same sourcePortIdendity as
the local clock was received.

PTP_EVENT_CTRL_INFO_ABNORMALITY A malformed frame was received (EDMAC,
ETHERC, and EPTPC must be reset).

PTP_EVENT_DELAY_RESP_PROCESSING_HALTED Processing of delay_resp messages has been
halted.

PTP_EVENT_MESSAGE_GENERATION_HALTED Generation of messages has been halted.

PTP_EVENT_MESSAGE_RECEIVED A PTP message was received from the EDMAC.

PTP_EVENT_MESSAGE_TRANSMIT_COMPLETE A PTP message has been transmitted.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,127 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > PTP Interface

PTP_EVENT_PULSE_TIMER_MINT_RISING_EDGE A rising edge occurred on a pulse timer
channel.

PTP_EVENT_PULSE_TIMER_IPLS_COMMON A rising or falling edge occurred on any pulse
timer channel.

◆ ptp_ethernet_phy_interface_t

enum ptp_ethernet_phy_interface_t

The Ethernet PHY interface type.

Enumerator

PTP_ETHERNET_PHY_INTERFACE_MII Media-independant interface.

PTP_ETHERNET_PHY_INTERFACE_RMII Reduced media-independant interface.

Variable Documentation

◆ e_ptp_ctrl_field

enum PTP_PACKED e_ptp_ctrl_field

The control field for PTP message header.

5.3.11.8 WiFi Interface
Interfaces » Networking

Functions

WIFIReturnCode_t WIFI_On (void)

 Turns on Wi-Fi. More...

WIFIReturnCode_t WIFI_Off (void)

 Turns off Wi-Fi. More...

WIFIReturnCode_t WIFI_ConnectAP (const WIFINetworkParams_t *const
pxNetworkParams)

 Connects to the Wi-Fi Access Point (AP) specified in the input. More...

WIFIReturnCode_t WIFI_Disconnect (void)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,128 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

 Disconnects from the currently connected Access Point. More...

WIFIReturnCode_t WIFI_Reset (void)

 Resets the Wi-Fi Module. More...

WIFIReturnCode_t WIFI_SetMode (WIFIDeviceMode_t xDeviceMode)

 Sets the Wi-Fi mode. More...

WIFIReturnCode_t WIFI_GetMode (WIFIDeviceMode_t *pxDeviceMode)

 Gets the Wi-Fi mode. More...

WIFIReturnCode_t WIFI_NetworkAdd (const WIFINetworkProfile_t *const
pxNetworkProfile, uint16_t *pusIndex)

 Add a Wi-Fi Network profile. More...

WIFIReturnCode_t WIFI_NetworkGet (WIFINetworkProfile_t *pxNetworkProfile, uint16_t
usIndex)

 Get a Wi-Fi network profile. More...

WIFIReturnCode_t WIFI_NetworkDelete (uint16_t usIndex)

 Delete a Wi-Fi Network profile. More...

WIFIReturnCode_t WIFI_Ping (uint8_t *pucIPAddr, uint16_t usCount, uint32_t
ulIntervalMS)

 Ping an IP address in the network. More...

WIFIReturnCode_t WIFI_GetIPInfo (WIFIIPConfiguration_t *pxIPInfo)

 Get IP configuration (IP address, NetworkMask, Gateway and DNS
server addresses). More...

WIFIReturnCode_t WIFI_GetMAC (uint8_t *pucMac)

 Retrieves the Wi-Fi interface's MAC address. More...

WIFIReturnCode_t WIFI_GetHostIP (char *pcHost, uint8_t *pucIPAddr)

 Retrieves the host IP address from a host name using DNS. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,129 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

WIFIReturnCode_t WIFI_Scan (WIFIScanResult_t *pxBuffer, uint8_t ucNumNetworks)

 Perform a Wi-Fi network Scan. More...

WIFIReturnCode_t WIFI_StartAP (void)

 Start SoftAP mode. More...

WIFIReturnCode_t WIFI_StopAP (void)

 Stop SoftAP mode. More...

WIFIReturnCode_t WIFI_ConfigureAP (const WIFINetworkParams_t *const
pxNetworkParams)

 Configure SoftAP. More...

WIFIReturnCode_t WIFI_SetPMMode (WIFIPMMode_t xPMModeType, const void
*pvOptionValue)

 Set the Wi-Fi power management mode. More...

WIFIReturnCode_t WIFI_GetPMMode (WIFIPMMode_t *pxPMModeType, void
*pvOptionValue)

 Get the Wi-Fi power management mode. More...

WIFIReturnCode_t WIFI_RegisterEvent (WIFIEventType_t xEventType,
WIFIEventHandler_t xHandler)

 Register a Wi-Fi event Handler. More...

WIFIReturnCode_t WIFI_IsConnected (const WIFINetworkParams_t *pxNetworkParams)

 Check if the Wi-Fi is connected and the AP configuration matches the
query. More...

WIFIReturnCode_t WIFI_StartScan (WIFIScanConfig_t *pxScanConfig)

 Start a Wi-Fi scan. More...

WIFIReturnCode_t WIFI_GetScanResults (const WIFIScanResult_t **pxBuffer, uint16_t
*ucNumNetworks)

 Get Wi-Fi scan results. It should be called only after scan is
completed. Scan results are sorted in decreasing rssi order. More...

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,130 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

WIFIReturnCode_t WIFI_StartConnectAP (const WIFINetworkParams_t
*pxNetworkParams)

 Connect to the Wi-Fi Access Point (AP) specified in the input. More...

WIFIReturnCode_t WIFI_StartDisconnect (void)

 Wi-Fi station disconnects from AP. More...

WIFIReturnCode_t WIFI_GetConnectionInfo (WIFIConnectionInfo_t *pxConnectionInfo)

 Get Wi-Fi info of the connected AP. More...

WIFIReturnCode_t WIFI_GetRSSI (int8_t *pcRSSI)

 Get the RSSI of the connected AP. More...

WIFIReturnCode_t WIFI_GetStationList (WIFIStationInfo_t *pxStationList, uint8_t
*pcStationListSize)

 SoftAP mode get connected station list. More...

WIFIReturnCode_t WIFI_StartDisconnectStation (uint8_t *pucMac)

 AP mode disconnecting a station. More...

WIFIReturnCode_t WIFI_SetMAC (uint8_t *pucMac)

 Set Wi-Fi MAC addresses. More...

WIFIReturnCode_t WIFI_SetCountryCode (const char *pcCountryCode)

 Set country based configuration (including channel list, power table)
More...

WIFIReturnCode_t WIFI_GetCountryCode (char *pcCountryCode)

 Get the currently configured country code. More...

WIFIReturnCode_t WIFI_GetStatistic (WIFIStatisticInfo_t *pxStats)

 Get the Wi-Fi statistics. More...

WIFIReturnCode_t WIFI_GetCapability (WIFICapabilityInfo_t *pxCaps)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,131 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

 Get the Wi-Fi capability. More...

Detailed Description

Interface for common WiFi APIs.

Note
This API has been moved over from the deprecated AWS iot_wifi API. It may not fully conform to FSP standards.

Data Structures

struct WIFIWEPKey_t

struct WIFIWPAPassphrase_t

struct WIFINetworkParams_t

struct WIFIScanConfig_t

struct WIFIScanResult_t

struct WIFIStationInfo_t

struct WIFINetworkProfile_t

struct WIFIIPAddress_t

struct WIFIIPConfiguration_t

struct WIFIConnectionInfo_t

struct WiFiEventInfoReady_t

struct WiFiEventInfoScanDone_t

struct WiFiEventInfoConnected_t

struct WiFiEventInfoDisconnected_t

struct WiFiEventInfoConnectionFailed_t

struct WiFiEventInfoIPReady_t

struct WiFiEventInfoAPStateChanged_t

struct WiFiEventInfoAPStationConnected_t

struct WiFiEventInfoAPStationDisconnected_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,132 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

struct WiFiEventInfoRxDone_t

struct WiFiEventInfoTxDone_t

struct WIFIEvent_t

struct WIFIStatisticInfo_t

struct WIFICapabilityInfo_t

Macros

#define WIFI_WPS_SUPPORTED

 Wi-Fi lower level supported feature mask. More...

Typedefs

typedef void(* WIFIEventHandler_t) (WIFIEvent_t *xEvent)

 Wi-Fi event handler definition. More...

Enumerations

enum WIFIReturnCode_t

enum WIFISecurity_t

enum WIFIDeviceMode_t

enum WIFIPMMode_t

enum WIFIIPAddressType_t

enum WIFIReason_t

enum WIFIEventType_t

enum WIFIBand_t

enum WIFIPhyMode_t

enum WIFIBandwidth_t

Data Structure Documentation

◆ WIFIWEPKey_t

struct WIFIWEPKey_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,133 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

Wi-Fi WEP keys (64- and 128-bit keys only)

Data Fields

char cKey[wificonfigMAX_WEPKEY_LE
N]

WEP key (binary array, not C-
string)

uint8_t ucLength Key length.

◆ WIFIWPAPassphrase_t

struct WIFIWPAPassphrase_t

Wi-Fi WPA/WPA2 passphrase

Data Fields

char cPassphrase[wificonfigMAX_PAS
SPHRASE_LEN]

WPA passphrase (binary array,
not C-string)

uint8_t ucLength Passphrase length (must be
between 8 and 64 inclusive)

◆ WIFINetworkParams_t

struct WIFINetworkParams_t

Parameters passed to the WIFI_ConnectAP API for connection

Data Fields

uint8_t ucSSID[wificonfigMAX_SSID_LEN
]

SSID of the Wi-Fi network
(binary array, not C-string)

uint8_t ucSSIDLength SSID length.

WIFISecurity_t xSecurity Wi-Fi Security.

union WIFINetworkParams_t xPassword

uint8_t ucDefaultWEPKeyIndex Default WEP key index.

uint8_t ucChannel Channel number.

◆ WIFIScanConfig_t

struct WIFIScanConfig_t

Wi-Fi scan configuration

Data Fields

uint8_t ucSSID[wificonfigMAX_SSID_LEN
]

SSID for targeted scan (binary
array, not C-string)

uint8_t ucSSIDLength SSID length, 0 if broadcast
scan.

uint8_t ucChannel Channel to scan (0 means all
channels)

◆ WIFIScanResult_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,134 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

struct WIFIScanResult_t

Wi-Fi scan results

Data Fields

uint8_t ucSSID[wificonfigMAX_SSID_LEN
]

SSID of the Wi-Fi network
(binary array, not C-string)

uint8_t ucSSIDLength SSID length.

uint8_t ucBSSID[wificonfigMAX_BSSID_L
EN]

BSSID of the Wi-Fi network
(binary array, not C-string)

WIFISecurity_t xSecurity Security type of the Wi-Fi
network.

int8_t cRSSI Signal strength of the Wi-Fi
network.

uint8_t ucChannel Channel of the Wi-Fi network.

◆ WIFIStationInfo_t

struct WIFIStationInfo_t

Wi-Fi SoftAP connected station info

Data Fields

uint8_t ucMAC[wificonfigMAX_BSSID_LE
N]

MAC address of Wi-Fi station.

◆ WIFINetworkProfile_t

struct WIFINetworkProfile_t

Wi-Fi network parameters passed to the WIFI_NetworkAdd API

Data Fields

uint8_t ucSSID[wificonfigMAX_SSID_LEN
]

SSID of the Wi-Fi network to join
with a NULL termination.

uint8_t ucSSIDLength SSID length not including NULL
termination.

uint8_t ucBSSID[wificonfigMAX_BSSID_L
EN]

BSSID of the Wi-Fi network.

char cPassword[wificonfigMAX_PASS
PHRASE_LEN]

Password needed to join the AP.

uint8_t ucPasswordLength Password length not including
null termination.

WIFISecurity_t xSecurity Wi-Fi Security.

See also
WIFISecurity_t

◆ WIFIIPAddress_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,135 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

struct WIFIIPAddress_t

Wi-Fi station IP address format

Data Fields

WIFIIPAddressType_t xType IP address type (only
eWiFiIPAddressTypeV4 is
currently supported)

uint32_t ulAddress[IPV6_LENGTH] IP address in binary form, use
inet_ntop/inet_pton for
conversion.

◆ WIFIIPConfiguration_t

struct WIFIIPConfiguration_t

IP address configuration

Data Fields

WIFIIPAddress_t xIPAddress IP address.

WIFIIPAddress_t xNetMask Network mask.

WIFIIPAddress_t xGateway Gateway IP address.

WIFIIPAddress_t xDns1 First DNS server IP address.

WIFIIPAddress_t xDns2 Second DNS server IP address.

◆ WIFIConnectionInfo_t

struct WIFIConnectionInfo_t

Wi-Fi info of the connected AP

Data Fields

uint8_t ucSSID[wificonfigMAX_SSID_LEN
]

SSID of the Wi-Fi network
(binary array, not C-string)

uint8_t ucSSIDLength SSID length.

uint8_t ucBSSID[wificonfigMAX_BSSID_L
EN]

BSSID of the Wi-Fi network
(binary array, not C-string)

WIFISecurity_t xSecurity Wi-Fi Security.

uint8_t ucChannel Channel info.

◆ WiFiEventInfoReady_t

struct WiFiEventInfoReady_t

Wi-Fi event info for WI-FI ready

◆ WiFiEventInfoScanDone_t

struct WiFiEventInfoScanDone_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,136 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

Wi-Fi event info for scan done

◆ WiFiEventInfoConnected_t

struct WiFiEventInfoConnected_t

Wi-Fi event info for station connected to AP

◆ WiFiEventInfoDisconnected_t

struct WiFiEventInfoDisconnected_t

Wi-Fi event info for station disconnected from AP

Data Fields

WIFIReason_t xReason Reason code for station
disconnection.

◆ WiFiEventInfoConnectionFailed_t

struct WiFiEventInfoConnectionFailed_t

Wi-Fi event info for station connection failure

Data Fields

WIFIReason_t xReason Reason code for connection
failure.

◆ WiFiEventInfoIPReady_t

struct WiFiEventInfoIPReady_t

Wi-Fi event info for IP ready

Data Fields

WIFIIPAddress_t xIPAddress Station IP address from DHCP.

◆ WiFiEventInfoAPStateChanged_t

struct WiFiEventInfoAPStateChanged_t

Wi-Fi event info for AP state change

Data Fields

uint8_t ucState AP state: 0 = DOWN, 1 = UP.

◆ WiFiEventInfoAPStationConnected_t

struct WiFiEventInfoAPStationConnected_t

Wi-Fi event info for AP got a connected station

Data Fields

uint8_t ucMac[wificonfigMAX_BSSID_LE
N]

MAC address of connected
station.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,137 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WiFiEventInfoAPStationDisconnected_t

struct WiFiEventInfoAPStationDisconnected_t

Wi-Fi event info for AP got a disconnected station

Data Fields

uint8_t ucMac[wificonfigMAX_BSSID_LE
N]

MAC address of disconnected
station.

WIFIReason_t xReason Reason code for the
disconnection.

◆ WiFiEventInfoRxDone_t

struct WiFiEventInfoRxDone_t

Wi-Fi event info for receiving a frame in monitor mode (or normal mode with RX filter)

Data Fields

uint8_t * pucData Data buffer of received raw
frame.

uint32_t ulLength Length of the raw frame.

◆ WiFiEventInfoTxDone_t

struct WiFiEventInfoTxDone_t

Wi-Fi event info for finishing transmitting an injection frame

◆ WIFIEvent_t

struct WIFIEvent_t

Wi-Fi combined event data structure

◆ WIFIStatisticInfo_t

struct WIFIStatisticInfo_t

Wi-Fi Statistic info

Data Fields

uint32_t ulTxSuccessCount Number of TX successes, 0 if
unavailable.

uint32_t ulTxRetryCount Number of TX retries, 0 if
unavailable.

uint32_t ulTxFailCount Number of TX failures, 0 if
unavailable.

uint32_t ulRxSuccessCount Number of RX successes, 0 if
unavailable.

uint32_t ulRxCRCErrorCount Number of RX FCS errors, 0 if
unavailable.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,138 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

uint32_t ulMICErrorCount Number of MIC errors, 0 if
unavailable.

int8_t cNoise Average noise level in dBm,
-128 if unavailable.

uint16_t usPhyRate Maximum used PHY rate, 0 if
unavailable.

uint16_t usTxRate Average used TX rate, 0 if
unavailable.

uint16_t usRxRate Average used RX rate, 0 if
unavailable.

int8_t cRssi Average beacon RSSI in dBm,
-128 if unavailable.

uint8_t ucBandwidth Average used bandwidth, 0 if
unavailable.

uint8_t ucIdleTimePer Percent of idle time, 0 if
unavailable.

◆ WIFICapabilityInfo_t

struct WIFICapabilityInfo_t

Wi-Fi capabilities

Data Fields

WIFIBand_t xBand Supported band.

WIFIPhyMode_t xPhyMode Supported PHY mode.

WIFIBandwidth_t xBandwidth Supported bandwidth.

uint32_t ulMaxAggr Max aggregation length, 0 if no
aggregation support.

uint16_t usSupportedFeatures Supported features bitmap,
e.g., WIFI_WPS_SUPPORTED.

Macro Definition Documentation

◆ WIFI_WPS_SUPPORTED

#define WIFI_WPS_SUPPORTED

Wi-Fi lower level supported feature mask.

See also
WIFICapabilityInfo_t.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,139 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFIEventHandler_t

typedef void(* WIFIEventHandler_t) (WIFIEvent_t *xEvent)

Wi-Fi event handler definition.

Parameters
[in] xEvent - Wi-Fi event data structure.

Returns
None.

Enumeration Type Documentation

◆ WIFIReturnCode_t

enum WIFIReturnCode_t

Return code denoting API status.

Enumerator

eWiFiSuccess Success.

eWiFiFailure Failure.

eWiFiTimeout Timeout.

eWiFiNotSupported Not supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,140 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFISecurity_t

enum WIFISecurity_t

Wi-Fi Security types

Enumerator

eWiFiSecurityOpen Open - No Security.

eWiFiSecurityWEP WEP Security.

eWiFiSecurityWPA WPA Security.

eWiFiSecurityWPA2 WPA2 Security.

eWiFiSecurityWPA2_ent WPA2 Enterprise Security.

eWiFiSecurityWPA3 WPA3 Security.

eWiFiSecurityNotSupported Unknown Security.

◆ WIFIDeviceMode_t

enum WIFIDeviceMode_t

Wi-Fi device modes

Enumerator

eWiFiModeStation Station mode.

eWiFiModeAP Access point mode.

eWiFiModeP2P P2P mode.

eWiFiModeAPStation AP+Station (repeater) mode.

eWiFiModeNotSupported Unsupported mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,141 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFIPMMode_t

enum WIFIPMMode_t

Wi-Fi device power management modes

Enumerator

eWiFiPMNormal Normal mode.

eWiFiPMLowPower Low Power mode.

eWiFiPMAlwaysOn Always On mode.

eWiFiPMNotSupported Unsupported PM mode.

◆ WIFIIPAddressType_t

enum WIFIIPAddressType_t

Wi-Fi station IP address type

◆ WIFIReason_t

enum WIFIReason_t

Wi-Fi protocol reason codes

Enumerator

eWiFiReasonUnspecified Unspecified error.

eWiFiReasonAPNotFound Cannot find the target AP.

eWiFiReasonAuthExpired Previous auth invalid.

eWiFiReasonAuthLeaveBSS Deauth leaving BSS.

eWiFiReasonAuthFailed All other AUTH errors.

eWiFiReasonAssocExpired Disassoc due to inactivity.

eWiFiReasonAssocTooMany AP is overloaded.

eWiFiReasonAssocPowerCapBad Power capability unacceptable.

eWiFiReasonAssocSupChanBad Supported channel unacceptable.

eWiFiReasonAssocFailed

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,142 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

All other ASSOC errors.

eWiFiReasonIEInvalid Management frame IE invalid.

eWiFiReasonMICFailure MIC failure detected.

eWiFiReason4WayTimeout 4WAY handshake timeout

eWiFiReason4WayIEDiffer 4WAY handshake IE error

eWiFiReason4WayFailed All other 4WAY errors.

eWiFiReasonAKMPInvalid AKMP invalid.

eWiFiReasonPairwiseCipherInvalid Pairwise cipher invalid.

eWiFiReasonGroupCipherInvalid Group cipher invalid.

eWiFiReasonRSNVersionInvalid RSN version invalid.

eWiFiReasonRSNCapInvalid RSN capability invalid.

eWiFiReasonGroupKeyUpdateTimeout Group key update timeout.

eWiFiReasonCipherSuiteRejected Cipher violates security policy.

eWiFiReason8021XAuthFailed 802.1X auth errors

eWiFiReasonBeaconTimeout Beacon timeout.

eWiFiReasonLinkFailed All other link errors.

eWiFiReasonDHCPExpired DHCP license expired.

eWiFiReasonDHCPFailed All other DHCP errors.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,143 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFIEventType_t

enum WIFIEventType_t

Wi-Fi event types

Enumerator

eWiFiEventReady Wi-Fi is initialized or was reset in the lower
layer.

eWiFiEventScanDone Scan is finished.

eWiFiEventConnected Station is connected to the AP.

eWiFiEventDisconnected Station is disconnected from the AP.

eWiFiEventConnectionFailed Station connection has failed.

eWiFiEventIPReady DHCP is successful.

eWiFiEventAPStateChanged SoftAP state changed.

eWiFiEventAPStationConnected SoftAP got a new station.

eWiFiEventAPStationDisconnected SoftAP lost a new station.

eWiFiEventWPSSuccess WPS is completed successfully.

eWiFiEventWPSFailed WPS has failed.

eWiFiEventWPSTimeout WPS has timeout.

◆ WIFIBand_t

enum WIFIBand_t

Wi-Fi band

Enumerator

eWiFiBand2G 2.4G band

eWiFiBand5G 5G band

eWiFiBandDual Dual band.

eWiFiBandMax Unsupported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,144 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFIPhyMode_t

enum WIFIPhyMode_t

Wi-Fi PHY mode

Enumerator

eWiFiPhy11b 11B

eWiFiPhy11g 11G

eWiFiPhy11n 11N

eWiFiPhy11ac 11AC

eWiFiPhy11ax 11AX

eWiFiPhyMax Unsupported.

◆ WIFIBandwidth_t

enum WIFIBandwidth_t

Wi-Fi bandwidth

Enumerator

eWiFiBW20 20MHz only

eWiFiBW40 Max 40MHz.

eWiFiBW80 Max 80MHz.

eWiFiBW160 Max 80+80 or 160MHz.

eWiFiBWMax Unsupported.

Function Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,145 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_On()

WIFIReturnCode_t WIFI_On (void)

Turns on Wi-Fi.

This function turns on Wi-Fi module,initializes the drivers and must be called before calling any
other Wi-Fi API

Returns
eWiFiSuccess if Wi-Fi module was successfully turned on, failure code otherwise.

Turns on Wi-Fi.

This function turns on Wi-Fi module,initializes the drivers and must be called before calling any
other Wi-Fi API

Returns
eWiFiSuccess if Wi-Fi module was successfully turned on, failure code otherwise.

◆ WIFI_Off()

WIFIReturnCode_t WIFI_Off (void)

Turns off Wi-Fi.

This function turns off the Wi-Fi module. The Wi-Fi peripheral should be put in a low power or off
state in this routine.

Returns
eWiFiSuccess if Wi-Fi module was successfully turned off, failure code otherwise.

Turns off Wi-Fi.

This function turns off the Wi-Fi module. The Wi-Fi peripheral should be put in a low power or off
state in this routine.

Returns
eWiFiSuccess if Wi-Fi module was successfully turned off, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,146 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_ConnectAP()

WIFIReturnCode_t WIFI_ConnectAP (const WIFINetworkParams_t *const pxNetworkParams)

Connects to the Wi-Fi Access Point (AP) specified in the input.

The Wi-Fi should stay connected when the same Access Point it is currently connected to is
specified. Otherwise, the Wi-Fi should disconnect and connect to the new Access Point specified. If
the new Access Point specifed has invalid parameters, then the Wi-Fi should be disconnected.

Parameters
[in] pxNetworkParams Configuration to join AP.

Returns
eWiFiSuccess if connection is successful, failure code otherwise.

Example

WIFINetworkParams_t xNetworkParams;

WIFIReturnCode_t xWifiStatus;

xNetworkParams.pcSSID = "SSID String";

xNetworkParams.ucSSIDLength = SSIDLen;

xNetworkParams.pcPassword = "Password String";

xNetworkParams.ucPasswordLength = PassLength;

xNetworkParams.xSecurity = eWiFiSecurityWPA2;

xWifiStatus = WIFI_ConnectAP(&(xNetworkParams));

if(xWifiStatus == eWiFiSuccess)

{

 //Connected to AP.

}

See also
WIFINetworkParams_t

Connects to the Wi-Fi Access Point (AP) specified in the input.

The Wi-Fi should stay connected when the same Access Point it is currently connected to is specified.
Otherwise, the Wi-Fi should disconnect and connect to the new Access Point specified. If the new
Access Point specifed has invalid parameters, then the Wi-Fi should be disconnected.

Parameters
[in] pxNetworkParams Configuration to join AP.

Returns
eWiFiSuccess if connection is successful, failure code otherwise.

WIFINetworkParams_t xNetworkParams;

WIFIReturnCode_t xWifiStatus;

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,147 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

xNetworkParams.pcSSID = "SSID String";

xNetworkParams.ucSSIDLength = SSIDLen;

xNetworkParams.pcPassword = "Password String";

xNetworkParams.ucPasswordLength = PassLength;

xNetworkParams.xSecurity = eWiFiSecurityWPA2;

xWifiStatus = WIFI_ConnectAP(&(xNetworkParams));

if(xWifiStatus == eWiFiSuccess)

{

 //Connected to AP.

}

See also
WIFINetworkParams_t

◆ WIFI_Disconnect()

WIFIReturnCode_t WIFI_Disconnect (void)

Disconnects from the currently connected Access Point.

Returns
eWiFiSuccess if disconnection was successful or if the device is already disconnected,
failure code otherwise.

Disconnects from the currently connected Access Point.

Returns
eWiFiSuccess if disconnection was successful or if the device is already disconnected,
failure code otherwise.

◆ WIFI_Reset()

WIFIReturnCode_t WIFI_Reset (void)

Resets the Wi-Fi Module.

Returns
eWiFiSuccess if Wi-Fi module was successfully reset, failure code otherwise.

Resets the Wi-Fi Module.

Returns
eWiFiSuccess if Wi-Fi module was successfully reset, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,148 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_SetMode()

WIFIReturnCode_t WIFI_SetMode (WIFIDeviceMode_t xDeviceMode)

Sets the Wi-Fi mode.

Parameters
[in] xDeviceMode - Mode of the device Station

/ Access Point /P2P.

Example

WIFIReturnCode_t xWifiStatus;

xWifiStatus = WIFI_SetMode(eWiFiModeStation);

if(xWifiStatus == eWiFiSuccess)

{

 //device Set to station mode

}

Returns
eWiFiSuccess if Wi-Fi mode was set successfully, failure code otherwise.

◆ WIFI_GetMode()

WIFIReturnCode_t WIFI_GetMode (WIFIDeviceMode_t * pxDeviceMode)

Gets the Wi-Fi mode.

Parameters
[out] pxDeviceMode - return mode Station /

Access Point /P2P

Example

WIFIReturnCode_t xWifiStatus;

WIFIDeviceMode_t xDeviceMode;

xWifiStatus = WIFI_GetMode(&xDeviceMode);

if(xWifiStatus == eWiFiSuccess)

{

 //device mode is xDeviceMode

}

Returns
eWiFiSuccess if Wi-Fi mode was successfully retrieved, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,149 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_NetworkAdd()

WIFIReturnCode_t WIFI_NetworkAdd (const WIFINetworkProfile_t *const pxNetworkProfile, uint16_t
* pusIndex)

Add a Wi-Fi Network profile.

Adds a Wi-fi network to the network list in Non Volatile memory.

Parameters
[in] pxNetworkProfile - Network profile parameters

[out] pusIndex - Network profile index in
storage

Returns
Index of the profile storage on success, or failure return code on failure.

Example

WIFINetworkProfile_t xNetworkProfile = {0};

WIFIReturnCode_t xWiFiStatus;

uint16_t usIndex;

strncpy(xNetworkProfile.cSSID, "SSID_Name", SSIDLen));

xNetworkProfile.ucSSIDLength = SSIDLen;

strncpy(xNetworkProfile.cPassword, "PASSWORD",PASSLen);

xNetworkProfile.ucPasswordLength = PASSLen;

xNetworkProfile.xSecurity = eWiFiSecurityWPA2;

WIFI_NetworkAdd(&xNetworkProfile, &usIndex);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,150 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_NetworkGet()

WIFIReturnCode_t WIFI_NetworkGet (WIFINetworkProfile_t * pxNetworkProfile, uint16_t usIndex)

Get a Wi-Fi network profile.

Gets the Wi-Fi network parameters at the given index from network list in non-volatile memory.

Note
The WIFINetworkProfile_t data returned must have the the SSID and Password lengths specified as the length
without a null terminator.

Parameters
[out] pxNetworkProfile - pointer to return network

profile parameters

[in] usIndex - Index of the network
profile, must be between 0
to wificonfigMAX_NETWORK_
PROFILES

Returns
eWiFiSuccess if the network profile was successfully retrieved, failure code otherwise.

See also
WIFINetworkProfile_t

Example

WIFINetworkProfile_t xNetworkProfile = {0};

uint16_t usIndex = 3; //Get profile stored at index 3.

WIFI_NetworkGet(&xNetworkProfile, usIndex);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,151 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_NetworkDelete()

WIFIReturnCode_t WIFI_NetworkDelete (uint16_t usIndex)

Delete a Wi-Fi Network profile.

Deletes the Wi-Fi network profile from the network profile list at given index in non-volatile memory

Parameters
[in] usIndex - Index of the network

profile, must be between 0
to wificonfigMAX_NETWORK_
PROFILES.

If wificonfigMAX_NETWORK_PROFILES is the index, then all network profiles will be deleted.

Returns
eWiFiSuccess if successful, failure code otherwise. If successful, the interface IP address is
copied into the IP address buffer.

Example

uint16_t usIndex = 2; //Delete profile at index 2

WIFI_NetworkDelete(usIndex);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,152 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_Ping()

WIFIReturnCode_t WIFI_Ping (uint8_t * pucIPAddr, uint16_t usCount, uint32_t ulIntervalMS)

Ping an IP address in the network.

Parameters
[in] pucIPAddr IP Address array to ping.

[in] usCount Number of times to ping

[in] ulIntervalMS Interval in mili-seconds for
ping operation

Returns
eWiFiSuccess if ping was successful, other failure code otherwise.

Ping an IP address in the network.

Parameters
[in] pucIPAddr IP Address array to ping.

[in] usCount Number of times to ping

[in] ulIntervalMS Interval in milliseconds for
ping operation

Returns
eWiFiSuccess if ping was successful, other failure code otherwise.

◆ WIFI_GetIPInfo()

WIFIReturnCode_t WIFI_GetIPInfo (WIFIIPConfiguration_t * pxIPInfo)

Get IP configuration (IP address, NetworkMask, Gateway and DNS server addresses).

Parameters
[out] pxIPInfo - Current IP configuration.

Returns
eWiFiSuccess if successful and IP Address buffer has the interface's IP address, failure code
otherwise.

Example

WIFIIPConfiguration_t xIPInfo;

WIFI_GetIPInfo(&xIPInfo);

This is a synchronous call.

Parameters
[out] pxIPInfo - Current IP configuration.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,153 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

Returns
eWiFiSuccess if connection info was got successfully, failure code otherwise.

Parameters
[out] pxIPInfo - Current IP configuration.

Returns
eWiFiSuccess if successful and IP Address buffer has the interface's IP address, failure code
otherwise.

Example

WIFIIPConfiguration_t xIPInfo;

WIFI_GetIPInfo(&xIPInfo);

This is a synchronous call.

Parameters
[out] pxIPInfo - Current IP configuration.

Returns
eWiFiSuccess if connection info was got successfully, failure code otherwise.

Parameters
[out] pxIPInfo - Current IP configuration.

Returns
eWiFiSuccess if successful and IP Address buffer has the interface's IP address, failure code
otherwise.

Example

WIFIIPConfiguration_t xIPInfo;

WIFI_GetIPInfo(&xIPInfo);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,154 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_GetMAC()

WIFIReturnCode_t WIFI_GetMAC (uint8_t * pucMac)

Retrieves the Wi-Fi interface's MAC address.

Parameters
[out] pucMac MAC Address buffer sized 6

bytes.

Example

uint8_t ucMacAddressVal[wificonfigMAX_BSSID_LEN];

WIFI_GetMAC(&ucMacAddressVal[0]);

Returns
eWiFiSuccess if the MAC address was successfully retrieved, failure code otherwise. The
returned MAC address must be 6 consecutive bytes with no delimitters.

Retrieves the Wi-Fi interface's MAC address.

Parameters
[out] pucMac MAC Address buffer sized 6

bytes.

uint8_t ucMacAddressVal[wificonfigMAX_BSSID_LEN];

WIFI_GetMAC(&ucMacAddressVal[0]);

Returns
eWiFiSuccess if the MAC address was successfully retrieved, failure code otherwise. The
returned MAC address must be 6 consecutive bytes with no delimitters.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,155 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_GetHostIP()

WIFIReturnCode_t WIFI_GetHostIP (char * pcHost, uint8_t * pucIPAddr)

Retrieves the host IP address from a host name using DNS.

Parameters
[in] pcHost - Host (node) name.

[in] pucIPAddr - IP Address buffer.

Returns
eWiFiSuccess if the host IP address was successfully retrieved, failure code otherwise.

Example

uint8_t ucIPAddr[4];

WIFI_GetHostIP("amazon.com", &ucIPAddr[0]);

Retrieves the host IP address from a host name using DNS.

Parameters
[in] pcHost - Host (node) name.

[in] pucIPAddr - IP Address buffer.

Returns
eWiFiSuccess if the host IP address was successfully retrieved, failure code otherwise.

uint8_t ucIPAddr[4];

WIFI_GetHostIP("amazon.com", &ucIPAddr[0]);

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,156 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_Scan()

WIFIReturnCode_t WIFI_Scan (WIFIScanResult_t * pxBuffer, uint8_t ucNumNetworks)

Perform a Wi-Fi network Scan.

Parameters
[in] pxBuffer - Buffer for scan results.

[in] ucNumNetworks - Number of networks to
retrieve in scan result.

Returns
eWiFiSuccess if the Wi-Fi network scan was successful, failure code otherwise.

Note
The input buffer will have the results of the scan.

Example

const uint8_t ucNumNetworks = 10; //Get 10 scan results

WIFIScanResult_t xScanResults[ucNumNetworks];

WIFI_Scan(xScanResults, ucNumNetworks);

Perform a Wi-Fi network Scan.

Parameters
[in] pxBuffer - Buffer for scan results.

[in] ucNumNetworks - Number of networks to
retrieve in scan result.

Returns
eWiFiSuccess if the Wi-Fi network scan was successful, failure code otherwise.

Note
The input buffer will have the results of the scan.

const uint8_t ucNumNetworks = 10; //Get 10 scan results

WIFIScanResult_t xScanResults[ucNumNetworks];

WIFI_Scan(xScanResults, ucNumNetworks);

◆ WIFI_StartAP()

WIFIReturnCode_t WIFI_StartAP (void)

Start SoftAP mode.

Returns
eWiFiSuccess if SoftAP was successfully started, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,157 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_StopAP()

WIFIReturnCode_t WIFI_StopAP (void)

Stop SoftAP mode.

Returns
eWiFiSuccess if the SoftAP was successfully stopped, failure code otherwise.

◆ WIFI_ConfigureAP()

WIFIReturnCode_t WIFI_ConfigureAP (const WIFINetworkParams_t *const pxNetworkParams)

Configure SoftAP.

Parameters
[in] pxNetworkParams - Network parameters to

configure AP.

Returns
eWiFiSuccess if SoftAP was successfully configured, failure code otherwise.

Example

WIFINetworkParams_t xNetworkParams;

xNetworkParams.pcSSID = "SSID_Name";

xNetworkParams.pcPassword = "PASSWORD";

xNetworkParams.xSecurity = eWiFiSecurityWPA2;

xNetworkParams.cChannel = ChannelNum;

WIFI_ConfigureAP(&xNetworkParams);

◆ WIFI_SetPMMode()

WIFIReturnCode_t WIFI_SetPMMode (WIFIPMMode_t xPMModeType, const void * pvOptionValue)

Set the Wi-Fi power management mode.

Parameters
[in] xPMModeType - Power mode type.

[in] pvOptionValue - A buffer containing the
value of the option to set
depends on the mode type
example - beacon interval in
sec

Returns
eWiFiSuccess if the power mode was successfully configured, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,158 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_GetPMMode()

WIFIReturnCode_t WIFI_GetPMMode (WIFIPMMode_t * pxPMModeType, void * pvOptionValue)

Get the Wi-Fi power management mode.

Parameters
[out] pxPMModeType - pointer to get current

power mode set.

[out] pvOptionValue - optional value

Returns
eWiFiSuccess if the power mode was successfully retrieved, failure code otherwise.

◆ WIFI_RegisterEvent()

WIFIReturnCode_t WIFI_RegisterEvent (WIFIEventType_t xEventType, WIFIEventHandler_t
xHandler)

Register a Wi-Fi event Handler.

Parameters
[in] xEventType - Wi-Fi event type.

[in] xHandler - Wi-Fi event handler.

Returns
eWiFiSuccess if registration is successful, failure code otherwise.

◆ WIFI_IsConnected()

WIFIReturnCode_t WIFI_IsConnected (const WIFINetworkParams_t * pxNetworkParams)

Check if the Wi-Fi is connected and the AP configuration matches the query.

param[in] pxNetworkParams - Network parameters to query, if NULL then just check the Wi-Fi link
status.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,159 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_StartScan()

WIFIReturnCode_t WIFI_StartScan (WIFIScanConfig_t * pxScanConfig)

Start a Wi-Fi scan.

This is an asynchronous call, the result will be notified by an event.

See also
WiFiEventInfoScanDone_t.

Parameters
[in] pxScanConfig - Parameters for scan, NULL

if default scan (i.e. broadcast
scan on all channels).

Returns
eWiFiSuccess if scan was started successfully, failure code otherwise.

◆ WIFI_GetScanResults()

WIFIReturnCode_t WIFI_GetScanResults (const WIFIScanResult_t ** pxBuffer, uint16_t *
ucNumNetworks)

Get Wi-Fi scan results. It should be called only after scan is completed. Scan results are sorted in
decreasing rssi order.

Parameters
[out] pxBuffer - Handle to the READ ONLY

scan results buffer.

[out] ucNumNetworks - Actual number of networks
in the scan results.

Returns
eWiFiSuccess if the scan results were got successfully, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,160 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_StartConnectAP()

WIFIReturnCode_t WIFI_StartConnectAP (const WIFINetworkParams_t * pxNetworkParams)

Connect to the Wi-Fi Access Point (AP) specified in the input.

This is an asynchronous call, the result will be notified by an event.

See also
WiFiEventInfoConnected_t.

The Wi-Fi should stay connected when the specified AP is the same as the currently connected AP.
Otherwise, the Wi-Fi should disconnect and connect to the specified AP. If the specified AP has
invalid parameters, the Wi-Fi should be disconnected.

Parameters
[in] pxNetworkParams - Configuration of the

targeted AP.

Returns
eWiFiSuccess if connection was started successfully, failure code otherwise.

◆ WIFI_StartDisconnect()

WIFIReturnCode_t WIFI_StartDisconnect (void)

Wi-Fi station disconnects from AP.

This is an asynchronous call. The result will be notified by an event.

See also
WiFiEventInfoDisconnected_t.

Returns
eWiFiSuccess if disconnection was started successfully, failure code otherwise.

◆ WIFI_GetConnectionInfo()

WIFIReturnCode_t WIFI_GetConnectionInfo (WIFIConnectionInfo_t * pxConnectionInfo)

Get Wi-Fi info of the connected AP.

This is a synchronous call.

Parameters
[out] pxConnectionInfo - Wi-Fi info of the connected

AP.

Returns
eWiFiSuccess if connection info was got successfully, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,161 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_GetRSSI()

WIFIReturnCode_t WIFI_GetRSSI (int8_t * pcRSSI)

Get the RSSI of the connected AP.

This only works when the station is connected.

Parameters
[out] pcRSSI - RSSI of the connected AP.

Returns
eWiFiSuccess if RSSI was got successfully, failure code otherwise.

◆ WIFI_GetStationList()

WIFIReturnCode_t WIFI_GetStationList (WIFIStationInfo_t * pxStationList, uint8_t *
pcStationListSize)

SoftAP mode get connected station list.

Parameters
[out] pxStationList - Buffer for station list,

supplied by the caller.

[in,out] pcStationListSize - Input size of the list, output
number of connected
stations.

Returns
eWiFiSuccess if stations were got successfully (manybe none), failure code otherwise.

◆ WIFI_StartDisconnectStation()

WIFIReturnCode_t WIFI_StartDisconnectStation (uint8_t * pucMac)

AP mode disconnecting a station.

This is an asynchronous call, the result will be notified by an event.

See also
WiFiEventInfoAPStationDisconnected_t.

Parameters
[in] pucMac - MAC Address of the station

to be disconnected.

Returns
eWiFiSuccess if disconnection was started successfully, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,162 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_SetMAC()

WIFIReturnCode_t WIFI_SetMAC (uint8_t * pucMac)

Set Wi-Fi MAC addresses.

The given MAC address will become the station MAC address. The AP MAC address (i.e. BSSID) will
be the same MAC address but with the local bit set.

Parameters
[in] pucMac - Station MAC address.

Returns
eWiFiSuccess if MAC address was set successfully, failure code otherwise.

Note
On some platforms the change of MAC address can only take effect after reboot.

◆ WIFI_SetCountryCode()

WIFIReturnCode_t WIFI_SetCountryCode (const char * pcCountryCode)

Set country based configuration (including channel list, power table)

Parameters
[in] pcCountryCode - Country code (null-

terminated string, e.g. "US",
"CN". See ISO-3166).

Returns
eWiFiSuccess if Country Code is set successfully, failure code otherwise.

◆ WIFI_GetCountryCode()

WIFIReturnCode_t WIFI_GetCountryCode (char * pcCountryCode)

Get the currently configured country code.

Parameters
[out] pcCountryCode - Null-terminated string to

hold the country code (see
ISO-3166). Must be at least 4
bytes.

Returns
eWiFiSuccess if Country Code is retrieved successfully, failure code otherwise.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,163 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Networking > WiFi Interface

◆ WIFI_GetStatistic()

WIFIReturnCode_t WIFI_GetStatistic (WIFIStatisticInfo_t * pxStats)

Get the Wi-Fi statistics.

Parameters
[out] pxStats - Structure to hold the WiFi

statistics.

Returns
eWiFiSuccess if statistics are retrieved successfully, failure code otherwise.

◆ WIFI_GetCapability()

WIFIReturnCode_t WIFI_GetCapability (WIFICapabilityInfo_t * pxCaps)

Get the Wi-Fi capability.

Parameters
[out] pxCaps - Structure to hold the Wi-Fi

capabilities.

Returns
eWiFiSuccess if capabilities are retrieved successfully, failure code otherwise.

5.3.12 Power
Interfaces

Detailed Description

Power Interfaces.

Modules

Low Power Modes Interface

 Interface for accessing low power modes.

5.3.12.1 Low Power Modes Interface
Interfaces » Power

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,164 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

Detailed Description

Interface for accessing low power modes.

Summary
This section defines the API for the LPM (Low Power Mode) Driver. The LPM Driver provides functions
for controlling power consumption by configuring and transitioning to a low power mode. The LPM
driver supports configuration of MCU low power modes using the LPM hardware peripheral. The LPM
driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCUs.

Data Structures

struct lpm_ram_retention_t

struct lpm_ldo_standby_cfg_t

struct lpm_cfg_t

struct lpm_api_t

struct lpm_instance_t

Typedefs

typedef void lpm_ctrl_t

Enumerations

enum lpm_mode_t

enum lpm_snooze_request_t

enum lpm_snooze_end_t

enum lpm_snooze_cancel_t

enum lpm_snooze_dtc_t

enum lpm_standby_wake_source_t

enum lpm_io_port_t

enum lpm_power_supply_t

enum lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_source_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,165 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

enum lpm_output_port_enable_t

enum lpm_ldo_standby_operation_t

enum lpm_flash_mode_select_t

enum lpm_hoco_startup_speed_t

enum lpm_standby_sosc_t

Data Structure Documentation

◆ lpm_ram_retention_t

struct lpm_ram_retention_t

RAM Retention Configuration for deep sleep and standby modes.

Data Fields

uint16_t ram_retention Configure RAM retention in
software standby mode.

bool tcm_retention Enable or disable TCM retention
in deep sleep and software
standby modes.

◆ lpm_ldo_standby_cfg_t

struct lpm_ldo_standby_cfg_t

Configure LDO operation in standby mode.

Data Fields

lpm_ldo_standby_operation_t pll1_ldo Configure the state of PLL1 LDO
in standby mode.

lpm_ldo_standby_operation_t pll2_ldo Configure the state of PLL2 LDO
in standby mode.

lpm_ldo_standby_operation_t hoco_ldo Configure the state of HOCO
LDO in standby mode.

◆ lpm_cfg_t

struct lpm_cfg_t

User configuration structure, used in open function

Data Fields

lpm_mode_t low_power_mode Low Power Mode

lpm_standby_wake_source_bits_
t

standby_wake_sources Bitwise list of sources to wake
from deep sleep and standby
mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,166 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

lpm_snooze_request_t snooze_request_source Snooze request source

lpm_snooze_end_bits_t snooze_end_sources Bitwise list of snooze end
sources

lpm_snooze_cancel_t snooze_cancel_sources List of snooze cancel sources

lpm_snooze_dtc_t dtc_state_in_snooze State of DTC in snooze mode,
enabled or disabled

lpm_output_port_enable_t output_port_enable Output port enabled/disabled in
standby and deep standby

lpm_io_port_t io_port_state IO port state in deep standby
(maintained or reset)

lpm_power_supply_t power_supply_state Internal power supply state in
standby and deep standby
(deepcut)

lpm_deep_standby_cancel_sour
ce_bits_t

deep_standby_cancel_source Sources that can trigger exit
from deep standby

lpm_deep_standby_cancel_edge
_bits_t

deep_standby_cancel_edge Signal edges for the sources
that can trigger exit from deep
standby

lpm_ram_retention_t ram_retention_cfg RAM retention configuration for
deep sleep and standby
modes.

lpm_ldo_standby_cfg_t ldo_standby_cfg Configure LDOs that are
disabled in standby mode.

void const * p_extend Placeholder for extension.

◆ lpm_api_t

struct lpm_api_t

LPM driver structure. General LPM functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(lpm_ctrl_t *const p_ctrl, lpm_cfg_t const *const p_cfg)

fsp_err_t(* close)(lpm_ctrl_t *const p_ctrl)

fsp_err_t(* lowPowerReconfigure)(lpm_ctrl_t *const p_ctrl, lpm_cfg_t const
*const p_cfg)

fsp_err_t(* lowPowerModeEnter)(lpm_ctrl_t *const p_ctrl)

fsp_err_t(* ioKeepClear)(lpm_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,167 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

Field Documentation

◆ open

fsp_err_t(* lpm_api_t::open) (lpm_ctrl_t *const p_ctrl, lpm_cfg_t const *const p_cfg)

Initialization function

◆ close

fsp_err_t(* lpm_api_t::close) (lpm_ctrl_t *const p_ctrl)

Initialization function

◆ lowPowerReconfigure

fsp_err_t(* lpm_api_t::lowPowerReconfigure) (lpm_ctrl_t *const p_ctrl, lpm_cfg_t const *const p_cfg)

Configure a low power mode.

Parameters
[in] p_cfg Pointer to configuration

structure. All elements of
this structure must be set by
user.

◆ lowPowerModeEnter

fsp_err_t(* lpm_api_t::lowPowerModeEnter) (lpm_ctrl_t *const p_ctrl)

Enter low power mode (sleep/standby/deep standby) using WFI macro. Function will return after
waking from low power mode.

◆ ioKeepClear

fsp_err_t(* lpm_api_t::ioKeepClear) (lpm_ctrl_t *const p_ctrl)

Clear the IOKEEP bit after deep software standby.

◆ lpm_instance_t

struct lpm_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lpm_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lpm_cfg_t const *const p_cfg Pointer to the configuration
structure for this instance.

lpm_api_t const *const p_api Pointer to the API structure for
this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,168 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

Typedef Documentation

◆ lpm_ctrl_t

typedef void lpm_ctrl_t

LPM control block. Allocate an instance specific control block to pass into the LPM API calls.

Enumeration Type Documentation

◆ lpm_mode_t

enum lpm_mode_t

Low power modes

Enumerator

LPM_MODE_SLEEP Sleep mode.

LPM_MODE_DEEP_SLEEP Deep Sleep mode.

LPM_MODE_STANDBY Software Standby mode.

LPM_MODE_STANDBY_SNOOZE Software Standby mode with Snooze mode
enabled.

LPM_MODE_DEEP Deep Software Standby mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,169 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_snooze_request_t

enum lpm_snooze_request_t

Snooze request sources

Enumerator

LPM_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request.

LPM_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request.

LPM_SNOOZE_REQUEST_KEY Enable KR snooze request.

LPM_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request.

LPM_SNOOZE_REQUEST_RTC_ALARM1 Enable RTC alarm 1 snooze request.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,170 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

LPM_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request.

LPM_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request.

LPM_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request.

LPM_SNOOZE_REQUEST_AGTW1_UNDERFLOW Enable AGTW1 underflow snooze request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGTW1_COMPARE_A Enable AGTW1 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze
request.

LPM_SNOOZE_REQUEST_AGTW1_COMPARE_B Enable AGTW1 compare match B snooze
request.

LPM_SNOOZE_REQUEST_AGT3_UNDERFLOW Enable AGT3 underflow snooze request.

LPM_SNOOZE_REQUEST_AGT3_COMPARE_A Enable AGT3 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGT3_COMPARE_B Enable AGT3 compare match B snooze
request.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,171 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_snooze_end_t

enum lpm_snooze_end_t

Snooze end control

Enumerator

LPM_SNOOZE_END_STANDBY_WAKE_SOURCES Transition from Snooze to Normal mode
directly.

LPM_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow.

LPM_SNOOZE_END_AGTW1_UNDERFLOW AGTW1 underflow.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE_NEG
ATED

Not Last DTC transmission completion.

LPM_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match.

LPM_SNOOZE_END_ADC0_COMPARE_MISMATCH ADC Channel 0 compare mismatch.

LPM_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match.

LPM_SNOOZE_END_ADC1_COMPARE_MISMATCH ADC 1 compare mismatch.

LPM_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch.

LPM_SNOOZE_END_AGT3_UNDERFLOW AGT3 underflow.

◆ lpm_snooze_cancel_t

enum lpm_snooze_cancel_t

Snooze cancel control

Enumerator

LPM_SNOOZE_CANCEL_SOURCE_NONE No snooze cancel source.

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM ADC Channel 0 window compare match.

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM

ADC Channel 0 window compare mismatch.

LPM_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE

DTC transfer completion.

LPM_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,172 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_snooze_dtc_t

enum lpm_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPM_SNOOZE_DTC_DISABLE Disable DTC operation.

LPM_SNOOZE_DTC_ENABLE Enable DTC operation.

◆ lpm_standby_wake_source_t

enum lpm_standby_wake_source_t

Wake from deep sleep or standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPM_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt.

LPM_STANDBY_WAKE_SOURCE_IRQ0 IRQ0.

LPM_STANDBY_WAKE_SOURCE_IRQ1 IRQ1.

LPM_STANDBY_WAKE_SOURCE_IRQ2 IRQ2.

LPM_STANDBY_WAKE_SOURCE_IRQ3 IRQ3.

LPM_STANDBY_WAKE_SOURCE_IRQ4 IRQ4.

LPM_STANDBY_WAKE_SOURCE_IRQ5 IRQ5.

LPM_STANDBY_WAKE_SOURCE_IICA0 I2CA 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_RTC RTC interrupt.

LPM_STANDBY_WAKE_SOURCE_ITL Interval signal of 32-bit interval timer
Interrupt.

LPM_STANDBY_WAKE_SOURCE_UARTA0ERRI UARTA0 reception communication error
Interrupt.

LPM_STANDBY_WAKE_SOURCE_UARTA0TXI UARTA0 transmission transfer end or buffer
empty Interrupt.

LPM_STANDBY_WAKE_SOURCE_UARTA0RXI

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,173 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

UARTA0 reception transfer end Interrupt.

LPM_STANDBY_WAKE_SOURCE_IRQ0 IRQ0.

LPM_STANDBY_WAKE_SOURCE_IRQ1 IRQ1.

LPM_STANDBY_WAKE_SOURCE_IRQ2 IRQ2.

LPM_STANDBY_WAKE_SOURCE_IRQ3 IRQ3.

LPM_STANDBY_WAKE_SOURCE_IRQ4 IRQ4.

LPM_STANDBY_WAKE_SOURCE_IRQ5 IRQ5.

LPM_STANDBY_WAKE_SOURCE_IRQ6 IRQ6.

LPM_STANDBY_WAKE_SOURCE_IRQ7 IRQ7.

LPM_STANDBY_WAKE_SOURCE_IRQ8 IRQ8.

LPM_STANDBY_WAKE_SOURCE_IRQ9 IRQ9.

LPM_STANDBY_WAKE_SOURCE_IRQ10 IRQ10.

LPM_STANDBY_WAKE_SOURCE_IRQ11 IRQ11.

LPM_STANDBY_WAKE_SOURCE_IRQ12 IRQ12.

LPM_STANDBY_WAKE_SOURCE_IRQ13 IRQ13.

LPM_STANDBY_WAKE_SOURCE_IRQ14 IRQ14.

LPM_STANDBY_WAKE_SOURCE_IRQ15 IRQ15.

LPM_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt.

LPM_STANDBY_WAKE_SOURCE_KEY Key interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt.

LPM_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt.

LPM_STANDBY_WAKE_SOURCE_VRTC LVDVRTC interrupt.

LPM_STANDBY_WAKE_SOURCE_EXLVD LVDEXLVD interrupt.

LPM_STANDBY_WAKE_SOURCE_ACMPHS0

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,174 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

Analog Comparator High-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCALM1 RTC Alarm interrupt 1.

LPM_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt.

LPM_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_AGTW0UD AGTW0 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGTW1UD AGTW1 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGTW1CA AGTW1 Compare Match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGTW1CB AGTW1 Compare Match B interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1UD AGT1 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CA AGT1 Compare Match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CB AGT1 Compare Match B interrupt.

LPM_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT0UD AGT0 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3UD AGT3 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1UD_S AGT1 Underflow interrupt for specific board.

LPM_STANDBY_WAKE_SOURCE_AGT3CA AGT3 Compare Match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT2UD AGT2 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3CB AGT3 Compare Match B interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3UD_S AGT3 Underflow interrupt for specific board.

LPM_STANDBY_WAKE_SOURCE_COMPHS0 Comparator-HS0 Interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT4UD AGT4 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT5UD

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,175 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

AGT5 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT6UD AGT6 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT7UD AGT7 Underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_SOSTD SOSTD interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP0U ULPT0 Underflow Interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP0A ULPT0 Compare Match A Interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP0B ULPT0 Compare Match B Interrupt.

LPM_STANDBY_WAKE_SOURCE_I3C0 I3C0 address match interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP1U ULPT1 Underflow Interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP1A ULPT1 Compare Match A Interrupt.

LPM_STANDBY_WAKE_SOURCE_ULP1B ULPT1 Compare Match B Interrupt.

◆ lpm_io_port_t

enum lpm_io_port_t

I/O port state after Deep Software Standby mode

Enumerator

LPM_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state

LPM_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,176 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_power_supply_t

enum lpm_power_supply_t

Power supply control

Enumerator

LPM_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled

LPM_POWER_SUPPLY_DEEP_STANDBY_MODE1 Power to the standby RAM, Low-speed on-chip
oscillator, Programmable Voltage Detection
Unit 0, and USBFS/HS resume detecting unit is
supplied in deep software standby mode.

LPM_POWER_SUPPLY_DEEP_STANDBY_MODE2 Power to standby RAM, USBFS/HS resume
detecting unit, Low-speed on-chip oscillator,
and IWDT is disabled in deep software standby
mode. Power to the Programmable Voltage
Detection Unit 0 is supplied in deep software
standby mode.

LPM_POWER_SUPPLY_DEEP_STANDBY_MODE3 Power to standby RAM, Programmable Voltage
Detection Unit 0, USBFS/HS resume detecting
unit, Low-speed on-chip oscillator, and IWDT is
disabled in deep software standby mode.

◆ lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_EDGE_N
ONE

No options for a deep standby cancel source.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,177 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RIS
ING

IRQ0-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FA
LLING

IRQ0-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RIS
ING

IRQ1-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FA
LLING

IRQ1-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RIS
ING

IRQ2-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FA
LLING

IRQ2-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RIS
ING

IRQ3-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FA
LLING

IRQ3-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RIS
ING

IRQ4-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FA
LLING

IRQ4-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RIS
ING

IRQ5-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FA
LLING

IRQ5-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RIS
ING

IRQ6-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FA
LLING

IRQ6-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RIS
ING

IRQ7-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FA
LLING

IRQ7-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RIS
ING

IRQ8-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FA
LLING

IRQ8-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RIS
ING

IRQ9-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FA
LLING

IRQ9-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RI
SING

IRQ10-DS Pin Rising Edge.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,178 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_F
ALLING

IRQ10-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RI
SING

IRQ11-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_F
ALLING

IRQ11-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RI
SING

IRQ12-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_F
ALLING

IRQ12-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RI
SING

IRQ13-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_F
ALLING

IRQ13-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RI
SING

IRQ14-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_F
ALLING

IRQ14-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RI
SING

IRQ14-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_F
ALLING

IRQ14-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RI
SING

LVD1 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FA
LLING

LVD1 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RI
SING

LVD2 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FA
LLING

LVD2 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISI
NG

NMI Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_FAL
LING

NMI Pin Falling Edge.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,179 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_deep_standby_cancel_source_t

enum lpm_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_RESET_O
NLY

Cancel deep standby only by reset.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 IRQ10.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 IRQ11.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 IRQ12.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 IRQ13.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 IRQ14.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 IRQ15.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_INT
ERVAL

RTC Interval Interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,180 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALA
RM

RTC Alarm Interrupt.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBFS USBFS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBHS USBHS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow.

LPM_DEEP_STANDBY_CANCEL_SOURCE_AGT3 AGT3 Underflow.

LPM_DEEP_STANDBY_CANCEL_SOURCE_ULPT0 ULPT0 Overflow.

LPM_DEEP_STANDBY_CANCEL_SOURCE_ULPT1 ULPT1 Overflow.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IWDT IWDT Underflow.

LPM_DEEP_STANDBY_CANCEL_SOURCE_VBATT VBATT Tamper Detection.

◆ lpm_output_port_enable_t

enum lpm_output_port_enable_t

Output port enable

Enumerator

LPM_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE 0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPM_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,181 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_ldo_standby_operation_t

enum lpm_ldo_standby_operation_t

Configure the behavior of an oscillator's LDO in standby mode.

Enumerator

LPM_LDO_STANDBY_OPERATION_DISABLED The LDO is disabled in standby mode.

LPM_LDO_STANDBY_OPERATION_RETAINED The LDO state is retained during standby
mode.

◆ lpm_flash_mode_select_t

enum lpm_flash_mode_select_t

Flash operating mode select.

Enumerator

LPM_FLASH_MODE_SELECT_ACTIVE Flash active.

LPM_FLASH_MODE_SELECT_STOP Flash stop.

◆ lpm_hoco_startup_speed_t

enum lpm_hoco_startup_speed_t

Starting the high-speed on-chip oscillator at the times of release from SSTBY mode and of
transitions to SNOOZE mode.

Enumerator

LPM_HOCO_STARTUP_SPEED_NORMAL_SPEED Starting of the high-speed on-chip oscillator is
at normal speed.

LPM_HOCO_STARTUP_SPEED_HIGH_SPEED Starting of the high-speed on-chip oscillator is
at high speed.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,182 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Power > Low Power Modes Interface

◆ lpm_standby_sosc_t

enum lpm_standby_sosc_t

SOSC setting in SSTBY mode or in SNOOZE mode.

Enumerator

LPM_STANDBY_SOSC_ENABLE Enables supply of SOSC clock to peripheral
functions.

LPM_STANDBY_SOSC_DISABLE Stops supply SOSC clock to peripheral
functions other than the Realtime clock.

5.3.13 Security
Interfaces

Detailed Description

Security Interfaces.

Modules

RSIP Interface

 Interface for Renesas Secure IP (RSIP) functions.

RSIP key injection Interface

 Interface for key injection by Renesas Secure IP (RSIP) functions.

SCE Interface

 Interface for Secure Crypto Engine (SCE) functions.

SCE key injection Interface

 Interface for key injection by Secure Crypto Engine (SCE) functions.

5.3.13.1 RSIP Interface
Interfaces » Security

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,183 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

Detailed Description

Interface for Renesas Secure IP (RSIP) functions.

Summary
The RSIP interface provides RSIP functionality.

Data Structures

struct rsip_wrapped_key_t

struct rsip_key_update_key_t

struct rsip_sha_handle_t

struct rsip_hmac_handle_t

struct rsip_cfg_t

struct rsip_api_t

struct rsip_instance_t

Typedefs

typedef void rsip_ctrl_t

Enumerations

enum rsip_key_type_t

enum rsip_key_pair_type_t

enum rsip_byte_size_wrapped_key_t

enum rsip_aes_cipher_mode_t

enum rsip_aes_aead_mode_t

enum rsip_aes_mac_mode_t

enum rsip_hash_type_t

enum rsip_mgf_type_t

enum rsip_rsa_salt_length_t

enum rsip_otf_channel_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,184 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

Data Structure Documentation

◆ rsip_wrapped_key_t

struct rsip_wrapped_key_t

Wrapped key structure for all supported algorithms. The struct length of each algorithm is defined
in rsip_byte_size_wrapped_key_t.

◆ rsip_key_update_key_t

struct rsip_key_update_key_t

Key Update Key (KUK)

◆ rsip_sha_handle_t

struct rsip_sha_handle_t

Working area for SHA functions. DO NOT MODIFY.

◆ rsip_hmac_handle_t

struct rsip_hmac_handle_t

Working area for HMAC functions. DO NOT MODIFY.

◆ rsip_cfg_t

struct rsip_cfg_t

User configuration structure, used in open function

Data Fields

void const * p_extend Hardware-dependent
configuration.

◆ rsip_api_t

struct rsip_api_t

RSIP driver structure. General RSIP functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(rsip_ctrl_t *const p_ctrl, rsip_cfg_t const *const p_cfg)

fsp_err_t(* close)(rsip_ctrl_t *const p_ctrl)

fsp_err_t(* randomNumberGenerate)(rsip_ctrl_t *const p_ctrl, uint8_t *const
p_random)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,185 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

fsp_err_t(* keyGenerate)(rsip_ctrl_t *const p_ctrl, rsip_key_type_t const
key_type, rsip_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* keyPairGenerate)(rsip_ctrl_t *const p_ctrl, rsip_key_pair_type_t const
key_pair_type, rsip_wrapped_key_t *const p_wrapped_public_key,
rsip_wrapped_key_t *const p_wrapped_private_key)

fsp_err_t(* encryptedKeyWrap)(rsip_ctrl_t *const p_ctrl, rsip_key_update_key_t
const *const p_key_update_key, uint8_t const *const p_initial_vector,
rsip_key_type_t const key_type, uint8_t const *const
p_encrypted_key, rsip_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* rfc3394_KeyWrap)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_kek, rsip_wrapped_key_t const *const
p_wrapped_target_key, uint8_t *const
p_rfc3394_wrapped_target_key)

fsp_err_t(* rfc3394_KeyUnwrap)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_kek, rsip_key_type_t const key_type, uint8_t
const *const p_rfc3394_wrapped_target_key, rsip_wrapped_key_t
*const p_wrapped_target_key)

fsp_err_t(* injectedKeyImport)(rsip_key_type_t const key_type, uint8_t const
*const p_injected_key, rsip_wrapped_key_t *const p_wrapped_key,
uint32_t const wrapped_key_buffer_length)

fsp_err_t(* publicKeyExport)(rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t *const p_raw_public_key)

fsp_err_t(* aesCipherInit)(rsip_ctrl_t *const p_ctrl, rsip_aes_cipher_mode_t const
mode, rsip_wrapped_key_t const *const p_wrapped_key, uint8_t
const *const p_initial_vector)

fsp_err_t(* aesCipherUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_input, uint8_t *const p_output, uint32_t const length)

fsp_err_t(* aesCipherFinish)(rsip_ctrl_t *const p_ctrl)

fsp_err_t(* aesAeadInit)(rsip_ctrl_t *const p_ctrl, rsip_aes_aead_mode_t const
mode, rsip_wrapped_key_t const *const p_wrapped_key, uint8_t
const *const p_nonce, uint32_t const nonce_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,186 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

fsp_err_t(* aesAeadLengthsSet)(rsip_ctrl_t *const p_ctrl, uint32_t const
total_aad_length, uint32_t const total_text_length, uint32_t const
tag_length)

fsp_err_t(* aesAeadAadUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_aad, uint32_t const aad_length)

fsp_err_t(* aesAeadUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_input, uint32_t const input_length, uint8_t *const p_output,
uint32_t *const p_output_length)

fsp_err_t(* aesAeadFinish)(rsip_ctrl_t *const p_ctrl, uint8_t *const p_output,
uint32_t *const p_output_length, uint8_t *const p_tag)

fsp_err_t(* aesAeadVerify)(rsip_ctrl_t *const p_ctrl, uint8_t *const p_output,
uint32_t *const p_output_length, uint8_t const *const p_tag, uint32_t
const tag_length)

fsp_err_t(* aesMacInit)(rsip_ctrl_t *const p_ctrl, rsip_aes_mac_mode_t const
mode, rsip_wrapped_key_t const *const p_wrapped_key)

fsp_err_t(* aesMacUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_message, uint32_t const message_length)

fsp_err_t(* aesMacSignFinish)(rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

fsp_err_t(* aesMacVerifyFinish)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_mac, uint32_t const mac_length)

fsp_err_t(* ecdsaSign)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, uint8_t const *const p_hash, uint8_t *const
p_signature)

fsp_err_t(* ecdsaVerify)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, uint8_t const *const p_hash, uint8_t
const *const p_signature)

fsp_err_t(* rsaEncrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, uint8_t const *const p_plain, uint8_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,187 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

*const p_cipher)

fsp_err_t(* rsaDecrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, uint8_t const *const p_cipher, uint8_t
*const p_plain)

fsp_err_t(* rsaesPkcs1V15Encrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_public_key, uint8_t const *const p_plain,
uint32_t const plain_length, uint8_t *const p_cipher)

fsp_err_t(* rsaesPkcs1V15Decrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_private_key, uint8_t const *const p_cipher,
uint8_t *const p_plain, uint32_t *const p_plain_length, uint32_t const
plain_buffer_length)

fsp_err_t(* rsaesOaepEncrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_public_key, rsip_hash_type_t const
hash_function, rsip_mgf_type_t const mask_generation_function,
uint8_t const *const p_label, uint32_t const label_length, uint8_t
const *const p_plain, uint32_t const plain_length, uint8_t *const
p_cipher)

fsp_err_t(* rsaesOaepDecrypt)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_private_key, rsip_hash_type_t const
hash_function, rsip_mgf_type_t const mask_generation_function,
uint8_t const *const p_label, uint32_t const label_length, uint8_t
const *const p_cipher, uint8_t *const p_plain, uint32_t *const
p_plain_length, uint32_t const plain_buffer_length)

fsp_err_t(* rsassaPkcs1V15Sign)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_private_key, rsip_hash_type_t const
hash_function, uint8_t const *const p_hash, uint8_t *const
p_signature)

fsp_err_t(* rsassaPkcs1V15Verify)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t
const *const p_wrapped_public_key, rsip_hash_type_t const
hash_function, uint8_t const *const p_hash, uint8_t const *const
p_signature)

fsp_err_t(* rsassaPssSign)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, rsip_hash_type_t const
hash_function, rsip_mgf_type_t const mask_generation_function,
uint32_t const salt_length, uint8_t const *const p_hash, uint8_t
*const p_signature)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,188 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

fsp_err_t(* rsassaPssVerify)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, rsip_hash_type_t const hash_function,
rsip_mgf_type_t const mask_generation_function, uint32_t const
salt_length, uint8_t const *const p_hash, uint8_t const *const
p_signature)

fsp_err_t(* shaCompute)(rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const
hash_type, uint8_t const *const p_message, uint32_t const
message_length, uint8_t *const p_digest)

fsp_err_t(* shaInit)(rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const hash_type)

fsp_err_t(* shaUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message,
uint32_t const message_length)

fsp_err_t(* shaFinish)(rsip_ctrl_t *const p_ctrl, uint8_t *const p_digest)

fsp_err_t(* shaSuspend)(rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t *const
p_handle)

fsp_err_t(* shaResume)(rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t const *const
p_handle)

fsp_err_t(* hmacCompute)(rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t
*p_wrapped_key, uint8_t const *const p_message, uint32_t const
message_length, uint8_t *const p_mac)

fsp_err_t(* hmacVerify)(rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t
*p_wrapped_key, uint8_t const *const p_message, uint32_t const
message_length, uint8_t const *const p_mac, uint32_t const
mac_length)

fsp_err_t(* hmacInit)(rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_key)

fsp_err_t(* hmacUpdate)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_message, uint32_t const message_length)

fsp_err_t(* hmacSignFinish)(rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,189 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

fsp_err_t(* hmacVerifyFinish)(rsip_ctrl_t *const p_ctrl, uint8_t const *const
p_mac, uint32_t const mac_length)

fsp_err_t(* hmacSuspend)(rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t *const
p_handle)

fsp_err_t(* hmacResume)(rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t const
*const p_handle)

fsp_err_t(* otfInit)(rsip_ctrl_t *const p_ctrl, rsip_otf_channel_t const channel,
rsip_wrapped_key_t *const p_wrapped_key, uint8_t const *const
p_seed)

Field Documentation

◆ open

fsp_err_t(* rsip_api_t::open) (rsip_ctrl_t *const p_ctrl, rsip_cfg_t const *const p_cfg)

Enables use of Renesas Secure IP functionality.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rsip_api_t::close) (rsip_ctrl_t *const p_ctrl)

Disables use of Renesas Secure IP functionality.

Parameters
[in,out] p_ctrl Pointer to control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,190 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ randomNumberGenerate

fsp_err_t(* rsip_api_t::randomNumberGenerate) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_random)

Generates a 128-bit random number.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_random 128bit random numbers.

◆ keyGenerate

fsp_err_t(* rsip_api_t::keyGenerate) (rsip_ctrl_t *const p_ctrl, rsip_key_type_t const key_type,
rsip_wrapped_key_t *const p_wrapped_key)

Generate a wrapped symmetric key from a random number. In this API, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] key_type Outputs key type.

[out] p_wrapped_key Pointer to destination of
wrapped key. The length
depends on key type. Refer
"Key Size Table".

◆ keyPairGenerate

fsp_err_t(* rsip_api_t::keyPairGenerate) (rsip_ctrl_t *const p_ctrl, rsip_key_pair_type_t const
key_pair_type, rsip_wrapped_key_t *const p_wrapped_public_key, rsip_wrapped_key_t *const
p_wrapped_private_key)

Generate a wrapped asymmetric key pair from a random number. In this API, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] key_pair_type Output key pair type.

[out] p_wrapped_public_key Key index for Public Key. The
length depends on the key
type. Refer "Key Size Table".

[out] p_wrapped_private_key Key index for Private Key.
The length depends on the
key type. Refer "Key Size
Table".

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,191 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ encryptedKeyWrap

fsp_err_t(* rsip_api_t::encryptedKeyWrap) (rsip_ctrl_t *const p_ctrl, rsip_key_update_key_t const
*const p_key_update_key, uint8_t const *const p_initial_vector, rsip_key_type_t const key_type,
uint8_t const *const p_encrypted_key, rsip_wrapped_key_t *const p_wrapped_key)

Decrypt the encrypted user key with Key Update Key (KUK) and wrap it with the Hardware Unique
Key (HUK).

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_key_update_key Pointer to Key Update Key.

[in] p_initial_vector Initialization vector when
generating encrypted_key.
The length is 16 bytes.

[in] key_type Inputs/Outputs key type.

[in] p_encrypted_key Encrypted user key. The
length depends on the key
type. Refer "Key Size Table".

[out] p_wrapped_key Pointer to destination of
wrapped key. The length
depends on key type. Refer
"Key Size Table".

◆ rfc3394_KeyWrap

fsp_err_t(* rsip_api_t::rfc3394_KeyWrap) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_kek, rsip_wrapped_key_t const *const p_wrapped_target_key, uint8_t *const
p_rfc3394_wrapped_target_key)

This function provides Key Wrap algorithm compliant with RFC3394. Using p_wrapped_kek to wrap
p_wrapped_target_key, and output the result to p_rfc3394_wrapped_target_key.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_kek Pointer to wrapped key-
encryption-key used to
RFC3394-wrap the target
key.

[in] p_wrapped_target_key Pointer to wrapped target
key to be RFC3394-wrapped.

[out] p_rfc3394_wrapped_target_k
ey

Pointer to destination of
RFC3394-wrapped target
key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,192 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rfc3394_KeyUnwrap

fsp_err_t(* rsip_api_t::rfc3394_KeyUnwrap) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_kek, rsip_key_type_t const key_type, uint8_t const *const
p_rfc3394_wrapped_target_key, rsip_wrapped_key_t *const p_wrapped_target_key)

This function provides Key Unwrap algorithm compliant with RFC3394. Using p_wrapped_kek to
unwrap p_rfc3394_wrapped_target_key, and output the result to p_wrapped_target_key.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_kek Pointer to wrapped key-
encryption-key used to
RFC3394-unwrap the target
key.

[in] key_type Key type of p_rfc3394_wrapp
ed_target_key.

[in] p_rfc3394_wrapped_target_k
ey

Pointer to AES-wrapped
target key to be
RFC3394-unwrapped.

[out] p_wrapped_target_key Pointer to destination of
RFC3394-unwrapped target
key.

◆ injectedKeyImport

fsp_err_t(* rsip_api_t::injectedKeyImport) (rsip_key_type_t const key_type, uint8_t const *const
p_injected_key, rsip_wrapped_key_t *const p_wrapped_key, uint32_t const
wrapped_key_buffer_length)

This function provides the ability to construct structure data "rsip_wrapped_key_t" from injected
key data. The value of injected key is not validated in this API. Refer "Key Size Table" for supported
key types.

Parameters
[in] key_type Key type of p_injected_key.

[in] p_injected_key Pointer to key to be injected.

[out] p_wrapped_key Pointer to destination of
wrapped key.

[in] wrapped_key_buffer_length Length of p_wrapped_key
destination. It must be equal
to or greater than actual
wrapped key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,193 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ publicKeyExport

fsp_err_t(* rsip_api_t::publicKeyExport) (rsip_wrapped_key_t const *const p_wrapped_public_key,
uint8_t *const p_raw_public_key)

Exports public key parameters from a wrapped key.

Parameters
[in] p_wrapped_public_key Key index for Public Key. The

length depends on the key
type. Refer "Key Size Table".

[out] p_raw_public_key Pointer to destination of raw
public key. The length
depends on the key length.

◆ aesCipherInit

fsp_err_t(* rsip_api_t::aesCipherInit) (rsip_ctrl_t *const p_ctrl, rsip_aes_cipher_mode_t const mode,
rsip_wrapped_key_t const *const p_wrapped_key, uint8_t const *const p_initial_vector)

Set parameters of AES cipher.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] mode Block cipher modes of
operation for AES.

[in] p_wrapped_key Pointer to wrapped key of
AES or XTS-AES key.

[in] p_initial_vector Pointer to initialization
vector (IV) or nonce. The
length is 16 bytes.

[ECB] Not required
[CBC][XTS] IV
[CTR] Nonce

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,194 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesCipherUpdate

fsp_err_t(* rsip_api_t::aesCipherUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_input,
uint8_t *const p_output, uint32_t const length)

Encrypt plaintext.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_input Pointer to input text. The
length is given as the
argument.

[out] p_output Pointer to destination of
output text. The length is
given as the argument.

[in] length Byte length of input and
output.

[ECB][CBC][CTR]
Must be 0 or a
multiple of 16.
[XTS] Must be 0 or
greater than or equal
to 16. After an
integer not divisible
by 16 is input,
update can no longer
be executed.

◆ aesCipherFinish

fsp_err_t(* rsip_api_t::aesCipherFinish) (rsip_ctrl_t *const p_ctrl)

Finalize AES operation.

Parameters
[in,out] p_ctrl Pointer to control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,195 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesAeadInit

fsp_err_t(* rsip_api_t::aesAeadInit) (rsip_ctrl_t *const p_ctrl, rsip_aes_aead_mode_t const mode,
rsip_wrapped_key_t const *const p_wrapped_key, uint8_t const *const p_nonce, uint32_t const
nonce_length)

Prepares an AES-AEAD function.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] mode AEAD mode of operation.

[in] p_wrapped_key Pointer to wrapped key of
AES key.

[in] p_nonce Pointer to nonce. The length
is nonce_length.

[in] nonce_length Byte length of nonce. Input 1
or more.

◆ aesAeadLengthsSet

fsp_err_t(* rsip_api_t::aesAeadLengthsSet) (rsip_ctrl_t *const p_ctrl, uint32_t const total_aad_length,
uint32_t const total_text_length, uint32_t const tag_length)

Set text and tag lengths for specific mode.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] total_aad_length Total AAD length.

[in] total_text_length Total input and output text
length.

[in] tag_length Input or output tag length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,196 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesAeadAadUpdate

fsp_err_t(* rsip_api_t::aesAeadAadUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_aad,
uint32_t const aad_length)

Inputs additional authentication data.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_aad Additional authentication
data. The length depends on
aad_length.

[in] aad_length Byte length of additional
authentication data (0 or
more bytes). After starting
input of plaintext, this value
must always be 0.

◆ aesAeadUpdate

fsp_err_t(* rsip_api_t::aesAeadUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_input,
uint32_t const input_length, uint8_t *const p_output, uint32_t *const p_output_length)

Inputs test and executes encryption and decryption.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_input Pointer to input text. The
length is input_length.

[in] input_length Byte length of input text (0
or more bytes).

[out] p_output Pointer to destination of
output text. The length is
p_output_length.

[out] p_output_length Pointer to destination of
output text length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,197 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesAeadFinish

fsp_err_t(* rsip_api_t::aesAeadFinish) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_output, uint32_t
*const p_output_length, uint8_t *const p_tag)

Finalizes an AES-GCM encryption.

If there is 16-byte fractional data indicated by the total data length of the value of p_plain that was
input by R_RSIP_AES_GCM_EncryptUpdate(), this API will output the result of encrypting that
fractional data to p_cipher. Here, the portion that does not reach 16 bytes will be padded with
zeros.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_output Pointer to destination of
output text. The fractional
block is output.

[out] p_output_length Pointer to destination of
output text length.

[out] p_tag Pointer to destination of tag
for authentication. GCM :
The length is 16 bytes. *If a
different tag length is
required, truncate the
16-byte tag to the required
tag length (NIST SP800-38D
7.1). CCM : The length is the
value set by the API
R_RSIP_AES_AEAD_LengthsS
et().

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,198 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesAeadVerify

fsp_err_t(* rsip_api_t::aesAeadVerify) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_output, uint32_t
*const p_output_length, uint8_t const *const p_tag, uint32_t const tag_length)

Finalizes an AES-GCM decryption.

If there is 16-byte fractional data indicated by the total data length of the value of p_cipher that
was input by R_RSIP_AES_GCM_DecryptUpdate(), this API will output the result of decrypting that
fractional data to p_cipher. Here, the portion that does not reach 16 bytes will be padded with
zeros.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_output Pointer to destination of
decrypted data.

[out] p_output_length Pointer to destination of
decrypted data length.

[in] p_tag Pointer to destination of tag
for authentication. The
length depends on
tag_length.

[in] tag_length Byte length of tag. Must be 1
to 16.

◆ aesMacInit

fsp_err_t(* rsip_api_t::aesMacInit) (rsip_ctrl_t *const p_ctrl, rsip_aes_mac_mode_t const mode,
rsip_wrapped_key_t const *const p_wrapped_key)

Prepares an AES-MAC generation and verification.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] mode MAC mode of operation

[in] p_wrapped_key Pointer to wrapped key of
AES key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,199 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ aesMacUpdate

fsp_err_t(* rsip_api_t::aesMacUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message,
uint32_t const message_length)

Input message. Inside this function, the data that is input by the user is buffered until the input
value of p_message exceeds 16 bytes. If the input value, p_message, is not a multiple of 16 bytes,
it will be padded within the function.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

◆ aesMacSignFinish

fsp_err_t(* rsip_api_t::aesMacSignFinish) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Finalizes an AES-CMAC generation.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_mac Pointer to destination of
MAC. The length is 16 bytes.

◆ aesMacVerifyFinish

fsp_err_t(* rsip_api_t::aesMacVerifyFinish) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_mac,
uint32_t const mac_length)

Finalizes an AES-CMAC verification.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_mac Pointer to MAC. The length
depends on mac_length.

[in] mac_length Byte length of MAC. Must be
2 to 16.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,200 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ ecdsaSign

fsp_err_t(* rsip_api_t::ecdsaSign) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, uint8_t const *const p_hash, uint8_t *const p_signature)

Signs a hashed message. The message hash should be generated in advance.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
ECC private key.

[in] p_hash Pointer to hash value. The
length is as same as the key
length.

[out] p_signature Pointer to destination of
signature (r, s). The length is
twice as long as the key
length.

◆ ecdsaVerify

fsp_err_t(* rsip_api_t::ecdsaVerify) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t const *const p_hash, uint8_t const *const p_signature)

Verifies a hashed message. The message hash should be generated in advance.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
ECC public key.

[in] p_hash Pointer to hash value. The
length is as same as the key
length.

[in] p_signature Pointer to signature (r, s).
The length is twice as long
as the key length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,201 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsaEncrypt

fsp_err_t(* rsip_api_t::rsaEncrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, uint8_t const *const p_plain, uint8_t *const p_cipher)

Encrypts plaintext with raw RSA.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
RSA public key.

[in] p_plain Pointer to plaintext. The
length is as same as the key
length.

[out] p_cipher Pointer to destination of
ciphertext. The length is as
same as the key length.

◆ rsaDecrypt

fsp_err_t(* rsip_api_t::rsaDecrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, uint8_t const *const p_cipher, uint8_t *const p_plain)

Decrypts ciphertext with raw RSA.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
RSA private key.

[in] p_cipher Pointer to ciphertext. The
length is as same as the key
length.

[out] p_plain Pointer to destination of
plaintext. The length is as
same as the key length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,202 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsaesPkcs1V15Encrypt

fsp_err_t(* rsip_api_t::rsaesPkcs1V15Encrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, uint8_t const *const p_plain, uint32_t const plain_length, uint8_t
*const p_cipher)

Encrypts plaintext with RSAES-PKCS1-v1_5.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
RSA public key.

[in] p_plain Pointer to plaintext.

[in] plain_length Length of plaintext.

[out] p_cipher Pointer to destination of
ciphertext. The length is as
same as the key length.

◆ rsaesPkcs1V15Decrypt

fsp_err_t(* rsip_api_t::rsaesPkcs1V15Decrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, uint8_t const *const p_cipher, uint8_t *const p_plain, uint32_t
*const p_plain_length, uint32_t const plain_buffer_length)

Decrypts with RSAES-PKCS1-v1_5.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
RSA private key.

[in] p_cipher Pointer to ciphertext. The
length is as same as the key
length.

[out] p_plain Pointer to destination of
plaintext.

[out] p_plain_length Pointer to destination of
actual plaintext length.

[in] plain_buffer_length Length of plaintext
destination. It must be equal
to or greater than
*p_plain_length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,203 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsaesOaepEncrypt

fsp_err_t(* rsip_api_t::rsaesOaepEncrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t const label_length, uint8_t const
*const p_plain, uint32_t const plain_length, uint8_t *const p_cipher)

Encrypts plaintext with RSAES-OAEP.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
RSA public key.

[in] hash_function Hash function for label.

[in] mask_generation_function Mask generation function in
EME-OAEP encoding.

[in] p_label Pointer to label. If
label_length != 0, p_label
must not be NULL.

[in] label_length Length of label. Please set 0
or more.

[in] p_plain Pointer to plaintext.

[in] plain_length Length of plaintext.

[out] p_cipher Pointer to destination of
ciphertext. The length is as
same as the key length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,204 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsaesOaepDecrypt

fsp_err_t(* rsip_api_t::rsaesOaepDecrypt) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint8_t const *const p_label, uint32_t const label_length, uint8_t const
*const p_cipher, uint8_t *const p_plain, uint32_t *const p_plain_length, uint32_t const
plain_buffer_length)

Decrypts ciphertext with RSAES-OAEP.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
RSA private key.

[in] hash_function Hash function for label.

[in] mask_generation_function Mask generation function in
EME-OAEP encoding.

[in] p_label Pointer to label. If
label_length != 0, p_label
must not be NULL.

[in] label_length Length of label. Please set 0
or more.

[in] p_cipher Pointer to ciphertext. The
length is as same as the key
length.

[out] p_plain Pointer to destination of
plaintext.

[out] p_plain_length Pointer to destination of
actual plaintext length.

[in] plain_buffer_length Length of plaintext
destination. It must be equal
to or greater than
*p_plain_length.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,205 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsassaPkcs1V15Sign

fsp_err_t(* rsip_api_t::rsassaPkcs1V15Sign) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_private_key, rsip_hash_type_t const hash_function, uint8_t const *const p_hash,
uint8_t *const p_signature)

Signs message with RSASSA-PKCS1-v1_5.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
RSA private key.

[in] hash_function Hash function in EMSA-
PKCS1-v1_5.

[in] p_hash Pointer to input hash.

[out] p_signature Pointer to destination of
signature.

◆ rsassaPkcs1V15Verify

fsp_err_t(* rsip_api_t::rsassaPkcs1V15Verify) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const
*const p_wrapped_public_key, rsip_hash_type_t const hash_function, uint8_t const *const p_hash,
uint8_t const *const p_signature)

Verifies signature with RSASSA-PKCS1-v1_5.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
RSA public key.

[in] hash_function Hash function in EMSA-
PKCS1-v1_5.

[in] p_hash Pointer to input hash.

[in] p_signature Pointer to input signature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,206 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsassaPssSign

fsp_err_t(* rsip_api_t::rsassaPssSign) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_private_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const *const p_hash, uint8_t *const
p_signature)

Signs message with RSASSA-PSS.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_private_key Pointer to wrapped key of
RSA private key.

[in] hash_function Hash function in EMSA-PSS-
ENCODE.

[in] mask_generation_function Mask generation function in
EMSA-PSS-ENCODE.

[in] salt_length Salt length.

[in] p_hash Pointer to input hash.

[out] p_signature Pointer to destination of
signature.

◆ rsassaPssVerify

fsp_err_t(* rsip_api_t::rsassaPssVerify) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_public_key, rsip_hash_type_t const hash_function, rsip_mgf_type_t const
mask_generation_function, uint32_t const salt_length, uint8_t const *const p_hash, uint8_t const
*const p_signature)

Verifies signature with RSASSA-PSS.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_public_key Pointer to wrapped key of
RSA public key.

[in] hash_function Hash function in EMSA-PSS-
VERIFY.

[in] mask_generation_function Mask generation function in
EMSA-PSS-VERIFY.

[in] salt_length Salt length.

[in] p_hash Pointer to input hash.

[in] p_signature Pointer to input signature.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,207 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ shaCompute

fsp_err_t(* rsip_api_t::shaCompute) (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const hash_type,
uint8_t const *const p_message, uint32_t const message_length, uint8_t *const p_digest)

Generates SHA message digest.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] hash_type Generating hash type.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

[out] p_digest Pointer to destination of
message digest. The length
depends on hash type.

◆ shaInit

fsp_err_t(* rsip_api_t::shaInit) (rsip_ctrl_t *const p_ctrl, rsip_hash_type_t const hash_type)

Prepares a SHA generation.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] hash_type Generating hash type.

◆ shaUpdate

fsp_err_t(* rsip_api_t::shaUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message,
uint32_t const message_length)

Inputs message.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,208 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ shaFinish

fsp_err_t(* rsip_api_t::shaFinish) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_digest)

Finalizes a SHA generation.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_digest Pointer to destination of
message digest. The length
depends on hash type.

◆ shaSuspend

fsp_err_t(* rsip_api_t::shaSuspend) (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t *const p_handle)

Suspend SHA generation. This API allows you to suspend processing, for example, if you are in the
middle of computing digest value for successive chunks of the message and need to perform
another process.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_handle Pointer to destination of SHA
control block.

◆ shaResume

fsp_err_t(* rsip_api_t::shaResume) (rsip_ctrl_t *const p_ctrl, rsip_sha_handle_t const *const
p_handle)

Resume SHA generation. This API allows you to resume a process that has been suspended by
R_RSIP_SHA_Suspend() API.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_handle Pointer to SHA control block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,209 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ hmacCompute

fsp_err_t(* rsip_api_t::hmacCompute) (rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t
*p_wrapped_key, uint8_t const *const p_message, uint32_t const message_length, uint8_t *const
p_mac)

Generates HMAC.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_key Pointer to wrapped key of
HMAC key.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

[out] p_mac Pointer to destination of
message digest. The length
depends on MAC type.

◆ hmacVerify

fsp_err_t(* rsip_api_t::hmacVerify) (rsip_ctrl_t *const p_ctrl, const rsip_wrapped_key_t
*p_wrapped_key, uint8_t const *const p_message, uint32_t const message_length, uint8_t const
*const p_mac, uint32_t const mac_length)

Verifies HMAC.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_key Pointer to wrapped key of
HMAC key.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

[in] p_mac Pointer to MAC. The length
depends on mac_length.

[in] mac_length Byte length of MAC.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,210 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ hmacInit

fsp_err_t(* rsip_api_t::hmacInit) (rsip_ctrl_t *const p_ctrl, rsip_wrapped_key_t const *const
p_wrapped_key)

Prepares a HMAC generation.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_wrapped_key Pointer to wrapped key of
HMAC key.

◆ hmacUpdate

fsp_err_t(* rsip_api_t::hmacUpdate) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_message,
uint32_t const message_length)

Inputs message.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_message Pointer to message. The
length is message_length.

[in] message_length Byte length of message (0 or
more bytes).

◆ hmacSignFinish

fsp_err_t(* rsip_api_t::hmacSignFinish) (rsip_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Finalizes a HMAC generation.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_mac Pointer to destination of
message digest. The length
depends on MAC type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,211 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ hmacVerifyFinish

fsp_err_t(* rsip_api_t::hmacVerifyFinish) (rsip_ctrl_t *const p_ctrl, uint8_t const *const p_mac,
uint32_t const mac_length)

Finalizes a HMAC verification.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_mac Pointer to MAC. The length
depends on mac_length.

[in] mac_length Byte length of MAC.

◆ hmacSuspend

fsp_err_t(* rsip_api_t::hmacSuspend) (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t *const p_handle)

Suspend HMAC generation. This API allows you to suspend processing, for example, if you are in
the middle of computing HMAC for successive chunks of the message and need to perform another
process.

Parameters
[in,out] p_ctrl Pointer to control block.

[out] p_handle Pointer to destination of
HMAC control block.

◆ hmacResume

fsp_err_t(* rsip_api_t::hmacResume) (rsip_ctrl_t *const p_ctrl, rsip_hmac_handle_t const *const
p_handle)

Resume HMAC generation. This API allows you to resume a process that has been suspended by
R_RSIP_HMAC_Suspend() API.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] p_handle Pointer to HMAC control
block.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,212 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ otfInit

fsp_err_t(* rsip_api_t::otfInit) (rsip_ctrl_t *const p_ctrl, rsip_otf_channel_t const channel,
rsip_wrapped_key_t *const p_wrapped_key, uint8_t const *const p_seed)

Initialize on-the-fly decryption on RSIP.

Parameters
[in,out] p_ctrl Pointer to control block.

[in] channel Channel number.

[in] p_wrapped_key Pointer to wrapped AES key.

[in] p_seed Pointer to seed.

◆ rsip_instance_t

struct rsip_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rsip_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rsip_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rsip_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rsip_ctrl_t

typedef void rsip_ctrl_t

RSIP Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

rsip_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,213 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_key_type_t

enum rsip_key_type_t

Key types

Enumerator

RSIP_KEY_TYPE_INVALID Invalid key.

RSIP_KEY_TYPE_AES_128 AES-128.

RSIP_KEY_TYPE_AES_192 AES-192.

RSIP_KEY_TYPE_AES_256 AES-256.

RSIP_KEY_TYPE_RSA_2048_PUBLIC RSA-2048 public key.

RSIP_KEY_TYPE_RSA_2048_PRIVATE RSA-2048 private key.

RSIP_KEY_TYPE_RSA_3072_PUBLIC RSA-2048 public key.

RSIP_KEY_TYPE_RSA_3072_PRIVATE RSA-2048 private key.

RSIP_KEY_TYPE_RSA_4096_PUBLIC RSA-2048 public key.

RSIP_KEY_TYPE_RSA_4096_PRIVATE RSA-2048 private key.

RSIP_KEY_TYPE_ECC_SECP256R1_PUBLIC secp256r1 public key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_SECP256R1_PRIVATE secp256r1 private key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_SECP384R1_PUBLIC secp384r1 public key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_SECP384R1_PRIVATE secp384r1 private key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_BRAINPOOLP256R1_PUBLIC brainpool256r1 public key

RSIP_KEY_TYPE_ECC_BRAINPOOLP256R1_PRIVAT
E

brainpool256r1 private key

RSIP_KEY_TYPE_ECC_BRAINPOOLP384R1_PUBLIC brainpool256r1 public key

RSIP_KEY_TYPE_ECC_BRAINPOOLP384R1_PRIVAT
E

brainpool256r1 private key

RSIP_KEY_TYPE_ECC_SECP256K1_PUBLIC secp256k1 public key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,214 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

RSIP_KEY_TYPE_ECC_SECP256K1_PRIVATE secp256k1 private key

RSIP_KEY_TYPE_INVALID Invalid key.

RSIP_KEY_TYPE_AES_128 AES-128.

RSIP_KEY_TYPE_AES_192 AES-192.

RSIP_KEY_TYPE_AES_256 AES-256.

RSIP_KEY_TYPE_XTS_AES_128 XTS-AES-128.

RSIP_KEY_TYPE_XTS_AES_256 XTS-AES-256.

RSIP_KEY_TYPE_CHACHA20 ChaCha20.

RSIP_KEY_TYPE_ECC_SECP256R1_PUBLIC secp256r1 public key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_SECP384R1_PUBLIC secp384r1 public key (also known as NIST
P-384)

RSIP_KEY_TYPE_ECC_SECP521R1_PUBLIC secp521r1 public key (also known as NIST
P-521)

RSIP_KEY_TYPE_ECC_SECP256K1_PUBLIC secp256k1 public key

RSIP_KEY_TYPE_ECC_BRAINPOOLP256R1_PUBLIC brainpoolP256r1 public key

RSIP_KEY_TYPE_ECC_BRAINPOOLP384R1_PUBLIC brainpoolP384r1 public key

RSIP_KEY_TYPE_ECC_BRAINPOOLP512R1_PUBLIC brainpoolP512r1 public key

RSIP_KEY_TYPE_ECC_EDWARDS25519_PUBLIC edwards25519 public key

RSIP_KEY_TYPE_ECC_SECP256R1_PRIVATE secp256r1 private key (also known as NIST
P-256, prime256v1)

RSIP_KEY_TYPE_ECC_SECP384R1_PRIVATE secp384r1 private key (also known as NIST
P-384)

RSIP_KEY_TYPE_ECC_SECP521R1_PRIVATE secp521r1 private key (also known as NIST
P-521)

RSIP_KEY_TYPE_ECC_SECP256K1_PRIVATE secp256k1 private key

RSIP_KEY_TYPE_ECC_BRAINPOOLP256R1_PRIVAT
E

brainpoolP256r1 private key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,215 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

RSIP_KEY_TYPE_ECC_BRAINPOOLP384R1_PRIVAT
E

brainpoolP384r1 private key

RSIP_KEY_TYPE_ECC_BRAINPOOLP512R1_PRIVAT
E

brainpoolP512r1 private key

RSIP_KEY_TYPE_ECC_EDWARDS25519_PRIVATE edwards25519 private key

RSIP_KEY_TYPE_RSA_1024_PUBLIC RSA-1024 public key.

RSIP_KEY_TYPE_RSA_2048_PUBLIC RSA-2048 public key.

RSIP_KEY_TYPE_RSA_3072_PUBLIC RSA-3072 public key.

RSIP_KEY_TYPE_RSA_4096_PUBLIC RSA-4096 public key.

RSIP_KEY_TYPE_RSA_1024_PRIVATE RSA-1024 private key.

RSIP_KEY_TYPE_RSA_2048_PRIVATE RSA-2048 private key.

RSIP_KEY_TYPE_RSA_3072_PRIVATE RSA-3072 private key.

RSIP_KEY_TYPE_RSA_4096_PRIVATE RSA-4096 private key.

RSIP_KEY_TYPE_HMAC_SHA1 HMAC-SHA1.

RSIP_KEY_TYPE_HMAC_SHA224 HMAC-SHA224.

RSIP_KEY_TYPE_HMAC_SHA256 HMAC-SHA256.

RSIP_KEY_TYPE_HMAC_SHA384 HMAC-SHA384.

RSIP_KEY_TYPE_HMAC_SHA512 HMAC-SHA512.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,216 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_key_pair_type_t

enum rsip_key_pair_type_t

Key pair types

Enumerator

RSIP_KEY_PAIR_TYPE_INVALID Invalid key pair type.

RSIP_KEY_PAIR_TYPE_ECC_SECP256R1 secp256r1 key pair (also known as NIST P-256,
prime256v1)

RSIP_KEY_PAIR_TYPE_ECC_SECP384R1 secp384r1 key pair (also known as NIST
P-384)

RSIP_KEY_PAIR_TYPE_ECC_SECP521R1 secp521r1 key pair (also known as NIST
P-521)

RSIP_KEY_PAIR_TYPE_ECC_SECP256K1 secp256k1 key pair

RSIP_KEY_PAIR_TYPE_ECC_BRAINPOOLP256R1 brainpoolP256r1 key pair

RSIP_KEY_PAIR_TYPE_ECC_BRAINPOOLP384R1 brainpoolP384r1 key pair

RSIP_KEY_PAIR_TYPE_ECC_BRAINPOOLP512R1 brainpoolP512r1 key pair

RSIP_KEY_PAIR_TYPE_ECC_EDWARDS25519 edwards25519 key pair

RSIP_KEY_PAIR_TYPE_RSA_1024 RSA-1024 key pair.

RSIP_KEY_PAIR_TYPE_RSA_2048 RSA-2048 key pair.

RSIP_KEY_PAIR_TYPE_RSA_3072 RSA-3072 key pair.

RSIP_KEY_PAIR_TYPE_RSA_4096 RSA-4096 key pair.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,217 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_byte_size_wrapped_key_t

enum rsip_byte_size_wrapped_key_t

Byte size of wrapped key

Enumerator

RSIP_BYTE_SIZE_WRAPPED_KEY_AES_128 AES-128.

RSIP_BYTE_SIZE_WRAPPED_KEY_AES_192 AES-192.

RSIP_BYTE_SIZE_WRAPPED_KEY_AES_256 AES-256.

RSIP_BYTE_SIZE_WRAPPED_KEY_XTS_AES_128 XTS-AES-128.

RSIP_BYTE_SIZE_WRAPPED_KEY_XTS_AES_256 XTS-AES-256.

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256R
1_PUBLIC

secp256r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP384R
1_PUBLIC

secp384r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP521R
1_PUBLIC

secp521r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256K1
_PUBLIC

secp256k1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO
LP256R1_PUBLIC

brainpoolP256r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO
LP384R1_PUBLIC

brainpoolP384r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO
LP512R1_PUBLIC

brainpoolP512r1 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_EDWARDS
25519_PUBLIC

edwards25519 public key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256R
1_PRIVATE

secp256r1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP384R
1_PRIVATE

secp384r1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP521R
1_PRIVATE

secp521r1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_SECP256K1
_PRIVATE

secp256k1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO
LP256R1_PRIVATE

brainpoolP256r1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO brainpoolP384r1 private key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,218 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

LP384R1_PRIVATE

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_BRAINPOO
LP512R1_PRIVATE

brainpoolP512r1 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_ECC_EDWARDS
25519_PRIVATE

edwards25519 private key

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_1024_PUBL
IC

RSA-1024 public key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_2048_PUBL
IC

RSA-2048 public key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_3072_PUBL
IC

RSA-3072 public key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_4096_PUBL
IC

RSA-4096 public key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_1024_PRIV
ATE

RSA-1024 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_2048_PRIV
ATE

RSA-2048 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_3072_PRIV
ATE

RSA-3072 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_RSA_4096_PRIV
ATE

RSA-4096 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA1 HMAC-SHA1 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA224 HMAC-SHA224 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA256 HMAC-SHA256 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA384 HMAC-SHA384 private key.

RSIP_BYTE_SIZE_WRAPPED_KEY_HMAC_SHA512 HMAC-SHA512 private key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,219 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_aes_cipher_mode_t

enum rsip_aes_cipher_mode_t

Block cipher modes of operation for AES

Enumerator

RSIP_AES_CIPHER_MODE_ECB_ENC Electronic Codebook (ECB) mode encryption.

RSIP_AES_CIPHER_MODE_ECB_DEC Electronic Codebook (ECB) mode decryption.

RSIP_AES_CIPHER_MODE_CBC_ENC Cipher Block Chaining (CBC) mode encryption.

RSIP_AES_CIPHER_MODE_CBC_DEC Cipher Block Chaining (CBC) mode decryption.

RSIP_AES_CIPHER_MODE_CTR Counter (CTR) mode encryption or decryption.

RSIP_AES_CIPHER_MODE_XTS_ENC XEX-based tweaked-codebook mode with
ciphertext stealing (XTS) encryption.

RSIP_AES_CIPHER_MODE_XTS_DEC XEX-based tweaked-codebook mode with
ciphertext stealing (XTS) decryption.

◆ rsip_aes_aead_mode_t

enum rsip_aes_aead_mode_t

AEAD modes of operation for AES

Enumerator

RSIP_AES_AEAD_MODE_GCM_ENC Galois/Counter Mode (GCM) encryption.

RSIP_AES_AEAD_MODE_GCM_DEC Galois/Counter Mode (GCM) decryption.

RSIP_AES_AEAD_MODE_CCM_ENC Counter with CBC-MAC (CCM) encryption.

RSIP_AES_AEAD_MODE_CCM_DEC Counter with CBC-MAC (CCM) decryption.

◆ rsip_aes_mac_mode_t

enum rsip_aes_mac_mode_t

MAC modes of operation for AES

Enumerator

RSIP_AES_MAC_MODE_CMAC Cipher-based MAC (CMAC)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,220 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_hash_type_t

enum rsip_hash_type_t

Hash type

Enumerator

RSIP_HASH_TYPE_SHA1 SHA-1.

RSIP_HASH_TYPE_SHA224 SHA-224.

RSIP_HASH_TYPE_SHA256 SHA-256.

RSIP_HASH_TYPE_SHA384 SHA-384.

RSIP_HASH_TYPE_SHA512 SHA-512.

RSIP_HASH_TYPE_SHA512_224 SHA-512/224.

RSIP_HASH_TYPE_SHA512_256 SHA-512/256.

◆ rsip_mgf_type_t

enum rsip_mgf_type_t

MGF type

Enumerator

RSIP_MGF_TYPE_MGF1_SHA1 MGF1 with SHA-1.

RSIP_MGF_TYPE_MGF1_SHA224 MGF1 with SHA-224.

RSIP_MGF_TYPE_MGF1_SHA256 MGF1 with SHA-256.

RSIP_MGF_TYPE_MGF1_SHA384 MGF1 with SHA-384.

RSIP_MGF_TYPE_MGF1_SHA512 MGF1 with SHA-512.

RSIP_MGF_TYPE_MGF1_SHA512_224 MGF1 with SHA-512/224.

RSIP_MGF_TYPE_MGF1_SHA512_256 MGF1 with SHA-512/256.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,221 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP Interface

◆ rsip_rsa_salt_length_t

enum rsip_rsa_salt_length_t

RSA salt length

Enumerator

RSIP_RSA_SALT_LENGTH_AUTO When signing, the salt length is set to
RSIP_RSA_SALT_LENGTH_MAX or
RSIP_RSA_SALT_LENGTH_HASH, whichever is
shorter. When verifying, the salt length is
detected automatically.

RSIP_RSA_SALT_LENGTH_HASH The salt length is set to the hash length.

RSIP_RSA_SALT_LENGTH_MAX The salt length is set to emLen - hLen - 2,
where emLen is the same as the key length
and hLen is the hash length.

◆ rsip_otf_channel_t

enum rsip_otf_channel_t

Enumerator

RSIP_OTF_CHANNEL_0 Channel 0.

RSIP_OTF_CHANNEL_1 Channel 1.

5.3.13.2 RSIP key injection Interface
Interfaces » Security

Detailed Description

Interface for key injection by Renesas Secure IP (RSIP) functions.

Summary
The RSIP key injection interface provides RSIP functionality.

Data Structures

struct rsip_key_injection_api_t

Enumerations

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,222 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

enum rsip_key_injection_type_t

Data Structure Documentation

◆ rsip_key_injection_api_t

struct rsip_key_injection_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* AES128_InitialKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_aes_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* AES256_InitialKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_aes_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* RSA2048_InitialPublicKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa2048_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* RSA2048_InitialPrivateKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa2048_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* RSA3072_InitialPublicKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa3072_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* RSA3072_InitialPrivateKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa3072_private_wrapped_key_t *const p_wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,223 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

fsp_err_t(* RSA4096_InitialPublicKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa4096_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* RSA4096_InitialPrivateKeyWrap)(rsip_key_injection_type_t const
key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_rsa4096_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp256r1_InitialPublicKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp256r1_InitialPrivateKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp384r1_InitialPublicKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp384r1_InitialPrivateKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp256k1_InitialPublicKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_secp256k1_InitialPrivateKeyWrap)(rsip_key_injection_type_t
const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const
p_initial_vector, uint8_t const *const p_user_key,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,224 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_InitialPublicKeyWrap
)(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_InitialPrivateKeyWrap
)(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_InitialPublicKeyWrap
)(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_InitialPrivateKeyWrap
)(rsip_key_injection_type_t const key_injection_type, uint8_t const
*const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key,
rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,225 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ AES128_InitialKeyWrap

fsp_err_t(* rsip_key_injection_api_t::AES128_InitialKeyWrap) (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_aes_wrapped_key_t *const
p_wrapped_key)

This API outputs 128-bit AES wrapped key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 128-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,226 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ AES256_InitialKeyWrap

fsp_err_t(* rsip_key_injection_api_t::AES256_InitialKeyWrap) (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_aes_wrapped_key_t *const
p_wrapped_key)

This API outputs 256-bit AES wrapped key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,227 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA2048_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA2048_InitialPublicKeyWrap) (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa2048_public_wrapped_key_t *const
p_wrapped_key)

This API outputs 2048-bit RSA wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 2048-bit RSA wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,228 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA2048_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA2048_InitialPrivateKeyWrap) (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t
const *const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa2048_private_wrapped_key_t
*const p_wrapped_key)

This API outputs 2048-bit RSA wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 2048-bit RSA wrapped
private key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,229 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA3072_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA3072_InitialPublicKeyWrap) (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa3072_public_wrapped_key_t *const
p_wrapped_key)

This API outputs 3072-bit RSA wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 3072-bit RSA wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,230 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA3072_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA3072_InitialPrivateKeyWrap) (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t
const *const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa3072_private_wrapped_key_t
*const p_wrapped_key)

This API outputs 3072-bit RSA wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 3072-bit RSA wrapped
private key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,231 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA4096_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA4096_InitialPublicKeyWrap) (rsip_key_injection_type_t const
key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t const
*const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa4096_public_wrapped_key_t *const
p_wrapped_key)

This API outputs 4096-bit RSA wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 4096-bit RSA wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,232 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ RSA4096_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::RSA4096_InitialPrivateKeyWrap) (rsip_key_injection_type_t
const key_injection_type, uint8_t const *const p_wrapped_user_factory_programming_key, uint8_t
const *const p_initial_vector, uint8_t const *const p_user_key, rsip_rsa4096_private_wrapped_key_t
*const p_wrapped_key)

This API outputs 4096-bit RSA wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 4096-bit RSA wrapped
private key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,233 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp256r1_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp256r1_InitialPublicKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit ECC wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,234 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp256r1_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp256r1_InitialPrivateKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit ECC wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped private
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,235 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp384r1_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp384r1_InitialPublicKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

This API outputs 384-bit ECC wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 384-bit ECC wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,236 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp384r1_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp384r1_InitialPrivateKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

This API outputs 384-bit ECC wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 384-bit ECC wrapped private
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,237 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp256k1_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp256k1_InitialPublicKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit ECC wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,238 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_secp256k1_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_secp256k1_InitialPrivateKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit ECC wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped private
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,239 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_brainpoolP256r1_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_brainpoolP256r1_InitialPublicKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit brainpool ECC wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,240 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_brainpoolP256r1_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_brainpoolP256r1_InitialPrivateKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

This API outputs 256-bit brainpool ECC wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 256-bit ECC wrapped private
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,241 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_brainpoolP384r1_InitialPublicKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_brainpoolP384r1_InitialPublicKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_public_wrapped_key_t *const p_wrapped_key)

This API outputs 384-bit brainpool ECC wrapped public key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 384-bit ECC wrapped public
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,242 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > RSIP key injection Interface

◆ ECC_brainpoolP384r1_InitialPrivateKeyWrap

fsp_err_t(* rsip_key_injection_api_t::ECC_brainpoolP384r1_InitialPrivateKeyWrap)
(rsip_key_injection_type_t const key_injection_type, uint8_t const *const
p_wrapped_user_factory_programming_key, uint8_t const *const p_initial_vector, uint8_t const
*const p_user_key, rsip_ecc_private_wrapped_key_t *const p_wrapped_key)

This API outputs 384-bit brainpool ECC wrapped private key.

Parameters
[in] key_injection_type Selection key injection type

when generating wrapped
key

[in] p_wrapped_user_factory_pro
gramming_key

Wrapped user factory
programming key by the
Renesas Key Wrap Service.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_initial_vector Initialization vector when
generating encrypted key.
When key injection type is
plain, this is not required
and any value can be
specified.

[in] p_user_key User key. If key injection
type is not plain, it must be
encrypted and have MAC
appended.

[out] p_wrapped_key 384-bit ECC wrapped private
key

Enumeration Type Documentation

◆ rsip_key_injection_type_t

enum rsip_key_injection_type_t

Key injection type.

Enumerator

RSIP_KEY_INJECTION_TYPE_ENCRYPTED Input encrypted user key.

RSIP_KEY_INJECTION_TYPE_PLAIN Input plain user key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,243 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

5.3.13.3 SCE Interface
Interfaces » Security

Detailed Description

Interface for Secure Crypto Engine (SCE) functions.

Summary
The SCE interface provides SCE functionality.

The SCE interface can be implemented by:

SCE Protected Mode

Data Structures

struct sce_byte_data_t

struct sce_aes_wrapped_key_t

struct sce_hmac_sha_wrapped_key_t

struct sce_rsa1024_public_wrapped_key_t

struct sce_rsa1024_private_wrapped_key_t

struct sce_rsa2048_public_wrapped_key_t

struct sce_rsa2048_private_wrapped_key_t

struct sce_rsa3072_public_wrapped_key_t

struct sce_rsa4096_public_wrapped_key_t

struct sce_rsa1024_wrapped_pair_key_t

struct sce_rsa2048_wrapped_pair_key_t

struct sce_ecc_public_wrapped_key_t

struct sce_ecc_private_wrapped_key_t

struct sce_ecc_wrapped_pair_key_t

struct sce_ecdh_wrapped_key_t

struct sce_key_update_key_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,244 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

struct sce_aes_handle_t

struct sce_gcm_handle_t

struct sce_ccm_handle_t

struct sce_cmac_handle_t

struct sce_sha_md5_handle_t

struct sce_hmac_sha_handle_t

struct sce_ecdh_handle_t

struct sce_cfg_t

struct sce_api_t

struct sce_instance_t

Typedefs

typedef sce_byte_data_t sce_rsa_byte_data_t

 byte data More...

typedef sce_byte_data_t sce_ecdsa_byte_data_t

 byte data More...

typedef void sce_ctrl_t

Data Structure Documentation

◆ sce_byte_data_t

struct sce_byte_data_t

Byte data structure

Data Fields

uint8_t * pdata pointer

uint32_t data_length data_length

uint32_t data_type data type

◆ sce_aes_wrapped_key_t

struct sce_aes_wrapped_key_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,245 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

AES wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[SCE_TLS_AES256_KEY_IN
DEX_WORD_SIZE]

wrapped key value

Note
The size of the "value" array
and the definition name
depends on the used SCE. See
the header file for detail.

◆ sce_hmac_sha_wrapped_key_t

struct sce_hmac_sha_wrapped_key_t

HMAC-SHA wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[SCE_TLS_HMAC_KEY_IND
EX_WORD_SIZE]

wrapped key value

◆ sce_rsa1024_public_wrapped_key_t

struct sce_rsa1024_public_wrapped_key_t

RSA 1024bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

struct
sce_rsa1024_public_wrapped_k
ey_t

value

◆ sce_rsa1024_private_wrapped_key_t

struct sce_rsa1024_private_wrapped_key_t

RSA 1024bit private wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

struct
sce_rsa1024_private_wrapped_
key_t

value

◆ sce_rsa2048_public_wrapped_key_t

struct sce_rsa2048_public_wrapped_key_t

RSA 2048bit public wrapped key data structure. DO NOT MODIFY.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,246 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

Data Fields

uint32_t type Key type.

struct
sce_rsa2048_public_wrapped_k
ey_t

value

◆ sce_rsa2048_private_wrapped_key_t

struct sce_rsa2048_private_wrapped_key_t

RSA 2048bit private wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

struct
sce_rsa2048_private_wrapped_
key_t

value

◆ sce_rsa3072_public_wrapped_key_t

struct sce_rsa3072_public_wrapped_key_t

RSA 3072bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type Key type.

struct
sce_rsa3072_public_wrapped_k
ey_t

value

◆ sce_rsa4096_public_wrapped_key_t

struct sce_rsa4096_public_wrapped_key_t

RSA 4096bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type Key type.

struct
sce_rsa4096_public_wrapped_k
ey_t

value

◆ sce_rsa1024_wrapped_pair_key_t

struct sce_rsa1024_wrapped_pair_key_t

RSA 1024bit wrapped key pair structure. DO NOT MODIFY.

Data Fields

sce_rsa1024_private_wrapped_
key_t

priv_key RSA 1024-bit private wrapped
key.

sce_rsa1024_public_wrapped_k pub_key RSA 1024-bit public wrapped

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,247 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

ey_t key.

◆ sce_rsa2048_wrapped_pair_key_t

struct sce_rsa2048_wrapped_pair_key_t

RSA 2048bit wrapped key pair structure. DO NOT MODIFY.

Data Fields

sce_rsa2048_private_wrapped_
key_t

priv_key RSA 2048-bit private wrapped
key.

sce_rsa2048_public_wrapped_k
ey_t

pub_key RSA 2048-bit public wrapped
key.

◆ sce_ecc_public_wrapped_key_t

struct sce_ecc_public_wrapped_key_t

ECC P-192/224/256 public wrapped key data structure

Data Fields

uint32_t type key type

struct
sce_ecc_public_wrapped_key_t

value

◆ sce_ecc_private_wrapped_key_t

struct sce_ecc_private_wrapped_key_t

ECC P-192/224/256 private wrapped key data structure

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_ECC_PRIVATE_K
EY_MANAGEMENT_INFO_WORD_
SIZE]

wrapped key value

◆ sce_ecc_wrapped_pair_key_t

struct sce_ecc_wrapped_pair_key_t

ECC P-192/224/256 wrapped key pair structure

Data Fields

sce_ecc_private_wrapped_key_t priv_key ECC private wrapped key.

sce_ecc_public_wrapped_key_t pub_key ECC public wrapped key.

◆ sce_ecdh_wrapped_key_t

struct sce_ecdh_wrapped_key_t

ECDH wrapped key data structure

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,248 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

uint32_t type key type

uint32_t value[HW_SCE_SHARED_SECRE
T_KEY_INDEX_WORD_SIZE]

wrapped key value

◆ sce_key_update_key_t

struct sce_key_update_key_t

Update key ring index data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_UPDATE_KEY_RI
NG_INDEX_WORD_SIZE]

wrapped key value

Note
The size of the "value" array
and the definition name
depends on the used SCE. See
the header file for detail.

◆ sce_aes_handle_t

struct sce_aes_handle_t

The work area for AES. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint32_t current_input_data_size text size under encryption /
decryption

uint8_t last_1_block_as_fraction[HW_SC
E_AES_BLOCK_BYTE_SIZE]

text array less than the block
long

uint8_t last_2_block_as_fraction[HW_SC
E_AES_BLOCK_BYTE_SIZE *2]

reserved

uint8_t current_initial_vector[HW_SCE_
AES_CBC_IV_BYTE_SIZE]

current initialization vector
used in CBC mode

uint8_t flag_call_init control flag of calling function

◆ sce_gcm_handle_t

struct sce_gcm_handle_t

The work area for GCM. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t gcm_buffer[HW_SCE_AES_BLOC text array less than the block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,249 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

K_BYTE_SIZE] long

uint8_t gcm_aad_buffer[HW_SCE_AES_
GCM_AAD_BLOCK_BYTE_SIZE]

AAD array less than the block
long.

uint32_t all_received_length entire length of text

uint32_t all_received_aad_length entire length of text

uint32_t buffering_length text array length less than the
block long

uint32_t buffering_aad_length AAD array length less than the
block long.

uint8_t flag_call_init control flag of calling function

uint8_t flag_update_input_data control flag of next input data

◆ sce_ccm_handle_t

struct sce_ccm_handle_t

The work area for CCM. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t formatted_data[HW_SCE_AES_C
CM_B_FORMAT_BYTE_SIZE]

formatted data area

uint8_t counter[HW_SCE_AES_CCM_CO
UNTER_BYTE_SIZE]

counter of CTR mode

uint8_t ccm_buffer[HW_SCE_AES_BLOC
K_BYTE_SIZE]

text array less than the block
long

uint32_t all_received_length entire length of text

uint32_t buffering_length text array length less than the
block long

uint8_t flag_call_init control flag of calling function

◆ sce_cmac_handle_t

struct sce_cmac_handle_t

The work area for CMAC. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t cmac_buffer[HW_SCE_AES_BLO
CK_BYTE_SIZE]

message array less than the
block long

uint32_t all_received_length entire length of message

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,250 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

uint32_t buffering_length message array length less than
the block long

uint8_t flag_call_init control flag of calling function

◆ sce_sha_md5_handle_t

struct sce_sha_md5_handle_t

The work area for SHA. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

uint8_t sha_buffer[HW_SCE_SHA256_H
ASH_LENGTH_BYTE_SIZE *4]

message array length less than
the block long

uint32_t all_received_length entire length of message

uint32_t buffering_length message array length less than
the block long

uint8_t current_hash[HW_SCE_SHA256_
HASH_LENGTH_BYTE_SIZE]

last hash value

uint8_t flag_call_init control flag of calling function

◆ sce_hmac_sha_handle_t

struct sce_hmac_sha_handle_t

The work area for HMAC-SHA. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_hmac_sha_wrapped_key_t wrapped_key wrapped key

uint8_t hmac_buffer[HW_SCE_SHA256_
HASH_LENGTH_BYTE_SIZE *4]

message array length less than
the block long

uint32_t all_received_length entire length of message

uint32_t buffering_length message array length less than
the block long

uint8_t flag_call_init control flag of calling function

◆ sce_ecdh_handle_t

struct sce_ecdh_handle_t

The work area for ECDH

Data Fields

uint32_t id serial number of this handle

uint32_t flag_use_key_id control frag that the key_id has
already used or not

uint32_t key_id serial number of the wrapped

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,251 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

key

uint32_t key_type key type

uint8_t flag_call_init control flag of calling function

uint8_t flag_call_make_public control flag of calling function

uint8_t flag_call_read_public control flag of calling function

uint8_t flag_call_shared_secret control flag of calling function

◆ sce_cfg_t

struct sce_cfg_t

User configuration structure, used in open function

◆ sce_api_t

struct sce_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

fsp_err_t(* close)(sce_ctrl_t *const p_ctrl)

fsp_err_t(* softwareReset)(void)

fsp_err_t(* randomNumberGenerate)(uint32_t *random)

fsp_err_t(* AES128_WrappedKeyGenerate)(sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t(* AES256_WrappedKeyGenerate)(sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t(* AES128_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,252 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* AES128_RFC3394KeyWrap)(sce_aes_wrapped_key_t *master_key,
uint32_t target_key_type, sce_aes_wrapped_key_t *target_key,
uint32_t *rfc3394_wrapped_key)

fsp_err_t(* AES256_RFC3394KeyWrap)(sce_aes_wrapped_key_t *master_key,
uint32_t target_key_type, sce_aes_wrapped_key_t *target_key,
uint32_t *rfc3394_wrapped_key)

fsp_err_t(* AES128_RFC3394KeyUnwrap)(sce_aes_wrapped_key_t *master_key,
uint32_t target_key_type, uint32_t *rfc3394_wrapped_key,
sce_aes_wrapped_key_t *target_key)

fsp_err_t(* AES256_RFC3394KeyUnwrap)(sce_aes_wrapped_key_t *master_key,
uint32_t target_key_type, uint32_t *rfc3394_wrapped_key,
sce_aes_wrapped_key_t *target_key)

fsp_err_t(* AES128ECB_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128ECB_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128ECB_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES128ECB_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128ECB_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES128ECB_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES256ECB_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256ECB_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,253 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* AES256ECB_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES256ECB_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256ECB_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256ECB_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES128CBC_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES128CBC_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128CBC_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES128CBC_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES128CBC_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES128CBC_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES256CBC_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES256CBC_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES256CBC_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,254 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* AES256CBC_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES256CBC_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256CBC_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES128GCM_EncryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES128GCM_EncryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES128GCM_EncryptFinal)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t(* AES128GCM_DecryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES128GCM_DecryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES128GCM_DecryptFinal)(sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t(* AES256GCM_EncryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES256GCM_EncryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES256GCM_EncryptFinal)(sce_gcm_handle_t *handle, uint8_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,255 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t(* AES256GCM_DecryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES256GCM_DecryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES256GCM_DecryptFinal)(sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t(* AES128CCM_EncryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES128CCM_EncryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128CCM_EncryptFinal)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES128CCM_DecryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES128CCM_DecryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES128CCM_DecryptFinal)(sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES256CCM_EncryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,256 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* AES256CCM_EncryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES256CCM_EncryptFinal)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES256CCM_DecryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES256CCM_DecryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256CCM_DecryptFinal)(sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES128CMAC_GenerateInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128CMAC_GenerateUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES128CMAC_GenerateFinal)(sce_cmac_handle_t *handle, uint8_t
*mac)

fsp_err_t(* AES128CMAC_VerifyInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128CMAC_VerifyUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES128CMAC_VerifyFinal)(sce_cmac_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* AES256CMAC_GenerateInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256CMAC_GenerateUpdate)(sce_cmac_handle_t *handle, uint8_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,257 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

*message, uint32_t message_length)

fsp_err_t(* AES256CMAC_GenerateFinal)(sce_cmac_handle_t *handle, uint8_t
*mac)

fsp_err_t(* AES256CMAC_VerifyInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256CMAC_VerifyUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES256CMAC_VerifyFinal)(sce_cmac_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* SHA256_Init)(sce_sha_md5_handle_t *handle)

fsp_err_t(* SHA256_Update)(sce_sha_md5_handle_t *handle, uint8_t *message,
uint32_t message_length)

fsp_err_t(* SHA256_Final)(sce_sha_md5_handle_t *handle, uint8_t *digest,
uint32_t *digest_length)

fsp_err_t(* RSA1024_WrappedKeyPairGenerate
)(sce_rsa1024_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* RSA2048_WrappedKeyPairGenerate
)(sce_rsa2048_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* RSA1024_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA1024_EncryptedPrivateKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_private_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA2048_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_public_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,258 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* RSA2048_EncryptedPrivateKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_private_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA3072_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa3072_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA4096_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa4096_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSASSA_PKCS1024_SignatureGenerate)(sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS2048_SignatureGenerate)(sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS1024_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS2048_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS3072_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS4096_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,259 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* RSAES_PKCS1024_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS2048_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS3072_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS4096_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS1024_Decrypt)(sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS2048_Decrypt)(sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

fsp_err_t(* SHA256HMAC_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_GenerateInit)(sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_GenerateUpdate)(sce_hmac_sha_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t(* SHA256HMAC_GenerateFinal)(sce_hmac_sha_handle_t *handle,
uint8_t *mac)

fsp_err_t(* SHA256HMAC_VerifyInit)(sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_VerifyUpdate)(sce_hmac_sha_handle_t *handle,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,260 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

uint8_t *message, uint32_t message_length)

fsp_err_t(* SHA256HMAC_VerifyFinal)(sce_hmac_sha_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* ECC_secp192r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp224r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp256r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp384r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp192r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp224r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp256r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp192r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp224r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,261 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* ECC_secp256r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp192r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp224r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp256r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp384r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp192r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp224r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp256r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp384r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_Init)(sce_ecdh_handle_t *handle, uint32_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,262 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

key_type, uint32_t use_key_id)

fsp_err_t(* ECDH_secp256r1_PublicKeySign)(sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key, uint8_t
*public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_PublicKeyVerify)(sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, uint8_t
*public_key_data, sce_ecdsa_byte_data_t *signature,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_PublicKeyReadWithoutSignature
)(sce_ecdh_handle_t *handle, uint8_t *public_key_data,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_SharedSecretCalculate)(sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

fsp_err_t(* ECDH_secp256r1_KeyDerivation)(sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t
key_type, uint32_t kdf_type, uint8_t *other_info, uint32_t
other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* TLS_RootCertificateRSA2048PublicKeyInstall)(uint8_t
*encrypted_provisioning_key, uint8_t *initial_vector, uint8_t
*encrypted_key, sce_tls_ca_certification_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate
)(sce_tls_p256_ecc_wrapped_key_t *tls_p256_ecc_wrapped_key,
uint8_t *ephemeral_ecdh_public_key)

fsp_err_t(* TLS_RootCertificateVerify)(uint32_t public_key_type, uint8_t
*certificate, uint32_t certificate_length, uint32_t
public_key_n_start_position, uint32_t public_key_n_end_position,
uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint8_t *signature, uint32_t
*encrypted_root_public_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,263 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

fsp_err_t(* TLS_CertificateVerify)(uint32_t public_key_type, uint32_t
*encrypted_input_public_key, uint8_t *certificate, uint32_t
certificate_length, uint8_t *signature, uint32_t
public_key_n_start_position, uint32_t public_key_n_end_position,
uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint32_t *encrypted_output_public_key)

fsp_err_t(* TLS_PreMasterSecretGenerateForRSA2048)(uint32_t
*sce_pre_master_secret)

fsp_err_t(* TLS_MasterSecretGenerate)(uint32_t select_cipher_suite, uint32_t
*sce_pre_master_secret, uint8_t *client_random, uint8_t
*server_random, uint32_t *sce_master_secret)

fsp_err_t(* TLS_PreMasterSecretEncryptWithRSA2048)(uint32_t
*encrypted_public_key, uint32_t *sce_pre_master_secret, uint8_t
*encrypted_pre_master_secret)

fsp_err_t(* TLS_SessionKeyGenerate)(uint32_t select_cipher_suite, uint32_t
*sce_master_secret, uint8_t *client_random, uint8_t *server_random,
uint8_t *nonce_explicit, sce_hmac_sha_wrapped_key_t
*client_mac_wrapped_key, sce_hmac_sha_wrapped_key_t
*server_mac_wrapped_key, sce_aes_wrapped_key_t
*client_crypto_wrapped_key, sce_aes_wrapped_key_t
*server_crypto_wrapped_key, uint8_t *client_initial_vector, uint8_t
*server_initial_vector)

fsp_err_t(* TLS_VerifyDataGenerate)(uint32_t select_verify_data, uint32_t
*sce_master_secret, uint8_t *hand_shake_hash, uint8_t *verify_data)

fsp_err_t(* TLS_ServerKeyExchangeVerify)(uint32_t public_key_type, uint8_t
*client_random, uint8_t *server_random, uint8_t
*server_ephemeral_ecdh_public_key, uint8_t
*server_key_exchange_signature, uint32_t *encrypted_public_key,
uint32_t *encrypted_ephemeral_ecdh_public_key)

fsp_err_t(* TLS_PreMasterSecretGenerateForECC_secp256r1)(uint32_t
*encrypted_public_key, sce_tls_p256_ecc_wrapped_key_t
*tls_p256_ecc_wrapped_key, uint32_t *sce_pre_master_secret)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,264 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ open

fsp_err_t(* sce_api_t::open) (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

Enables use of SCE functionality.

Implemented as

R_SCE_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* sce_api_t::close) (sce_ctrl_t *const p_ctrl)

Stops supply of power to the SCE.

Implemented as

R_SCE_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ softwareReset

fsp_err_t(* sce_api_t::softwareReset) (void)

Software reset to SCE.

Implemented as

R_SCE_SoftwareReset()

◆ randomNumberGenerate

fsp_err_t(* sce_api_t::randomNumberGenerate) (uint32_t *random)

Generates 4 words random number.

Implemented as

R_SCE_RandomNumberGenerate()
Parameters

[in,out] random Stores 4words (16 bytes)
random data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,265 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128_WrappedKeyGenerate

fsp_err_t(* sce_api_t::AES128_WrappedKeyGenerate) (sce_aes_wrapped_key_t *wrapped_key)

This API outputs 128-bit AES wrapped key.

Implemented as

R_SCE_AES128_WrappedKeyGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

◆ AES256_WrappedKeyGenerate

fsp_err_t(* sce_api_t::AES256_WrappedKeyGenerate) (sce_aes_wrapped_key_t *wrapped_key)

This API outputs 256-bit AES wrapped key.

Implemented as

R_SCE_AES256_WrappedKeyGenerate()
Parameters

[in,out] wrapped_key 256-bit AES wrapped key

◆ AES128_EncryptedKeyWrap

fsp_err_t(* sce_api_t::AES128_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t *encrypted_key,
sce_key_update_key_t *key_update_key, sce_aes_wrapped_key_t *wrapped_key)

This API outputs 128-bit AES wrapped key.

Implemented as

R_SCE_AES128_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,266 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256_EncryptedKeyWrap

fsp_err_t(* sce_api_t::AES256_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t *encrypted_key,
sce_key_update_key_t *key_update_key, sce_aes_wrapped_key_t *wrapped_key)

This API outputs 256-bit AES wrapped key.

Implemented as

R_SCE_AES256_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

◆ AES128_RFC3394KeyWrap

fsp_err_t(* sce_api_t::AES128_RFC3394KeyWrap) (sce_aes_wrapped_key_t *master_key, uint32_t
target_key_type, sce_aes_wrapped_key_t *target_key, uint32_t *rfc3394_wrapped_key)

This API outputs 128-bit AES wrapped key.

Implemented as

R_SCE_AES128_RFC3394KeyWrap()
Parameters

[in] master_key AES-128 key used for
wrapping.

[in] target_key_type Selects key to be wrapped.

[in] target_key Key to be wrapped.

[out] rfc3394_wrapped_key Wrapped key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,267 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256_RFC3394KeyWrap

fsp_err_t(* sce_api_t::AES256_RFC3394KeyWrap) (sce_aes_wrapped_key_t *master_key, uint32_t
target_key_type, sce_aes_wrapped_key_t *target_key, uint32_t *rfc3394_wrapped_key)

This API outputs 256-bit AES wrapped key.

Implemented as

R_SCE_AES256_RFC3394KeyWrap()
Parameters

[in] master_key AES-256 key used for
wrapping.

[in] target_key_type Selects key to be wrapped.

[in] target_key Key to be wrapped.

[out] rfc3394_wrapped_key Wrapped key.

◆ AES128_RFC3394KeyUnwrap

fsp_err_t(* sce_api_t::AES128_RFC3394KeyUnwrap) (sce_aes_wrapped_key_t *master_key, uint32_t
target_key_type, uint32_t *rfc3394_wrapped_key, sce_aes_wrapped_key_t *target_key)

This API outputs 128-bit AES unwrapped key.

Implemented as

R_SCE_AES128_RFC3394KeyUnwrap()
Parameters

[in] master_key AES-128 key used for
unwrapping.

[in] target_key_type Selects key to be
unwrapped.

[in] rfc3394_wrapped_key Wrapped key.

[out] target_key Key to be unwrapped.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,268 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256_RFC3394KeyUnwrap

fsp_err_t(* sce_api_t::AES256_RFC3394KeyUnwrap) (sce_aes_wrapped_key_t *master_key, uint32_t
target_key_type, uint32_t *rfc3394_wrapped_key, sce_aes_wrapped_key_t *target_key)

This API outputs 256-bit AES unwrapped key.

Implemented as

R_SCE_AES256_RFC3394KeyUnwrap()
Parameters

[in] master_key AES-256 key used for
unwrapping.

[in] target_key_type Selects key to be
unwrapped.

[in] rfc3394_wrapped_key Wrapped key.

[out] target_key Key to be unwrapped.

◆ AES128ECB_EncryptInit

fsp_err_t(* sce_api_t::AES128ECB_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,269 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128ECB_EncryptUpdate

fsp_err_t(* sce_api_t::AES128ECB_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain, uint8_t
*cipher, uint32_t plain_length)

Update AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

◆ AES128ECB_EncryptFinal

fsp_err_t(* sce_api_t::AES128ECB_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES128ECB_DecryptInit

fsp_err_t(* sce_api_t::AES128ECB_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,270 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128ECB_DecryptUpdate

fsp_err_t(* sce_api_t::AES128ECB_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES128ECB_DecryptFinal

fsp_err_t(* sce_api_t::AES128ECB_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

◆ AES256ECB_EncryptInit

fsp_err_t(* sce_api_t::AES256ECB_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,271 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256ECB_EncryptUpdate

fsp_err_t(* sce_api_t::AES256ECB_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain, uint8_t
*cipher, uint32_t plain_length)

Update AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

◆ AES256ECB_EncryptFinal

fsp_err_t(* sce_api_t::AES256ECB_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES256ECB_DecryptInit

fsp_err_t(* sce_api_t::AES256ECB_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,272 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256ECB_DecryptUpdate

fsp_err_t(* sce_api_t::AES256ECB_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES256ECB_DecryptFinal

fsp_err_t(* sce_api_t::AES256ECB_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,273 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CBC_EncryptInit

fsp_err_t(* sce_api_t::AES128CBC_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

◆ AES128CBC_EncryptUpdate

fsp_err_t(* sce_api_t::AES128CBC_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,274 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CBC_EncryptFinal

fsp_err_t(* sce_api_t::AES128CBC_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES128CBC_DecryptInit

fsp_err_t(* sce_api_t::AES128CBC_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,275 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CBC_DecryptUpdate

fsp_err_t(* sce_api_t::AES128CBC_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES128CBC_DecryptFinal

fsp_err_t(* sce_api_t::AES128CBC_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,276 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CBC_EncryptInit

fsp_err_t(* sce_api_t::AES256CBC_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

◆ AES256CBC_EncryptUpdate

fsp_err_t(* sce_api_t::AES256CBC_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,277 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CBC_EncryptFinal

fsp_err_t(* sce_api_t::AES256CBC_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES256CBC_DecryptInit

fsp_err_t(* sce_api_t::AES256CBC_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,278 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CBC_DecryptUpdate

fsp_err_t(* sce_api_t::AES256CBC_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES256CBC_DecryptFinal

fsp_err_t(* sce_api_t::AES256CBC_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,279 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128GCM_EncryptInit

fsp_err_t(* sce_api_t::AES128GCM_EncryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

◆ AES128GCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES128GCM_EncryptUpdate) (sce_gcm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad, uint32_t aad_length)

Update AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,280 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128GCM_EncryptFinal

fsp_err_t(* sce_api_t::AES128GCM_EncryptFinal) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_data_length, uint8_t *atag)

Finalize AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

◆ AES128GCM_DecryptInit

fsp_err_t(* sce_api_t::AES128GCM_DecryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,281 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128GCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES128GCM_DecryptUpdate) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad, uint32_t aad_length)

Update AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

◆ AES128GCM_DecryptFinal

fsp_err_t(* sce_api_t::AES128GCM_DecryptFinal) (sce_gcm_handle_t *handle, uint8_t *plain,
uint32_t *plain_data_length, uint8_t *atag, uint32_t atag_length)

Finalize AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,282 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256GCM_EncryptInit

fsp_err_t(* sce_api_t::AES256GCM_EncryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

◆ AES256GCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES256GCM_EncryptUpdate) (sce_gcm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad, uint32_t aad_length)

Update AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,283 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256GCM_EncryptFinal

fsp_err_t(* sce_api_t::AES256GCM_EncryptFinal) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_data_length, uint8_t *atag)

Finalize AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

◆ AES256GCM_DecryptInit

fsp_err_t(* sce_api_t::AES256GCM_DecryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,284 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256GCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES256GCM_DecryptUpdate) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad, uint32_t aad_length)

Update AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

◆ AES256GCM_DecryptFinal

fsp_err_t(* sce_api_t::AES256GCM_DecryptFinal) (sce_gcm_handle_t *handle, uint8_t *plain,
uint32_t *plain_data_length, uint8_t *atag, uint32_t atag_length)

Finalize AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,285 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CCM_EncryptInit

fsp_err_t(* sce_api_t::AES128CCM_EncryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES128CCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES128CCM_EncryptUpdate) (sce_ccm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,286 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CCM_EncryptFinal

fsp_err_t(* sce_api_t::AES128CCM_EncryptFinal) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

Finalize AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES128CCM_DecryptInit

fsp_err_t(* sce_api_t::AES128CCM_DecryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,287 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES128CCM_DecryptUpdate) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

◆ AES128CCM_DecryptFinal

fsp_err_t(* sce_api_t::AES128CCM_DecryptFinal) (sce_ccm_handle_t *handle, uint8_t *plain,
uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

Finalize AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,288 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CCM_EncryptInit

fsp_err_t(* sce_api_t::AES256CCM_EncryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES256CCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES256CCM_EncryptUpdate) (sce_ccm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,289 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CCM_EncryptFinal

fsp_err_t(* sce_api_t::AES256CCM_EncryptFinal) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

Finalize AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES256CCM_DecryptInit

fsp_err_t(* sce_api_t::AES256CCM_DecryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,290 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES256CCM_DecryptUpdate) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

◆ AES256CCM_DecryptFinal

fsp_err_t(* sce_api_t::AES256CCM_DecryptFinal) (sce_ccm_handle_t *handle, uint8_t *plain,
uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

Finalize AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,291 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CMAC_GenerateInit

fsp_err_t(* sce_api_t::AES128CMAC_GenerateInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

◆ AES128CMAC_GenerateUpdate

fsp_err_t(* sce_api_t::AES128CMAC_GenerateUpdate) (sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES128CMAC_GenerateFinal

fsp_err_t(* sce_api_t::AES128CMAC_GenerateFinal) (sce_cmac_handle_t *handle, uint8_t *mac)

Finalize AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (16byte)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,292 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CMAC_VerifyInit

fsp_err_t(* sce_api_t::AES128CMAC_VerifyInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

◆ AES128CMAC_VerifyUpdate

fsp_err_t(* sce_api_t::AES128CMAC_VerifyUpdate) (sce_cmac_handle_t *handle, uint8_t *message,
uint32_t message_length)

Update AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,293 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES128CMAC_VerifyFinal

fsp_err_t(* sce_api_t::AES128CMAC_VerifyFinal) (sce_cmac_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

◆ AES256CMAC_GenerateInit

fsp_err_t(* sce_api_t::AES256CMAC_GenerateInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,294 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CMAC_GenerateUpdate

fsp_err_t(* sce_api_t::AES256CMAC_GenerateUpdate) (sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES256CMAC_GenerateFinal

fsp_err_t(* sce_api_t::AES256CMAC_GenerateFinal) (sce_cmac_handle_t *handle, uint8_t *mac)

Finalize AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (16byte)

◆ AES256CMAC_VerifyInit

fsp_err_t(* sce_api_t::AES256CMAC_VerifyInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,295 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ AES256CMAC_VerifyUpdate

fsp_err_t(* sce_api_t::AES256CMAC_VerifyUpdate) (sce_cmac_handle_t *handle, uint8_t *message,
uint32_t message_length)

Update AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES256CMAC_VerifyFinal

fsp_err_t(* sce_api_t::AES256CMAC_VerifyFinal) (sce_cmac_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

◆ SHA256_Init

fsp_err_t(* sce_api_t::SHA256_Init) (sce_sha_md5_handle_t *handle)

Initialize SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Init()
Parameters

[in,out] handle SHA handler (work area)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,296 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ SHA256_Update

fsp_err_t(* sce_api_t::SHA256_Update) (sce_sha_md5_handle_t *handle, uint8_t *message, uint32_t
message_length)

Update SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Update()
Parameters

[in,out] handle SHA handler (work area)

[in] message message data area

[in] message_length message data length

◆ SHA256_Final

fsp_err_t(* sce_api_t::SHA256_Final) (sce_sha_md5_handle_t *handle, uint8_t *digest, uint32_t
*digest_length)

Finalize SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Final()
Parameters

[in,out] handle SHA handler (work area)

[in,out] digest hasha data area

[in,out] digest_length hash data length (32bytes)

◆ RSA1024_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::RSA1024_WrappedKeyPairGenerate) (sce_rsa1024_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs 1024-bit RSA wrapped pair key.

Implemented as

R_SCE_RSA1024_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,297 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSA2048_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::RSA2048_WrappedKeyPairGenerate) (sce_rsa2048_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs 2048-bit RSA wrapped pair key.

Implemented as

R_SCE_RSA2048_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

◆ RSA1024_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA1024_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

This API outputs 1024-bit RSA public wrapped key.

Implemented as

R_SCE_RSA1024_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,298 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSA1024_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::RSA1024_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

This API outputs 1024-bit RSA private wrapped key.

Implemented as

R_SCE_RSA1024_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA private
wrapped key

◆ RSA2048_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA2048_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

This API outputs 2048-bit RSA public wrapped key.

Implemented as

R_SCE_RSA2048_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA public wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,299 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSA2048_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::RSA2048_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

This API outputs 2048-bit RSA private wrapped key.

Implemented as

R_SCE_RSA2048_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA private
wrapped key

◆ RSA3072_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA3072_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

This API outputs 3072-bit RSA public wrapped key.

Implemented as

R_SCE_RSA3072_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 3072-bit RSA public wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,300 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSA4096_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA4096_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

This API outputs 4096-bit RSA public wrapped key.

Implemented as

R_SCE_RSA4096_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 4096-bit RSA public wrapped
key

◆ RSASSA_PKCS1024_SignatureGenerate

fsp_err_t(* sce_api_t::RSASSA_PKCS1024_SignatureGenerate) (sce_rsa_byte_data_t *message_hash,
sce_rsa_byte_data_t *signature, sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature generation.

Implemented as

R_SCE_RSASSA_PKCS1024_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,301 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSASSA_PKCS2048_SignatureGenerate

fsp_err_t(* sce_api_t::RSASSA_PKCS2048_SignatureGenerate) (sce_rsa_byte_data_t *message_hash,
sce_rsa_byte_data_t *signature, sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature generation.

Implemented as

R_SCE_RSASSA_PKCS2048_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Inputs the 2048-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSASSA_PKCS1024_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS1024_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS1024_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,302 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSASSA_PKCS2048_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS2048_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS2048_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSASSA_PKCS3072_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS3072_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS3072_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,303 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSASSA_PKCS4096_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS4096_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS4096_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSAES_PKCS1024_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS1024_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa1024_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS1024_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,304 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSAES_PKCS2048_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS2048_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa2048_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS2048_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

◆ RSAES_PKCS3072_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS3072_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa3072_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS3072_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

◆ RSAES_PKCS4096_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS4096_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa4096_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS4096_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,305 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ RSAES_PKCS1024_Decrypt

fsp_err_t(* sce_api_t::RSAES_PKCS1024_Decrypt) (sce_rsa_byte_data_t *cipher, sce_rsa_byte_data_t
*plain, sce_rsa1024_private_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 decryption.

Implemented as

R_SCE_RSAES_PKCS1024_Decrypt()
Parameters

[in] cipher ciphertext

[in,out] plain plaintext

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

◆ RSAES_PKCS2048_Decrypt

fsp_err_t(* sce_api_t::RSAES_PKCS2048_Decrypt) (sce_rsa_byte_data_t *cipher, sce_rsa_byte_data_t
*plain, sce_rsa2048_private_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 decryption.

Implemented as

R_SCE_RSAES_PKCS2048_Decrypt()
Parameters

[in] cipher ciphertext

[in,out] plain plaintext

[in] wrapped_key Inputs the 2048-bit RSA
private wrapped key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,306 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ SHA256HMAC_EncryptedKeyWrap

fsp_err_t(* sce_api_t::SHA256HMAC_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_hmac_sha_wrapped_key_t
*wrapped_key)

This API outputs HMAC-SHA256 wrapped key.

Implemented as

R_SCE_SHA256HMAC_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key HMAC-SHA256 wrapped key

◆ SHA256HMAC_GenerateInit

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateInit) (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

Initialize HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateInit()
Parameters

[in,out] handle SHA-HMAC handler (work
area)

[in] wrapped_key MAC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,307 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ SHA256HMAC_GenerateUpdate

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateUpdate) (sce_hmac_sha_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateUpdate()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] message Message area

[in] message_length Message length

◆ SHA256HMAC_GenerateFinal

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateFinal) (sce_hmac_sha_handle_t *handle, uint8_t *mac)

Finalize HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateFinal()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in,out] mac HMAC area (32 bytes)

◆ SHA256HMAC_VerifyInit

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyInit) (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

Initialize HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyInit()
Parameters

[in,out] handle SHA-HMAC handler (work
area)

[in] wrapped_key MAC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,308 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ SHA256HMAC_VerifyUpdate

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyUpdate) (sce_hmac_sha_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyUpdate()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] message Message area

[in] message_length Message length

◆ SHA256HMAC_VerifyFinal

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyFinal) (sce_hmac_sha_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyFinal()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] mac HMAC area

[in] mac_length HMAC length

◆ ECC_secp192r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp192r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp192r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp192r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp192r1 public key and
private key pair

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,309 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECC_secp224r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp224r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp224r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp224r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp224r1 public key and
private key pair

◆ ECC_secp256r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp256r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp256r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp256r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp256r1 public key and
private key pair

◆ ECC_secp384r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp384r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp384r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp384r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp384r1 public key and
private key pair

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,310 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECC_secp192r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp192r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp192r1 public wrapped key.

Implemented as

R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 public wrapped
key

◆ ECC_secp224r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp224r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp224r1 public wrapped key.

Implemented as

R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 public wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,311 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECC_secp256r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp256r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp256r1 public wrapped key.

Implemented as

R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 public wrapped
key

◆ ECC_secp384r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp384r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp384r1 public wrapped key.

Implemented as

R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 public wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,312 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECC_secp192r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp192r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp192r1 private wrapped key.

Implemented as

R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 private wrapped
key

◆ ECC_secp224r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp224r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp224r1 private wrapped key.

Implemented as

R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 private wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,313 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECC_secp256r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp256r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp256r1 private wrapped key.

Implemented as

R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 private wrapped
key

◆ ECC_secp384r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp384r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp384r1 private wrapped key.

Implemented as

R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 private wrapped
key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,314 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDSA_secp192r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp192r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp192r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp192r1 private key.

◆ ECDSA_secp224r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp224r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp224r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp224r1 private key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,315 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDSA_secp256r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp256r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp256r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp256r1 private key.

◆ ECDSA_secp384r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp384r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp384r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp384r1 private key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,316 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDSA_secp192r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp192r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp192r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp192r1 public key.

◆ ECDSA_secp224r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp224r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp224r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp224r1 public key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,317 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDSA_secp256r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp256r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp256r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp256r1 public key.

◆ ECDSA_secp384r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp384r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp384r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp384r1 public key.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,318 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDH_secp256r1_Init

fsp_err_t(* sce_api_t::ECDH_secp256r1_Init) (sce_ecdh_handle_t *handle, uint32_t key_type,
uint32_t use_key_id)

secp256r1 ECDH Initialization.

Implemented as

R_SCE_ECDH_secp256r1_Init()
Parameters

[in,out] handle ECDH handler (work area)

[in] key_type Key exchange type

[in] use_key_id use key_id or not

◆ ECDH_secp256r1_PublicKeySign

fsp_err_t(* sce_api_t::ECDH_secp256r1_PublicKeySign) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t
*ecc_private_wrapped_key, uint8_t *public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

secp256r1 ECDH public key Signature.

Implemented as

R_SCE_ECDH_secp256r1_PublicKeySign()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key For ECDHE, input a null
pointer. For ECDH, input the
wrapped key of a secp256r1
public key.

[in] ecc_private_wrapped_key secp256r1 private key for
signature generation

[in,out] public_key User secp256r1 public key
(512-bit) for key exchange.

[in,out] signature Signature text storage
destination information

[in,out] wrapped_key For ECDHE, a private
wrapped key generated from
a random number. Not
output for ECDH.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,319 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDH_secp256r1_PublicKeyVerify

fsp_err_t(* sce_api_t::ECDH_secp256r1_PublicKeyVerify) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, uint8_t *public_key_data,
sce_ecdsa_byte_data_t *signature, sce_ecc_public_wrapped_key_t *wrapped_key)

secp256r1 ECDH public key verification.

Implemented as

R_SCE_ECDH_secp256r1_PublicKeyVerify()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key area for
signature verification

[in] public_key_data secp256r1 public key
(512-bit)

[in] signature ECDSA secp256r1 signature
of ecc_public_wrapped_key

[in,out] wrapped_key wrapped key of
ecc_public_wrapped_key

◆ ECDH_secp256r1_PublicKeyReadWithoutSignature

fsp_err_t(* sce_api_t::ECDH_secp256r1_PublicKeyReadWithoutSignature) (sce_ecdh_handle_t
*handle, uint8_t *public_key_data, sce_ecc_public_wrapped_key_t *wrapped_key)

Output the key index of QeU without signature verification.

Implemented as

R_SCE_ECDH_secp256r1_PublicKeyReadWithoutSignature()
Parameters

[in,out] handle ECDH handler (work area)

[in] public_key_data secp256r1 public key
(512-bit). When key_id is
used: key_id (8-bit) || public
key (512-bit)

[in,out] wrapped_key wrapped key of
ecc_public_wrapped_key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,320 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ ECDH_secp256r1_SharedSecretCalculate

fsp_err_t(* sce_api_t::ECDH_secp256r1_SharedSecretCalculate) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t
*ecc_private_wrapped_key, sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

secp256r1 ECDH shared secret calculation.

Implemented as

R_SCE_ECDH_secp256r1_SharedSecretCalculate()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key

[in] ecc_private_wrapped_key Private wrapped key

[in,out] shared_secret_wrapped_key Wrapped key of shared
secret Z calculated by ECDH
key exchange

◆ ECDH_secp256r1_KeyDerivation

fsp_err_t(* sce_api_t::ECDH_secp256r1_KeyDerivation) (sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t key_type, uint32_t kdf_type,
uint8_t *other_info, uint32_t other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

secp256r1 ECDH key derivation.

Implemented as

R_SCE_ECDH_secp256r1_KeyDerivation()
Parameters

[in,out] handle ECDH handler (work area)

[in] shared_secret_wrapped_key Z wrapped key calculated by
R_SCE_ECDH_secp256r1_Sha
redSecretCalculate

[in] key_type Derived key type

[in] kdf_type Algorithm used for key
derivation calculation

[in] other_info Additional data used for key
derivation calculation

[in] other_info_length Data length of other_info

[in] salt_wrapped_key Salt wrapped key

[in,out] wrapped_key Wrapped key corresponding
to key_type.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,321 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_RootCertificateRSA2048PublicKeyInstall

fsp_err_t(* sce_api_t::TLS_RootCertificateRSA2048PublicKeyInstall) (uint8_t
*encrypted_provisioning_key, uint8_t *initial_vector, uint8_t *encrypted_key,
sce_tls_ca_certification_public_wrapped_key_t *wrapped_key)

Generate TLS RSA Public key index data

Implemented as

R_SCE_TLS_RootCertificateRSA2048PublicKeyInstall()
Parameters

[in] encrypted_provisioning_key the provisioning key includes
encrypted CBC/CBC-MAC key
for user key

[in] initial_vector the initial_vector for user key
CBC encrypt

[in] encrypted_key the user key encrypted with
AES128-ECB mode

[out] wrapped_key the user Key Generation
Information (141 words) of
RSA2048 bit

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,322 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate

fsp_err_t(* sce_api_t::TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate)
(sce_tls_p256_ecc_wrapped_key_t *tls_p256_ecc_wrapped_key, uint8_t
*ephemeral_ecdh_public_key)

Generate TLS ECC key pair

Implemented as

R_SCE_TLS_ECC_secp256r1_EphemeralWrappedKeyPairGenerate()
Parameters

[in] tls_p256_ecc_wrapped_key P256 ECC key index for TLS

[in] ephemeral_ecdh_public_key ephemeral ECDH public key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,323 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_RootCertificateVerify

fsp_err_t(* sce_api_t::TLS_RootCertificateVerify) (uint32_t public_key_type, uint8_t *certificate,
uint32_t certificate_length, uint32_t public_key_n_start_position, uint32_t
public_key_n_end_position, uint32_t public_key_e_start_position, uint32_t
public_key_e_end_position, uint8_t *signature, uint32_t *encrypted_root_public_key)

Verify root CA certificate.

Implemented as

R_SCE_TLS_RootCertificateVerify()
Parameters

[in] public_key_type key type

[in] certificate certificates.

[in] certificate_length byte size of certificates.

[in] public_key_n_start_position start position of public key n.

[in] public_key_n_end_position end position of public key n.

[in] public_key_e_start_position start position of public key e.

[in] public_key_e_end_position end position of public key e.

[in] signature signature for certificates.

[out] encrypted_root_public_key public key for RSA 2048bit.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,324 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_CertificateVerify

fsp_err_t(* sce_api_t::TLS_CertificateVerify) (uint32_t public_key_type, uint32_t
*encrypted_input_public_key, uint8_t *certificate, uint32_t certificate_length, uint8_t *signature,
uint32_t public_key_n_start_position, uint32_t public_key_n_end_position, uint32_t
public_key_e_start_position, uint32_t public_key_e_end_position, uint32_t
*encrypted_output_public_key)

Verify server certificate and intermediate certificate.

Implemented as

R_SCE_TLS_CertificateVerify()
Parameters

[in] public_key_type key type

[in] input_public_key public key.

[in] certificate certificates.

[in] certificate_length byte size of certificates.

[in] signature signature for certificates.

[in] public_key_n_start_position start position of public key n.

[in] public_key_n_end_position end position of public key n.

[in] public_key_e_start_position start position of public key e.

[in] public_key_e_end_position end position of public key e.

[out] encrypted_output_public_key public key for RSA 2048bit.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,325 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_PreMasterSecretGenerateForRSA2048

fsp_err_t(* sce_api_t::TLS_PreMasterSecretGenerateForRSA2048) (uint32_t *sce_pre_master_secret)

Generate encrypted pre-master secret.

Implemented as

R_SCE_TLS_PreMasterSecretGenerateForRSA2048()
Parameters

[out] sce_pre_master_secret pre-master secret value for
SCE.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,326 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_MasterSecretGenerate

fsp_err_t(* sce_api_t::TLS_MasterSecretGenerate) (uint32_t select_cipher_suite, uint32_t
*sce_pre_master_secret, uint8_t *client_random, uint8_t *server_random, uint32_t
*sce_master_secret)

Generate encrypted master secret.

Implemented as

R_SCE_TLS_MasterSecretGenerate()
Parameters

[in] select_cipher_suite cipher suite type

[in] sce_pre_master_secret pre-master secret value for
SCE.

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[out] sce_master_secret master secret value with
SCE-specific conversion.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,327 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_PreMasterSecretEncryptWithRSA2048

fsp_err_t(* sce_api_t::TLS_PreMasterSecretEncryptWithRSA2048) (uint32_t *encrypted_public_key,
uint32_t *sce_pre_master_secret, uint8_t *encrypted_pre_master_secret)

Output the result encrypted pre-master secret with RSA 2048bit

Implemented as

R_SCE_TLS_PreMasterSecretEncryptWithRSA2048()
Parameters

[in] encrypted_public_key public key data.

[in] sce_pre_master_secret pre-master secret value.

[out] encrypted_pre_master_secre
t

the value encrypted pre-
master secret.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

◆ TLS_SessionKeyGenerate

fsp_err_t(* sce_api_t::TLS_SessionKeyGenerate) (uint32_t select_cipher_suite, uint32_t
*sce_master_secret, uint8_t *client_random, uint8_t *server_random, uint8_t *nonce_explicit,
sce_hmac_sha_wrapped_key_t *client_mac_wrapped_key, sce_hmac_sha_wrapped_key_t
*server_mac_wrapped_key, sce_aes_wrapped_key_t *client_crypto_wrapped_key,
sce_aes_wrapped_key_t *server_crypto_wrapped_key, uint8_t *client_initial_vector, uint8_t
*server_initial_vector)

Output various key information.

Implemented as

R_SCE_TLS_SessionKeyGenerate()
Parameters

[in] select_cipher_suite Key suite information
number.

[in] sce_master_secret master secret value.

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[in] nonce_explicit nonce value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,328 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

[out] client_mac_wrapped_key the mac key during
communication from client
to server.

[out] server_mac_wrapped_key the mac key during
communication from server
to client.

[out] client_crypto_wrapped_key the crypto key during
communication from client
to server.

[out] server_crypto_wrapped_key the crypto key during
communication from server
to client.

[in] client_initial_vector not use.

[in] server_initial_vector not use.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,329 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_VerifyDataGenerate

fsp_err_t(* sce_api_t::TLS_VerifyDataGenerate) (uint32_t select_verify_data, uint32_t
*sce_master_secret, uint8_t *hand_shake_hash, uint8_t *verify_data)

Generate verify data.

Implemented as

R_SCE_TLS_VerifyDataGenerate()
Parameters

[in] select_verify_data Select Client/Server data.

[in] sce_master_secret master secret data.

[in] hand_shake_hash TLS hand shake message
SHA256 HASH value.

[out] verify_data verify data.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,330 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_ServerKeyExchangeVerify

fsp_err_t(* sce_api_t::TLS_ServerKeyExchangeVerify) (uint32_t public_key_type, uint8_t
*client_random, uint8_t *server_random, uint8_t *server_ephemeral_ecdh_public_key, uint8_t
*server_key_exchange_signature, uint32_t *encrypted_public_key, uint32_t
*encrypted_ephemeral_ecdh_public_key)

Retrives ECDH public key.

Implemented as

R_SCE_TLS_ServerKeyExchangeVerify()
Parameters

[in] public_key_type key type

[in] client_random random value reported
ClientHello.

[in] server_random random value reported
ServerHello.

[in] server_ephemeral_ecdh_publ
ic_key

Ephemeral ECDH public key
from Server.

[in] server_key_exchange_siguna
ture

Server Key Exchange
sigunature.

[in] encrypted_public_key encrypted public key.

[out] encrypted_ephemeral_ecdh_
public_key

encrypted Ephemeral ECDH
public key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,331 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ TLS_PreMasterSecretGenerateForECC_secp256r1

fsp_err_t(* sce_api_t::TLS_PreMasterSecretGenerateForECC_secp256r1) (uint32_t
*encrypted_public_key, sce_tls_p256_ecc_wrapped_key_t *tls_p256_ecc_wrapped_key, uint32_t
*sce_pre_master_secret)

Generate encrypted pre-master secret.

Implemented as

R_SCE_TLS_PreMasterSecretGenerateForECC_secp256r1()
Parameters

[in] encrypted_public_key encrypted public key

[in] tls_p256_ecc_wrapped_key P-256 ECC key index.

[out] sce_pre_master_secret encrypted pre-master secret
value for SCE.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

◆ sce_instance_t

struct sce_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

sce_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

sce_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

sce_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ sce_rsa_byte_data_t

typedef sce_byte_data_t sce_rsa_byte_data_t

byte data

RSA byte data structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,332 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE Interface

◆ sce_ecdsa_byte_data_t

typedef sce_byte_data_t sce_ecdsa_byte_data_t

byte data

ECDSA byte data structure

◆ sce_ctrl_t

typedef void sce_ctrl_t

SCE Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

sce_instance_ctrl_t

5.3.13.4 SCE key injection Interface
Interfaces » Security

Detailed Description

Interface for key injection by Secure Crypto Engine (SCE) functions.

Summary
The SCE key injection interface provides SCE functionality.

Data Structures

struct sce_key_injection_api_t

Data Structure Documentation

◆ sce_key_injection_api_t

struct sce_key_injection_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* AES128_InitialKeyWrap)(const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,333 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

fsp_err_t(* AES192_InitialKeyWrap)(const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t(* AES256_InitialKeyWrap)(const uint8_t *const key_type, const uint8_t
*const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_aes_wrapped_key_t *const wrapped_key)

fsp_err_t(* KeyUpdateKeyWrap)(const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_key_update_key_t *const key_update_key)

fsp_err_t(* AES128_EncryptedKeyWrap)(const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t
*const key_update_key, sce_aes_wrapped_key_t *const
wrapped_key)

fsp_err_t(* AES192_EncryptedKeyWrap)(const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t
*const key_update_key, sce_aes_wrapped_key_t *const
wrapped_key)

fsp_err_t(* AES256_EncryptedKeyWrap)(const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t
*const key_update_key, sce_aes_wrapped_key_t *const
wrapped_key)

fsp_err_t(* RSA2048_InitialPublicKeyWrap)(const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa2048_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* RSA3072_InitialPublicKeyWrap)(const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa3072_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* RSA4096_InitialPublicKeyWrap)(const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,334 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

sce_rsa4096_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* RSA2048_InitialPrivateKeyWrap)(const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_rsa2048_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* RSA2048_EncryptedPublicKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_rsa2048_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* RSA2048_EncryptedPrivateKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_rsa2048_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256r1_InitialPublicKeyWrap)(const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256k1_InitialPublicKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp384r1_InitialPublicKeyWrap)(const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const
uint8_t *const initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256r1_InitialPrivateKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256k1_InitialPrivateKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,335 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

fsp_err_t(* ECC_secp384r1_InitialPrivateKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256r1_EncryptedPublicKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256k1_EncryptedPublicKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPublicKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256r1_EncryptedPrivateKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp256k1_EncryptedPrivateKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPrivateKeyWrap)(const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_InitialPublicKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_InitialPrivateKeyWrap)(const uint8_t *const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,336 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_InitialPublicKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_InitialPrivateKeyWrap)(const uint8_t *const
key_type, const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_EncryptedPublicKeyWrap)(const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP256r1_EncryptedPrivateKeyWrap)(const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_EncryptedPublicKeyWrap)(const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_public_wrapped_key_t *const wrapped_key)

fsp_err_t(* ECC_brainpoolP384r1_EncryptedPrivateKeyWrap)(const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const
sce_key_update_key_t *const key_update_key,
sce_ecc_private_wrapped_key_t *const wrapped_key)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,337 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ AES128_InitialKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES128_InitialKeyWrap) (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API outputs 128-bit AES wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 128-bit AES wrapped key

◆ AES192_InitialKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES192_InitialKeyWrap) (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API outputs 192-bit AES wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 192-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,338 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ AES256_InitialKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES256_InitialKeyWrap) (const uint8_t *const key_type, const
uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const
uint8_t *const encrypted_key, sce_aes_wrapped_key_t *const wrapped_key)

This API outputs 256-bit AES wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit AES wrapped key

◆ KeyUpdateKeyWrap

fsp_err_t(* sce_key_injection_api_t::KeyUpdateKeyWrap) (const uint8_t *const
wrapped_user_factory_programming_key, const uint8_t *const initial_vector, const uint8_t *const
encrypted_key, sce_key_update_key_t *const key_update_key)

This API outputs key update key.

Parameters
[in] wrapped_user_factory_progr

amming_key
Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] key_update_key Key update key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,339 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ AES128_EncryptedKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES128_EncryptedKeyWrap) (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API updates 128-bit AES wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

◆ AES192_EncryptedKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES192_EncryptedKeyWrap) (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API updates 192-bit AES wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 192-bit AES wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,340 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ AES256_EncryptedKeyWrap

fsp_err_t(* sce_key_injection_api_t::AES256_EncryptedKeyWrap) (const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, const sce_key_update_key_t *const key_update_key,
sce_aes_wrapped_key_t *const wrapped_key)

This API outputs 256-bit AES wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

◆ RSA2048_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA2048_InitialPublicKeyWrap) (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, sce_rsa2048_public_wrapped_key_t *const wrapped_key)

This API outputs 2048-bit RSA public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 2048-bit RSA wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,341 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ RSA3072_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA3072_InitialPublicKeyWrap) (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, sce_rsa3072_public_wrapped_key_t *const wrapped_key)

This API outputs 3072-bit RSA public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 3072-bit RSA wrapped key

◆ RSA4096_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA4096_InitialPublicKeyWrap) (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, sce_rsa4096_public_wrapped_key_t *const wrapped_key)

This API outputs 4096-bit RSA public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 4096-bit RSA wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,342 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ RSA2048_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA2048_InitialPrivateKeyWrap) (const uint8_t *const key_type,
const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const initial_vector,
const uint8_t *const encrypted_key, sce_rsa2048_private_wrapped_key_t *const wrapped_key)

This API outputs 2048-bit RSA private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 2048-bit RSA wrapped key

◆ RSA2048_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA2048_EncryptedPublicKeyWrap) (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_rsa2048_public_wrapped_key_t *const wrapped_key)

This API outputs 2048-bit RSA public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,343 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ RSA2048_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::RSA2048_EncryptedPrivateKeyWrap) (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_rsa2048_private_wrapped_key_t *const wrapped_key)

This API outputs 2048-bit RSA private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit RSA wrapped key

◆ ECC_secp256r1_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256r1_InitialPublicKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit ECC public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,344 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp256k1_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256k1_InitialPublicKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit ECC public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_secp384r1_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp384r1_InitialPublicKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const
wrapped_key)

This API outputs 384-bit ECC public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,345 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp256r1_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256r1_InitialPrivateKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit ECC private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_secp256k1_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256k1_InitialPrivateKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit ECC private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,346 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp384r1_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp384r1_InitialPrivateKeyWrap) (const uint8_t *const
key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const
wrapped_key)

This API outputs 384-bit ECC private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

◆ ECC_secp256r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256r1_EncryptedPublicKeyWrap) (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,347 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp256k1_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256k1_EncryptedPublicKeyWrap) (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_secp384r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp384r1_EncryptedPublicKeyWrap) (const uint8_t *const
initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API outputs 384-bit ECC public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,348 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp256r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256r1_EncryptedPrivateKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_secp256k1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp256k1_EncryptedPrivateKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,349 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_secp384r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_secp384r1_EncryptedPrivateKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API outputs 384-bit ECC private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

◆ ECC_brainpoolP256r1_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP256r1_InitialPublicKeyWrap) (const uint8_t
*const key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit Brainpool ECC public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,350 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_brainpoolP256r1_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP256r1_InitialPrivateKeyWrap) (const uint8_t
*const key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const
wrapped_key)

This API outputs 256-bit Brainpool ECC private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_brainpoolP384r1_InitialPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP384r1_InitialPublicKeyWrap) (const uint8_t
*const key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, sce_ecc_public_wrapped_key_t *const
wrapped_key)

This API outputs 384-bit Brainpool ECC public wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,351 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_brainpoolP384r1_InitialPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP384r1_InitialPrivateKeyWrap) (const uint8_t
*const key_type, const uint8_t *const wrapped_user_factory_programming_key, const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, sce_ecc_private_wrapped_key_t *const
wrapped_key)

This API outputs 384-bit Brainpool ECC private wrapped key.

Parameters
[in] key_type Key type whether

encrypted_key or plain key

[in] wrapped_user_factory_progr
amming_key

Provisioning key wrapped by
the DLM server

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encrypted and MAC
appended

[in,out] wrapped_key 384-bit ECC wrapped key

◆ ECC_brainpoolP256r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP256r1_EncryptedPublicKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,352 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_brainpoolP256r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP256r1_EncryptedPrivateKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API outputs 256-bit ECC private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

◆ ECC_brainpoolP384r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP384r1_EncryptedPublicKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_public_wrapped_key_t *const wrapped_key)

This API outputs 384-bit ECC public wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit ECC wrapped key

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,353 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Security > SCE key injection Interface

◆ ECC_brainpoolP384r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_key_injection_api_t::ECC_brainpoolP384r1_EncryptedPrivateKeyWrap) (const uint8_t
*const initial_vector, const uint8_t *const encrypted_key, const sce_key_update_key_t *const
key_update_key, sce_ecc_private_wrapped_key_t *const wrapped_key)

This API outputs 384-bit ECC private wrapped key.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 384-bit ECC wrapped key

5.3.14 Sensor
Interfaces

Detailed Description

Sensor Interfaces.

Modules

FSXXXX Middleware Interface

 Interface for FSXXXX Middleware functions.

HS300X Middleware Interface

 Interface for HS300X Middleware functions.

HS400X Middleware Interface

 Interface for HS400X Middleware functions.

OB1203 Middleware Interface

 Interface for OB1203 Middleware functions.

ZMOD4XXX Middleware Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,354 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor

 Interface for ZMOD4XXX Middleware functions.

5.3.14.1 FSXXXX Middleware Interface
Interfaces » Sensor

Detailed Description

Interface for FSXXXX Middleware functions.

Summary
The FSXXXX interface provides FSXXXX functionality.

Data Structures

struct rm_fsxxxx_callback_args_t

struct rm_fsxxxx_raw_data_t

struct rm_fsxxxx_sensor_data_t

struct rm_fsxxxx_data_t

struct rm_fsxxxx_cfg_t

struct rm_fsxxxx_api_t

struct rm_fsxxxx_instance_t

Typedefs

typedef void rm_fsxxxx_ctrl_t

Enumerations

enum rm_fsxxxx_event_t

Data Structure Documentation

◆ rm_fsxxxx_callback_args_t

struct rm_fsxxxx_callback_args_t

FSXXXX callback parameter definition

◆ rm_fsxxxx_raw_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,355 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > FSXXXX Middleware Interface

struct rm_fsxxxx_raw_data_t

FSXXXX raw data

◆ rm_fsxxxx_sensor_data_t

struct rm_fsxxxx_sensor_data_t

FSXXXX sensor data block

Data Fields

int16_t integer_part

int16_t decimal_part To two decimal places.

◆ rm_fsxxxx_data_t

struct rm_fsxxxx_data_t

FSXXXX data block

◆ rm_fsxxxx_cfg_t

struct rm_fsxxxx_cfg_t

FSXXXX Configuration

Data Fields

rm_comms_instance_t const
*

p_instance

 Pointer to Communications Middleware instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_callback)(rm_fsxxxx_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_fsxxxx_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,356 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > FSXXXX Middleware Interface

struct rm_fsxxxx_api_t

FSXXXX APIs

Data Fields

fsp_err_t(* open)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

fsp_err_t(* read)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

fsp_err_t(* dataCalculate)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fsxxxx_data)

fsp_err_t(* close)(rm_fsxxxx_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_fsxxxx_api_t::open) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Open sensor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* rm_fsxxxx_api_t::read) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Read ADC data from FSXXXX.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,357 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > FSXXXX Middleware Interface

◆ dataCalculate

fsp_err_t(* rm_fsxxxx_api_t::dataCalculate) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fsxxxx_data)

Calculate flow values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_fsxxxx_data Pointer to FSXXXX data
structure.

◆ close

fsp_err_t(* rm_fsxxxx_api_t::close) (rm_fsxxxx_ctrl_t *const p_ctrl)

Close FSXXXX.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_fsxxxx_instance_t

struct rm_fsxxxx_instance_t

FSXXXX instance

Data Fields

rm_fsxxxx_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_fsxxxx_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_fsxxxx_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_fsxxxx_ctrl_t

typedef void rm_fsxxxx_ctrl_t

FSXXXX control block. Allocate an instance specific control block to pass into the FSXXXX API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,358 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > FSXXXX Middleware Interface

◆ rm_fsxxxx_event_t

enum rm_fsxxxx_event_t

Event in the callback function

5.3.14.2 HS300X Middleware Interface
Interfaces » Sensor

Detailed Description

Interface for HS300X Middleware functions.

Summary
The HS300X interface provides HS300X functionality.

Data Structures

struct rm_hs300x_callback_args_t

struct rm_hs300x_raw_data_t

struct rm_hs300x_sensor_data_t

struct rm_hs300x_data_t

struct rm_hs300x_cfg_t

struct rm_hs300x_api_t

struct rm_hs300x_instance_t

Typedefs

typedef void rm_hs300x_ctrl_t

Enumerations

enum rm_hs300x_event_t

enum rm_hs300x_data_type_t

enum rm_hs300x_resolution_t

Data Structure Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,359 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

◆ rm_hs300x_callback_args_t

struct rm_hs300x_callback_args_t

HS300X callback parameter definition

◆ rm_hs300x_raw_data_t

struct rm_hs300x_raw_data_t

HS300X raw data

Data Fields

uint8_t humidity[2] Upper 2 bits of 0th element are
data status.

uint8_t temperature[2] Lower 2 bits of 1st element are
mask.

◆ rm_hs300x_sensor_data_t

struct rm_hs300x_sensor_data_t

HS300X sensor data block

Data Fields

int16_t integer_part

int16_t decimal_part To two decimal places.

◆ rm_hs300x_data_t

struct rm_hs300x_data_t

HS300X data block

◆ rm_hs300x_cfg_t

struct rm_hs300x_cfg_t

HS300X Configuration

Data Fields

rm_comms_instance_t const
*

p_instance

 Pointer to Communications Middleware instance.

void const * p_context

 Pointer to the user-provided context.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,360 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_callback)(rm_hs300x_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_hs300x_api_t

struct rm_hs300x_api_t

HS300X APIs

Data Fields

fsp_err_t(* open)(rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

fsp_err_t(* measurementStart)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

fsp_err_t(* dataCalculate)(rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_raw_data_t *const p_raw_data, rm_hs300x_data_t *const
p_hs300x_data)

fsp_err_t(* programmingModeEnter)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* resolutionChange)(rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t
const resolution)

fsp_err_t(* sensorIdGet)(rm_hs300x_ctrl_t *const p_ctrl, uint32_t *const
p_sensor_id)

fsp_err_t(* programmingModeExit)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* close)(rm_hs300x_ctrl_t *const p_ctrl)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,361 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

Field Documentation

◆ open

fsp_err_t(* rm_hs300x_api_t::open) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

Open sensor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_hs300x_api_t::measurementStart) (rm_hs300x_ctrl_t *const p_ctrl)

Start a measurement.

Parameters
[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_hs300x_api_t::read) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

Read ADC data from HS300X.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,362 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

◆ dataCalculate

fsp_err_t(* rm_hs300x_api_t::dataCalculate) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t
*const p_raw_data, rm_hs300x_data_t *const p_hs300x_data)

Calculate humidity and temperature values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_hs300x_data Pointer to HS300X data
structure.

◆ programmingModeEnter

fsp_err_t(* rm_hs300x_api_t::programmingModeEnter) (rm_hs300x_ctrl_t *const p_ctrl)

Enter the programming mode.

Parameters
[in] p_ctrl Pointer to control structure.

◆ resolutionChange

fsp_err_t(* rm_hs300x_api_t::resolutionChange) (rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t const resolution)

Change the sensor resolution.

Parameters
[in] p_ctrl Pointer to control structure.

[in] data_type Data type of HS300X.

[in] resolution Resolution type of HS300X.

◆ sensorIdGet

fsp_err_t(* rm_hs300x_api_t::sensorIdGet) (rm_hs300x_ctrl_t *const p_ctrl, uint32_t *const
p_sensor_id)

Get the sensor ID.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_sensor_id Pointer to sensor ID of
HS300X.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,363 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

◆ programmingModeExit

fsp_err_t(* rm_hs300x_api_t::programmingModeExit) (rm_hs300x_ctrl_t *const p_ctrl)

Exit the programming mode.

Parameters
[in] p_ctrl Pointer to control structure.

◆ close

fsp_err_t(* rm_hs300x_api_t::close) (rm_hs300x_ctrl_t *const p_ctrl)

Close HS300X.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_hs300x_instance_t

struct rm_hs300x_instance_t

HS300X instance

Data Fields

rm_hs300x_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_hs300x_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_hs300x_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_hs300x_ctrl_t

typedef void rm_hs300x_ctrl_t

HS300X control block. Allocate an instance specific control block to pass into the HS300X API calls.

Enumeration Type Documentation

◆ rm_hs300x_event_t

enum rm_hs300x_event_t

Event in the callback function

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,364 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS300X Middleware Interface

◆ rm_hs300x_data_type_t

enum rm_hs300x_data_type_t

Data type of HS300X

◆ rm_hs300x_resolution_t

enum rm_hs300x_resolution_t

Resolution type of HS300X

5.3.14.3 HS400X Middleware Interface
Interfaces » Sensor

Detailed Description

Interface for HS400X Middleware functions.

Summary
The HS400X interface provides HS400X functionality.

Data Structures

struct rm_hs400x_callback_args_t

struct rm_hs400x_resolutions_t

struct rm_hs400x_raw_data_t

struct rm_hs400x_sensor_data_t

struct rm_hs400x_data_t

struct rm_hs400x_cfg_t

struct rm_hs400x_api_t

struct rm_hs400x_instance_t

Typedefs

typedef void rm_hs400x_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,365 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

Enumerations

enum rm_hs400x_event_t

enum rm_hs400x_temperature_resolution_t

enum rm_hs400x_humidity_resolution_t

enum rm_hs400x_periodic_measurement_frequency_t

Data Structure Documentation

◆ rm_hs400x_callback_args_t

struct rm_hs400x_callback_args_t

HS400X callback parameter definition

◆ rm_hs400x_resolutions_t

struct rm_hs400x_resolutions_t

HS400X resolution block

◆ rm_hs400x_raw_data_t

struct rm_hs400x_raw_data_t

HS400X raw data

Data Fields

uint8_t humidity[2] Upper 2 bits of 0st element are
mask.

uint8_t temperature[2] Upper 2 bits of 0st element are
mask.

uint8_t checksum Checksum.

◆ rm_hs400x_sensor_data_t

struct rm_hs400x_sensor_data_t

HS400X sensor data block

Data Fields

int16_t integer_part

int16_t decimal_part To two decimal places.

◆ rm_hs400x_data_t

struct rm_hs400x_data_t

HS400X data block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,366 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

◆ rm_hs400x_cfg_t

struct rm_hs400x_cfg_t

HS400X Configuration

Data Fields

rm_hs400x_temperature_res
olution_t const

temperature_resolution

 Resolution for temperature.

rm_hs400x_humidity_resolut
ion_t const

humidity_resolution

 Resolution for humidity.

rm_hs400x_periodic_measur
ement_frequency_t const

frequency

 Frequency for periodic measurement.

rm_comms_instance_t const
*

p_comms_instance

 Pointer to Communications Middleware instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_comms_callback)(rm_hs400x_callback_args_t *p_args)

 I2C Communications callback.

◆ rm_hs400x_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,367 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

struct rm_hs400x_api_t

HS400X APIs

Data Fields

fsp_err_t(* open)(rm_hs400x_ctrl_t *const p_ctrl, rm_hs400x_cfg_t const *const
p_cfg)

fsp_err_t(* measurementStart)(rm_hs400x_ctrl_t *const p_ctrl)

fsp_err_t(* measurementStop)(rm_hs400x_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_hs400x_ctrl_t *const p_ctrl, rm_hs400x_raw_data_t *const
p_raw_data)

fsp_err_t(* dataCalculate)(rm_hs400x_ctrl_t *const p_ctrl,
rm_hs400x_raw_data_t *const p_raw_data, rm_hs400x_data_t *const
p_hs400x_data)

fsp_err_t(* close)(rm_hs400x_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_hs400x_api_t::open) (rm_hs400x_ctrl_t *const p_ctrl, rm_hs400x_cfg_t const *const
p_cfg)

Open sensor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_hs400x_api_t::measurementStart) (rm_hs400x_ctrl_t *const p_ctrl)

Start one shot measurement.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,368 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

◆ measurementStop

fsp_err_t(* rm_hs400x_api_t::measurementStop) (rm_hs400x_ctrl_t *const p_ctrl)

Stop a period measurement.

Parameters
[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_hs400x_api_t::read) (rm_hs400x_ctrl_t *const p_ctrl, rm_hs400x_raw_data_t *const
p_raw_data)

Read ADC data from HS400X.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

◆ dataCalculate

fsp_err_t(* rm_hs400x_api_t::dataCalculate) (rm_hs400x_ctrl_t *const p_ctrl, rm_hs400x_raw_data_t
*const p_raw_data, rm_hs400x_data_t *const p_hs400x_data)

Calculate humidity and temperature values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_hs400x_data Pointer to HS400X data
structure.

◆ close

fsp_err_t(* rm_hs400x_api_t::close) (rm_hs400x_ctrl_t *const p_ctrl)

Close HS400X.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_hs400x_instance_t

struct rm_hs400x_instance_t

HS400X instance

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,369 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

Data Fields

rm_hs400x_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_hs400x_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_hs400x_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_hs400x_ctrl_t

typedef void rm_hs400x_ctrl_t

HS400X control block. Allocate an instance specific control block to pass into the HS400X API calls.

Enumeration Type Documentation

◆ rm_hs400x_event_t

enum rm_hs400x_event_t

Event in the callback function

◆ rm_hs400x_temperature_resolution_t

enum rm_hs400x_temperature_resolution_t

Resolution type for temperature

◆ rm_hs400x_humidity_resolution_t

enum rm_hs400x_humidity_resolution_t

Resolution type for humidity

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,370 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > HS400X Middleware Interface

◆ rm_hs400x_periodic_measurement_frequency_t

enum rm_hs400x_periodic_measurement_frequency_t

Frequency of periodic measurement

Enumerator

RM_HS400X_PERIODIC_MEASUREMENT_FREQUE
NCY_2HZ

A measurement every 0.5s.

RM_HS400X_PERIODIC_MEASUREMENT_FREQUE
NCY_1HZ

A measurement every 1s.

RM_HS400X_PERIODIC_MEASUREMENT_FREQUE
NCY_0P4HZ

A measurement every 2.5s.

5.3.14.4 OB1203 Middleware Interface
Interfaces » Sensor

Detailed Description

Interface for OB1203 Middleware functions.

Summary
The OB1203 interface provides OB1203 functionality.

Data Structures

struct rm_ob1203_callback_args_t

struct rm_ob1203_raw_data_t

struct rm_ob1203_light_data_t

struct rm_ob1203_prox_data_t

struct rm_ob1203_ppg_data_t

struct rm_ob1203_device_interrupt_cfg_t

struct rm_ob1203_device_status_t

struct rm_ob1203_gain_t

struct rm_ob1203_led_current_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,371 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

struct rm_ob1203_fifo_info_t

struct rm_ob1203_cfg_t

struct rm_ob1203_api_t

struct rm_ob1203_instance_t

Typedefs

typedef void rm_ob1203_ctrl_t

Enumerations

enum rm_ob1203_event_t

enum rm_ob1203_operation_mode_t

enum rm_ob1203_light_sensor_mode_t

enum rm_ob1203_ppg_sensor_mode_t

enum rm_ob1203_light_data_type_t

enum rm_ob1203_light_gain_t

enum rm_ob1203_ppg_prox_gain_t

enum rm_ob1203_led_order_t

enum rm_ob1203_light_interrupt_type_t

enum rm_ob1203_light_interrupt_source_t

enum rm_ob1203_prox_interrupt_type_t

enum rm_ob1203_ppg_interrupt_type_t

enum rm_ob1203_variance_threshold_t

enum rm_ob1203_sleep_after_interrupt_t

enum rm_ob1203_moving_average_t

enum rm_ob1203_power_save_mode_t

enum rm_ob1203_analog_cancellation_t

enum rm_ob1203_number_led_pulses_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,372 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

enum rm_ob1203_number_averaged_samples_t

enum rm_ob1203_light_resolution_meas_period_t

enum rm_ob1203_prox_pulse_width_meas_period_t

enum rm_ob1203_ppg_pulse_width_meas_period_t

enum rm_ob1203_fifo_rollover_t

Data Structure Documentation

◆ rm_ob1203_callback_args_t

struct rm_ob1203_callback_args_t

OB1203 callback parameter definition

◆ rm_ob1203_raw_data_t

struct rm_ob1203_raw_data_t

OB1203 raw data structure

Data Fields

uint8_t adc_data[96] Max of PPG data is 96 (3 bytes
multiplied by 32 samples)

◆ rm_ob1203_light_data_t

struct rm_ob1203_light_data_t

OB1203 light data structure

Data Fields

uint32_t clear_data Clear channel data (20bits).

uint32_t green_data Green channel data (20bits).

uint32_t blue_data Blue channel data (20bits).

uint32_t red_data Red channel data (20bits).

uint32_t comp_data Temperature compensation
(Comp) channel data (20bits).

◆ rm_ob1203_prox_data_t

struct rm_ob1203_prox_data_t

OB1203 proximity data structure

Data Fields

uint16_t proximity_data Proximity data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,373 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_ppg_data_t

struct rm_ob1203_ppg_data_t

OB1203 PPG data structure

Data Fields

uint32_t ppg_data[32] PPG data (18bits).

◆ rm_ob1203_device_interrupt_cfg_t

struct rm_ob1203_device_interrupt_cfg_t

OB1203 device interrupt configuration structure

Data Fields

rm_ob1203_operation_mode_t light_prox_mode Light Proximity mode only. If
Light mode uses IRQ, set RM_O
B1203_OPERATION_MODE_LIGH
T. If Proximity mode uses IRQ,
set RM_OB1203_OPERATION_M
ODE_PROXIMITY.

rm_ob1203_light_interrupt_type
_t

light_type Light mode interrupt type.

rm_ob1203_light_interrupt_sour
ce_t

light_source Light mode interrupt source.

rm_ob1203_prox_interrupt_type
_t

prox_type Proximity mode interrupt type.

uint8_t persist The number of similar
consecutive Light mode or
Proximity interrupt events that
must occur before the interrupt
is asserted (4bits).

rm_ob1203_ppg_interrupt_type
_t

ppg_type PPG mode interrupt type.

◆ rm_ob1203_device_status_t

struct rm_ob1203_device_status_t

OB1203 device status

Data Fields

bool power_on_reset_occur

bool light_interrupt_occur

bool light_measurement_complete

bool ts_measurement_complete

bool fifo_afull_interrupt_occur FIFO almost full interrupt.

bool ppg_measurement_complete

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,374 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

bool object_near

bool prox_interrupt_occur

bool prox_measurement_complete

◆ rm_ob1203_gain_t

struct rm_ob1203_gain_t

OB1203 Gain structure

Data Fields

rm_ob1203_light_gain_t light Gain for Light mode.

rm_ob1203_ppg_prox_gain_t ppg_prox Gain for PPG mode and
Proximity mode.

◆ rm_ob1203_led_current_t

struct rm_ob1203_led_current_t

OB1203 LED currents structure

Data Fields

uint16_t ir_led IR LED current.

uint16_t red_led Red LED current.

◆ rm_ob1203_fifo_info_t

struct rm_ob1203_fifo_info_t

OB1203 FIFO information structure

Data Fields

uint8_t write_index The FIFO index where the next
sample of PPG data will be
written in the FIFO.

uint8_t read_index The index of the next sample to
be read from the FIFO_DATA
register.

uint8_t overflow_counter If the FIFO Rollover Enable bit is
set, the FIFO overflow counter
counts the number of old
samples (up to 15) which are
overwritten by new data.

uint8_t unread_samples The number of unread samples
calculated from the write index
and the read index.

◆ rm_ob1203_cfg_t

struct rm_ob1203_cfg_t

OB1203 Configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,375 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

Data Fields

rm_ob1203_semaphore_t
const *

p_semaphore

 The semaphore to wait for callback. This is used for another data
read/write after a communication.

uint32_t semaphore_timeout

 timeout for callback.

rm_comms_instance_t const
*

p_comms_instance

 Pointer to Communications Middleware instance.

void const * p_irq_instance

 Pointer to IRQ instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_comms_callback)(rm_ob1203_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_ob1203_callback_args_t *p_args)

 IRQ callback.

◆ rm_ob1203_api_t

struct rm_ob1203_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,376 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

OB1203 APIs

Data Fields

fsp_err_t(* open)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_cfg_t const *const
p_cfg)

fsp_err_t(* measurementStart)(rm_ob1203_ctrl_t *const p_ctrl)

fsp_err_t(* measurementStop)(rm_ob1203_ctrl_t *const p_ctrl)

fsp_err_t(* lightRead)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, rm_ob1203_light_data_type_t type)

fsp_err_t(* lightDataCalculate)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_light_data_t
*const p_ob1203_data)

fsp_err_t(* proxRead)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data)

fsp_err_t(* proxDataCalculate)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_prox_data_t
*const p_ob1203_data)

fsp_err_t(* ppgRead)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, uint8_t const number_of_samples)

fsp_err_t(* ppgDataCalculate)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_ppg_data_t
*const p_ob1203_data)

fsp_err_t(* deviceStatusGet)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_device_status_t *const p_status)

fsp_err_t(* deviceInterruptCfgSet)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_device_interrupt_cfg_t const interrupt_cfg)

fsp_err_t(* gainSet)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_gain_t const
gain)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,377 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

fsp_err_t(* ledCurrentSet)(rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_led_current_t const led_current)

fsp_err_t(* fifoInfoGet)(rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_fifo_info_t
*const p_fifo_info)

fsp_err_t(* close)(rm_ob1203_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_ob1203_api_t::open) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_cfg_t const *const
p_cfg)

Open sensor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_ob1203_api_t::measurementStart) (rm_ob1203_ctrl_t *const p_ctrl)

Start measurement.

Parameters
[in] p_ctrl Pointer to control structure.

[in] mode Sensor mode.

◆ measurementStop

fsp_err_t(* rm_ob1203_api_t::measurementStop) (rm_ob1203_ctrl_t *const p_ctrl)

Stop measurement.

Parameters
[in] p_ctrl Pointer to control structure.

[in] mode Sensor mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,378 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ lightRead

fsp_err_t(* rm_ob1203_api_t::lightRead) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, rm_ob1203_light_data_type_t type)

Read Light ADC data from OB1203.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

[in] type Light data type.

◆ lightDataCalculate

fsp_err_t(* rm_ob1203_api_t::lightDataCalculate) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_light_data_t *const p_ob1203_data)

Calculate Light data from raw data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

[in] p_ob1203_data Pointer to OB1203 Light data
structure.

◆ proxRead

fsp_err_t(* rm_ob1203_api_t::proxRead) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data)

Read Proximity ADC data from OB1203.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,379 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ proxDataCalculate

fsp_err_t(* rm_ob1203_api_t::proxDataCalculate) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_prox_data_t *const p_ob1203_data)

Calculate Proximity data from raw data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

[in] p_ob1203_data Pointer to OB1203 Proximity
data structure.

◆ ppgRead

fsp_err_t(* rm_ob1203_api_t::ppgRead) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_raw_data_t
*const p_raw_data, uint8_t const number_of_samples)

Read PPG ADC data from OB1203.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

[in] number_of_samples Number of PPG samples.
One sample is 3 bytes.

◆ ppgDataCalculate

fsp_err_t(* rm_ob1203_api_t::ppgDataCalculate) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_raw_data_t *const p_raw_data, rm_ob1203_ppg_data_t *const p_ob1203_data)

Calculate PPG data from raw data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

[in] p_ob1203_data Pointer to OB1203 PPG data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,380 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ deviceStatusGet

fsp_err_t(* rm_ob1203_api_t::deviceStatusGet) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_device_status_t *const p_status)

Get device status. Read STATUS_0 and STATUS_1 registers.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_status Pointer to device status.

◆ deviceInterruptCfgSet

fsp_err_t(* rm_ob1203_api_t::deviceInterruptCfgSet) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_device_interrupt_cfg_t const interrupt_cfg)

Set device interrupt configuration.

Parameters
[in] p_ctrl Pointer to control structure.

[in] interrupt_cfg Device interrupt
configuration.

◆ gainSet

fsp_err_t(* rm_ob1203_api_t::gainSet) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_gain_t const
gain)

Set gain.

Parameters
[in] p_ctrl Pointer to control structure.

[in] gain Gain configuration.

◆ ledCurrentSet

fsp_err_t(* rm_ob1203_api_t::ledCurrentSet) (rm_ob1203_ctrl_t *const p_ctrl,
rm_ob1203_led_current_t const led_current)

Set LED current value.

Parameters
[in] p_ctrl Pointer to control structure.

[in] led_current Current value structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,381 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ fifoInfoGet

fsp_err_t(* rm_ob1203_api_t::fifoInfoGet) (rm_ob1203_ctrl_t *const p_ctrl, rm_ob1203_fifo_info_t
*const p_fifo_info)

Get FIFO information.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_fifo_info Pointer to FIFO information
(write index, read index and
overflow counter).

◆ close

fsp_err_t(* rm_ob1203_api_t::close) (rm_ob1203_ctrl_t *const p_ctrl)

Close OB1203.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_ob1203_instance_t

struct rm_ob1203_instance_t

OB1203 instance

Data Fields

rm_ob1203_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_ob1203_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_ob1203_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_ob1203_ctrl_t

typedef void rm_ob1203_ctrl_t

OB1203 control block. Allocate an instance specific control block to pass into the OB1203 API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,382 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_event_t

enum rm_ob1203_event_t

Event in the callback function

◆ rm_ob1203_operation_mode_t

enum rm_ob1203_operation_mode_t

Operation mode of OB1203

Enumerator

RM_OB1203_OPERATION_MODE_STANDBY Standby.

RM_OB1203_OPERATION_MODE_LIGHT Light mode.

RM_OB1203_OPERATION_MODE_PROXIMITY Proximity mode.

RM_OB1203_OPERATION_MODE_PPG PPG mode.

◆ rm_ob1203_light_sensor_mode_t

enum rm_ob1203_light_sensor_mode_t

Light sensor mode of OB1203

Enumerator

RM_OB1203_LIGHT_SENSOR_MODE_LS Light sensor LS mode (Green, Clear, Comp)

RM_OB1203_LIGHT_SENSOR_MODE_CS Light sensor CS mode (Red, Green, Blue, Clear,
Comp)

◆ rm_ob1203_ppg_sensor_mode_t

enum rm_ob1203_ppg_sensor_mode_t

PPG sensor mode of OB1203

Enumerator

RM_OB1203_PPG_SENSOR_MODE_PPG1 PPG sensor PPG1 mode.

RM_OB1203_PPG_SENSOR_MODE_PPG2 PPG sensor PPG2 mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,383 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_light_data_type_t

enum rm_ob1203_light_data_type_t

Data type of Light

Enumerator

RM_OB1203_LIGHT_DATA_TYPE_ALL Common.

RM_OB1203_LIGHT_DATA_TYPE_CLEAR Common.

RM_OB1203_LIGHT_DATA_TYPE_GREEN Common.

RM_OB1203_LIGHT_DATA_TYPE_BLUE CS mode only.

RM_OB1203_LIGHT_DATA_TYPE_RED CS mode only.

RM_OB1203_LIGHT_DATA_TYPE_COMP Common. Temperature compensation data.

◆ rm_ob1203_light_gain_t

enum rm_ob1203_light_gain_t

Light gain range. Gain scales the ADC output and noise

Enumerator

RM_OB1203_LIGHT_GAIN_1 Gain mode 1.

RM_OB1203_LIGHT_GAIN_3 Gain mode 3.

RM_OB1203_LIGHT_GAIN_6 Gain mode 6.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,384 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_ppg_prox_gain_t

enum rm_ob1203_ppg_prox_gain_t

PPG and proximity gain range. Gain scales the ADC output and noise

Enumerator

RM_OB1203_PPG_PROX_GAIN_1 Gain mode 1.

RM_OB1203_PPG_PROX_GAIN_1P5 Gain mode 1.5.

RM_OB1203_PPG_PROX_GAIN_2 Gain mode 2.

RM_OB1203_PPG_PROX_GAIN_4 Gain mode 4.

◆ rm_ob1203_led_order_t

enum rm_ob1203_led_order_t

LED order. Controls which LED is activated (PS, PPG1) or in which order the LEDs are activated
(PPG2)

Enumerator

RM_OB1203_LED_IR_FIRST_RED_SECOND First LED : IR LED, second LED : red LED.

RM_OB1203_LED_RED_FIRST_IR_SECOND First LED : red LED, second LED : IR LED.

◆ rm_ob1203_light_interrupt_type_t

enum rm_ob1203_light_interrupt_type_t

Light interrupt type

Enumerator

RM_OB1203_LIGHT_INTERRUPT_TYPE_THRESHOL
D

Light threshold interrupt.

RM_OB1203_LIGHT_INTERRUPT_TYPE_VARIATION

Light variation interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,385 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_light_interrupt_source_t

enum rm_ob1203_light_interrupt_source_t

Light interrupt source

Enumerator

RM_OB1203_LIGHT_INTERRUPT_SOURCE_CLEAR_
CHANNEL

Clear channel.

RM_OB1203_LIGHT_INTERRUPT_SOURCE_GREEN
_CHANNEL

Green channel.

RM_OB1203_LIGHT_INTERRUPT_SOURCE_RED_C
HANNEL

Red channel. CS mode only.

RM_OB1203_LIGHT_INTERRUPT_SOURCE_BLUE_C
HANNEL

Blue channel. CS mode only.

◆ rm_ob1203_prox_interrupt_type_t

enum rm_ob1203_prox_interrupt_type_t

Proximity interrupt type

Enumerator

RM_OB1203_PROX_INTERRUPT_TYPE_NORMAL Proximity normal interrupt.

RM_OB1203_PROX_INTERRUPT_TYPE_LOGIC Proximity logic output interrupt.

◆ rm_ob1203_ppg_interrupt_type_t

enum rm_ob1203_ppg_interrupt_type_t

PPG interrupt type

Enumerator

RM_OB1203_PPG_INTERRUPT_TYPE_DATA PPG data interrupt.

RM_OB1203_PPG_INTERRUPT_TYPE_FIFO_AFULL PPG FIFO almost full interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,386 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_variance_threshold_t

enum rm_ob1203_variance_threshold_t

Variance threshold

Enumerator

RM_OB1203_VARIANCE_THRESHOLD_8_COUNTS New LS_DATA varies by ± 8 counts compared
to previous result.

RM_OB1203_VARIANCE_THRESHOLD_16_COUNT
S

New LS_DATA varies by ± 16 counts compared
to previous result.

RM_OB1203_VARIANCE_THRESHOLD_32_COUNT
S

New LS_DATA varies by ± 32 counts compared
to previous result.

RM_OB1203_VARIANCE_THRESHOLD_64_COUNT
S

New LS_DATA varies by ± 64 counts compared
to previous result.

RM_OB1203_VARIANCE_THRESHOLD_128_COUN
TS

New LS_DATA varies by ± 128 counts
compared to previous result.

RM_OB1203_VARIANCE_THRESHOLD_256_COUN
TS

New LS_DATA varies by ± 256 counts
compared to previous result.

RM_OB1203_VARIANCE_THRESHOLD_512_COUN
TS

New LS_DATA varies by ± 512 counts
compared to previous result.

RM_OB1203_VARIANCE_THRESHOLD_1024_COU
NTS

New LS_DATA varies by ± 1024 counts
compared to previous result.

◆ rm_ob1203_sleep_after_interrupt_t

enum rm_ob1203_sleep_after_interrupt_t

Sleep after interrupt

Enumerator

RM_OB1203_SLEEP_AFTER_INTERRUPT_DISABLE Disable sleep after interrupt.

RM_OB1203_SLEEP_AFTER_INTERRUPT_ENABLE Stop measurement after an interrupt occurs.
After STATUS_0/STATUS_1 register is read,
start measurement.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,387 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_moving_average_t

enum rm_ob1203_moving_average_t

Moving average

Enumerator

RM_OB1203_MOVING_AVERAGE_DISABLE Moving average is disabled for Proximity
mode.

RM_OB1203_MOVING_AVERAGE_ENABLE Moving average is enabled for Proximity mode.
Proximity data is the average of the current
and previous measurement. The moving
average is applied after digital offset
cancellation.

◆ rm_ob1203_power_save_mode_t

enum rm_ob1203_power_save_mode_t

Power save mode

Enumerator

RM_OB1203_POWER_SAVE_MODE_DISABLE Power save mode is disabled for PPG mode.

RM_OB1203_POWER_SAVE_MODE_ENABLE Power save mode is enabled for PPG mode. On
power save mode, some analog circuitry
powers down between individual PPG
measurements if the idle time.

◆ rm_ob1203_analog_cancellation_t

enum rm_ob1203_analog_cancellation_t

Analog cancellation

Enumerator

RM_OB1203_ANALOG_CANCELLATION_DISABLE No offset cancellation.

RM_OB1203_ANALOG_CANCELLATION_ENABLE 50% offset of the full-scale value

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,388 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_number_led_pulses_t

enum rm_ob1203_number_led_pulses_t

Number of LED pulses

Enumerator

RM_OB1203_NUM_LED_PULSES_1 1 pulse.

RM_OB1203_NUM_LED_PULSES_2 2 pulses.

RM_OB1203_NUM_LED_PULSES_4 4 pulses.

RM_OB1203_NUM_LED_PULSES_8 8 pulses.

RM_OB1203_NUM_LED_PULSES_16 16 pulses.

RM_OB1203_NUM_LED_PULSES_32 32 pulses.

◆ rm_ob1203_number_averaged_samples_t

enum rm_ob1203_number_averaged_samples_t

Number of averaged samples

Enumerator

RM_OB1203_NUM_AVERAGED_SAMPLES_1 1 (No averaging).

RM_OB1203_NUM_AVERAGED_SAMPLES_2 2 consecutives samples are averaged.

RM_OB1203_NUM_AVERAGED_SAMPLES_4 4 consecutives samples are averaged.

RM_OB1203_NUM_AVERAGED_SAMPLES_8 8 consecutives samples are averaged.

RM_OB1203_NUM_AVERAGED_SAMPLES_16 16 consecutives samples are averaged.

RM_OB1203_NUM_AVERAGED_SAMPLES_32 32 consecutives samples are averaged.

◆ rm_ob1203_light_resolution_meas_period_t

enum rm_ob1203_light_resolution_meas_period_t

Light resolution and measurement period

Enumerator

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_ Resolution : 13bit, measurement period :

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,389 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

25MS 25ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
50MS

Resolution : 13bit, measurement period :
50ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
100MS

Resolution : 13bit, measurement period :
100ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
200MS

Resolution : 13bit, measurement period :
200ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
500MS

Resolution : 13bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
1000MS

Resolution : 13bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_13BIT_PERIOD_
2000MS

Resolution : 13bit, measurement period :
2000ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
25MS

Resolution : 16bit, measurement period :
25ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
50MS

Resolution : 16bit, measurement period :
50ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
100MS

Resolution : 16bit, measurement period :
100ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
200MS

Resolution : 16bit, measurement period :
200ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
500MS

Resolution : 16bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
1000MS

Resolution : 16bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_16BIT_PERIOD_
2000MS

Resolution : 16bit, measurement period :
2000ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_
50MS

Resolution : 17bit, measurement period :
50ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_
100MS

Resolution : 17bit, measurement period :
100ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_
200MS

Resolution : 17bit, measurement period :
200ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,390 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

500MS Resolution : 17bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_
1000MS

Resolution : 17bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_17BIT_PERIOD_
2000MS

Resolution : 17bit, measurement period :
2000ms.

RM_OB1203_LIGHT_RESOLUTION_18BIT_PERIOD_
100MS

Resolution : 18bit, measurement period :
100ms.

RM_OB1203_LIGHT_RESOLUTION_18BIT_PERIOD_
200MS

Resolution : 18bit, measurement period :
200ms.

RM_OB1203_LIGHT_RESOLUTION_18BIT_PERIOD_
500MS

Resolution : 18bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_18BIT_PERIOD_
1000MS

Resolution : 18bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_18BIT_PERIOD_
2000MS

Resolution : 18bit, measurement period :
2000ms.

RM_OB1203_LIGHT_RESOLUTION_19BIT_PERIOD_
200MS

Resolution : 19bit, measurement period :
200ms.

RM_OB1203_LIGHT_RESOLUTION_19BIT_PERIOD_
500MS

Resolution : 19bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_19BIT_PERIOD_
1000MS

Resolution : 19bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_19BIT_PERIOD_
2000MS

Resolution : 19bit, measurement period :
2000ms.

RM_OB1203_LIGHT_RESOLUTION_20BIT_PERIOD_
500MS

Resolution : 20bit, measurement period :
500ms.

RM_OB1203_LIGHT_RESOLUTION_20BIT_PERIOD_
1000MS

Resolution : 20bit, measurement period :
1000ms.

RM_OB1203_LIGHT_RESOLUTION_20BIT_PERIOD_
2000MS

Resolution : 20bit, measurement period :
2000ms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,391 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_prox_pulse_width_meas_period_t

enum rm_ob1203_prox_pulse_width_meas_period_t

Proximity pulse width and measurement period

Enumerator

RM_OB1203_PROX_WIDTH_26US_PERIOD_3P125
MS

Pulse width : 26us, measurement period :
3.125ms. Except for the number 32 of LED
pulses.

RM_OB1203_PROX_WIDTH_26US_PERIOD_6P25M
S

Pulse width : 26us, measurement period :
6.25ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_12P5M
S

Pulse width : 26us, measurement period :
12.5ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_25MS Pulse width : 26us, measurement period :
25ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_50MS Pulse width : 26us, measurement period :
50ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_100MS

Pulse width : 26us, measurement period :
100ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_200MS

Pulse width : 26us, measurement period :
200ms.

RM_OB1203_PROX_WIDTH_26US_PERIOD_400MS

Pulse width : 26us, measurement period :
400ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_3P125
MS

Pulse width : 42us, measurement period :
3.125ms. Except for the number 32 of LED
pulses.

RM_OB1203_PROX_WIDTH_42US_PERIOD_6P25M
S

Pulse width : 42us, measurement period :
6.25ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_12P5M
S

Pulse width : 42us, measurement period :
12.5ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_25MS Pulse width : 42us, measurement period :
25ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_50MS Pulse width : 42us, measurement period :
50ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_100MS

Pulse width : 42us, measurement period :
100ms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,392 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

RM_OB1203_PROX_WIDTH_42US_PERIOD_200MS

Pulse width : 42us, measurement period :
200ms.

RM_OB1203_PROX_WIDTH_42US_PERIOD_400MS

Pulse width : 42us, measurement period :
400ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_3P125
MS

Pulse width : 71us, measurement period :
3.125ms. Except for the number 16 and 32 of
LED pulses.

RM_OB1203_PROX_WIDTH_71US_PERIOD_6P25M
S

Pulse width : 71us, measurement period :
6.25ms. Except for the number 32 of LED
pulses.

RM_OB1203_PROX_WIDTH_71US_PERIOD_12P5M
S

Pulse width : 71us, measurement period :
12.5ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_25MS Pulse width : 71us, measurement period :
25ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_50MS Pulse width : 71us, measurement period :
50ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_100MS

Pulse width : 71us, measurement period :
100ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_200MS

Pulse width : 71us, measurement period :
200ms.

RM_OB1203_PROX_WIDTH_71US_PERIOD_400MS

Pulse width : 71us, measurement period :
400ms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,393 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_ppg_pulse_width_meas_period_t

enum rm_ob1203_ppg_pulse_width_meas_period_t

PPG pulse width and measurement period

Enumerator

RM_OB1203_PPG_WIDTH_130US_PERIOD_0P312
5MS

Pulse width : 130us, measurement period :
0.3125ms. PPG1 mode only.

RM_OB1203_PPG_WIDTH_130US_PERIOD_0P625
MS

Pulse width : 130us, measurement period :
0.625ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_1MS Pulse width : 130us, measurement period :
1ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_1P25M
S

Pulse width : 130us, measurement period :
1.25ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_2P5MS

Pulse width : 130us, measurement period :
2.5ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_5MS Pulse width : 130us, measurement period :
5ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_10MS Pulse width : 130us, measurement period :
10ms.

RM_OB1203_PPG_WIDTH_130US_PERIOD_20MS Pulse width : 130us, measurement period :
20ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_0P625
MS

Pulse width : 247us, measurement period :
0.625ms. PPG1 mode only.

RM_OB1203_PPG_WIDTH_247US_PERIOD_1MS Pulse width : 247us, measurement period :
1ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_1P25M
S

Pulse width : 247us, measurement period :
1.25ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_2P5MS

Pulse width : 247us, measurement period :
2.5ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_5MS Pulse width : 247us, measurement period :
5ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_10MS Pulse width : 247us, measurement period :
10ms.

RM_OB1203_PPG_WIDTH_247US_PERIOD_20MS Pulse width : 247us, measurement period :

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,394 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

20ms.

RM_OB1203_PPG_WIDTH_481US_PERIOD_1MS Pulse width : 481us, measurement period :
1ms. PPG1 mode only.

RM_OB1203_PPG_WIDTH_481US_PERIOD_1P25M
S

Pulse width : 481us, measurement period :
1.25ms. PPG1 mode only.

RM_OB1203_PPG_WIDTH_481US_PERIOD_2P5MS

Pulse width : 481us, measurement period :
2.5ms.

RM_OB1203_PPG_WIDTH_481US_PERIOD_5MS Pulse width : 481us, measurement period :
5ms.

RM_OB1203_PPG_WIDTH_481US_PERIOD_10MS Pulse width : 481us, measurement period :
10ms.

RM_OB1203_PPG_WIDTH_481US_PERIOD_20MS Pulse width : 481us, measurement period :
20ms.

RM_OB1203_PPG_WIDTH_949US_PERIOD_2P5MS

Pulse width : 949us, measurement period :
2.5ms. PPG1 mode only.

RM_OB1203_PPG_WIDTH_949US_PERIOD_5MS Pulse width : 949us, measurement period :
5ms.

RM_OB1203_PPG_WIDTH_949US_PERIOD_10MS Pulse width : 949us, measurement period :
10ms.

RM_OB1203_PPG_WIDTH_949US_PERIOD_20MS Pulse width : 949us, measurement period :
20ms.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,395 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > OB1203 Middleware Interface

◆ rm_ob1203_fifo_rollover_t

enum rm_ob1203_fifo_rollover_t

FIFO Rollover

Enumerator

RM_OB1203_FIFO_ROLLOVER_DISABLE In the event of a full FIFO, no more samples of
PPG data are written into the FIFO; the samples
from new measurements are lost.

RM_OB1203_FIFO_ROLLOVER_ENABLE New PPG data will always be written to the
FIFO, and the FIFO Write Pointer is
incremented (rollover). If the FIFO is full, old
data will be overwritten. The FIFO Overflow
Counter counts the number of lost
(overwritten) and respectively the number of
new samples. The FIFO Read Pointer remains
unchanged.

5.3.14.5 ZMOD4XXX Middleware Interface
Interfaces » Sensor

Detailed Description

Interface for ZMOD4XXX Middleware functions.

Summary
The ZMOD4XXX interface provides ZMOD4XXX functionality.

Data Structures

struct rm_zmod4xxx_callback_args_t

struct rm_zmod4xxx_raw_data_t

struct rm_zmod4xxx_iaq_1st_data_t

struct rm_zmod4xxx_iaq_2nd_data_t

struct rm_zmod4xxx_odor_data_t

struct rm_zmod4xxx_sulfur_odor_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,396 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

struct rm_zmod4xxx_oaq_1st_data_t

struct rm_zmod4xxx_oaq_2nd_data_t

struct rm_zmod4xxx_raq_data_t

struct rm_zmod4xxx_rel_iaq_data_t

struct rm_zmod4xxx_pbaq_data_t

struct rm_zmod4xxx_no2_o3_data_t

struct rm_zmod4xxx_cfg_t

struct rm_zmod4xxx_api_t

struct rm_zmod4xxx_instance_t

Typedefs

typedef void rm_zmod4xxx_ctrl_t

Enumerations

enum rm_zmod4xxx_event_t

enum rm_zmod4xxx_sulfur_odor_t

Data Structure Documentation

◆ rm_zmod4xxx_callback_args_t

struct rm_zmod4xxx_callback_args_t

ZMOD4XXX sensor API callback parameter definition

◆ rm_zmod4xxx_raw_data_t

struct rm_zmod4xxx_raw_data_t

ZMOD4XXX raw data structure

◆ rm_zmod4xxx_iaq_1st_data_t

struct rm_zmod4xxx_iaq_1st_data_t

ZMOD4XXX IAQ 1st gen data structure

Data Fields

float rmox MOx resistance.

float rcda CDA resistance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,397 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

float iaq IAQ index.

float tvoc TVOC concentration (mg/m^3).

float etoh EtOH concentration (ppm).

float eco2 eCO2 concentration (ppm).

◆ rm_zmod4xxx_iaq_2nd_data_t

struct rm_zmod4xxx_iaq_2nd_data_t

ZMOD4XXX IAQ 2nd gen data structure

Data Fields

float rmox[13] MOx resistance.

float log_rcda log10 of CDA resistance for IAQ
2nd Gen.

float log_nonlog_rcda[3] log10 of CDA resistance for IAQ
2nd Gen ULP.

float iaq IAQ index.

float tvoc TVOC concentration (mg/m^3).

float etoh EtOH concentration (ppm).

float eco2 eCO2 concentration (ppm).

uint8_t sample_id Sample ID. RRH46410 only.

float rel_iaq Relative IAQ. RRH46410 only.

◆ rm_zmod4xxx_odor_data_t

struct rm_zmod4xxx_odor_data_t

ZMOD4XXX Odor structure

Data Fields

bool control_signal Control signal input for odor lib.

float odor Concentration ratio for odor lib.

◆ rm_zmod4xxx_sulfur_odor_data_t

struct rm_zmod4xxx_sulfur_odor_data_t

ZMOD4XXX Sulfur-Odor structure

Data Fields

float rmox[9] MOx resistance.

float intensity odor intensity rating ranges
from 0.0 to 5.0 for sulfur lib

rm_zmod4xxx_sulfur_odor_t odor sulfur_odor classification for lib

◆ rm_zmod4xxx_oaq_1st_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,398 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

struct rm_zmod4xxx_oaq_1st_data_t

ZMOD4XXX OAQ 1st gen data structure

Data Fields

float rmox[15] MOx resistance.

float aiq Air Quality.

◆ rm_zmod4xxx_oaq_2nd_data_t

struct rm_zmod4xxx_oaq_2nd_data_t

ZMOD4XXX OAQ 2nd gen data structure

Data Fields

float rmox[8] MOx resistance.

float temperature Temperature (degC) used for
ambient compensation.

float ozone_concentration The ozone concentration in part-
per-billion.

uint16_t fast_aqi 1-minute average of the Air
Quality Index according to the
EPA standard based on ozone

uint16_t epa_aqi The Air Quality Index according
to the EPA standard based on
ozone.

◆ rm_zmod4xxx_raq_data_t

struct rm_zmod4xxx_raq_data_t

ZMOD4XXX RAQ structure

Data Fields

bool control_signal Control signal input for raq lib.

float raq Concentration ratio for raq lib.

◆ rm_zmod4xxx_rel_iaq_data_t

struct rm_zmod4xxx_rel_iaq_data_t

ZMOD4XXX Relative IAQ data structure

Data Fields

float rmox[13] MOx resistances.

float rhtr heater resistance.

float rel_iaq relative IAQ index.

◆ rm_zmod4xxx_pbaq_data_t

struct rm_zmod4xxx_pbaq_data_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,399 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

ZMOD4XXX PBAQ data structure

Data Fields

float rmox[13] MOx resistance.

float log_rcda log10 of CDA resistance.

float rhtr heater resistance.

float temperature ambient temperature (degC).

float tvoc TVOC concentration (mg/m^3).

float etoh EtOH concentration (ppm).

uint8_t sample_id Sample ID. RRH46410 only.

◆ rm_zmod4xxx_no2_o3_data_t

struct rm_zmod4xxx_no2_o3_data_t

ZMOD4XXX NO2 O3 data structure

Data Fields

float rmox[4] MOx resistance.

float temperature Temperature (degC) used for
ambient compensation.

float ozone_concentration O3_conc_ppb stands for the
ozone concentration in part-per-
billion.

float no2_concentration NO2_conc_ppb stands for the
NO2 concentration in part-per-
billion.

uint16_t fast_aqi FAST_AQI stands for a 1-minute
average of the Air Quality Index
according to the EPA standard
based on ozone.

uint16_t epa_aqi EPA_AQI stands for the Air
Quality Index according to the
EPA standard based on ozone.

◆ rm_zmod4xxx_cfg_t

struct rm_zmod4xxx_cfg_t

ZMOD4XXX configuration block

Data Fields

rm_comms_instance_t const
*

p_comms_instance

 Pointer to Communications Middleware instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,400 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

void const * p_irq_instance

 Pointer to IRQ instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_comms_callback)(rm_zmod4xxx_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_zmod4xxx_callback_args_t *p_args)

 IRQ callback.

◆ rm_zmod4xxx_api_t

struct rm_zmod4xxx_api_t

ZMOD4XXX APIs

Data Fields

fsp_err_t(* open)(rm_zmod4xxx_ctrl_t *const p_ctrl, rm_zmod4xxx_cfg_t const
*const p_cfg)

fsp_err_t(* measurementStart)(rm_zmod4xxx_ctrl_t *const p_ctrl)

fsp_err_t(* measurementStop)(rm_zmod4xxx_ctrl_t *const p_ctrl)

fsp_err_t(* statusCheck)(rm_zmod4xxx_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_zmod4xxx_ctrl_t *const p_ctrl, rm_zmod4xxx_raw_data_t
*const p_raw_data)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,401 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

fsp_err_t(* iaq1stGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_1st_data_t *const p_zmod4xxx_data)

fsp_err_t(* iaq2ndGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_2nd_data_t *const p_zmod4xxx_data)

fsp_err_t(* odorDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

fsp_err_t(* sulfurOdorDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_sulfur_odor_data_t *const p_zmod4xxx_data)

fsp_err_t(* oaq1stGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_1st_data_t *const p_zmod4xxx_data)

fsp_err_t(* oaq2ndGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_2nd_data_t *const p_zmod4xxx_data)

fsp_err_t(* raqDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_raq_data_t *const p_zmod4xxx_data)

fsp_err_t(* relIaqDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_rel_iaq_data_t *const p_zmod4xxx_data)

fsp_err_t(* pbaqDataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_pbaq_data_t *const p_zmod4xxx_data)

fsp_err_t(* no2O3DataCalculate)(rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_no2_o3_data_t *const p_zmod4xxx_data)

fsp_err_t(* temperatureAndHumiditySet)(rm_zmod4xxx_ctrl_t *const p_ctrl,
float temperature, float humidity)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,402 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

fsp_err_t(* deviceErrorCheck)(rm_zmod4xxx_ctrl_t *const p_ctrl)

fsp_err_t(* close)(rm_zmod4xxx_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_zmod4xxx_api_t::open) (rm_zmod4xxx_ctrl_t *const p_ctrl, rm_zmod4xxx_cfg_t const
*const p_cfg)

Open sensor.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_zmod4xxx_api_t::measurementStart) (rm_zmod4xxx_ctrl_t *const p_ctrl)

Start measurement

Parameters
[in] p_ctrl Pointer to control structure.

◆ measurementStop

fsp_err_t(* rm_zmod4xxx_api_t::measurementStop) (rm_zmod4xxx_ctrl_t *const p_ctrl)

Stop measurement

Parameters
[in] p_ctrl Pointer to control structure.

◆ statusCheck

fsp_err_t(* rm_zmod4xxx_api_t::statusCheck) (rm_zmod4xxx_ctrl_t *const p_ctrl)

Read status of the sensor

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,403 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ read

fsp_err_t(* rm_zmod4xxx_api_t::read) (rm_zmod4xxx_ctrl_t *const p_ctrl, rm_zmod4xxx_raw_data_t
*const p_raw_data)

Read ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

◆ iaq1stGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::iaq1stGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_1st_data_t *const
p_zmod4xxx_data)

Calculate IAQ 1st Gen. values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ iaq2ndGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::iaq2ndGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_2nd_data_t *const
p_zmod4xxx_data)

Calculate IAQ 2nd Gen. values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,404 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ odorDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::odorDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

Calculate Odor values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ sulfurOdorDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::sulfurOdorDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_sulfur_odor_data_t *const
p_zmod4xxx_data)

Calculate Sulfur Odor values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ oaq1stGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::oaq1stGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_1st_data_t *const
p_zmod4xxx_data)

Calculate OAQ 1st Gen. values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,405 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ oaq2ndGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::oaq2ndGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_2nd_data_t *const
p_zmod4xxx_data)

Calculate OAQ 2nd Gen. values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ raqDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::raqDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_raq_data_t *const p_zmod4xxx_data)

Calculate RAQ values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ relIaqDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::relIaqDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_rel_iaq_data_t *const
p_zmod4xxx_data)

Calculate Relative IAQ values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,406 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ pbaqDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::pbaqDataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_pbaq_data_t *const
p_zmod4xxx_data)

Calculate PBAQ values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ no2O3DataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::no2O3DataCalculate) (rm_zmod4xxx_ctrl_t *const p_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_no2_o3_data_t *const
p_zmod4xxx_data)

Calculate NO2 O3 values from ADC data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ temperatureAndHumiditySet

fsp_err_t(* rm_zmod4xxx_api_t::temperatureAndHumiditySet) (rm_zmod4xxx_ctrl_t *const p_ctrl,
float temperature, float humidity)

Set temperature and humidity.

Parameters
[in] p_ctrl Pointer to control structure.

[in] temperature Temperature (deg C).

[in] humidity Humidity (percent).

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,407 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ deviceErrorCheck

fsp_err_t(* rm_zmod4xxx_api_t::deviceErrorCheck) (rm_zmod4xxx_ctrl_t *const p_ctrl)

Check device error event.

Parameters
[in] p_ctrl Pointer to control structure.

◆ close

fsp_err_t(* rm_zmod4xxx_api_t::close) (rm_zmod4xxx_ctrl_t *const p_ctrl)

Close the sensor

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_zmod4xxx_instance_t

struct rm_zmod4xxx_instance_t

ZMOD4XXX instance

Data Fields

rm_zmod4xxx_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_zmod4xxx_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_zmod4xxx_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_zmod4xxx_ctrl_t

typedef void rm_zmod4xxx_ctrl_t

ZMOD4xxx Control block. Allocate an instance specific control block to pass into the API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,408 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Sensor > ZMOD4XXX Middleware Interface

◆ rm_zmod4xxx_event_t

enum rm_zmod4xxx_event_t

Event in the callback function

Enumerator

RM_ZMOD4XXX_EVENT_DEV_ERR_POWER_ON_R
ESET

Unexpected reset.

RM_ZMOD4XXX_EVENT_DEV_ERR_ACCESS_CONF
LICT

Getting invalid results while results readout.

RM_ZMOD4XXX_EVENT_DEV_ERR_DAMAGE Sensor may be damaged.

◆ rm_zmod4xxx_sulfur_odor_t

enum rm_zmod4xxx_sulfur_odor_t

Sulfur-Odor status

5.3.15 Storage
Interfaces

Detailed Description

Storage Interfaces.

Modules

Block Media Interface

 Interface for block media memory access.

FileX Block Media Port Interface

 Interface for FileX Block Media port.

Flash Interface

 Interface for the Flash Memory.

FreeRTOS+FAT Port Interface

 Interface for FreeRTOS+FAT port.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,409 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage

LittleFS Interface

 Interface for LittleFS access.

SD/MMC Interface

 Interface for accessing SD, eMMC, and SDIO devices.

SPI Flash Interface

 Interface for accessing external SPI flash devices.

Virtual EEPROM Interface

 Interface for Virtual EEPROM access.

5.3.15.1 Block Media Interface
Interfaces » Storage

Detailed Description

Interface for block media memory access.

Summary
The block media interface supports reading, writing, and erasing media devices. All functions are non-
blocking if possible. The callback is used to determine when an operation completes.

Data Structures

struct rm_block_media_info_t

struct rm_block_media_callback_args_t

struct rm_block_media_cfg_t

struct rm_block_media_status_t

struct rm_block_media_api_t

struct rm_block_media_instance_t

Typedefs

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,410 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

typedef void rm_block_media_ctrl_t

Enumerations

enum rm_block_media_event_t

Data Structure Documentation

◆ rm_block_media_info_t

struct rm_block_media_info_t

Block media device information supported by the instance

Data Fields

uint32_t sector_size_bytes Sector size in bytes.

uint32_t num_sectors Total number of sectors.

bool reentrant True if connected block media
driver is reentrant.

bool write_protected True if connected block media
device is write protected.

◆ rm_block_media_callback_args_t

struct rm_block_media_callback_args_t

Callback function parameter data

Data Fields

rm_block_media_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_block_media_cfg_t

struct rm_block_media_cfg_t

User configuration structure, used in open function

Data Fields

void(* p_callback)(rm_block_media_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,411 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

void const * p_extend

 Extension parameter for hardware specific settings.

◆ rm_block_media_status_t

struct rm_block_media_status_t

Current status

Data Fields

bool initialized False if
rm_block_media_api_t::mediaIni
t has not been called since
media was inserted, true
otherwise.

bool busy True if media is busy with a
previous write/erase operation.

bool media_inserted Media insertion status, true if
media is not removable.

◆ rm_block_media_api_t

struct rm_block_media_api_t

Block media interface API.

Data Fields

fsp_err_t(* open)(rm_block_media_ctrl_t *const p_ctrl, rm_block_media_cfg_t
const *const p_cfg)

fsp_err_t(* mediaInit)(rm_block_media_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const
num_blocks)

fsp_err_t(* write)(rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const
num_blocks)

fsp_err_t(* erase)(rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

fsp_err_t(* callbackSet)(rm_block_media_ctrl_t *const p_ctrl,
void(*p_callback)(rm_block_media_callback_args_t *), void const

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,412 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

*const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t(* statusGet)(rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

fsp_err_t(* infoGet)(rm_block_media_ctrl_t *const p_ctrl, rm_block_media_info_t
*const p_info)

fsp_err_t(* close)(rm_block_media_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_block_media_api_t::open) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Initialize block media device. rm_block_media_api_t::mediaInit must be called to complete the
initialization procedure.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ mediaInit

fsp_err_t(* rm_block_media_api_t::mediaInit) (rm_block_media_ctrl_t *const p_ctrl)

Initializes a media device. If the device is removable, it must be plugged in prior to calling this API.
This function blocks until media initialization is complete.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,413 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

◆ read

fsp_err_t(* rm_block_media_api_t::read) (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads blocks of data from the specified memory device address to the location specified by the
caller.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_dest_address Destination to read the data
into.

[in] block_address Block address to read the
data from.

[in] num_blocks Number of blocks of data to
read.

◆ write

fsp_err_t(* rm_block_media_api_t::write) (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes blocks of data to the specified device memory address.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[in] p_src_address Address to read the data to
be written.

[in] block_address Block address to write the
data to.

[in] num_blocks Number of blocks of data to
write.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,414 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

◆ erase

fsp_err_t(* rm_block_media_api_t::erase) (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases blocks of data from the memory device.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[in] block_address Block address to start the
erase process at.

[in] num_blocks Number of blocks of data to
erase.

◆ callbackSet

fsp_err_t(* rm_block_media_api_t::callbackSet) (rm_block_media_ctrl_t *const p_ctrl, void(
*p_callback)(rm_block_media_callback_args_t *), void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,415 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

◆ statusGet

fsp_err_t(* rm_block_media_api_t::statusGet) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

Get status of connected device.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_status Pointer to store current
status.

◆ infoGet

fsp_err_t(* rm_block_media_api_t::infoGet) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Returns information about the block media device.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_info Pointer to information
structure. All elements of
this structure will be set by
the function.

◆ close

fsp_err_t(* rm_block_media_api_t::close) (rm_block_media_ctrl_t *const p_ctrl)

Closes the module.

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

◆ rm_block_media_instance_t

struct rm_block_media_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_block_media_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,416 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Block Media Interface

rm_block_media_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_block_media_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_block_media_ctrl_t

typedef void rm_block_media_ctrl_t

Block media API control block. Allocate an instance specific control block to pass into the block
media API calls.

Enumeration Type Documentation

◆ rm_block_media_event_t

enum rm_block_media_event_t

Events that can trigger a callback function

Enumerator

RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED Media removed event.

RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED Media inserted event.

RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLET
E

Read, write, or erase completed.

RM_BLOCK_MEDIA_EVENT_ERROR Error on media operation.

RM_BLOCK_MEDIA_EVENT_POLL_STATUS Poll rm_block_media_api_t::statusGet for
write/erase completion.

RM_BLOCK_MEDIA_EVENT_MEDIA_SUSPEND Media suspended event.

RM_BLOCK_MEDIA_EVENT_MEDIA_RESUME Media resumed event.

RM_BLOCK_MEDIA_EVENT_WAIT Indication to user that they should wait for an
interrupt on a pending operation.

RM_BLOCK_MEDIA_EVENT_WAIT_END Indication to user that interrupt has been
received and waiting can end.

5.3.15.2 FileX Block Media Port Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,417 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FileX Block Media Port Interface

Interfaces » Storage

Detailed Description

Interface for FileX Block Media port.

Summary
The FileX block media port provides notifications for insertion and removal of removable media and
provides initialization functions required by FileX.

Data Structures

struct rm_filex_block_media_callback_args_t

struct rm_filex_block_media_cfg_t

struct rm_filex_block_media_api_t

struct rm_filex_block_media_instance_t

Typedefs

typedef void rm_filex_block_media_ctrl_t

Enumerations

enum rm_filex_block_media_partition_t

Data Structure Documentation

◆ rm_filex_block_media_callback_args_t

struct rm_filex_block_media_callback_args_t

Callback function parameter data

Data Fields

rm_block_media_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_filex_block_media_cfg_t

struct rm_filex_block_media_cfg_t

Block media configuration structure

Data Fields

rm_block_media_instance_t
*

p_lower_lvl_block_media

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,418 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FileX Block Media Port Interface

 Lower level block media pointer.

rm_filex_block_media_partiti
on_t

partition

 Partition to use for partitioned media.

void(* p_callback)(rm_filex_block_media_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_filex_block_media_api_t

struct rm_filex_block_media_api_t

FileX block media functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_filex_block_media_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_filex_block_media_api_t::open) (rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

Open media device.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,419 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FileX Block Media Port Interface

◆ close

fsp_err_t(* rm_filex_block_media_api_t::close) (rm_filex_block_media_ctrl_t *const p_ctrl)

Close media device.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_filex_block_media_instance_t

struct rm_filex_block_media_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_filex_block_media_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_filex_block_media_cfg_t
const *const

p_cfg Pointer to the configuration
structure for this instance.

rm_filex_block_media_api_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_filex_block_media_ctrl_t

typedef void rm_filex_block_media_ctrl_t

Block media control structure

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,420 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FileX Block Media Port Interface

◆ rm_filex_block_media_partition_t

enum rm_filex_block_media_partition_t

Partitions that can be selected to use FileX with

Enumerator

RM_FILEX_BLOCK_MEDIA_PARTITION0 Partition 0 (0x01BE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION1 Partition 1 (0x01CE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION2 Partition 2 (0x01DE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION3 Partition 3 (0x01EE) in Master Boot Record
Partition Table.

5.3.15.3 Flash Interface
Interfaces » Storage

Detailed Description

Interface for the Flash Memory.

Summary
The Flash interface provides the ability to read, write, erase, and blank check the code flash and data
flash regions.

Data Structures

struct flash_block_info_t

struct flash_regions_t

struct flash_info_t

struct flash_callback_args_t

struct flash_cfg_t

struct flash_api_t

struct flash_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,421 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

Typedefs

typedef void flash_ctrl_t

Enumerations

enum flash_result_t

enum flash_startup_area_swap_t

enum flash_event_t

enum flash_id_code_mode_t

enum flash_status_t

Data Structure Documentation

◆ flash_block_info_t

struct flash_block_info_t

Flash block details stored in factory flash.

Data Fields

uint32_t block_section_st_addr Starting address for this block
section (blocks of this size)

uint32_t block_section_end_addr Ending address for this block
section (blocks of this size)

uint32_t block_size Flash erase block size.

uint32_t block_size_write Flash write block size.

◆ flash_regions_t

struct flash_regions_t

Flash block details

Data Fields

uint32_t num_regions Length of block info array.

flash_block_info_t const * p_block_array Block info array base address.

◆ flash_info_t

struct flash_info_t

Information about the flash blocks

Data Fields

flash_regions_t code_flash Information about the code
flash regions.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,422 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

flash_regions_t data_flash Information about the code
flash regions.

◆ flash_callback_args_t

struct flash_callback_args_t

Callback function parameter data

Data Fields

flash_event_t event Event can be used to identify
what caused the callback (flash
ready or error).

void const * p_context Placeholder for user data. Set in
flash_api_t::open function
in::flash_cfg_t.

◆ flash_cfg_t

struct flash_cfg_t

FLASH Configuration

Data Fields

bool data_flash_bgo

 True if BGO (Background Operation) is enabled for Data Flash.

void(* p_callback)(flash_callback_args_t *p_args)

 Callback provided when a Flash interrupt ISR occurs.

void const * p_extend

 FLASH hardware dependent configuration.

void const * p_context

 Placeholder for user data. Passed to user callback in
flash_callback_args_t.

uint8_t ipl

 Flash ready interrupt priority.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,423 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

IRQn_Type irq

 Flash ready interrupt number.

uint8_t err_ipl

 Flash error interrupt priority (unused in r_flash_lp)

IRQn_Type err_irq

 Flash error interrupt number (unused in r_flash_lp)

◆ flash_api_t

struct flash_api_t

Shared Interface definition for FLASH

Data Fields

fsp_err_t(* open)(flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

fsp_err_t(* write)(flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t
const flash_address, uint32_t const num_bytes)

fsp_err_t(* erase)(flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_blocks)

fsp_err_t(* blankCheck)(flash_ctrl_t *const p_ctrl, uint32_t const address,
uint32_t const num_bytes, flash_result_t *const
p_blank_check_result)

fsp_err_t(* infoGet)(flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

fsp_err_t(* close)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

fsp_err_t(* accessWindowSet)(flash_ctrl_t *const p_ctrl, uint32_t const
start_addr, uint32_t const end_addr)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,424 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

fsp_err_t(* accessWindowClear)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* idCodeSet)(flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

fsp_err_t(* reset)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* updateFlashClockFreq)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* startupAreaSelect)(flash_ctrl_t *const p_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t(* bankSwap)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(flash_ctrl_t *const p_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* flash_api_t::open) (flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

Open FLASH device.

Parameters
[out] p_ctrl Pointer to FLASH device

control. Must be declared by
user. Value set here.

[in] flash_cfg_t Pointer to FLASH
configuration structure. All
elements of this structure
must be set by the user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,425 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ write

fsp_err_t(* flash_api_t::write) (flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t const
flash_address, uint32_t const num_bytes)

Write FLASH device.

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] src_address Address of the buffer
containing the data to write
to Flash.

[in] flash_address Code Flash or Data Flash
address to write. The
address must be on a
programming line boundary.

[in] num_bytes The number of bytes to
write. This number must be
a multiple of the
programming size. For Code
Flash this is
FLASH_MIN_PGM_SIZE_CF.
For Data Flash this is
FLASH_MIN_PGM_SIZE_DF.

Warning
Specifying a number that is not a multiple of the programming size will result in
SF_FLASH_ERR_BYTES being returned and no data written.

◆ erase

fsp_err_t(* flash_api_t::erase) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase FLASH device.

Parameters
[in] p_ctrl Control for the FLASH

device.

[in] address The block containing this
address is the first block
erased.

[in] num_blocks Specifies the number of
blocks to be erased, the
starting block determined by
the block_erase_address.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,426 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ blankCheck

fsp_err_t(* flash_api_t::blankCheck) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_bytes, flash_result_t *const p_blank_check_result)

Blank check FLASH device.

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] address The starting address of the
Flash area to blank check.

[in] num_bytes Specifies the number of
bytes that need to be
checked. See the specific
handler for details.

[out] p_blank_check_result Pointer that will be
populated by the API with
the results of the blank
check operation in non-BGO
(blocking) mode. In this case
the blank check operation
completes here and the
result is returned. In Data
Flash BGO mode the blank
check operation is only
started here and the result
obtained later when the
supplied callback routine is
called. In this case
FLASH_RESULT_BGO_ACTIVE
will be returned in
p_blank_check_result.

◆ infoGet

fsp_err_t(* flash_api_t::infoGet) (flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

Close FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_info Pointer to FLASH info
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,427 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ close

fsp_err_t(* flash_api_t::close) (flash_ctrl_t *const p_ctrl)

Close FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ statusGet

fsp_err_t(* flash_api_t::statusGet) (flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

Get Status for FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_ctrl Pointer to the current flash
status.

◆ accessWindowSet

fsp_err_t(* flash_api_t::accessWindowSet) (flash_ctrl_t *const p_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Set Access Window for FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window. This address will not
be within the access window.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,428 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ accessWindowClear

fsp_err_t(* flash_api_t::accessWindowClear) (flash_ctrl_t *const p_ctrl)

Clear any existing Code Flash access window for FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window.

◆ idCodeSet

fsp_err_t(* flash_api_t::idCodeSet) (flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

Set ID Code for FLASH device. Setting the ID code can restrict access to the device. The ID code will
be required to connect to the device. Bits 126 and 127 are set based on the mode.

For example, uint8_t id_bytes[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x00}; with mode
FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERASE_SUPPORT will result in an ID code of
00112233445566778899aabbccddeec0

With mode FLASH_ID_CODE_MODE_LOCKED, it will result in an ID code of
00112233445566778899aabbccddee80

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] p_id_bytes Ponter to the ID Code to be
written.

[in] mode Mode used for checking the
ID code.

◆ reset

fsp_err_t(* flash_api_t::reset) (flash_ctrl_t *const p_ctrl)

Reset function for FLASH device.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,429 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ updateFlashClockFreq

fsp_err_t(* flash_api_t::updateFlashClockFreq) (flash_ctrl_t *const p_ctrl)

Update Flash clock frequency (FCLK) and recalculate timeout values

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ startupAreaSelect

fsp_err_t(* flash_api_t::startupAreaSelect) (flash_ctrl_t *const p_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block - Default (Block 0) or Alternate (Block 1) is used as the start-up area block.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] swap_type FLASH_STARTUP_AREA_BLO
CK0, FLASH_STARTUP_AREA_
BLOCK1 or FLASH_STARTUP_
AREA_BTFLG.

[in] is_temporary True or false. See table
below.

swap_type is_temporary Operation

FLASH_STARTUP_AREA_BLOCK0 false On next reset Startup area will
be Block 0.

FLASH_STARTUP_AREA_BLOCK1 true Startup area is immediately,
but temporarily switched to
Block 1.

FLASH_STARTUP_AREA_BTFLG true Startup area is immediately,
but temporarily switched to the
Block determined by the
Configuration BTFLG.

◆ bankSwap

fsp_err_t(* flash_api_t::bankSwap) (flash_ctrl_t *const p_ctrl)

Swap the bank used as the startup area. On Flash HP, need to change into dual bank mode to use
this feature.

Parameters
[in] p_ctrl Pointer to FLASH device

control.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,430 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ callbackSet

fsp_err_t(* flash_api_t::callbackSet) (flash_ctrl_t *const p_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const p_context, flash_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

flash_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ flash_instance_t

struct flash_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

flash_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

flash_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

flash_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ flash_ctrl_t

typedef void flash_ctrl_t

Flash control block. Allocate an instance specific control block to pass into the flash API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,431 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ flash_result_t

enum flash_result_t

Result type for certain operations

Enumerator

FLASH_RESULT_BLANK Return status for Blank Check Function.

FLASH_RESULT_NOT_BLANK Return status for Blank Check Function.

FLASH_RESULT_BGO_ACTIVE Flash is configured for BGO mode. Result is
returned in callback.

◆ flash_startup_area_swap_t

enum flash_startup_area_swap_t

Parameter for specifying the startup area swap being requested by startupAreaSelect()

Enumerator

FLASH_STARTUP_AREA_BTFLG Startup area will be set based on the value of
the BTFLG.

FLASH_STARTUP_AREA_BLOCK0 Startup area will be set to Block 0.

FLASH_STARTUP_AREA_BLOCK1 Startup area will be set to Block 1.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,432 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ flash_event_t

enum flash_event_t

Event types returned by the ISR callback when used in Data Flash BGO mode

Enumerator

FLASH_EVENT_ERASE_COMPLETE Erase operation successfully completed.

FLASH_EVENT_WRITE_COMPLETE Write operation successfully completed.

FLASH_EVENT_BLANK Blank check operation successfully completed.
Specified area is blank.

FLASH_EVENT_NOT_BLANK Blank check operation successfully completed.
Specified area is NOT blank.

FLASH_EVENT_ERR_DF_ACCESS Data Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CF_ACCESS Code Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CMD_LOCKED Operation failed, FCU is in Locked state (often
result of an illegal command)

FLASH_EVENT_ERR_FAILURE Erase or Program Operation failed.

FLASH_EVENT_ERR_ONE_BIT A 1-bit error has been corrected when reading
the flash memory area by the sequencer.

◆ flash_id_code_mode_t

enum flash_id_code_mode_t

ID Code Modes for writing to ID code registers

Enumerator

FLASH_ID_CODE_MODE_UNLOCKED ID code is ignored.

FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERA
SE_SUPPORT

ID code is checked. All erase is available.

FLASH_ID_CODE_MODE_LOCKED ID code is checked.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,433 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Flash Interface

◆ flash_status_t

enum flash_status_t

Flash status

Enumerator

FLASH_STATUS_IDLE The flash is idle.

FLASH_STATUS_BUSY The flash is currently processing a command.

5.3.15.4 FreeRTOS+FAT Port Interface
Interfaces » Storage

Detailed Description

Interface for FreeRTOS+FAT port.

Summary
The FreeRTOS+FAT port provides notifications for insertion and removal of removable media and
provides initialization functions required by FreeRTOS+FAT.

Data Structures

struct rm_freertos_plus_fat_callback_args_t

struct rm_freertos_plus_fat_device_t

struct rm_freertos_plus_fat_api_t

struct rm_freertos_plus_fat_instance_t

Enumerations

enum rm_freertos_plus_fat_event_t

enum rm_freertos_plus_fat_type_t

Data Structure Documentation

◆ rm_freertos_plus_fat_callback_args_t

struct rm_freertos_plus_fat_callback_args_t

Callback function parameter data

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,434 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FreeRTOS+FAT Port Interface

Data Fields

rm_freertos_plus_fat_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_freertos_plus_fat_device_t

struct rm_freertos_plus_fat_device_t

Information obtained from the media device.

Data Fields

uint32_t sector_count Sector count.

uint32_t sector_size_bytes Sector size in bytes.

◆ rm_freertos_plus_fat_api_t

struct rm_freertos_plus_fat_api_t

FreeRTOS plus Fat functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

fsp_err_t(* diskInit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t
*const p_disk)

fsp_err_t(* diskDeinit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t *const
p_disk)

fsp_err_t(* infoGet)(rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t *const
p_disk, rm_freertos_plus_fat_info_t *const p_info)

fsp_err_t(* close)(rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,435 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FreeRTOS+FAT Port Interface

◆ open

fsp_err_t(* rm_freertos_plus_fat_api_t::open) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

Open media device.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ mediaInit

fsp_err_t(* rm_freertos_plus_fat_api_t::mediaInit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

Initializes a media device. If the device is removable, it must be plugged in prior to calling this API.
This function blocks until media initialization is complete.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_device Pointer to store device
information.

◆ diskInit

fsp_err_t(* rm_freertos_plus_fat_api_t::diskInit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t *const p_disk)

Initializes a FreeRTOS+FAT FF_Disk_t structure.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_disk_cfg Pointer to disk configurations

[out] p_disk Pointer to store
FreeRTOS+FAT disk
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,436 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FreeRTOS+FAT Port Interface

◆ diskDeinit

fsp_err_t(* rm_freertos_plus_fat_api_t::diskDeinit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
FF_Disk_t *const p_disk)

Deinitializes a FreeRTOS+FAT FF_Disk_t structure.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_disk_cfg Pointer to disk configurations

[out] p_disk Pointer to store
FreeRTOS+FAT disk
structure.

◆ infoGet

fsp_err_t(* rm_freertos_plus_fat_api_t::infoGet) (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk, rm_freertos_plus_fat_info_t *const p_info)

Returns information about the media device.

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Pointer to information
structure. All elements of
this structure will be set by
the function.

◆ close

fsp_err_t(* rm_freertos_plus_fat_api_t::close) (rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Close media device.

Parameters
[in] p_ctrl Pointer to control structure.

◆ rm_freertos_plus_fat_instance_t

struct rm_freertos_plus_fat_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_freertos_plus_fat_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_freertos_plus_fat_cfg_t
const *const

p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,437 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > FreeRTOS+FAT Port Interface

rm_freertos_plus_fat_api_t const
*

p_api Pointer to the API structure for
this instance.

Enumeration Type Documentation

◆ rm_freertos_plus_fat_event_t

enum rm_freertos_plus_fat_event_t

Events that can trigger a callback function

Enumerator

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_REMOV
ED

Media removed event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERT
ED

Media inserted event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_SUSPE
ND

Media suspended event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_RESUM
E

Media resumed event.

◆ rm_freertos_plus_fat_type_t

enum rm_freertos_plus_fat_type_t

Enumerator

RM_FREERTOS_PLUS_FAT_TYPE_FAT32 FAT32 disk.

RM_FREERTOS_PLUS_FAT_TYPE_FAT16 FAT16 disk.

RM_FREERTOS_PLUS_FAT_TYPE_FAT12 FAT12 disk.

5.3.15.5 LittleFS Interface
Interfaces » Storage

Detailed Description

Interface for LittleFS access.

Summary
The LittleFS Port configures a fail-safe filesystem designed for microcontrollers on top of a lower level
storage device.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,438 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > LittleFS Interface

Data Structures

struct rm_littlefs_cfg_t

struct rm_littlefs_api_t

struct rm_littlefs_instance_t

Typedefs

typedef void rm_littlefs_ctrl_t

Data Structure Documentation

◆ rm_littlefs_cfg_t

struct rm_littlefs_cfg_t

User configuration structure, used in open function

Data Fields

struct lfs_config const * p_lfs_cfg Pointer LittleFS configuration
structure.

void const * p_extend Pointer to hardware dependent
configuration.

◆ rm_littlefs_api_t

struct rm_littlefs_api_t

LittleFS Port interface API.

Data Fields

fsp_err_t(* open)(rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

fsp_err_t(* close)(rm_littlefs_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,439 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > LittleFS Interface

◆ open

fsp_err_t(* rm_littlefs_api_t::open) (rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

Initialize The lower level storage device.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* rm_littlefs_api_t::close) (rm_littlefs_ctrl_t *const p_ctrl)

Closes the module and lower level storage device.

Parameters
[in] p_ctrl Control block set in

rm_littlefs_api_t::open call.

◆ rm_littlefs_instance_t

struct rm_littlefs_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_littlefs_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_littlefs_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_littlefs_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_littlefs_ctrl_t

typedef void rm_littlefs_ctrl_t

LittleFS Port API control block. Allocate an instance specific control block to pass into the LittleFS
Port API calls.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,440 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

5.3.15.6 SD/MMC Interface
Interfaces » Storage

Detailed Description

Interface for accessing SD, eMMC, and SDIO devices.

Summary
The r_sdhi interface provides standard SD and eMMC media functionality. This interface also
supports SDIO.

Data Structures

struct sdmmc_response_t.status_b

struct sdmmc_status_t

struct sdmmc_device_t

struct sdmmc_callback_args_t

struct sdmmc_write_io_args_t

struct sdmmc_read_io_ext_args_t

struct sdmmc_write_io_ext_args_t

struct sdmmc_cfg_t

struct sdmmc_api_t

struct sdmmc_instance_t

Typedefs

typedef void sdmmc_ctrl_t

Enumerations

enum sdmmc_card_type_t

enum sdmmc_bus_width_t

enum sdmmc_io_transfer_mode_t

enum sdmmc_io_address_mode_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,441 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

enum sdmmc_io_write_mode_t

enum sdmmc_event_t

enum sdmmc_card_detect_t

enum sdmmc_write_protect_t

enum sdmmc_r1_state_t

Data Structure Documentation

◆ sdmmc_response_t.status_b

struct sdmmc_response_t.status_b

SDIO Card Status Register.

◆ sdmmc_status_t

struct sdmmc_status_t

Current status.

Data Fields

bool initialized False if card was removed (only
applies if MCU supports card
detection and SDnCD pin is
connected), true otherwise.

If ready is false, call
sdmmc_api_t::mediaInit to
reinitialize it

bool transfer_in_progress true = Card is busy

bool card_inserted Card detect status, true if card
detect is not used.

◆ sdmmc_device_t

struct sdmmc_device_t

Information obtained from the media device.

Data Fields

sdmmc_card_type_t card_type SD, eMMC, or SDIO.

bool write_protected true = Card is write protected

uint32_t clock_rate Current clock rate.

uint32_t sector_count Sector count.

uint32_t sector_size_bytes Sector size.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,442 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

uint32_t erase_sector_count Minimum erasable unit (in 512
byte sectors)

◆ sdmmc_callback_args_t

struct sdmmc_callback_args_t

Callback function parameter data

Data Fields

sdmmc_event_t event The event can be used to
identify what caused the
callback.

sdmmc_response_t response Response from card, only valid
if SDMMC_EVENT_RESPONSE is
set in event.

void const * p_context Placeholder for user data.

◆ sdmmc_write_io_args_t

struct sdmmc_write_io_args_t

Non-secure arguments for writeIo guard function

◆ sdmmc_read_io_ext_args_t

struct sdmmc_read_io_ext_args_t

Non-secure arguments for readIoExt guard function

◆ sdmmc_write_io_ext_args_t

struct sdmmc_write_io_ext_args_t

Non-secure arguments for writeIoExt guard function

◆ sdmmc_cfg_t

struct sdmmc_cfg_t

SD/MMC Configuration

Data Fields

uint8_t channel

 Channel of SD/MMC host interface.

sdmmc_bus_width_t bus_width

 Device bus width is 1, 4 or 8 bits wide.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,443 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

transfer_instance_t const * p_lower_lvl_transfer

 Transfer instance used to move data with DMA or DTC.

void(* p_callback)(sdmmc_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 SD/MMC hardware dependent configuration.

uint32_t block_size

sdmmc_card_detect_t card_detect

sdmmc_write_protect_t write_protect

IRQn_Type access_irq

 Access IRQ number.

IRQn_Type sdio_irq

 SDIO IRQ number.

IRQn_Type card_irq

 Card IRQ number.

IRQn_Type dma_req_irq

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,444 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

 DMA request IRQ number.

uint8_t access_ipl

 Access interrupt priority.

uint8_t sdio_ipl

 SDIO interrupt priority.

uint8_t card_ipl

 Card interrupt priority.

uint8_t dma_req_ipl

 DMA request interrupt priority.

Field Documentation

◆ block_size

uint32_t sdmmc_cfg_t::block_size

Block size in bytes. Block size must be 512 bytes for SD cards and eMMC devices. Block size can be
1-512 bytes for SDIO.

◆ card_detect

sdmmc_card_detect_t sdmmc_cfg_t::card_detect

Whether or not card detection is used.

◆ write_protect

sdmmc_write_protect_t sdmmc_cfg_t::write_protect

Select whether or not to use the write protect pin. Select Not Used if the MCU or device does not
have a write protect pin.

◆ sdmmc_api_t

struct sdmmc_api_t

SD/MMC functions implemented at the HAL layer API.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,445 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

fsp_err_t(* open)(sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const
p_device)

fsp_err_t(* read)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const start_sector, uint32_t const sector_count)

fsp_err_t(* write)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t(* readIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address)

fsp_err_t(* writeIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address, sdmmc_io_write_mode_t
const read_after_write)

fsp_err_t(* readIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const function, uint32_t const address, uint32_t *const
count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t(* writeIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const
p_source, uint32_t const function, uint32_t const address, uint32_t
const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t(* ioIntEnable)(sdmmc_ctrl_t *const p_ctrl, bool enable)

fsp_err_t(* statusGet)(sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const
p_status)

fsp_err_t(* erase)(sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector,
uint32_t const sector_count)

fsp_err_t(* callbackSet)(sdmmc_ctrl_t *const p_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const
p_context, sdmmc_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,446 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

fsp_err_t(* close)(sdmmc_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* sdmmc_api_t::open) (sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

Open the SD/MMC driver.

Parameters
[in] p_ctrl Pointer to SD/MMC instance

control block.

[in] p_cfg Pointer to SD/MMC instance
configuration structure.

◆ mediaInit

fsp_err_t(* sdmmc_api_t::mediaInit) (sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const p_device)

Initializes an SD/MMC device. If the device is a card, the card must be plugged in prior to calling
this API. This API blocks until the device initialization procedure is complete.

Parameters
[in] p_ctrl Pointer to SD/MMC instance

control block.

[out] p_device Pointer to store device
information.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,447 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ read

fsp_err_t(* sdmmc_api_t::read) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Read data from an SD/MMC channel. This API is not supported for SDIO devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] start_sector First sector address to read.

[in] sector_count Number of sectors to read.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

◆ write

fsp_err_t(* sdmmc_api_t::write) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Write data to SD/MMC channel. This API is not supported for SDIO devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] start_sector First sector address to write
to.

[in] sector_count Number of sectors to write.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,448 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ readIo

fsp_err_t(* sdmmc_api_t::readIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

Read one byte of I/O data from an SDIO device. This API is not supported for SD or eMMC memory
devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_data Pointer to location to store
data byte.

[in] function SDIO Function Number.

[in] address SDIO register address.

◆ writeIo

fsp_err_t(* sdmmc_api_t::writeIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Write one byte of I/O data to an SDIO device. This API is not supported for SD or eMMC memory
devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in,out] p_data Pointer to data byte to write.
Read data is also provided
here if read_after_write is
true.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] read_after_write Whether or not to read back
the same register after
writing

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,449 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ readIoExt

fsp_err_t(* sdmmc_api_t::readIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Read multiple bytes or blocks of I/O data from an SDIO device. This API is not supported for SD or
eMMC memory devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
read, maximum 512 bytes or
511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,450 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ writeIoExt

fsp_err_t(* sdmmc_api_t::writeIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Write multiple bytes or blocks of I/O data to an SDIO device. This API is not supported for SD or
eMMC memory devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] function_number SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
write, maximum 512 bytes
or 511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

◆ ioIntEnable

fsp_err_t(* sdmmc_api_t::ioIntEnable) (sdmmc_ctrl_t *const p_ctrl, bool enable)

Enables SDIO interrupt for SD/MMC instance. This API is not supported for SD or eMMC memory
devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] enable Interrupt enable = true,
interrupt disable = false.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,451 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ statusGet

fsp_err_t(* sdmmc_api_t::statusGet) (sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const p_status)

Get SD/MMC device status.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_status Pointer to current driver
status.

◆ erase

fsp_err_t(* sdmmc_api_t::erase) (sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erase SD/MMC sectors. The sector size for erase is fixed at 512 bytes. This API is not supported for
SDIO devices.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] start_sector First sector to erase. Must be
a multiple of
sdmmc_device_t::erase_sect
or_count.

[in] sector_count Number of sectors to erase.
Must be a multiple of
sdmmc_device_t::erase_sect
or_count. All sectors must be
in the range of
sdmmc_device_t::sector_cou
nt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,452 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ callbackSet

fsp_err_t(* sdmmc_api_t::callbackSet) (sdmmc_ctrl_t *const p_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const p_context, sdmmc_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

sdmmc_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* sdmmc_api_t::close) (sdmmc_ctrl_t *const p_ctrl)

Close open SD/MMC device.

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

◆ sdmmc_instance_t

struct sdmmc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

sdmmc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

sdmmc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

sdmmc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,453 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ sdmmc_ctrl_t

typedef void sdmmc_ctrl_t

SD/MMC control block. Allocate an instance specific control block to pass into the SD/MMC API
calls.

Enumeration Type Documentation

◆ sdmmc_card_type_t

enum sdmmc_card_type_t

SD/MMC media uses SD protocol or MMC protocol.

Enumerator

SDMMC_CARD_TYPE_MMC The media is an eMMC device.

SDMMC_CARD_TYPE_SD The media is an SD card.

SDMMC_CARD_TYPE_SDIO The media is an SDIO card.

◆ sdmmc_bus_width_t

enum sdmmc_bus_width_t

SD/MMC data bus is 1, 4 or 8 bits wide.

Enumerator

SDMMC_BUS_WIDTH_1_BIT Data bus is 1 bit wide.

SDMMC_BUS_WIDTH_4_BITS Data bus is 4 bits wide.

SDMMC_BUS_WIDTH_8_BITS Data bus is 8 bits wide.

◆ sdmmc_io_transfer_mode_t

enum sdmmc_io_transfer_mode_t

SDIO transfer mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_MODE_TRANSFER_BYTE SDIO byte transfer mode.

SDMMC_IO_MODE_TRANSFER_BLOCK SDIO block transfer mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,454 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ sdmmc_io_address_mode_t

enum sdmmc_io_address_mode_t

SDIO address mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_ADDRESS_MODE_FIXED Write all data to the same address.

SDMMC_IO_ADDRESS_MODE_INCREMENT Increment destination address after each
write.

◆ sdmmc_io_write_mode_t

enum sdmmc_io_write_mode_t

Controls the RAW (read after write) flag of CMD52. Used to read back the status after writing a
control register.

Enumerator

SDMMC_IO_WRITE_MODE_NO_READ Write only (do not read back)

SDMMC_IO_WRITE_READ_AFTER_WRITE Read back the register after write.

◆ sdmmc_event_t

enum sdmmc_event_t

Events that can trigger a callback function

Enumerator

SDMMC_EVENT_CARD_REMOVED Card removed event.

SDMMC_EVENT_CARD_INSERTED Card inserted event.

SDMMC_EVENT_RESPONSE Response event.

SDMMC_EVENT_SDIO IO event.

SDMMC_EVENT_TRANSFER_COMPLETE Read or write complete.

SDMMC_EVENT_TRANSFER_ERROR Read or write failed.

SDMMC_EVENT_ERASE_COMPLETE Erase completed.

SDMMC_EVENT_ERASE_BUSY Erase timeout, poll sdmmc_api_t::statusGet.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,455 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ sdmmc_card_detect_t

enum sdmmc_card_detect_t

Card detection configuration options.

Enumerator

SDMMC_CARD_DETECT_NONE Card detection unused.

SDMMC_CARD_DETECT_CD Card detection using the CD pin.

◆ sdmmc_write_protect_t

enum sdmmc_write_protect_t

Write protection configuration options.

Enumerator

SDMMC_WRITE_PROTECT_NONE Write protection unused.

SDMMC_WRITE_PROTECT_WP Write protection using WP pin.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,456 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SD/MMC Interface

◆ sdmmc_r1_state_t

enum sdmmc_r1_state_t

Card state when receiving the prior command.

Enumerator

SDMMC_R1_STATE_IDLE Idle State.

SDMMC_R1_STATE_READY Ready State.

SDMMC_R1_STATE_IDENT Identification State.

SDMMC_R1_STATE_STBY Stand-by State.

SDMMC_R1_STATE_TRAN Transfer State.

SDMMC_R1_STATE_DATA Sending-data State.

SDMMC_R1_STATE_RCV Receive-data State.

SDMMC_R1_STATE_PRG Programming State.

SDMMC_R1_STATE_DIS Disconnect State (between programming and
stand-by)

SDMMC_R1_STATE_IO This is an I/O card and memory states do not
apply.

5.3.15.7 SPI Flash Interface
Interfaces » Storage

Detailed Description

Interface for accessing external SPI flash devices.

Summary
The SPI flash API provides an interface that configures, writes, and erases sectors in SPI flash
devices.

Data Structures

struct spi_flash_erase_command_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,457 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

struct spi_flash_direct_transfer_t

struct spi_flash_cfg_t

struct spi_flash_status_t

struct spi_flash_api_t

struct spi_flash_instance_t

Typedefs

typedef void spi_flash_ctrl_t

Enumerations

enum spi_flash_read_mode_t

enum spi_flash_protocol_t

enum spi_flash_address_bytes_t

enum spi_flash_data_lines_t

enum spi_flash_dummy_clocks_t

enum spi_flash_direct_transfer_dir_t

Data Structure Documentation

◆ spi_flash_erase_command_t

struct spi_flash_erase_command_t

Structure to define an erase command and associated erase size.

Data Fields

uint16_t command Erase command.

uint32_t size Size of erase for associated
command, set to SPI_FLASH_ER
ASE_SIZE_CHIP_ERASE for chip
erase.

◆ spi_flash_direct_transfer_t

struct spi_flash_direct_transfer_t

Structure to define a direct transfer.

Data Fields

union spi_flash_direct_transfer_t __unnamed__

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,458 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

uint32_t address Starting address.

uint16_t command Transfer command.

uint8_t dummy_cycles Number of dummy cycles.

uint8_t command_length Command length.

uint8_t address_length Address length.

uint8_t data_length Data length.

◆ spi_flash_cfg_t

struct spi_flash_cfg_t

User configuration structure used by the open function

Data Fields

spi_flash_protocol_t spi_protocol Initial SPI protocol. SPI protocol
can be changed in
spi_flash_api_t::spiProtocolSet.

spi_flash_read_mode_t read_mode Read mode.

spi_flash_address_bytes_t address_bytes Number of bytes used to
represent the address.

spi_flash_dummy_clocks_t dummy_clocks Number of dummy clocks to
use for fast read operations.

spi_flash_data_lines_t page_program_address_lines Number of lines used to send
address for page program
command. This should either be
1 or match the number of lines
used in the selected read
mode.

uint8_t write_status_bit Which bit determines write
status.

uint8_t write_enable_bit Which bit determines write
status.

uint32_t page_size_bytes Page size in bytes (maximum
number of bytes for page
program). Used to specify
single continuous write size
(bytes) in case of OSPI RAM.

uint8_t page_program_command Page program command.

uint8_t write_enable_command Command to enable write or
erase, typically 0x06.

uint8_t status_command Command to read the write
status.

uint8_t read_command Read command - OSPI SPI mode
only.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,459 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

uint8_t xip_enter_command Command to enter XIP mode.

uint8_t xip_exit_command Command to exit XIP mode.

uint8_t erase_command_list_length Length of erase command list.

spi_flash_erase_command_t
const *

p_erase_command_list List of all erase commands and
associated sizes.

void const * p_extend Pointer to implementation
specific extended
configurations.

◆ spi_flash_status_t

struct spi_flash_status_t

Status.

Data Fields

bool write_in_progress Whether or not a write is in
progress. This is determined by
reading the
spi_flash_cfg_t::write_status_bit
from the
spi_flash_cfg_t::status_comman
d.

◆ spi_flash_api_t

struct spi_flash_api_t

SPI flash implementations follow this API.

Data Fields

fsp_err_t(* open)(spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const *const
p_cfg)

fsp_err_t(* directWrite)(spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const bytes, bool const read_after_write)

fsp_err_t(* directRead)(spi_flash_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

fsp_err_t(* directTransfer)(spi_flash_ctrl_t *const p_ctrl,
spi_flash_direct_transfer_t *const p_transfer,
spi_flash_direct_transfer_dir_t direction)

fsp_err_t(* spiProtocolSet)(spi_flash_ctrl_t *const p_ctrl, spi_flash_protocol_t
spi_protocol)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,460 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

fsp_err_t(* write)(spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t(* erase)(spi_flash_ctrl_t *const p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t(* statusGet)(spi_flash_ctrl_t *const p_ctrl, spi_flash_status_t *const
p_status)

fsp_err_t(* xipEnter)(spi_flash_ctrl_t *const p_ctrl)

fsp_err_t(* xipExit)(spi_flash_ctrl_t *const p_ctrl)

fsp_err_t(* bankSet)(spi_flash_ctrl_t *const p_ctrl, uint32_t bank)

fsp_err_t(* autoCalibrate)(spi_flash_ctrl_t *const p_ctrl)

fsp_err_t(* close)(spi_flash_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* spi_flash_api_t::open) (spi_flash_ctrl_t *const p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the SPI flash driver module.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_cfg Pointer to a configuration
structure

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,461 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ directWrite

fsp_err_t(* spi_flash_api_t::directWrite) (spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const bytes, bool const read_after_write)

Write raw data to the SPI flash.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_src Pointer to raw data to write,
must include any required
command/address

[in] bytes Number of bytes to write

[in] read_after_write If true, the slave select
remains asserted and the
peripheral does not return to
direct communications
mode. If false, the slave
select is deasserted and
memory mapped access is
possible after this function
returns if the device is not
busy.

◆ directRead

fsp_err_t(* spi_flash_api_t::directRead) (spi_flash_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Read raw data from the SPI flash. Must follow a call to spi_flash_api_t::directWrite.

Parameters
[in] p_ctrl Pointer to a driver handle

[out] p_dest Pointer to read raw data into

[in] bytes Number of bytes to read

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,462 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ directTransfer

fsp_err_t(* spi_flash_api_t::directTransfer) (spi_flash_ctrl_t *const p_ctrl, spi_flash_direct_transfer_t
*const p_transfer, spi_flash_direct_transfer_dir_t direction)

Direct Read/Write raw data to the SPI flash.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_data Pointer to command,
address and data values and
lengths

[in] direction Direct Read/Write

◆ spiProtocolSet

fsp_err_t(* spi_flash_api_t::spiProtocolSet) (spi_flash_ctrl_t *const p_ctrl, spi_flash_protocol_t
spi_protocol)

Change the SPI protocol in the driver. The application must change the SPI protocol on the device.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] spi_protocol Desired SPI protocol

◆ write

fsp_err_t(* spi_flash_api_t::write) (spi_flash_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint8_t
*const p_dest, uint32_t byte_count)

Program a page of data to the flash.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_src The memory address of the
data to write to the flash
device

[in] p_dest The location in the flash
device address space to
write the data to

[in] byte_count The number of bytes to write

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,463 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ erase

fsp_err_t(* spi_flash_api_t::erase) (spi_flash_ctrl_t *const p_ctrl, uint8_t *const p_device_address,
uint32_t byte_count)

Erase a certain number of bytes of the flash.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
start the erase from

[in] byte_count The number of bytes to
erase. Set to SPI_FLASH_ERA
SE_SIZE_CHIP_ERASE to
erase entire chip.

◆ statusGet

fsp_err_t(* spi_flash_api_t::statusGet) (spi_flash_ctrl_t *const p_ctrl, spi_flash_status_t *const
p_status)

Get the write or erase status of the flash.

Parameters
[in] p_ctrl Pointer to a driver handle

[out] p_status Current status of the SPI
flash device stored here.

◆ xipEnter

fsp_err_t(* spi_flash_api_t::xipEnter) (spi_flash_ctrl_t *const p_ctrl)

Enter XIP mode.

Parameters
[in] p_ctrl Pointer to a driver handle

◆ xipExit

fsp_err_t(* spi_flash_api_t::xipExit) (spi_flash_ctrl_t *const p_ctrl)

Exit XIP mode.

Parameters
[in] p_ctrl Pointer to a driver handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,464 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ bankSet

fsp_err_t(* spi_flash_api_t::bankSet) (spi_flash_ctrl_t *const p_ctrl, uint32_t bank)

Select the bank to access. See implementation for details.

Parameters
[in] p_ctrl Pointer to a driver handle

[in] bank The bank number

◆ autoCalibrate

fsp_err_t(* spi_flash_api_t::autoCalibrate) (spi_flash_ctrl_t *const p_ctrl)

AutoCalibrate the SPI flash driver module. Expected to be used when auto-calibrating OSPI RAM
device.

Parameters
[in] p_ctrl Pointer to a driver handle

◆ close

fsp_err_t(* spi_flash_api_t::close) (spi_flash_ctrl_t *const p_ctrl)

Close the SPI flash driver module.

Parameters
[in] p_ctrl Pointer to a driver handle

◆ spi_flash_instance_t

struct spi_flash_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

spi_flash_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

spi_flash_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

spi_flash_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,465 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ spi_flash_ctrl_t

typedef void spi_flash_ctrl_t

SPI flash control block. Allocate an instance specific control block to pass into the SPI flash API
calls.

Enumeration Type Documentation

◆ spi_flash_read_mode_t

enum spi_flash_read_mode_t

Read mode.

Enumerator

SPI_FLASH_READ_MODE_STANDARD Standard Read Mode (no dummy cycles)

SPI_FLASH_READ_MODE_FAST_READ Fast Read Mode (dummy cycles between
address and data)

SPI_FLASH_READ_MODE_FAST_READ_DUAL_OUT
PUT

Fast Read Dual Output Mode (data on 2 lines)

SPI_FLASH_READ_MODE_FAST_READ_DUAL_IO Fast Read Dual I/O Mode (address and data on
2 lines)

SPI_FLASH_READ_MODE_FAST_READ_QUAD_OUT
PUT

Fast Read Quad Output Mode (data on 4 lines)

SPI_FLASH_READ_MODE_FAST_READ_QUAD_IO Fast Read Quad I/O Mode (address and data on
4 lines)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,466 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ spi_flash_protocol_t

enum spi_flash_protocol_t

SPI protocol.

Enumerator

SPI_FLASH_PROTOCOL_EXTENDED_SPI Extended SPI mode (commands on 1 line)

SPI_FLASH_PROTOCOL_QPI QPI mode (commands on 4 lines). Note that
the application must ensure the device is in
QPI mode.

SPI_FLASH_PROTOCOL_SOPI SOPI mode (command and data on 8 lines).
Note that the application must ensure the
device is in SOPI mode.

SPI_FLASH_PROTOCOL_DOPI DOPI mode (command and data on 8 lines,
dual data rate). Note that the application must
ensure the device is in DOPI mode.

SPI_FLASH_PROTOCOL_1S_1S_1S 1S-1S-1S protocol mode

SPI_FLASH_PROTOCOL_4S_4D_4D 4S-4D-4D protocol mode

SPI_FLASH_PROTOCOL_8D_8D_8D 8D-8D-8D protocol mode

SPI_FLASH_PROTOCOL_1S_2S_2S 1S-2S-2S protocol mode

SPI_FLASH_PROTOCOL_2S_2S_2S 2S-2S-2S protocol mode

SPI_FLASH_PROTOCOL_1S_4S_4S 1S-4S-4S protocol mode

SPI_FLASH_PROTOCOL_4S_4S_4S 4S-4S-4S protocol mode

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,467 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ spi_flash_address_bytes_t

enum spi_flash_address_bytes_t

Number of bytes in the address.

Enumerator

SPI_FLASH_ADDRESS_BYTES_3 3 address bytes

SPI_FLASH_ADDRESS_BYTES_4 4 address bytes with standard commands. If
this option is selected, the application must
issue the EN4B command using
spi_flash_api_t::directWrite() if required by the
device.

SPI_FLASH_ADDRESS_BYTES_4_4BYTE_READ_CO
DE

4 address bytes using standard 4-byte
command set.

◆ spi_flash_data_lines_t

enum spi_flash_data_lines_t

Number of data lines used.

Enumerator

SPI_FLASH_DATA_LINES_1 1 data line

SPI_FLASH_DATA_LINES_2 2 data lines

SPI_FLASH_DATA_LINES_4 4 data lines

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,468 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

◆ spi_flash_dummy_clocks_t

enum spi_flash_dummy_clocks_t

Number of dummy cycles for fast read operations.

Enumerator

SPI_FLASH_DUMMY_CLOCKS_0 0 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_1 1 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_2 2 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_3 3 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_4 4 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_5 5 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_6 6 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_7 7 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_8 8 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_9 9 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_10 10 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_11 11 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_12 12 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_13 13 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_14 14 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_15 15 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_16 16 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_17 17 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_18 18 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_19 19 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_20 20 dummy clocks

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,469 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > SPI Flash Interface

SPI_FLASH_DUMMY_CLOCKS_21 21 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_22 22 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_23 23 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_24 24 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_25 25 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_26 26 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_27 27 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_28 28 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_29 29 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_30 30 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_31 31 dummy clocks

◆ spi_flash_direct_transfer_dir_t

enum spi_flash_direct_transfer_dir_t

Direct Read and Write direction

5.3.15.8 Virtual EEPROM Interface
Interfaces » Storage

Detailed Description

Interface for Virtual EEPROM access.

Summary
The Virtual EEPROM Port configures a fail-safe key value store designed for microcontrollers on top of
a lower level storage device.

Data Structures

struct rm_vee_callback_args_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,470 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

struct rm_vee_cfg_t

struct rm_vee_api_t

struct rm_vee_instance_t

Typedefs

typedef void rm_vee_ctrl_t

Enumerations

enum rm_vee_state_t

Data Structure Documentation

◆ rm_vee_callback_args_t

struct rm_vee_callback_args_t

User configuration structure, used in open function

Data Fields

rm_vee_state_t state State of the Virtual EEPROM.

void const * p_context Placeholder for user data. Set in
rm_vee_api_t::open function
in::rm_vee_cfg_t.

◆ rm_vee_cfg_t

struct rm_vee_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t start_addr

 Start address to be used for Virtual EEPROM memory.

uint32_t num_segments

 Number of segments to divide the volume into.

uint32_t total_size

 Total size of the volume.

uint32_t ref_data_size

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,471 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

 Size of the reference data stored at the end of the segment.

uint32_t record_max_id

 Maximum record ID that can be used.

uint16_t * rec_offset

 Pointer to buffer used for record offset caching.

void(* p_callback)(rm_vee_callback_args_t *p_args)

 Callback provided when a Virtual EEPROM event occurs.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Pointer to hardware dependent configuration.

◆ rm_vee_api_t

struct rm_vee_api_t

Virtual EEPROM interface API.

Data Fields

fsp_err_t(* open)(rm_vee_ctrl_t *const p_ctrl, rm_vee_cfg_t const *const p_cfg)

fsp_err_t(* recordWrite)(rm_vee_ctrl_t *const p_ctrl, uint32_t const rec_id,
uint8_t const *const p_rec_data, uint32_t num_bytes)

fsp_err_t(* recordPtrGet)(rm_vee_ctrl_t *const p_ctrl, uint32_t rec_id, uint8_t
**const pp_rec_data, uint32_t *const p_num_bytes)

fsp_err_t(* refDataWrite)(rm_vee_ctrl_t *const p_ctrl, uint8_t const *const
p_ref_data)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,472 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

fsp_err_t(* refDataPtrGet)(rm_vee_ctrl_t *const p_ctrl, uint8_t **const
pp_ref_data)

fsp_err_t(* statusGet)(rm_vee_ctrl_t *const p_ctrl, rm_vee_status_t *const
p_status)

fsp_err_t(* refresh)(rm_vee_ctrl_t *const p_ctrl)

fsp_err_t(* format)(rm_vee_ctrl_t *const p_ctrl, uint8_t const *const p_ref_data)

fsp_err_t(* callbackSet)(rm_vee_ctrl_t *const p_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const
p_context, rm_vee_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(rm_vee_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_vee_api_t::open) (rm_vee_ctrl_t *const p_ctrl, rm_vee_cfg_t const *const p_cfg)

Initializes the driver's internal structures and opens the Flash driver.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,473 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

◆ recordWrite

fsp_err_t(* rm_vee_api_t::recordWrite) (rm_vee_ctrl_t *const p_ctrl, uint32_t const rec_id, uint8_t
const *const p_rec_data, uint32_t num_bytes)

Writes a record to data flash.

Parameters
[in] p_ctrl Pointer to control block.

[in] rec_id ID of record to write.

[in] p_rec_data Pointer to record data to
write.

[in] num_bytes Length of data to write.

◆ recordPtrGet

fsp_err_t(* rm_vee_api_t::recordPtrGet) (rm_vee_ctrl_t *const p_ctrl, uint32_t rec_id, uint8_t **const
pp_rec_data, uint32_t *const p_num_bytes)

This function gets the pointer to the most recent version of a record specified by ID.

Parameters
[in] p_ctrl Pointer to control block.

[in] rec_id ID of record to locate.

[in] pp_rec_data Pointer to set to the most
recent version of the record.

[in] p_num_bytes Variable to load with record
length.

◆ refDataWrite

fsp_err_t(* rm_vee_api_t::refDataWrite) (rm_vee_ctrl_t *const p_ctrl, uint8_t const *const
p_ref_data)

Writes new Reference data to the reference update area.

Parameters
[in] p_ctrl Pointer to control block.

[in] p_ref_data Pointer to data to write to
the reference data update
area.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,474 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

◆ refDataPtrGet

fsp_err_t(* rm_vee_api_t::refDataPtrGet) (rm_vee_ctrl_t *const p_ctrl, uint8_t **const pp_ref_data)

Gets a pointer to the most recent reference data.

Parameters
[in] p_ctrl Pointer to control block.

[in] pp_ref_data Pointer to set to the most
recent valid reference data.

◆ statusGet

fsp_err_t(* rm_vee_api_t::statusGet) (rm_vee_ctrl_t *const p_ctrl, rm_vee_status_t *const p_status)

Get the current status of the VEE driver.

Parameters
[in] p_ctrl Pointer to control block.

[in] p_status Pointer to store the current
status of the VEE driver.

◆ refresh

fsp_err_t(* rm_vee_api_t::refresh) (rm_vee_ctrl_t *const p_ctrl)

Manually start a refresh operation.

Parameters
[in] p_ctrl Pointer to control block.

◆ format

fsp_err_t(* rm_vee_api_t::format) (rm_vee_ctrl_t *const p_ctrl, uint8_t const *const p_ref_data)

Format the Virtual EEPROM.

Parameters
[in] p_ctrl Pointer to control block.

[in] p_ref_data Optional pointer to reference
data to write during format.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,475 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

◆ callbackSet

fsp_err_t(* rm_vee_api_t::callbackSet) (rm_vee_ctrl_t *const p_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const p_context, rm_vee_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

rm_vee_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* rm_vee_api_t::close) (rm_vee_ctrl_t *const p_ctrl)

Closes the module and lower level storage device.

Parameters
[in] p_ctrl Control block set in

rm_vee_api_t::open call.

◆ rm_vee_instance_t

struct rm_vee_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_vee_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_vee_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_vee_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,476 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Storage > Virtual EEPROM Interface

◆ rm_vee_ctrl_t

typedef void rm_vee_ctrl_t

Virtual EEPROM API control block. Allocate an instance specific control block to pass into the VEE
API calls.

Enumeration Type Documentation

◆ rm_vee_state_t

enum rm_vee_state_t

Enumerator

RM_VEE_STATE_READY Ready.

RM_VEE_STATE_BUSY Operation in progress.

RM_VEE_STATE_REFRESH Refresh operation in progress.

RM_VEE_STATE_OVERFLOW The amount of data written exceeds the space
available.

RM_VEE_STATE_HARDWARE_FAIL Lower level hardware failure.

5.3.16 System
Interfaces

Detailed Description

System Interfaces.

Modules

CGC Interface

 Interface for clock generation.

ELC Interface

 Interface for the Event Link Controller.

I/O Port Interface

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,477 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System

 Interface for accessing I/O ports and configuring I/O functionality.

5.3.16.1 CGC Interface
Interfaces » System

Detailed Description

Interface for clock generation.

Summary
The CGC interface provides the ability to configure and use all of the CGC module's capabilities.
Among the capabilities is the selection of several clock sources to use as the system clock source.
Additionally, the system clocks can be divided down to provide a wide range of frequencies for
various system and peripheral needs.

Clock stability can be checked and clocks may also be stopped to save power when not needed. The
API has a function to return the frequency of the system and system peripheral clocks at run time.
There is also a feature to detect when the main oscillator has stopped, with the option of calling a
user provided callback function.

Data Structures

struct cgc_callback_args_t

struct cgc_pll_cfg_t

struct cgc_divider_cfg_t

struct cgc_cfg_t

struct cgc_clocks_cfg_t

struct cgc_api_t

struct cgc_instance_t

Typedefs

typedef void cgc_ctrl_t

Enumerations

enum cgc_event_t

enum cgc_clock_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,478 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

enum cgc_pll_div_t

enum cgc_pll_out_div_t

enum cgc_sys_clock_div_t

enum cgc_pin_output_control_t

enum cgc_usb_clock_div_t

enum cgc_clock_change_t

Data Structure Documentation

◆ cgc_callback_args_t

struct cgc_callback_args_t

Callback function parameter data

Data Fields

cgc_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ cgc_pll_cfg_t

struct cgc_pll_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::clockStart function for
the PLL clock.

Data Fields

cgc_clock_t source_clock PLL source clock (main
oscillator or HOCO)

cgc_pll_div_t divider PLL divider.

cgc_pll_mul_t multiplier PLL multiplier.

cgc_pll_out_div_t out_div_p PLL divisor for output clock P.

cgc_pll_out_div_t out_div_q PLL divisor for output clock Q.

cgc_pll_out_div_t out_div_r PLL divisor for output clock R.

◆ cgc_divider_cfg_t

struct cgc_divider_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::systemClockSet and
cgc_api_t::systemClockGet functions.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,479 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

cgc_sys_clock_div_t moco_divider MOCO divider.

cgc_sys_clock_div_t hoco_divider HOCO divider.

cgc_sys_clock_div_t mosc_divider Main oscillator divider.

union cgc_divider_cfg_t __unnamed__

union cgc_divider_cfg_t __unnamed__

◆ cgc_cfg_t

struct cgc_cfg_t

Configuration options.

Data Fields

void const * p_extend

 Extension parameter for hardware specific settings.

◆ cgc_clocks_cfg_t

struct cgc_clocks_cfg_t

Clock configuration

Data Fields

cgc_clock_t system_clock System clock source
enumeration.

cgc_pll_cfg_t pll_cfg PLL configuration structure.

cgc_pll_cfg_t pll2_cfg PLL2 configuration structure.

cgc_divider_cfg_t divider_cfg Clock dividers structure.

cgc_clock_change_t loco_state State of LOCO.

cgc_clock_change_t moco_state State of MOCO.

cgc_clock_change_t hoco_state State of HOCO.

cgc_clock_change_t mainosc_state State of Main oscillator.

cgc_clock_change_t pll_state State of PLL.

cgc_clock_change_t pll2_state State of PLL2.

cgc_clock_change_t subosc_state State of Sub oscillator.

◆ cgc_api_t

struct cgc_api_t

CGC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,480 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

fsp_err_t(* clocksCfg)(cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const
p_clock_cfg)

fsp_err_t(* clockStart)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t(* clockStop)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* clockCheck)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* systemClockSet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

fsp_err_t(* systemClockGet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

fsp_err_t(* oscStopDetectEnable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopDetectDisable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopStatusClear)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(cgc_ctrl_t *const p_ctrl,
void(*p_callback)(cgc_callback_args_t *), void const *const
p_context, cgc_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(cgc_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,481 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ open

fsp_err_t(* cgc_api_t::open) (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

Initial configuration

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

◆ clocksCfg

fsp_err_t(* cgc_api_t::clocksCfg) (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const p_clock_cfg)

Configure all system clocks.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_clock_cfg Pointer to desired
configuration of system
clocks

◆ clockStart

fsp_err_t(* cgc_api_t::clockStart) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source, cgc_pll_cfg_t
const *const p_pll_cfg)

Start a clock.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] clock_source Clock source to start

[in] p_pll_cfg Pointer to PLL configuration,
can be NULL if clock_source
is not CGC_CLOCK_PLL or
CGC_CLOCK_PLL2

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,482 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ clockStop

fsp_err_t(* cgc_api_t::clockStop) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Stop a clock.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] clock_source The clock source to stop

◆ clockCheck

fsp_err_t(* cgc_api_t::clockCheck) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Check the stability of the selected clock.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] clock_source Which clock source to check
for stability

◆ systemClockSet

fsp_err_t(* cgc_api_t::systemClockSet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

Set the system clock.

Parameters
[in] p_ctrl Pointer to instance control

block

[in] clock_source Clock source to set as
system clock

[in] p_divider_cfg Pointer to the clock divider
configuration

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,483 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ systemClockGet

fsp_err_t(* cgc_api_t::systemClockGet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const p_clock_source,
cgc_divider_cfg_t *const p_divider_cfg)

Get the system clock information.

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_clock_source Returns the current system
clock

[out] p_divider_cfg Returns the current system
clock dividers

◆ oscStopDetectEnable

fsp_err_t(* cgc_api_t::oscStopDetectEnable) (cgc_ctrl_t *const p_ctrl)

Enable and optionally register a callback for Main Oscillator stop detection.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ oscStopDetectDisable

fsp_err_t(* cgc_api_t::oscStopDetectDisable) (cgc_ctrl_t *const p_ctrl)

Disable Main Oscillator stop detection.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ oscStopStatusClear

fsp_err_t(* cgc_api_t::oscStopStatusClear) (cgc_ctrl_t *const p_ctrl)

Clear the oscillator stop detection flag.

Parameters
[in] p_ctrl Pointer to instance control

block

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,484 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ callbackSet

fsp_err_t(* cgc_api_t::callbackSet) (cgc_ctrl_t *const p_ctrl, void(*p_callback)(cgc_callback_args_t *),
void const *const p_context, cgc_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the CGC control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* cgc_api_t::close) (cgc_ctrl_t *const p_ctrl)

Close the CGC driver.

Parameters
[in] p_ctrl Pointer to instance control

block

◆ cgc_instance_t

struct cgc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cgc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cgc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cgc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,485 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ cgc_ctrl_t

typedef void cgc_ctrl_t

CGC control block. Allocate an instance specific control block to pass into the CGC API calls.

Enumeration Type Documentation

◆ cgc_event_t

enum cgc_event_t

Events that can trigger a callback function

Enumerator

CGC_EVENT_OSC_STOP_DETECT_NMI Main oscillator stop detection has caused the
NMI event.

CGC_EVENT_OSC_STOP_DETECT_MAIN_OSC Main oscillator stop detection has caused the
interrupt event.

CGC_EVENT_OSC_STOP_DETECT_SUBCLOCK Subclock oscillator stop detection has caused
the interrupt event.

◆ cgc_clock_t

enum cgc_clock_t

System clock source identifiers - The source of ICLK, BCLK, FCLK, PCLKS A-D and UCLK prior to the
system clock divider

Enumerator

CGC_CLOCK_HOCO The high speed on chip oscillator.

CGC_CLOCK_MOCO The middle speed on chip oscillator.

CGC_CLOCK_LOCO The low speed on chip oscillator.

CGC_CLOCK_MAIN_OSC The main oscillator.

CGC_CLOCK_SUBCLOCK The subclock oscillator.

CGC_CLOCK_PLL The PLL oscillator.

CGC_CLOCK_PLL2 The PLL2 oscillator.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,486 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ cgc_pll_div_t

enum cgc_pll_div_t

PLL divider values

Enumerator

CGC_PLL_DIV_1 PLL divider of 1.

CGC_PLL_DIV_2 PLL divider of 2.

CGC_PLL_DIV_3 PLL divider of 3.

CGC_PLL_DIV_4 PLL divider of 4.

CGC_PLL_DIV_6 PLL divider of 6.

◆ cgc_pll_out_div_t

enum cgc_pll_out_div_t

PLL clock output divisor.

Enumerator

CGC_PLL_OUT_DIV_2 PLL output clock divided by 2.

CGC_PLL_OUT_DIV_3 PLL output clock divided by 3.

CGC_PLL_OUT_DIV_4 PLL output clock divided by 4.

CGC_PLL_OUT_DIV_5 PLL output clock divided by 5.

CGC_PLL_OUT_DIV_6 PLL output clock divided by 6.

CGC_PLL_OUT_DIV_8 PLL output clock divided by 8.

CGC_PLL_OUT_DIV_9 PLL output clock divided by 9.

CGC_PLL_OUT_DIV_1_5 PLL output clock divided by 1.5.

CGC_PLL_OUT_DIV_16 PLL output clock divided by 16.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,487 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ cgc_sys_clock_div_t

enum cgc_sys_clock_div_t

System clock divider values - The individually selectable divider of each of the system clocks, ICLK,
BCLK, FCLK, PCLKS A-D.

Enumerator

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

CGC_SYS_CLOCK_DIV_3 System clock divided by 3.

CGC_SYS_CLOCK_DIV_6 System clock divided by 6.

CGC_SYS_CLOCK_DIV_12 System clock divided by 12.

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

CGC_SYS_CLOCK_DIV_3 System clock divided by 3.

CGC_SYS_CLOCK_DIV_6 System clock divided by 6.

CGC_SYS_CLOCK_DIV_12 System clock divided by 12.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,488 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

CGC_SYS_CLOCK_DIV_3 System clock divided by 3.

CGC_SYS_CLOCK_DIV_6 System clock divided by 6.

CGC_SYS_CLOCK_DIV_12 System clock divided by 12.

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

CGC_SYS_CLOCK_DIV_3 System clock divided by 3 (BCLK only)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,489 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > CGC Interface

◆ cgc_pin_output_control_t

enum cgc_pin_output_control_t

Pin output control enable/disable (SDCLK, BCLK).

Enumerator

CGC_PIN_OUTPUT_CONTROL_ENABLE Enable pin output.

CGC_PIN_OUTPUT_CONTROL_DISABLE Disable pin output.

◆ cgc_usb_clock_div_t

enum cgc_usb_clock_div_t

USB clock divider values

Enumerator

CGC_USB_CLOCK_DIV_2 Divide USB source clock by 2.

CGC_USB_CLOCK_DIV_3 Divide USB source clock by 3.

CGC_USB_CLOCK_DIV_4 Divide USB source clock by 4.

CGC_USB_CLOCK_DIV_5 Divide USB source clock by 5.

◆ cgc_clock_change_t

enum cgc_clock_change_t

Clock options

Enumerator

CGC_CLOCK_CHANGE_START Start the clock.

CGC_CLOCK_CHANGE_STOP Stop the clock.

CGC_CLOCK_CHANGE_NONE No change to the clock.

5.3.16.2 ELC Interface
Interfaces » System

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,490 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > ELC Interface

Detailed Description

Interface for the Event Link Controller.

Data Structures

struct elc_cfg_t

struct elc_api_t

struct elc_instance_t

Typedefs

typedef void elc_ctrl_t

Enumerations

enum elc_peripheral_t

enum elc_software_event_t

Data Structure Documentation

◆ elc_cfg_t

struct elc_cfg_t

Main configuration structure for the Event Link Controller

Data Fields

elc_event_t const link[ELC_PERIPHERAL_NUM] Event link register settings.

void const * p_extend Extension parameter for
hardware specific settings.

◆ elc_api_t

struct elc_api_t

ELC driver structure. General ELC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t(* close)(elc_ctrl_t *const p_ctrl)

fsp_err_t(* softwareEventGenerate)(elc_ctrl_t *const p_ctrl,
elc_software_event_t event_num)

fsp_err_t(* linkSet)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,491 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > ELC Interface

elc_event_t signal)

fsp_err_t(* linkBreak)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t(* enable)(elc_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(elc_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* elc_api_t::open) (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

Initialize all links in the Event Link Controller.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* elc_api_t::close) (elc_ctrl_t *const p_ctrl)

Disable all links in the Event Link Controller and close the API.

Parameters
[in] p_ctrl Pointer to control structure.

◆ softwareEventGenerate

fsp_err_t(* elc_api_t::softwareEventGenerate) (elc_ctrl_t *const p_ctrl, elc_software_event_t
event_num)

Generate a software event in the Event Link Controller.

Parameters
[in] p_ctrl Pointer to control structure.

[in] eventNum Software event number to
be generated.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,492 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > ELC Interface

◆ linkSet

fsp_err_t(* elc_api_t::linkSet) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link.

Parameters
[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral block that will
receive the event signal.

[in] signal The event signal.

◆ linkBreak

fsp_err_t(* elc_api_t::linkBreak) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

Break an event link.

Parameters
[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral that should
no longer be linked.

◆ enable

fsp_err_t(* elc_api_t::enable) (elc_ctrl_t *const p_ctrl)

Enable the operation of the Event Link Controller.

Parameters
[in] p_ctrl Pointer to control structure.

◆ disable

fsp_err_t(* elc_api_t::disable) (elc_ctrl_t *const p_ctrl)

Disable the operation of the Event Link Controller.

Parameters
[in] p_ctrl Pointer to control structure.

◆ elc_instance_t

struct elc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,493 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > ELC Interface

elc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

elc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

elc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ elc_ctrl_t

typedef void elc_ctrl_t

ELC control block. Allocate an instance specific control block to pass into the ELC API calls.

Enumeration Type Documentation

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals (not all available on all MCUs)

◆ elc_software_event_t

enum elc_software_event_t

Software event number

Enumerator

ELC_SOFTWARE_EVENT_0 Software event 0.

ELC_SOFTWARE_EVENT_1 Software event 1.

5.3.16.3 I/O Port Interface
Interfaces » System

Detailed Description

Interface for accessing I/O ports and configuring I/O functionality.

Summary

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,494 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

The IOPort shared interface provides the ability to access the IOPorts of a device at both bit and port
level. Port and pin direction can be changed.

Data Structures

struct ioport_pin_cfg_t

struct ioport_cfg_t

struct ioport_api_t

struct ioport_instance_t

Typedefs

typedef uint16_t ioport_size_t

 IO port size. More...

typedef void ioport_ctrl_t

Data Structure Documentation

◆ ioport_pin_cfg_t

struct ioport_pin_cfg_t

Pin identifier and pin configuration value

Data Fields

uint32_t pin_cfg Pin configuration - Use
ioport_cfg_options_t parameters
to configure.

bsp_io_port_pin_t pin Pin identifier.

◆ ioport_cfg_t

struct ioport_cfg_t

Multiple pin configuration data for loading into registers by R_IOPORT_Open()

Data Fields

uint16_t number_of_pins Number of pins for which there
is configuration data.

ioport_pin_cfg_t const * p_pin_cfg_data Pin configuration data.

const void * p_extend Pointer to hardware extend
configuration.

◆ ioport_api_t

struct ioport_api_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,495 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

IOPort driver structure. IOPort functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* close)(ioport_ctrl_t *const p_ctrl)

fsp_err_t(* pinsCfg)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* pinCfg)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t
cfg)

fsp_err_t(* pinEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

fsp_err_t(* pinEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t
pin, bsp_io_level_t pin_value)

fsp_err_t(* pinRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t(* pinWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t(* portDirectionSet)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

fsp_err_t(* portEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

fsp_err_t(* portEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

fsp_err_t(* portRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

fsp_err_t(* portWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,496 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

Field Documentation

◆ open

fsp_err_t(* ioport_api_t::open) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Initialize internal driver data and initial pin configurations. Called during startup. Do not call this API
during runtime. Use ioport_api_t::pinsCfg for runtime reconfiguration of multiple pins.

Parameters
[in] p_ctrl Pointer to control structure.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to pin configuration
data array.

◆ close

fsp_err_t(* ioport_api_t::close) (ioport_ctrl_t *const p_ctrl)

Close the API.

Parameters
[in] p_ctrl Pointer to control structure.

◆ pinsCfg

fsp_err_t(* ioport_api_t::pinsCfg) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Configure multiple pins.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
data array.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,497 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

◆ pinCfg

fsp_err_t(* ioport_api_t::pinCfg) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t cfg)

Configure settings for an individual pin.

Parameters
[in] p_ctrl Pointer to control structure.

[in] pin Pin to be read.

[in] cfg Configuration options for the
pin.

◆ pinEventInputRead

fsp_err_t(* ioport_api_t::pinEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

Read the event input data of the specified pin and return the level.

Parameters
[in] p_ctrl Pointer to control structure.

[in] pin Pin to be read.

[in] p_pin_event Pointer to return the event
data.

◆ pinEventOutputWrite

fsp_err_t(* ioport_api_t::pinEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t pin_value)

Write pin event data.

Parameters
[in] p_ctrl Pointer to control structure.

[in] pin Pin event data is to be
written to.

[in] pin_value Level to be written to pin
output event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,498 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

◆ pinRead

fsp_err_t(* ioport_api_t::pinRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
*p_pin_value)

Read level of a pin.

Parameters
[in] p_ctrl Pointer to control structure.

[in] pin Pin to be read.

[in] p_pin_value Pointer to return the pin
level.

◆ pinWrite

fsp_err_t(* ioport_api_t::pinWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
level)

Write specified level to a pin.

Parameters
[in] p_ctrl Pointer to control structure.

[in] pin Pin to be written to.

[in] level State to be written to the
pin.

◆ portDirectionSet

fsp_err_t(* ioport_api_t::portDirectionSet) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

Set the direction of one or more pins on a port.

Parameters
[in] p_ctrl Pointer to control structure.

[in] port Port being configured.

[in] direction_values Value controlling direction of
pins on port.

[in] mask Mask controlling which pins
on the port are to be
configured.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,499 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

◆ portEventInputRead

fsp_err_t(* ioport_api_t::portEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

Read captured event data for a port.

Parameters
[in] p_ctrl Pointer to control structure.

[in] port Port to be read.

[in] p_event_data Pointer to return the event
data.

◆ portEventOutputWrite

fsp_err_t(* ioport_api_t::portEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

Write event output data for a port.

Parameters
[in] p_ctrl Pointer to control structure.

[in] port Port event data will be
written to.

[in] event_data Data to be written as event
data to specified port.

[in] mask_value Each bit set to 1 in the mask
corresponds to that bit's
value in event data. being
written to port.

◆ portRead

fsp_err_t(* ioport_api_t::portRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

Read states of pins on the specified port.

Parameters
[in] p_ctrl Pointer to control structure.

[in] port Port to be read.

[in] p_port_value Pointer to return the port
value.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,500 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > System > I/O Port Interface

◆ portWrite

fsp_err_t(* ioport_api_t::portWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
value, ioport_size_t mask)

Write to multiple pins on a port.

Parameters
[in] p_ctrl Pointer to control structure.

[in] port Port to be written to.

[in] value Value to be written to the
port.

[in] mask Mask controlling which pins
on the port are written to.

◆ ioport_instance_t

struct ioport_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ioport_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ioport_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ioport_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ioport_size_t

typedef uint16_t ioport_size_t

IO port size.

IO port type used with ports

◆ ioport_ctrl_t

typedef void ioport_ctrl_t

IOPORT control block. Allocate an instance specific control block to pass into the IOPORT API calls.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,501 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers

5.3.17 Timers
Interfaces

Detailed Description

Timers Interfaces.

Modules

POEG Interface

 Interface for the Port Output Enable for GPT.

RTC Interface

 Interface for accessing the Realtime Clock.

Three-Phase Interface

 Interface for three-phase timer functions.

Timer Interface

 Interface for timer functions.

5.3.17.1 POEG Interface
Interfaces » Timers

Detailed Description

Interface for the Port Output Enable for GPT.

Defines the API and data structures for the Port Output Enable for GPT (POEG) interface.

Summary
The POEG disables GPT output pins based on configurable events.

Data Structures

struct poeg_status_t

struct poeg_callback_args_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,502 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

struct poeg_cfg_t

struct poeg_api_t

struct poeg_instance_t

Typedefs

typedef void poeg_ctrl_t

Enumerations

enum poeg_state_t

enum poeg_trigger_t

enum poeg_gtetrg_polarity_t

enum poeg_gtetrg_noise_filter_t

Data Structure Documentation

◆ poeg_status_t

struct poeg_status_t

POEG status

Data Fields

poeg_state_t state Current state of POEG.

◆ poeg_callback_args_t

struct poeg_callback_args_t

Callback function parameter data.

Data Fields

void const * p_context Placeholder for user data, set in
poeg_cfg_t.

◆ poeg_cfg_t

struct poeg_cfg_t

User configuration structure, used in the open function.

Data Fields

poeg_trigger_t trigger

 Select one or more triggers for the POEG.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,503 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

poeg_gtetrg_polarity_t polarity

 Select the polarity for the GTETRG pin.

poeg_gtetrg_noise_filter_t noise_filter

 Configure the GTETRG noise filter.

void(* p_callback)(poeg_callback_args_t *p_args)

void const * p_context

uint32_t unit

 POEG unit to be used.

uint32_t channel

 Channel 0 corresponds to GTETRGA, 1 to GTETRGB, etc.

IRQn_Type irq

 Interrupt number assigned to this instance.

uint8_t ipl

 POEG interrupt priority.

Field Documentation

◆ p_callback

void(* poeg_cfg_t::p_callback) (poeg_callback_args_t *p_args)

Callback called when a POEG interrupt occurs.

◆ p_context

void const* poeg_cfg_t::p_context

Placeholder for user data. Passed to the user callback in poeg_callback_args_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,504 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ poeg_api_t

struct poeg_api_t

Port Output Enable for GPT (POEG) API structure. POEG functions implemented at the HAL layer will
follow this API.

Data Fields

fsp_err_t(* open)(poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

fsp_err_t(* statusGet)(poeg_ctrl_t *const p_ctrl, poeg_status_t *p_status)

fsp_err_t(* callbackSet)(poeg_ctrl_t *const p_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const
p_context, poeg_callback_args_t *const p_callback_memory)

fsp_err_t(* outputDisable)(poeg_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(poeg_ctrl_t *const p_ctrl)

fsp_err_t(* close)(poeg_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* poeg_api_t::open) (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,505 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ statusGet

fsp_err_t(* poeg_api_t::statusGet) (poeg_ctrl_t *const p_ctrl, poeg_status_t *p_status)

Gets the current driver state.

Parameters
[in] p_ctrl Control block set in

poeg_api_t::open call.

[out] p_status Provides the current state of
the POEG.

◆ callbackSet

fsp_err_t(* poeg_api_t::callbackSet) (poeg_ctrl_t *const p_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const p_context, poeg_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

poeg_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ outputDisable

fsp_err_t(* poeg_api_t::outputDisable) (poeg_ctrl_t *const p_ctrl)

Disables GPT output pins by software request.

Parameters
[in] p_ctrl Control block set in

poeg_api_t::open call.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,506 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ reset

fsp_err_t(* poeg_api_t::reset) (poeg_ctrl_t *const p_ctrl)

Attempts to clear status flags to reenable GPT output pins. Confirm all status flags are cleared after
calling this function by calling poeg_api_t::statusGet().

Parameters
[in] p_ctrl Control block set in

poeg_api_t::open call.

◆ close

fsp_err_t(* poeg_api_t::close) (poeg_ctrl_t *const p_ctrl)

Disables POEG interrupt.

Parameters
[in] p_ctrl Control block set in

poeg_api_t::open call.

◆ poeg_instance_t

struct poeg_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

poeg_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

poeg_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

poeg_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ poeg_ctrl_t

typedef void poeg_ctrl_t

POEG control block. Allocate an instance specific control block to pass into the POEG API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,507 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ poeg_state_t

enum poeg_state_t

POEG states.

Enumerator

POEG_STATE_NO_DISABLE_REQUEST GPT output is not disabled by POEG.

POEG_STATE_PIN_DISABLE_REQUEST GPT output disabled due to GTETRG pin level.

POEG_STATE_GPT_OR_COMPARATOR_DISABLE_R
EQUEST

GPT output disabled due to high speed analog
comparator or GPT.

POEG_STATE_OSCILLATION_STOP_DISABLE_REQ
UEST

GPT output disabled due to main oscillator
stop.

POEG_STATE_SOFTWARE_STOP_DISABLE_REQUE
ST

GPT output disabled due to
poeg_api_t::outputDisable()

POEG_STATE_PIN_DISABLE_REQUEST_ACTIVE GPT output disable request active from the
GTETRG pin. If a filter is used, this flag
represents the state of the filtered input.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,508 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ poeg_trigger_t

enum poeg_trigger_t

Triggers that will disable GPT output pins.

Enumerator

POEG_TRIGGER_SOFTWARE Software disable is always supported with
POEG. Select this option if no other triggers are
used.

POEG_TRIGGER_PIN Disable GPT output based on GTETRG input
level.

POEG_TRIGGER_GPT_OUTPUT_LEVEL Disable GPT output based on GPT output pin
levels.

POEG_TRIGGER_OSCILLATION_STOP Disable GPT output based on main oscillator
stop.

POEG_TRIGGER_ACMPHS0 Disable GPT output based on ACMPHS0
comparator result.

POEG_TRIGGER_ACMPHS1 Disable GPT output based on ACMPHS1
comparator result.

POEG_TRIGGER_ACMPHS2 Disable GPT output based on ACMPHS2
comparator result.

POEG_TRIGGER_ACMPHS3 Disable GPT output based on ACMPHS3
comparator result.

POEG_TRIGGER_ACMPHS4 Disable GPT output based on ACMPHS4
comparator result.

POEG_TRIGGER_ACMPHS5 Disable GPT output based on ACMPHS5
comparator result.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,509 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > POEG Interface

◆ poeg_gtetrg_polarity_t

enum poeg_gtetrg_polarity_t

GTETRG polarity.

Enumerator

POEG_GTETRG_POLARITY_ACTIVE_HIGH Disable GPT output based when GTETRG input
level is high.

POEG_GTETRG_POLARITY_ACTIVE_LOW Disable GPT output based when GTETRG input
level is low.

◆ poeg_gtetrg_noise_filter_t

enum poeg_gtetrg_noise_filter_t

GTETRG noise filter. For the input signal to pass through the noise filter, the active level set in
poeg_gtetrg_polarity_t must be read 3 consecutive times at the sampling clock selected.

Enumerator

POEG_GTETRG_NOISE_FILTER_DISABLED No noise filter applied to GTETRG input.

POEG_GTETRG_NOISE_FILTER_CLK_SOURCE_DIV_
1

Apply noise filter with sample clock equal to
Clock source/1.

POEG_GTETRG_NOISE_FILTER_CLK_SOURCE_DIV_
8

Apply noise filter with sample clock equal to
Clock source/8.

POEG_GTETRG_NOISE_FILTER_CLK_SOURCE_DIV_
32

Apply noise filter with sample clock equal to
Clock source/32.

POEG_GTETRG_NOISE_FILTER_CLK_SOURCE_DIV_
128

Apply noise filter with sample clock equal to
Clock source/128.

5.3.17.2 RTC Interface
Interfaces » Timers

Detailed Description

Interface for accessing the Realtime Clock.

Summary

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,510 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

The RTC Interface is for configuring Real Time Clock (RTC) functionality including alarm, periodic
notification and error adjustment.

Data Structures

struct rtc_callback_args_t

struct rtc_error_adjustment_cfg_t

struct rtc_alarm_time_t

struct rtc_time_capture_t

struct rtc_info_t

struct rtc_cfg_t

struct rtc_api_t

struct rtc_instance_t

Typedefs

typedef struct tm rtc_time_t

typedef void rtc_ctrl_t

Enumerations

enum rtc_event_t

enum rtc_alarm_channel_t

enum rtc_clock_source_t

enum rtc_status_t

enum rtc_error_adjustment_t

enum rtc_error_adjustment_mode_t

enum rtc_error_adjustment_period_t

enum rtc_periodic_irq_select_t

enum rtc_time_capture_source_t

enum rtc_time_capture_mode_t

enum rtc_time_capture_noise_filter_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,511 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

Data Structure Documentation

◆ rtc_callback_args_t

struct rtc_callback_args_t

Callback function parameter data

Data Fields

rtc_event_t event The event can be used to
identify what caused the
callback (compare match or
error).

void const * p_context Placeholder for user data.

◆ rtc_error_adjustment_cfg_t

struct rtc_error_adjustment_cfg_t

Time error adjustment value configuration

Data Fields

rtc_error_adjustment_mode_t adjustment_mode Automatic Adjustment
Enable/Disable.

rtc_error_adjustment_period_t adjustment_period Error Adjustment period.

rtc_error_adjustment_t adjustment_type Time error adjustment setting.

uint32_t adjustment_value Value of the prescaler for error
adjustment.

◆ rtc_alarm_time_t

struct rtc_alarm_time_t

Alarm time setting structure

Data Fields

int time_minute Time structure.

int time_hour

union rtc_alarm_time_t __unnamed__

rtc_time_t time Time structure.

bool sec_match Enable the alarm based on a
match of the seconds field.

bool min_match Enable the alarm based on a
match of the minutes field.

bool hour_match Enable the alarm based on a
match of the hours field.

bool mday_match Enable the alarm based on a
match of the days field.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,512 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

bool mon_match Enable the alarm based on a
match of the months field.

bool year_match Enable the alarm based on a
match of the years field.

bool dayofweek_match Enable the alarm based on a
match of the dayofweek field.

bool sunday_match Enable the alarm on Sunday.

bool monday_match Enable the alarm on Monday.

bool tuesday_match Enable the alarm on Tuesday.

bool wednesday_match Enable the alarm on
Wednesday.

bool thursday_match Enable the alarm on Thursday.

bool friday_match Enable the alarm on Friday.

bool saturday_match Enable the alarm on Saturday.

rtc_alarm_channel_t channel Select alarm 0 or alarm 1.

◆ rtc_time_capture_t

struct rtc_time_capture_t

Time capture configuration structure

Data Fields

rtc_time_t time Time structure.

uint8_t channel Capture channel.

rtc_time_capture_source_t source Trigger source.

rtc_time_capture_noise_filter_t noise_filter Noise filter.

rtc_time_capture_mode_t mode Capture mode.

◆ rtc_info_t

struct rtc_info_t

RTC Information Structure for information returned by infoGet()

Data Fields

rtc_clock_source_t clock_source Clock source for the RTC block.

rtc_status_t status RTC run status.

◆ rtc_cfg_t

struct rtc_cfg_t

User configuration structure, used in open function

Data Fields

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,513 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

rtc_clock_source_t clock_source

 Clock source for the RTC block.

uint32_t freq_compare_value

 The frequency comparison value.

rtc_error_adjustment_cfg_t
const *const

p_err_cfg

 Pointer to Error Adjustment configuration.

uint8_t alarm_ipl

 Alarm interrupt priority.

IRQn_Type alarm_irq

 Alarm interrupt vector.

uint8_t periodic_ipl

 Periodic interrupt priority.

IRQn_Type periodic_irq

 Periodic interrupt vector.

uint8_t carry_ipl

 Carry interrupt priority.

IRQn_Type carry_irq

 Carry interrupt vector.

void(* p_callback)(rtc_callback_args_t *p_args)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,514 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

 Called from the ISR.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 RTC hardware dependant configuration.

◆ rtc_api_t

struct rtc_api_t

RTC driver structure. General RTC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t(* close)(rtc_ctrl_t *const p_ctrl)

fsp_err_t(* clockSourceSet)(rtc_ctrl_t *const p_ctrl)

fsp_err_t(* calendarTimeSet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarTimeGet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarAlarmSet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* calendarAlarmGet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* periodicIrqRateSet)(rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t
const rate)

fsp_err_t(* errorAdjustmentSet)(rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,515 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

fsp_err_t(* callbackSet)(rtc_ctrl_t *const p_ctrl,
void(*p_callback)(rtc_callback_args_t *), void const *const p_context,
rtc_callback_args_t *const p_callback_memory)

fsp_err_t(* infoGet)(rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err_t(* timeCaptureSet)(rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

fsp_err_t(* timeCaptureGet)(rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Field Documentation

◆ open

fsp_err_t(* rtc_api_t::open) (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Open the RTC driver.

Parameters
[in] p_ctrl Pointer to RTC device handle

[in] p_cfg Pointer to the configuration
structure

◆ close

fsp_err_t(* rtc_api_t::close) (rtc_ctrl_t *const p_ctrl)

Close the RTC driver.

Parameters
[in] p_ctrl Pointer to RTC device

handle.

◆ clockSourceSet

fsp_err_t(* rtc_api_t::clockSourceSet) (rtc_ctrl_t *const p_ctrl)

Sets the RTC clock source.

Parameters
[in] p_ctrl Pointer to RTC device handle

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,516 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ calendarTimeSet

fsp_err_t(* rtc_api_t::calendarTimeSet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time and start the calendar counter

Parameters
[in] p_ctrl Pointer to RTC device handle

[in] p_time Pointer to a time structure
that contains the time to set

◆ calendarTimeGet

fsp_err_t(* rtc_api_t::calendarTimeGet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Parameters
[in] p_ctrl Pointer to RTC device handle

[out] p_time Pointer to a time structure
that contains the time to get

◆ calendarAlarmSet

fsp_err_t(* rtc_api_t::calendarAlarmSet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time and enable the alarm interrupt.

Parameters
[in] p_ctrl Pointer to RTC device handle

[in] p_alarm Pointer to an alarm structure
that contains the alarm time
to set

◆ calendarAlarmGet

fsp_err_t(* rtc_api_t::calendarAlarmGet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time.

Parameters
[in] p_ctrl Pointer to RTC device handle

[out] p_alarm Pointer to an alarm structure
to fill up with the alarm time

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,517 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ periodicIrqRateSet

fsp_err_t(* rtc_api_t::periodicIrqRateSet) (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const
rate)

Set the periodic irq rate

Parameters
[in] p_ctrl Pointer to RTC device handle

[in] rate Rate of periodic interrupts

◆ errorAdjustmentSet

fsp_err_t(* rtc_api_t::errorAdjustmentSet) (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

Set time error adjustment.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] err_adj_cfg Pointer to the Error
Adjustment Config

◆ callbackSet

fsp_err_t(* rtc_api_t::callbackSet) (rtc_ctrl_t *const p_ctrl, void(*p_callback)(rtc_callback_args_t *),
void const *const p_context, rtc_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Pointer to the RTC control

block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,518 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ infoGet

fsp_err_t(* rtc_api_t::infoGet) (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Return the currently configure clock source for the RTC

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_rtc_info Pointer to RTC information
structure

◆ timeCaptureSet

fsp_err_t(* rtc_api_t::timeCaptureSet) (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Config Time capture

Parameters
[in] p_ctrl Pointer to RTC device handle

[in] p_time_capture Pointer to a time capture
structure that contains the
configuration

◆ timeCaptureGet

fsp_err_t(* rtc_api_t::timeCaptureGet) (rtc_ctrl_t *const p_ctrl, rtc_time_capture_t *const
p_time_capture)

Get the capture time and clear bit status.

Parameters
[in] p_ctrl Pointer to RTC device handle

[out] p_time_capture Pointer to a time capture
structure to fill up with the
time capture

◆ rtc_instance_t

struct rtc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rtc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rtc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,519 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

rtc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rtc_time_t

typedef struct tm rtc_time_t

Date and time structure defined in C standard library <time.h>

◆ rtc_ctrl_t

typedef void rtc_ctrl_t

RTC control block. Allocate an instance specific control block to pass into the RTC API calls.

Enumeration Type Documentation

◆ rtc_event_t

enum rtc_event_t

Events that can trigger a callback function

Enumerator

RTC_EVENT_ALARM_IRQ Real Time Clock ALARM 0 IRQ.

RTC_EVENT_ALARM1_IRQ Real Time Clock ALARM 1 IRQ.

RTC_EVENT_PERIODIC_IRQ Real Time Clock PERIODIC IRQ.

◆ rtc_alarm_channel_t

enum rtc_alarm_channel_t

RTC alarm channel

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,520 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ rtc_clock_source_t

enum rtc_clock_source_t

Clock source for the RTC block

Enumerator

RTC_CLOCK_SOURCE_SUBCLK Sub-clock oscillator.

RTC_CLOCK_SOURCE_LOCO Low power On Chip Oscillator.

RTC_CLOCK_SOURCE_MAINCLK Main clock oscillator.

◆ rtc_status_t

enum rtc_status_t

RTC run state

Enumerator

RTC_STATUS_STOPPED RTC counter is stopped.

RTC_STATUS_RUNNING RTC counter is running.

◆ rtc_error_adjustment_t

enum rtc_error_adjustment_t

Time error adjustment settings

Enumerator

RTC_ERROR_ADJUSTMENT_NONE Adjustment is not performed.

RTC_ERROR_ADJUSTMENT_ADD_PRESCALER Adjustment is performed by the addition to the
prescaler.

RTC_ERROR_ADJUSTMENT_SUBTRACT_PRESCALE
R

Adjustment is performed by the subtraction
from the prescaler.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,521 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ rtc_error_adjustment_mode_t

enum rtc_error_adjustment_mode_t

Time error adjustment mode settings

Enumerator

RTC_ERROR_ADJUSTMENT_MODE_MANUAL Adjustment mode is set to manual.

RTC_ERROR_ADJUSTMENT_MODE_AUTOMATIC Adjustment mode is set to automatic.

◆ rtc_error_adjustment_period_t

enum rtc_error_adjustment_period_t

Time error adjustment period settings

Enumerator

RTC_ERROR_ADJUSTMENT_PERIOD_1_MINUTE Adjustment period is set to every one minute.

RTC_ERROR_ADJUSTMENT_PERIOD_10_SECOND Adjustment period is set to every ten second.

RTC_ERROR_ADJUSTMENT_PERIOD_NONE Adjustment period not supported in manual
mode.

RTC_ERROR_ADJUSTMENT_PERIOD_20_SECOND Adjustment period is set to every twenty
seconds.

◆ rtc_periodic_irq_select_t

enum rtc_periodic_irq_select_t

Periodic Interrupt select

Enumerator

RTC_PERIODIC_IRQ_SELECT_NONE A periodic irq is not generated.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECON
D

A periodic irq is generated every 1/2 second.

RTC_PERIODIC_IRQ_SELECT_1_SECOND A periodic irq is generated every 1 second.

RTC_PERIODIC_IRQ_SELECT_1_MINUTE A periodic irq is generated every 1 minute.

RTC_PERIODIC_IRQ_SELECT_1_HOUR A periodic irq is generated every 1 hour.

RTC_PERIODIC_IRQ_SELECT_1_DAY A periodic irq is generated every 1 day.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,522 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

RTC_PERIODIC_IRQ_SELECT_1_MONTH A periodic irq is generated every 1 month.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_256_SECO
ND

A periodic irq is generated every 1/256
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_128_SECO
ND

A periodic irq is generated every 1/128
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_64_SECO
ND

A periodic irq is generated every 1/64 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_32_SECO
ND

A periodic irq is generated every 1/32 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_16_SECO
ND

A periodic irq is generated every 1/16 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_8_SECON
D

A periodic irq is generated every 1/8 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_4_SECON
D

A periodic irq is generated every 1/4 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECON
D

A periodic irq is generated every 1/2 second.

RTC_PERIODIC_IRQ_SELECT_1_SECOND A periodic irq is generated every 1 second.

RTC_PERIODIC_IRQ_SELECT_2_SECOND A periodic irq is generated every 2 seconds.

RTC_PERIODIC_IRQ_SELECT_1_MINUTE A periodic irq is generated every 1 minute.

RTC_PERIODIC_IRQ_SELECT_1_HOUR A periodic irq is generated every 1 hour.

RTC_PERIODIC_IRQ_SELECT_1_DAY A periodic irq is generated every 1 day.

RTC_PERIODIC_IRQ_SELECT_1_MONTH A periodic irq is generated every 1 month.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,523 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ rtc_time_capture_source_t

enum rtc_time_capture_source_t

Time capture trigger source

Enumerator

RTC_TIME_CAPTURE_SOURCE_DISABLED Disable trigger.

RTC_TIME_CAPTURE_SOURCE_PIN_RISING Rising edge pin trigger.

RTC_TIME_CAPTURE_SOURCE_PIN_FALLING Falling edge pin trigger.

RTC_TIME_CAPTURE_SOURCE_PIN_BOTH Both edges pin trigger.

RTC_TIME_CAPTURE_SOURCE_SOFTWARE Software trigger.

RTC_TIME_CAPTURE_SOURCE_ELC_EVENT ELC event trigger.

◆ rtc_time_capture_mode_t

enum rtc_time_capture_mode_t

Time capture trigger mode

Enumerator

RTC_TIME_CAPTURE_MODE_CONTINUOUS Continuous capturing to all capturing
channels.

RTC_TIME_CAPTURE_MODE_ONE_SHOT Single capture to a particular channel.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,524 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > RTC Interface

◆ rtc_time_capture_noise_filter_t

enum rtc_time_capture_noise_filter_t

Time capture noise filter control

Enumerator

RTC_TIME_CAPTURE_NOISE_FILTER_OFF Turn noise filter off.

RTC_TIME_CAPTURE_NOISE_FILTER_ON Turn noise filter on (count source)

RTC_TIME_CAPTURE_NOISE_FILTER_ON_DIVIDER_
32

Turn noise filter on (count source by divided by
32)

RTC_TIME_CAPTURE_NOISE_FILTER_ON_DIVIDER_
4096

Turn noise filter on (count source by divided by
4096)

RTC_TIME_CAPTURE_NOISE_FILTER_ON_DIVIDER_
8192

Turn noise filter on (count source by divided by
8192)

5.3.17.3 Three-Phase Interface
Interfaces » Timers

Detailed Description

Interface for three-phase timer functions.

Summary
The Three-Phase interface provides functionality for synchronous start/stop/reset control of three
timer channels for use in 3-phase motor control applications.

Data Structures

struct three_phase_duty_cycle_t

struct three_phase_cfg_t

struct three_phase_api_t

struct three_phase_instance_t

Typedefs

typedef void three_phase_ctrl_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,525 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Three-Phase Interface

Enumerations

enum three_phase_channel_t

enum three_phase_buffer_mode_t

Data Structure Documentation

◆ three_phase_duty_cycle_t

struct three_phase_duty_cycle_t

Struct for passing duty cycle values to three_phase_api_t::dutyCycleSet

Data Fields

uint32_t duty[3] Duty cycle. Note: When the GPT
instances are configured in TIM
ER_MODE_TRIANGLE_WAVE_AS
YMMETRIC_PWM_MODE3, this
value sets the duty cycle count
that is transfered to GTCCRA/B
at the trough.

uint32_t duty_buffer[3] Double-buffer for duty cycle
values. Note: When the GPT
instances are configured in TIM
ER_MODE_TRIANGLE_WAVE_AS
YMMETRIC_PWM_MODE3, this
value sets the duty cycle count
that is transfered to GTCCRA/B
at the crest.

◆ three_phase_cfg_t

struct three_phase_cfg_t

User configuration structure, used in open function

Data Fields

three_phase_buffer_mode_t buffer_mode Single or double-buffer mode.

timer_instance_t const * p_timer_instance[3] Pointer to the timer instance
structs.

three_phase_channel_t callback_ch Channel to enable callback
when using
three_phase_api_t::callbackSet.

uint32_t channel_mask Bitmask of timer channels used
by this module.

void const * p_context Placeholder for user data.
Passed to the user callback in
timer_callback_args_t.

void const * p_extend Extension parameter for
hardware specific settings.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,526 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Three-Phase Interface

◆ three_phase_api_t

struct three_phase_api_t

Three-Phase API structure.

Data Fields

fsp_err_t(* open)(three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

fsp_err_t(* start)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* dutyCycleSet)(three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

fsp_err_t(* callbackSet)(three_phase_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(three_phase_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* three_phase_api_t::open) (three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,527 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Three-Phase Interface

◆ start

fsp_err_t(* three_phase_api_t::start) (three_phase_ctrl_t *const p_ctrl)

Start all three timers synchronously.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call
for this timer.

◆ stop

fsp_err_t(* three_phase_api_t::stop) (three_phase_ctrl_t *const p_ctrl)

Stop all three timers synchronously.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call
for this timer.

◆ reset

fsp_err_t(* three_phase_api_t::reset) (three_phase_ctrl_t *const p_ctrl)

Reset all three timers synchronously.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call
for this timer.

◆ dutyCycleSet

fsp_err_t(* three_phase_api_t::dutyCycleSet) (three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

Sets the duty cycle match values. If the timer is counting, the updated duty cycle is reflected after
the next timer expiration.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call
for this timer.

[in] p_duty_cycle Duty cycle values for all
three timer channels.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,528 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Three-Phase Interface

◆ callbackSet

fsp_err_t(* three_phase_api_t::callbackSet) (three_phase_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call.

[in] p_callback Callback function to register
with GPT U-channel

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* three_phase_api_t::close) (three_phase_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Parameters
[in] p_ctrl Control block set in

three_phase_api_t::open call
for this timer.

◆ three_phase_instance_t

struct three_phase_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

three_phase_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

three_phase_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

three_phase_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,529 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Three-Phase Interface

◆ three_phase_ctrl_t

typedef void three_phase_ctrl_t

Three-Phase control block. Allocate an instance specific control block to pass into the timer API
calls.

Enumeration Type Documentation

◆ three_phase_channel_t

enum three_phase_channel_t

Timer channel indices

Enumerator

THREE_PHASE_CHANNEL_U U-channel index.

THREE_PHASE_CHANNEL_V V-channel index.

THREE_PHASE_CHANNEL_W W-channel index.

◆ three_phase_buffer_mode_t

enum three_phase_buffer_mode_t

Buffering mode

Enumerator

THREE_PHASE_BUFFER_MODE_SINGLE Single-buffer mode.

THREE_PHASE_BUFFER_MODE_DOUBLE Double-buffer mode.

5.3.17.4 Timer Interface
Interfaces » Timers

Detailed Description

Interface for timer functions.

Summary
The general timer interface provides standard timer functionality including periodic mode, one-shot
mode, PWM output, and free-running timer mode. After each timer cycle (overflow or underflow), an

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,530 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

interrupt can be triggered.

If an instance supports output compare mode, it is provided in the extension configuration
timer_on_<instance>_cfg_t defined in r_<instance>.h.

Data Structures

struct timer_callback_args_t

struct timer_info_t

struct timer_status_t

struct timer_cfg_t

struct timer_api_t

struct timer_instance_t

Typedefs

typedef void timer_ctrl_t

Enumerations

enum timer_event_t

enum timer_variant_t

enum timer_compare_match_t

enum timer_state_t

enum timer_mode_t

enum timer_direction_t

enum timer_source_div_t

Data Structure Documentation

◆ timer_callback_args_t

struct timer_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
timer_api_t::open function in
timer_cfg_t.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,531 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

timer_event_t event The event can be used to
identify what caused the
callback.

uint32_t capture Most recent capture, only valid
if event is
TIMER_EVENT_CAPTURE_A or
TIMER_EVENT_CAPTURE_B.

◆ timer_info_t

struct timer_info_t

Timer information structure to store various information for a timer resource

Data Fields

timer_direction_t count_direction Clock counting direction of the
timer.

uint32_t clock_frequency Clock frequency of the timer
counter.

uint32_t period_counts Period in raw timer counts.

Note
For triangle wave PWM
modes, the full period is
double this value.

◆ timer_status_t

struct timer_status_t

Current timer status.

Data Fields

uint32_t counter Current counter value.

timer_state_t state Current timer state (running or
stopped)

◆ timer_cfg_t

struct timer_cfg_t

User configuration structure, used in open function

Data Fields

timer_mode_t mode

 Select enumerated value from timer_mode_t.

uint32_t period_counts

 Period in raw timer counts.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,532 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

timer_source_div_t source_div

 Source clock divider.

uint32_t duty_cycle_counts

 Duty cycle in counts.

uint8_t channel

uint8_t cycle_end_ipl

 Cycle end interrupt priority.

IRQn_Type cycle_end_irq

 Cycle end interrupt.

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

Field Documentation

◆ channel

uint8_t timer_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_callback

void(* timer_cfg_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. Set to NULL for no CPU interrupt.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,533 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ p_context

void const* timer_cfg_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

◆ timer_api_t

struct timer_api_t

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

fsp_err_t(* start)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* enable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* periodSet)(timer_ctrl_t *const p_ctrl, uint32_t const period)

fsp_err_t(* dutyCycleSet)(timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t(* compareMatchSet)(timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const
match_channel)

fsp_err_t(* infoGet)(timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t(* statusGet)(timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

fsp_err_t(* callbackSet)(timer_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,534 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

fsp_err_t(* close)(timer_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* timer_api_t::open) (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ start

fsp_err_t(* timer_api_t::start) (timer_ctrl_t *const p_ctrl)

Start the counter.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ stop

fsp_err_t(* timer_api_t::stop) (timer_ctrl_t *const p_ctrl)

Stop the counter.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,535 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ reset

fsp_err_t(* timer_api_t::reset) (timer_ctrl_t *const p_ctrl)

Reset the counter to the initial value.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ enable

fsp_err_t(* timer_api_t::enable) (timer_ctrl_t *const p_ctrl)

Enables input capture.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ disable

fsp_err_t(* timer_api_t::disable) (timer_ctrl_t *const p_ctrl)

Disables input capture.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ periodSet

fsp_err_t(* timer_api_t::periodSet) (timer_ctrl_t *const p_ctrl, uint32_t const period)

Set the time until the timer expires. See implementation for details of period update timing.

Note
Timer expiration may or may not generate a CPU interrupt based on how the timer is configured in
timer_api_t::open.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] period Time until timer should
expire.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,536 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ dutyCycleSet

fsp_err_t(* timer_api_t::dutyCycleSet) (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets the number of counts for the pin level to be high. If the timer is counting, the updated duty
cycle is reflected after the next timer expiration.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] duty_cycle_counts Time until duty cycle should
expire.

[in] pin Which output pin to update.
See implementation for
details.

◆ compareMatchSet

fsp_err_t(* timer_api_t::compareMatchSet) (timer_ctrl_t *const p_ctrl, uint32_t const
compare_match_value, timer_compare_match_t const match_channel)

Set a compare match value in raw counts.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] compare_match_value Timer value to trigger a
compare match event.

[in] match_channel Which channel to update.

◆ infoGet

fsp_err_t(* timer_api_t::infoGet) (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Stores timer information in p_info.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_info Collection of information for
this timer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,537 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ statusGet

fsp_err_t(* timer_api_t::statusGet) (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get the current counter value and timer state and store it in p_status.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_status Current status of this timer.

◆ callbackSet

fsp_err_t(* timer_api_t::callbackSet) (timer_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* timer_api_t::close) (timer_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ timer_instance_t

struct timer_instance_t

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,538 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

timer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

timer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

timer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ timer_ctrl_t

typedef void timer_ctrl_t

Timer control block. Allocate an instance specific control block to pass into the timer API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,539 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ timer_event_t

enum timer_event_t

Events that can trigger a callback function

Enumerator

TIMER_EVENT_CYCLE_END Requested timer delay has expired or timer
has wrapped around.

TIMER_EVENT_HIGHER_8BIT_CYCLE_END Requested higher 8-bit timer has expired.

TIMER_EVENT_CAPTURE_EDGE A capture has occurred when detecting edge.

TIMER_EVENT_SLAVE_CYCLE_END Requested timer pulse width (One-shot) or
duty cycle (PWM) has expired.

TIMER_EVENT_MASTER_CYCLE_END Requested timer delay (One-shot) or period
(PWM) has expired.

TIMER_EVENT_CYCLE_END Requested timer delay has expired or timer
has wrapped around.

TIMER_EVENT_CREST Timer crest event (counter is at a maximum,
triangle-wave PWM only)

TIMER_EVENT_CAPTURE_A A capture has occurred on signal A.

TIMER_EVENT_CAPTURE_B A capture has occurred on signal B.

TIMER_EVENT_TROUGH Timer trough event (counter is 0, triangle-wave
PWM only.

TIMER_EVENT_COMPARE_A A compare has occurred on signal A.

TIMER_EVENT_COMPARE_B A compare has occurred on signal B.

TIMER_EVENT_COMPARE_C A compare has occurred on signal C.

TIMER_EVENT_COMPARE_D A compare has occurred on signal D.

TIMER_EVENT_COMPARE_E A compare has occurred on signal E.

TIMER_EVENT_COMPARE_F A compare has occurred on signal F.

TIMER_EVENT_DEAD_TIME Dead time event.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,540 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ timer_variant_t

enum timer_variant_t

Timer variant types.

Enumerator

TIMER_VARIANT_32_BIT 32-bit timer

TIMER_VARIANT_16_BIT 16-bit timer

◆ timer_compare_match_t

enum timer_compare_match_t

Options for storing compare match value

Enumerator

TIMER_COMPARE_MATCH_A Compare match A value.

TIMER_COMPARE_MATCH_B Compare match B value.

TIMER_COMPARE_MATCH_C Compare match C value.

TIMER_COMPARE_MATCH_D Compare match D value.

TIMER_COMPARE_MATCH_E Compare match E value.

TIMER_COMPARE_MATCH_F Compare match F value.

TIMER_COMPARE_MATCH_G Compare match G value.

TIMER_COMPARE_MATCH_H Compare match H value.

◆ timer_state_t

enum timer_state_t

Possible status values returned by timer_api_t::statusGet.

Enumerator

TIMER_STATE_STOPPED Timer is stopped.

TIMER_STATE_COUNTING Timer is running.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,541 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ timer_mode_t

enum timer_mode_t

Timer operational modes

Enumerator

TIMER_MODE_8_BIT_COUNTER 8-bit counter mode

TIMER_MODE_16_BIT_COUNTER 16-bit counter mode

TIMER_MODE_32_BIT_COUNTER 32-bit counter mode

TIMER_MODE_16_BIT_CAPTURE 16-bit capture mode

TIMER_MODE_PERIODIC Timer restarts after period elapses.

TIMER_MODE_ONE_SHOT Timer stops after period elapses.

TIMER_MODE_PWM Timer generates saw-wave PWM output.

TIMER_MODE_PERIODIC Timer restarts after period elapses.

TIMER_MODE_ONE_SHOT Timer stops after period elapses.

TIMER_MODE_PWM Timer generates saw-wave PWM output.

TIMER_MODE_ONE_SHOT_PULSE Saw-wave one-shot pulse mode (fixed buffer
operation).

TIMER_MODE_TRIANGLE_WAVE_SYMMETRIC_PW
M

Timer generates symmetric triangle-wave PWM
output.

TIMER_MODE_TRIANGLE_WAVE_ASYMMETRIC_P
WM

Timer generates asymmetric triangle-wave
PWM output.

TIMER_MODE_TRIANGLE_WAVE_ASYMMETRIC_P
WM_MODE3

Timer generates Asymmetric Triangle-wave
PWM output. In PWM mode 3, the duty cycle
does not need to be updated at each
tough/crest interrupt. Instead, the trough and
crest duty cycle values can be set once and
only need to be updated when the application
needs to change the duty cycle.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,542 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

◆ timer_direction_t

enum timer_direction_t

Direction of timer count

Enumerator

TIMER_DIRECTION_DOWN Timer count goes up.

TIMER_DIRECTION_UP Timer count goes down.

◆ timer_source_div_t

enum timer_source_div_t

Clock source divisors

Enumerator

TIMER_SOURCE_DIV_1 Timer clock source divided by 1.

TIMER_SOURCE_DIV_2 Timer clock source divided by 2.

TIMER_SOURCE_DIV_4 Timer clock source divided by 4.

TIMER_SOURCE_DIV_8 Timer clock source divided by 8.

TIMER_SOURCE_DIV_16 Timer clock source divided by 16.

TIMER_SOURCE_DIV_32 Timer clock source divided by 32.

TIMER_SOURCE_DIV_64 Timer clock source divided by 64.

TIMER_SOURCE_DIV_128 Timer clock source divided by 128.

TIMER_SOURCE_DIV_256 Timer clock source divided by 256.

TIMER_SOURCE_DIV_512 Timer clock source divided by 512.

TIMER_SOURCE_DIV_1024 Timer clock source divided by 1024.

TIMER_SOURCE_DIV_2048 Timer clock source divided by 2048.

TIMER_SOURCE_DIV_4096 Timer clock source divided by 4096.

TIMER_SOURCE_DIV_8192 Timer clock source divided by 8912.

TIMER_SOURCE_DIV_16384 Timer clock source divided by 16384.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,543 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timers > Timer Interface

TIMER_SOURCE_DIV_32768 Timer clock source divided by 32768.

TIMER_SOURCE_DIV_1 Timer clock source divided by 1.

TIMER_SOURCE_DIV_2 Timer clock source divided by 2.

TIMER_SOURCE_DIV_4 Timer clock source divided by 4.

TIMER_SOURCE_DIV_8 Timer clock source divided by 8.

TIMER_SOURCE_DIV_16 Timer clock source divided by 16.

TIMER_SOURCE_DIV_32 Timer clock source divided by 32.

TIMER_SOURCE_DIV_64 Timer clock source divided by 64.

TIMER_SOURCE_DIV_128 Timer clock source divided by 128.

TIMER_SOURCE_DIV_256 Timer clock source divided by 256.

TIMER_SOURCE_DIV_512 Timer clock source divided by 512.

TIMER_SOURCE_DIV_1024 Timer clock source divided by 1024.

TIMER_SOURCE_DIV_8192 Timer clock source divided by 8192.

5.3.18 Transfer
Interfaces

Detailed Description

Transfer Interfaces.

Modules

Transfer Interface

 Interface for data transfer functions.

5.3.18.1 Transfer Interface
Interfaces » Transfer

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,544 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

Detailed Description

Interface for data transfer functions.

Summary
The transfer interface supports background data transfer (no CPU intervention).

Data Structures

struct transfer_callback_args_t

struct transfer_properties_t

struct transfer_info_t

struct transfer_cfg_t

struct transfer_api_t

struct transfer_instance_t

Typedefs

typedef void transfer_ctrl_t

Enumerations

enum transfer_mode_t

enum transfer_size_t

enum transfer_addr_mode_t

enum transfer_repeat_area_t

enum transfer_chain_mode_t

enum transfer_irq_t

enum transfer_start_mode_t

Data Structure Documentation

◆ transfer_callback_args_t

struct transfer_callback_args_t

Callback function parameter data.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,545 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

Data Fields

void const * p_context Placeholder for user data. Set in
transfer_api_t::open function in
transfer_cfg_t.

◆ transfer_properties_t

struct transfer_properties_t

Driver specific information.

Data Fields

uint32_t block_count_max Maximum number of blocks.

uint32_t block_count_remaining Number of blocks remaining.

uint32_t transfer_length_max Maximum number of transfers.

uint32_t transfer_length_remaining Number of transfers remaining.

◆ transfer_info_t

struct transfer_info_t

This structure specifies the properties of the transfer.

Warning
When using DTC, this structure corresponds to the descriptor block registers required by
the DTC. The following components may be modified by the driver: p_src, p_dest,
num_blocks, and length.
When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer
must have a unique transfer_info_t.
When using DTC, this structure must not be allocated in a temporary location. Any instance
of this structure must remain in scope until the transfer it is used for is closed.

Note
When using DTC, consider placing instances of this structure in a protected section of memory.

Data Fields

union transfer_info_t __unnamed__

void const *volatile p_src Source pointer.

void *volatile p_dest Destination pointer.

volatile uint16_t num_blocks Number of blocks to transfer
when using
TRANSFER_MODE_BLOCK (both
DTC an DMAC) or
TRANSFER_MODE_REPEAT
(DMAC only) or
TRANSFER_MODE_REPEAT_BLO
CK (DMAC only), unused in
other modes.

volatile uint16_t length Length of each transfer. Range
limited for
TRANSFER_MODE_BLOCK,

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,546 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

TRANSFER_MODE_REPEAT, and
TRANSFER_MODE_REPEAT_BLO
CK see HAL driver for details.

◆ transfer_cfg_t

struct transfer_cfg_t

Driver configuration set in transfer_api_t::open. All elements except p_extend are required and
must be initialized.

Data Fields

transfer_info_t * p_info Pointer to transfer configuration
options. If using chain transfer
(DTC only), this can be a
pointer to an array of chained
transfers that will be completed
in order.

void const * p_extend Extension parameter for
hardware specific settings.

◆ transfer_api_t

struct transfer_api_t

Transfer functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

fsp_err_t(* reconfigure)(transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

fsp_err_t(* reset)(transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

fsp_err_t(* enable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* softwareStart)(transfer_ctrl_t *const p_ctrl, transfer_start_mode_t
mode)

fsp_err_t(* softwareStop)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,547 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

fsp_err_t(* close)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* reload)(transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint32_t const num_transfers)

fsp_err_t(* callbackSet)(transfer_ctrl_t *const p_ctrl,
void(*p_callback)(transfer_callback_args_t *), void const *const
p_context, transfer_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* transfer_api_t::open) (transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

Initial configuration.

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ reconfigure

fsp_err_t(* transfer_api_t::reconfigure) (transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

Reconfigure the transfer. Enable the transfer if p_info is valid.

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_info Pointer to a new transfer info
structure.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,548 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ reset

fsp_err_t(* transfer_api_t::reset) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

Reset source address pointer, destination address pointer, and/or length, keeping all other settings
the same. Enable the transfer if p_src, p_dest, and length are valid.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] num_transfers Transfer length in normal
mode or number of blocks in
block mode. In DMAC only,
resets number of repeats
(initially stored in
transfer_info_t::num_blocks)
in repeat mode. Not used in
repeat mode for DTC.

◆ enable

fsp_err_t(* transfer_api_t::enable) (transfer_ctrl_t *const p_ctrl)

Enable transfer. Transfers occur after the activation source event (or when
transfer_api_t::softwareStart is called if no peripheral event is chosen as activation source).

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,549 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ disable

fsp_err_t(* transfer_api_t::disable) (transfer_ctrl_t *const p_ctrl)

Disable transfer. Transfers do not occur after the activation source event (or when
transfer_api_t::softwareStart is called if no peripheral event is chosen as the DMAC activation
source).

Note
If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a transfer.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ softwareStart

fsp_err_t(* transfer_api_t::softwareStart) (transfer_ctrl_t *const p_ctrl, transfer_start_mode_t mode)

Start transfer in software.

Warning
Only works if no peripheral event is chosen as the DMAC activation source.

Note
Not supported for DTC.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] mode Select mode from
transfer_start_mode_t.

◆ softwareStop

fsp_err_t(* transfer_api_t::softwareStop) (transfer_ctrl_t *const p_ctrl)

Stop transfer in software. The transfer will stop after completion of the current transfer.

Note
Not supported for DTC.
Only applies for transfers started with TRANSFER_START_MODE_REPEAT.

Warning
Only works if no peripheral event is chosen as the DMAC activation source.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,550 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ infoGet

fsp_err_t(* transfer_api_t::infoGet) (transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

Provides information about this transfer.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[out] p_properties Driver specific information.

◆ close

fsp_err_t(* transfer_api_t::close) (transfer_ctrl_t *const p_ctrl)

Releases hardware lock. This allows a transfer to be reconfigured using transfer_api_t::open.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ reload

fsp_err_t(* transfer_api_t::reload) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint32_t const num_transfers)

To update next transfer information without interruption during transfer. Allow further transfer
continuation.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] num_transfers Transfer length in normal
mode or block mode.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,551 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ callbackSet

fsp_err_t(* transfer_api_t::callbackSet) (transfer_ctrl_t *const p_ctrl,
void(*p_callback)(transfer_callback_args_t *), void const *const p_context, transfer_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_callback_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ transfer_instance_t

struct transfer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

transfer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

transfer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

transfer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ transfer_ctrl_t

typedef void transfer_ctrl_t

Transfer control block. Allocate an instance specific control block to pass into the transfer API calls.

Enumeration Type Documentation

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,552 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ transfer_mode_t

enum transfer_mode_t

Transfer mode describes what will happen when a transfer request occurs.

Enumerator

TRANSFER_MODE_NORMAL In normal mode, each transfer request causes
a transfer of transfer_size_t from the source
pointer to the destination pointer. The transfer
length is decremented and the source and
address pointers are updated according to
transfer_addr_mode_t. After the transfer length
reaches 0, transfer requests will not cause any
further transfers.

TRANSFER_MODE_REPEAT Repeat mode is like normal mode, except that
when the transfer length reaches 0, the pointer
to the repeat area and the transfer length will
be reset to their initial values. If DMAC is used,
the transfer repeats only
transfer_info_t::num_blocks times. After the
transfer repeats transfer_info_t::num_blocks
times, transfer requests will not cause any
further transfers. If DTC is used, the transfer
repeats continuously (no limit to the number of
repeat transfers).

TRANSFER_MODE_BLOCK In block mode, each transfer request causes
transfer_info_t::length transfers of
transfer_size_t. After each individual transfer,
the source and destination pointers are
updated according to transfer_addr_mode_t.
After the block transfer is complete,
transfer_info_t::num_blocks is decremented.
After the transfer_info_t::num_blocks reaches
0, transfer requests will not cause any further
transfers.

TRANSFER_MODE_REPEAT_BLOCK In addition to block mode features, repeat-
block mode supports a ring buffer of blocks
and offsets within a block (to split blocks into
arrays of their first data, second data, etc.)

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,553 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ transfer_size_t

enum transfer_size_t

Transfer size specifies the size of each individual transfer. Total transfer length = transfer_size_t *
transfer_length_t

Enumerator

TRANSFER_SIZE_1_BYTE Each transfer transfers a 8-bit value.

TRANSFER_SIZE_2_BYTE Each transfer transfers a 16-bit value.

TRANSFER_SIZE_4_BYTE Each transfer transfers a 32-bit value.

◆ transfer_addr_mode_t

enum transfer_addr_mode_t

Address mode specifies whether to modify (increment or decrement) pointer after each transfer.

Enumerator

TRANSFER_ADDR_MODE_FIXED Address pointer remains fixed after each
transfer.

TRANSFER_ADDR_MODE_OFFSET Offset is added to the address pointer after
each transfer.

TRANSFER_ADDR_MODE_INCREMENTED Address pointer is incremented by associated
transfer_size_t after each transfer.

TRANSFER_ADDR_MODE_DECREMENTED Address pointer is decremented by associated
transfer_size_t after each transfer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,554 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ transfer_repeat_area_t

enum transfer_repeat_area_t

Repeat area options (source or destination). In TRANSFER_MODE_REPEAT, the selected pointer
returns to its original value after transfer_info_t::length transfers. In TRANSFER_MODE_BLOCK and
TRANSFER_MODE_REPEAT_BLOCK, the selected pointer returns to its original value after each
transfer.

Enumerator

TRANSFER_REPEAT_AREA_DESTINATION Destination area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK or
TRANSFER_MODE_REPEAT_BLOCK.

TRANSFER_REPEAT_AREA_SOURCE Source area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK or
TRANSFER_MODE_REPEAT_BLOCK.

◆ transfer_chain_mode_t

enum transfer_chain_mode_t

Chain transfer mode options.

Note
Only applies for DTC.

Enumerator

TRANSFER_CHAIN_MODE_DISABLED Chain mode not used.

TRANSFER_CHAIN_MODE_EACH Switch to next transfer after a single transfer
from this transfer_info_t.

TRANSFER_CHAIN_MODE_END Complete the entire transfer defined in this
transfer_info_t before chaining to next
transfer.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,555 / 5,560

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer > Transfer Interface

◆ transfer_irq_t

enum transfer_irq_t

Interrupt options.

Enumerator

TRANSFER_IRQ_END Interrupt occurs only after last transfer. If this
transfer is chained to a subsequent transfer,
the interrupt will occur only after subsequent
chained transfer(s) are complete.

Warning
DTC triggers the interrupt of the
activation source. Choosing
TRANSFER_IRQ_END with DTC will
prevent activation source interrupts until
the transfer is complete.

TRANSFER_IRQ_EACH Interrupt occurs after each transfer.

Note
Not available in all HAL drivers. See HAL driver
for details.

◆ transfer_start_mode_t

enum transfer_start_mode_t

Select whether to start single or repeated transfer with software start.

Enumerator

TRANSFER_START_MODE_SINGLE Software start triggers single transfer.

TRANSFER_START_MODE_REPEAT Software start transfer continues until transfer
is complete.

5.4 BSP_SDRAM

Detailed Description

SDRAM initialization.

This file contains code that the initializes SDRAMC and SDR SDRAM device memory.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,556 / 5,560

Flexible Software Package User’s Manual
API Reference > BSP_SDRAM

Macros

#define BSP_PRV_SDRAM_MR_WB_SINGLE_LOC_ACC

Macro Definition Documentation

◆ BSP_PRV_SDRAM_MR_WB_SINGLE_LOC_ACC

#define BSP_PRV_SDRAM_MR_WB_SINGLE_LOC_ACC

Due to hardware limitations of the SDRAM peripheral, it is not expected any of these need to be
changable by end user. Only sequential, single access at a time is supported.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,557 / 5,560

Flexible Software Package User’s Manual
Copyright

Chapter 6 Copyright

Copyright [2020-2024] Renesas Electronics Corporation and/or its affiliates. All Rights Reserved.

This software and documentation are supplied by Renesas Electronics America Inc. and may only be
used with products of Renesas Electronics Corp. and its affiliates ("Renesas"). No other uses are
authorized. Renesas products are sold pursuant to Renesas terms and conditions of sale. Purchasers
are solely responsible for the selection and use of Renesas products and Renesas assumes no
liability. No license, express or implied, to any intellectual property right is granted by Renesas. This
software is protected under all applicable laws, including copyright laws. Renesas reserves the right
to change or discontinue this software and/or this documentation. THE SOFTWARE AND
DOCUMENTATION IS DELIVERED TO YOU "AS IS," AND RENESAS MAKES NO REPRESENTATIONS OR
WARRANTIES, AND TO THE FULLEST EXTENT PERMISSIBLE UNDER APPLICABLE LAW, DISCLAIMS ALL
WARRANTIES, WHETHER EXPLICITLY OR IMPLICITLY, INCLUDING WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT, WITH RESPECT TO THE SOFTWARE
OR DOCUMENTATION. RENESAS SHALL HAVE NO LIABILITY ARISING OUT OF ANY SECURITY
VULNERABILITY OR BREACH. TO THE MAXIMUM EXTENT PERMITTED BY LAW, IN NO EVENT WILL
RENESAS BE LIABLE TO YOU IN CONNECTION WITH THE SOFTWARE OR DOCUMENTATION (OR ANY
PERSON OR ENTITY CLAIMING RIGHTS DERIVED FROM YOU) FOR ANY LOSS, DAMAGES, OR CLAIMS
WHATSOEVER, INCLUDING, WITHOUT LIMITATION, ANY DIRECT, CONSEQUENTIAL, SPECIAL,
INDIRECT, PUNITIVE, OR INCIDENTAL DAMAGES; ANY LOST PROFITS, OTHER ECONOMIC DAMAGE,
PROPERTY DAMAGE, OR PERSONAL INJURY; AND EVEN IF RENESAS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH LOSS, DAMAGES, CLAIMS OR COSTS.

R11UM0155EU0450 Revision 4.50
Aug.29.2024

Page 5,558 / 5,560

Renesas FSP
Copyright © (2024) Renesas Electronics Corporation. All Rights Reserved.

User’s Manual

Publication Date: Revision 4.50 Aug.29.2024

 Renesas FSP V5.5.0

User’s Manual

 Renesas Electronics Corporation

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	INDEX
	Chapter 1 Introduction
	1.1 Overview
	1.2 Using this Manual
	1.3 Documentation Standard
	1.4 Introduction to FSP
	1.4.1 Purpose
	1.4.2 Quality
	1.4.3 Ease of Use
	1.4.4 Scalability
	1.4.5 Build Time Configurations
	1.4.6 e² studio IDE

	Chapter 2 Reference Materials
	2.1 Using Registers Directly
	2.1.1 Overview
	2.1.2 What's in an
	2.1.3 Where are iodefine files located?
	2.1.4 Using the register definitions
	2.1.5 Tips for writing hardware drivers

	2.2 FSP v4.0.0 FreeRTOS Stack Migration Guide
	2.2.1 Overview
	2.2.2 Stack Migration Steps
	2.2.3 List of Code Change Highlights

	2.3 Cortex-M85 Caches
	2.3.1 Overview
	2.3.2 CM85 Cache Features
	2.3.3 RA8 Cache Background Information
	2.3.4 Cache Maintenance
	2.3.5 Typical Cache Maintenance Scenarios
	2.3.6 Cache Functions and Macros
	2.3.7 Cache Details
	2.3.8 Other Information
	2.3.9 References

	Chapter 3 Starting Development
	3.1 Starting Development Introduction
	3.2 e² studio User Guide
	3.2.1 What is e² studio?
	3.2.2 e² studio Prerequisites
	3.2.2.1 Obtaining an RA MCU Kit
	3.2.2.2 PC Requirements
	3.2.2.3 Installing e² studio, platform installer and the FSP package
	3.2.2.4 Choosing a Toolchain
	3.2.2.5 Licensing

	3.2.3 What is a Project?
	3.2.4 Creating a Project
	3.2.4.1 Creating a New Project
	3.2.4.2 Selecting a Board and Toolchain
	3.2.4.3 Selecting Flat or Arm TrustZone Project
	3.2.4.4 Selecting a Project Template

	3.2.5 Configuring a Project
	3.2.5.1 Summary Tab
	3.2.5.2 Configuring the BSP
	3.2.5.3 Configuring Clocks
	3.2.5.4 Configuring Pins
	3.2.5.5 Configuring Interrupts from the Stacks Tab
	3.2.5.6 Viewing Event Links

	3.2.6 Adding Threads and Drivers
	3.2.6.1 Adding and Configuring HAL Drivers
	3.2.6.2 Adding Drivers to a Thread and Configuring the Drivers
	3.2.6.3 Configuring Threads

	3.2.7 Reviewing and Adding Components
	3.2.8 Writing the Application
	3.2.8.1 Coding Features
	3.2.8.2 HAL Modules in FSP: A Practical Description
	3.2.8.3 RTOS-Independent Applications
	3.2.8.4 RTOS Applications
	3.2.8.5 Additional Resources for Application Development

	3.2.9 Debugging the Project
	3.2.10 Modifying Toolchain Settings
	3.2.11 Creating RA project with Arm Compiler 6 in e² studio
	3.2.12 Importing an Existing Project into e² studio
	3.2.13 Using Semihosting in a Project

	3.3 Tutorial: Your First RA MCU Project - Blinky
	3.3.1 Tutorial Blinky
	3.3.2 What Does Blinky Do?
	3.3.3 Prerequisites
	3.3.4 Create a New Project for Blinky
	3.3.4.1 Details about the Blinky Configuration
	3.3.4.2 Configuring the Blinky Clocks
	3.3.4.3 Configuring the Blinky Pins
	3.3.4.4 Configuring the Parameters for Blinky Components
	3.3.4.5 Where is main()?
	3.3.4.6 Blinky Example Code

	3.3.5 Build the Blinky Project
	3.3.6 Debug the Blinky Project
	3.3.6.1 Debug prerequisites
	3.3.6.2 Debug steps
	3.3.6.3 Details about the Debug Process

	3.3.7 Run the Blinky Project

	3.4 Tutorial: Using HAL Drivers - Programming the WDT
	3.4.1 Application WDT
	3.4.2 Creating a WDT Application Using the RA MCU FSP and e² studio
	3.4.2.1 Using FSP and e² studio
	3.4.2.2 The WDT Application
	3.4.2.3 WDT Application flow

	3.4.3 Creating the Project with e² studio
	3.4.4 Configuring the Project with e² studio
	3.4.4.1 BSP Tab
	3.4.4.2 Clocks Tab
	3.4.4.3 Interrupts Tab
	3.4.4.4 Event Links Tab
	3.4.4.5 Pins Tab
	3.4.4.6 Stacks Tab
	3.4.4.7 Components Tab

	3.4.5 WDT Generated Project Files
	3.4.5.1 WDT hal_data.h
	3.4.5.2 WDT hal_data.c
	3.4.5.3 WDT main.c
	3.4.5.4 WDT hal_entry.c

	3.4.6 Building and Testing the Project

	3.5 Primer: Arm TrustZone Project Development
	3.5.1 Target Device
	3.5.2 Renesas Implementation of Arm TrustZone Technology
	3.5.2.1 Calling from Non-Secure to Secure
	3.5.2.2 Calling from Secure to Non-Secure

	3.5.3 Workflow
	3.5.3.1 Secure Project
	3.5.3.2 Non-Secure Project
	3.5.3.3 Flat Project

	3.5.4 RA Project Generator (PG)
	3.5.4.1 Secure Project Set Up
	3.5.4.2 RTOS Support in TrustZone Project
	3.5.4.3 Peripheral Security Attribution
	3.5.4.4 Non-Secure
	3.5.4.5 Flat Project Type
	3.5.4.6 Secure Connection to Non-Secure Project
	3.5.4.7 Debug Configurations

	3.5.5 Secure Projects
	3.5.5.1 Secure Clock
	3.5.5.2 Setting Drivers as NSC
	3.5.5.3 Guard Functions

	3.5.6 Non-Secure projects
	3.5.6.1 Clock Set Up
	3.5.6.2 Selecting NSC Drivers
	3.5.6.3 Locked Resources
	3.5.6.4 Locked Channels

	3.5.7 IDAU registers
	3.5.7.1 SCI Boot Mode
	3.5.7.2 DLM States
	3.5.7.3 Devices with Alternate DLM States
	3.5.7.4 Devices without DLM

	3.5.8 Debug
	3.5.8.1 Non-Secure Debug

	3.5.9 Debugger support
	3.5.10 Third-Party IDEs
	3.5.11 Renesas Flash Programmer (RFP)
	3.5.12 Glossary
	3.5.12.1 Configurator Icon Glossary

	3.6 RASC User Guide for MDK and IAR
	3.6.1 What is RASC?
	3.6.2 Using RA Smart Configurator with Keil MDK
	3.6.2.1 Prerequisites
	3.6.2.2 Create new RA project
	3.6.2.3 Modify existing RA project
	3.6.2.4 Build and Debug RA project
	3.6.2.5 Notes and Restrictions

	3.6.3 Using RA Smart Configurator with IAR EWARM
	3.6.3.1 Prerequisites
	3.6.3.2 Create new RA project
	3.6.3.3 Notes and Restrictions

	Chapter 4 FSP Architecture
	4.1 FSP Architecture Overview
	4.1.1 C99 Use
	4.1.2 Doxygen
	4.1.3 Weak Symbols
	4.1.4 Memory Allocation
	4.1.5 FSP Terms

	4.2 FSP Modules
	4.2.1 Module Sources
	4.2.2 Module Distribution
	4.2.3 Module Versioning

	4.3 FSP Stacks
	4.4 FSP Interfaces
	4.4.1 FSP Interface Enumerations
	4.4.2 FSP Interface Callback Functions
	4.4.3 FSP Interface Data Structures
	4.4.3.1 FSP Interface Configuration Structure
	4.4.3.2 FSP Interface API Structure
	4.4.3.3 FSP Interface Instance Structure

	4.5 FSP Instances
	4.5.1 FSP Instance Control Structure
	4.5.2 FSP Interface Extensions
	4.5.2.1 FSP Extended Configuration Structure

	4.5.3 FSP Instance API

	4.6 FSP API Standards
	4.6.1 FSP Function Names
	4.6.2 Use of const in API parameters
	4.6.3 FSP Version Information

	4.7 FSP Build Time Configurations
	4.8 FSP File Structure
	4.9 FSP TrustZone Support
	4.9.1 FSP TrustZone Projects
	4.9.2 Non-Secure Callable Guard Functions
	4.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules
	4.9.4 Migrating TrustZone Project to newer FSP Version
	4.9.5 Additional TrustZone Information

	4.10 FSP Architecture in Practice
	4.10.1 FSP Connecting Layers
	4.10.2 Using FSP Modules in an Application
	4.10.2.1 Create a Module Instance in the RA Configuration Editor
	4.10.2.2 Use the Instance API in the Application

	Chapter 5 API Reference
	5.1 BSP
	5.1.1 BSP I/O access
	5.1.2 Common Error Codes
	5.1.3 MCU Board Support Package
	5.1.3.1 RA0E1
	5.1.3.2 RA2A1
	5.1.3.3 RA2A2
	5.1.3.4 RA2E1
	5.1.3.5 RA2E2
	5.1.3.6 RA2E3
	5.1.3.7 RA2L1
	5.1.3.8 RA4E1
	5.1.3.9 RA4E2
	5.1.3.10 RA4M1
	5.1.3.11 RA4M2
	5.1.3.12 RA4M3
	5.1.3.13 RA4T1
	5.1.3.14 RA4W1
	5.1.3.15 RA6E1
	5.1.3.16 RA6E2
	5.1.3.17 RA6M1
	5.1.3.18 RA6M2
	5.1.3.19 RA6M3
	5.1.3.20 RA6M4
	5.1.3.21 RA6M5
	5.1.3.22 RA6T1
	5.1.3.23 RA6T2
	5.1.3.24 RA6T3
	5.1.3.25 RA8D1
	5.1.3.26 RA8M1
	5.1.3.27 RA8T1

	5.2 Modules
	5.2.1 Analog
	5.2.1.1 ADC (r_adc)
	5.2.1.2 ADC (r_adc_b)
	5.2.1.3 ADC (r_adc_d)
	5.2.1.4 Comparator, High-Speed (r_acmphs)
	5.2.1.5 Comparator, Low-Power (r_acmplp)
	5.2.1.6 DAC (r_dac)
	5.2.1.7 DAC8 (r_dac8)
	5.2.1.8 Operational Amplifier (r_opamp)
	5.2.1.9 SDADC Channel Configuration (r_sdadc)
	5.2.1.10 SDADC_B Channel Configuration (r_sdadc_b)

	5.2.2 AI
	5.2.2.1 Reality AI Data Collector (rm_rai_data_collector)
	5.2.2.2 Reality AI Data Shipper (rm_rai_data_shipper)

	5.2.3 Audio
	5.2.3.1 ADPCM Decoder (rm_adpcm_decoder)
	5.2.3.2 Audio Playback PWM (rm_audio_playback_pwm)

	5.2.4 Bootloader
	5.2.4.1 MCUboot Port (rm_mcuboot_port)

	5.2.5 CapTouch
	5.2.5.1 CTSU (r_ctsu)
	5.2.5.2 Touch (rm_touch)

	5.2.6 Connectivity
	5.2.6.1 Azure RTOS USBX Port (rm_usbx_port)
	5.2.6.2 CAN (r_can)
	5.2.6.3 CAN FD (r_canfd)
	5.2.6.4 CEC (r_cec)
	5.2.6.5 I2C Communication Device (rm_comms_i2c)
	5.2.6.6 I2C Master (r_iic_b_master)
	5.2.6.7 I2C Master (r_iic_master)
	5.2.6.8 I2C Master (r_iica_master)
	5.2.6.9 I2C Master (r_sau_i2c)
	5.2.6.10 I2C Master (r_sci_b_i2c)
	5.2.6.11 I2C Master (r_sci_i2c)
	5.2.6.12 I2C Slave (r_iic_b_slave)
	5.2.6.13 I2C Slave (r_iic_slave)
	5.2.6.14 I2C Slave (r_iica_slave)
	5.2.6.15 I2S (r_ssi)
	5.2.6.16 I3C (r_i3c)
	5.2.6.17 LIN (r_sci_b_lin)
	5.2.6.18 SMBUS Communication Device (rm_comms_smbus)
	5.2.6.19 SMCI (r_sci_smci)
	5.2.6.20 SPI (r_sau_spi)
	5.2.6.21 SPI (r_sci_b_spi)
	5.2.6.22 SPI (r_sci_spi)
	5.2.6.23 SPI (r_spi)
	5.2.6.24 SPI (r_spi_b)
	5.2.6.25 UART (r_sau_uart)
	5.2.6.26 UART (r_sci_b_uart)
	5.2.6.27 UART (r_sci_uart)
	5.2.6.28 UART (r_uarta)
	5.2.6.29 UART Communication Device (rm_comms_uart)
	5.2.6.30 USB (r_usb_basic)
	5.2.6.31 USB Composite (r_usb_composite)
	5.2.6.32 USB HCDC (r_usb_hcdc)
	5.2.6.33 USB HHID (r_usb_hhid)
	5.2.6.34 USB HMSC (r_usb_hmsc)
	5.2.6.35 USB Host Vendor class (r_usb_hvnd)
	5.2.6.36 USB PCDC (r_usb_pcdc)
	5.2.6.37 USB PHID (r_usb_phid)
	5.2.6.38 USB PMSC (r_usb_pmsc)
	5.2.6.39 USB PPRN (r_usb_pprn)
	5.2.6.40 USB Peripheral Vendor class (r_usb_pvnd)
	5.2.6.41 USB_PCDC Communication Device (rm_comms_usb_pcdc)

	5.2.7 DSP
	5.2.7.1 CMSIS DSP H/W Acceleration (rm_cmsis_dsp)
	5.2.7.2 IIR Filter Accelerator (r_iirfa)

	5.2.8 Graphics
	5.2.8.1 Azure RTOS GUIX Port (rm_guix_port)
	5.2.8.2 Capture Engine Unit (r_ceu)
	5.2.8.3 D/AVE 2D Port Interface (r_drw)
	5.2.8.4 Graphics LCD (r_glcdc)
	5.2.8.5 JPEG Codec (r_jpeg)
	5.2.8.6 MIPI Display Serial Interface (r_mipi_dsi)
	5.2.8.7 Parallel Data Capture (r_pdc)
	5.2.8.8 SEGGER emWin RA Port (rm_emwin_port)
	5.2.8.9 Segment LCD (r_slcdc)

	5.2.9 Input
	5.2.9.1 External IRQ (r_icu)
	5.2.9.2 Key Matrix (r_kint)

	5.2.10 Monitoring
	5.2.10.1 CRC (r_crc)
	5.2.10.2 Clock Accuracy Circuit (r_cac)
	5.2.10.3 Data Operation Circuit (r_doc)
	5.2.10.4 Independent Watchdog (r_iwdt)
	5.2.10.5 Low/Programmable Voltage Detection (r_lvd)
	5.2.10.6 Watchdog (r_wdt)

	5.2.11 Motor
	5.2.11.1 120-degree conduction control sensorless (rm_motor_120_control_sensorless)
	5.2.11.2 120-degree conduction control with Hall sensors (rm_motor_120_control_hall)
	5.2.11.3 ADC and PWM Modulation (rm_motor_driver)
	5.2.11.4 ADC and PWM modulation (rm_motor_120_driver)
	5.2.11.5 Motor 120 degree control (rm_motor_120_degree)
	5.2.11.6 Motor Angle (rm_motor_estimate)
	5.2.11.7 Motor Angle (rm_motor_sense_encoder)
	5.2.11.8 Motor Angle and Speed Calculation with Hall sensors (rm_motor_sense_hall)
	5.2.11.9 Motor Angle and Speed Calculation with induction sensor (rm_motor_sense_induction)
	5.2.11.10 Motor Current Controller (rm_motor_current)
	5.2.11.11 Motor Encoder Vector Control (rm_motor_encoder)
	5.2.11.12 Motor Inertia estimate (rm_motor_inertia_estimate)
	5.2.11.13 Motor Position Controller (rm_motor_position)
	5.2.11.14 Motor Sensorless Vector Control (rm_motor_sensorless)
	5.2.11.15 Motor Speed Controller (rm_motor_speed)
	5.2.11.16 Motor Vector Control with hall sensors (rm_motor_hall)
	5.2.11.17 Motor return origin (rm_motor_return_origin)
	5.2.11.18 Motor vector control with induction sensor (rm_motor_induction)

	5.2.12 Networking
	5.2.12.1 AWS Cellular Interface on GM (rm_cellular_gm_aws)
	5.2.12.2 AWS MQTT
	5.2.12.3 AWS OTA PAL on MCUBoot (rm_aws_ota_pal_mcuboot)
	5.2.12.4 AWS PKCS11 PAL on LittleFS (rm_aws_pkcs11_pal_littlefs)
	5.2.12.5 AWS coreHTTP
	5.2.12.6 Azure Embedded Wireless Framework GM Port (rm_azure_ewf_gm)
	5.2.12.7 BLE Abstraction (rm_ble_abs)
	5.2.12.8 BLE Driver (r_ble_balance)
	5.2.12.9 BLE Driver (r_ble_compact)
	5.2.12.10 BLE Driver (r_ble_extended)
	5.2.12.11 BLE Mesh Network Modules
	5.2.12.12 Cellular Comm Interface on UART (rm_cellular_comm_uart_aws)
	5.2.12.13 DA16XXX Transport Layer (rm_at_transport_da16xxx_uart)
	5.2.12.14 Ethernet (r_ether)
	5.2.12.15 Ethernet (r_ether_phy)
	5.2.12.16 FreeRTOS+TCP Wrapper to r_ether (rm_freertos_plus_tcp)
	5.2.12.17 GTL BLE Abstraction (rm_ble_abs_gtl)
	5.2.12.18 NetX Duo Ethernet Driver (rm_netxduo_ether)
	5.2.12.19 NetX Duo WiFi Driver (rm_netxduo_wifi)
	5.2.12.20 On Chip HTTP Client on DA16XXX (rm_http_onchip_da16xxx)
	5.2.12.21 On Chip MQTT Client on DA16XXX (rm_mqtt_onchip_da16xxx)
	5.2.12.22 PTP (r_ptp)
	5.2.12.23 SPP BLE Abstraction (rm_ble_abs_spp)
	5.2.12.24 WiFi Onchip DA16XXX Framework Driver (rm_wifi_da16xxx)
	5.2.12.25 WiFi Onchip Silex Driver using r_sci_uart (rm_wifi_onchip_silex)
	5.2.12.26 lwIP Baremetal Porting Layer (rm_lwip_sys_baremetal)
	5.2.12.27 lwIP Ethernet Driver (rm_lwip_ether)
	5.2.12.28 lwIP FreeRTOS Porting Layer (rm_lwip_sys_freertos)

	5.2.13 Power
	5.2.13.1 Low Power Modes (r_lpm)

	5.2.14 RTOS
	5.2.14.1 Azure RTOS ThreadX Port (rm_threadx_port)
	5.2.14.2 FreeRTOS Port (rm_freertos_port)

	5.2.15 Security
	5.2.15.1 AWS Device Provisioning
	5.2.15.2 Azure RTOS NetX Crypto HW Acceleration (rm_netx_secure_crypto)
	5.2.15.3 Mbed Crypto H/W Acceleration (rm_psa_crypto)
	5.2.15.4 Renesas Secure IP (r_rsip_protected)
	5.2.15.5 SCE Protected Mode
	5.2.15.6 Secure Crypto Engine (r_sce_protected_cavp)
	5.2.15.7 Secure Key Injection (r_rsip_key_injection)
	5.2.15.8 Secure Key Injection (r_sce_key_injection)
	5.2.15.9 TinyCrypt H/W Acceleration (rm_tinycrypt_port)

	5.2.16 Sensor
	5.2.16.1 FS1015 Flow Sensor (rm_fs1015)
	5.2.16.2 FS2012 Flow Sensor (rm_fs2012) [Deprecated]
	5.2.16.3 FS3000 Flow Sensor (rm_fs3000)
	5.2.16.4 HS300X Temperature/Humidity Sensor (rm_hs300x)
	5.2.16.5 HS400X Temperature/Humidity Sensor (rm_hs400x)
	5.2.16.6 OB1203 Light/Proximity/PPG Sensor (rm_ob1203) [Deprecated]
	5.2.16.7 RRH46410 Gas Sensor Module (rm_rrh46410)
	5.2.16.8 ZMOD4XXX Gas Sensor (rm_zmod4xxx)

	5.2.17 Storage
	5.2.17.1 Block Media Custom Implementation (rm_block_media_user)
	5.2.17.2 Block Media RAM (rm_block_media_ram)
	5.2.17.3 Block Media SD/MMC (rm_block_media_sdmmc)
	5.2.17.4 Block Media SPI Flash (rm_block_media_spi)
	5.2.17.5 Block Media USB (rm_block_media_usb)
	5.2.17.6 FileX I/O (rm_filex_block_media)
	5.2.17.7 FileX I/O (rm_filex_levelx_nor)
	5.2.17.8 Flash (r_flash_hp)
	5.2.17.9 Flash (r_flash_lp)
	5.2.17.10 FreeRTOS+FAT Port for RA (rm_freertos_plus_fat)
	5.2.17.11 LevelX NOR Port (rm_levelx_nor_spi)
	5.2.17.12 LittleFS on Flash (rm_littlefs_flash)
	5.2.17.13 LittleFS on SPI Flash (rm_littlefs_spi_flash)
	5.2.17.14 OSPI Flash (r_ospi)
	5.2.17.15 OSPI Flash (r_ospi_b)
	5.2.17.16 QSPI (r_qspi)
	5.2.17.17 SD/MMC (r_sdhi)
	5.2.17.18 Virtual EEPROM on Flash (rm_vee_flash)

	5.2.18 System
	5.2.18.1 Clock Generation Circuit (r_cgc)
	5.2.18.2 Event Link Controller (r_elc)
	5.2.18.3 I/O Port (r_ioport)

	5.2.19 Timers
	5.2.19.1 Independent Channel, 16-bit and 8-bit timer (r_tau)
	5.2.19.2 Port Output Enable for GPT (r_poeg)
	5.2.19.3 Realtime Clock (r_rtc)
	5.2.19.4 Realtime Clock (r_rtc_c)
	5.2.19.5 Three-Phase PWM (r_gpt_three_phase)
	5.2.19.6 Timer, 32-bit Interval Timer (r_tml)
	5.2.19.7 Timer, General PWM (r_gpt)
	5.2.19.8 Timer, Low-Power (r_agt)
	5.2.19.9 Timer, Simultaneous Channel (r_tau_pwm)
	5.2.19.10 Timer, Ultra Low-Power (r_ulpt)

	5.2.20 Transfer
	5.2.20.1 Transfer (r_dmac)
	5.2.20.2 Transfer (r_dtc)

	5.2.21 TrustZone
	5.2.21.1 Arm TrustZone Context RA Port (rm_tz_context)

	5.3 Interfaces
	5.3.1 Analog
	5.3.1.1 ADC Interface
	5.3.1.2 Comparator Interface
	5.3.1.3 DAC Interface
	5.3.1.4 OPAMP Interface

	5.3.2 AI
	5.3.2.1 Data Collector Interface
	5.3.2.2 Data Shipper Interface

	5.3.3 Audio
	5.3.3.1 ADPCM Decoder Interface
	5.3.3.2 AUDIO PLAYBACK Interface

	5.3.4 CapTouch
	5.3.4.1 CTSU Interface
	5.3.4.2 Touch Middleware Interface

	5.3.5 Connectivity
	5.3.5.1 CAN Interface
	5.3.5.2 CEC Interface
	5.3.5.3 Communicatons Middleware Interface
	5.3.5.4 I2C Master Interface
	5.3.5.5 I2C Slave Interface
	5.3.5.6 I2S Interface
	5.3.5.7 I3C Interface
	5.3.5.8 LIN Interface
	5.3.5.9 SMCI Interface
	5.3.5.10 SPI Interface
	5.3.5.11 UART Interface
	5.3.5.12 USB HCDC Interface
	5.3.5.13 USB HHID Interface
	5.3.5.14 USB HMSC Interface
	5.3.5.15 USB Interface
	5.3.5.16 USB PCDC Interface
	5.3.5.17 USB PHID Interface
	5.3.5.18 USB PMSC Interface
	5.3.5.19 USB PPRN Interface

	5.3.6 DSP
	5.3.6.1 IIR Interface

	5.3.7 Graphics
	5.3.7.1 CAPTURE Interface
	5.3.7.2 Display Interface
	5.3.7.3 JPEG Codec Interface
	5.3.7.4 MIPI DSI Interface
	5.3.7.5 SLCDC Interface

	5.3.8 Input
	5.3.8.1 External IRQ Interface
	5.3.8.2 Key Matrix Interface

	5.3.9 Monitoring
	5.3.9.1 CAC Interface
	5.3.9.2 CRC Interface
	5.3.9.3 DOC Interface
	5.3.9.4 Low Voltage Detection Interface
	5.3.9.5 WDT Interface

	5.3.10 Motor
	5.3.10.1 Motor 120-Degree Control Interface
	5.3.10.2 Motor 120-Degree Driver Interface
	5.3.10.3 Motor Inertia Estimate Interface
	5.3.10.4 Motor Interface
	5.3.10.5 Motor Return Origin Function Interface
	5.3.10.6 Motor angle Interface
	5.3.10.7 Motor current Interface
	5.3.10.8 Motor driver Interface
	5.3.10.9 Motor position Interface
	5.3.10.10 Motor speed Interface

	5.3.11 Networking
	5.3.11.1 BLE ABS Interface
	5.3.11.2 BLE Interface
	5.3.11.3 BLE Mesh Network Interfaces
	5.3.11.4 DA16XXX AT Command Transport Layer
	5.3.11.5 Ethernet Interface
	5.3.11.6 Ethernet PHY Interface
	5.3.11.7 PTP Interface
	5.3.11.8 WiFi Interface

	5.3.12 Power
	5.3.12.1 Low Power Modes Interface

	5.3.13 Security
	5.3.13.1 RSIP Interface
	5.3.13.2 RSIP key injection Interface
	5.3.13.3 SCE Interface
	5.3.13.4 SCE key injection Interface

	5.3.14 Sensor
	5.3.14.1 FSXXXX Middleware Interface
	5.3.14.2 HS300X Middleware Interface
	5.3.14.3 HS400X Middleware Interface
	5.3.14.4 OB1203 Middleware Interface
	5.3.14.5 ZMOD4XXX Middleware Interface

	5.3.15 Storage
	5.3.15.1 Block Media Interface
	5.3.15.2 FileX Block Media Port Interface
	5.3.15.3 Flash Interface
	5.3.15.4 FreeRTOS+FAT Port Interface
	5.3.15.5 LittleFS Interface
	5.3.15.6 SD/MMC Interface
	5.3.15.7 SPI Flash Interface
	5.3.15.8 Virtual EEPROM Interface

	5.3.16 System
	5.3.16.1 CGC Interface
	5.3.16.2 ELC Interface
	5.3.16.3 I/O Port Interface

	5.3.17 Timers
	5.3.17.1 POEG Interface
	5.3.17.2 RTC Interface
	5.3.17.3 Three-Phase Interface
	5.3.17.4 Timer Interface

	5.3.18 Transfer
	5.3.18.1 Transfer Interface

	5.4 BSP_SDRAM

	Chapter 6 Copyright

