
RX Family Simulator/Debugger V.1.01 

User’s Manual

Renesas Microcomputer Development Environment System

Rev.1.00   2010.04 



 

Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; safety equipment; and medical equipment not specifically designed for life support. 
“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 

systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 

 



Trademarks 

Microsoft, MS-DOS, Windows, Windows NT are registered trademarks of Microsoft Corporation. Visual SourceSafe is 
a trademark of Microsoft Corporation. 
IBM is a registered trademark of International Business Machines Corporation.  
All brand or product names used in this manual are trademarks or registered trademarks of their respective companies 
or organizations. 

 
 

Rev. 1.00  Apr. 01, 2010  Page i of vii 
REJ10J2162-0100 

 



About This Manual 

This manual describes the HEW system.  This manual is composed of two parts.  HEW part describes information on 
the basic “look and feel” of the HEW and customizing the HEW environment and detail the build.  Figure in the HEW 
part are those of the SH series.  Simulator/Debugger part describes Debugger functions of the High-performance 
Embedded Workshop. 

This manual does not intend to explain how to write C/C++ or assembly language programs, how to use any particular 
operating system or how best to tailor code for the individual devices. These issues are left to the respective manuals. 

Document Conventions 

This manual uses the following typographic conventions: 

Table 1 Typographic Conventions 

Convention Meaning 

[Menu->Menu Option] Bold text with ‘->’ is used to indicate menu options  
(for example, [File->Save As...]). 

FILENAME.C Uppercase names are used to indicate filenames. 

“enter this string” Used to indicate text that must be entered (excluding the “” quotes). 

Key + Key Used to indicate required key presses. For example, CTRL+N means press the CTRL key 
and then, whilst holding the CTRL key down, press the N key. 

 
(The “how to” symbol) 

When this symbol is used, it is always located in the left hand margin. It indicates that the 
text to its immediate right is describing  “how to” do something. 

 

 

For inquiries about the contents of this document or product, email to your local distributor. 

Renesas Tools Homepage  http://www.renesas.com/tools 

Rev. 1.00  Apr. 01, 2010  Page ii of vii 
REJ10J2162-0100 



 

Contents 

Section 1 Overview......................................................................................................................... 1 

Section 2 Simulator/Debugger Functions ....................................................................................... 3 
2.1 Features..............................................................................................................................................................3 
2.2 Target User Program..........................................................................................................................................4 
2.3 Range .................................................................................................................................................................4 
2.4 Memory Management ........................................................................................................................................5 
2.5 Instruction-Execution Reset Processing.............................................................................................................5 
2.6 Exception Processing .........................................................................................................................................6 
2.7 Endian ................................................................................................................................................................6 

2.7.1 Endian of the CPU ................................................................................................................................6 
2.7.2 Endian of the External Memory Area ...................................................................................................6 

2.8 Simulation of Peripheral Functions....................................................................................................................7 
2.8.1 Timer.....................................................................................................................................................7 
2.8.2 Serial Communications Interface..........................................................................................................8 
2.8.3 Interrupt Controller ...............................................................................................................................12 
2.8.4 Clocks ...................................................................................................................................................13 
2.8.5 Using Peripheral Functions...................................................................................................................13 

2.9 Trace ..................................................................................................................................................................13 
2.10 Standard I/O and File I/O Processing.................................................................................................................14 
2.11 Break Conditions ...............................................................................................................................................15 
2.12 Floating-Point Data............................................................................................................................................17 
2.13 Display of Function Call History .......................................................................................................................17 
2.14 Performance Measurement ................................................................................................................................18 

2.14.1 Profiler ..................................................................................................................................................18 
2.14.2 Performance Analysis ...........................................................................................................................18 

2.15 Pseudo-Interrupts ...............................................................................................................................................18 
2.16 Coverage ............................................................................................................................................................18 

Section 3 Debugging....................................................................................................................... 21 
3.1 Creating the Workspace for Simulator/Debugger ..............................................................................................22 

3.1.1 Selecting a Debugging Platform ...........................................................................................................22 
3.1.2 Setting up a Workspace for the Simulator/Debugger............................................................................22 

3.2 Starting up the Simulator/Debugger...................................................................................................................24 
3.3 Modifying the Simulator/Debugger Settings .....................................................................................................24 

3.3.1 Setting the Endian and Frequency of CPU ...........................................................................................24 
3.3.2 Modifying the Simulator System ..........................................................................................................25 
3.3.3 Modifying the Memory Map and Memory Resource Settings..............................................................26 
3.3.4 Set Memory Map Dialog Box...............................................................................................................28 
3.3.5 Set Memory Resource Dialog Box .......................................................................................................30 

3.4 Simulating Peripheral Functions ........................................................................................................................30 
3.4.1 Registering Peripheral Function Simulation Modules ..........................................................................30 
3.4.2 Changing the Addresses of Peripheral Functions .................................................................................32 
3.4.3 Changing the Interrupt Source Information of Peripheral Functions....................................................32 
3.4.4 Memory Resources for Control Registers.............................................................................................34 
3.4.5 Viewing the Names of Connected Peripheral Functions ......................................................................34 

Rev. 1.00  Apr. 01, 2010 Page iii of vii 
                                                         REJ10J2162-0100 



 

3.4.6 Input to and Output from Virtual Ports .................................................................................................35 
3.5 Operations for Memory......................................................................................................................................39 

3.5.1 Regularly Updating Contents of the [Memory] Window......................................................................39 
3.5.2 Viewing and Modifying the Settings for the I/O Area..........................................................................39 

3.6 Using the Simulator/Debugger Breakpoints ......................................................................................................39 
3.6.1 Listing the Breakpoints .........................................................................................................................39 
3.6.2 Setting a Breakpoint..............................................................................................................................41 
3.6.3 Modifying Breakpoints .........................................................................................................................48 
3.6.4 Enabling a Breakpoint ..........................................................................................................................48 
3.6.5 Disabling a Breakpoint .........................................................................................................................48 
3.6.6 Deleting a Breakpoint ...........................................................................................................................48 
3.6.7 Deleting All Breakpoints ......................................................................................................................49 
3.6.8 Viewing the Source Line for a Breakpoint ...........................................................................................49 
3.6.9 Closing Input or Output File .................................................................................................................49 
3.6.10 Closing All Input and Output Files .......................................................................................................49 

3.7 Viewing Trace Information................................................................................................................................49 
3.7.1 Opening the Trace Window..................................................................................................................49 
3.7.2 Specifying Trace Acquisition Conditions .............................................................................................49 
3.7.3 Setting Events for Tracing ....................................................................................................................51 
3.7.4 Acquiring Trace Information ................................................................................................................52 
3.7.5 Searching for Trace Information...........................................................................................................55 
3.7.6 Filtering Trace Information...................................................................................................................56 
3.7.7 Clearing the Trace Information.............................................................................................................56 
3.7.8 Saving the Trace Information in a File .................................................................................................56 
3.7.9 Viewing the Source File........................................................................................................................57 
3.7.10 Switching Timestamp Display..............................................................................................................57 
3.7.11 Showing the History of Function Execution.........................................................................................58 

3.8 Viewing the Profile Information ........................................................................................................................58 
3.8.1 Stack Information Files.........................................................................................................................58 
3.8.2 Loading Stack Information Files...........................................................................................................60 
3.8.3 Enabling the Profile ..............................................................................................................................60 
3.8.4 Specifying Measurement Mode ............................................................................................................61 
3.8.5 Executing the Program and Checking the Results ................................................................................61 
3.8.6 List Sheet ..............................................................................................................................................61 
3.8.7 Tree Sheet .............................................................................................................................................62 
3.8.8 Profile-Chart Window...........................................................................................................................64 
3.8.9 Types and Purposes of Displayed Data.................................................................................................65 
3.8.10 Creating Profile Information Files ........................................................................................................66 
3.8.11 Notes .....................................................................................................................................................66 

3.9 Analyzing Performance .....................................................................................................................................67 
3.9.1 Opening the Performance Analysis Window........................................................................................67 
3.9.2 Specifying a Target Function................................................................................................................67 
3.9.3 Starting Performance Data Acquisition ................................................................................................68 
3.9.4 Resetting Data.......................................................................................................................................68 
3.9.5 Deleting a Target Function ...................................................................................................................68 
3.9.6 Deleting All Target Functions ..............................................................................................................68 
3.9.7 Saving the Currently Displayed Contents .............................................................................................68 

3.10 Measuring Code Coverage.................................................................................................................................69 
3.10.1 Opening the Coverage Window............................................................................................................69 
3.10.2 Acquiring All Coverage Information....................................................................................................71 

Rev. 1.00  Apr. 01, 2010 Page iv of vii 
REJ10J2162-0100                                      



 

3.10.3 Clearing All Coverage Information ......................................................................................................71 
3.10.4 Viewing the Source Window................................................................................................................71 
3.10.5 Specifying the New Coverage Range ...................................................................................................71 
3.10.6 Changing the Coverage Range..............................................................................................................71 
3.10.7 Deleting the Selected Coverage Range.................................................................................................72 
3.10.8 Acquiring Coverage Information ..........................................................................................................72 
3.10.9 Clearing Coverage Information ............................................................................................................72 
3.10.10 Saving Coverage Information in a File .................................................................................................72 
3.10.11 Loading Coverage Information from a File ..........................................................................................73 
3.10.12 Updating the Information......................................................................................................................73 
3.10.13 Confirmation Request Dialog Box........................................................................................................73 
3.10.14 Save Coverage Data Dialog Box ..........................................................................................................74 
3.10.15 Displaying the Coverage Information in the Editor Window ...............................................................75 
3.10.16 Displaying the Coverage Information in the [Disassembly] Window ..................................................76 

3.11 Generating a Pseudo-Interrupt Manually ...........................................................................................................77 
3.11.1 [Trigger] Window.................................................................................................................................77 
3.11.2 [GUI I/O] Window................................................................................................................................79 

3.12 Standard I/O and File I/O Processing.................................................................................................................80 
3.12.1 Opening the Simulated I/O Window.....................................................................................................81 
3.12.2 I/O Functions ........................................................................................................................................81 

3.13 Creating a Virtual I/O Panel...............................................................................................................................83 
3.13.1 Opening the [GUI I/O] Window ...........................................................................................................83 
3.13.2 Creating a Button ..................................................................................................................................84 
3.13.3 Creating a Label....................................................................................................................................85 
3.13.4 Creating an LED ...................................................................................................................................87 
3.13.5 Creating Fixed Text ..............................................................................................................................89 
3.13.6 Changing the Size and Position of an Item ...........................................................................................90 
3.13.7 Copying an Item....................................................................................................................................90 
3.13.8 Deleting an Item....................................................................................................................................91 
3.13.9 Showing the Grid ..................................................................................................................................91 
3.13.10 Saving I/O Panel Information ...............................................................................................................91 
3.13.11 Loading I/O Panel Information.............................................................................................................91 

Section 4 Windows ......................................................................................................................... 93 

Section 5 Command Lines .............................................................................................................. 95 
5.1 Commands (Functional Order) ..........................................................................................................................95 

5.1.1 Execution ..............................................................................................................................................95 
5.1.2 Download..............................................................................................................................................95 
5.1.3 Register .................................................................................................................................................95 
5.1.4 Memory.................................................................................................................................................96 
5.1.5 Assemble/Disassemble .........................................................................................................................96 
5.1.6 Break.....................................................................................................................................................97 
5.1.7 Trace .....................................................................................................................................................97 
5.1.8 Coverage ...............................................................................................................................................97 
5.1.9 Performance ..........................................................................................................................................98 
5.1.10 Watch....................................................................................................................................................98 
5.1.11 Script/Logging ......................................................................................................................................98 
5.1.12 Memory Resource.................................................................................................................................98 
5.1.13 Simulator/Debugger Settings ................................................................................................................99 

Rev. 1.00  Apr. 01, 2010 Page v of vii 
                                                         REJ10J2162-0100 



 

5.1.14 Standard I/O and File I/O......................................................................................................................99 
5.1.15 Utility....................................................................................................................................................99 
5.1.16 Project/Workspace ................................................................................................................................99 
5.1.17 Test Tool Facility..................................................................................................................................100 
5.1.18 Debugging Functions for the Realtime OS ...........................................................................................100 
5.1.19 File Input and Output through Virtual Ports .........................................................................................100 

5.2 Commands (Alphabetical Order) .......................................................................................................................101 

Section 6 Messages ......................................................................................................................... 105 
6.1 Information Messages........................................................................................................................................105 
6.2 Error Messages...................................................................................................................................................106 

Section 7 Tutorial............................................................................................................................ 109 
7.1 Preparation .........................................................................................................................................................109 

7.1.1 Sample Program....................................................................................................................................109 
7.1.2 Creating the Sample Program ...............................................................................................................109 

7.2 Settings for Debugging ......................................................................................................................................109 
7.2.1 Allocating the Memory Resource .........................................................................................................109 
7.2.2 Downloading the Sample Program .......................................................................................................110 
7.2.3 Displaying the Source Program ............................................................................................................112 
7.2.4 Setting a PC Breakpoint........................................................................................................................113 
7.2.5 Setting the Profiler ................................................................................................................................113 
7.2.6 Setting the Simulated I/O......................................................................................................................114 
7.2.7 Setting the Trace Information Acquisition Conditions .........................................................................115 
7.2.8 Setting the Stack Pointer and Program Counter....................................................................................116 

7.3 Start Debugging .................................................................................................................................................116 
7.3.1 Executing a Program.............................................................................................................................116 
7.3.2 Using the Trace Buffer..........................................................................................................................120 
7.3.3 Performing Trace Search ......................................................................................................................121 
7.3.4 Checking Simulated I/O........................................................................................................................122 
7.3.5 Checking the Breakpoints .....................................................................................................................123 
7.3.6 Watching Variables...............................................................................................................................123 
7.3.7 Executing the Program in Single Steps.................................................................................................124 
7.3.8 Checking Profile Information ...............................................................................................................128 
 

 
 

Rev. 1.00  Apr. 01, 2010 Page vi of vii 
REJ10J2162-0100                                      



 

 

Rev. 1.00  Apr. 01, 2010 Page vii of vii 
                                                         REJ10J2162-0100 



Section 1   Overview 

Rev. 1.00  Apr. 01, 2010  Page 1 of 130 
REJ10J2162-0100 

Section 1   Overview 

The simulator/debugger is a powerful development environment tool for embedded applications to run on Renesas 
Electronics microcomputers. 

The simulator/debugger is used with the High-performance Embedded Workshop (HEW). The HEW provides a 
graphical user interface that eases the development and debugging of applications written in the C/C++ programming 
languages or assembly language for Renesas Electronics microcomputers. Its aim is to provide a powerful yet intuitive 
way of accessing, observing and modifying the debugging platform on which the application is running. 

READ the simulator/debugger and HEW help information before using the simulator/debugger. 



Section 1   Overview 

Rev. 1.00  Apr. 01, 2010  Page 2 of 130 
REJ10J2162-0100 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 3 of 130 
REJ10J2162-0100 

Section 2   Simulator/Debugger Functions 

This section describes the functions of the RX600 series simulator/debugger. 

2.1 Features 

• Since the simulator/debugger runs on a host computer, software debugging can start without using an actual user 
system, thus reducing overall system development time. 

• The simulator/debugger performs a simulation to calculate the number of instruction execution cycles for a program 
and time taken by instruction execution, thus enabling performance evaluation without using an actual user system. 

• The simulator/debugger provides pseudo-interrupt and I/O-simulation functions for simple system-level simulation. 
• The simulator/debugger offers the following functions that enable efficient program testing and debugging. 

⎯ The ability to handle all of the RX600 series CPUs 
⎯ Functions to stop or continue execution when an error occurs during user program execution 
⎯ Profile data acquisition and function-unit performance measurement 
⎯ A comprehensive set of break functions 
⎯ Functions to set or edit memory maps 
⎯ Functions to display function call history 
⎯ Coverage information is displayed in the C/C++ or assembly-source level 
⎯ Visual debugging functions provided through the display of images or waveforms 

• The breakpoints, memory map, performance, and trace can be set through the dialog boxes under Windows®.  
Environments corresponding to each memory map of the RX600 series microcomputers can be set through the 
dialog box. 
⎯ Intuitive user interface 
⎯ Online help 
⎯ Common display and operability 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 4 of 130 
REJ10J2162-0100 

2.2 Target User Program 

Load modules in the Elf/Dwarf2 format can be symbolically debugged with the simulator/debugger. Load modules in 
other formats can be downloaded, and their instructions can be executed; however, they cannot be symbolically 
debugged. For details, refer to the High-performance Embedded Workshop User’s Manual. 

2.3 Range 

The simulator/debugger provides simulation functions for the RX600 series microcomputers. 

The simulator/debugger supports the following RX600 series microcomputer functions: 

• All CPU instructions 
• Exception processing 
• Registers 
• All address space 
 
The simulator/debugger does not support the following RX600 series MCU functions. Programs that use these functions 
must be debugged with the RX600 series emulator. 

 
Item Remarks 

Low power state Simulation is stopped on the execution of a WAIT instruction. 

Non-maskable interrupt (NMI)   

Reception of an interrupt during execution of any of 
the following instructions: (RMPA, SCMPU, SMOVF, 
SMOVB, SMOVU, SSTR, SUNTIL, SWHILE) 

The interrupt is accepted when execution of the instruction is 
completed. 

Values in memory and registers that become 
undefined after the execution of instructions  

 

Lower-order 16 bits of the accumulator (ACC)  

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 5 of 130 
REJ10J2162-0100 

 

2.4 Memory Management 

Memory Map Specification:  A memory map is used to calculate the number of memory access cycles during 
simulation.  The following items can be specified: 

• Memory type 
• Start and end addresses of the memory area 
• Number of memory access cycles 
• Memory data bus width 
• Endian 
 
On the memory map, the endian is only specifiable for the external area. 
For the internal ROM area and internal RAM area, the [Endian] specified on the [CPU Configuration] tabbed page of 
the [Set Simulator] dialog box (displayed when the simulator debugger is started up) applies. 

For details, refer to section 3.3.3, Modifying the Memory Map and Memory Resource Settings.  

Memory Resource Specification:  A memory resource must be specified to load and execute a user program.  The 
following items can be specified: 

• Start address 
• End address 
• Access type 
 
The access type is readable/writable, read-only, or write-only.  

Since an error occurs if the user program attempts an illegal access (for example, trying to write to read-only memory), 
such an illegal access in the user program can be easily detected. 

For details on memory resource setting, refer to section 3.3.3, Modifying the Memory Map and Memory Resource 
Settings. 

2.5 Instruction-Execution Reset Processing 

Counting by the simulator/debugger of executed instructions, cycles for instruction execution, and time taken by 
instruction execution is reset in the following cases. 

• The program counter (PC) is modified after the instruction simulation stops and before it restarts. 
• The Run command to which the execution start address has been specified is executed. 
• Initialization is performed or the program is loaded. 
 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 6 of 130 
REJ10J2162-0100 

2.6 Exception Processing 

The simulator/debugger detects the generation of exceptions in the RX600 series and simulates exception processing. 
Accordingly, simulation can be performed even when an exception occurs. 

The simulator/debugger simulates exception processing with the following procedures. 

1. Detects an exception during instruction execution.  
2. The PC and PSW are saved in the dedicated registers (for the fast interrupt) or the stack area (for a normal 

interrupt). If an error occurs when saving, the simulator/debugger stops exception processing, shows that the 
exception processing error has occurred, and returns to the command input wait state. 

3. Bits of the PSW are set as follows. 
 U = 0, I = 0, PM = 0 
4. Reads the start address from the vector address corresponding to the vector number. If an error occurs when 

reading, the simulator/debugger stops exception processing, shows that the exception processing error has 
occurred, and returns to the command input wait state. 

5. Starts instruction execution from the start address. 
 

2.7 Endian 

2.7.1 Endian of the CPU 

The endian of the CPU can be specified in the [CPU Configuration] tabbed page in the [Set Simulator] dialog box, 
which is displayed at initiation of the simulator debugger. The endian of the CPU are applied to the internal ROM and 
the internal RAM. For details, refer to section 3.3.1, Setting the Endian and Frequency of CPU. 

2.7.2 Endian of the External Memory Area 

The endian of the external memory area can be set in the [Set Memory Map] dialog box. For details, refer to section 
3.3.4, Set Memory Map Dialog Box. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 7 of 130 
REJ10J2162-0100 

2.8 Simulation of Peripheral Functions 

2.8.1 Timer 

(1) Supported Range 

The RX600 series simulator/debugger supports a total of four compare match timer (CMT) channels, i.e. two CMT 
units (unit 0 and unit 1), each with two 16-bit timers. 

(2) Control Registers 

Table 2.1 lists the control registers of the CMT that are supported by the simulator/debugger. 

In access to control registers, ensure that the unit of access is the same as the size of the register. 

Table 2.1 Control Registers of the CMT Supported by the Simulator/Debugger 

Peripheral 
Module 

Unit Supported Control Register Support 

CMSTR0  

CMCR0  

CMCNT0  

CMCOR0  

CMCR1  

CMCNT1  

Unit 0 

CMCOR1  

CMSTR1  

CMCR2  

CMCNT2  

CMCOR2  

CMCR3  

CMCNT3  

CMT 

Unit 1 

CMCOR3  
Note:  :  Supported 
 

The addresses of the control registers can be referred to or modified in the [Peripheral Module Configuration] dialog 
box. Refer to section 3.4, Simulating Peripheral Functions, for details on this dialog box. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 8 of 130 
REJ10J2162-0100 

2.8.2 Serial Communications Interface 

(1) Supported Range 

The RX600 series simulator/debugger supports a total of seven serial communications interface (SCI) channels. Table 
2.2 lists the supported SCI functions.  

Table 2.2 SCI Functions Supported by the Simulator/Debugger 

Item Support 
Asynchronous or clock synchronous  Serial communications 

mode Smart card interface ⎯ 

PCLK clock  Clock sources for the on-
chip baud rate generator PCLK/4, PCLK/16, and PCLK/64 ⎯ 

Full-duplex communications  

Interrupt sources Transmit-end, transmit-data-empty, receive-data-full, and receive error  

Data length  7 or 8 bits  

Transmission stop bit 1 or 2 bits  

Parity Even, odd, or none  

Receive error detection Parity, overrun, and framing errors  

Break detection ⎯ 

Internal clock  

Asynchronous mode 

Clock source 

External clock or transfer rate clock input 
from TMR 

⎯ 

Data length 8 bits  Clock synchronous mode 

Receive error detection Overrun errors  
Note:  :  Supported 
  ⎯:  Not supported 
 

(2) Control Registers 

Table 2.3 shows control registers of the SCI supported by the simulator/debugger. 

In access to control registers, ensure that the unit of access is the same as the size of the register. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 9 of 130 
REJ10J2162-0100 

Table 2.3 Control Registers of the SCI Supported by the Simulator/Debugger 

Peripheral 
Module 

Channel Supported Control Register Support 

SMR Δ 

BRR  

SCR Δ 

TDR  

SSR Δ 

RDR  

SCMR Δ 

SCI 0 to 6 

SEMR Δ 
Note:  :  Supported 
  Δ:  Partly supported (bits for the function described in section 2.8.2 (1), Supported Range)  
 

The addresses of the control registers can be referred to or modified in the [Peripheral Module Configuration] dialog 
box. Refer to section 3.4, Simulating Peripheral Functions, for details on this dialog box. 

(3) Input and Output of Data 

For the simulator/debugger, some pins are allocated to memory as virtual ports. Programs being debugged and 
debuggers are only able to access those pins through the virtual ports. Table 2.4 lists the addresses of virtual ports for 
the SCI. 

Table 2.4 Addresses of Virtual Ports for the SCI 

Channel Virtual Port Name Address Access Unit Description 
RxD0 H’00088224 16 Channel 0 receive data 0 

TxD0 H’00088226 16 Channel 0 transmit data 

RxD1 H’00088228 16 Channel 1 receive data 1 

TxD1 H’0008822A 16 Channel 1 transmit data 

RxD2 H’0008822C 16 Channel 2 receive data 2 

TxD2 H’0008822E 16 Channel 2 transmit data 

RxD3 H’00088230 16 Channel 3 receive data 3 

TxD3 H’00088232 16 Channel 3 transmit data 

RxD4 H’00088234 16 Channel 4 receive data 4 

TxD4 H’00088236 16 Channel 4 transmit data 

RxD5 H’00088238 16 Channel 5 receive data 5 

TxD5 H’0008823A 16 Channel 5 transmit data 

RxD6 H’0008823C 16 Channel 6 receive data 6 

TxD6 H’0008823E 16 Channel 6 transmit data 

 

Tables 2.5 and 2.6 show the configurations of virtual ports RxD and TxD, respectively. Table 2.7 lists the functions of 
the bits in RxD and TxD. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 10 of 130 
REJ10J2162-0100 

Table 2.5 Configuration of RxD 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 SB PE FE - - - - - D7 D6 D5 D4 D3 D2 D1 D0

 

Table 2.6 Configuration of TxD 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 SB - - - - - - - D7 D6 D5 D4 D3 D2 D1 D0

 

Table 2.7 Bits in RxD and TxD 

Bit Bit Name Initial 
Value 

R/W Description 

0 D0 0 R/W 

1 D1 0 R/W 

2 D2 0 R/W 

3 D3 0 R/W 

4 D4 0 R/W 

5 D5 0 R/W 

6 D6 0 R/W 

7 D7 0 R/W 

Data Bits 

D7 to D0 are used for reception or transmission of 8-bit data. 

D6 to D0 are used for reception or transmission of 7-bit data. 

12 to 8 - All 0 - Reserved 

This bit is always read as 0. The write value should always be 0. 

13 FE 0 R/W Framing Error Bit 

The SCI detects a framing error if this bit included in a frame is 1. 

14 PE 0 R/W Parity Error Bit 

The SCI detects a parity error if this bit included in a frame is 1. 

15 SB 1 R/W Start Bit 

The value of this bit changes from 1 to 0 when transmission starts and 
from 0 to 1 when transmission ends. 

 

Reception and transmission of data that are visible in the simulator/debugger are abstract: all data are transmitted and 
received at the same time. Figures 2.1 and 2.2 respectively show the reception and transmission of data in the 
simulator/debugger. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 11 of 130 
REJ10J2162-0100 

RxD.SB (virtual port)

RxD.Dn (virtual port)

RSR register

RDR register

Received data

Received data

Received data

When RxD.SB is set to 1, 
the SCI transfers data in 
RSR to RDR.

Note: RxD.SB is not used in clock synchronous mode. 

When RxD.SB is set to 0, 
the SCI transfers received 
data to RSR.

 

Figure 2.1   Reception of Data in the Simulator/Debugger 

TDR register

TSR register

TxD.Dn (virtual port)

TxD.SB (virtual port)

Writing to TDR causes the SCI 
to transfer the data to TxD.Dn 
and set TxD.SB to 0.

When the data transfer is 
completed, the SCI sets 
TxD.SB to 1.

Note: The time taken for transmission of one frame differs with the selected mode. 
          Asynchronous mode: (Time taken for transmission of one bit) × (start bit + data size [7,8] + parity bit [0,1] +
                                             stop bit [1,2])
          Clock synchronous mode: (Time taken for transmission of one bit) × (data size [8])

 

Time taken for transmission of one frame

Transmit data

Transmit data

Transmit data

 

Figure 2.2   Transmission of Data in the Simulator/Debugger 

The simulator/debugger allows input to and output from files through virtual ports. For details, refer to section 3.4.6, 
Input to and Output from Files through Virtual Ports. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 12 of 130 
REJ10J2162-0100 

2.8.3 Interrupt Controller 

(1) Supported Range 

The RX600 series simulator/debugger supports the interrupt controller unit (ICU) that is related to the CMT and SCI. 
The ICU can convey interrupts to the CPU but cannot activate the DTC or DMAC. 

(2) Control Registers 

Table 2.8 shows control registers of the ICU that are supported by the simulator/debugger. 

In access to control registers, ensure that the unit of access is the same as the size of the register. 

Table 2.8 Control Registers of the ICU Supported by the Simulator/Debugger 

Peripheral 
Module 

Supported Control Register Support 

IRn (n = 028 and 029, 214 to 241)  

ISELR028 Δ 

ISELR029 Δ 

ISELR030 Δ 

ISELR031 Δ 

ISELR215 Δ 

ISELR216 Δ 

ICU 

ISELR219 Δ 

 ISELR220 Δ 

 ISELR223 Δ 

 ISELR224 Δ 

 ISELR227 Δ 

 ISELR228 Δ 

 ISELR231 Δ 

 ISELR232 Δ 

 ISELR235 Δ 

 ISELR236 Δ 

 ISELR239 Δ 

 ISELR240 Δ 

 IER03 Δ 

 IER1A Δ 

 IER1B  

 IER1C  

 IER1D  

 IER1E Δ 

 IPRm (m = 04 to 07, 80 to 86)  

 FIR  
Note:  :  Supported 
  Δ:  Partly supported (bits for the function described in section 2.8.3 (1), Supported Range)  
 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 13 of 130 
REJ10J2162-0100 

The addresses of the control registers, the interrupt vector numbers, and the position of the priority register can be 
referred to or modified in the [Peripheral Module Configuration] dialog box. Refer to section 3.4, Simulating Peripheral 
Functions, for details on this dialog box. 

(3) Note on Using the ICU 

To select whether an interrupt should cause a break in execution, use the [Simulator System] dialog box or 
EXEC_STOP_SET command. 

2.8.4 Clocks 

The simulator/debugger supports a system clock that provides timing in access to memory, a peripheral function clock, 
and clocks for operating the timers. 

The numbers of cycles of the internal clock required for access to memory correspond to the specifications for the 
memory map. Set the frequency ratio of the system clock to the peripheral function clock in the [Set Peripheral 
Function Simulation] dialog box. 

Use the timer control register to specify the division ratio to create the clock for operating the timers. 

2.8.5 Using Peripheral Functions 

To use a peripheral function, the corresponding module must be registered in the [Set Peripheral Function Simulation] 
dialog box, which is opened on initiation of the simulator/debugger. 

For details on the module registration, refer to section 3.4, Simulating Peripheral Functions. 

2.9 Trace 

The simulator/debugger writes the execution results of each instruction into the trace buffer. The conditions for trace 
information acquisition can be specified in the [Trace Acquisition] dialog box. Right-clicking on the [Trace] window 
displays the pop-up menu. Choose [Acquisition...] from the pop-up menu to display the [Trace Acquisition] dialog box. 
The acquired trace information is displayed in the [Trace] window. 

The trace information can be searched. The search conditions can be specified in the [Find] dialog box. Right-clicking 
on the [Trace] window displays the pop-up menu. Choose [Find -> Find…] from the pop-up menu to display the [Find] 
dialog box. 

For details, refer to section 3.7, Viewing Trace Information. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 14 of 130 
REJ10J2162-0100 

2.10 Standard I/O and File I/O Processing 

The simulator/debugger enables the standard I/O and file I/O processing to be executed by the user program. When the 
I/O processing is executed, the [Simulated I/O] window must be open.  

Table 2.10 shows the supported I/O functions.  

Table 2.10 I/O Functions 

No. Function Code Function Name Description 

1 H'21 GETC Inputs one byte from the standard input 

2 H'22 PUTC Outputs one byte to the standard output 

3 H'23 GETS Inputs one line from the standard input 

4 H'24 PUTS Outputs one line to the standard output 

5 H'25 FOPEN Opens a file 

6 H'06 FCLOSE Closes a file 

7 H'27 FGETC Inputs one byte from a file 

8 H'28 FPUTC Outputs one byte to a file 

9 H'29 FGETS Inputs one line from a file 

10 H'2A FPUTS Outputs one line to a file 

11 H'0B FEOF Checks for end of the file 

12 H'0C FSEEK Moves the file pointer 

13 H'0D FTELL Returns the current position of the file pointer 

 

For details on I/O functions, refer to section 3.12, Standard I/O and File I/O Processing. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 15 of 130 
REJ10J2162-0100 

2.11 Break Conditions 

The simulator/debugger provides the following conditions for interrupting the simulation of a user program during 
execution. 

• Break due to the satisfaction of a break command condition  
• Break due to the detection of an error during execution of the user program 
• Break due to a trace buffer overflow 
• Break due to execution of the WAIT instruction 
• Break due to the [STOP] button 
 
Break Due to Satisfaction of a Break Command Condition:  There are nine break commands as follows: 

• BREAKPOINT:   Break based on the address of the instruction executed 
• BREAK_ACCESS:   Break based on access to a memory range 
• BREAK_CYCLE:   Break based on the instruction execution cycles 
• BREAK_DATA:   Break based on the value of data written to memory 
• BREAK_DATA_DIFFERENCE: Break based on a difference between values in  

   memory 
• BREAK_DATA_INVERSE:  Break based on sign inversion of a value in memory 
• BREAK_DATA_RANGE:   Break based on the range of values in memory  
• BREAK_REGISTER:   Break based on the value of data written to a register 
• BREAK_SEQUENCE:   Break based on a specified execution sequence 
 
If [Stop] is specified as the action to take when a break condition is satisfied, user program execution stops when the 
break condition is satisfied. For details, refer to section 3.6, Using the Simulator/Debugger Breakpoints. 

When a break condition is satisfied and user program execution stops, the instruction at the breakpoint may or may not 
be executed before a break depending on the type of break, as listed in table 2.11. 

Table 2.11 Processing When a Break Condition is Satisfied 

Command Instruction When a Break Condition is Satisfied 

BREAKPOINT Not executed 

BREAK_ACCESS Executed 

BREAK_CYCLE Executed 

BREAK_DATA Executed 

BREAK_DATA_DIFFERENCE Executed 

BREAK_DATA_INVERSE Executed 

BREAK_DATA_RANGE Executed 

BREAK_REGISTER Executed 

BREAK_SEQUENCE Not executed 

 

For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address that is not the beginning of an 
instruction, the break will not be detected. 

When a break condition is satisfied during user program execution, a break condition satisfaction message is displayed 
in the [Output] window and the execution stops. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 16 of 130 
REJ10J2162-0100 

Break Due to Error Detection during User Program Execution:  The simulator/debugger detects simulation errors, 
that is, program errors that cannot be detected by the CPU exception generation functions. The [Simulator System] 
dialog box specifies whether to stop or continue the simulation when such an error occurs. Table 2.12 lists the error 
messages, error causes, and the action of the simulator/debugger in the continuation mode.  

Table 2.12 Simulation Errors 

Error Message Error Cause Processing in Continuation Mode 
Access to a memory area that has not been 
allocated 

Write to a memory area having the write-protected 
attribute 

Read from a memory area having the read disable 
attribute 

Memory Access Error 
(ADDRESS: H'nnnnnnnn) 

Access to an area where memory data do not 
exist 

On memory write, nothing is written; on 
memory read, all bits are read as 1. 

 

When a simulation error occurs in the stop mode, the simulator/debugger returns to the command input wait state after 
stopping instruction execution and displaying the error message. Table 2.13 lists the states of the program counter (PC) 
at a simulation error stop. Also, after a stop due to a simulation error, the contents of the PSW are not changed. 

Table 2.13 Register States at Simulation Error Stop 

Error Message PC Value 
Memory Access Error • When an instruction is read: 

The start address of the instruction that caused the error. 

• When an instruction is executed: 
The instruction address following the instruction that caused the error. 

 

Use the following procedure when debugging programs that include instructions that generate simulation errors. 

1. First execute the program in the stop mode and confirm that there are no errors except those in the intended 
locations. 

2. After confirming the above, execute the program in the continuation mode. 
 
Note: If an error occurs in the stop mode and simulation is continued after changing the simulator/debugger mode to 

the continuation mode, simulation may not be performed correctly. When restarting simulation, always restore 
the register contents and the memory contents to the state prior to the occurrence of the error.  

Break Due to a Trace Buffer Overflow:  After the [Stop] mode is specified with [Trace Buffer Full Handling] in the 
[Trace Acquisition] dialog box, the simulator/debugger stops execution when the trace buffer becomes full. The 
following message is displayed in the [Output] window when execution is stopped. 

 Trace Buffer Full 

 
Break Due to Execution of a WAIT Instruction:  Execution of a WAIT instruction causes execution by the 
simulator/debugger to stop. The following message is displayed in the [Output] window. 

 WAIT Instruction 

 
Note: When restarting execution, change the PC value to the instruction address at the restart location. 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 17 of 130 
REJ10J2162-0100 

Break Due to the [Stop] Button:  Users can forcibly terminate execution by clicking the [HALT] button during 
instruction execution. The following message is displayed on the status bar when execution is stopped. 

 Stop 

 
Execution can be resumed with the GO or STEP command. 

2.12 Floating-Point Data 

Floating-point numbers can be used for the following real-number data, which makes floating-point data processing 
easier. The following data can be specified for floating-point data: 

• Data when the break type is set to [Break Data] or [Break Register] in the [Select Break Type] dialog box 
• Data in the [Memory] window 
• Data in the [Fill Memory] dialog box 
• Data in the [Search Memory] dialog box 
• Input data in the [Register] dialog box 
 
The floating-point data format conforms to the ANSI C standard. 

In the simulator/debugger, the round-to-nearest (RN) mode is applied as the rounding mode for floating-point decimal-
to-binary conversion. 

If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, it is left as a denormalized 
number in RN mode. If an overflow occurs during decimal-to-binary conversion, the infinity is returned in RN mode. 

2.13 Display of Function Call History 

The simulator/debugger displays the function call history in the [Stack Trace] window when simulation stops, which 
enables program execution flow to be checked easily. Selecting a function name in the [Stack Trace] window displays 
the corresponding source program in the [Editor] window. This allows the function that has called the current function 
to also be checked. 

The displayed function call history is updated in the following cases: 

• When simulation stops due to the break conditions described in section 2.11, Break Conditions. 
• When register values are modified while simulation stops due to the above break conditions. 
• While single-step execution is performed. 
 
For details, refer to the High-performance Embedded Workshop User’s Manual. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 18 of 130 
REJ10J2162-0100 

2.14 Performance Measurement 

The simulator/debugger has the profiler function and performance analysis function for performance measurement of 
the user program. 

2.14.1 Profiler 

The profiler function displays the memory address and size allocated to functions and global variables, the number of 
function calls, and the profile data for the entire user program.  The profile data to be displayed depends on the CPU.  

Profile information is displayed in list, tree, and chart formats. 

Profile information is useful in optimizing user programs by reducing the size and putting the most frequently called 
functions in-line.  

When using the profile information saved in a file, it is possible to optimize user programs based on dynamic 
information using the optimizing linkage editor. 

For details, refer to section 3.8, Viewing the Profile Information. 

2.14.2 Performance Analysis 

The performance analysis function displays the number of execution cycles and function calls for the specified function 
in the user program. Since performance data for only the specified function is acquired, faster simulation is possible. 
For details, refer to section 3.9, Analyzing Performance. 

2.15 Pseudo-Interrupts 

The simulator/debugger can generate pseudo-interrupts during simulation in the following two ways: 

1. Pseudo-interrupts generated by satisfaction of break conditions 
A pseudo-interrupt can be generated using a break command to specify [Interrupt] as the action when a break 
condition is satisfied. For details, refer to refer to section 3.6, Using the Simulator/Debugger Breakpoints. 

2. Pseudo-interrupts generated from windows 
A pseudo-interrupt can be generated by clicking a button in the [Trigger] or [GUI I/O] window. For details, refer to 
section 3.11, Generating a Pseudo-Interrupt Manually. 

 
If another pseudo-interrupt occurs between a pseudo-interrupt occurrence and its acceptance, only the interrupt that has 
a higher priority can be accepted. 

3. Break by pseudo-interrupts 
The user can select whether or not to cause a break when a pseudo-interrupt occurs. This can be set in the [Simulator 
System] dialog box or by the EXEC_STOP_SET command. 

 
Note: For a pseudo-interrupt, the vector number and priority level of the interrupt are specified. The priority level of 

an interrupt can be specified as a value from 0 to 8 or from 0 to H'10. The fast interrupt is specified by the value 
8 when the range is from 0 to 8 and H'10 when the range is from 0 to H'10. 

 

2.16 Coverage 

The simulator/debugger acquires instruction coverage information during instruction execution within the measurement 
range specified by the user. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 19 of 130 
REJ10J2162-0100 

In the measurement range, addresses are directly specified, and all functions in a file whose name has been specified are 
set. 

The state of each instruction execution can be monitored through the instruction coverage information. In addition, this 
information can be used to determine which part of a program has not been executed.  

The [Coverage] window displays the acquired instruction coverage information. 

The instruction coverage information can be displayed in the [Editor] window by highlighting the column 
corresponding to the source line of the executed instruction. 

For the address range or function to be measured, the coverage statistical information is displayed in percentage. This 
gives the user a clear idea how much the program has been executed. 

The instruction coverage information can be saved in or loaded from a file. Only a file in the .COV format can be 
loaded. 

For details, refer to section 3.10, Measuring Code Coverage. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 20 of 130 
REJ10J2162-0100 

 

 

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 21 of 130 
REJ10J2162-0100 

Section 3   Debugging 

This section describes the simulator/debugger operations and their related windows and dialog boxes. 

For details on the functions common to the HEW listed below, refer to the HEW help information. 

⎯ Preparations for Debugging 
⎯ Viewing a Program 
⎯ Operating Memory 
⎯ Displaying Memory Contents as Waveforms 
⎯ Displaying Memory Contents as an Image 
⎯ Modifying the Memory Contents 
⎯ Viewing the I/O Memory 
⎯ Looking at Registers 
⎯ Executing Your Program 
⎯ Viewing the Current Status 
⎯ Synchronizing Multiple Debugging Platforms 
⎯ Debugging with the Command Line Interface 
⎯ Elf/Dwarf2 Support 
⎯ Looking at Labels 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 22 of 130 
REJ10J2162-0100 

3.1 Creating the Workspace for Simulator/Debugger 

To use the simulator/debugger, a workspace for the simulator/debugger must be created. This section only describes the 
procedures specific to the simulator/debugger. For details, refer to the High-performance Embedded Workshop user's 
manual. 

3.1.1 Selecting a Debugging Platform 

When you create a new workspace, the dialog box shown below appears. Specify the debugging platform in step 8. 

 

Figure 3.1   Debugger Target Setting Display (8/10) 

[Targets] Sets the debugger targets. Select (by checking) the debugger targets. No selection or a selection 
of more than one target is possible. 

[Target type] Specifies the type of the targets displayed under [Targets]. 
[Target CPU] Specifies the type of the CPUs displayed under [Targets]. 

 

3.1.2 Setting up a Workspace for the Simulator/Debugger 

Set up the workspace for the simulator/debugger in step 9/10. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 23 of 130 
REJ10J2162-0100 

 

Figure 3.2   Debugger Option Setting Display (9/10) 

[Detail options] Sets the debugger target options. To modify an option, select [Item] and click [Modify]. If 
the selected item cannot be modified, [Modify] remains gray even when [Item] is 
selected. 

 [Simulator I/O] Simulation for standard I/O or file I/O 
 from the user program is enabled ([Enable])  
 or disabled ([Disable]). 

 [Simulator I/O addr.] Address for the above simulated I/O. 
 [Bus mode] Currently not used by the  simulator/debugger. 

[Endian] Displays the endian of CPU. 
 [Patch]  Priority levels of interrupts and whether the  

   MVTIPL instruction is enabled or disabled. 
      [Off] Available priority levels for  
       interrupts are from 0 to 15. 
       The MVTIPL instruction is  
       enabled. 
      [RX610] Available priority levels for  
       interrupts are from 0 to 7. 
       The MVTIPL instruction is  
       disabled. 
 

Refer to the High-performance Embedded Workshop User's Manual for items other than those listed under [Detail 
options]. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 24 of 130 
REJ10J2162-0100 

3.2 Starting up the Simulator/Debugger 

You can connect to the simulator/debugger by selecting a session file in which simulator/debugger settings have already 
been defined. When you have selected targets in the process of creating a project, the number of session files is the 
same as the number of selected targets. Select the session file that corresponds to the current target from the drop-down 
list shown in figure 3.3. 

 

Figure 3.3   Selecting a Session File 

If you have selected a session file with which the simulator/debugger has been registered but the simulator/debugger is 
disconnected, select [Debug -> Connect] or click on the [Connect] toolbar button . 

To disconnect the simulator/debugger, on the other hand, select [Debug -> Disconnect] or click on the [Disconnect] 
toolbar button . 

3.3 Modifying the Simulator/Debugger Settings 

This section describes how to modify the simulator system after the simulator/debugger is started. 

3.3.1 Setting the Endian and Frequency of CPU 

The endian and operating frequency of CPU are set on the [CPU Configuration] tabbed page in the [Set Simulator] 
dialog box, which is displayed on initiation of the simulator/debugger. 

 

Figure 3.4   Set Simulator Dialog Box (CPU Configuration) 

The following items can be specified in this dialog box: 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 25 of 130 
REJ10J2162-0100 

[Endian] Endian of CPU. 
[Big] Big endian 
[Little] Little endian 

[System Clock (ICLK) Frequency]  Operating frequency of the CPU (unit: MHz) 
     Specifiable range: 1 to 1000 

If you do not wish this dialog box to be opened when the simulator/debugger is subsequently initiated, check [Don’t 
show this dialog box]. 

3.3.2 Modifying the Simulator System 

The [System] tab in the [Simulator System] dialog box is used to modify the location to start the simulated I/O and 
execution mode. 

Choose [Setup -> Simulator -> System...] or click the [Simulator System] toolbar button  to open the [System] tab in 
this dialog box. 

 

Figure 3.5   Simulator System Dialog Box (System Tab) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 26 of 130 
REJ10J2162-0100 

The following items can be specified in this dialog box: 

[CPU]    The current CPU. 

[Bit Size] Size of the address space (as the number of bits in addresses. 

[Endian] Endian of the CPU.  

[Priority Level of Interrupts] Priority levels of interrupts and whether the MVTIPL instruction is enabled or disabled. 
0 to 7 (Disable MVTIPL instruction): Available priority levels for interrupts are from 0 to 
7. 
0 to 15 (Enable MVTIPL instruction): Available priority levels for interrupts are from 0 to 
15.  

[Simulated I/O Address] Specifies the start address of a simulated I/O that performs standard input/output or file 
input/output processing from the user program.  

 [Enable] Checking this box enables the simulated I/O. 

[Response] Specifies the window refresh timing; that is, how many instructions should be executed 
between refresh operations (D'1 to D'2,147,483,647. The default is D’40000). 

[Execution Mode] Specifies whether the simulator/debugger stops or continues operation when a simulation 
error (including interrupts) occurs. It is also possible to specify an action to take place 
when an interrupt occurs by clicking the [Detail…] button. 
 [Stop]  Stops simulation. 
 [Continue] Continues simulation. 

[Cache the results of decoding instructions and accelerate simulation] 
Selects whether or not to save the results of decoding instructions at the time of their 
execution and reuse the results of decoding when instructions at the same addresses are 
reused. 
Selecting this box enables the caching facility for decoded instructions, making simulation 
faster. 

Clicking the [OK] or [Apply] button stores the modified settings. Clicking the [Cancel] button closes this dialog box 
without modifying the settings. 

Note: The caching facility for decoded instructions reuses results of decoding so is not applicable to programs that 
contain self-modifying code. Furthermore, errors in the form of an instruction being overwritten due to 
unexpected behavior of the program may not be correctly detected. 

3.3.3 Modifying the Memory Map and Memory Resource Settings 

The [Memory] tab in the [Simulator System] dialog box is used to set and modify the memory map and memory 
resource. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 27 of 130 
REJ10J2162-0100 

 

Figure 3.6   Simulator System Dialog Box (Memory Tab) 

The following items can be specified in this dialog box: 

[Memory Map] Displays the memory type, start and end addresses, data bus width, and the number of access 
cycles. 

[Memory Resource] Displays the access type and start and end addresses of the current memory resource. 

[Memory Map] can be added, modified, or deleted using the following buttons: 

 Adds [Memory Map] items. Clicking this button opens the [Set Memory Map] dialog box (figure 3.6), and 
memory map items can be added. 

 Modifies [Memory Map] items. Select an item to be modified in the list box and click this button. The [Set 
Memory Map] dialog box (figure 3.6) opens and memory map items can be modified. 

 Deletes [Memory Map] items. Select an item to be deleted in the list box and click this button. 

[Memory Resource] can be added, modified, or deleted using the following buttons: 

 Adds [Memory Resource] items. Clicking this button opens the [Set Memory Resource] dialog box, and 
memory map items can be specified. 

 Modifies [Memory Resource] items. Select an item to be modified in the list box and click this button. The 
[Set Memory Resource] dialog box opens and memory map items can be modified. 

 Deletes [Memory Resource] items. Select an item to be deleted in the list box and click this button. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 28 of 130 
REJ10J2162-0100 

[Memory Resource] is the same setting information as that of [Memory Resource] of the [Debugger] sheet in the [RX 
Standard Toolchain] dialog box. Modifications are reflected on both items. 

[Memory Map] can be reset to the default value by the  button. Clicking the [OK] or [Apply] button stores the 
modified settings. Clicking the [Cancel] button closes this dialog box without modifying the settings. 

When there is a linkage list file (.map) output by the optimizing linkage editor, the memory resource can be 
automatically allocated according to the memory map and linkage map information. For details, refer to Automatically 
Allocating the Memory Resource, in the High-performance Embedded Workshop User's Manual. 

3.3.4 Set Memory Map Dialog Box 

The [Set Memory Map] dialog box specifies the memory map of the target CPU.  

The contents displayed in this dialog box depend on the target CPU. The values are used in simulation of memory 
access by the simulator/debugger. 

 

Figure 3.7   Set Memory Map Dialog Box 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 29 of 130 
REJ10J2162-0100 

The following items are specified: 

[Memory type]  Memory type 
  [ROM]  Internal ROM 
  [RAM]  Internal RAM 
  [EXT]  External memory 
  [IO]  Internal I/O 

[Begin address]  Start address of the memory corresponding the memory type 

[End address]  End address of the memory corresponding to the memory type 

[Data bus size]  Memory data bus width 

[Read state count] Number of cycles (“states”) for read access to the specified type of memory 

[Write state count] Number of cycles (“states”) for write access to the specified type of memory 

[Endian]  Endian of the specified area of memory 

 
Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the 
settings. 

Notes: 1.  The memory map setting for the area allocated to a system memory resource cannot be deleted or modified. 
First delete the system memory resource allocation on the [Memory] tab of the [Simulator System] dialog 
box, then delete or modify the memory map setting. 

 2. The data bus size cannot be displayed or modified for any type of memory other than external memory. 
3. The data bus size, read state count, and write state count do not affect to the instruction simulations. The 

number of states (cycles) for memory access is always 1. 
4. The memory map must start and end on 16-byte boundaries. If any other setting is made, the map is adjusted 

to the closest 16-byte boundaries that include the set values. 
5. It is not possible to view or modify the current endian for the internal I/O area. 
6. The endian for the internal ROM and RAM areas is only modifiable through the [Set Simulator] dialog box. 

For details on the [Set Simulator] dialog box, refer to section 3.3.1, Setting the Endian and Frequency of 
CPU. 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 30 of 130 
REJ10J2162-0100 

3.3.5 Set Memory Resource Dialog Box 

The [Set Memory Resource] dialog box sets and modifies memory resources. 

 

Figure 3.8   Set Memory Resource Dialog Box 

The following items are specified: 

[Begin Address] Address where the memory area to be secured starts 

[End Address] Address where the memory area to be secured ends 

[Attribute] Access type 
[Read] Read only 
[Write] Write only 
[Read/Write] Readable/writable 

Click the [OK] button after specifying the [Begin Address], [End Address], and [Attribute]. Clicking the [Cancel] 
button closes this dialog box without modifying the settings. 

Notes: 1. If memory resources are set, memory in the host computer will be used. If the user allocates too much 
memory resources, operation of the host computer will be extremely slow. 

2. The memory area must start and end on 16-byte boundaries. If any other setting is made, the area is adjusted 
to the closest 16-byte boundaries that include the set values. Furthermore, concerning the type of access, 
boundaries become 16 bytes. 
When using a resource with units smaller than 16 bytes, use the memory within an area in accord with the 
hardware manual. 

3. Attempts by instructions to write to memory for which only reading is permitted or to read from memory for 
which only writing is permitted cause memory-access errors. 

 

3.4 Simulating Peripheral Functions 

The simulator/debugger is able to simulate peripheral functions by using DLL modules. This section describes how to 
register the peripheral function simulation modules to enable the simulation of individual peripheral functions, and how 
to set their configurations. 

3.4.1 Registering Peripheral Function Simulation Modules 

Peripheral function simulation modules can be registered in the [Peripheral Function Simulation] tabbed page of the 
[Set Simulator] dialog box, which is opened on initiation of the simulator/debugger. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 31 of 130 
REJ10J2162-0100 

Once a peripheral function simulation module has been registered in this dialog box, the simulated peripheral function 
provided by that simulation module becomes available. The registered settings cannot be modified after the 
simulator/debugger has fully started up. To change the peripheral function simulation modules that are in use, restart the 
simulator/debugger to bring up this dialog box. 

 

Figure 3.9   Set Simulator Dialog Box (Peripheral Function Simulation Tab) 

The following items are specified in this dialog box: 

[Peripheral Functions] Shows information on the peripheral function simulation modules. 
   [Module Name] Names of peripheral functions to be simulated 
   [File Name] Names of files holding peripheral function simulation  
    modules 
  Check the checkbox under [Module Name] to register the  
  corresponding peripheral function simulation module and make it  
  available. 

 [Enable All]  Enables all peripheral function simulation modules. 

 [Disable All]  Disables all peripheral function simulation modules. 

 [Detail…] Opens the [Peripheral Module Configuration] dialog box, allowing you to view information 
on the corresponding peripheral function, and change the address where it starts and the 
interrupt-source information. 

[Peripheral Clock Rate] The ratio between the peripheral clock and the system clock (the  
   number of cycles of the system clock corresponding to one cycle of the  
   peripheral clock) is specified here. The clock rate setting can be  
   selected as 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32. 

Clicking the [OK] button makes the settings effective. Clicking the [Cancel] button closes this dialog box without 
storing the settings. 

If you do not wish this dialog box to be opened when the simulator/debugger is subsequently initiated, check [Don’t 
show this dialog box]. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 32 of 130 
REJ10J2162-0100 

3.4.2 Changing the Addresses of Peripheral Functions 

The addresses of peripheral functions can be changed on the [Peripheral Module Configuration] dialog box. The 
addresses of the peripheral functions which have interrupt source information can be changed on the [Address] tabbed 
page of the [Peripheral Module Configuration] dialog box. To open this dialog box, select a peripheral function in 
[Peripheral Functions] on the [Peripheral Function Simulation] tabbed page of the [Set Simulator] dialog box and then 
press the [Detail…] button. 

 

Figure 3.10   Peripheral Module Configuration Dialog Box 

The following items can be set or displayed in this dialog box: 

[Module] Name of the peripheral function supported by the selected peripheral function simulation 
module 

[Start Address]  Start address of the peripheral function selected in [Module] 

[Register Address] Names and addresses of registers of the peripheral function selected in [Module]. It is not 
possible to change the register addresses. 

Clicking the [OK] or [Set] button makes the settings effective. Clicking the [Cancel] button closes this dialog box 
without storing the settings. 

3.4.3 Changing the Interrupt Source Information of Peripheral Functions 

The interrupt source information of peripheral functions can be changed in the [Interrupt] tab of the [Peripheral Module 
Configuration] dialog box. To open this dialog box, select a peripheral function in [Peripheral Functions] on the 
[Peripheral Function Simulation] tabbed page of the [Set Simulator] dialog box and then press the [Detail…] button. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 33 of 130 
REJ10J2162-0100 

 

Figure 3.11   Peripheral Module Configuration Dialog Box (Interrupt Tab) 

The following items can be displayed in this dialog box: 

Interrupt Source: Name of the interrupt source (or sources) supported by the  
 peripheral function 

Vector Number: Interrupt vector number 

Priority Register Address/ Address of the interrupt priority register and positions of bits in  
Bit Field Position: the register 

To change the interrupt-source information, open the [Set Interrupt Source Information] dialog box by double-clicking 
on the line for the interrupt source to be changed. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 34 of 130 
REJ10J2162-0100 

 

Figure 3.12   Set Interrupt Source Information Dialog Box 

The following items can be set or displayed in this dialog box: 

Interrupt Source: Interrupt source name 

Interrupt Vector Number: Interrupt vector number  
 (when the prefix is omitted, values input are taken as decimal,  
 and the display is in decimal notation) 

Priority Register Address: Address of the interrupt priority register 

Priority Register Size: Size of the interrupt priority register 

Priority Register Bit Position: Positions of bits in the interrupt priority register 

Clicking the [OK] button makes the settings effective. Clicking the [Cancel] button closes this dialog box without 
storing the settings. 

3.4.4 Memory Resources for Control Registers 

The peripheral function simulation module secures memory resources in the control register area. Do not perform 
operations that lead to the deletion or alteration of memory resources for control registers after they have been allocated. 
For details on the setting of memory resources, refer to section 3.3.3, Modifying the Memory Map and Memory 
Resource Settings. 

3.4.5 Viewing the Names of Connected Peripheral Functions 

After the simulator/debugger has been initiated, [Peripheral Modules] on the [Platform] sheet of the [Status] window 
shows the names of the peripheral functions that are connected. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 35 of 130 
REJ10J2162-0100 

3.4.6 Input to and Output from Virtual Ports 

For the simulator/debugger, some pins are allocated to memory as virtual ports. These can be used for input to and 
output from files. For details on the virtual ports supported by the simulator/debugger, refer to section 2.8.2 (3), Input 
and Output of Data.  

(1) Viewing the List of File Input and Output 

To view the list of file input and output that is currently defined, open the [Port I/O] tabbed page of the [Simulator 
System] dialog box that is displayed by selecting [Setup -> Simulator -> System…]. If no modules with virtual ports 
have been registered, the [Port I/O] tab does not appear. 

 

Figure 3.13   Simulator System Dialog Box (Port I/O Tab) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 36 of 130 
REJ10J2162-0100 

The following items are displayed in this dialog box: 

[Module]: Module name 

[Port]: Port name 

[File Name]: Filename 

[I/O]: Input or output 
[In]: File input 
[Out]: File output 

[Mode]: Mode of file input or output 
 [Repeat]: Repeated input 
 [Once]: Input only once 
 [Overwrite]: Write output over existing files 
 [Append]: Append output to existing files 

[Repeat Start]: Line number where repeated input starts 

[State]: Whether the file is open or closed 
[Open]: Open 
[Close]: Closed 

(2) Adding a File 

Right-click on the [Port I/O] tabbed page and select [Add] from the popup menu or double-click on an item in the list to 
open the [Set Port I/O] dialog box. 

 

Figure 3.14   Set Port I/O Dialog Box 

The following items can be set in this dialog box: 

[Port select] 
 [Module]: Select the module for the port that data are to be input to or output  



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 37 of 130 
REJ10J2162-0100 

   from. 
 [Port]:  Select the port name. 

[File setting] 
 [File]:    Specify the filename.  
     If the filename extension is omitted, .csv is  
     automatically appended. 
 [I/O]  [Input]:  File input 
   [Output]: File output 
 [Input mode] [Repeat]: When the end of the file is reached, the input is  
     repeated from the start. 
     [Start Line]: Line number where repeated input starts  
     (1 to 65535) 
   [Once]:  When the end of the file is reached, the input is  
     ended. 
 [Output mode] [Overwrite]: If an output file with the specified name already  
     exists, that file is overwritten. 
   [Append]: If an output file with the specified name already  
     exists, output data are appended to the end of the file. 

Each port can be allocated to one file for input and one file for output. A single file can also be allocated to two or more 
input ports. 

(3) Opening a File 

To open a file, click on the line where the filename appears on the [Port I/O] tabbed page and select [Open] from the 
popup menu. 

(4) Opening All Files 

To open all files, right-click on the [Port I/O] tabbed page and select [Open All] from the popup menu. 

(5) Closing a File 

To close a file, click on the line where the filename appears on the [Port I/O] tabbed page and select [Close] from the 
popup menu. 

(6) Closing All Files 

To close all files, right-click on the [Port I/O] tabbed page and select [Close All] from the popup menu. 

(7) Modifying File Setting 

Click on the line where the filename appears and select [Edit] from the popup menu or simply double-click on the line 
to open the [Set Port I/O] dialog box, where the settings for the file can be modified. 

(8) Deleting a File 

To delete a file, click on the line where the filename appears on the [Port I/O] tabbed page and select [Delete] from the 
popup menu. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 38 of 130 
REJ10J2162-0100 

(9) Format for Virtual Port Files 

Virtual port files are in the CSV format. The input file format is as follows. 

<Time>, <Data> 
       : 

 
Data values in input files must be accompanied by descriptions of the times they are input. Each time is the difference 
in picoseconds (integer value: must be 1 or larger) from the time for the previous value. The values are hexadecimal 
integers. 

The output file format is as follows. 

[Module] 
<Module name> 
[Port] 
<Port name> 
[Length] 
<Number of bits in data> 
[Data] 
<Time>, <Data> 
       : 

 
The name of the module that outputs the data, port name, number of bits in the values, times, and the values themselves 
are output in an output file. The time indicates the duration from the start of simulation to the output of the value in 
picoseconds (as an integer). 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 39 of 130 
REJ10J2162-0100 

3.5 Operations for Memory 

3.5.1 Regularly Updating Contents of the [Memory] Window  

Selecting [Auto Refresh] from the pop-up menu of the [Memory] window leads to regular updating of the contents 
displayed in the [Memory] window during execution of the user program. 
The default value and specifiable range for the update interval are given below. 
Default value for the update interval: 100 ms 
Specifiable range for the update interval: 10 ms to 10,000 ms 

3.5.2 Viewing and Modifying the Settings for the I/O Area  

If you wish to view or modify the settings for the I/O area through the [Memory] window, ensure that the access size 
defined in the hardware manual is selected for display in the [Memory] window. Otherwise the settings may not be 
correctly displayed or modified. 

3.6 Using the Simulator/Debugger Breakpoints 

Sophisticated breakpoint functions are available in the simulator/debugger in addition to the HEW standard PC 
breakpoints. The user can specify break conditions and actions after a break condition is satisfied, and can display the 
breakpoints set. 

3.6.1 Listing the Breakpoints 

Choose [View -> Code -> Eventpoints] or click the [Eventpoints] toolbar button  to open the [Event] window, 
which lists the breakpoints set. 

 

Figure 3.15   Event Window 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 40 of 130 
REJ10J2162-0100 

The following items are displayed: 

[Type] Break types 
  [BP]: PC break 
  [BA]: Access break 
  [BD]: Data break 
  [BR]: Register break (register name) 
  [BS]: Sequential break 
  [BCY]: Number-of-cycles break 

[State] Whether the breakpoint is enabled or disabled 
 [Enable]: Valid 
 [Disable]: Invalid 

[Condition] Condition that causes a break. The contents to be displayed depend on the type of the break. When the 
type of the break is BR, the register name is displayed, and when the type of the break is BCY, the number 
of cycles is displayed.  

  BP: PC = Program counter (Corresponding file name, line, and symbol name) 
  BA: Address = Address (Symbol name) 
  BD: Address = Address (Symbol name) 
  BR: Register = Register name 
  BS: PC = Program counter (Corresponding file name, line, and symbol name) 
  BCY: Cycle = Number of cycles (displayed in hexadecimal) 

[Action] Operation of the simulator/debugger when a break condition is satisfied. 
  [Stop]: Execution halts 
  [File Input] (file name) [File state]: Memory data is read from file 
  [File Output] (file name) [File state]: Memory data is written to file 
  [Interrupt] (Interrupt type/priority): Interrupt processing  
  [Trace Trigger]: Tracing starts 
 
Conditions specifying [Stop] for [Action] is displayed on the [Software Break] tab and the conditions specifying 
another action type is on the [Software Event] tab. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 41 of 130 
REJ10J2162-0100 

3.6.2 Setting a Breakpoint 

Selecting [Add...] from the pop-up menu in the [Event] window opens the [Select Break Type] dialog box, which 
allows the user to set a breakpoint.  

Two further dialog boxes can be opened from the [Select Break Type] dialog box: [Set xx Condition] for specifying a 
break condition and [Set xx Action] for specifying an action to take when the break condition is satisfied. To open the 
[Select Break Type] dialog box from the [Event] window when you wish to select [Stop] as [Action type] in the [Select 
Break Type] dialog box, select [Add...] from the pop-up menu on the [Software Break] tab; if you wish to select another 
action type, select [Add...] from the pop-up menu on the [Software Event] tab. 

Selecting a Break Type: 

Selecting [Add...] from the popup menu on the [Event] window opens the [Select Break Type] dialog box. Select a 
break type in the [Break type] field of this dialog box. 

 

Figure 3.16   Select Break Type Dialog Box 

The following options are available: 

[Break type]  
 [PC Breakpoint]: Breakpoint set at an instruction 
 [Break Access]: Break on access to a memory range 
 [Break Data]: Break on detection of a memory value 
 [Break Register]: Break on detection of a register value 
 [Break Sequence]: Sequential breakpoints 
 [Break Cycle]: Break after the specified number of cycles 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 42 of 130 
REJ10J2162-0100 

Setting Break Conditions: 

Click on [Detail…] after selecting the break type in the [Select Break Type] dialog box. This opens a dialog box that 
allows you to set conditions for the selected break type. 

• [PC Breakpoint] 

 

Figure 3.17   Set PC Breakpoint Condition Dialog Box 

Up to 1024 PC-breakpoint conditions can be specified. 
 [Address]: Address of the instruction where a break will occur 
 [Count]: Number of times that the specified instruction is fetched  

  (1 to 16,383; the default value is 1; if the prefix is omitted, values input  
  are taken as decimal, and the display is in decimal notation). 

 
• [Break Access] 

 

Figure 3.18   Set Break Access Condition Dialog Box 

Up to 1024 access break conditions can be specified. 
 [Begin address]: First address of the range of memory for which access generates a break 
 [End address]: Last address of the range of memory for which access generates a break 

 (if no data is input, the range corresponds to the first address alone) 
 [Access type]: Read, write, or read/write 
 
Note:  For string and multiply-and-accumulate instructions, only the last data-access operation is checked for access 

break conditions. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 43 of 130 
REJ10J2162-0100 

• [Break Register] 

 

Figure 3.19   Set Break Register Condition Dialog Box 

Up to 1024 register break conditions can be specified. 
 [Register]: Register name for which the break condition is specified 
 [Option]: Match or mismatch with the data 
 [Data]: Data value used in the break condition (if no data is input here, a break  

  will occur whenever data is written to the register) 
 [Data mask]: Mask condition (specifying 0 for a bit masks the bit) 
 [Size]: Data size 
 
Notes: 1. For string and multiply-and-accumulate instructions, only the last register-access operation is checked for 

register break conditions. 
 2. Checking of registers when stack pointer registers are specified as break registers is as shown below. 
 

Accessed Register Register Specification  
ISP USP 

R0 Checked Checked 

ISP Checked Not Checked 

USP Not Checked Checked 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 44 of 130 
REJ10J2162-0100 

 
• [Break Sequence] 

 

Figure 3.20   Set Break Sequence Condition Dialog Box 

Only one sequential break condition can be specified. 
 [Address1] to [Address8]: Addresses that must be passed as conditions to generate the break (not all 

of the eight breakpoints have to be set). 
 
• [Break Cycle] 

 

Figure 3.21   Set Number-of-Cycles Break Condition Dialog Box 

Up to 1024 number-of-cycles break conditions can be specified. 
 [Cycle]: Number of cycles required to cause a break (H'1 to H'FFFFFFFF).  
   The condition will be satisfied by execution for the number of cycles in  

  the [Cycle] setting × n.  
  However, the specified number of cycles may differ from the number  
  of cycles on which the condition is satisfied. 

 [Count]: Number of times the break will occur 
  [ALL]: The break will occur whenever the condition is satisfied.  
  [Times]: The break will only occur up to the number of times specified as  

  [Times] (1 to 65535; if the prefix is omitted, values input are taken as  
  hexadecimal, and the display is in hexadecimal notation). 

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 45 of 130 
REJ10J2162-0100 

• [Break Data] 

 

Figure 3.22   Set Break Data Condition Dialog Box 

Data break conditions should be set as follows. 

Up to 1024 data break conditions can be specified. 
 [Address]: Address in memory for which the break condition is specified 
 [Option]: How the data value is used to form the condition that must be satisfied  

  for break generation 
[Equal]:  The value written to memory matches [Data]. 

  [Not equal]: The value written to memory does not match [Data]. 
  [Inverse sign]*1: The sign of the value written to memory is the inverse of that  

   for the previous value. 
  [Difference]*1: The difference between the current and previous values  

   written to memory exceeds [Data]. 
  [GT(>)]:  A value written to memory is greater than [Data]. 
  [LT(<)]:  A value written to memory is less than [Data]. 
  [GE(>=)]: A value written to memory is greater than or equal to [Data]. 
  [LE(<=)]: A value written to memory is less than or equal to [Data]. 
  [IN]:  A value written to memory is within the range between  

   [Data 1] and [Data 2] ([Data 1] <= value written to memory  
   <= [Data 2]). 

  [OUT]:  A value written to memory is outside the range between  
   [Data 1] and [Data 2] (value written to memory <  
   [Data 1] | [Data 2] < value written to memory). 

 [Data 1]: Data value used in the break condition. When [IN] or [OUT] has been  
  selected, [Data 1] is the beginning of a range for use in the break  
  condition. 

 [Data 2]: Data value that is the end of a range for use in the break condition.  
  This option is only available when [IN] or [OUT] has been selected. 

 [Data mask]: Mask condition (specifying 0 for a bit masks the bit). This option is not  
  available when [Inverse sign] or [Difference] has been selected. 

 [Size]: Data size 
 [Sign]: Sign of the data.  

  This option is only available in the following cases. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 46 of 130 
REJ10J2162-0100 

  • The selection for [Option] is [Difference]. 
  • The selection for [Option] is [GT(>)], [LT(<)], [GE(>=)], [LE(<=)],  
  [IN], or [OUT] and the selection for [Size] is [Byte], [Word], or  
  [Long word]. 

 
Notes: 1. Since [Inverse sign] and [Difference] require comparison of the data with the value previously written to 

memory, the break will never occur on the first test after a reset or break generation when either of these 
conditions has been selected. 

 2. For string and multiply-and-accumulate instructions, only the last data-access operation is checked for data 
break conditions. 

 
Selecting an Action in Response to a Break: 

If you click on [OK] after setting break conditions in the dialog boxes described on the preceding pages, the [Select 
Break Type] dialog box is opened again. Select an action type in the [Action type] field of this dialog box. 

 

Figure 3.23   Select Break Type Dialog Box 

The following options are available: 

[Stop]:  Execution of the user program is stopped when the condition is satisfied.  
[File Input]: The contents of a specified file are read out and written to the specified memory  
  when the condition is satisfied. 
[File Output]: The contents of the specified memory are read out and written to the specified  
  file when the condition is satisfied. 
[Interrupt]: Interrupt processing proceeds when the condition is satisfied.  
[Trace Trigger]: Tracing starts when the condition is satisfied (only in cases where triggering of  
  tracing by events has been enabled). 

Setting Details of the Action: 

Click on [Detail…] after selecting the action type in the [Select Break Type] dialog box. This opens a dialog box that 
allows you to set details of the selected action (except [Stop] and [Trace Trigger]). 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 47 of 130 
REJ10J2162-0100 

• [File Input] 

 

Figure 3.24   Set File Input Action Dialog Box 

When the condition is satisfied, data are read out from the specified file and written to the specified location in memory. 
 [Input file]: File from which data are to be read out. When reading out by the simulator/debugger reaches 

the end of the file, reading out recommences from the beginning of the same file. 
 [Address]: Memory address to which data should be written. 
 [Data size]: Size of each data value in bytes (1/2/4/8).  
 [Count]: Number of values to be written (H’1 to H’FFFFFFFF; when the prefix is omitted, values 

input are taken as decimal, and the display is in decimal notation). 
 
• [File Output] 

 

Figure 3.25   Set File Output Action Dialog Box 

When the condition is satisfied, the contents at the specified location in memory are written to the specified file. 
 [Output file]: Data file to which data are written. 
 [Append]: Selects whether the data should be appended to the file if an existing file is specified as the 

output file. 
 [Address]: Memory address to read data from. 
 [Data size]: Size of each data value to be read (1/2/4/8). 
 [Count]: Number of values to be read (H’1 to H’FFFFFFFF; when the prefix is omitted, values input 

are taken as decimal, and the display is in decimal notation). 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 48 of 130 
REJ10J2162-0100 

• [Interrupt] 

 

Figure 3.26   Set Interrupt Action Dialog Box 

When the condition is satisfied, interrupt processing proceeds. For details, refer to section 2.15, Pseudo-Interrupts. 
 [Interrupt type 1]: Sets the following values for each CPU (when the prefix is omitted, values input are 

taken as hexadecimal, and the display is in hexadecimal notation) 
 [Priority] Interrupt priority (0 to 8 or 0 to H’10: if the prefix is omitted, values input are taken 

as hexadecimal, and the display is hexadecimal). The value is in the range from 0 to 
8 or H'10. 
The fast interrupt is specified by the value 8 when the range is from 0 to 8 and H'10 
when the range is from 0 to H'10. 

 
• Point for Caution 

When the same file is specified for multiple [File Input] actions, the simulator/debugger will read data from the file in 
the order of condition satisfaction. When the same file is specified for multiple [File Output] actions, the 
simulator/debugger will write data to the file in the order of condition satisfaction. However, when the same file is 
specified for [File Input] and [File Output], the only valid action is that for the first condition to be satisfied. 

3.6.3 Modifying Breakpoints 

Select a breakpoint to be modified, and choose [Edit...] from the pop-up menu to open the [Select Break Type] dialog 
box, which allows the user to modify the break conditions. The [Edit...] menu is only available when one breakpoint is 
selected.  

3.6.4 Enabling a Breakpoint 

Select a breakpoint and choose [Enable] from the pop-up menu to enable the selected breakpoint. 

3.6.5 Disabling a Breakpoint 

Select a breakpoint and choose [Disable] from the pop-up menu to disable the selected breakpoint. When a breakpoint is 
disabled, the breakpoint will remain in the list, but a break will not occur when the specified conditions have been 
satisfied. 

3.6.6 Deleting a Breakpoint 

Select a breakpoint and choose [Delete] from the pop-up menu to remove the selected breakpoint. To retain the 
breakpoint but not have it cause a break when its conditions are met, use the [Disable] option (see section 3.6.5, 
Disabling a Breakpoint). 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 49 of 130 
REJ10J2162-0100 

3.6.7 Deleting All Breakpoints 

Choose [Delete All] from the pop-up menu to remove all breakpoints. 

3.6.8 Viewing the Source Line for a Breakpoint 

Select a breakpoint and choose [Go to Source] from the pop-up menu to open the [Source] or [Disassembly] window at 
the address of the breakpoint. The [Go to Source] menu is only available when one breakpoint is selected.  

3.6.9 Closing Input or Output File 

Select a breakpoint and choose [Close File] from the pop-up menu to close the selected [File Input] or [File Output] 
data file and to reset the address to read the file. 

3.6.10 Closing All Input and Output Files 

Choose [Close All Files] from the pop-up menu to close all [File Input] and [File Output] data files and to reset the 
address for reading the file. 

3.7 Viewing Trace Information 

The simulator/debugger acquires the results of each instruction execution as trace information and displays it in the 
[Trace] window. The conditions for the trace information acquisition can be specified in the [Trace Acquisition] dialog 
box.  

3.7.1 Opening the Trace Window 

To open the [Trace] window, choose [View -> Code -> Trace] or click the [Trace] toolbar button . 

3.7.2 Specifying Trace Acquisition Conditions 

After the [Trace] window opens, specify the trace acquisition conditions in the [Trace Acquisition] dialog box. To open 
this dialog box, choose [Acquisition...] from the pop-up menu. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 50 of 130 
REJ10J2162-0100 

 

Figure 3.27   Trace Acquisition Dialog Box 

This dialog box specifies the conditions for trace information acquisition. 

[Trace Function] 
 [Disable] Disables trace information acquisition. 
 [Enable] Enables trace information acquisition. 

[Trace Buffer Full Handling] 
 [Continue] Continues acquiring trace information even if the trace information acquisition buffer becomes 

full. 
 [Break] Stops execution when the trace information acquisition buffer becomes full. 

[Trace Capacity] 
 [65536 records] The size of the trace buffer is 64 Krecords. 
 [131072 records] The size of the trace buffer is 128 Krecords. 
 [262144 records] The size of the trace buffer is 256 Krecords. 

[524288 records] The size of the trace buffer is 512 Krecords. 
[1048576 records] The size of the trace buffer is 1 Mrecord. 

[Acquisition Condition] 
[All]  Trace information is acquired until execution of the program is stopped. 
[Event Trigger] A total of 512 records of trace data (i.e. 255 records before the event, the event point itself,  
   and 256 records after the event) are acquired every time the trigger event is encountered. 

[Trace Event] 
Shows information on the events to start tracing. 
The following items are displayed. 
 [Type]  Event type 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 51 of 130 
REJ10J2162-0100 

 [Condition] Condition 
 Events of the type selected for [Type] (with the checkbox selected) are valid. 
[Add…]  Opens a dialog box in which events can be added. 
[Delete]  Deletes the selected event. 
[Delete All] Deletes all events. 
[Enable All] Enables all events. 
[Disable All] Disables all events. 

Modifying a setting in the [Trace Acquisition] dialog box clears the trace information.  

Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the 
settings. 

3.7.3 Setting Events for Tracing 

Break conditions are utilized as events for tracing. When a specified event is encountered, trace data around the event 
point are acquired. Such events can be set in the [Select Break Type] dialog box. 

To open the [Select Break Type] dialog box, click on the [Add] button in the [Trace Acquisition] dialog box or select 
[Add…] from the popup menu opened by right-clicking on the [Software event] tabbed page of the [Event] window. 

For details on the conditions and actions to take, refer to section 3.6, Using the Simulator/Debugger Breakpoints. 

If you wish to modify the condition of an event for tracing, double-click on the event condition in the [Trace Event] 
section to open the [Select Break Type] dialog box. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 52 of 130 
REJ10J2162-0100 

3.7.4 Acquiring Trace Information 

After trace acquisition is enabled, trace information is acquired during instruction execution. The acquired information 
will be displayed in the [Trace] window. 
Bus display, disassembly display, and source display or mixtures of these are available. 

(1) Bus Display Mode 
In the pop-up menu, select [Display Mode -> BUS].  

(a) “Acquire All” Mode 
In this mode, the [Trace] window shows all trace data from the start to the end of simulation. 

 

Figure 3.28   Trace Window in “All Acquire” Mode (Bus Display Mode) 

This window displays the following trace information items: 
[PTR]  Pointer in the trace buffer (0 for the last executed instruction) 
[Label]  Label corresponding to the address (only displayed when a label is set). 
[Address]  Instruction address 
[Time Stamp] Total instruction execution time  

(hours: minutes: seconds: milliseconds: microseconds: nanoseconds) 
[PSW]  Display the value of the processor status word (PSW) as a mnemonic. 
[Instruction] Instruction mnemonic 
[Interrupt]  Interrupt (″Interrupt″ if an interrupt is generated, ″-″ if not) 
[Access Data] Data access information (display format:  destination <- accessed data)∗ 

Note: For string and multiply-and-accumulate instructions, this is only the last data to have been accessed. 

(b) Event Trigger Mode 
In this mode, the [Trace] window shows a set of 512 records of data around an event that has been encountered. 
To view data on another event, select [Trace Point -> Trace Point Previous] or [Trace Point -> Trace Point Next] 
from the popup menu of the [Trace] window. After the simulation stops, the [Trace] window shows information 
on the oldest event. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 53 of 130 
REJ10J2162-0100 

 

Figure 3.29   Trace Window in Event Trigger Mode (Bus Display Mode) 

This window displays the following trace information items: 
[No.]  Number of times that the trace point has been encountered once the  
   simulation has started 
[PTR]  Pointer to entry in the trace buffer (0 for the trigger of the event) 
[Label]  Label corresponding to the address (only displayed when a label is set) 
[Address]  Instruction address 
[Time Stamp] Total instruction execution time  
   (hours: minutes: seconds: milliseconds: microseconds: nanoseconds) 
[PSW]  Display the value of the processor status word (PSW) as a mnemonic. 
[Instruction] Instruction mnemonic 
[Interrupt]  Interrupt (″Interrupt″ if an interrupt is generated, ″-″ if not) 
[Access Data] Data access information (display format:  destination <- accessed data)∗ 

Note: For string and multiply-and-accumulate instructions, this is only the last data to have been accessed. 

(2) Disassembly Display Mode 
In the pop-up menu, select [Display Mode -> DIS]. This enables reference to executed instructions. 

 

Figure 3.30   Trace Window (Disassembly Display Mode) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 54 of 130 
REJ10J2162-0100 

(3) Source Display Mode 
From the pop-up menu, choose [Display Mode -> SRC]. This display mode allows you to inspect the source 
program’s execution path. The execution path can be verified by stepping through the source within trace data 
forward or backward from the current trace cycle. 

 

Figure 3.31   Trace Window (Source Display Mode) 

(4) Mixed Display Mode 
This display mode provides a mixed display of bus, disassemble or source display. 
After choosing [Display Mode -> BUS] from the pop-up menu, select [Display Mode -> DIS]. That way, you can 
produce a bus and disassemble mixed display. In the same way, you can produce a bus and source, a disassemble 
and source or a bus, disassemble and source mixed display.  
To revert to a bus only display after viewing a bus and disassemble mixed display, choose [Display Mode-> DIS] 
from the pop-up menu again. 

 

Figure 3.32   Trace Window (Mixed Display Mode) 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 55 of 130 
REJ10J2162-0100 

3.7.5 Searching for Trace Information 

Use the [Find] dialog box to search for trace information. To open it, select [Find -> Find...] from the pop-up menu. 

 

Figure 3.33   Trace Search Dialog Box 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 56 of 130 
REJ10J2162-0100 

Select the conditions required for the search by checking the corresponding buttons in the [Combination] list. Details of 
the condition can be specified under [Find Item]. When several conditions have been chosen in the [Combination] list, 
specify the details of the individual conditions. The target of the search is the logical AND of the several conditions. 

Item  Contents Search Conditions 
[PTR] Pointer in the trace buffer Specified decimal value 

A range is specifiable. 

Searching for values other than the specified value is 
selectable. 

[Address] Instruction address Specified hexadecimal value 

A range is specifiable. 

Searching for values other than the specified value is 
selectable. 

[Time stamp] Execution time of total instruction Value specified in an edit box in the unit of time 

A range is specifiable. 

Searching for values other than the specified value is 
selectable. 

[Instruction] Instruction mnemonic Specified string 

Searching for values other than the specified value is 
selectable. 

[Interrupt] Interrupt occurrence Fixed string: ″Interrupt″ 

Searching for values other than the specified value is 
selectable. 

 

The conditions you have set are shown in the [Find Setting Contents] list box. 
After setting search conditions, click the [Find Previous] or [Find Next] button to start a search.  

When a matching trace record is found by a search, the relevant line in the [Trace] window is highlighted. If no 
matching trace records are found, a message dialog box is displayed. 

When an instance of the trace record was successfully found, choose the [Find Previous] or [Find Next] button from the 
pop-up menu. The next instance of the trace record will be searched for. 

3.7.6 Filtering Trace Information 

Use the filter function to extract only the necessary records from the acquired trace information. To use the filter 
function, select [Auto Filter] from the pop-up menu of the [Trace] window. When [Auto Filter] is turned on, each 
column of the [Trace] window is marked with an auto-filter arrow [ ]. Click on an arrow and select [Options…] from 
the drop-down list to bring up the [Options…] dialog box to select the conditions for filtering. The available kinds of 
filtering and filtering conditions are the same as for the kinds of targets and search conditions for trace record searching. 

Note: Filtering is not possible in the event trigger mode. 

3.7.7 Clearing the Trace Information 

Re-executing instruction simulation after trace information has been acquired clears the trace information. 

3.7.8 Saving the Trace Information in a File 

The trace information displayed in the [Trace] window is saved in text format and cannot be saved in binary format. 
Choose [File-> Save...] from the pop-up menu to open the [Save As] dialog box, which allows the user to save the 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 57 of 130 
REJ10J2162-0100 

contents of the trace buffer as a text file. A range can be specified based on [Start – End Cycle]. Note that this file 
cannot be reloaded into the trace buffer. 

3.7.9 Viewing the Source File 

An [Editor] window corresponding to a selected trace record can be displayed in the source display mode by selecting 
[File -> Edit Source] from the pop-up menu.  

To display another source file in the source display mode of the [Trace] window, use the [Display Source] dialog box. 
Choose [File -> Display Source] from the pop-up menu to open the [Display Source] dialog box. 

 

Figure 3.34   Display Source Dialog Box 

The source file to be displayed in the [Trace] window can be selected in this dialog box. After setting the conditions, 
click on the [OK] button to display the source file in the [Trace] window, with the first line of the selected function 
highlighted. 

3.7.10 Switching Timestamp Display 

The timestamp displayed in the [Trace] window can be switched to absolute time, differential time or relative time. In 
the initial state, the timestamp is displayed in absolute time. 

(1) Absolute time 
From the pop-up menu, choose [Time -> Absolute Time] or click the [Absolute Time] button  in the toolbar.  

(2) Differential time 
From the pop-up menu, choose [Time -> Differences] or click the [Differences] button  in the toolbar. 

(3) Relative time 
From the pop-up menu, choose [Time -> Relative Time] or click the [Relative Time] button  in the toolbar.  

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 58 of 130 
REJ10J2162-0100 

3.7.11 Showing the History of Function Execution 

To show the history of function execution from the acquired trace information, choose [Function Execution History -> 
Function Execution History] from the pop-up menu or click the [Function Execution History] button  in the toolbar. 
An upper pane of the window will be displayed. (Initially, this window is blank.) When you choose [Analyze Execution 
History] from the pop-up menu or click the [Analyze Execution History] button  in the toolbar, the 
simulator/debugger starts analyzing the execution history from the end of the trace result and shows the result in a tree 
structure. 

 

Figure 3.35   Trace Window 

The lower pane of the window shows the trace result beginning with the cycle in which the function selected in the 
upper pane was called. 

Note: The history of function execution is not displayable in the event trigger mode. 

3.8 Viewing the Profile Information 

The profile function enables function-by-function measurement of the performance of the application program in 
execution. This makes it possible to identify parts of an application program that degrade its performance and the 
reasons for such degradation.  

The HEW displays the results of measurement in three windows, according to the method and purpose of viewing the 
profile data. 

3.8.1 Stack Information Files 

The profile function allows the HEW to read the stack information files (extension: .SNI) which are output by the 
optimizing linkage editor (ver. 7.0 or later). Each of these files contains information related to the calling of static 
functions in the corresponding source file. Reading the stack information file makes it possible for the HEW to display 
information related to the calling of functions without executing the user application (i.e. before measuring the profile 
data). However, this feature is not available when [Setting->Only Executed Functions] is checked in the pop-up menu 
of the [Profile] window. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 59 of 130 
REJ10J2162-0100 

When the HEW does not read any stack information files, only the data on the functions executed during measurement 
will be displayed by the profile function. 

To make the linkage editor create a stack information file, choose [Build -> RX600 Standard Toolchain...], and select 
[Other] from the [Category] list box and check the [Stack information output] box in the [Link/Library] sheet of the 
[Standard Toolchain] dialog box. 

 

Figure 3.36   Standard Toolchain Dialog Box (1) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 60 of 130 
REJ10J2162-0100 

3.8.2 Loading Stack Information Files 

You can select whether or not to read the stack information file in a message box for confirmation that is displayed 
when a load module is loaded. Clicking the [OK] button of the message box loads the stack information file. The 
message box for confirmation will be displayed when: 

• There are stack information files (extension: .SNI) 
• The [Load Stack Information Files (SNI files)] check box is checked in the [Confirmation] tab of the [Options] 

dialog box (figure 3.37) that can be opened by choosing  
[Setup -> Options…] from the main menu.  

 

Figure 3.37   Options Dialog Box 

3.8.3 Enabling the Profile 

Choose [View->Performance->Profile] to open the [Profile] window. 

Choose [Enable Profiler] from the pop-up menu of the [Profile] window. The item on the menu will be checked. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 61 of 130 
REJ10J2162-0100 

3.8.4 Specifying Measurement Mode 

You can specify whether to trace functions calls while profile data is acquired. When function calls are traced, the 
relations of function calls during user program execution are displayed as a tree diagram. When not traced, the relations 
of function calls cannot be displayed, but the time for acquiring profile data can be reduced.  

To stop tracing function calls, choose [Disable Tree (Not traces function call)] from the pop-up menu in the [Profile] 
window (a check mark is shown to the left of the menu item). 

When acquiring profile data of the program in which functions are called in a special way, such as task switching in the 
OS, stop tracing function calls. 

3.8.5 Executing the Program and Checking the Results 

After the user program has been executed and execution has been halted, the results of measurement are displayed in 
the [Profile] window. 

The [Profile] window has two sheets; a [List] sheet and a [Tree] sheet. 

3.8.6 List Sheet 

This sheet lists functions and global variables and displays the profile data for each function and variable. 

 

Figure 3.38   List Sheet 

Clicking the column header sorts the items in an alphabetical or ascending/descending order. Clicking the 
[Function/Variable] or [Address] column displays the source program corresponding to the address in the line. 

Right-clicking on the mouse within the window displays a pop-up menu. For details on this pop-up menu, refer to 
section 3.8.7, Tree Sheet. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 62 of 130 
REJ10J2162-0100 

3.8.7 Tree Sheet 

This sheet displays the relation of function calls along with the profile data that are values when the function is called. 
This sheet is available when [Disable Tree (Not traces function call)] is not selected from the pop-up menu in the 
[Profile] window. 

 

Figure 3.39   Tree Sheet 

Double-clicking a function in the [Function] column expands or reduces the tree structure display. The expansion or 
reduction is also provided by the “+” or “-” key. Double-clicking the [Address] column displays the source program 
corresponding to the specific address. 

Right-clicking on the mouse within the window displays a pop-up menu. Supported menu options are as follows: 

• View Source 
Displays the source program or disassembled memory contents for the address in the selected line. 

• View Profile-Chart 
Displays the [Profile-Chart] window focused on the function in the specified line. 

• Enable Profiler 
Toggles acquisition of profile data. When profile data acquisition is enabled, a check mark is shown to the left of the 
menu text.  

• Not trace the function call  
Stops tracing function calls while profile data is acquired. This menu is used when acquiring profile data of the 
program in which functions are called in a special way, such as task switching in the OS.  
To display the relation of function calls in the [Tree] sheet of the [Profile] window, acquire profile data without 
selecting this menu. In addition, do not select this menu when optimizing the program by the optimizing linkage 
editor using the acquired profile information file. 

• Find… 
Displays the [Find Text] dialog box to find a character string in the [Function] column. Search is started by entering 
a character string to be found in the edit box and clicking [Find Next] or pressing the Enter key. 

• Find Data… 
Displays the [Find Data] dialog box.  

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 63 of 130 
REJ10J2162-0100 

 

Figure 3.40   Find Data Dialog Box 

By selecting the column to be searched in the [Column] combo box and the search type in the [Find Data] group 
then pressing [Find Next] button or Enter key, search is started. If the [Find Next] button or the Enter key is input 
repeatedly, the second larger data (the second smaller data when Minimum is specified) is searched for. 

• Clear Data 
Clears the number of times functions are called and the profile data. Data in the [List] sheet of the [Profile] window 
and the data in the [Profile-Chart] window are also cleared. 

• Output Profile Information Files… 
Displays the [Save Profile Information Files] dialog box. Profiling results are saved in a profile information file 
(.pro extension).  

• Output Text File… 
Displays the [Save Text of Profile Data] dialog box. Displayed contents are saved in a text file. 

• Setting 
This menu has the following submenus (the menus available only in the [List] sheet are also included). 
⎯ Show Functions/Variables 

Displays both functions and global variables in the [Function/Variable] column. 
⎯ Show Functions 

Displays only functions in the [Function/Variable] column. 
⎯ Show Variables 

Displays only global variables in the [Function/Variable] column. 
⎯ Only Executed Functions 

Only displays the executed functions. If a stack information file (.sni extension) output from the optimizing 
linkage editor does not exist in the directory where the load module is located, only the executed functions are 
displayed even if this check box is not checked.  

⎯ Include Data of Child Functions 
Sets whether or not to display information for a child function called in the function as profile data. 

• Properties... 
This menu cannot be used in this simulator/debugger. 

 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 64 of 130 
REJ10J2162-0100 

3.8.8 Profile-Chart Window 

The [Profile-Chart] window displays the relation of calls for a specific function. This window displays the specified 
function in the middle, with the callers of the function on the left and the callees of the function on the right. The 
numbers of times the function calls the functions or is called by the functions are also displayed in this window. 

 

Figure 3.41   Profile-Chart Window 

Right-clicking the mouse within the window displays a pop-up menu. Supported menu options are as follows: 

• View Source 
Displays the source program or disassembled memory contents for the address of the function on which the cursor is 
placed when the right-hand mouse button is clicked. If the cursor is not placed on a function when the right-hand 
mouse button is clicked, this menu option remains gray. 

• View Profile-Chart 
Displays the [Profile-Chart] window for the specific function on which the cursor is placed when the right-hand 
mouse button is clicked. If the cursor is not placed on a function when the right-hand mouse button is clicked, this 
menu option remains gray. 

• Enable Profiler 
Toggles acquisition of profile data. When profile data acquisition is enabled, a check mark is shown to the left of the 
menu text.  

• Clear Data 
Clears the number of times functions are called. Data in the [List] and [Tree] sheets of the [Profile] window are also 
cleared. 

• Multiple View 
If a further [Profile-Chart] window is opened while an existing [Profile-Chart] window is already open, this option 
selects whether a new window is opened or the new data is displayed in the existing window. When a check mark is 
shown to the left of this menu item, a new window will be opened. 

• Output Profile Information Files... 
Displays the [Save Profile Information Files] dialog box. Profiling results are saved in a profile information file 
(.pro extension). The optimizing linkage editor optimizes user programs according to the profile information in this 
file. For details on optimization with the profile information, refer to the user’s manual for the optimizing linkage 
editor. 

• Expands Size 
Redo the display with larger intervals between functions. The "+" key can also be used to do this. 

• Reduces Size 
Redo the display with smaller intervals between functions. The “-” key can also be used to this. 

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 65 of 130 
REJ10J2162-0100 

3.8.9 Types and Purposes of Displayed Data 

The profile function is able to acquire the following information: 

Address You can view the locations in memory to which the functions are allocated.  
 Sorting the list of functions and global variables in order of their addresses  
 allows the user to view the way the items are allocated in the memory space. 

Size Sorting in order of size makes it easy to find small functions that are frequently  
 called. Setting such functions as inline may reduce the overhead of function  
 calls. 

Stack Size When there is deep nesting of function calls, pursue the route of the function  
 calls and obtain the total stack size for all of the functions on that route to  
 estimate the amount of stack being used. 

Times Sorting by the number of calls or accesses makes it easy to identify the  
 frequently called functions and frequently accessed global variables. 

Profile Data Measurement of a variety of CPU-specific data is also available as follows: 

• [Cycle] (the number of cycles execution requires) 
• [Ext_mem] (the number of external memory accesses) 
• [I/O_area] (the number of internal I/O area accesses) 
• [Int_mem] (the number of internal memory accesses) 
 
The number of cycles is calculated by subtracting the number of cycles until the specified function is called from the 
number of cycles when the return instruction for the function is called. 

Note:  A string or multiply-and-accumulate instruction is treated as accessing data only once (i.e. the last data-access 
operation). 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 66 of 130 
REJ10J2162-0100 

3.8.10 Creating Profile Information Files 

To create a profile information file, choose the [Output Profile Information Files…] menu option from the pop-up 
menu. The [Save Profile Information Files] dialog box is displayed. Pressing the [Save] button after selecting a file 
name will write the profile information to the selected file. Pressing the [Save All] button will write the profile 
information to all of the profile information files. 

 

Figure 3.42   Save Profile Information Files Dialog Box 

3.8.11 Notes 

1. The number of executed cycles for an application program as measured by the profile function includes a margin of 
error. The profile function only allows the measurement of the proportions of execution time that the functions 
occupy in the overall execution of the application program. Use the Performance Analysis function to precisely 
measure the numbers of executed cycles. 

2. The names of the corresponding functions may not be displayed when the profile information on a load module with 
no debugging information is measured. 

3. The stack information file (extension: .SNI) must be in the same directory as the load module file (extension: .ABS). 
4. It is not possible to store the results of measurement. 
5. It is not possible to modify the results of measurement. 
 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 67 of 130 
REJ10J2162-0100 

3.9 Analyzing Performance 

Use the [Performance Analysis] window to select a function name and analyze the performance. 

3.9.1 Opening the Performance Analysis Window 

Choose [View -> Performance -> Performance Analysis] or click the [PA] toolbar button  to open the [Performance 
Analysis] window. 

 

Figure 3.43   Performance Analysis Window 

This window displays the number of execution cycles required for each specified function.  

The number of execution cycles is calculated as follows: 

Execution cycles = total number of execution cycles when execution returns from the function  
 – total number of execution cycles when the target function is called  

The following items are displayed: 

[Index] Index number of the set condition 

[Function] Name of the function to be measured (or the start address of the function) 

[Cycle] Total number of instruction execution cycles 

[Count] Total number of calls for the function 

[Histogram] Ratio of number of cycles for execution of the function to the number of cycles for execution of the 
whole program, displayed as a percentage and histogram 

3.9.2 Specifying a Target Function 

After the [Performance Analysis] window is open, choose [Add Range...] from the pop-up menu or press the Insert key 
to open the [Performance Option] dialog box, which allows the user to specify a function to be analyzed. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 68 of 130 
REJ10J2162-0100 

 

Figure 3.44   Performance Option Dialog Box 

This dialog box specifies a function (including a label) to be evaluated. Up to 255 functions can be specified in total.  

Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the 
function to be evaluated. 

Select a function that has been set and choose [Edit Range] from the pop-up menu or press the Enter key to open the 
[Performance Option] dialog box and to change the function to be evaluated.  

3.9.3 Starting Performance Data Acquisition 

Choose [Enable Analysis] from the pop-up menu (a check mark is shown to the left of [Enable analysis]) to start 
acquiring performance analysis data.  

3.9.4 Resetting Data 

Choose [Reset Counts/Times] from the pop-up menu to clear the current performance analysis data. 

3.9.5 Deleting a Target Function 

Select a function and choose [Delete Range] from the pop-up menu to delete the selected target function and to 
recalculate the data within other ranges. The selected function can also be deleted by the Delete key. 

3.9.6 Deleting All Target Functions 

Choose [Delete All Ranges] from the pop-up menu to delete all the current target functions to be evaluated and to clear 
the performance analysis data. 

3.9.7 Saving the Currently Displayed Contents 

The contents currently displayed in the window can be saved in a text file. Select [Save to File…] from the pop-up 
menu. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 69 of 130 
REJ10J2162-0100 

3.10 Measuring Code Coverage 

The [Coverage] window acquires code coverage information (C0 coverage and C1 coverage) in the range specified by 
the user, and displays the information. 

3.10.1 Opening the Coverage Window 

Choose [View -> Code -> Coverage...] or click the [Coverage] toolbar button  to open the [Open Coverage] dialog 
box. 

 

Figure 3.41   Open Coverage Dialog Box 

This dialog box specifies the coverage measuring range. To set coverage for a new range, the following two ways are 
available: 

• Specifying the start and end addresses on the new window 
[Start Address] Start address of coverage information display  
  (When a prefix is omitted, values input are taken as hexadecimal.) 

[End Address] End address of coverage information display  
  (When a prefix is omitted, values input are taken as hexadecimal.) 

• Specifying the file on the new window 
[File]  Source file whose extension is .C or .CPP in the current project.  
  Functions in the specified file can be set as the coverage range. 
  If the extension of the file is omitted, .C is complemented.  
  The file that has other extensions than .C or .CPP cannot be specified. 
  A placeholder or the [Browse…] button is available. 

To use the settings saved in a coverage information file, choose the file from [Open a recent coverage file], or open a 
file open dialog box by [Browse to another coverage file] and select the file. When [Open a recent coverage file] is 
selected, up to four recent files that have been saved are displayed. 

Clicking [OK] opens the [Coverage] window. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 70 of 130 
REJ10J2162-0100 

When the [Coverage] window has already been displayed for specifying address, settings are added in the window. 

• Coverage window (specifying address) 

 

Figure 3.42   Coverage Window (Specifying Address) 

This window displays the coverage range and statistical information. The following items are displayed: 

[Range]  Address range 

[Statistic] Percentage of the instructions executed within the range 

[Status]  Enable or Disable status of the coverage range 

When the [Coverage] window is closed, the acquired coverage information and the conditions to acquire information 
will be cleared. 

• Coverage window (specifying source file) 

 

Figure 3.43   Coverage Window (Specifying Source File) 

This window displays the coverage range and statistical information. The following item is displayed: 

[Functions] List of functions 

[Statistic] Percentage of the instruction executed within the function 

[Status]  Enable or Disable status of the respective function 

Note: The functions can be sorted by their names or percentage, either in ascending or descending order, by clicking 
the column tab ([Functions] or [Statistic]). 

 
When the [Coverage] window is closed, the acquired coverage information and the conditions to acquire information 
will be cleared. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 71 of 130 
REJ10J2162-0100 

3.10.2 Acquiring All Coverage Information 

Choose [Enable All] from the pop-up menu and execute the user program to acquire all coverage information. By 
default, [Enable All] is selected. 

3.10.3 Clearing All Coverage Information 

Choosing [Clear All] from the popup menu clears all the coverage information that has been acquired. 

3.10.4 Viewing the Source Window 

Choose [View Source] from the pop-up menu to open the [Editor] window and to display the [Editor] window 
corresponding to the cursor location in the [Coverage] window. 

3.10.5 Specifying the New Coverage Range 

Choose [Add Range...] from the pop-up menu to open the [Open Coverage] dialog box (figure 3.41). For the [Open 
Coverage] dialog box, refer to section 3.10.1, Opening the Coverage Window. 

3.10.6 Changing the Coverage Range 

• Specifying the coverage range with an address 
Choose the coverage range and [Edit Range...] from the pop-up menu to open the [Coverage Range] dialog box. 

 

Figure 3.44   Coverage Range Dialog Box (Specifying Address) 

This dialog box specifies the condition to acquire instruction execution information. The following items can be 
specified. 

[Start address] Start address (When a prefix is omitted, values input are taken as hexadecimal.) 

[End address] End address (When a prefix is omitted, values input are taken as hexadecimal.) 

Clicking [OK] changes the coverage range. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 72 of 130 
REJ10J2162-0100 

• Specifying the coverage range with a source file 
Choose [Edit Range...] from the pop-up menu to open the [Coverage Range] dialog box. 

 

Figure 3.45   Coverage Range Dialog Box (Specifying Source File) 

This dialog box specifies the condition to acquire instruction execution information. The following items can be 
specified. 

[File]  Source file whose extension is .C or .CPP in the current project.  
  Functions in the specified file can be set as the coverage range. 
  If the extension of the file is omitted, .C is complemented.  
  The file that has other extensions than .C or .CPP cannot be specified. 
  A placeholder or the [Browse…] button is available. 

Clicking [OK] changes the coverage range. 

3.10.7 Deleting the Selected Coverage Range 

Select a coverage range and choose [Delete Range] from the pop-up menu to delete the selected coverage range. 

3.10.8 Acquiring Coverage Information 

Specify a coverage range, choose [Enable Coverage] from the pop-up menu, and execute the user program to acquire 
coverage information. By default, [Enable Coverage] is selected. 

3.10.9 Clearing Coverage Information 

Specify a coverage range and choose [Clear Data] from the pop-up menu to clear the acquired coverage information. 

3.10.10 Saving Coverage Information in a File 

Choose [Save Data...] from the pop-up menu to open the [Save Data] dialog box, which allows the user to save the 
coverage information in a file. 

 

Figure 3.46   Save Data Dialog Box 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 73 of 130 
REJ10J2162-0100 

This dialog box specifies the location and name of a coverage information file to be saved. The placeholder or the 
[Browse...] button can be used. 

If a file name extension is omitted, .COV is automatically added. If a file name extension other than .COV or .TXT is 
specified, an error message will be displayed. 

3.10.11 Loading Coverage Information from a File 

Choose [Load Data...] from the pop-up menu to open the [Load Data] dialog box, which allows the user to load the 
coverage information from a file. 

 

Figure 3.47   Load Data Dialog Box 

This dialog box specifies the location and name of a coverage information file to be loaded. The placeholder or the 
[Browse...] button can be used. 

Only .COV files can be loaded. If a file name extension other than .COV is specified, an error message will be 
displayed. 

3.10.12 Updating the Information 

Choose [Refresh] from the pop-up menu to update the [Coverage] window to the latest information. 

3.10.13 Confirmation Request Dialog Box 

A confirmation request dialog box will appear when [Clear All], [Clear Data], [Edit Range...], or [Delete Range] is 
clicked or an attempt is made to close the [Coverage] window. 

 

Figure 3.48   Confirmation Request Dialog Box 

Clicking [OK] clears the coverage data. Choosing [Save Coverage data] opens the [Save Data] dialog box (figure 3.46) 
to save the coverage data in a file before it is cleared. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 74 of 130 
REJ10J2162-0100 

3.10.14 Save Coverage Data Dialog Box 

When [File -> Save Session] menu option is clicked, the [Save Coverage Data] dialog box will appear, which allows the 
user to save the [Coverage] window data in separate files or a single file. 

 

Figure 3.49   Save Coverage Data Dialog Box 

When multiple [Coverage] windows are open, a [Save Coverage Data] dialog box will appear for each open coverage 
window.  

Clicking the [No To All] button closes the dialog box without saving any coverage data. 

Clicking the [Yes To All] button saves the data of all [Coverage] windows in a single file. 

Note: If a file is specified for the coverage range, not all [Coverage] windows can be saved in a single file. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 75 of 130 
REJ10J2162-0100 

3.10.15 Displaying the Coverage Information in the Editor Window 

The coverage information is reflected to the [Editor] window by highlighting the coverage columns corresponding to 
the source lines of executed instructions. When the coverage settings are modified in the [Coverage] window, the 
coverage column display will be updated. 

 

Figure 3.50   [Coverage] Column (Source) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 76 of 130 
REJ10J2162-0100 

3.10.16 Displaying the Coverage Information in the [Disassembly] Window 

The coverage information is reflected to the [Disassembly] window by highlighting the [Coverage – ASM] columns 
corresponding to the disassembly lines of executed instructions. When the coverage settings are modified in the 
[Coverage] window, the [Coverage – ASM] column display will be updated. 

 

Figure 3.51   Coverage Column (Disassembly) 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 77 of 130 
REJ10J2162-0100 

3.11 Generating a Pseudo-Interrupt Manually 

Windows [Trigger] and [GUI I/O] allow the user to generate a pseudo-interrupt manually by pressing a button on the 
window.  

3.11.1 [Trigger] Window 

Choose [View -> CPU -> Trigger] or click the [Trigger] toolbar button  to open the [Trigger] window.  

 

Figure 3.52   Trigger Window 

This window displays trigger buttons that generate pseudo-interrupts manually. The details of the interrupt to be 
generated by pressing each trigger button can be specified in the [Trigger Setting] dialog box. 

Up to 256 trigger buttons can be used. 

For details on the interrupt processing in the simulator/debugger, refer to section 2.15, Pseudo-Interrupts. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 78 of 130 
REJ10J2162-0100 

• Setting a trigger button 
Choose [Setting...] from the pop-up menu to open the [Trigger Setting] dialog box and to specify the details of the 
pseudo-interrupt to be generated by pressing each trigger button. 

 

Figure 3.53   Trigger Setting Dialog Box 

This dialog box allows the user to specify the details of the pseudo-interrupt to be generated by pressing each trigger 
button.  

[Trigger] Selects the trigger button to be specified in detail 

[Name] Specifies a name for the selected trigger button; the name will be displayed in the [Trigger] window 

[Enable] Checking this box enables the trigger button. 

[Interrupt type1] Interrupt vector number 

[Priority]  Interrupt priority (0 to 8 or 0 to H'10; when the prefix is omitted, values input are taken as 
hexadecimal, and the display is in hexadecimal notation). The fast interrupt is specified by the value 
8 when the range is from 0 to 8 and H'10 when the range is from 0 to H'10. 

 
Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the 
details of the interrupt. 

Note: If the [Cancel] button is clicked after multiple trigger button settings are modified, the modifications of all those 
buttons are canceled. 

• Changing the number of trigger buttons 
Specify the number of trigger buttons displayed in the [Trigger] window in the [Number of Buttons] submenu in the 
pop-up menu. [4], [16], [64], or [256] can be selected.  

• Changing the size of trigger buttons 
Specify the size of trigger buttons displayed in the [Trigger] window in the [Size] submenu in the pop-up menu. 
[Large], [Normal], or [Small] can be selected.  

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 79 of 130 
REJ10J2162-0100 

3.11.2 [GUI I/O] Window 

Choose [View -> Graphic -> GUI I/O] or click the [GUI I/O] toolbar button  to open the [GUI I/O] window. 

 

Figure 3.54   GUI I/O Window 

This window displays buttons that generate pseudo-interrupts manually. The details of the interrupt to be generated by 
pressing each button can be specified in the [Set Button] dialog box. 

For details on the interrupt processing in the simulator/debugger, refer to section 2.15, Pseudo-Interrupts. 

• Setting a button 
Choose [Create Button] from the pop-up menu or click the [Create Button] toolbar button ( ). The mouse cursor turns 
into a “+” symbol. Create the button by dragging the mouse cursor from a higher-left to a lower-right position. 

 

Figure 3.55   GUI I/O Window (Create Button) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 80 of 130 
REJ10J2162-0100 

Double-click the created button to open the [Set Button] dialog box. 

 

Figure 3.56   Set Button Dialog Box 

This dialog box allows the user to specify the details of the pseudo-interrupt to be generated by pressing each button. 

[Button Name] Specifies a name for the button; the name will be displayed in the [GUI I/O] window 

[Select Button Type] Select [Input] or [Input and Interrupt]. 

[Interrupt] [Interrupt Type1] Interrupt vector number 

 [Priority] Interrupt priority (0 to 8, H'0 to H'10; when the prefix is omitted, values input are 
taken as hexadecimal, and the display is in hexadecimal notation).  
The fast interrupt is specified by the value 8 when the range is from 0 to 8 and 
H'10 when the range is from 0 to H'10. 

 

3.12 Standard I/O and File I/O Processing 

Use the [Simulated I/O] window to enable the simulation for standard I/O and file I/O from the user program.  



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 81 of 130 
REJ10J2162-0100 

3.12.1 Opening the Simulated I/O Window 

Choose [View -> CPU -> Simulated I/O] or click the [Simulated I/O] toolbar button  to open the [Simulated I/O] 
window. 

 

Figure 3.57   Simulated I/O Window 

The standard output from the user program is displayed in this window. The key input from this window is handled as 
the standard input to the user program. 

3.12.2 I/O Functions 

Table 3.1 lists the supported I/O functions. 

Table 3.1 I/O Functions 

No. Function Code Function Name Description 

1 H'21 GETC Inputs one byte from the standard input 

2 H'22 PUTC Outputs one byte to the standard output 

3 H'23 GETS Inputs one line from the standard input 

4 H'24 PUTS Outputs one line to the standard output 

5 H'25 FOPEN Opens a file 

6 H'06 FCLOSE Closes a file 

7 H'27 FGETC Inputs one byte from a file 

8 H'28 FPUTC Outputs one byte to a file 

9 H'29 FGETS Inputs one line from a file 

10 H'2A FPUTS Outputs one line to a file 

11 H'0B FEOF Checks for end of the file 

12 H'0C FSEEK Moves the file pointer 

13 H'0D FTELL Returns the current position of the file pointer 

 

To perform I/O processing, use the [Simulated I/O Address] in the [Simulator System] dialog box (refer to section 
3.3.2, Modifying the Simulator System) in the following procedure. 

1. Set the address specialized for I/O processing in the [Simulated I/O Address], select [Enable] and execute the 
program. 

2. When detecting a subroutine call instruction (BSR or JSR), that is, a simulated I/O instruction to the specified 
address during user program execution, the simulator/debugger performs I/O processing with the value in R1 and R2 
as the parameters. 

 
• Set the function code (table 3.1) in the R1 register 
 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 82 of 130 
REJ10J2162-0100 

MSB 1 byte 1 byte LSB

H'01
Function
code  

 
• Set the parameter block address in the R2 register  
 

MSB LSB

Parameter block address  
 

• Reserve the parameter block and input/output buffer areas 
 
Each parameter of the parameter block must be accessed in the parameter size. 

After the I/O processing, the simulator/debugger resumes simulation from the instruction that follows the simulated I/O 
instruction. 

Refer to the simulator/debugger help about each I/O function. 

The following shows an example for inputting one character as a standard input (from a keyboard). Label SYS_CALL 
is specified as the simulated I/O address. 

 MOV.L #01210000h, R1 

 MOV.L #PARM, R2 

 MOV.L #SYS_CALL, R3 

 JSR R3 

STOP NOP 

SYS_CALL NOP 

PARM .LWORD INBUF 

 .SECTION B, DATA 

INBUF .BLKB 2 

 .END 
 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 83 of 130 
REJ10J2162-0100 

3.13 Creating a Virtual I/O Panel 

The simulator/debugger has a GUI I/O function for simulating a simple key-input or key-output panel of the user target 
system in a window. This virtual I/O panel is created in the [GUI I/O] window. That is, virtual buttons and virtual LEDs 
are arranged in this window to allow the input and output of data. 

 

Figure 3.58   Example of a GUI I/O Window 

3.13.1 Opening the [GUI I/O] Window 

Choose [View -> Graphic -> GUI I/O] or click the [GUI I/O] toolbar button  to open the [GUI I/O] window.  

 

Figure 3.59   [GUI I/O] Window 

This window is used to arrange the following items.  

Button: Press a button for input of data to a virtual port or generation of a virtual interrupt. 

Label: A character string which is shown when the value written to a selected address or bit was the specified value 
and hidden otherwise. 

LED: A defined region in which a specified color is displayed (representing illumination of a LED) when the value 
written to a selected address or bit was the specified value. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 84 of 130 
REJ10J2162-0100 

Text: A region for the display of a text string. 

3.13.2 Creating a Button 

Click on the  button of the toolbar or choose [Create Button] from the pop-up menu. The mouse cursor turns into a 
“+” symbol. Create the button by dragging the mouse cursor from a higher-left to a lower-right position. 

 

Figure 3.60   GUI I/O Window (Create Button) 

• Specifying the event generated by clicking the button 
Press the  button on the toolbar and double-click on the created button to open the [Set Button] dialog box. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 85 of 130 
REJ10J2162-0100 

 

Figure 3.61   Set Button Dialog Box 

Enter the name of the button, input port address, and input data. The button name must not include white space. 

3.13.3 Creating a Label 

Click on the  button of the toolbar or choose [Create Label] from the pop-up menu. The mouse cursor turns into a “+” 
symbol. Drag the mouse cursor from a higher-left to a lower-right position. This shows the frame for the label. 

 

Figure 3.62   GUI I/O Window (Create Label) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 86 of 130 
REJ10J2162-0100 

Press the  button on the toolbar or choose [Select Item] from the pop-up menu and double-click on the created label 
to open the [Set Label] dialog box. Specify the responses to events. The label name must not include white space. 

• Response to writing of either value to a selected bit 
The settings shown below set up display of the character string “Printing in progress” or “Printer ready” when the value 
of bit 3 at address 0x3E0 is 0 or 1, respectively. 

 

Figure 3.63   Set Label Dialog Box (Bit Selection) 

• Response to writing of specified values to a selected address 
The settings shown below set up display of the character string “Printing in progress” or “Printer ready” when the value 
0x10 or 0x20, respectively, is written to address 0x3E0. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 87 of 130 
REJ10J2162-0100 

 

Figure 3.64   Set Label Dialog Box (Data Selection) 

3.13.4 Creating an LED 

Click on the  button on the toolbar or choose [Create LED] from the pop-up menu. The mouse cursor turns into a “+” 
symbol. Drag the mouse cursor from an upper left to a lower right position. This shows the frame for the LED output. 

 

Figure 3.65   GUI I/O Window (Create LED) 

Press the  button on the toolbar or choose [Select Item] from the pop-up menu and double-click on the created LED 
to open the [Set LED] dialog box. Specify the events and responses.  



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 88 of 130 
REJ10J2162-0100 

• Response to writing of either value to a selected bit 
The settings shown below set up the display of green or red, respectively, in the LED area when the value of bit 2 at 
address 0x3E0 is 0 or 1. 

 

Figure 3.66   Set LED Dialog Box (Bit Selection) 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 89 of 130 
REJ10J2162-0100 

• Response to writing of specified values to a selected address 
The settings shown below set up the display of green or red, respectively, in the LED area when the value 0x10 or 0x20 
is written to address 0x3E0. 

 

Figure 3.67   Set LED Dialog Box (Data Selection) 

Clicking the [Color 1] or [Color 2] button opens the [Color] dialog box, which allows you to select the color. 

3.13.5 Creating Fixed Text 

Click the  button on the toolbar or choose [Create Text] from the pop-up menu. The mouse cursor turns into a “+” 
symbol. Create the text box by dragging the mouse cursor from a higher-left to a lower-right position.  

 

Figure 3.68   GUI I/O Window (Create Fixed Text) 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 90 of 130 
REJ10J2162-0100 

• Setting the format for the text 
Press the  button on the toolbar and double-click on the created text to open the [Set Text] dialog box. 

 

Figure 3.69   Set Text Dialog Box 

Click the [Font…] button to select the font and size for the text. Then click the [Text] and [Back] buttons to specify the 
colors of the text and its background. 

3.13.6 Changing the Size and Position of an Item 

Press the  button on the toolbar and click on the item. The item is selected as shown in the figure below. 

 

Figure 3.70   GUI I/O Window (Item Selected) 

Drag the item to change its position or the control points to change its size. 

3.13.7 Copying an Item 

Press the  button on the toolbar or choose [Copy] from the pop-up menu. The mouse cursor turns into a “+” symbol. 
In this state, click on the item you wish to copy. Press the  button on the toolbar or choose [Paste] from the pop-up 
menu to create a new item with the same size and attributes. 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 91 of 130 
REJ10J2162-0100 

3.13.8 Deleting an Item 

Press the  button on the toolbar or choose [Delete] from the pop-up menu. The mouse cursor turns into a “+” symbol. 
In this state, click on the item you wish to delete.  

3.13.9 Showing the Grid 

Press the  button on the toolbar or choose [Display Grid] from the pop-up menu. This displays the grid on the 
background.  

 

Figure 3.71   GUI I/O Window (Show Grid) 

Clicking the  button again hides the grid. 

3.13.10 Saving I/O Panel Information 

It is possible to reuse created I/O panels by saving the information in files. Press the  button on the toolbar or choose 
[Save] from the pop-up menu to open the [Save GUI I/O Panel File] dialog box. Specify the directory where the file is 
to be stored and enter the file name. 

3.13.11 Loading I/O Panel Information 

Press the  button on the toolbar or choose [Load] from the pop-up menu to open the [Load GUI I/O Panel File] 
dialog box. Specify the file you wish to load. Panel information prior to the load will be deleted. 



Section 2   Simulator/Debugger Functions 

Rev. 1.00  Apr. 01, 2010  Page 92 of 130 
REJ10J2162-0100 

 
 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 93 of 130 
REJ10J2162-0100 

Section 4   Windows 

Table 4.1 lists the windows. 

Refer to the simulator/debugger help about the toolbar buttons. 

Table 4.1 Simulator/Debugger Windows 

Window Name Function 
IO Viewing the I/O Memory 

Simulated I/O Standard I/O and File I/O Processing 

Event Using the Simulator/Debugger Breakpoints 

Watch Looking at Variables (any variables) 

Editor Displaying the source code 

Image Displaying Memory Contents as an Image 

Coverage Measuring Code Coverage 

Disassembly Viewing the Assembly-Language Code 

Command Line Debugging with the Command Line Interface 

Stack Trace Viewing the Function Call History 

Status Viewing the Current Status 

Trigger Generating a Pseudo-Interrupt Manually 

Trace Viewing the Trace Information 

Wave Displaying Memory Contents as Waveforms 

Analyzing Performance Register Analyzing Performance 

Profile/Profile-Chart Viewing the Profile Information 

Memory Viewing a Memory Area 

Label Looking at Labels 

Register Looking at Registers 

Local Looking at Variables (local variables) 

GUI I/O Creating a Virtual I/O Panel 

OS Object Displaying the status of OS objects such as tasks and semaphores 

Task Trace Measuring the execution history of the program by using the realtime OS. 

Task Analyze Displaying the state of CPU occupancy. 

 



Section 4   Windows 

Rev. 1.00  Apr. 01, 2010  Page 94 of 130 
REJ10J2162-0100 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 95 of 130 
REJ10J2162-0100 

Section 5   Command Lines 

5.1 Commands (Functional Order) 

The following tables show the commands in functional order. 

Refer to the simulator/debugger help about each command. 

5.1.1 Execution 

Command Name Abbr. Function 
GO GO Executes user program 

GO_RESET GR Executes user program from reset vector 

GO_TILL GT Executes user program until temporary breakpoint 

HALT HA Halts the user program 

RESET RE Resets CPU 

STEP ST Steps program (by instructions or source lines) 

STEP_MODE SM Selects the step mode 

STEP_OUT SP Steps out of the current function 

STEP_OVER SO Steps program, not stepping into functions 

STEP_RATE SR Sets or displays rate of stepping 

 

5.1.2 Download 

Command Name Abbr. Function 
BUILD BU Performs a build on the current project 

BUILD_ALL BL Performs a build all on the current project 

BUILD_FILE BF Compiles files 

BUILD_MULTIPLE BM Builds multiple projects 

CLEAN CL Deletes intermediate and output files produced in building 

DEFAULT_OBJECT_FORMAT DO Sets the default object (program) format 

FILE_LOAD FL Loads an object (program) file 

FILE_LOAD_ALL LA Loads all object (program) files 

FILE_SAVE FS Saves memory to a file 

FILE_UNLOAD FU Unloads an object (program) file from memory 

FILE_UNLOAD_ALL UA Unloads all object (program) files from memory 

FILE_VERIFY FV Verifies file contents against memory 

GENERATE_MAKE_FILE GM Generates a build makefile for the current workspace or deletion 

 

5.1.3 Register 

Command Name Abbreviation Function 
REGISTER_DISPLAY RD Displays CPU register values 

REGISTER_SET RS Changes CPU register contents 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 96 of 130 
REJ10J2162-0100 

5.1.4 Memory 

Command Name Abbreviation Function 
CACHE - Sets caching on or off 

MEMORY_COMPARE MC Compares memory contents 

MEMORY_DISPLAY MD Displays memory contents 

MEMORY_EDIT ME Modifies memory contents 

MEMORY_FILL MF Modifies the content of a memory area by specifying data 

MEMORY_FIND MI Finds a string in an area of memory 

MEMORY_MOVE MV Moves a block of memory 

MEMORY_TEST MT Tests a block of memory 

 

5.1.5 Assemble/Disassemble 

Command Name Abbreviation Function 
ASSEMBLE AS Assembles instructions into memory 

DISASSEMBLE DA Disassembles memory contents 

SYMBOL_ADD SA Defines a symbol 

SYMBOL_CLEAR SC Deletes a symbol 

SYMBOL_LOAD SL Loads a symbol information file 

SYMBOL_SAVE SS Saves a symbol information file 

SYMBOL_VIEW SV Displays symbols 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 97 of 130 
REJ10J2162-0100 

5.1.6 Break 

Command Name Abbreviation Function 
BREAKPOINT BP Sets a breakpoint at an instruction address 

BREAK_ACCESS BA Specifies a memory range access as a break condition 

BREAK_CLEAR BC Deletes breakpoints 

BREAK_CYCLE BCY Specifies a cycle as a break condition 

BREAK_DATA BD Specifies a memory data value as a break condition 

BREAK_DATA_DIFFERENCE BDD Specifies a difference between two values of data in memory as a break 
condition 

BREAK_DATA_INVERSE BDI Specifies inversion of the sign of a value of data in memory as a break 
condition 

BREAK_DATA_RANGE BDR Specifies a range of values in memory as a break condition 

BREAK_DISPLAY BI Displays a list of breakpoints 

BREAK_ENABLE BE Enables or disables a breakpoint 

BREAK_REGISTER BR Specifies a register data as a break condition 

BREAK_SEQUENCE BS Sets sequential breakpoints 

SET_DISASSEMBLY_SOFT_ 
BREAK 

SDB Sets or deletes a software breakpoint at the disassembly level 

SET_SOURCE_SOFT_BREAK SSB Sets or cancels a software breakpoint at source level  

STATE_DISASSEMBLY_ 
SOFT_BREAK 

TDB Enables or disables a software breakpoint at disassembly level 

STATE_SOURCE_SOFT_ 
BREAK 

TSB Enables or disables a software breakpoint at source level 

 

5.1.7 Trace 

Command Name Abbr. Function 
TRACE TR Displays trace information 

TRACE_CONDITION_SET TCS Sets trace information acquisition 

TRACE_SAVE TV Outputs trace information into a file 

 

5.1.8 Coverage 

Command Name Abbr. Function 
COVERAGE CV Enables or disables coverage measurement 

COVERAGE_DISPLAY CVD Displays coverage information 

COVERAGE_LOAD CVL Loads coverage information 

COVERAGE_RANGE CVR Sets a coverage range 

COVERAGE_SAVE CVS Saves coverage information 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 98 of 130 
REJ10J2162-0100 

5.1.9 Performance 

Command Name Abbr. Function 
ANALYSIS AN Enables or disables performance analysis 

ANALYSIS_RANGE AR Sets or displays performance analysis functions 

ANALYSIS_RANGE_DELETE AD Deletes a performance analysis range 

PROFILE PR Enables or disables profile 

PROFILE_DISPLAY PD Displays profile information 

PROFILE_SAVE PS Saves the profile information to file  

 

5.1.10 Watch 

Command Name Abbr. Function 
WATCH_ADD WA Adds an item for watching 

WATCH_AUTO_UPDATE WU Selects or cancels automatic updating of watched items 

WATCH_DELETE WD Deletes a watched item 

WATCH_DISPLAY WI Displays the contents of the Watch window 

WATCH_EDIT WE Edits the value of a watched item 

WATCH_EXPAND WX Expands or collapses a watched item 

WATCH_RADIX WR Changes the radix for display of watched items 

WATCH_RECORD WO Outputs the history of updating of the values of a watched item to a file

WATCH_SAVE WS Saves the contents of the Watch window to a file 

 

5.1.11 Script/Logging 

Command Name Abbr. Function 
! - Comment 

ASSERT - Checks if an expression is true or false 

AUTO_COMPLETE AC Enables or disables the auto-complete function 

ERASE ER Clears the [Command Line] window 

EVALUATE EV Evaluates an expression 

LOG LO Controls command output logging 

SLEEP - Delays command execution 

SUBMIT SU Executes a command file 

TCL - Displays TCL information 

 

5.1.12 Memory Resource 

Command Name Abbr. Function 
MAP_DISPLAY MA Displays memory resource settings 

MAP_SET MS Allocates a memory area 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 99 of 130 
REJ10J2162-0100 

5.1.13 Simulator/Debugger Settings 

Command Name Abbr. Function 
EXEC_MODE EM Sets and displays execution mode 

EXEC_STOP_SET ESS Sets or displays the execution mode at the occurrence of an interrupt 

 

5.1.14 Standard I/O and File I/O 

Command Name Abbr. Function 
SIMULATEDIO_CLEAR SIOC Clears the contents of the [Simulated I/O] window 

TRAP_ADDRESS TP Sets a simulated I/O address 

TRAP_ADDRESS_DISPLAY TD Displays simulated I/O address settings 

TRAP_ADDRESS_ENABLE TE Enables or disables the simulated I/O 

 

5.1.15 Utility 

Command Name Abbr. Function 
HELP HE Displays the command line help 

INITIALIZE IN Initializes the debugging platform 

QUIT QU Exits HEW 

RADIX RA Sets default input radix 

RESPONSE RP Sets an interval to refresh the window 

STATUS STA Displays the debugging platform status 

TOOL_INFORMATION TO Outputs information on the currently registered tool to a file 

 

5.1.16 Project/Workspace  

Command Name Abbr. Function 
ADD_FILE AF Adds a file to the current project 

CHANGE_CONFIGURATION CC Sets the current configuration 

CHANGE_PROJECT CP Sets the current project 

CHANGE_SESSION CS Changes the current session 

CHANGE_SUB_SESSION CB Changes the currently active session when simultaneous debugging is 
enabled 

CLEAR_OUTPUT_WINDOW COW Clears the contents of the specified tab in the [Output] window 

CLOSE_WORKSPACE CW Close the current workspace 

OPEN_WORKSPACE OW Opens a workspace 

REFRESH_SESSION RSE Updates information on the session 

REMOVE_FILE REM Removes a file from the current project 

SAVE_SESSION SE Saves the current session 

SAVE_WORKSPACE SW Saves the current workspace 

UPDATE_ALL_DEPENDENCIES UD Updates all build dependencies of the current project 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 100 of 130 
REJ10J2162-0100 

5.1.17 Test Tool Facility 

Command Name Abbr. Function 
CLOSE_TEST_SUITE CTS Closes a test suite 

COMPARE_TEST_DATA CTD Compares test data 

OPEN_TEST_SUITE OTS Opens a test suite 

RUN_TEST RT Executes a test 

 

5.1.18 Debugging Functions for the Realtime OS 

Command Name Abbr. Function 
OSOBJECT_ALL_ADD OAA Adds OS objects (of a specific object type) 

OSOBJECT_ALL_DELETE OAD Deletes OS objects (in a specific sheet) 

OSOBJECT_AUTO_UPDATE OAU Changes the automatic-update setting to “Auto” and “Break”. 

OSOBJECT_DATA_LOWLINE ODL Moves an OS object to the next line. 

OSOBJECT_DATA_SAVE ODS Saves the information on an OS object to a file. 

OSOBJECT_DATA_UPLINE ODU Moves an OS object to the previous line. 

OSOBJECT_DISPLAY OD Shows the information on an OS object. 

OSOBJECT_NO_UPDATE ONU Changes the automatic-update setting to “Lock”. 

OSOBJECT_ONE_ADD OOA Adds an OS object. 

OSOBJECT_ONE_DELETE OOD Deletes an OS object. 

OSOBJECT_ONE_EDIT OOE Edits an OS object. 

OSOBJECT_SETTING_LOAD OSL Loads OS-object settings from a file. 

OSOBJECT_SETTING_SAVE OSS Saves OS-object settings in a file. 

OSOBJECT_STOP_UPDATE OSU Changes the automatic-update setting to “Break”. 

 

5.1.19 File Input and Output through Virtual Ports 

Command Name Abbr. Function 
PORT_FILE_ADD PFA Adds a file for input or output through a virtual port. 

PORT_FILE_CLOSE PFC Closes a file for input or output through a virtual port. 

PORT_FILE_DELETE PFD Deletes the setting of a file for input or output through a virtual port. 

PORT_FILE_OPEN PFO Opens a file for input or output through a virtual port. 

PORT_FILE_STATUS PFS Shows the current state of a file for input or output through a virtual port.

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 101 of 130 
REJ10J2162-0100 

5.2 Commands (Alphabetical Order) 

Table 5.1 lists the commands in alphabetical order. 

Refer to the simulator/debugger help about each command. 

Table 5.1 Simulator/Debugger Commands 

No. Command Name Abbr. Function 
1 ! - Comment 

2 ADD_FILE AF Adds a file to the current project 

3 ANALYSIS AN Enables or disables performance analysis 

4 ANALYSIS_RANGE AR Sets or displays performance analysis functions 

5 ANALYSIS_RANGE_ 
DELETE 

AD Deletes a performance analysis range 

6 ASSEMBLE AS Assembles instructions into memory 

7 ASSERT - Checks if an expression is true or false 

8 AUTO_COMPLETE AC Enables or disables the auto-complete function 

9 BREAKPOINT BP Sets a breakpoint at an instruction address 

10 BREAK_ACCESS BA Specifies a memory range access as a break condition 

11 BREAK_CLEAR BC Deletes breakpoints 

12 BREAK_CYCLE BCY Specifies a cycle as a break condition 

13 BREAK_DATA BD Specifies a memory data value as a break condition 

14 BREAK_DATA_ 
DIFFERENCE 

BDD Specifies a difference between two values of data in memory as a 
break condition 

15 BREAK_DATA_ 
INVERSE 

BDI Specifies inversion of the sign of a value of data in memory as a break 
condition 

16 BREAK_DATA_RANGE BDR Specifies a range of values in memory as a break condition 

17 BREAK_DISPLAY BI Displays a list of breakpoints 

18 BREAK_ENABLE BE Enables or disables a breakpoint 

19 BREAK_REGISTER BR Specifies a register data as a break condition 

20 BREAK_SEQUENCE BS Sets sequential breakpoints 

21 BUILD BU Performs a build on the current project 

22 BUILD_ALL BL Performs a build all on the current project 

23 BUILD_FILE BF Compiles files 

24 BUILD_MULTIPLE BM Builds multiple projects 

25 CACHE - Sets caching on or off 

26 CHANGE_CONFIGURATION CC Sets the current configuration 

27 CHANGE_PROJECT CP Sets the current project 

28 CHANGE_SESSION CS Changes the current session 

29 CHANGE_SUB_SESSION CB Changes the currently active session when simultaneous debugging is 
enabled 

30 CLEAN CL Deletes intermediate and output files produced in building 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 102 of 130 
REJ10J2162-0100 

Table 5.1 Simulator/Debugger Commands (cont) 

No. Command Name Abbr. Function 

31 CLEAR_OUTPUT_WINDOW COW Clears the contents of the specified tab in the [Output] window 

32 CLOSE_TEST CT Closes a test suite 

33 CLOSE_WORKSPACE CW Close the current workspace 

34 COMPARE_TEST_DATA CTD Compares test data 

35 COVERAGE CV Enables or disables coverage measurement 

36 COVERAGE_DISPLAY CVD Displays coverage information 

37 COVERAGE_LOAD CVL Loads coverage information 

38 COVERAGE_RANGE CVR Sets a coverage range 

39 COVERAGE_SAVE CVS Saves coverage information 

40 DEFAULT_OBJECT_FORMAT DO Sets the default object (program) format 

41 DISASSEMBLE DA Disassembles memory contents 

42 ERASE ER Clears the [Command Line] window 

43 EVALUATE EV Evaluates an expression 

44 EXEC_MODE EM Sets and displays execution mode 

45 EXEC_STOP_SET ESS Sets or displays the execution mode at the occurrence of an interrupt

46 FILE_LOAD FL Loads an object (program) file 

47 FILE_LOAD_ALL LA Loads all object (program) files 

48 FILE_SAVE FS Saves memory to a file 

49 FILE_UNLOAD FU Unloads an object (program) file from memory 

50 FILE_UNLOAD_ALL UA Unloads all object (program) files from memory 

51 FILE_VERIFY FV Verifies file contents against memory 

52 GENERATE_MAKE_FILE GM Generates a build makefile for the current workspace 

53 GO GO Executes user program 

54 GO_RESET GR Executes user program from reset vector 

55 GO_TILL GT Executes user program until temporary breakpoint 

56 HALT HA Halts the user program 

57 HELP HE Displays the command line help 

58 INITIALIZE IN Initializes the debugging platform 

59 LOG LO Controls command output logging 

60 MAP_DISPLAY MA Displays memory resource settings 

61 MAP_SET MS Allocates a memory area 

62 MEMORY_COMPARE MC Compares memory contents 

63 MEMORY_DISPLAY MD Displays memory contents 

64 MEMORY_EDIT ME Modifies memory contents 

65 MEMORY_FILL MF Modifies the content of a memory area by specifying data 

66 MEMORY_FIND MI Finds a string in an area of memory 

67 MEMORY_MOVE MV Moves a block of memory 

68 MEMORY_TEST MT Tests a block of memory 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 103 of 130 
REJ10J2162-0100 

Table 5.1 Simulator/Debugger Commands (cont) 

No. Command Name Abbr. Function 
69 OPEN_TEST_SUITE OTS Opens a test suite 

70 OPEN_WORKSPACE OW Opens a workspace 

71 OSOBJECT_ALL_ADD OAA Adds OS objects (of a specific object type) 

72 OSOBJECT_ALL_DELETE OAD Deletes OS objects (in a specific sheet) 

73 OSOBJECT_AUTO_UPDATE OAU Changes the automatic-update setting to “Auto” and “Break”. 

74 OSOBJECT_DATA_LOWLINE ODL Moves an OS object to the next line. 

75 OSOBJECT_DATA_SAVE ODS Saves the information on an OS object to a file. 

76 OSOBJECT_DATA_UPLINE ODU Moves an OS object to the previous line. 

77 OSOBJECT_DISPLAY OD Shows the information on an OS object. 

78 OSOBJECT_NO_UPDATE ONU Changes the automatic-update setting to “Lock”. 

79 OSOBJECT_ONE_ADD OOA Adds an OS object. 

80 OSOBJECT_ONE_DELETE OOD Deletes an OS object. 

81 OSOBJECT_ONE_EDIT OOE Edits an OS object. 

82 OSOBJECT_SETTING_LOAD OSL Loads OS-object settings from a file. 

83 OSOBJECT_SETTING_SAVE OSS Saves OS-object settings in a file. 

84 OSOBJECT_STOP_UPDATE OSU Changes the automatic-update setting to “Break”. 

85 PORT_FILE_ADD PFA Adds a file for input or output through a virtual port. 

86 PORT_FILE_CLOSE PFC Closes a file for input or output through a virtual port. 

87 PORT_FILE_DELETE PFD Deletes the setting of a file for input or output through a virtual port. 

88 PORT_FILE_OPEN PFO Opens a file for input or output through a virtual port. 

89 PORT_FILE_STATUS PFS Shows the current state of a file for input or output through a virtual 
port. 

90 PROFILE PR Enables or disables the profile 

91 PROFILE_DISPLAY PD Displays profile information 

92 PROFILE_SAVE PS Saves the profile information to file  

93 QUIT QU Exits HEW 

94 RADIX RA Sets default input radix 

95 REFRESH_SESSION RSE Updates information on the session 

96 REGISTER_DISPLAY RD Displays CPU register values 

97 REGISTER_SET RS Changes CPU register contents 

98 REMOVE_FILE REM Removes a file from the current project 

99 RESET RE Resets CPU 

100 RESPONSE RP Sets an interval to refresh the window 

101 RUN_TEST RT Executes a test 

102 SLEEP - Delays command execution 

103 SAVE_SESSION SE Saves the current session 

104 SAVE_WORKSPACE SW Saves the current workspace 

105 SET_DISASSEMBLY_SOFT_ 
BREAK 

SDB Sets or deletes a software breakpoint at the disassembly level 

 



Section 5   Command Lines 

Rev. 1.00  Apr. 01, 2010  Page 104 of 130 
REJ10J2162-0100 

Table 5.1 Simulator/Debugger Commands (cont) 

No. Command Name Abbr. Function 
106 SET_SOURCE_SOFT_BREAK SSB Sets or deletes a software breakpoint at the source level 

107 SIMULATEDIO_CLEAR SIOC Clears the contents of the [Simulated I/O] window 

108 STATE_DISASSEMBLY_SOFT_ 
BREAK 

TDB Enables or disables a software breakpoint at the disassembly level

109 STATE_SOURCE_SOFT_BREAK TSB Enables or disables a software breakpoint at the source level 

110 STATUS STA Displays the debugging platform status 

111 STEP ST Steps program (by instructions or source lines) 

112 STEP_MODE SM Selects the step mode 

113 STEP_OUT SP Steps out of the current function 

114 STEP_OVER SO Steps program, not stepping into functions 

115 STEP_RATE SR Sets or displays rate of stepping 

116 SUBMIT SU Executes a command file 

117 SYMBOL_ADD SA Defines a symbol 

118 SYMBOL_CLEAR SC Deletes a symbol 

119 SYMBOL_LOAD SL Loads a symbol information file 

120 SYMBOL_SAVE SS Saves a symbol information file 

121 SYMBOL_VIEW SV Displays symbols 

122 TCL - Enables or disables the TCL 

123 TOOL_INFORMATION TO Outputs information on the currently registered tool to a file 

124 TRACE TR Displays trace information 

125 TRACE_CONDITION_SET TCS Sets trace information acquisition 

126 TRACE_SAVE TV Outputs trace information into a file 

127 TRACE_STATISTIC TST Analyzes statistic information 

128 TRAP_ADDRESS TP Sets a simulated I/O address 

129 TRAP_ADDRESS_DISPLAY TD Displays simulated I/O address settings 

130 TRAP_ADDRESS_ENABLE TE Enables or disables the simulated I/O 

131 UPDATE_ALL_DEPENDENCIES UD Updates all build dependencies of the current project 

132 WATCH_ADD WA Adds an item for watching 

133 WATCH_AUTO_UPDATE WU Selects or cancels automatic updating of watched items 

134 WATCH_DELETE WD Deletes a watched item 

135 WATCH_DISPLAY WI Displays the contents of the Watch window 

136 WATCH_EDIT WE Edits the value of a watched item 

137 WATCH_EXPAND WX Expands or collapses a watched item 

138 WATCH_RADIX WR Changes the radix for display of watched items 

139 WATCH_RECORD WO Outputs the history of updating of the values of a watched item to a 
file 

140 WATCH_SAVE WS Saves the contents of the Watch window to a file 

 

  



Section 6   Messages 

Rev. 1.00  Apr. 01, 2010  Page 105 of 130 
REJ10J2162-0100 

Section 6   Messages 

6.1 Information Messages 

The simulator/debugger outputs information messages as listed in table 6.1 to notify users of execution status.  

Table 6.1 Information Messages 

Message Contents 
Break Access (Access 
Address: H'nnnnnnnn, 
Type: xxxx, Access Size: 
yyyy) 

An access break condition was satisfied so execution has stopped. The information in 
parentheses shows the satisfied access break condition (accessed address, access type, 
and access unit). 

Break Cycle  
(Cycle: H'nnnnnnnn) 

A number-of-cycles condition was satisfied so execution has stopped. The information in 
parentheses shows the satisfied number-of-cycles condition (number of cycles). 

Break Data (Access 
Address: H'nnnnnnnn, 
Data: H'mmmm) 

A data break condition (other than [Inverse sign] or [Difference]) was satisfied so execution 
has stopped. The information in parentheses shows the satisfied data break condition 
(accessed address and value). 

Break Data (Access 
Address: H'nnnnnnnn, 
Previous Data: H'mmmm, 
Current Data: H'mmmm) 

A data break condition ([Inverse sign] or [Difference]) was satisfied so execution has stopped. 
The information in parentheses shows the satisfied data break condition (accessed address, 
and previous and current values). 

Break Register (Register: 
XX, Value: H'mmmm) 

A register break condition was satisfied so execution has stopped. The information in 
parentheses shows the satisfied register break condition (register name and value). 

Break Sequence  
(PC: H'nnnnnnnn) 

A sequential break condition was satisfied so execution has stopped. The information in 
parentheses shows the satisfied sequential break condition (address of the last instruction). 

I/O DLL Stop The peripheral function has stopped. 

PC Breakpoint  
(PC: H'nnnnnnnn) 

A PC breakpoint condition was satisfied so execution has stopped. The information in 
parentheses shows the satisfied PC-breakpoint condition (instruction address). 

Step Normal End The step execution succeeded. 

Stop Execution has been stopped by the [Stop] button. 

Trace Buffer Full Since the Break mode was selected by [Trace buffer full handling] in the [Trace Acquisition] 
dialog box and the trace buffer became full, execution was terminated. 

WAIT Instruction Instruction execution has been suspended by a WAIT instruction. 

 



Section 6   Messages 

Rev. 1.00  Apr. 01, 2010  Page 106 of 130 
REJ10J2162-0100 

6.2 Error Messages 

The simulator/debugger outputs error messages to notify users of the errors of user programs or operation. Table 6.2 
lists the error messages. 

Table 6.2 Error Messages  

Message Contents 
Undefined Instruction 
Exception 

An error has occurred due to undefined instruction exception processing. 

Privilege Instruction 
Exception 

An error has occurred due to privileged instruction exception processing. 

Floating-point Exception An error has occurred due to floating-point exception processing. 

Reset Exception An error has occurred due to reset exception processing. 

Interrupt Exception An error has occurred at the interrupt exception. 

INT Instruction Exception An error has occurred due to unconditional trap (INT instruction) exception processing. 

BRK Instruction 
Exception 

An error has occurred due to unconditional trap (BRK instruction) exception processing. 

I/O area not exist An attempt was made to delete the I/O area. Be sure to set the I/O area. 

I/O DLL Illegal Interrupt 
Information (errNum=2xx) 

Information on interrupts is incorrect. [errNum] shows the details on this error. Correct the 
information. 

[errNum] 

200: The specified vector is outside the supported range. 
201: The specified priority is outside the supported range. 

I/O DLL Memory Access 
Error (errNum=0xx, 
Address=0xXXXXXXXX) 

An error has occurred during a memory access to the peripheral function. [errNum] shows the 
details on this error and [Address] shows the address where this error occurred. Correct the 
user program according to the error information. 

[errNum] 

001: The specified address is outside the supported range. 
002: No memory exists in the specified area. 
003: The required memory cannot be allocated. 
004: The specified data size is outside the supported range. 
005: The specified address cannot be accessed. 

I/O DLL Register Access 
Error (errNum=1xx, 
RegisterName=xxxx) 

An error has occurred during a register access to the peripheral function. [errNum] shows the 
details on this error and [RegisterName] shows the register where this error occurred. Correct 
the user program according to the error information. 

[errNum] 

100: The register description is incorrect. 
101: The specified data value is incorrect. 

 



Section 6   Messages 

Rev. 1.00  Apr. 01, 2010  Page 107 of 130 
REJ10J2162-0100 

Table 6.2 Error Messages (cont) 

Message Contents 
Memory Access Error 
(Address: H'nnnnnnnn) 

One of the following events occurred (the information in parentheses shows the target 
address for the operation that generated the error): 

• A memory area that had not been allocated was accessed. 

• Data was written to a memory area having the write-protected attribute. 

• Data was read from a memory area having the read-disabled attribute. 

• A memory area in which memory does not exist was accessed. 
Allocate memory, change the memory attribute, or correct the user program to prevent the 
memory from being accessed. 

System Call Error Simulated I/O error occurred. Modify the incorrect contents of registers R1, R2, and 
parameter block. 

The memory resource 
has not been set up 

The memory resource was set outside the range of memory mapping. Modify the memory 
resource settings so that no error will occur. 

 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 108 of 130 
REJ10J2162-0100 

 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 109 of 130 
REJ10J2162-0100 

Section 7   Tutorial 

7.1 Preparation 

The basic functions of the simulator/debugger will be described in this section using a sample program.   

Note: The contents of usage examples (figures) in this section will differ depending on the compiler version. 

7.1.1 Sample Program 

The HEW demonstration program is used for the sample program and is written in C language. It first sorts ten random 
data in the ascending order, and then in the descending order.  The sample program: 

(1) Generates random data for sorting using the main function. 
(2) Inputs the array which stores the random data that is generated by the main function, then sorts the data in the 

ascending order using the sort function. 
(3) Inputs the array generated by the sort function, and sorts the data in the descending order using the change function. 
(4) Displays the random data and the sorted data using the printf function. 
 
The HEW demonstration program is used as the sample program. 

7.1.2 Creating the Sample Program 

Note the following when creating the HEW demonstration program: 

• Specify [Demonstration] for [Project Type] in [Creating a New Workspace]. 
• Specify [RX600] for [CPU Series:]. 
• Specify [RX600 Simulator] for [Target:]. 
• Specify [SimDebug_RX600] for the configuration on the toolbar before building the project. 
• Specify [SimSessionRX600] for the session on the toolbar. 
• This demonstration program uses no peripheral function. In the [Set Peripheral Function Simulation] dialog box that 

opens when the session is changed, check [Don’t show this dialog box] and then press the [OK] button. 
 
Since this section explains the debugging function, [Demonstration] has not been optimized.  Do not change this setting. 

7.2 Settings for Debugging 

7.2.1 Allocating the Memory Resource 

The allocation of the memory resource is necessary to run the application being developed.  When using the 
demonstration project, the memory resource is allocated automatically, so check the setting.   

• Select [Simulator->Memory Resource...] from the [Setup] menu, and display the allocation of the current memory 
resource.   

 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 110 of 130 
REJ10J2162-0100 

 

Figure 7.1   Simulator System Dialog Box (Memory Page) 

The ranges of addresses from H'FFFF8000 to H'FFFFFFFF and H'00000000 to H'00007FFF are secured as readable and 
writable areas for storage of the program and data, respectively.   

• Close the dialog box by clicking [OK].   
 
The memory resource can also be referred to or modified by using the [Debugger] page on the [RX Standard Toolchain] 
dialog box.  Changes made in either of the dialog boxes are reflected.   

7.2.2 Downloading the Sample Program 

When using the demonstration project, the sample program to be downloaded is automatically set, so check the settings. 

• Open the [Debug Setting] dialog box by selecting [Debug Settings...] on the [Debug] menu.   
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 111 of 130 
REJ10J2162-0100 

 

Figure 7.2   Debug Settings Dialog Box 

• Files to be downloaded are listed in [Download Modules].   
• Close the [Debug Settings] dialog box by clicking the [OK] button.   
• Download the sample program by selecting [Download Modules->All Download Modules] from the [Debug] menu.   
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 112 of 130 
REJ10J2162-0100 

7.2.3 Displaying the Source Program 

The HEW supports the source-level debugging. Display the source file ("Tutorial.c") in the [Source] window.   

• Open the [Source] window by double-clicking Tutorial.c on the [Workspace] window.   
 

 

Figure 7.3   Source Window (Displaying the Source Program) 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 113 of 130 
REJ10J2162-0100 

7.2.4 Setting a PC Breakpoint 

Breakpoints can be set easily via the [Source] window.  To set a breakpoint on a line that includes the sort function call:   

• Place the cursor in the line that includes the sort function call and click the right mouse button to launch the pop-up 
menu, and select [Toggle Breakpoint] from the pop-up menu.   

 

 

Figure 7.4   Source Window (Setting the Breakpoint) 

A [ • ] is displayed at the line that includes the sort function call, indicating that the PC breakpoint is set at the address.  

7.2.5 Setting the Profiler 

• Open the [Profile] window by selecting [Profile] from the [View->Performance] menu.   
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 114 of 130 
REJ10J2162-0100 

 

Figure 7.5   Profile Window 

• Open the pop-up menu by right clicking the mouse on the [Profile] window, and select [Enable Profiler] to enable 
acquisition of the profile information. 

 

7.2.6 Setting the Simulated I/O 

When the demonstration project is used, the simulated I/O is automatically set, so check the setting.    

• Open the [Simulator System] dialog box by selecting [Simulator->System] from the [Setup] menu.   
 

 

Figure 7.6   Simulator System Dialog Box (System Page) 

• Confirm that [Enable] in [Simulated I/O Address] is checked.   
• Click the [OK] button to enable the simulated I/O. 
• Select [Simulated I/O] from the [View->CPU] menu and open the [Simulated I/O] window.  The simulated I/O will 

not be enabled if the [Simulated I/O] window is not open.   



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 115 of 130 
REJ10J2162-0100 

 

Figure 7.7   Simulated I/O Window 

7.2.7 Setting the Trace Information Acquisition Conditions 

• Select [Trace] from the [View->Code] menu to open the [Trace] window.  Open the pop-up menu by right clicking 
the mouse on the [Trace] window, and select [Acquisition...] from the pop-up menu.   

 
The [Trace Acquisition] dialog box below will be displayed. 

 

Figure 7.8   Trace Acquisition Dialog Box 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 116 of 130 
REJ10J2162-0100 

• Set [Trace Function] to [Enable] in the [Trace Acquisition] dialog box, and click the [OK] button to enable the 
acquisition of the trace information.   

 

7.2.8 Setting the Stack Pointer and Program Counter 

To execute the program, the program counter must be set from the location of the reset vector.  In the reset vector of the 
sample program, the PC value H'FFFF8000 is written.   

• Select [Reset CPU] from the [Debug] menu, or click the [Reset CPU] button on the toolbar.   
 
Set the program counter to H'FFFF8000 from the reset vector.   

 
Figure 7.9   Reset CPU Button 

7.3 Start Debugging 

7.3.1 Executing a Program 

• Select [Go] from the [Debug] menu, or click the [Go] button on the toolbar.   
 

 
Figure 7.10   Go Button 

The program halts where a breakpoint is set.  An arrow is displayed in the [Source] window, indicating the location the 
execution has stopped.  As the termination cause, [PC Breakpoint (PC: H'FFFF90E4)] is displayed in the [Output] 
window.   



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 117 of 130 
REJ10J2162-0100 

 

Figure 7.11   Source Window (Break Status) 

The termination cause can be displayed in the [Status] window.   

• Select [Status] from the [View->CPU] menu to open the [Status] window, and select the [Platform] sheet in the 
[Status] window.   

 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 118 of 130 
REJ10J2162-0100 

 

Figure 7.12   Status Window 

The above status window indicates that: 

(1) The cause of break is a PC breakpoint 
(2)  Execution is performed from the reset 
(3) The number of instructions executed from a GO command following a reset is 35,898. 
(4) The number of cycles of execution following a reset is 58,246. 
(5) The execution time following a reset is 582.46 ms. 
(6) The operating frequency of the CPU is 100 MHz. 
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 119 of 130 
REJ10J2162-0100 

Register values can be checked in the [Register] window.   

• Select [Registers] from the [View->CPU] menu.   
 

 

Figure 7.13   Register Window 

Register values when the program is terminated can be checked.   



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 120 of 130 
REJ10J2162-0100 

7.3.2 Using the Trace Buffer 

The trace buffer can be used to clarify the history of instruction execution.   

• Select [Trace] from the [View->Code] menu and open the [Trace] window.  Scroll up to the very top of the main() 
function.   

 

 

Figure 7.14   Trace Window (Trace Information Display) 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 121 of 130 
REJ10J2162-0100 

7.3.3 Performing Trace Search 

Click the right mouse button on the [Trace] window to launch the pop-up menu, and select  
[Find -> Find....] to open the [Find] dialog box.   

 

Figure 7.15   Trace Search Dialog Box 

Check the check boxes for the conditions to be targets of the search in the [Combination] column, and specify the 
details of the conditions in the [Find Item] column. 

The conditions you have set are shown in the [Find Setting Contents] list box. 

After setting search conditions, click the [Find Previous] or [Find Next] button to start a search.  

When a matching trace record is found by a search, the relevant line in the [Trace] window is highlighted. When an 
instance of the trace record was successfully found, choose the [Find Previous] or [Find Next] button from the pop-up 
menu. The next instance of the trace record will be searched for. 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 122 of 130 
REJ10J2162-0100 

 

Figure 7.16   Trace Window (Searched Result) 

7.3.4 Checking Simulated I/O 

Random data that is displayed by the printf function can be checked in the [Simulated I/O] window. 

 

Figure 7.17   Simulated I/O Window 

• Do not close the [Simulated I/O] window.   
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 123 of 130 
REJ10J2162-0100 

7.3.5 Checking the Breakpoints 

A list of all the breakpoints that are set in the program can be checked in the [Event] window. 

• Select [Eventpoints] from the [View -> Code] menu.   
 

 

Figure 7.18   Event Window 

A breakpoint can be set, a new breakpoint can be defined, and a breakpoint can be deleted using the [Event] window.   

• Close the [Event] window.   
 

7.3.6 Watching Variables  

It is possible to watch the values of variables used in your program and to verify that they change in the way that you 
expected. For example, set a watch on the long-type array “a” declared at the beginning of the program, by using the 
following procedure: 

• Select [Watch] from the [View -> Symbol] menu to open the [Watch] window.  And click the right mouse button on 
the [Watch] window and choose [Add Watch...] from the pop-up menu.   

 
The following dialog box will be displayed. 
 

 

Figure 7.19   Add Watch Dialog Box 

• Type array “a” and click the [OK] button.  
 
The [Watch] window will show the long-type array “a”.  
You can double-click the + symbol to the left of array “a” in the [Watch] window to expand the variable and show the 
individual elements in the array. 
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 124 of 130 
REJ10J2162-0100 

 

Figure 7.20   Watch Window 

• Close the [Watch] window.   
 

7.3.7 Executing the Program in Single Steps 

The simulator/debugger has various stepping menus that are useful in debugging the program.   

Menu Description 

Step In Executes each statement (includes statements within the function) 

Step Over Executes a function call in a single step 

Step Out Steps out of a function, and stops at the next statement of the program that called 
the function 

Step... Executes the specified number of steps at the specified speed 

 

 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 125 of 130 
REJ10J2162-0100 

[Step In]:  Enters the called function and stops at the statement at the start of the called function.   

• To step in the sort function, select [Step In] from the [Debug] menu, or click the [Step In] button on the toolbar.   
 

 
Figure 7.21   Step In Button 

 

Figure 7.22   Source Window (Step In) 

• The PC location display (=>) in the [Source] window moves to the statement at the start of the sort function.   
 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 126 of 130 
REJ10J2162-0100 

[Step Out]:  Steps out of the called function and stops at the next statement in the called program.   

• Select [Step Out] from the [Debug] menu to exit the sort function, or click the [Step Out] button on the toolbar.   
 

 
Figure 7.23   Step Out Button 

 

Figure 7.24   Source Window (Step Out) 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 127 of 130 
REJ10J2162-0100 

[Step Over]:  Executes a function call in a single step, and stops at the next statement in the main program.   

Select [Step Over] from the [Debug] menu or click the [Step Over] button on the toolbar to step over the statements in 
the printf function.   

 
Figure 7.25   Step Over Button 

 

Figure 7.26   Source Window (Step Over) 

When the printf function has been executed, *** Sorting results *** will be displayed in the [Simulated I/O] window.   



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 128 of 130 
REJ10J2162-0100 

7.3.8 Checking Profile Information 

The profile information can be checked in the [Profile] window.  

• Clicking the [Go] button and continuing execution from the current PC executes the BRK instruction and then stops.    
 
[List] Sheet:  Displays the profile information as a list. 

• Open the [Profile] window by selecting [Profile] from the [View->Performance] menu.  The [List] sheet will be 
displayed. 

 

 

Figure 7.27   Profile Window (List Sheet) 

In the above figure, it can be found that the __fclose function was called three times, the execution cycle was 120, and 
the internal memory was accessed 39 times. 

It is possible to search for the critical path, such as a function that is called or accesses the memory many times, for the 
program performance. 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 129 of 130 
REJ10J2162-0100 

[Tree] Sheet:  Displays the profile information as a tree diagram.  

• Select the [Tree] sheet.  Double-clicking the function name in the [Profile] window expands or minimizes the tree 
structure. 

 

 

Figure 7.28   Profile Window (Tree Sheet) 

In above figure, it can be found that the __close function was called three times from the _fclose function, the execution 
cycle was 21, and the internal memory was accessed six times. 



Section 7   Tutorial 

Rev. 1.00  Apr. 01, 2010  Page 130 of 130 
REJ10J2162-0100 

[Profile-Chart] Window:  Displays the relation of calls for a specific function. 

• Select the __flclose function on the [Profile] window.  Open the pop-up menu by right clicking the mouse on the 
[Profile] window, and select [View Profile-Chart] to display the [Profile-Chart] window.   

 

 

Figure 7.29   Profile-Chart Window 

In the above figure, it can be found that the __flclose function was called three times from the __freopen functions, and 
the _close function was called three times. 

This is the end of the tutorial using the simulator/debugger. 

 



 

 

RX Family Simulator/Debugger V.1.01 
User’s Manual 

Publication Date: Apr. 1, 2010 Rev.1.00 

Published by: 
Renesas Electronics Corporation 
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, 
Kanagawa 211-8668 Japan 

Edited by: Renesas Solutions Corp. 

© 2010 Renesas Electronics Corporation, All rights reserved. Printed in Japan. 

 



 

 

RX Family Simulator/Debugger V.1.01
User’s Manual

 REJ10J2162-0100 


	Cover
	Notes regarding these materials
	About This Manual
	Contents
	Section 1    Overview
	Section 2    Simulator/Debugger Functions
	2.1 Features
	2.2  Target User Program
	2.3 Range
	2.4 Memory Management
	2.5 Instruction-Execution Reset Processing
	2.6  Exception Processing
	2.7 Endian
	2.7.1 Endian of the CPU
	2.7.2 Endian of the External Memory Area

	2.8  Simulation of Peripheral Functions
	2.8.1 Timer
	(1) Supported Range
	(2) Control Registers

	2.8.2  Serial Communications Interface
	(1) Supported Range
	(2) Control Registers
	(3) Input and Output of Data

	2.8.3 Interrupt Controller
	(1) Supported Range
	(2) Control Registers
	(3) Note on Using the ICU

	2.8.4 Clocks
	2.8.5 Using Peripheral Functions

	2.9 Trace
	2.10  Standard I/O and File I/O Processing
	2.11 Break Conditions
	2.12 Floating-Point Data
	2.13 Display of Function Call History
	2.14  Performance Measurement
	2.14.1 Profiler
	2.14.2 Performance Analysis

	2.15 Pseudo-Interrupts
	2.16 Coverage

	Section 3    Debugging
	3.1  Creating the Workspace for Simulator/Debugger
	3.1.1 Selecting a Debugging Platform
	3.1.2 Setting up a Workspace for the Simulator/Debugger

	3.2  Starting up the Simulator/Debugger
	3.3 Modifying the Simulator/Debugger Settings
	3.3.1 Setting the Endian and Frequency of CPU
	3.3.2 Modifying the Simulator System
	3.3.3 Modifying the Memory Map and Memory Resource Settings
	3.3.4 Set Memory Map Dialog Box
	3.3.5  Set Memory Resource Dialog Box

	3.4 Simulating Peripheral Functions
	3.4.1 Registering Peripheral Function Simulation Modules
	3.4.2  Changing the Addresses of Peripheral Functions
	3.4.3 Changing the Interrupt Source Information of Peripheral Functions
	3.4.4 Memory Resources for Control Registers
	3.4.5 Viewing the Names of Connected Peripheral Functions
	3.4.6  Input to and Output from Virtual Ports
	(1) Viewing the List of File Input and Output
	(2) Adding a File
	(3) Opening a File
	(4) Opening All Files
	(5) Closing a File
	(6) Closing All Files
	(7) Modifying File Setting
	(8) Deleting a File
	(9)  Format for Virtual Port Files


	3.5  Operations for Memory
	3.5.1 Regularly Updating Contents of the [Memory] Window 
	3.5.2 Viewing and Modifying the Settings for the I/O Area 

	3.6 Using the Simulator/Debugger Breakpoints
	3.6.1 Listing the Breakpoints
	3.6.2  Setting a Breakpoint
	3.6.3 Modifying Breakpoints
	3.6.4 Enabling a Breakpoint
	3.6.5 Disabling a Breakpoint
	3.6.6 Deleting a Breakpoint
	3.6.7 Deleting All Breakpoints
	3.6.8 Viewing the Source Line for a Breakpoint
	3.6.9 Closing Input or Output File
	3.6.10 Closing All Input and Output Files

	3.7 Viewing Trace Information
	3.7.1 Opening the Trace Window
	3.7.2 Specifying Trace Acquisition Conditions
	3.7.3 Setting Events for Tracing
	3.7.4  Acquiring Trace Information
	3.7.5  Searching for Trace Information
	3.7.6 Filtering Trace Information
	3.7.7 Clearing the Trace Information
	3.7.8 Saving the Trace Information in a File
	3.7.9 Viewing the Source File
	3.7.10 Switching Timestamp Display
	3.7.11 Showing the History of Function Execution

	3.8 Viewing the Profile Information
	3.8.1 Stack Information Files
	3.8.2  Loading Stack Information Files
	3.8.3 Enabling the Profile
	3.8.4 Specifying Measurement Mode
	3.8.5 Executing the Program and Checking the Results
	3.8.6 List Sheet
	3.8.7  Tree Sheet
	3.8.8  Profile-Chart Window
	3.8.9  Types and Purposes of Displayed Data
	3.8.10  Creating Profile Information Files
	3.8.11 Notes

	3.9  Analyzing Performance
	3.9.1 Opening the Performance Analysis Window
	3.9.2 Specifying a Target Function
	3.9.3 Starting Performance Data Acquisition
	3.9.4 Resetting Data
	3.9.5 Deleting a Target Function
	3.9.6 Deleting All Target Functions
	3.9.7 Saving the Currently Displayed Contents

	3.10  Measuring Code Coverage
	3.10.1 Opening the Coverage Window
	3.10.2 Acquiring All Coverage Information
	3.10.3 Clearing All Coverage Information
	3.10.4 Viewing the Source Window
	3.10.5 Specifying the New Coverage Range
	3.10.6 Changing the Coverage Range
	3.10.7 Deleting the Selected Coverage Range
	3.10.8 Acquiring Coverage Information
	3.10.9 Clearing Coverage Information
	3.10.10 Saving Coverage Information in a File
	3.10.11 Loading Coverage Information from a File
	3.10.12 Updating the Information
	3.10.13 Confirmation Request Dialog Box
	3.10.14  Save Coverage Data Dialog Box
	3.10.15  Displaying the Coverage Information in the Editor Window
	3.10.16  Displaying the Coverage Information in the [Disassembly] Window

	3.11  Generating a Pseudo-Interrupt Manually
	3.11.1 [Trigger] Window
	3.11.2 [GUI I/O] Window

	3.12 Standard I/O and File I/O Processing
	3.12.1 Opening the Simulated I/O Window
	3.12.2 I/O Functions

	3.13  Creating a Virtual I/O Panel
	3.13.1 Opening the [GUI I/O] Window
	3.13.2 Creating a Button
	3.13.3 Creating a Label
	3.13.4 Creating an LED
	3.13.5 Creating Fixed Text
	3.13.6 Changing the Size and Position of an Item
	3.13.7 Copying an Item
	3.13.8 Deleting an Item
	3.13.9 Showing the Grid
	3.13.10 Saving I/O Panel Information
	3.13.11 Loading I/O Panel Information


	Section 4    Windows
	Section 5    Command Lines
	5.1 Commands (Functional Order)
	5.1.1 Execution
	5.1.2 Download
	5.1.3 Register
	5.1.4 Memory
	5.1.5 Assemble/Disassemble
	5.1.6 Break
	5.1.7 Trace
	5.1.8 Coverage
	5.1.9 Performance
	5.1.10 Watch
	5.1.11 Script/Logging
	5.1.12 Memory Resource
	5.1.13 Simulator/Debugger Settings
	5.1.14 Standard I/O and File I/O
	5.1.15 Utility
	5.1.16 Project/Workspace 
	5.1.17 Test Tool Facility
	5.1.18 Debugging Functions for the Realtime OS
	5.1.19 File Input and Output through Virtual Ports

	5.2  Commands (Alphabetical Order)

	Section 6    Messages
	6.1 Information Messages
	6.2  Error Messages

	Section 7    Tutorial
	7.1 Preparation
	7.1.1 Sample Program
	7.1.2 Creating the Sample Program

	7.2 Settings for Debugging
	7.2.1 Allocating the Memory Resource
	7.2.2 Downloading the Sample Program
	7.2.3  Displaying the Source Program
	7.2.4  Setting a PC Breakpoint
	7.2.5 Setting the Profiler
	7.2.6 Setting the Simulated I/O
	7.2.7 Setting the Trace Information Acquisition Conditions
	7.2.8 Setting the Stack Pointer and Program Counter

	7.3 Start Debugging
	7.3.1 Executing a Program
	7.3.2  Using the Trace Buffer
	7.3.3  Performing Trace Search
	7.3.4 Checking Simulated I/O
	7.3.5  Checking the Breakpoints
	7.3.6 Watching Variables 
	7.3.7 Executing the Program in Single Steps
	7.3.8  Checking Profile Information


	Colophon



